Please use this identifier to cite or link to this item:
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266
Title: | A case study of proactive auto-scaling for an ecommerce workload. |
Other Titles: | Um estudo de caso de dimensionamento automático proativo para uma carga de trabalho de comércio eletrônico. |
???metadata.dc.creator???: | ALMEIDA, Marcella Medeiros Siqueira Coutinho de. |
???metadata.dc.contributor.advisor1???: | SILVA, Thiago Emmanuel Pereira da Cunha. |
???metadata.dc.contributor.referee1???: | NICOLLETTI, Pedro Sergio. |
???metadata.dc.contributor.referee2???: | BRASILEIRO, Francisco Vilar. |
Keywords: | Ecommerce workload;Case study;Estudos de caso;Cloud computing;Auto-scaling;ARIMA;Workload prediction;Algoritmo de autoescalonamento |
Issue Date: | 2-Sep-2022 |
Publisher: | Universidade Federal de Campina Grande |
Citation: | ALMEIDA, Marcella Medeiros Siqueira Coutinho de. A case study of proactive auto-scaling for an ecommerce workload. 2022. 10f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2022. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266 |
Abstract: | Preliminary data obtained from a partnership between the Federal University of Campina Grande and an ecommerce company indicates that some applications have issues when dealing with variable demand. This happens because a delay in scaling resources leads to performance degradation and, in literature, is a matter usually treated by improving the auto-scaling. To better understand the current state-of-the-art on this subject, we re-evaluate an auto-scaling algorithm proposed in the literature, in the context of ecommerce, using a long-term real workload. Experimental results show that our proactive approach is able to achieve an accuracy of up to 94 percent and led the auto-scaling to a better performance than the reactive approach currently used by the ecommerce company. |
Keywords: | Ecommerce workload Case study Estudos de caso Cloud computing Auto-scaling ARIMA Workload prediction Algoritmo de autoescalonamento |
???metadata.dc.subject.cnpq???: | Ciência da Computação. |
URI: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266 |
Appears in Collections: | Trabalho de Conclusão de Curso - Artigo - Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MARCELLA MEDEIROS SIQUEIRA COUTINHO DE ALMEIDA - TCC ARTIGO CIÊNCIA DA COMPUTAÇÃO CEEI 2022.pdf | Marcella Medeiros Siqueira Coutinho de Almeida - TCC Artigo Ciência da Computação CEEI 2022 | 1.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.