Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266
Full metadata record
DC FieldValueLanguage
dc.creator.IDALMEIDA, M. M. S. C.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6098150643100265pt_BR
dc.contributor.advisor1SILVA, Thiago Emmanuel Pereira da Cunha.-
dc.contributor.advisor1IDSILVA, T. E. P. C.pt_BR
dc.contributor.referee1NICOLLETTI, Pedro Sergio.-
dc.contributor.referee1IDNICOLLETTI, P. S.pt_BR
dc.contributor.referee2BRASILEIRO, Francisco Vilar.-
dc.contributor.referee2IDBRASILEIRO, F. V.pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5957855817378897pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da Computação.pt_BR
dc.titleA case study of proactive auto-scaling for an ecommerce workload.pt_BR
dc.date.issued2022-09-02-
dc.description.abstractPreliminary data obtained from a partnership between the Federal University of Campina Grande and an ecommerce company indicates that some applications have issues when dealing with variable demand. This happens because a delay in scaling resources leads to performance degradation and, in literature, is a matter usually treated by improving the auto-scaling. To better understand the current state-of-the-art on this subject, we re-evaluate an auto-scaling algorithm proposed in the literature, in the context of ecommerce, using a long-term real workload. Experimental results show that our proactive approach is able to achieve an accuracy of up to 94 percent and led the auto-scaling to a better performance than the reactive approach currently used by the ecommerce company.pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266-
dc.date.accessioned2023-04-05T16:43:39Z-
dc.date.available2023-04-05-
dc.date.available2023-04-05T16:43:39Z-
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.subjectEcommerce workloadpt_BR
dc.subjectCase studypt_BR
dc.subjectEstudos de casopt_BR
dc.subjectCloud computingpt_BR
dc.subjectAuto-scalingpt_BR
dc.subjectARIMApt_BR
dc.subjectWorkload predictionpt_BR
dc.subjectAlgoritmo de autoescalonamentopt_BR
dc.rightsAcesso Abertopt_BR
dc.creatorALMEIDA, Marcella Medeiros Siqueira Coutinho de.-
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageengpt_BR
dc.title.alternativeUm estudo de caso de dimensionamento automático proativo para uma carga de trabalho de comércio eletrônico.pt_BR
dc.identifier.citationALMEIDA, Marcella Medeiros Siqueira Coutinho de. A case study of proactive auto-scaling for an ecommerce workload. 2022. 10f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2022. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266pt_BR
Appears in Collections:Trabalho de Conclusão de Curso - Artigo - Ciência da Computação

Files in This Item:
File Description SizeFormat 
MARCELLA MEDEIROS SIQUEIRA COUTINHO DE ALMEIDA - TCC ARTIGO CIÊNCIA DA COMPUTAÇÃO CEEI 2022.pdfMarcella Medeiros Siqueira Coutinho de Almeida - TCC Artigo Ciência da Computação CEEI 20221.14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.