Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266
Title: A case study of proactive auto-scaling for an ecommerce workload.
Other Titles: Um estudo de caso de dimensionamento automático proativo para uma carga de trabalho de comércio eletrônico.
???metadata.dc.creator???: ALMEIDA, Marcella Medeiros Siqueira Coutinho de.
???metadata.dc.contributor.advisor1???: SILVA, Thiago Emmanuel Pereira da Cunha.
???metadata.dc.contributor.referee1???: NICOLLETTI, Pedro Sergio.
???metadata.dc.contributor.referee2???: BRASILEIRO, Francisco Vilar.
Keywords: Ecommerce workload;Case study;Estudos de caso;Cloud computing;Auto-scaling;ARIMA;Workload prediction;Algoritmo de autoescalonamento
Issue Date: 2-Sep-2022
Publisher: Universidade Federal de Campina Grande
Citation: ALMEIDA, Marcella Medeiros Siqueira Coutinho de. A case study of proactive auto-scaling for an ecommerce workload. 2022. 10f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2022. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266
Abstract: Preliminary data obtained from a partnership between the Federal University of Campina Grande and an ecommerce company indicates that some applications have issues when dealing with variable demand. This happens because a delay in scaling resources leads to performance degradation and, in literature, is a matter usually treated by improving the auto-scaling. To better understand the current state-of-the-art on this subject, we re-evaluate an auto-scaling algorithm proposed in the literature, in the context of ecommerce, using a long-term real workload. Experimental results show that our proactive approach is able to achieve an accuracy of up to 94 percent and led the auto-scaling to a better performance than the reactive approach currently used by the ecommerce company.
Keywords: Ecommerce workload
Case study
Estudos de caso
Cloud computing
Auto-scaling
ARIMA
Workload prediction
Algoritmo de autoescalonamento
???metadata.dc.subject.cnpq???: Ciência da Computação.
URI: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/29266
Appears in Collections:Trabalho de Conclusão de Curso - Artigo - Ciência da Computação

Files in This Item:
File Description SizeFormat 
MARCELLA MEDEIROS SIQUEIRA COUTINHO DE ALMEIDA - TCC ARTIGO CIÊNCIA DA COMPUTAÇÃO CEEI 2022.pdfMarcella Medeiros Siqueira Coutinho de Almeida - TCC Artigo Ciência da Computação CEEI 20221.14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.