Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/8547
Full metadata record
DC FieldValueLanguage
dc.creator.IDLINS, R. C.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8623118472645092pt_BR
dc.contributor.advisor1HATTORI, Mário Toyotaro.-
dc.contributor.advisor1IDHATTORI, M. T.pt_BR
dc.contributor.referee1QUEIRÓZ, Bruno Correia da Nóbrega.-
dc.contributor.referee2LOPES, Manoel Agamemnon.-
dc.contributor.referee3CARVALHO, João Marques de.-
dc.description.resumoSplines, que podem ser matematicamente descritos, possuem propriedades muito adequadas para modelagem de curvas. Uma curva definida por uma função arbtrária / sob certas condições pode ser bem aproximada por splines. Por outro lado, dada uma curva cuja função / que a define e desconhecida, e possível construir, a partir de um numero modesto de pontos da curva, uma boa aproximação de / usando splines. Ainda mais, as aproximações construídas usando splines podem preservar muitas propriedades matemáticas e geométricas das curvas. Em computação gráfica a incorporação dessas propriedades implica na fidelidade do objeto modelado. Na busca dessa fidelidade, muitos splines foram propostos: Bsplines, Curvas de Bezier, (3-splincs, u-splines, r-splines, WF-splines, y-splines, etc. Este trabalho tenta responder a questão quanto a possibilidade ou não de estudar os splines de forma unificada ao invés de estudar cada tipo isoladamente.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.programPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOpt_BR
dc.publisher.initialsUFCGpt_BR
dc.titleSplines e modelagem geométrica.pt_BR
dc.date.issued1996-06-26-
dc.description.abstractSplines, which are mathematically describable, have very nice properties for modeling curve. A curve defined by a function / satisfying a few conditions can be approximated by splines. Also, given a curve whose defining function / is unknown, splines provide a good approximation to this function from a given number of points in the curve. Furthermore, approximations built using splines can preserve many mathematical and geometrical properties of the curves. In computer graphics, the combination of the above properties warrants the accuracy of the model with respect to the object modelled. In the quest for this accuracy, many splines have been proposed: B-splines, Bezier, (3-splines, u-splines, r-splines, WF-splines, 7-splines, etc. This thesis attempts to answer the question of whether or not i t is possible to study splines in an unified way, rather than studying each kind of spline separately.pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/8547-
dc.date.accessioned2019-10-28T14:14:07Z-
dc.date.available2019-10-28-
dc.date.available2019-10-28T14:14:07Z-
dc.typeDissertaçãopt_BR
dc.subjectComputação Gráfica-
dc.subjectModelagem Geométrica - Computação Gráfica-
dc.subjectSplines-
dc.subjectAbordagem Unificada - Splines-
dc.subjectResenha das Splines-
dc.subjectCiência da Computação-
dc.subjectComputer Graphics-
dc.subjectGeometric Modeling - Computer Graphics-
dc.subjectUnified Approach - Splines-
dc.subjectSplines Review-
dc.subjectComputer Science-
dc.rightsAcesso Abertopt_BR
dc.creatorLINS, Robson Cavalcanti.-
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageporpt_BR
dc.title.alternativeSplines and geometric modeling.pt_BR
dc.identifier.citationLINS, Robson Cavalcanti. Splines e modelagem geométrica. 1996. 91f. (Dissertação de Mestrado em Informática), Pós-Graduação em Informática, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campus II, Campina Grande - PB, 1996. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/8547pt_BR
Appears in Collections:Mestrado em Ciência da Computação.

Files in This Item:
File Description SizeFormat 
ROBSON CAVALCANTI LINS - DISSERTAÇÃO PPGCC 1996.pdfRobson Cavalcanti Lins - Dissertação PPGCC 1996.13.11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.