Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/469
Title: RISO-GCT – determinação do contexto temporal de conceitos em textos.
???metadata.dc.creator???: ALVES, George Marcelo Rodrigues.
???metadata.dc.contributor.advisor1???: SCHIEL, Ulrich.
???metadata.dc.contributor.referee1???: CAMPELO, Cláudio Elísio Calazans.
???metadata.dc.contributor.referee2???: BEZERRA, Ed Porto.
Keywords: Indexação Temporal;Mapa de Tópicos;Reconhecimento de Padrões Temporais;Processamento de Linguagem Natural;Temporal Indexing;Topic Map;Recognition of Temporal Patterns;Natural Language Processing
Issue Date: 26-Feb-2016
Publisher: Universidade Federal de Campina Grande
Citation: ALVES, G. M. R. RISO-GCT – determinação do contexto temporal de conceitos em textos. 2016. 95 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2016. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/469
???metadata.dc.description.resumo???: Devido ao crescimento constante da quantidade de textos disponíveis na Web, existe uma necessidade de catalogar estas informações que surgem a cada instante. No entanto, trata-se de uma tarefa árdua e na qual seres humanos são incapazes de realizar esta tarefa de maneira manual, tendo em vista a quantidade incontável de dados que são disponibilizados a cada segundo. Inúmeras pesquisas têm sido realizadas no intuito de automatizar este processo de catalogação. Uma vertente de grande utilidade para as várias áreas do conhecimento humano é a indexação de documentos com base nos contextos temporais presentes nestes documentos. Esta não é uma tarefa trivial, pois envolve a análise de informações não estruturadas presentes em linguagem natural, disponíveis nos mais diversos idiomas, dentre outras dificuldades. O objetivo principal deste trabalho é criar uma abordagem capaz de permitir a indexação de documentos, determinando mapas de tópicos enriquecidos com conceitos e as respectivas informações temporais relacionadas. Tal abordagem deu origem ao RISO-GCT (Geração de Contextos Temporais), componente do Projeto RISO (Recuperação da Informação Semântica de Objetos Textuais), que tem como objetivo criar um ambiente de indexação e recuperação semântica de documentos possibilitando uma recuperação mais acurada. O RISO-GCT utilizou os resultados de um módulo preliminar, o RISO-TT (Temporal Tagger), responsável por etiquetar informações temporais presentes em documentos e realizar o processo de normalização das expressões temporais encontradas. Deste processo foi aperfeiçoada a abordagem responsável pela normalização de expressões temporais, para que estas possam ser manipuladas mais facilmente na determinação dos contextos temporais. . Foram realizados experimentos para avaliar a eficácia da abordagem proposta nesta pesquisa. O primeiro, com o intuito de verificar se o Topic Map previamente criado pelo RISO-IC (Indexação Conceitual), foi enriquecido com as informações temporais relacionadas aos conceitos de maneira correta e o segundo, para analisar a eficácia da abordagem de normalização das expressões temporais extraídas de documentos. Os experimentos concluíram que tanto o RISO-GCT, quanto o RISO-TT incrementado obtiveram resultados superiores aos concorrentes.
Abstract: Due to the constant growth of the number of texts available on the Web, there is a need to catalog that information which appear at every moment. However, it is an arduous task in which humans are unable to perform this task manually, given the increased amount of data available at every second. Numerous studies have been conducted in order to automate the cataloging process. A research line with utility for various areas of human knowledge is the indexing of documents based on temporal contexts present in these documents. This is not a trivial task, as it involves the analysis of unstructured information present in natural language, available in several languages, among other difficulties. The main objective of this work is to create a model to allow indexing of documents, creating topic maps enriched with the concepts in text and their related temporal information. This approach led to the RISO-GCT (Temporal Contexts Generation), a part of RISO Project (Semantic Information Retrieval on Text Objects), which aims to create a semantic indexing environment and retrieval of documents, enabling a more accurate recovery. RISO-GCT uses the results of a preliminary module, the RISO-TT (Temporal Tagger) responsible the labeling temporal information contained in documents and carrying out the process of normalization of temporal expressions. Found. In this module the normalization of temporal expressions has been improved, in order allow a richer temporal context determination. Experiments were conducted to evaluate the effectiveness of the approach proposed a in this research. The first, in order to verify that the topic map previously created by RISO-IC has been correctly enriched with temporal information related to the concepts correctly, and the second, to analyze the effectiveness of the normalization of expressions extracted from documents. The experiments concluded that both the RISO-GCT, as the RISO-TT, which was evolved during this work, obtained better results than similar tools.
Keywords: Indexação Temporal
Mapa de Tópicos
Reconhecimento de Padrões Temporais
Processamento de Linguagem Natural
Temporal Indexing
Topic Map
Recognition of Temporal Patterns
Natural Language Processing
???metadata.dc.subject.cnpq???: Ciências
Ciência da Computação
URI: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/469
Appears in Collections:Mestrado em Ciência da Computação.

Files in This Item:
File Description SizeFormat 
GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO (PPGCC) 2016.pdfGeorge Marcelo Rodrigues Alves - Dissertação PPGCC 20161.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.