Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4240
Full metadata record
DC FieldValueLanguage
dc.creator.IDRODRIGUES, E. S. da C.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9860692793246856pt_BR
dc.contributor.advisor1GOMES, Herman Martins.-
dc.contributor.advisor1IDGOMES, H. M.pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4223020694433271pt_BR
dc.contributor.advisor-co1BARROS, Marcelo Alves de.-
dc.contributor.advisor-co1IDBARROS, M. A.pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1101332313551029pt_BR
dc.contributor.referee1SAMPAIO, Marcus Costa.-
dc.contributor.referee1IDSAMPAIO, M. C.pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7407058401863661pt_BR
dc.contributor.referee2BRASILEIRO, Francisco Vilar.-
dc.contributor.referee2IDBRASILEIRO, F.pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5957855817378897pt_BR
dc.contributor.referee3LIMA FILHO, Francisco Pinheiro.-
dc.contributor.referee3IDLIMA FILHO, F. P.pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9888320802954176pt_BR
dc.description.resumoO principal objetivo deste trabalho é propor, implementar e avaliar um método para identificar automaticamente litofácies (unidades litológicas) a partir de dados de perfis e testemunhos de poços de petróleo. A identificação de litofácies é importante para ajudar na determinação da caracterização de um reservatório e na análise da viabilidade econômica de um poço. Um perfil de poço contém informações sobre as rochas sedimentares que ocorrem ao longo de um intervalo de profundidade, usando uma resolução abaixo de um metro, além de informações de porosidade e permeabilidade. A identificação manual de litofácies a partir de perfis de poços, geralmente, consome muito tempo, envolve a análise de grandes volumes de dados e requer conhecimento específico (algumas vezes heurístico). Uma descrição detalhada das unidades litológicas pode ser obtida através de uma análise de testemunho (amostra real da rocha), mas este processo é muito caro e é realizado apenas para alguns poços. Assim, a necessidade de um método computacional para resolver este problema se torna óbvia. O método proposto consiste em utilizar uma abordagem baseada em Redes Neurais para descobrir conhecimento em uma base de dados de perfis e testemunhos. A base de dados foi fornecida pela Agência Nacional do Petróleo (ANP) e contém dados do Campo Escola de Namorado, no Rio de Janeiro. Tentativas anteriores de resolver este problema usando Redes Neurais utilizaram um conjunto muito limitado e genérico de litofácies e usaram dados de apenas 5 poços. Neste trabalho, foram utilizados 8 poços. As principais etapas do método proposto foram implementadas e validadas a partir do conjunto de dados reais. A taxa média de identificação de litofácies ficou em torno de 80 %. Uma solução para o problema só foi possível após a incorporação de uma estratégia para agrupamento prévio das litofácies e tratamento de padrões problemáticos (regiões de conhecimento incerto nos conjuntos de treinamento e de teste).pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.programPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da Computaçãopt_BR
dc.titleIdentificação de litofácies de poços de petróleo utilizando um método baseado em redes neurais artificiais.pt_BR
dc.date.issued2002-08-30-
dc.description.abstractThe main objective of this work is to propose, implement and evaluate a method to auto matically identify lictofacies (lithological units) from well log and core data of an oil field. This is important since it can help determine whether a well is economically viable or not. A typical well log contains rocks sedimentary information occurring along a wide depth range using a resolution of under a meter, beyond porosity and permeability informations. Manu al lictofacies identification from well logs is usually time consuming, involves the analysis of large amounts of data and relies upon very specific (sometimes heuristic) knowledge. A detailed description of the lithological units can be obtained by a core sample analysis, but this is a very expensive process and is made available just to a few wells. Thus, the need of a computational method to solve the above problem becomes obvious. Our method consists of using a neural network approach to perform knowledge acquisition from a database of well logs and core data. The database was provided by the Brazilian Oil Agency (ANP) and contains data from the Namorado oil field in Rio de Janeiro. A previous attempt to solve this problem using neural networks used data from only 5 wells. In this work, we use data from 8 wells. The main modules of the proposed method were implemented and validated from a real data set. The average identification rate was around 80 %. A solution to the problem was only possible after the incorporation of a lictofacies grouping strategies and after dealing with some problematic patterns (regions of uncertain knowledge within the training and test sets).pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4240-
dc.date.accessioned2019-06-11T15:27:12Z-
dc.date.available2019-06-11-
dc.date.available2019-06-11T15:27:12Z-
dc.typeDissertaçãopt_BR
dc.subjectInteligência Artificialpt_BR
dc.subjectRedes Neuraispt_BR
dc.subjectPerfilagem e Testemunhagempt_BR
dc.subjectRedes Neurais Artificiaispt_BR
dc.subjectArtificial Intelligencept_BR
dc.subjectNeural Networkspt_BR
dc.subjectProfiling and Witnessingpt_BR
dc.subjectArtificial Neural Networkspt_BR
dc.rightsAcesso Abertopt_BR
dc.creatorCUNHA, Elisângela Silva da.-
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageporpt_BR
dc.title.alternativeIdentification of lithophyces of oil wells using a method based on artificial neural networks.pt_BR
dc.relationPRH-ANP/MCTpt_BR
dc.relationMCT/CTPETROpt_BR
dc.relationFNDCT/FINEPpt_BR
dc.identifier.citationCUNHA, Elisângela Silva da. Identificação de litofácies de poços de petróleo utilizando um método baseado em redes neurais artificiais. 2002. 118 f. Dissertação (Mestrado em Informática) Programa de Pós-Graduação em Informática, Centro de Ciências e Tecnologia, Universidade Federal da Paraíba, Campina Grande, Paraíba, Brasil, 2002. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4240pt_BR
Appears in Collections:Mestrado em Ciência da Computação.

Files in This Item:
File Description SizeFormat 
ELISÂNGELA SILVA DA CUNHA-DISSERTAÇÃO (PPGCC) 2002..pdfElisângela silva da Cunha - Dissertação (PPGCC) 2002.922.9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.