Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/41298
Full metadata record
DC FieldValueLanguage
dc.creator.IDSILVA, Í. S.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8800276401663245pt_BR
dc.contributor.advisor1MARINHO, Leandro Balby.-
dc.contributor.advisor1IDMARINHO, L. B.pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3728312501032061pt_BR
dc.contributor.referee1CAMPELO, Cláudio Elízio Calazans.-
dc.contributor.referee2VELOSO, Adriano Alonso.-
dc.description.resumoSistemas derecomendação(RSs)tornaram-secomunsnodiaadiadeboapartedapop- ulação, auxiliandousuáriosnadescobertadeitensrelevantesemdiversosdomínios.No entanto, acrescentecomplexidadedosRSslevantapreocupaçõessobresuatransparênciae interpretabilidade, especialmenteemaplicaçõesdealtoimpacto.Estadissertaçãoinvestigao potencial dosGrandesModelosdeLinguagem(LLMs)paragerarexplicaçõesautomatizadas e centradasnoserhumanoparaRSseavaliasuafidelidadeemrefletiroraciocíniointerno dos modelos.Avaliamosrecomendaçõespersonalizadasdefilmeseexplicaçõesgeradas pelo GPT-3.5Turbopormeiodeumestudocomusuários,medindoeficácia,personaliza- ção epoderdepersuasão.Umestudocomplementar,abrangendorecomendaçõesdefilmes, músicas elivrosgeradasporquatroLLMs(asaber,GPT-4o,Llama3,Gemma2eMixtral 8x7B), avaliouafidelidadedessasexplicaçõesusandoumaavaliaçãoaxiomáticabaseada no AcordodeImportânciadeCaracterísticas.Nossosresultadosrevelaramque,emboraas recomendações geradaspelosLLMstenhammelhoradoasatisfaçãodousuárioemcom- paração comseleçõesaleatórias,asexplicaçõesfrequentementenãoatendiamaoscritérios de fidelidade.Surpreendentemente,explicaçõesbaseadasempreferênciasdousuárionão foram consistentementepercebidascomomaispersonalizadas,eficazesoupersuasivasdo que explicaçõesgenéricas.Asprincipaiscontribuiçõesincluíramumaavaliaçãocentrada no usuáriodaqualidadedasexplicações,ummétodoaxiomáticoparaavaliarafidelidade, percepções sobrepreferênciasdosusuáriosetiposdeexplicações,alémdeumaanáliseda interação entreosobjetivosdasexplicações.Desafiosnotáveisidentificadosincluemasca- pacidades limitadasdepersonalizaçãodosLLMs,avariabilidadenosresultadosdevidoao comportamento nãodeterminísticoeanaturezainerentementedecaixa-pretadessesmode- los. EstetrabalhodestacaaspromessaselimitaçõesdosLLMsemRSsExplicáveisefornece uma baseparafuturaspesquisasquebusquemmelhoraroalinhamentoentreapercepçãodo usuário eafidelidadedasexplicações.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.programPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da Computaçãopt_BR
dc.titleLeveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanationspt_BR
dc.date.issued2025-02-13-
dc.description.abstractRecommender systems(RSs)havebecomeubiquitous,assistingusersindiscoveringrele- vantitemsacrossvariousdomains.However,theincreasingcomplexityofRSsraisescon- cerns abouttheirtransparencyandinterpretability,particularlyinhigh-stakesapplications. This thesisinvestigatesthepotentialofLargeLanguageModels(LLMs)togenerateau- tomated, human-centeredexplanationsforRSsandassessestheirfaithfulnessinreflecting the models’internalreasoning.Weevaluatedpersonalizedmovierecommendationsand explanationsgeneratedbyGPT-3.5Turbothroughauserstudy,measuringeffectiveness, personalization, andpersuasiveness.Afollow-upstudyacrossmovie,song,andbookrec- ommendations generatedbyfourLLMs(namely,GPT-4o,Llama3,Gemma2,andMixtral 8x7B) assessedthefaithfulnessoftheseexplanationsusinganaxiomaticevaluationbased on theFeatureImportanceAgreement.OurfindingsrevealedthatwhileLLM-generatedrec- ommendations improvedusersatisfactioncomparedtorandomselections,theexplanations often failedtomeetfaithfulnesscriteria.Surprisingly,explanationsbasedonuserpreferences were notconsistentlyperceivedasmorepersonalized,effective,orpersuasivethangeneric explanations.Keycontributionsincludedauser-centricevaluationofexplanationquality, an axiomaticmethodforassessingfaithfulness,insightsintouserpreferencesandexplana- tion types,andananalysisoftheinterplaybetweenexplanationgoals.Notablechallenges identified includeLLMs’limitedpersonalizationcapabilities,variabilityinoutputsdueto non-deterministic behavior,andtheinherentblack-boxnatureofthesemodels.Thiswork highlights thepromiseandlimitationsofLLMsinExplainableRSsandprovidesafounda- tion forfutureresearchtoenhancethealignmentbetweenuserperceptionandexplanation faithfulness.pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/41298-
dc.date.accessioned2025-03-25T18:54:28Z-
dc.date.available2025-03-25-
dc.date.available2025-03-25T18:54:28Z-
dc.typeDissertaçãopt_BR
dc.subjectRecuperação de Informaçãopt_BR
dc.subjectEstudo de Usuáriopt_BR
dc.subjectSistemas de Recomendação (RSs)pt_BR
dc.subjectGrandes Modelos de Linguagem (LLMs)pt_BR
dc.subjectLarge Language Models (LLMs)pt_BR
dc.subjectRecommendation Systems (SRs)pt_BR
dc.subjectUser Studypt_BR
dc.subjectInformation Retrievalpt_BR
dc.rightsAcesso Abertopt_BR
dc.creatorSILVA, Ítallo de Sousa.-
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageporpt_BR
dc.title.alternativeAproveitando LLMs para sistemas de recomendação explicáveis: explorando Percepções do usuário e fidelidade nas explicações geradaspt_BR
dc.description.sponsorshipCapespt_BR
dc.relationFAPESQpt_BR
dc.identifier.citationSILVA, Ítallo de Sousa. Leveraging LLMs for explainable recommender systems : exploring user perceptions and faithfulness in generated explanations. 2025. 85 f. Dissertação (Mestrando em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2025.pt_BR
Appears in Collections:Mestrado em Ciência da Computação.

Files in This Item:
File Description SizeFormat 
ÍTALLO DE SOUSA SILVA - DISSERTAÇÃO - (PPGCC) 2025.pdf3.89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.