Please use this identifier to cite or link to this item:
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/37916
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator.ID | FERREIRA, A. S. C. | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/1104868031869926 | pt_BR |
dc.contributor.advisor1 | PEREIRA, Eanes Torres. | - |
dc.contributor.advisor1ID | PEREIRA, E. T. | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2030738304003254 | pt_BR |
dc.contributor.referee1 | GOMES, Herman Martins. | - |
dc.contributor.referee1ID | GOMES, H. M. | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/4223020694433271 | pt_BR |
dc.contributor.referee2 | BRASILEIRO, Francisco Vilar. | - |
dc.contributor.referee2ID | BRASILEIRO, F. | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/5957855817378897 | pt_BR |
dc.description.resumo | As Redes Adversárias Generativas (GAN's) têm aplicações amplas, desde a criação de imagens e vídeos até a geração de texto e design de produtos. No contexto deste estudo, serão avaliadas imagens de faces sintéticas geradas por GAN's. Há benefícios neste uso de GAN's como pesquisas voltadas a entender a complexidade e nuances de imagens de faces e formação de bases de dados anônimas para treinamento de redes neurais com imagens de faces. Entretanto, faces sintéticas podem ser usadas para criar identidades falsas, podendo levar a crimes como fraude de identidade e phishing, onde faces sintéticas são usadas para enganar sistemas de segurança baseados em reconhecimento facial. Além disso, também podem ser usadas para criar vídeos e imagens falsos com intenções maliciosas, como difamação, desinformação ou propaganda política. Neste trabalho, foi treinada uma Rede Neural Convolucional Profunda baseada na arquitetura EfficientViT utilizando um conjunto de dados composto por bases de dados disponíveis publicamente e imagens sintéticas geradas pela rede StyleGAN3. Os resultados obtidos indicam uma taxa de acurácia de 99%, semelhante a outros métodos na literatura, porém as bases de dados utilizadas para treinamento e avaliação diferem além da quantidade de imagens utilizadas na avaliação. Ademais, houve uma procura de bases de dados diversificadas a fim de mitigar viés e justiça do modelo em relação à idade/etnia, porém uma análise à parte seria necessária para avaliar o impacto dessa escolha das bases de dados em comparação com outros modelos já treinados na literatura. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Centro de Engenharia Elétrica e Informática - CEEI | pt_BR |
dc.publisher.initials | UFCG | pt_BR |
dc.subject.cnpq | Ciência da Computação | pt_BR |
dc.title | Distinção entre imagens sintéticas de faces e imagens de faces reais. | pt_BR |
dc.date.issued | 2024-05-16 | - |
dc.description.abstract | Generative Adversarial Networks (GANs) have broad applications, ranging from image and video creation to text generation and product design. In the context of this study, synthetic face images generated by GANs will be evaluated. There are benefits to using GANs, such as external research to understand the complexity and nuances of facial images and the creation of anonymous databases for training neural networks with facial images. However, synthetic faces can be used to create false identities, leading to crimes such as identity theft and phishing, where synthetic faces are used to deceive facial recognition-based security systems. Additionally, they can also be used to create videos and fake images with malicious intent, such as defamation, misinformation, or political propaganda. In this work, a Deep Convolutional Neural Network based on the EfficientViT architecture was trained using a dataset composed of publicly available databases and synthetic images generated by the StyleGAN3 network. The results obtained indicate an accuracy rate of 99%, similar to other methods in the literature, but the databases used for training and evaluation vary beyond the number of images used in the evaluation. Furthermore, there was a search for diversified databases to mitigate bias and model fairness regarding age/ethnicity, but a separate analysis would be necessary to assess the impact of this choice of databases compared to other models already available in the literature. | pt_BR |
dc.identifier.uri | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/37916 | - |
dc.date.accessioned | 2024-09-23T15:14:08Z | - |
dc.date.available | 2024-09-23 | - |
dc.date.available | 2024-09-23T15:14:08Z | - |
dc.type | Trabalho de Conclusão de Curso | pt_BR |
dc.subject | Imagens Sintéticas de Faces | pt_BR |
dc.subject | Imagens de Faces Reais | pt_BR |
dc.subject | Redes Neurais Convolucionais Profundas | pt_BR |
dc.subject | Redes GAN | pt_BR |
dc.subject | Synthetic Face Images | pt_BR |
dc.subject | Real Face Images | pt_BR |
dc.subject | Deep Convolutional Neural Networks | pt_BR |
dc.subject | GAN Networks | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.creator | FERREIRA, Arthur Silva Cavalcante. | - |
dc.publisher | Universidade Federal de Campina Grande | pt_BR |
dc.language | por | pt_BR |
dc.title.alternative | Distinction between synthetic images of faces and images of real faces. | pt_BR |
dc.identifier.citation | FERREIRA, Arthur Silva Cavalcante. Distinção entre imagens sintéticas de faces e imagens de faces reais. 2024. 12 f. Artigo (Bacharelado em Ciência da Computação) - Universidade Federal de Campina Grande, Centro de Engenharia Elétrica e Informática, Campina Grande, Paraíba, Brasil, 2024. | pt_BR |
Appears in Collections: | Trabalho de Conclusão de Curso - Artigo - Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTHUR SILVA CAVALCANTE FERREIRA-ARTIGO- CIÊNCIA DA COMPUTAÇÃO (CEEI) 2024.pdf | 579.44 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.