Please use this identifier to cite or link to this item:
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32949
Title: | Relating bug report fields with resolution status: a case study with bugzilla. |
Other Titles: | Relacionando campos de relatório de bug com status de resolução: um estudo de caso com bugzilla. |
???metadata.dc.creator???: | FERREIRA, José Manoel dos Santos. |
???metadata.dc.contributor.advisor1???: | RAMALHO, Franklin de Souza. |
???metadata.dc.contributor.advisor2???: | MASSONI, Tiago Lima. |
???metadata.dc.contributor.referee1???: | ALVES , Everton Leandro Galdino. |
???metadata.dc.contributor.referee2???: | MIRANDA , Breno Alexandro Ferreira de. |
Keywords: | Software Engineering;Computer Science;Bug Reports;Engenharia de Software;Informática;Relatórios de bugs |
Issue Date: | 5-Sep-2023 |
Publisher: | Universidade Federal de Campina Grande |
Citation: | FERREIRA, José Manoel dos Santos. Relating bug report fields with resolution status: a case study with bugzilla. 2023. 93 f. Dissertação (Mestrado em Ciência da Computação) – Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Paraíba, Brasil, 2023. |
???metadata.dc.description.resumo???: | Os bug reports(BR) são artefatos essenciais para a garantia da qualidade do software. No entanto, o BR produzido, seja por testadores ou usuários, exige do relator uma quantidade considerável de dados, como resumo, etapas necessárias para reproduzir, comportamento esperado/real do sistema, gravidade/prioridade e até mesmo anexos (capturas de tela, vídeos ou arquivos de log). Pesquisas anteriores destacaram a frequência com que esses campos de dados são negligenciados; em resposta, várias diretrizes para escrever bons BR podem ser encontradas na literatura. No entanto, é razoável avaliar o impacto relativo desses campos relatados sobre o resultado dos bugs reportados, especialmente as condições em que eles são resolvidos. Por exemplo, quais campos são os mais importantes para ajudar os desenvolvedores a corrigir um bug? Neste estudo, realizamos uma investigação em um conjunto de dados de 69 mil bugs extraídos da plataforma Bugzilla. Avaliamos cinco modelos de aprendizado de máquina para classificar o status de resolução de bugs (entre FIXED, INVALID, INCOMPLETE, WONTFIX, WORKSFORME, MOVED, DUPLICATED e INACTIVE) e, em seguida, determinamos os recursos que mais influenciam a classificação FIXED. O processo de classificação envolve o emprego de técnicas padrão de aprendizado de máquina para otimização de modelos, incluindo balanceamento, agrupamento e fine-tuning. Notavelmente, o modelo Random Forest demonstrou excelente desempenho, alcançando 71,81% de precisão, 74,46% de acurácia e 72,32% de f-measure, com uma notável precisão de 95% na classificação de BR FIXED. Além disso, esse modelo nos permitiu identificar os campos mais influentes para a previsão de resolução. Entre os campos considerados, aqueles relacionados a dados textuais, como resumo, descrição e comentários, surgiram como contribuintes significativos para a classificação de importância do campo. Além disso, os anexos adicionados por meio da seção de comentários mostraram uma relevância considerável para a resolução do BR, assim como as alterações feitas durante o ciclo de vida do BR. Com base nesses resultados, fica evidente que o preenchimento de determinados campos nos BRs pode ajudar na correção dos bugs relatados. Consequentemente, as equipes de desenvolvimento podem se beneficiar dessas descobertas para estabelecer prioridades durante o processo de correção de bugs e alocar recursos de forma mais eficaz para a garantia de qualidade. Além disso, comunicar a importância desses campos aos usuários antes de enviar os BRs pode i resultar em envios mais focados e informativos, além de ajudar a aproveitar melhor o tempo deles. |
Abstract: | Bug reports are critical artifacts in software quality assurance. However, bug reporting, whether by testers or users, is costly; it demands from the reporter a considerable amount of data, such as summary, steps required to reproduce, expected/actual system behavior, severity/priority, and even attachments (screenshots, videos, or log files). Previous research has highlighted how often these data fields are neglected; in response, several guidelines for writing good reports can be found in the literature. Nevertheless, it is reasonable to assess the relative impact of those reported fields on the outcome of the reported bugs, especially the conditions under which they get resolved. As an inquiry, which fields are the most important for helping developers fix a bug? This study investigates a 69k-bugs dataset extracted from the Bugzilla platform. We evaluate five machine learning models to classify the bug resolution status (among FIXED, INVALID, INCOMPLETE, WONTFIX, WORKSFORME, MOVED, DUPLICATED, and INACTIVE), then determine the features that influence the FIXED classification most. The classification process employs standard ML techniques for model optimization, including balancing, grouping, and fine-tuning. Notably, the Random Forest model demonstrated outstanding performance, achieving 71.81% precision, 74.46% accuracy, and 72.32% f-measure, with a remarkable 95% accuracy in classifying FIXED reports. Additionally, this model allowed us to identify the most influential fields for resolution prediction. Among the fields considered, those related to textual data, such as summary, description, and comments, emerged as significant contributors to the field’s importance ranking. Furthermore, attachments added through the comments section showed considerable relevance to bug report resolution, as did the changes made throughout the bug report’s lifecycle. Given these results, filling specific fields in the bug reports can significantly assist in fixing the reported bugs. Consequently, development teams may benefit from considering these findings to establish priorities during the bug-fixing process and allocate resources more effectively for quality assurance. Moreover, communicating the importance of these fields to reporters before submitting bug reports can lead to more focused and informative submissions and help to make better use of their time. |
Keywords: | Software Engineering Computer Science Bug Reports Engenharia de Software Informática Relatórios de bugs |
???metadata.dc.subject.cnpq???: | Engenharia Elétrica e Informática |
URI: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32949 |
Appears in Collections: | Mestrado em Ciência da Computação. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
JOSÉ MANOEL DOS SANTOS FERREIRA - Dissertação (PPGCC) 2023.pdf | 1.17 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.