Please use this identifier to cite or link to this item:
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/31317
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator.ID | 700.854.444-80 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/0678343231995840 | pt_BR |
dc.contributor.advisor1 | Paz, Mabel Calina de França | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8689137959988831 | pt_BR |
dc.contributor.referee1 | Paz, Mabel Calina de França | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8689137959988831 | pt_BR |
dc.contributor.referee2 | Mariz, Saulo Rios | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/9984197509354317 | pt_BR |
dc.contributor.referee3 | Silva Junior, Antonio Humberto Pereira da | - |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/6575920620581295 | pt_BR |
dc.description.resumo | Syzygium cumini, comumente conhecido como “jambolão”, têm bons benefícios para a saúde, pois apresenta propriedades hipoglicêmicas, antinflamatórias, antianêmicas, antibacterianas, antioxidantes, entre outras. Os surfactantes biológicos apresentam propriedades de grande interesse para biorremediação, como baixa toxidade, biodegradabilidade, atividade emulsificante e tensoativa, e a possibilidade de produção a partir de fontes renováveis. Sendo assim, tem-se como objetivo avaliar o potencial antimicrobiano do extrato alcóolico de Syzygium cumini em culturas de Bacillus cereus e Candida spp., bem como o potencial biotecnológico do extrato aquoso como substrato para a produção de biossurfactante. Trata-se de um estudo do tipo experimental, com ensaios desenvolvidos em um Laboratório de Microbiologia, utilizando os extratos alcóolico e aquoso da folha do Syzygium cumini. Observou-se que a Concentração Inibitória Mínima para Candida spp. foi de 500mg/ml e apresentou uma moderada inibição de crescimento à uma concentração de 250mg/ml além disso, não houve inibição do crescimento do B. cereus. A bactéria, por sua vez, apresentou boa produção de biossurfactante a partir da utilização do querosene, porém, as emulsões apresentam pouca estabilidade quando em uso do extrato como fonte de nutrientes, apresentando uma atividade desemulsificante. Além disso, a basificação e as temperaturas mais altas contribuem para a instabilidade dessas emulsões. Portanto, o extrato apresentou uma moderada atividade antimicrobiana para Candida spp. e não apresentou inibição para o B. cereus. Quanto à produção de biossurfactantes, o extrato não se mostra eficiente para promover a estabilidade das emulsões, apresentando assim, um efeito contrário, acelerando e auxiliando na separação das fases. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Centro de Ciências Biológicas e da Saúde - CCBS | pt_BR |
dc.publisher.initials | UFCG | pt_BR |
dc.title | Avaliação Antimicrobiana do Extrato Alcóolico de Syzygium cumini sobre Bacillus cereus e Candida spp. e Produção de Biossurfactante | pt_BR |
dc.date.issued | 2022-08-25 | - |
dc.description.abstract | Syzygium cumini, commonly known as “jambolan”, has good health benefits, as it has hypoglycemic, anti-inflammatory, antianemic, antibacterial, antioxidant properties, among others. Biological surfactants have properties of great interest for bioremediation, such as low toxicity, biodegradability, emulsifying and surfactant activity, and the possibility of production from renewable sources. Therefore, the objective is to evaluate the antimicrobial potential of the alcoholic extract of Syzygium cumini in cultures of Bacillus cereus and Candida spp., as well as the biotechnological potential of the aqueous extract as a substrate for the production of biosurfactant. This is an experimental study, with tests carried out in a Microbiology Laboratory, using the alcoholic and aqueous extracts of the Syzygium cumini leaf. It was observed that the Minimum Inhibitory Concentration for Candida spp. was 500mg/ml and showed a moderate growth inhibition at a concentration of 250mg in addition, there was no inhibition of the growth of B. cereus. The bacterium, in turn, showed good production of biosurfactant from the use of kerosene, however, the emulsions have little stability when using the extract as a source of nutrients, presenting a demulsifying activity. In addition, basification and higher temperatures contribute to the instability of these emulsions. Therefore, the extract showed moderate antimicrobial activity against Candida spp. and showed no inhibition for B. cereus. As for the production of biosurfactants, the extract is not efficient to promote the stability of emulsions, thus presenting an opposite effect, accelerating and helping in the separation of the phases. | pt_BR |
dc.identifier.uri | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/31317 | - |
dc.date.accessioned | 2023-08-07T19:58:39Z | - |
dc.date.available | 2025-09-04 | - |
dc.date.available | 2023-08-07T19:58:39Z | - |
dc.type | Trabalho de Conclusão de Curso | pt_BR |
dc.subject | Agente Antimicrobiano; Tensoativos; Fitoterapia; Syzygium cumini; Anti-Infective Agents; Surface-Active Agents; Phytotherapy; Syzygium cumini. | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.creator | Santos, Maria Cecília Queiroga dos | - |
dc.publisher | Universidade Federal de Campina Grande | pt_BR |
dc.language | por | pt_BR |
dc.relation.references | Alves, EG; Vinholis, AHC; Casemiro, LA; Furtado, NAJC; Silva, MLA; Cunha, WR; Martins, CHG 2008. Estudo comparativo de técnicas de screening para avaliação da atividade anti-bacteriana de extratos brutos de espécies vegetais e de substâncias puras. Química nova, 31, 1224-1229. ALVES, RS 2020. Avaliação de aditivos baseados em óleo de mamona como desemulsificantes de emulsões tipo água em óleo. Dissertação de Mestrado, Universidade Federal do Ceará, Ceará, Brasil. Araujo, LVD; Freire, DMG; Nitschke, M 2013. Biossurfactantes: propriedades anticorrosivas, antibiofilmes e antimicrobianas. Química Nova, 36, 848-858. Arima, K; Kakinuma, A; Tamura, G 1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and biophysical research communications, 31(3), 488-494. Azab, A; Nassar, A; Azab, AN 2016. Anti-inflammatory activity of natural products. Molecules, 21(10), 1321. Baliga, MS; Bhat, HP; Baliga, BRV; Wilson, R; Palatty, PL 2011. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam.(black plum): a review. Food Research International, 44(7), 1776-1789. Banat, IM 2000. Bio-surfactants, more than never used; les biosurfactants, plus que jamais sollicites. Biofutur (Paris). Banat, IM; Makkar, RS; Cameotra, SS 2000. Potential commercial applications of microbial surfactants. Applied microbiology and biotechnology, 53(5), 495-508. Bezza, FA; Chirwa, EMN 2017. The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chemical Engineering Journal, 309, 563-576. Bitencourt, PE; Cargnelutti, LO; Stein, CS; Lautenchleger, R; Ferreira, LM; Sangoi, M; et al. 2017. Nanoparticle formulation increases Syzygium cumini antioxidant activity in Candida albicans-infected diabetic rats. Pharmaceutical biology, 55(1), 1082-1088. BRASIL, Agência Nacional de Vigilância Sanitária, 2019. Farmacopeia Brasileira, 6°edição, vol.1. BRASIL, Agência Nacional de Vigilância Sanitária, 2019. Farmacopeia Brasileira, 6°edição, volume 2, Monografias, Plantas Medicinais. Brown, MJ 1991. Biosurfactants for cosmetic applications. International journal of cosmetic science, 13(2), 61-64. Cáceres, A; Fletes, L; Aguilar, L; Ramirez, O; Figueroa, L; Taracena, AM; Samayoa, B 1993. Plants used in Guatemala for the treatment of gastrointestinal disorders. 3. 30 Confirmation of activity against enterobacteria of 16 plants. Journal of Ethnopharmacology, 38(1), 31-38. Cartaxo-Furtado, NADEO; Sampaio, TO; Xavier, MA; Medeiros, ADDE; Pereira, JV 2015. Perfil fitoquímico e determinação da atividade antimicrobiana de Syzygium cumini (L.) Skeels (Myrtaceae) frente a microrganismos bucais. Revista brasileira de plantas medicinais, 17, 1091-1096. Chhikara, N; Kaur, R; Jaglan, S; Sharma, P; Gat, Y; Panghal, A 2018. Bioactive compounds and pharmacological and food applications of Syzygium cumini–a review. Food & function, 9(12), 6096-6115. CLSI, Clinical and Laboratory Standards Institute: Methods for diluition antimicrobial susceptibility tests for bactéria that grow aerobically; aproved standard, 2015. M07-A10, 35:2. Cooper, DG; Goldenberg, BG 1987. Surface-active agents from two Bacillus species. Applied and environmental microbiology, 53(2), 224-229. Cunha, CDD; Leite, SGF 2000. Gasoline biodegradation in different soil microcosms. Brazilian Journal of Microbiology, 31, 45-49. Desai, JD; Banat, IM 1997. Microbial production of surfactants and their commercial potential. Microbiology and Molecular biology reviews, 61(1), 47-64. Diánez, F; Santos, M; Parra, C; Navarro, MJ; Blanco, R; Gea, FJ 2018. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Letters in applied microbiology, 67(4), 400-410. Dias, EC; Andrade, ASA; Silva, AL; Dias, CHA; Sousa, ACB; Almeida, AF 2018. Utilização do extrato aquoso da algaroba na produção de biossurfactantes por bacillus subtilis. Revista Saúde & Ciência Online, 7(2), 397-412. Eswari, JS; Dhagat, S; Sen, R 2019. Biosurfactants, bioemulsifiers, and biopolymers from thermophilic microorganisms. In Thermophiles for Biotech Industry, 87-97. Springer, Singapore. Ezhilarasan, D; Apoorva, VS; Ashok Vardhan, N 2019. Syzygium cumini extract induced reactive oxygen species‐mediated apoptosis in human oral squamous carcinoma cells. Journal of Oral Pathology & Medicine, 48(2), 115-121. Faria, AF; Marques, MC; Mercadante, AZ 2011. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food chemistry, 126(4), 1571-1578. Fenibo, EO; Douglas, SI; Stanley, HO 2019. A review on microbial surfactants: production, classifications, properties and characterization. J. Adv. Microbiol, 18(3), 122. Figueiredo Junior, EC; Cavalcanti, YW; Lira, AB; Pessoa, HDLF; Lopes, WS; da Silva, DR; Pereira, JV 2021. Phytochemical composition, antifungal activity, in vitro and in vivo toxicity of Syzygium cumini (L.) Skeels leaves extract. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 20(5). Gliemmo, MF; Montagnani, MA; Schelegueda, LI; González, MM; Campos, CA 2016. Effect of xantham gum, steviosides, clove, and cinnamon essential oils on the sensory and microbiological quality of a low sugar tomato jam. Food Science and Technology International, 22(2), 122-131. Gudiña, EJ; Rodrigues, AI; Alves, E; Domingues, MR; Teixeira, JÁ; Rodrigues, LR 2015. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresource technology, 177, 87-93. Hantal, G; Sega, M; Horvai, G; Jedlovszky, P 2019. Contribution of different molecules and moieties to the surface tension in aqueous surfactant solutions. The Journal of Physical Chemistry C, 123(27), 16660-16670. Haque, R; Sumiya, MK; Sakib, N; Sarkar, OS; Siddique, TTI; Hossain, S; et al. 2017. Antimicrobial activity of jambul (Syzygium cumini) fruit extract on enteric pathogenic bacteria. Advances in Microbiology, 7(03), 195. Jackish-Matsuura, ABJ; et al. 2004. Produção e caracterização de biossurfactantes visando a aplicação industrial e em processos de biorremediação. Tese de Doutorado apresentado em Campinas, UNICAMP, Minas Gerais, Brasil. Javaid, A; Samad, S 2012. Screening of allelopathic trees for their antifungal potential against Alternaria alternata strains isolated from dying-back Eucalyptus spp. Natural Product Research, 26(18), 1697-1702. Jesus, RPFSD; Costa, MRM; Bastos, IV; Couto, GBL; Pereira, MDSV; Souza, IAD 2010. Ação antibacteriana e antiaderente de Pithecellobium cochliocarpum (gomez) Macbr sobre microrganismos orais. Odontologia Clínico-Científica (Online), 9(4), 331-335. Lin, SC 1996. Biosurfactants: recent advances. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 66(2), 109-120. Luna, JM; Rufino, RD; Sarubbo, LA; Campos-Takaki, GM 2008. Produção de biossurfactante em meio de baixo custo formulado com água do mar. Exacta, 6(2), 209216. Khan, S; Imran, M; Imran, M; Pindari, N 2017. Antimicrobial activity of various ethanolic plant extracts against pathogenic multi drug resistant Candida spp. Bioinformation, 13(3), 67. Koneman, EW; 2008. Diagnóstico microbiológico: texto e atlas colorido. 6.ed. São Paulo: MEDSI. Lima, GR de M; Machado, FDF; Périco, LL; de Faria, FM; Luiz-Ferreira, A; Brito, ARMS; Batista, LM 2017. Anti-inflammatory intestinal activity of Combretum duarteanum Cambess. in trinitrobenzene sulfonic acid colitis model. World Journal of Gastroenterology, 23(8), 1353. Makkar, RS; Cameotra, SS 1998. Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. Journal of Industrial Microbiology and Biotechnology, 20(1), 48-52. Marcelino, PRF; Gonçalves, F; Jimenez, IM; Carneiro, BC; Santos, BB; da Silva, SS 2020. Sustainable production of biosurfactants and their applications. Lignocellulosic biorefining technologies, 159-183. Mitra, S; Dungan, SR 2000. Micellar properties of quillaja saponin. 2. Effect of solubilized cholesterol on solution properties. Colloids and surfaces B: Biointerfaces, 17(2), 117-133. Mulligan, CN 2005. Environmental applications for biosurfactants. Environmental pollution, 133(2), 183-198. Mulligan, CN; Yong, RN; Gibbs, BF 1999. On the use of biosurfactants for the removal of heavy metals from oil‐contaminated soil. Environmental Progress, 18(1), 50-54. Nitschke, M; Pastore, GM 2002. Biossurfactantes: propriedades e aplicações. Química nova, 25, 772-776. da Nóbrega, GAS; Almeida, HSA; Gomes, DA de A 2021. Síntese e quebra de emulsão óleo em água (o/a) via aquecimento e aditivação com nonilfenol polietoxilado, Editora Científica, Recursos Naturais: Energia de Biomassa Florestal, cap.16, p. 197-208. Nwodo, UU; Obiiyeke, GE; Chigor, VN; Okoh, AI 2011. Assessment of Tamarindus indica extracts for antibacterial activity. International Journal of Molecular Sciences, 12(10), 6385-6396. Pappas, PG; Lionakis, MS; Arendrup, MC; Ostrosky-Zeichner, L; Kullberg, BJ 2018. Invasive candidiasis. Nature Reviews Disease Primers, 4(1), 1-20. Paraszkiewicz, K; Kanwal, A; Długoński, J 2002. Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. Journal of Biotechnology, 92(3), 287-294. Pallavali, RR; Avula, S; Degati, VL; Penubala, M; Damu, AG; Durbaka, VRP 2019. Data of antibacterial activity of plant leaves crude extract on bacterial isolates of wound infections. Data in brief, 24, 103896. Peypoux, F; Bonmatin, JM; Wallach, J 1999. Recent trends in the biochemistry of surfactin. Applied microbiology and biotechnology, 51(5), 553-563. Pi, Y; Chen, B; Bao, M; Fan, F; Cai, Q; Ze, L; Zhang, B 2017. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresource technology, 232, 263-269. Plantinga, TS; Johnson, MD; Scott, WK; Joosten, LA; Van Der Meer, JW; Perfect, JR; Netea, MG; et al. 2012. Human genetic susceptibility to Candida infections. Medical mycology, 50(8), 785-794. Poteau, S; Argillier, JF; Langevin, D; Pincet, F; Perez, E 2005. Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil− water interface. Energy & Fuels, 19(4), 1337-1341. Qamar, M; Akhtar, S; Ismail, T; Wahid, M; Ali, S; et al. 2022. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. Journal of Ethnopharmacology, 287, 114919. Rubio-Ribeaux, D.; Andrade, FR da S; da Silva, GS; de Holanda, RA; Pele, MA; Nunes, P.; Vilar Júnior, JC; Resende-Stoianoff, MA; Campos-Takaki, GM 2017. Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. African Journal of Microbiology Research, 11(23), 981-991. Sałek, K; Euston, SR 2019. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochemistry, 85, 143-155. Salgueiro, AC; Folmer, V; Bassante, FE; Cardoso, MH; da Rosa, HS; Puntel, GO 2018. Predictive antidiabetic activities of plants used by persons with Diabetes mellitus. Complementary Therapies in Medicine, 41, 1-9. Santos, DKF; Rufino, RD; Luna, JM; Santos, VA; Sarubbo, LA 2016. Biosurfactants: multifunctional biomolecules of the 21st century. International journal of molecular sciences, 17(3), 401. Santos, MFO; de Jesus, VSA; da Silva, GF; Silva, MS; dos Santos, JPL 2019. Desenvolvimento de um tensoativo a base de óleo de babaçu para formulação de sistemas microemulsionados usado para quebra de emulsões do tipo água em óleo. The Journal of Engineering and Exact Sciences, 5(2), 0179-0183. dos Santos, SC; Fernandez, LG; Rossi-Alva, JC; de Abreu Roque, MR 2010. Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. African journal of Biotechnology, 9(35). Sharma, A; Rajendran, S; Srivastava, A; Sharma, S; Kundu, B 2017. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of bioscience and bioengineering, 123(3), 308-313. Singh, JP; Kaur, A; Singh, N; Nim, L; Shevkani, K; Kaur, H; Arora, DS 2016. In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT-Food Science and Technology, 65, 1025-1030. Srivastava, S; Chandra, D 2013. Pharmacological potentials of Syzygium cumini: a review. Journal of the Science of Food and Agriculture, 93(9), 2084-2093. SWAMI, SB; Thakor, NSJ; Patil, MM; Haldankar, PM 2012. Jamun (Syzygium cumini (L.)): a review of its food and medicinal uses. Food and Nutrition Sciences, 2012. Thimon, L; Peypoux, F; Wallach, J; Michel, G 1995. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiology Letters, 128(2), 101-106. Yamane, T 1987. Enzyme technology for the lipids industry: an engineering overview. Journal of the american oil chemists' society, 64(12), 1657-1662. Yoshimasu, Y; Ikeda, T; Sakai, N; Yagi, A; Hirayama, S; Morinaga, Y; Nakao, R 2018. Rapid bactericidal action of propolis against Porphyromonas gingivalis. Journal of dental research, 97(8), 928-936. Xu, Q; Nakajima, M; Liu, Z; Shiina, T 2011. Biosurfactants for microbubble preparation and application. International journal of molecular sciences, 12(1), 462-475. | pt_BR |
dc.identifier.citation | SANTOS, Maria Cecília Queiroga dos. Avaliação Antimicrobiana do Extrato Alcóolico de Syzygium cumini sobre Bacillus cereus e Candida spp. e Produção de Biossurfactante. 2022. 32 f. TCC (Graduação) - Curso de Graduação em Enfermagem, Unidade Acadêmica de Enfermagem, Universidade Federal de Campina Grande, Campina Grande, 2022. | pt_BR |
Appears in Collections: | Curso de Bacharelado em Enfermagem - CCBS |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TCC_MARIA_CECILIA_PARA_BIBLIOTECA.docx_1.pdf | 406.9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.