Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2639
Full metadata record
DC FieldValueLanguage
dc.creator.IDSANTOS NETO, E. L.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2149883544244800pt_BR
dc.contributor.advisor1CIRNE FILHO, Walfredo da Costa.-
dc.contributor.advisor1IDCIRNE FILHO, W. C.pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5908699791494075pt_BR
dc.contributor.referee1BRASILEIRO, Francisco Vilar.-
dc.contributor.referee2KOFUJI, Sergio Takeo.-
dc.description.resumoAplicações que processam grandes quantidades de dados demandam grandes transferências de dados quando executadas em grids computacionais. Estas transferências têm um alto custo associado. Portanto, considerar as transferências de dados é fundamental para se obter escalonamentos eficientes para tais aplicações. Além disso, em ambientes heterogêneos como os grids, as heurísticas que produzem escalonamentos eficientes tipicamente usam informação dinâmica sobre o grid e as aplicações (disponibilidade de rede e CPU, tempo de execução das tarefas, etc). Porém, estas informações são, em geral, difíceis de se obter com precisão. Embora existam escalonadores que alcançam bom desempenho sem usar informações dinâmicas, eles não são desenvolvidos para considerar o impacto das transferências de dados. Neste trabalho apresentamos Storage Affinity, uma nova heurística de escalonamento para aplicações do tipo Bag-of-Tasks que processam grandes quantidades de dados sem depender de informação de difícil obtenção. Além disso, o ambiente de execução considerado é um grid computacional. Storage Affinity explora os padrões de reutilização de dados, comuns em muitas aplicações, pois isto permite considerar as transferências de dados sem usar informações dinâmicas sobre os recursos, reduzindo o tempo total de execução da aplicação. Através do uso de uma estratégia de replicação de tarefas, Storage Affinity efetua escalonamentos eficientes sem depender de informação dinâmica. Os resultados mostram que Storage Affinity pode alcançar uma performance, em média, melhor do que os escalonadores estado-da-arte que dependem de informação, mesmo em situações onde tais escalonadores usam informação perfeita. Em contrapartida, há um acréscimo no consumo de ciclos de CPU (em média, ) para alcançar este desempenho devido a replicação de tarefas.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Ciências e Tecnologia - CCTpt_BR
dc.publisher.programPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da computação.-
dc.titleEscalonamento de aplicações que processam grandes quantidades de dados em grids computacionais.pt_BR
dc.date.issued2004-02-18-
dc.description.abstractData-intensive applications executing over a computational grid demand large data transfers. These are costly operations. Therefore, taking them into account is mandatory to achieve efficient scheduling of data-intensive applications on grids. Further, within an heterogeneous environment such as a grid, good schedules are typically attained by heuristics that use dynamic information about the grid and the applications (network and CPU loads, completion time of tasks, etc). However, these information are often difficult to be obtained accurately. Although there are schedulers that attain good performance without requiring that kind of information, they were not designed to take data transfer delays into account. This work presents Storage Affinity, a novel scheduling heuristic for Bag-of-Tasks and data-intensive applications running on grid environments. Storage Affinity exploits a data reuse pattern, common on many data-intensive applications, allowing it to take data transfer delays into account and reduce the makespan of the application. Further, it uses a replication strategy that yields efficient schedules without relying upon dynamic information that is difficult to obtain. Our results show that Storage Affinity may attain performance that is in average better than that of state-of-the-art knowledge-dependent schedulers, even in the unlikely c a s e when the latter are fed with perfect information. This is achieved at the expense of consuming more CPU cycles (in average, more than not using replication).pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2639-
dc.date.accessioned2019-01-30T17:16:17Z-
dc.date.available2019-01-30-
dc.date.available2019-01-30T17:16:17Z-
dc.typeDissertaçãopt_BR
dc.subjectSistemas distribuídos.-
dc.subjectGrids computacionais.-
dc.subjectEscalonamento.-
dc.subjectBag of tasks.-
dc.subjectDistributed systems.-
dc.subjectComputational grids.-
dc.subjectScheduling.-
dc.rightsAcesso Abertopt_BR
dc.creatorSANTOS NETO, Elizeu Lourenço dos.-
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageporpt_BR
dc.title.alternativeScaling of applications that process large amounts of data in computational grids.pt_BR
dc.title.alternativeScaling of applications that process large amounts of data in computational gridspt_BR
dc.identifier.citationNETO,Elizeu Florenço dos Santos. Escalonamento de aplicações que processam grandes quantidades de dados em grids computacionais. 2004. 84f. (Dissertação de Mestrado em Ciência da Computação) Programa de Pós-graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2639pt_BR
Appears in Collections:Mestrado em Ciência da Computação.

Files in This Item:
File Description SizeFormat 
ELIZEU LOURENÇO DOS SANTOS NETO - DISSERTAÇÃO PPGI 2004..pdfElizeu Lourenço dos Santos Neto Dissertação - PPGI 20041.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.