Please use this identifier to cite or link to this item:
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20623
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator.ID | COSTA, J. O. | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/9579175491890787 | pt_BR |
dc.contributor.advisor1 | BRITO, Márcia Cristina Silva. | - |
dc.contributor.advisor1ID | BRITO, M. C. S. | pt_BR |
dc.contributor.advisor1ID | BRITO, MÁRCIA C. S. | pt_BR |
dc.contributor.advisor1ID | MÁRCIA C. S. B. | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/0456019955476186 | pt_BR |
dc.contributor.advisor-co1 | VASCONCELOS, Maria Gisélia. | - |
dc.contributor.advisor-co1ID | VASCONCELOS, M. G | pt_BR |
dc.contributor.advisor-co1ID | VASCONCELOS, M. GISÉLIA | pt_BR |
dc.contributor.advisor-co1ID | M. GISÉLIA V. | pt_BR |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3809163345976110 | pt_BR |
dc.contributor.referee1 | SOUTO, Marco Aurelio Soares. | - |
dc.contributor.referee1ID | SOUTO, M. A. S. | pt_BR |
dc.contributor.referee1ID | Souto, Marco A. S. | pt_BR |
dc.contributor.referee1ID | Alves, Claudianor O. | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1607423908013172 | pt_BR |
dc.description.resumo | Neste trabalho apresentamos um estudo sobre algumas construções geométricas, onde serão utilizados somente dois instrumentos de desenho geométrico - compasso e régua (não graduada). Através de uma pesquisa bibliográfica sobre a temática, investigamos como renomados matemáticos aprimoraram suas técnicas e fundamentaram teorica- mente os resultados, assim foram criados alguns conceitos de álgebra necessários para provar se determinado caso apresenta solução ou não, sob tais restrições impostas pelo uso exclusivo dos dois objetos mencionados. Ilustraremos a construção de alguns ca- sos possíveis acompanhada da demonstração. Em seguida exemplificaremos algumas situações em que é impossível finalizar a construção somente com régua e compasso, ex- ceto por aproximação, conhecidos atualmente como os três famosos problemas clássicos da antiguidade: A Trissecção de um Ângulo. A quadratura do Círculo e a Duplicação do Cubo, para esses casos apresentamos os principais conceitos algébricos envolvidos que atestam a insolubilidade dos mesmos. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Centro de Educação e Saúde - CES | pt_BR |
dc.publisher.initials | UFCG | pt_BR |
dc.subject.cnpq | Álgebra | pt_BR |
dc.title | Três problemas famosos: geometria grega. | pt_BR |
dc.date.issued | 2013-09-17 | - |
dc.description.abstract | In this work we present a study on some geometric constructions, where only two geometric design instruments will be used - compass and ruler (not graduated). Through a bibliographical research on the subject, we investigated as renowned mathematicians they improved their techniques and grounded theo- mind the results, so we created some algebra concepts needed to prove whether a given case presents a solution or not, under such restrictions imposed by the exclusive use of the two mentioned objects. We will illustrate the construction of some ca- possible events accompanied by the demonstration. Below we will illustrate some situations in which it is impossible to finish the construction with just a straightedge and compass, eg keto by approximation, known today as the three famous classic problems from antiquity: The Trisection of an Angle. Square the Circle and Doubling of the Cube, for these cases we present the main algebraic concepts involved that attest to their insolubility. | pt_BR |
dc.identifier.uri | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20623 | - |
dc.date.accessioned | 2021-08-17T14:39:34Z | - |
dc.date.available | 2021-08-17 | - |
dc.date.available | 2021-08-17T14:39:34Z | - |
dc.type | Trabalho de Conclusão de Curso | pt_BR |
dc.subject | Construções geométricas | pt_BR |
dc.subject | Régua - construções geométricas | pt_BR |
dc.subject | Compasso - construções geométricas | pt_BR |
dc.subject | Extensões algébricas | pt_BR |
dc.subject | Polígonos regulares - construção | pt_BR |
dc.subject | Geometria grega - problemas | pt_BR |
dc.subject | Geometric constructions | pt_BR |
dc.subject | Ruler - geometric constructions | pt_BR |
dc.subject | Compass - geometric constructions | pt_BR |
dc.subject | Algebraic extensions | pt_BR |
dc.subject | Regular polygons - construction | pt_BR |
dc.subject | Greek Geometry - Problems | pt_BR |
dc.subject | Construcciones geométricas | pt_BR |
dc.subject | Regla - construcciones geométricas | pt_BR |
dc.subject | Brújula - construcciones geométricas | pt_BR |
dc.subject | Extensiones algebraicas | pt_BR |
dc.subject | Polígonos regulares - construcción | pt_BR |
dc.subject | Geometría griega - Problemas | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.creator | COSTA, Jaldir de Oliveira. | - |
dc.publisher | Universidade Federal de Campina Grande | pt_BR |
dc.language | por | pt_BR |
dc.title.alternative | Three famous problems: Greek geometry. | pt_BR |
dc.title.alternative | Tres problemas famosos: la geometría griega. | pt_BR |
dc.identifier.citation | COSTA, Jaldir de Oliveira. Três problemas famosos: geometria grega. 2013. 47 fl. (Trabalho de Conclusão de Curso – Monografia), Curso de Licenciatura em Matemática, Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité – Paraíba – Brasil, 2013. | pt_BR |
dc.description.resumen | En este trabajo presentamos un estudio sobre algunas construcciones geométricas, donde Solo se utilizarán dos instrumentos de diseño geométrico: brújula y regla. (no graduado). A través de una investigación bibliográfica sobre el tema, investigamos como matemáticos de renombre, mejoraron sus técnicas y fundamentaron la teoría tenga en cuenta los resultados, por lo que creamos algunos conceptos de álgebra necesarios para probar si un caso dado presenta una solución o no, bajo tales restricciones impuestas por el uso exclusivo de los dos objetos mencionados. Ilustraremos la construcción de algunos ca- posibles eventos acompañados de la demostración. A continuación ilustraremos algunos situaciones en las que es imposible terminar la construcción con solo una regla y un compás, p. ej. ceto por aproximación, conocido hoy como los tres famosos problemas clásicos desde la antigüedad: La trisección de un ángulo. Cuadrar el círculo y duplicar del Cubo, para estos casos presentamos los principales conceptos algebraicos involucrados que dan fe de su insolubilidad. | pt_BR |
Appears in Collections: | Curso de Licenciatura em Matemática - CES - Monografias |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
JALDIR DE OLIVEIRA COSTA - TCC LICENCIATURA EM MATEMÁTICA CES 2013.pdf | Jaldir de Oliveira Costa - TCC Licenciatura em Matemática CES 2013 | 7.58 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.