Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20434
Full metadata record
DC FieldValueLanguage
dc.creator.IDVIEIRA, L. L.pt_BR
dc.contributor.advisor1CAMPELO, Cláudio Elízio Calazans.
dc.contributor.advisor1IDCAMPELO, C. E. C.pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2042247762832979pt_BR
dc.contributor.referee1MORAIS, Fábio Jorge Almeida.
dc.contributor.referee2MASSONI, Tiago Lima.
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da Computação.pt_BR
dc.titleAnálise do nível de subjetividade para detecção de farsas em trechos de notícias falsas.pt_BR
dc.date.issued2019-11-25
dc.description.abstractWhile the easy access, very low cost and rapid dissemination of news through the Internet lead people to consume a huge amount of information every day, it also creates a big issue that is the wide spread of fake news. Although there are tons of works regarding fake news detection, there are very few ones that investigate its structure deeply. Therefore, to better understand how fake news is structured, we propose to consider the subjectivity of news under the premise that the subjectivity levels of legitimate and fake news are significantly different. For computing the subjectivity level of news, we rely on a set of subjectivity lexicons built by Brazilian linguists. We then tagged fake parts of the news articles and split them by falsehood category. After that, we calculated the Word Mover’s Distance (WMD) between these parts and the lexicons to build the subjectivity feature vectors, in order to perform the experiments.We believe that our findings contribute to the progress of studies involving fake news detection.pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20434
dc.date.accessioned2021-08-06T16:32:06Z
dc.date.available2021-08-06
dc.date.available2021-08-06T16:32:06Z
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.subjectFake News - fragmentspt_BR
dc.subjectNotícias falsaspt_BR
dc.subjectConfiabilidade de notíciaspt_BR
dc.subjectProjeto Laserterapia - UFCGpt_BR
dc.subjectNível de subjetividade - notíciaspt_BR
dc.subjectSubjetividade de notíciaspt_BR
dc.subjectLéxicos de subjetividadept_BR
dc.subjectRepresentação baseada em subjetividadept_BR
dc.subjectDistância semântica entre léxicospt_BR
dc.subjectFake News - fragmentspt_BR
dc.subjectFalse newspt_BR
dc.subjectNews reliabilitypt_BR
dc.subjectLaser Therapy Project - UFCGpt_BR
dc.subjectSubjectivity level - newspt_BR
dc.subjectNews subjectivitypt_BR
dc.subjectSubjectivity Lexiconspt_BR
dc.subjectSubjectivity-based representationpt_BR
dc.subjectSemantic distance between lexiconspt_BR
dc.rightsAcesso Abertopt_BR
dc.creatorVIEIRA, Lucas Lima.
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageporpt_BR
dc.title.alternativeSubjectivity level analysis for detecting fakes in false news snippets.pt_BR
dc.identifier.citationVIEIRA, Lucas Lima. Análise do nível de subjetividade para detecção de farsas em trechos de notícias falsas. 2019. 12f. (Trabalho de Conclusão de Curso - Artigo), Curso de Bacharelado em Ciência da Computação, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2019. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20434pt_BR
Appears in Collections:Trabalho de Conclusão de Curso - Artigo - Ciência da Computação

Files in This Item:
File Description SizeFormat 
LUCAS LIMA VIEIRA - TCC CIÊNCIA DA COMPUTAÇÃO 2019.pdfLucas Lima Vieira - TCC Ciência da Computação 2019.8.73 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.