Please use this identifier to cite or link to this item: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20180
Full metadata record
DC FieldValueLanguage
dc.creator.IDTENÓRIO, M. A. R.pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2440135834765721pt_BR
dc.contributor.advisor1GOMES, Herman Martins.
dc.contributor.advisor1IDGOMES, H. M.pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4223020694433271pt_BR
dc.contributor.referee1MORAIS , Fábio Jorge Almeida.
dc.contributor.referee2MASSONI , Tiago Lima.
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCentro de Engenharia Elétrica e Informática - CEEIpt_BR
dc.publisher.initialsUFCGpt_BR
dc.subject.cnpqCiência da Computaçãopt_BR
dc.titleProposal of a low­cost device to support remote diabetic retinopathy detecting based on fundus images.pt_BR
dc.date.issued2020
dc.description.abstractDiabetes causes several problems, including diabetic retinopathy, which when discovered belatedly can lead to total blindness. Brazil is also the 8th largest country in the world, with conurbation problems and an increase in diabetes diagnosis in the past 10 years. In this context, the present work aims to propose a low-cost prototype to support the diagnosis of diabetic retinopathy based on fundus examinations images so that physicians are able to perform early diagnosis in remote locations.This prototype should allow for early detection and treatment in loco, thus increasing the chances of a positive outcome for the patients. First we studied technical aspects relevant to the proposal such as physiological aspects of diabetic retinopathy, Artificial Neural Networks, Accelerated and Edge computing. Our methodology consisted in a comparison of embedded hardware with capabilities to perform complex computations, a survey of models for the classification of diabetic retinopathy and available databases, including research choices. Artificial Neural Networks to identify diabetic retinopathy were evaluated in our low-cost embedded system in terms of accuracy. The accuracy must be enough to determine the priority of the patient’s case for treatment. This work reached accuracy levels around 84% with a low cost system and less computational power, positioning itself well in the state of the art of systems within greater computational power. The results indicate that the platform is indeed low-cost and suitable for this application.pt_BR
dc.identifier.urihttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20180
dc.date.accessioned2021-07-22T12:46:13Z
dc.date.available2021-07-22
dc.date.available2021-07-22T12:46:13Z
dc.typeTrabalho de Conclusão de Cursopt_BR
dc.subjectRetinopatia diabéticapt_BR
dc.subjectDiabetic retinopathypt_BR
dc.subjectRetinopatía diabéticapt_BR
dc.subjectRétinopathie diabétiquept_BR
dc.subjectDispositivo de baixo custopt_BR
dc.subjectAppareil faible coûtpt_BR
dc.subjectDispositivo bajo costarpt_BR
dc.subjectLow device costpt_BR
dc.subjectTecnologia aplicada à saúdept_BR
dc.subjectTechnology applied to healthpt_BR
dc.subjectTecnología aplicada a la saludpt_BR
dc.subjectTechnologie appliquée à la santépt_BR
dc.subjectOftalmologia - tecnologiapt_BR
dc.subjectOphtalmologie - Technologiept_BR
dc.subjectOphthalmology - technologypt_BR
dc.subjectFundo de olho - imagenspt_BR
dc.subjectEye background - imagespt_BR
dc.subjectFondo del ojo - imágenespt_BR
dc.subjectArrière-plan des yeux - imagespt_BR
dc.subjectDetecção remota de retinopatia diabéticapt_BR
dc.subjectDétection à distance de la rétinopathie diabétiquept_BR
dc.subjectDetección remota de la retinopatía diabéticapt_BR
dc.subjectRemote detection of diabetic retinopathypt_BR
dc.subjectImagens de fundo de olhopt_BR
dc.subjectEye background imagespt_BR
dc.subjectImágenes de fondo de ojospt_BR
dc.subjectImages d’arrière-plan des yeuxpt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectRéseaux de neurones artificielspt_BR
dc.subjectRedes neuronales artificialespt_BR
dc.subjectArtificial neural networkspt_BR
dc.rightsAcesso Abertopt_BR
dc.creatorTENORIO, Marcus Antonio Rocha.
dc.publisherUniversidade Federal de Campina Grandept_BR
dc.languageengpt_BR
dc.title.alternativeProposta de um dispositivo de baixo custo para suportar a retinopatia diabética remota detectando com base em imagens de fundus.pt_BR
dc.identifier.citationTENORIO, M. A. R. Proposal of a low­cost device to support remote diabetic retinopathy detecting based on fundus images. 12 f. Trabalho de Conclusão de Curso - Artigo (Curso de Bacharelado em Ciência da Computação) Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2020. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/20180pt_BR
Appears in Collections:Trabalho de Conclusão de Curso - Artigo - Ciência da Computação

Files in This Item:
File Description SizeFormat 
MARCUS ANTONIO ROCHA TENORIO - TCC CIÊNCIA DA COMPUTAÇÃO 2020.pdf5.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.