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Resumo

Desde os anos 70, o pré-processador C é amplamente utilizado na prática para adaptar

sistemas para diferentes plataformas e cenários de aplicação. Na academia, no entanto, o

pré-processador tem recebido fortes críticas desde o início dos anos 90. Os pesquisadores

têm criticado a sua falta de modularidade, a sua propensão para introduzir erros sutis e sua

ofuscação do código fonte. Para entender melhor os problemas de usar o pré-processador

C, considerando a percepção dos desenvolvedores, realizamos 40 entrevistas e uma pesquisa

entre 202 desenvolvedores. Descobrimos que os desenvolvedores lidam com três problemas

comuns na prática: erros relacionados à configuração, testes combinatórios e compreensão

do código. Os desenvolvedores agravam estes problemas ao usar diretivas não disciplinadas,

as quais não respeitam a estrutura sintática do código. Para evoluir famílias de programas

de forma segura, foram propostas duas estratégias para a detecção de erros relacionados à

configuração e um conjunto de 14 refatoramentos para remover diretivas não disciplinadas.

Para lidar melhor com a grande quantidade de configurações do código fonte, a primeira

estratégia considera todo o conjunto de configurações do código fonte e a segunda estratégia

utiliza amostragem. Para propor um algoritmo de amostragem adequado, foram comparados

10 algoritmos com relação ao esforço (número de configurações para testar) e capacidade

de detecção de erros (número de erros detectados nas configurações da amostra). Com base

nos resultados deste estudo, foi proposto um algoritmo de amostragem. Estudos empíricos

foram realizados usando 40 sistemas C do mundo real. Detectamos 128 erros relacionados

à configuração, enviamos 43 correções para erros ainda não corrigidos e os desenvolvedores

aceitaram 65% das correções. Os resultados de nossa pesquisa mostram que a maioria dos

desenvolvedores preferem usar a versão refatorada, ou seja, disciplinada do código fonte, ao

invés do código original com as diretivas não disciplinadas. Além disso, os desenvolvedores

aceitaram 21 (75%) das 28 sugestões enviadas para transformar diretivas não disciplinadas

em disciplinadas. Nossa pesquisa apresenta resultados úteis para desenvolvedores de código

C durante suas tarefas de desenvolvimento, contribuindo para minimizar o número de erros

relacionados à configuração, melhorar a compreensão e a manutenção do código fonte e

orientar os desenvolvedores para realizar testes combinatórios.
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Abstract

Since the 70s, the C preprocessor is still widely used in practice in a numbers of projects,

including Apache, Linux, and Libssh, to tailor systems to different platforms and application

scenarios. In academia, however, the preprocessor has received strong criticism since at least

the early 90s. Researchers have criticized its lack of separation of concerns, its proneness

to introduce subtle errors, and its obfuscation of the source code. To better understand the

problems of using the C preprocessor, taking the perception of developers into account, we

conducted 40 interviews and a survey among 202 developers. We found that developers deal

with three common problems in practice: configuration-related bugs, combinatorial testing,

and code comprehension. Developers aggravate these problems when using undisciplined

directives (i.e., bad smells regarding preprocessor use), which are preprocessor directives

that do not respect the syntactic structure of the source code. To safely evolve preprocessor-

based program families, we proposed strategies to detect configuration-related bugs and bad

smells, and a set of 14 refactorings to remove bad smells. To better deal with exponential

configuration spaces, our strategies uses variability-aware analysis that considers the entire

set of possible configurations, and sampling, which allows to reuse C tools that consider

only one configuration at a time to detect bugs. To propose a suitable sampling algorithm,

we compared 10 algorithms with respect to effort (i.e., number of configurations to test)

and bug-detection capabilities (i.e., number of bugs detected in the sampled configurations).

Based on the results, we proposed a sampling algorithm with an useful balance between

effort and bug-detection capability. We performed empirical studies using a corpus of 40

C real-world systems. We detected 128 configuration-related bugs, submitted 43 patches

to fix bugs not fixed yet, and developers accepted 65% of the patches. The results of our

survey show that most developers prefer to use the refactored (i.e., disciplined) version of

the code instead of the original code with undisciplined directives. Furthermore, developers

accepted 21 (75%) out of 28 patches submitted to refactor undisciplined into disciplined

directives. Our work presents useful findings for C developers during their development

tasks, contributing to minimize the chances of introducing configuration-related bugs and

bad smells, improve code comprehension, and guide developers to perform combinatorial

testing.
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Chapter 1

Introduction

The C preprocessor is a simple, effective, and language independent tool to transform the

source code before compilation, but it provides no perceptible form of modularity [1]. De-

velopers frequently use the C preprocessor to develop infrastructure software like operating

systems, e.g., Linux and FreeBSD, security protocols, such as Libssh, and web servers like

Apache and Cherokee. Infrastructure software is critical, and requires configurability to run

on different platforms and high quality software artifacts to minimize the chances of financial

losses due to software bugs.

The preprocessor is still widely used in industry and practice to implement program

families [2; 3; 4]. A program family is a set of programs whose commonality is so exten-

sive that it is advantageous to study their common properties before analyzing individual

programs [5]. In this context, developers use preprocessor conditional directives, such as

#ifdef, #else, and #endif, to mark parts of the source code as optional, with the pur-

pose of tailoring software systems to different hardware platforms, operating systems, and

application scenarios. However, by coding with preprocessor directives, developers deal

with two independent languages, which hinders code understanding, maintainability, and the

development of tool support.

1.1 Problem Statement

Despite the widespread use of the C preprocessor, it has received strong criticism since at

least the early 90s. Researchers have criticized its lack of separation of concerns [6; 7; 8; 9;

10], its proneness to introduce subtle errors [2; 11; 7; 4; 12; 13], and its obfuscation of the

1



1.1 Problem Statement 2

source code [13; 3; 6; 14; 15]. Many studies have found bugs related to preprocessor use [16;

12; 17; 18; 19; 20]. Additionally, its complexity hinders tool support available in other

languages, such as automated refactoring [21; 17; 22; 23; 24; 25].

The C preprocessor essentially has not changed since the 70s. Researchers have proposed

several alternatives to preprocessor directives, e.g., syntactical preprocessors [26; 23; 27],

aspect-oriented programming [15; 28], and various forms of metaprogramming. However,

for the best of our knowledge, such alternatives have not been adopted in practice.

To better understand the C preprocessor challenges, and its widespread use in practice

despite all criticism and alternatives, we conducted 40 interviews and a survey among 202

developers. We found that developers have a love/hate relationship with the C preprocessor

and do not see any current technologies that can entirely replace the preprocessor [29]. Many

developers see the preprocessor as an elegant solution to workaround portability problems.

However, developers are aware that they must follow code guidelines strictly to avoid three

common problems of the preprocessor: (1) configuration-related bugs, which are perceived

as more critical than other bugs, (2) combinatorial testing, as conditional directives increase

the number of configurations to check for quality-assurance, and (3) code comprehension,

due to the cluttering of #ifdefs and C statements [29].

Developers aggravate these problems when using undisciplined directives that do not

respect the syntactic structure of the source code, for example, wrapping a single bracket

without its corresponding closing one [3; 13; 30; 4]. Undisciplined directives influence code

understanding, maintainability, and error proneness negatively [29; 13; 3; 4]. Although some

tools could enforce such guidelines [4; 31; 13; 20], research studies show that guidelines are

not followed strictly in practice [3; 4; 29]. The guidelines on coding style of the Linux Kernel,

for example, guide developers explicitly to avoid undisciplined directives, saying: “prefer

to compile out entire functions, rather than portions of functions or portions of expressions.

Rather than putting an #ifdef in an expression, factor out part or all of the expression into

a separate helper function and apply the conditional to that function." Some researchers have

proposed refactorings to convert undisciplined into disciplined directives, however, these

refactorings clone code [30; 32], which also impacts code quality negatively [33].

Besides, the vast majority of mature quality-assurance C development tools consider

only a single configuration at a time. For example, state-of-the-art tools, such as Gcc, Clang,
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Eclipse, Xcode, and NetBeans, operate typically on C code after the C preprocessor has

resolved variability implemented through conditional compilation (e.g., implemented with

#ifdef directives). To reuse these mature C development tools to detect configuration-

related bugs, sampling is a viable alternative [34; 35; 36; 37; 20]. That is, instead of analyzing

all configurations, one selects a subset of configurations to analyze individually. However,

the effectiveness of sampling for detecting configuration-related bugs depends significantly

on how samples are selected. In this context, there is a gap of studies comparing sampling

algorithms with regards to their efficiency to detect bugs. In the research literature, there

are some tools with support to deal with variability in C. For instance, TypeChef [17] and

SuperC [38], variability-aware parsers for C code, which analyze complete configuration

spaces. However, they require a time-consuming setup to analyze all dependencies defined

through #include directives.

Due to the complexities of dealing with variability in C and without an appropriate tool

support, developers have problems when evolving C program families, e.g., introducing

bugs [13; 3; 12; 39] and bad smells [33; 29] related to preprocessor directives. Further-

more, developers introduce bugs and bad smells that appear in software repositories like

Git [40], such as uninitialized variables, undefined functions, and other compilation errors.1

This way, as these problems are difficult to detect due to variability [29], they also appear in

the projects releases [12; 39], which may impact time-to-market, software quality, and lead

to problems like financial losses.

In summary, we focus on the following three problems:

1. Configuration-related syntax errors, bugs, and warnings that we can detect by perform-

ing static analysis, such as undeclared and unused variables and functions, memory and

resource leaks, dereference of null pointers, and uninitialized variables;

2. Code comprehension with regards to the use of undisciplined directives;

3. Combinatorial testing, as preprocessor conditional directives increase the number of

configurations to check for quality-assurance.
1https://bugzilla.gnome.org/show_bug.cgi?id=580750, 445140, 309748, and 461011.
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1.2 Motivating Examples

To clarify the problems we address in this work, we present some motivating examples in

what follows. For instance, Figure 1.1 (a) presents a syntax error in the CVS2 project when

we enable, for example, macros SHUTDOWN, SOCKET, and POPEN. After preprocessing

this code snippet, we generate an invalid program, see Figure 1.1 (b). When compiling this

program, traditional C compilers (e.g., Gcc and Clang) report a compilation error, as we

have an else if just after an if statement. However, when compiling the code snippet

presented in Figure 1.1 (a), compilers report no syntax errors or warnings when we enable

macros SHUTDOWN and POPEN, and disable SOCKET. Notice, though, that the syntax error

actually exists, but in another configuration, as it is a configuration-related syntax error.

…

if (current != server_method)

    
  

else if (pclose == EOF){
  error ("closing connection");
  closefp = 0;

}
…

(a) (b)

…
#ifdef (SHUTDOWN)
  if (current != server_method)
#endif
#ifndef (SOCKET)
  {
    if (S_ISSOCK (s.st_mode))
      shutdown (fileno, 0);
  }
#endif
#ifdef (POPEN)
  else if (pclose == EOF){
      error ("closing connection");
      closefp = 0;
  }
#endif
…

#undef SHUTDOWN
#undef SOCKET
#define POPEN

#define SHUTDOWN
#define SOCKET
#define POPEN

Compilation 
Error

...

Configuration 1

#define SHUTDOWN
#define SOCKET
#undef POPEN

Configuration 2

Configuration 8

Configuration 1

Figure 1.1: Code snippet of CVS that causes a compilation error.

As another example, Figure 1.2 (a) presents a code snippet of the Bash3 project with

unexpected behavior when developers disable macros TRACE and REGISTER, and enable

macro WATCH. As we can see in Figure 1.2 (b), variable ubytes is not initialized, but it

is used at Line 15. Technically, the value of an uninitialized, non-static, local variable is

indeterminate in C, and accessing it leads to an undefined behavior [41]. Developers can use

traditional C tools (e.g., Gcc) to detect this uninitialized variable, but it is not guaranteed.

These tools preprocess the code to generate each configuration and check these configura-

tions individually. So, these tools might not detect this uninitialized variable, because it

2http://www.nongnu.org/cvs/
3https://www.gnu.org/software/bash/
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appears only in some configurations of the code. In this context, developers face a problem

of selecting which configurations they check (i.e., combinatorial testing), specially because

the space of possible configurations is exponential, in the worst case, and it is usually too

large to explore exhaustively. Assuming n optional and independent configuration options,

the number of configurations is 2n. In the Linux Kernel, for example, there are more than

12K configuration options.

#undef TRACE
#undef REGISTER
#define WATCH

#define TRACE
#define REGISTER
#define WATCH

static void internal_free (){
  int ubytes;
  …
#if (defined (TRACE) || defined (REGISTER))
  ubytes = p->minfo.mi_nbytes;
#endif
  …
#if definedEx (TRACE)
  mtrace_free (ubytes);
#endif
#if defined (REGISTER)
  mregister_free (ubytes);
#endif
#if defined (WATCH)
  malloc_ckwatch (ubytes);
#endif
} Uninitialized 

Variable

...

Configuration 1

#define TRACE
#define REGISTER
#undef WATCH

Configuration 2

Configuration 8

1. static void internal_free (){
2.   int ubytes;
3.   …
4.
5.     
6.
7.   …
8.
9.     
10.
11.
12.    
13.
14.
15.  malloc_ckwatch (ubytes);
16.
17.}

Configuration 8

(a) (b)

Figure 1.2: Code snippet of Bash with unexpected behavior.

Besides syntax errors and undefined behavior that appear only in some configurations

of the source code, developers can also introduce bad smells. Figure 1.3 presents a code

snippet of Xterm4 that contains undisciplined directives. As we can see, the developers

of Xterm encompass only a closing bracket with preprocessor directives (see Line 21). In

this work, we consider undisciplined directives as bad smells [33] related to preprocessor

directives, because undisciplined directives influence code quality negatively, making the

tasks of reading and understanding the source code more difficult [13; 3; 4].

Developers may need more time to understand the code snippet of Figure 1.3 (a), e.g., to

detect where if statements end, or to analyze whether opening and closing brackets match

correctly. Furthermore, undisciplined directives leave the source code more conducive to

introduce syntax errors [12]. In this code snippet, for example, there is a syntax problem

but in invalid configurations, such as when we enable macros GLIBC and PTSFLAG, as

presented in Figure 1.3 (b). By setting this configuration, developers introduce an extra

bracket at Line 12. Thus, they may still need more time to detect that this configuration is

invalid since the source code does not contain this information explicitly.

4http://invisible-island.net/xterm/
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1. … 
2. #ifdef  GLIBC
3.     if ((*pty = getpt()) >= 0){
4.         char *name = ptsname(*pty);
5.         if (name != 0) {
6.             strcpy(ttydev, name);
7.             result = 0;
8.         }
9.     }
10.#else
11.    #if defined (PTSFLAG)
12.        if (result){
13.    #endif
14.    result = ((*pty = open("ptmx", O_RDWR)) < 0);
15.#endif
16.    result = pty_search(pty);
17.#if defined (SVR4) || defined (PTSFLAG)
18.    if (!result)
19.        strcpy(ttydev, ptsname(*pty));
20.    #ifdef PTSFLAG
21.        }
22.    #endif
23.    if ((*pty = open("/dev/ptc", O_RDWR)) >= 0){
24.        strcpy(ttydev, ttyname(*pty));
25.        result = 0;
26.    }
27.    …
28.#endif
29.    …

#define GLIBC
#define PTSFLAG

Invalid Configuration

Syntax Problem

1. … 
2. if ((*pty = getpt()) >= 0){
3.    char *name = ptsname(*pty);
4.    if (name != 0) {
5.       strcpy(ttydev, name);
6.       result = 0;
7.    }
8. }
9. result = pty_search(pty);
10.if (!result)
11.   strcpy(ttydev, ptsname(*pty));
12.}
13.if ((*pty = open("/dev/ptc", O_RDWR)) >= 0){
14.   strcpy(ttydev, ttyname(*pty));
15.   result = 0;
16.}
17.…

(a) (b)

Figure 1.3: Code snippet of Xterm with bad smells.

Bugs like undefined behavior may cause security problems and financial losses. In this

context, developers need better tool support to develop and evolve program families, and to

minimize configuration-related bugs. We can support C developers in distinct ways, such as

using a defective or corrective strategy, in which the main focus is finding bugs. Also, we can

apply a perfective or preventive solution, which focuses on improving code quality with the

purpose of avoiding bugs in the future, and making the tasks of reading and understanding

the code faster [42]. In addition, studies to investigate the use of the C preprocessor in real

projects are helpful to understand common problems that happen in practice, provide insights

for better development processes, and minimize chances of introducing subtle bugs [13; 3;

12; 39; 29; 43].

1.3 Solution

To minimize the aforementioned problems, this study proposes an approach to safely evolve

C program families. To support defective evolution, which focuses on detecting exiting prob-

lems [42], we defined two strategies to detect configuration-related bugs. These strategies

consider different types of bugs, such as syntax errors, type errors, memory leaks, resource

leaks, dereferences of null pointers, and uninitialized variables.
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The first strategy applies variability-aware analysis. It uses a variability-aware parser

to generate abstract syntax trees enhanced with variability information and performs static

analysis to detect configuration-related bugs. Our first strategy uses some simplifications

to avoid the time-consuming setup of variability-aware tools and to make the analysis of

several projects feasible, such as the use of stubs to eliminate the complexities of dealing

with #include directives.

The second strategy uses sampling, which allows us to reuse traditional C tools, such as

Gcc, Clang, and Cppcheck, to check one configuration at a time. The efficiency of our second

strategy depends significantly on how we select samples. This way, we performed a study

to compare a number of sampling algorithms, guiding developers to perform exponential

testing. Based on the results of this study, we propose the Linear Sampling Algorithm (LSA),

which provides an useful balance between effort (i.e., number of configurations to test) and

bug-detection capability (i.e., number of bugs detected in the sampled configurations).

To support perfective evolution, which focuses on improving code quality [42], we de-

fined a catalog of refactorings to make the source code less conducive to introduce bugs,

and improve code readability. Our refactorings are transformation templates, and each refac-

toring is an unidirectional transformation satisfying specific preconditions. Furthermore,

our catalog of refactorings removes undisciplined directives without cloning code, different

from previous studies [30; 4; 32]. Thus, developers do not need to decide whether to keep

undisciplined directives or to introduce code clone.

Finally, we developed a supporting tool named Colligens to implement the strategies

to detect configuration-related bugs and to apply the catalog of refactorings automatically.

By using Colligens, developers gain the benefits of an integrated, sampling-based, and

variability-aware environment to develop program families in C.

1.4 Evaluation

To evaluate our strategies and the catalog of refactorings, we used a corpus of 63 C open-

source projects. Our corpus includes projects of different sizes, ranging from 2 thousand

to 7 million lines of code, including projects from different domains, such as web servers,

databases, diagramming software, lexical analysers, text editors, and file compressors.
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To evaluate our support for defective evolution, we instantiated the sampling-based and

the variability-aware strategies. To select a suitable sampling algorithm, we conducted a

comparative study to analyze sampling algorithms and understand the tradeoffs, especially

with regard to effort and bug-detection capabilities. We analyzed 10 sampling algorithms and

35 combinations of these sampling algorithms in a study of 135 known configuration-related

bugs in 24 projects of our corpus. The results motivated us to instantiate the sampling-

based strategy using LSA. We also used TypeChef to generate abstract syntax trees with

variability information, and Cppcheck, a static analysis tool that developers have been using

in many popular projects to detect various kinds of bugs, including memory leaks, uninitial-

ized variables, and dereference of null pointers. In addition, developers of Cppcheck claim

to minimize false positives.

By applying the sampling-based strategy using LSA and Cppcheck, we detected 34 mem-

ory leaks, 12 uninitialized variables, 11 dereferences of null pointers, 6 resource leaks, and 2

buffer overflows. By using TypeChef in our variability-aware strategy, we detected 24 syntax

errors, 14 undeclared functions, 2 undeclared variables, 7 unused functions, and 16 unused

variables. Overall, we detected 128 configuration-related bugs, submitted 43 patches to fix

the configuration-related bugs not fixed by developers, and 28 (65%) patches were accepted.

Our empirical study presents findings to aid developers during their development tasks,

such as examples of common configuration-related bugs, and analyses of how developers

introduce these bugs in practice. The results show that configuration-related bugs remain

longer in the source code than bugs that appear in all configurations. The variability of

program families hide configuration-related bugs, hindering the detection of such bugs.

We found that the majority of configuration-related bugs involve two or less preprocessor

macros, which support the effectiveness of sampling algorithms, such as pair-wise [44;

45], and LSA. Furthermore, the results show that configuration-related bugs appear as fre-

quent as bugs that occur in all configurations of the source code, giving evidence that bugs

are equality distributed across different configurations.

We evaluated our catalog of refactorings regarding frequency of application possibili-

ties in practice, opinion of developers, behavior preservation, and quality of the refactored

code. We found 5670 application possibilities for our refactorings in 63 real-world projects,

showing many opportunities to apply the refactorings. With regards to the opinion of de-
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velopers, we found by using our survey among 202 developers that most participants prefer

to use the refactored (i.e., disciplined) version of the source code instead of the original

source code with undisciplined directives. Furthermore, developers accepted 21 (75%) out

of 28 patches that we submitted converting undisciplined into disciplined directives. To

check that our refactorings are behavior preserving, we applied the refactorings to more

than 36 thousand programs generated automatically using a formal model as well as in

three real-world projects: BusyBox, OpenSSL, and SQLite. By using regression testing [46;

47], we detected and fixed a few behavioral changes introduced by our refactorings, the

majority caused by unspecified behavior in the C language, but also problems in the imple-

mentation of the catalog of refactorings. Last, we removed 447 undisciplined preprocessor

directives of 12 real-world systems, such as Apache and Ghostscript, without cloning code,

different from previous work [32; 30; 4].

1.5 Summary of Contributions

In summary, the main contributions of this thesis are:

• An interview study to understand how developers perceive the C preprocessor and

complimentary studies (literature review, online survey, and repository analysis) to

cross-validate and to quantify the results [29];

• A comparison of sampling algorithms for program families with regards to effort and

bug-detection capability. Based on the results of our comparative study, we proposed

the Linear Sampling Algorithm (LSA) [43];

• An empirical study to investigate and to quantify configuration-related bugs using real

C projects [12; 39; 48; 49];

• Two strategies to identify configuration-related bugs in C projects using sampling and

variability-aware analysis [12; 39];

• A catalog of refactorings to remove bad smells in preprocessor directives [50];

• A supporting tool named Colligens that automatizes our strategies to detect

configuration-related bugs and applies our catalog of refactorings automatically [51].
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1.6 Organization of this Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we present background in-

formation about the main concepts used in this thesis. In Chapter 3, we describe the problem

we address in this study. In Chapter 4, we present the sampling-based strategy to detect bugs,

and in Chapter 5, we present the variability-aware strategy. Chapter 6 presents our catalog of

refactorings to remove bad smells in preprocessor directives, and Chapter 7 presents our sup-

porting tool. Finally, we discuss the related work in Chapter 8, and present the concluding

remarks in Chapter 9.



Chapter 2

Background

In this chapter, we present a brief overview of the main concepts used in this thesis. In Sec-

tion 2.1, we discuss program family and software product line concepts. Section 2.2 presents

information about the C preprocessor, including the definition of configuration, configuration

spaces, configuration-related bugs, and undisciplined directives. In Section 2.3, we present

concepts of variability-aware analysis, and Section 2.4 discusses sampling-based analysis.

Section 2.5 considers concepts and tools to perform static analysis, and Section 2.6 discusses

refactorings in C program families.

2.1 Program Families and Software Product Lines

A program family is a set of programs whose commonality is so extensive that it is advan-

tageous to study their common properties before analyzing individual family members [5].

In this context, individual family members may have different functionalities, or the same

functionalities implemented differently according to specific operating systems and platform

characteristics [2]. The concept of program families is similar to Software Product Lines

(SPL) [52; 53]. However, the latter is more systematic and uses some concepts, theories,

and artifacts that are not necessarily used in program families, e.g., feature model [54; 55;

56] and configuration knowledge [57; 58].

Software product line engineering has its principles based on automobile manufactures,

which enable mass production cheaper than individual product creation. These manufactures

use a common platform to derive products that can be customized to specific customers or

11
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market segments needs [52]. In the context of software engineering, the combination of mass

customization, large-scale production, and the use of a common platform to derive products

results in the software product line engineering paradigm [53].

A product line is a set of similar software intensive systems that share a collection of

common features satisfying the needs of specific customers or market segments. This set

of systems are developed from a set of core assets, which are documents, specifications,

components, and other software artifacts that naturally become highly reusable during the

development of each specific system in the product line [59; 60; 61; 53].

In this sense, the software product line development paradigm uses a systematic and

planned reuse strategy, which is presented in Figure 2.1 and explained in what follows [52]:

• Core asset development: In this activity, a set of core assets, a product line scope,

and a production plan are produced. The core assets form the basis of the product line

and its production capability;

• The product development activity receives as input the outputs of the core asset de-

velopment, and a product-specific requirement. The product required is developed

using the core assets developed previously;

• Management is necessary because core asset development and product development

activities are iterative, and this iteration must be carefully managed.

Figure 2.1: The activities of software product line engineering.
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Regarding the C language, developers often use the C preprocessor to handle variability,

solve portability problems, and implement individual family members [2], i.e., developers

encompass C source code with preprocessor directives, such as #ifdef, #else, #elif,

and #endif. However, real C program families do not necessarily use the concepts and

artifacts of SPL, and their development is not always systematic. Thus, in this study, we use

the term program family to reference projects, such as Apache and Libssh, which use the

C preprocessor to handle variability and portability. The next section presents an overview

about the C preprocessor.

2.2 The C Preprocessor

The C preprocessor is a language-independent tool for lightweight meta-programming that

fills a need, among others, for portability and variability. The preprocessor is widely used

in practice. It is essentially used in all projects written in C, including many well-known

databases and operating systems. The C preprocessor essentially has not changed since the

70s and it is used automatically by C compilers to transform programs before compilation.

The preprocessor is executed during the compilation process and performs three interacting

tasks:

• It lexically includes files (#include);

• It expands macros (defined with #define); and

• It conditionally excludes part of the source code depending on which and how macros

are defined (such as #ifdef and #if).

In this study, we focus on conditional compilation, because file inclusion and macro ex-

pansions are relatively well understood and there are mitigation strategies available in the

literature [62; 63; 3; 64; 65].

2.2.1 Configuration

By using the C preprocessor, developers deal with a single code with different configurations.

A configuration is an assignment of values true or false for all preprocessor macros
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used in the source code. The true value means that the preprocessor macro is enabled,

and false means disabled. For instance, Figure 2.2 presents a code snippet of a program

family with four configurations: (1) macros A and B enabled, (2) macro A disabled and

macro B enabled, (3) macro A enabled and macro B disabled, and (4) both macros disabled.

By preprocessing this code snippet, developers can generate these four configurations. To set

each specific configuration, we use #define and #undef directives to enable and disable

macros respectively. These four configurations depicted in Figure 2.2 form the configuration

space of the program family. In real-world projects, the configuration spaces are usually very

large, which make the analysis of every individually configuration infeasible.

void myFunction () {
   …
#ifdef A
#ifdef B
   int myInt;
#else
   float myFloat;
#endif
#endif
   …
}

#define A
#define B

Configuration 1

#undef A
#define B

Configuration 2

#define A
#undef B

Configuration 3

#undef A
#undef B

Configuration 4

void myFunction () {
   …
   int myInt;
   …
}

void myFunction () {
   …
}

void myFunction () {
   …
   float myFloat;
   …
}

void myFunction () {
   …
}

Figure 2.2: A program family with four configurations.

Despite being native of the C language, we can use the preprocessor to transform

any text file. The preprocessor has no knowledge about the C language constructors,

as it is a lexical preprocessor. For this reason, we can encompass any code with pre-

processor directives, such as an opening bracket or a comma. This way, we can han-

dle both fine-grained as well as coarse-grained variability with the C preprocessor [1;

66]. Regarding the way that developers encompass C source code with preprocessor di-

rectives, we can classify a preprocessor directive as disciplined or undisciplined [67; 17;

30], as presented in the next section.
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2.2.2 Undisciplined and Disciplined Directives

Undisciplined preprocessor directives do not respect the syntactic structure of the source

code (e.g., wrapping a single bracket without its correspondent closing one) [4]. For in-

stance, Figure 2.3 presents part of the source code of Vim including undisciplined directives.

Undisciplined directives split up part of C syntactical units, e.g., the #ifdef directive that

starts at Line 2 and ends at Line 4 surrounds only part of the statement condition.

1. if (msec > 0                     
2. #ifdef USE_XSMP
3.   && xsmp_icefd != -1
4. #endif
5. ){
6.   // lines of code
7.   gettime(&start_tv);
8. }

Figure 2.3: Code snippet of Vim with undisciplined directives.

Disciplined directives encompass complete C syntactical units only, such as a function

definition, variable declaration, and a function call [30; 67; 4]. Figure 2.4 presents a code

snippet with disciplined directives only (an equivalent and disciplined version of the code

presented in Figure 2.3). In Figure 2.4, the #ifdef directive that starts at Line 2 and ends

at Line 4 is disciplined and it surrounds a complete variable attribution.

1. bool time = msec > 0; 
2. #ifdef USE_XSMP
3.   time = time && xsmp_icefd != -1;
4. #endif
5. if (time){
6.   // lines of code 
7.   gettime(&start_tv);
8. }

Figure 2.4: Refactored code of Vim including disciplined directives only.

The lexical operation mode, which allows developers to introduce undisciplined direc-

tives, is one of the most criticized aspects of the C preprocessor [3; 13; 30; 4; 29; 12;

39]. Prior studies criticise undisciplined directives due to its negative influence on code

quality, maintainability, and error-proneness [3; 68; 4], we present more detail in Chapter 3.

Thus, we consider that undisciplined directives are always bad smells with regards to pre-

processor usage [33], which may lead to configuration-related bugs, as discussed next.



2.2 The C Preprocessor 16

2.2.3 Configuration-Related Bugs

A configuration-related bug is an error related to the use of preprocessor directives. In this

work, we consider an error as a result different from the expected, or an incorrect step,

process or data definition that may lead to an error, e.g., a compilation error, or an out of

memory error [69].

We define a configuration-related bug in the following way: A configuration-related bug

is an error that does not occur in all configurations of the source code, that is, to decide

whether a bug is a configuration-related bug, we need to identify at least one valid configu-

ration where the bug appears and at least one valid configuration that the bug is not present.

Valid configurations take the macro constraints into account.

To illustrate configuration-related bugs, Figure 2.5 presents a code snippet of the Gawk1

source code related to its regular expression library. This code snippet contains a preproces-

sor macro that implements localization and language internationalization, i.e., I18N, which

is responsible to adapt the software to specific regions or languages. By preprocessing the

code snippet presented in Figure 2.5 with I18N enabled, developers generate a memory

leak. We allocate memory to variable mbcset at Line 12, but we do not deallocate it when

returning NULL at Line 21.

1. …
2. static bin_tree_t * parse_bracket_exp (){
3.    …
4.    bset sbcset;
5. #ifdef I18N
6.    cset *mbcset;
7.    …
8. #endif
9.    …
10.   sbcset = (bset) calloc (sizeof (int));
11.#ifdef I18N
12.   mbcset = (cset) calloc (sizeof (cset));
13.#endif 
14.#ifdef I18N
15.   if (sbcset == NULL || mbcset == NULL, 0)
16.#else
17.   if (sbcset == NULL)
18.#endif
19.   {
20.      *err = REG_ESPACE;
21.      return NULL;
22.   }
23.   …
24.}
25.…

#define I18N

Configuration 1

#undef I18N

Configuration 2

No Memory Leak Memory leak

Memory Leak

…
static bin_tree_t * parse_bracket_exp (){
   …
   bset sbcset;
   cset *mbcset;
   …
   sbcset = (bset) calloc (sizeof (int));
   mbcset = (cset) calloc (sizeof (cset));
   if (sbcset == NULL || mbcset == NULL, 0)
   {
      *err = REG_ESPACE;
      return NULL;
   }
   …
}
…

Figure 2.5: Code snippet of Gawk with a memory leak.

1http://www.gnu.org/software/gawk/
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Presence Condition

By definition, configuration-related bugs are not present in all configurations of the source

code. In this sense, a configuration-related bug occurs in a subset of valid configurations

only. The presence condition of a configuration-related bug is a boolean expression that

represents this subset of valid configurations. For instance, the configuration-related bug of

Gawk, presented in Figure 2.5, occurs only when we enable macro I18N. This way, the

presence condition of this bugs is I18N.

As another example, we use a configuration-related bug in Libpng,2 as presented in Fig-

ure 2.6. By preprocessing this code snippet without macro INTERLACING, we generate

an invalid program according to the C grammar. It contains a syntax error since it opens

the if statement block at Line 4, but it does not close at Line 14. In contrast, if macro

INTERLACING is enabled, there is no syntax error. This way, the presence condition of this

configuration-related bug of Libpng is ¬INTERLACING.

1. …
2. void progressive_row(structp p, bytep nr){
3.    …
4.    if (new_row != NULL) {
5.       …
6.       if (y >= dp->h)
7.          png_error(pp, "invalid y");
8.       row = store_image_row(dp->ps, pp, 0, y);
9. #ifdef INTERLACING
10.      if (dp->do_interlace){
11.         …
12.      } else
13.         combine_row(pp, row, nr);
14.   } else if (type == PNG_INTERLACE_ADAM7)
15.      png_error(pp, "missing row");
16.#endif
17.}
18.…

#undef INTERLACING

Configuration 1

#undef INTERLACING

Configuration 2

Compilation Succeed Syntax Error

Syntax Error

…
void progressive_row(structp p, bytep nr){
   …
   if (new_row != NULL) {
      …
      if (y >= dp->h)
         png_error(pp, "invalid y");
      row = store_image_row(dp->ps, pp, 0, y);
}
…

Figure 2.6: Code snippet of Libpng with a syntax error.

2.3 Variability-Aware Analysis

A variability-aware parser generates abstract syntax trees enhanced with variability infor-

mation, guaranteeing the absence of syntax errors in all configurations. Variability-aware

parsers, such as TypeChef [17] and SuperC [38], handle interactions of macros, file inclu-

sion, and conditional compilation soundly. Instead of considering macro definitions, macro

2http://www.libpng.org
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expansion, and file inclusion intertwined, variability-aware tools perform partial preprocess-

ing, which preprocesses file inclusion and macro expansion, but retains variability informa-

tion for further analysis [70]. In Figure 2.7, we present an example code snippet (left-hand

side) and the results of performing partial preprocessing (right-hand side). As we can see, file

inclusion and macro expansion have been performed at the right-hand side of Figure 2.7. No-

tice, though, that the preprocessor has not resolved conditional compilation and the resulting

code, at the right-hand side, still contains the #ifdef, #else, and #endif directives.

Partial
preprocessing

#include <stdio.h>
#ifdef A
#define TYPE int 
#else
#define TYPE float 
#endif
...
void func () {
   TYPE x;
   call(x);
}
...

int printf (..);
// All definitions from stdio.h

void func (){
#ifdef A
   int x; 
#else
   float x; 
#endif
   call(x);
}
...

Figure 2.7: Performing partial preprocessing.

In Figure 2.8, we present an abstract syntax tree generated from an if statement with

an undisciplined preprocessor directive. Notice that there is a choice node A that controls

both configurations: (1) macro A enabled, and (2) macro A disabled. Therefore, by using the

abstract syntax tree enhanced with variability information, we can search for configuration-

related bugs in all configurations.

if ( c1
#ifdef A
  && c2
#endif
){
  …
}

A

c1

if

and

compound
block

c2

…

condition

c1

A

Figure 2.8: Abstract syntax tree enhanced with variability information.
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2.4 Sampling Analysis

Although researchers have proposed approaches to analyze complete configuration spaces

in a sound fashion for some classes of defects [71; 17; 72; 38; 18], as discussed, the

vast majority of mature quality-assurance techniques consider only a single configura-

tion at a time. For example, static-analysis tools operate typically on C code after

the C preprocessor has resolved variability implemented through conditional compilation

(e.g., implemented with #ifdef directives). To reuse state-of-the-art tools, such as

Gcc, to detect configuration-related bugs, sampling is a viable alternative [34; 35; 36; 37;

20]. That is, instead of analyzing all configurations, one selects a subset of configura-

tions to analyze individually. The effectiveness of sampling for detecting configuration-

related bugs depends significantly on how samples are selected. Several sampling al-

gorithms have been proposed in the literature. Next, we explain six state-of-the-art

sampling algorithm using the example code snippet of Figure 2.9: t-wise [34; 35; 36;

37]; statement-coverage [73]; random; one-disabled [16]; one-enabled; and most-enabled-

disabled.

The t-wise algorithm covers all combinations of t preprocessor macros: pair-wise checks

all pairs of preprocessor macros (t = 2) [34; 35; 36; 37], and it selects four configurations

regarding the example of Figure 2.9. Considering macros A and B, we can see that there

is a configuration where both macros are disabled (config-1), two other configurations with

only one of them enabled (config-2 and config-3), and another configuration where both

preprocessor macros are enabled (config-4). The same situation occurs for preprocessor

macros A and C, and macros B and C. However, t can take integer values to check different

combinations of macros, such as three-wise (t = 3), four-wise (t = 4), and five-wise (t = 5).

As we increase t, the sizes of the sample sets also increase. Figure 2.10 presents the sample-

set distributions of three-wise, four-wise, five-wise, and six-wise considering a file with a

number of preprocessor macros ranging from zero to eighty. As we can see, three-wise and

four-wise create small sample sets; five-wise and six-wise create larger sample sets.

The statement-coverage algorithm selects a set of configurations in which each block

of optional code is enabled at least once [20]. As presented in Figure 2.9, by enabling

preprocessor macros A, B, and C, the algorithm ensures that the optional code blocks code
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#ifdef A
  // code 1
#endif

#ifdef B
  // code 2
#else
  // code 3
#endif

#ifdef C
  // code 4
#endif

one-disabled

most-enabled-disabled

pair-wise

config-1: 
config-2:
config-3:
config-4:

!A
!A
A
A

!B
B
!B
B

C
!C
!C
C

statement-coverage
config-1: 
config-2:

A
A

B
!B

C
C

one-enabled

config-1: 
config-2:
config-3:

A
!A
!A

!B
B
!B

!C
!C
C

config-1: 
config-2:
config-3:

!A
A
A

B
!B
B

C
C
!C

config-1: 
config-2:

A
!A

B
!B

C
!C

Figure 2.9: Comparing the sampling algorithms by example.

1, code 2, and code 4 are enabled at least once. However, it needs another configuration

(e.g., A and C enabled, and B disabled) to enable code 3. Note that including each block

of optional code at least once does not guarantee that all possible combinations of individual

blocks of optional code are considered.

0 20 40 60 80
0

200

400

600

800

Number of Preprocessor Macros

Size of Sample Set

three-wise
four-wise
five-wise
six-wise

Figure 2.10: Sample sets of t-wise sampling.

The most-enabled-disabled algorithm checks two configurations independently of the

number of preprocessor macros. When there is no constraints among preprocessor macros,

it enables all macros (config-1), and then it disables all preprocessor macros (config-2). One-

disabled is an algorithm suggested by Abal et al. [16] based on 42 bugs found in the Linux

Kernel. It disables one preprocessor macro at a time. We can also see in Figure 2.9 that it

disables preprocessor macro A in config-1, macro B in config-2, and macro C in config-3. In

contrast, one-enabled enables one preprocessor macro at a time.
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Finally, the random sampling algorithm, which receives as input the maximum number

of configurations (c) to check per file. Then, it creates c distinct configurations with all pre-

processor macros within the file and randomly assigns true or false for every macro of

each configuration. For files which a brute-force algorithm requires fewer configurations

than the maximum number of configurations (c) per file, random selects all configurations.

For instance, brute-force selects 2n configurations, where n is the number of distinct configu-

ration options. Thus, for a given source file with 5 distinct configuration options, brute-force

selects 32 configurations. Assuming that we are checking 40 configurations per-file using

random (i.e., c = 40), it makes sense to check all 32 configurations selected by the brute-

force algorithm.

2.5 Static Analysis Tools for C

In this section, we present concepts of static analysis and discuss some tools to perform this

kind of analysis in C. Static analysis is a technique to analyze computer systems without

actually executing them [74]. Developers can use static analysis tools as a writer use spell

checkers, i.e., to avoid subtle mistakes. However, although poor developers, which do not

program well, gain benefits from using a static analysis tool, it does not transform them into

expert developers [75].

Static analysis tools can analyze the source code directly using, for example, abstract

syntax trees, i.e., seeing the source code as the compiler sees it. However, it can bring

ambiguity problems since the tool and the compiler may interpret the source code differently.

In contrast, some static analysis tools may require compilation to analyze object code, i.e.,

seeing the source code as the runtime environment sees it. In the latter case, the compiler

has already made its job, and the static analysis tool does not have to guess how the compiler

interprets the code [75].

In the context of the C language, static analysis tools that use object code miss informa-

tion about variability, i.e., the compiler has already preprocessed the source code, and the

analysis considers only one configuration. Thus, to analyze program families completely, C

static analysis tools should analyze the original source code, which contains all preprocessor

directives and variability information.
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There are several static analysis tools in the literature to analyze different aspects

of the source code, such as type checking, style checking, program understanding, pro-

gram verification, property checking, bug finding, and security reviews [75; 76; 77; 78;

79]. Table 2.1 shows some tools to perform static analysis in C. In this study, we focus

on static analysis tools to detect bugs.

Table 2.1: Tools to perform static analysis in C.

Tool name Category Input

API Sanity Checker bug finding object code

Clang Analyzer bug finding object code

Cppcheck bug finding source code

FlawFinder security review source code

Nsiqcppstyle style checking source code

Splint bug finding source code

Valgrind bug finding object code

Vera++ style checking source code

Coverity bug finding source code

Coccinelle bug finding source code

Lint bug finding source code

PVS-Studio bug finding source code

The most common complaint regarding static analysis tools is false positives, i.e., the

tools report a problem in a program when no problem actually exists (false alarm). Devel-

opers may think that the tools do not work properly, and may, for example, spend time by

looking for nonexistent bugs. However, it is worse if the problem is related to false negatives,

in which the problem exists but the tools do not detect it [75]. False positives and negatives

may happen depending on the techniques that the tools use, such as intra-procedural and

inter-procedural analyses [74]. The former considers the analysis of functions in isolation

and the latter analyzes interaction between calling and called functions, analyzing the whole

program.

Intra-procedural and inter-procedural analyses get more complicated in C due to the pres-

ence of preprocessor directives. For instance, consider the example presented in Figure 2.11,

in which developers allocate memory to variable ptr in file Main.c at Line 4. A static

analysis tool that performs only intra-procedural analysis may detect a false positive, i.e.,

a memory leak in variable ptr. A tool that performs inter-procedural analysis may pro-
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duce a better result, as it considers the #include directive in Main.c at Line 1 to recog-

nize function test defined in Memory.c (which calls free). However, the tool should be

variability-aware to detect that the memory leak happens only when macro A is disabled. For

these reasons, false negatives and positives may occur in static analysis tools.

1. #include "Memory.h"
2.
3. int main (int argc, char **argv){
4.    int *ptr = (int *) malloc (sizeof (int));
5.    test (ptr);
6. }

1. void test (int *x){
2.   #ifdef A
3.     free(x);
4.   #endif
5. }

1. void test (int *x);

Main.c

Memory.c

Memory.h

Figure 2.11: Code snippet to discuss strategies of static analysis tools.

2.5.1 Cppcheck

Cppcheck is a static analysis tool that have been used in many open source projects and its

developers claim to minimize false positives. The tool analyzes C source code and detects

different types of bugs, such as memory and resource leaks, dereferences of null pointers, and

uninitialized variables, using intra and inter-procedural analyses. Cppcheck provides support

to analyze different configurations of the source code. It focuses on the identification of bugs

that compilers normally do not detect, such as memory and resource leaks, uninitialized

variables, and dereferences of null pointers. Cppcheck implements a sampling algorithm

to detect bugs in different configurations. For instance, Cppcheck analyzes the following

configurations when checking the code snippet of Vim presented in Figure 2.12. The tool

checks the code with all macros disabled, then, it activates each macro separately, i.e., CMDL,

UNIX, BUFLIST, TITLE, and PERL. Finally, it checks the source code with nested macros

together, i.e., UNIX and BUFLIST.
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// Code here..
#if defined(CMDL)
   static char_u *buflist_match __ARGS((regprog_T *prog, buf_T *buf));
#endif

// Code here..

#ifdef UNIX
   #ifdef BUFLIST
      static char_u *fname_match __ARGS((regprog_T *prog, char_u *name));
   #endif
   static int buf_same_ino __ARGS((buf_T *buf, struct stat *stp));
#else
   static int otherfile_buf __ARGS((buf_T *buf, char_u *ffname));
#endif

#ifdef TITLE
   static int ti_change __ARGS((char_u *str, char_u **last));
#elif defined (PERL)
   static void clear_wininfo __ARGS((buf_T *buf));
#endif

Figure 2.12: Code snippet of Vim to show how Cppcheck selects configurations.

2.6 Refactoring

Refactoring is the process of changing a software system with the purpose of improving its

internal structure without modifying its external behaviour [80; 33]. With refactoring we can

take a bad design and rework it to a well-designed code. To refactor a code, we perform a set

of simple and small code transformations, e.g., move a field from one class to another and

pull some code out of a function to make its own function, and the cumulative effect of these

small changes can radically improve the design of the software system.

The design of a system decay due to changes performed to realize short-term goals dur-

ing software evolution. Hence, developers perform refactorings to improve the design of

software. Refactoring can also make the software easier to understand, help to find bugs, and

aid developers to program faster [33]. The reason is that when refactoring a code, developers

have a code that works but is not ideally structured. This way, a little time spent refactor-

ing can make the source code simpler, and better organized and structured, which will help

developers to better understand the source code, find bugs and make software development

tasks faster [80; 33].

Before you start refactoring, it is important to have a solid suite of tests [33]. Thus, after

identifying a refactory, i.e., a place where refactoring should be performed [80], we refactor

the code, and check whether the test cases still pass in the refactored version. To identify
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places to refactor, we can search for bad smells in the code, such as duplicated code, long

methods, large classes, long parameter list, and undisciplined directives [33]. In summary,

the steps to refactor a software system are:

1. Identify bad smells in the source code;

2. Check whether you have a solid suite of tests for that specify part of the code. Other-

wise, create a solid test suite;

3. Apply the refactoring to improve the quality of the code;

4. Run the test suite again using the refactored code to check whether the tests still pass.

In the context of the C language, refactoring becomes a challenge because of the pre-

processor directives [81; 82; 83]. To refactor program families we have to consider all valid

configurations of the source code. Otherwise, we may introduce behavioral changes. For

instance, Figure 2.13 presents a sample code of a C program family. In this context, macro

A is disabled and a developer wants to rename variable x declared at Line 2 on the left hand

side. However, variable x is used when macro A is disabled as well. Thus, a refactoring tool

that is not variability-aware would rename variable x only in the active source code as we

can see on the right hand side of Figure 2.13, leaving variable x unchanged at Line 4. Exist-

ing refactoring tools, such Eclipse and Xcode, perform wrong code transformations similar

to this one because they consider only one configuration at a time.

1. int func ( ){
2.    int x = 0;
3.    #ifdef A
4.       x = 10;
5.    #else
6.       x = 20;
7.    #endif
8.    return x;
9. }

1. int func ( ){
2.    int y = 0;
3.    #ifdef A
4.       x = 10;
5.    #else
6.       y = 20;
7.    #endif
8.    return y;
9. }

renaming variable x

X

Figure 2.13: Wrong code transformation that introduces a compilation error.

In Section 2.2.2, we presented a bad smell (i.e., an undisciplined directive in Vim). In

Figure 2.14, we present the refactoring used in previous studies to remove undisciplined

directives by cloning the source code [4; 30; 32]. Notice that there are lines of duplicated
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code at Lines 3 and 8, for example, in the refactored code, as we can see at the right-hand side

of Figure 2.14. In Chapter 6, we proposed alternative refactorings to remove undisciplined

directives without cloning the source code.

1. if (msec > 0                     
2. #ifdef USE_XSMP
3.   && xsmp_icefd != -1
4. #endif
5. ){
6.   // lines of code
7.   gettime(&start_tv);
8. }

1. #ifdef USE_XSMP
2. if (msec > 0 && xsmp_icefd != -1){
3.   // lines of code
4.   gettime(&start_tv);
5. }
6. #else
7. if (msec > 0){
8.   // lines of code
9.   gettime(&start_tv);
10.}
11.#endif

Figure 2.14: Refactoring to remove undisciplined directives by cloning code.



Chapter 3

Problem Dimension

In this chapter, we present a study performed to understand how developers perceive the C

preprocessor. All prior studies [3; 4; 13] on the C preprocessor that we are aware of were

based on conceptual arguments or evidence extracted from software repositories. Our study

is designed to elicit the perception of developers by talking to them.

In Section 3.1, we discuss the challenges induced by the C preprocessor according to

our literature review. This review of the state-of-the-art guided us in the design of our study

to analyze whether and how the perception of developers differs from that in the research

literature. Next, in Section 3.2, we present the settings of our study and the research methods

we used to understand the perception of developers regarding the C preprocessor. Then, we

discuss the results of our study in Sections 3.2.2–3.2.2, presenting the problems of using the

C preprocessor in practice according to the perception of developers.

3.1 Challenges Induced by the C Preprocessor

The preprocessor is widely used in practice in almost all projects written in C. It is executed

during the compilation process and performs three interacting tasks: lexical inclusion, lexical

macros, and conditional compilation. In Figure 3.1, we present the original code on the left-

hand side and the result of performing each task on the right-hand side.

27
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gcc -E

#include <stdio.h>
...

...
#define TYPE int
...
TYPE x = 10;
...

...
#ifdef A 
int x;
#else
float y;
#endif 
...

Lexical Inclusion int printf (..);
...

...
int x = 10;
...

...
int x;
...-D A

Conditional 
Compilation

Lexical Macros

Original Code Resulting Code

Lexical inclusion also 
includes all other 

definitions from stdio.h..

Lexical macro substitutes 
all TYPE words by the word 

int..

As we defined A, using the 
command gcc -E -D A, all 

parts related to the #else 
branch (not A) were 

removed..

Figure 3.1: The interacting tasks of the C preprocessor.

According to our literature review, all three functions have been criticized:

• Lexical inclusion causes large amounts of I/O operations during compilation and slows

down the build process. For example, an average file in the Linux kernel includes over

300 header files [17]. There is movement in the C community towards a proper build

system to replace #include directives [84].

• Lexical macros allow all kinds of potential problems [3] since they have no notion

of structure, hygiene, or capture avoidance that advanced macro systems support [85;

86; 87; 26; 23]. Developers avoid these problems by following certain patterns when

defining macros [3], which are broadly adopted and also checked by a number of static

analysis tools [31]. In addition, C++ introduced several language features to replace

common uses of preprocessor macros [63; 88].

• Since conditional compilation removes code before compilation, it causes compilers

and many other analysis tools to see only parts of the code. It has been criticized as

limiting separation of concerns, as obfuscating the code, as being error prone, and as

preventing tool support. Interactions of conditional compilation with lexical inclusion

and macro expansion make it even harder to reason about the preprocessor execution.

Next, we discuss the challenges of using the C preprocessor in practice according to the

research literature. In particular, we focus on conditional compilation, as file inclusion and

macro expansions are relatively well understood and there are mitigation strategies available

in the literature [62; 63; 3; 64; 65].
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3.1.1 Readability and Separation of Concerns

Several studies criticized the C preprocessor regarding its limited separation of concerns

and code obfuscation, which make maintenance and code comprehension difficult [13; 3;

30; 4; 17]. In particular, when conditional directives are used at fine granularity and are

strongly scattered, it can be difficult to follow the control flow logic [6; 14]. Such source

code is sometimes referred to as the “#ifdef hell” by developers [15]. Long and deeply

nested conditional directives also can make it difficult to see when specific code fragments

are included [6; 11; 9]. Many researchers have proposed aspect-oriented programming as an

alternative [15; 28], where optional code would be separated into distinct code artifacts and

woven together at compile time, but we are not aware of any adoption beyond some research

projects.

A specific practice that has been discussed in detail is the use of undisciplined di-

rectives: conditional compilation directives that do not align with the code structure, as

discussed in Chapter 2. In Figure 3.2, we illustrate some examples of undisciplined di-

rectives. Undisciplined directives are related to error proneness [3; 4; 12; 17], hindered

code understanding and maintainability [13; 3], and limitations in tool support [81; 30; 13;

89]. An empirical study by Liebig et al. [4] revealed that most conditional compilation di-

rectives in 40 open source C projects are disciplined, but 15.6 % of all #ifdef blocks do

not align with the code structure.

if (b_ffname != NULL
#ifdef FEAT_NETBEANS
  && netbeansReadFile
#endif
){
  // lines of code
}

 mfp = open(mf_fname
 #ifdef UNIX
  , (mode_t)0600
 #endif
 #if defined (MSDOS)
   , S_IREAD | S_IWRITE
 #endif
 );

 #if defined (GUI_W32)
 void msgNetbeansW32(
 #else
 void msgNetbeans(Xt client,
 #endif
 XtInputId *id){ 
   // lines of code..
 }

Figure 3.2: Real code snippets taken from Vim with undisciplined directives.

3.1.2 Combinatorial Explosion and Parsing Unpreprocessed C Code

Conditional compilation decides which code fragments to include depending on the values

of macros. The number of possible configurations explodes exponentially with the number
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of preprocessor macros involved in #ifdef and similar directives. C projects often have a

large number of conditional directives depending on many macros; for instance, which parts

of the Linux kernel are compiled depends on more than 12 thousand macros [20; 67].

A separate analysis of every possible configuration simply does not scale in any but the

smallest systems. A typical strategy to cope with the combinatorial explosion is through

sampling, for example, by analyzing configurations with the majority of conditional code

included. For more systematic sampling, researchers have proposed several combinatorial

testing strategies [90; 36] and other strategies that maximize configuration coverage [20].

Sampling is inherently incomplete though and may not discover issues occurring only in few

configurations due to interactions or complex #if conditions.

Some researchers have started to investigate tools that can parse unpreprocessed code

and preserve all compile-time choices during the analysis. While earlier tools used unsound

heuristics or supported only specific usage patterns of the C preprocessor (e.g., requiring

disciplined directives) [13; 30; 89], more recent tools as TypeChef [17; 47] and SuperC [38]

can accurately parse and analyze unpreprocessed C code, covering all configurations. In the

product-line community, such analyses are called family-based analyses [71].

3.1.3 Error Proneness and Guidelines

Previous studies discussed the error-prone characteristics of the preprocessor [3; 2; 7] and

found many bugs related to conditional compilation [16; 19; 20; 91; 12; 72; 3; 40], ranging

from dead code to syntax and type errors and to behavioral issues and memory leaks. Spencer

and Collyer [2] argue that many macro combinations are tested and often do not even make

sense. Others argue that the simplicity of the C preprocessor enables developers to make

ad-hoc extensions instead of restructuring the code, which leads to poor code quality and

bugs related to preprocessor usage [7; 13].

Code guidelines have been developed to prevent certain problems, e.g., undisciplined

directives or scope issues with macros [31; 4; 3]. Even though some of them can be enforced

automatically by analysis tools [31; 4], research shows that such code guidelines are often

but not strictly followed [3; 4].
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3.1.4 Difficulty to Develop Tool Support and Syntactic Preprocessors

Finally, preprocessor directives also make the development of tool support more difficult [4;

17; 38]. Even simple tasks as removing obsolete macros or identifying dead code require

sophisticated analyses [13; 91]. Developing refactoring engines for C code is extremely

challenging due to the need to parse unpreprocessed code (possibly with many undisciplined

directives) and the need to deal with macro expansion [81; 22; 21; 92]; it is challenging even

when conditional compilation is not considered [64; 93].

Many academic proposals for preprocessor alternatives are driven by a desire to provide

better tool support and analysis. For example, ASTEC is a syntactic preprocessor that enables

precise refactoring [23]. Several other syntactic preprocessors or related environments have

been proposed [26; 27; 87; 94; 1; 95]. Some researchers propose means to refactor existing

C code to alternative implementations [23; 94; 28] or at least undisciplined to disciplined

directives [30; 32; 50], as discussed in Chapter 2. We are not aware of any adoption of these

alternatives in practice though.

3.2 Research Study

The goal of our research study is to analyze the common pitfalls of the C preprocessor, as

perceived by C developers. We specifically collect information that cannot be observed by

analyzing only artifacts as in previous studies [4; 17; 12; 16; 30; 47]. We performed this

research study primarily by interviewing developers and cross-validating our results with a

survey, other information from software repositories, and related studies. In this section, we

give an overview of our research method. All the details about the research methods are

available in the companion1 appendix [96].

For this research, we combine several empirical research methods, including interviews,

surveys, and mining software repositories. Empirical research methods allow researchers

to investigate how human developers think and behave. We study not only the outcome of

the development process, but assess also their opinions and perceptions. If not conducted

carefully, empirical research can result in biased and superficial results. However, whole

communities of researchers have investigated how to perform empirical studies that reduce

1http://drops.dagstuhl.de/opus/volltexte/2015/5516/
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biases and enable reliable and reproducible despite potentially vague research materials. For

example, by following strict protocols and documenting steps and research results when

analyzing transcribed interviews can mitigate many biases that researchers might otherwise

introduce. In addition, cross-validating results from different sources is essential. This way,

results complement and confirm each other and form a more reliable bigger picture. In

this study, we strictly followed established research methods and cross-validated our results

across several sources and with prior research results, as we will explain.

3.2.1 Overall Study Design

The motivation for our study is based on the criticism that the C preprocessor has received

from academics [13; 3; 30; 4; 17; 2], the number of alternatives proposed [26; 23; 27; 15;

28] that have not been adopted in practice, and the broad use of the preprocessor in several

real-world projects.

Specifically, we raise the following research questions:

RQ1. Why is the C preprocessor still widely used in practice?

RQ2. What do developers consider as alternatives to the preprocessor?

RQ3. What are the common problems of using the preprocessor?

RQ4. Do developers care about the discipline of directives?

Research Strategy

We performed our research in three phases. In the first phase, we analyzed the literature and

identified the research questions stated above (see also Section 3.1). In the second phase,

we performed semi-structured interviews with 40 developers. In the third phase, we cross-

validated our interview findings by conducting a survey among developers contributing to

open source C projects, mining data from 24 software repositories, and comparing our results

with prior research results.

Corpus

For this study, we use a corpus of 24 open source C systems. With the revision history of the

systems in the corpus, we identified candidate interviewees and survey participants, and we

studied technical aspects. We selected the systems in the corpus based on prior corpus studies
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on the C preprocessor [3; 67], covering a range of different domains and sizes (2.6 thousand

to 7.8 million lines of code). We selected only projects for which we could find developer

contact information in commits. The corpus includes the projects listed in Table 3.1.

Table 3.1: General information about projects repositories.

Project Domain Number of Commits

apache Web Server 25,615
bash Interpreter 68
bison Parser Generator 5,423
cherokee Web Server 5,748
dia Diagramming Software 5,634
flex Lexical Analyzer 1,609
fvwm Window Manager 5,439
gawk Interpreter 1,345
gnuchess Game 236
gnuplot Plotting Tool 8,024
gzip File Compressor 445
irssi IRC Client 4,130
libpng Image Library 2,188
libsoup Web Service Library 2,005
libssh Security Library 2,915
libxml2 XML Library 4,246
lighttpd Web Server 1,470
linux Operating System 445,169
lua Programming Language 83
m4 Macro Expander 953
mpsolve Mathematical Software 1,434
rcs Revision Control System 915
sqlite Database System 553
vim Text Editor 5,720

Interviews

We started our empirical study by interviewing developers regarding how they perceive the

C preprocessor. To reduce any potential bias and to make our study replicable, we followed

the established exploratory research method grounded theory [97; 98]. We performed semi-

structured interviews [99; 100], which are informal conversations where the interviewer lets

the interviewees express their perception regarding specific topics. To elicit not only the
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foreseen information, but also unexpected data, we avoided a high degree of structure and

formality and, instead, used open-ended questions. To cover the topic broadly, our questions

evolved during the interview process based on gained insights [97; 98]. We followed standard

guidelines regarding how to perform interviews [99; 100]. For example, we explained the

purpose of the interviews, we provided clear transitions between major topics, we did not

allow interviewees to get off topic, we allowed interviewees to ask questions before starting

the interview, and we scheduled the interviews beforehand.

The interviews were grounded in research questions RQ1–4. We started an interview by

asking developers about their experience with the C preprocessor and then tried to cover 4-6

different topics. The topics evolved during the interviews, and we asked different topics to

different developers based on their background and answers. This is a standard approach to

cover a topic broadly and qualitatively. For example, questions included ‘In which situations

do developers use conditional directives?’, ‘How do developers test different combinations

of macros in their code?’, and ‘What do developers think about directives that split up parts

of C constructions?’. In addition to these questions, we used code snippets to ask developers

concrete questions about code to encourage them to give more concrete answers. For each

interviewee, we searched through the code repositories and selected code snippets related to

that specific developer. We sent such snippets by email before the scheduled interview.

We performed 10 phone and 30 email interviews. We initially contacted developers via

email presenting some information about our project and asked them to participate. In this

step, we encouraged developers to perform phone interviews, however, we also provided

the alternative to answer our questions via email. When necessary, the emails interviews

involved back and forth conversations (i.e., a dialogue between researcher and participant).

We sent at least one additional email with further questions in 19 (63%) out of the 30 email

interviews we conducted. This and the fact that we cover the same questions in both phone

and email interviews allows us to discuss them together as interviews, and not separately

as phone and email interviews. To analyze the interview transcripts, we again followed

established research methods: coding the answers, analyzing keywords, organizing them

into concepts and categories, and writing memos [97]. The two main researchers involved

in this project met weekly to discuss the memos and noticed that interviewees progressively

started to give similar answers, a situation called saturation [97]. At this point, we considered
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the topic sufficiently clear and focused on other topics that needed further elaboration.

We selected participants for the interviews from active developers in the 24 projects of

our corpus. By mining the repositories, we identified the top 10 % active developers in

each project that regularly use conditional compilation (ranked by code churn). We sent

emails to 213 open source developers, and 32 (15 %) participated in our interviews. Even

though many open source contributors expressed that they primarily worked in industrial

projects, we additionally explored whether interviewees from industrial projects would pro-

vide new insights. After reaching out to our contacts (convenience sampling), eight devel-

opers from Brazilian companies accepted to participate in our interviews. Most of our 40

interviewees self-identified as having at least 5 years of experience and many worked both

within open source and industrial contexts. Our selection of developers is biased toward de-

velopers with experience with conditional compilation, which we counteracted however by

cross-validating our results with a survey of a broader population. In our result presentation,

we refer to individual anonymized participants as P1–P40.

Online Survey

Whereas our interviews are designed to elicit qualitative insights into practices and reasons,

our survey is designed to collect quantitative data from a large population. We designed

the survey after completing and evaluating the interviews. It is a standard approach to first

perform qualitative investigations to identify relevant questions and subsequently perform a

survey to explore them quantitatively in a larger population [101; 102].

With the survey, we explored topics that were unclear from the interviews or where we

wanted additional quantitative data. We performed an online survey to reach more developers

and again followed common guidelines for that research method [103]. For several questions,

the survey included code snippets to make questions more concrete. We mention the survey

questions while discussing our results in Sections 4–7.

To select participants for our online survey, we aimed at reaching a broader audience of

developers with different levels of experience regarding conditional directives usage. We

randomly sampled from all developers that contributed to the 24 projects in our corpus,

excluding our interviewees. We sent emails to 3091 developers and 202 (6.5%) filled out our

survey.
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Mining Undisciplined Directives

To investigate the issue of undisciplined directives further, one of the most controversial

and criticized issues in the literature, we mined software repositories to analyze different

versions of the source code and statically detected undisciplined directives. Specifically,

we analyzed each commit in 14 projects of our corpus. We considered only projects with

at least two active developers to compare their programming style regarding undisciplined

directives. An active developer has high code churn along the commit history. We used

a modified version of Liebig’s Cppstats tool [4]. With this tool, we identified all commits

that introduced undisciplined directives, data analyzed grouped by developer. Then, we

interviewed four developers regarding their reasons for introducing specific undisciplined

directives.

3.2.2 Results and Discussion

We discuss the research questions next.

RQ1: Why is the C preprocessor still widely used in practice?

The C preprocessor has been heavily criticized in previous research, which raises the ques-

tion of why it is still used in practice (RQ1). To fully answer this question, we need two

pieces of information. The first is whether developers are actually aware of these (academic)

criticisms, and the second is the set of scenarios in which developers find the C preprocessor

useful. If developers are aware of the potential problems, but still use the C preprocessor, this

suggests that there are cases in which using the C preprocessor is still the preferred or even

the only available alternative. However, to identify such cases, we first need to understand

the various situations in which the C preprocessor is used.

Developers Awareness of C Preprocessor Criticism

We found that developers are aware of the criticism the C preprocessor has received, but

they still believe that it is an elegant solution to handle variability and overcome portability

problems, if properly used (P1-P3, P18, P22, P23, P26). As one developer (P39) explains:

“Every feature of any technology can be abused or misused. When used appropriately,

the use of preprocessor directives is not a problem.” That said, many developers (P1-P3,
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P5-P8, P19, P20, P22-P26, P30-P33) are aware that they must follow code guidelines to

minimize problems related to code comprehension, maintainability, and error proneness (C

preprocessor problems are discussed in more detail in Section 3.2.2).

Usage of the C Preprocessor

Our discussion with developers reveals the following fives cases in which they use the C

preprocessor.

• Portability. Despite being from different domains, many of the systems we studied

need to support many platforms and operating systems. The preprocessor is perceived

as a convenient way to ensure the system’s portability across different environments.

For example, developers often use conditional directives to check settings of operating

systems, platforms, compilers, and library versions (P1-P3, P6, P17-P25, P27). Based

on these settings, developers use certain macros, types, and header files that may only

be available when using a specific operating system or compiler. For example, it is not

possible to include Windows specific headers such as windows.h when compiling

the source code on Linux or Mac OS. In addition to handling platform-specific header

files, portability involves checking for specific system constraints as well as making

use of platform-specific functionality during implementation (P1, P3, P18, P19, P21,

P24, P27). For example, in some operating systems, such as GNU Hurd, there is no

imposed limit on overall file name length, as there is on Windows.

• Variability. Developers often use conditional directives to provide optional features or

to select between alternative implementations. For example, participant (P4) describes

his use of variability as follows: “I use conditional directives to remove parts of the

library I do not need, since it makes the binary code much smaller.” Reducing binary

size may influence the decision in using macros to represent optional functionality

(i.e., features). The DEBUG feature is one extreme example, which was mentioned

frequently by developers. It is a common feature developers use to print messages

along the source code to understand what is going on during execution (P21, P22,

P23). Since DEBUGmay not be useful for end-users, developers guard debugging code

with the corresponding macro such that end-users can exclude it from the binary code

during compilation. Several developers also state that they commonly use conditional



3.2 Research Study 38

directives to support alternate implementations (P13, P27, P38-P40). For example,

in Libssh, developers can choose between different cryptographic libraries such as

Libcrypt or Libcrypto, depending on the characteristics of the cryptographic algorithms

they want to use. They find that the C preprocessor provides a convenient way to switch

between such libraries at compile-time

• Code Optimization. Some developers explain that, apart from excluding unnecessary

functionality, they also explicitly use conditional directives to optimize the code for

performance or size (P3, P4, P40). Interviewees explain that they often do not trust

that all compilers will properly optimize their code. Thus, in some cases, developers

take the task of optimizing the code into their own hands by implementing known code

optimizations after checking for compiler name and version at compile-time using the

C preprocessor. For example, the Gcc compiler offers some GNU Extensions such

as type discovery and zero-length arrays. Developers explain that they want to make

use of such optimizations if they are aware of their availability as this allows them to

actively make the binary code smaller and faster.

• Code Evolution. A few developers state that they also often use conditional directives

during the introduction of new code versions related to critical functionality (P27,

P28, P39). In this context, they introduce new implementations inside conditional

directives, but they remove the previous version only when the new version is stable.

They explain that by using conditional directives, they can switch between the old and

new implementations for testing purposes.

• Language Limitations. Many developers mention using conditional directives because

of the limitations of the C language (P6, P14-P16, P20, P36-P38). For example, they

use #ifdef checks to avoid multiple inclusion of header files. Such header guards

(or include guards) are probably one of the few applications of the C preprocessor that

is accepted by critics [2].

Some developers also mentioned using macros and function-like macros to avoid code

duplication and to encapsulate frequently-changing code (P20, P39, P40). In this context,

developers need to only change the definition of macros instead of changing all occurrences
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#ifdef DEBUG
#define DEBUG_MSG printf
#else
#define DEBUG_MSG (format, args...) ((void)0) 
#endif 
// Developers do not need to check #ifdef DEBUG multiple times.. 
DEBUG_MSG ("message..");

Figure 3.3: Using function-like macros to avoid code duplication.

in the code. For example, Figure 3.3 shows how function-like macros can be used to define

the behavior of DEBUG_MSG. While avoiding duplication and supporting encapsulation are

not specific to the C language, using the C preprocessor is perceived as a convenient way

to change function definitions at compile-time instead of at run-time. Previous studies [63;

62] considered the replacement of preprocessor macros with new features and idioms in the

C++ programming language.

We observed that the answers in our interview data reached a saturation point that is

why we did not include this research question in our survey. This is also supported by the

fact that many of the cases of C preprocessor usage we find (apart from the rare case of

supporting code evolution) align with those found in previous work. For example, Ernst

et al. [3] observed that portability accounts for 37 % of the use of conditional directives

in the systems they examined, while include guards account for 6.2 %. They also found

frequent usage of inline functions or function-like macros. Ernst el al. also argue that in

order to eliminate some of the preprocessor usage, developers must be confident that the

compiler will perform the necessary code optimizations. Our interviews support this and

further suggest that, even after more than a decade, developers still lack this confidence in

compiler optimizations.

SUMMARY

Developers are aware of the criticism the C preprocessor receives, but still use it in the

following situations: (1) supporting portability, (2) supporting variability, (3) providing

code optimizations, (4) supporting code evolution, and (5) overcoming limitations of the

C language.

Data Sources: Interviews and Prior studies [3; 4; 104; 2]



3.2 Research Study 40

RQ2: What do developers consider as alternatives to the preprocessor?

We have seen that developers are aware of problems and risks of using the preprocessor but

still have several use cases for which they need the C preprocessor’s functionality. While

researchers have proposed alternatives [26; 23; 27; 87], we wanted to see which alternatives

developers are aware of or would recommend. We asked whether developers have thought

about alternatives to the C preprocessor. We did not ask about specific alternatives or tools,

because it was apparent that they usually would not be familiar with them. When we asked

for preferences, we were only comparing different ways of using the C preprocessor. Our

main goal with this question was to identify perceived alternatives.

We received three kinds of answers: suggestions to use the C preprocessor in specific

ways (guidelines on how to structure the code), suggestions to use in language runtime

mechanisms instead of compile-time mechanisms of the preprocessor, and arguments that

the preprocessor cannot be replaced. Equally important is that none of our interviewees

mentioned alternative preprocessors, aspect-oriented programming, or meta-programming

solutions suggested by researchers. In the following, we discuss the three kinds of answers

we received, cross-validated with survey findings.

Guidelines for Structuring Code

The first common suggestion to avoid using the C preprocessor is to separate alternative

and optional code on the function, file and directory structure level (P3, P8, P9, P14, P18,

P24). For functions, the idea is to define alternative implementations of a function in separate

files and to use the build system and the linker to choose the desired one. Figure 3.4 (b)

shows an example of this. Similarly, grouping related files in the same directory can also

move compilation control to the build system, i.e., the whole directory will be compiled

or not. Such structuring of the code means that no preprocessing is necessary within files.

Additionally, the code structure is portable and requires no special tools. Nonetheless, one

developer (P15) cautions that structuring the code in this way may leave it more difficult

to comprehend. It is also difficult to deal with similar functions and code duplication if

developers do not use helper functions for the common code.

The answers we received align with previous academic discussions [105; 2], but did

not reach a saturation point in our analysis. Therefore, we asked a larger population of
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void function (){

#ifdef OS1
  /* Code 1 here.. */
#endif

#ifdef OS2
  /* Code 2 here.. */
#endif

}
(a)

// FILE: OS1.c
void function (){
  /* Code 1 here.. */
}

// FILE: OS2.c
void function (){
  /* Code 2 here.. */
}

(b)

Survey Results

In (b), only OS1.c or OS2.c is compiled depending on 
the platform. It is controlled at makefile level.

Figure 3.4: Preprocessor directives or portability functions.

developers whether they prefer this code structuring strategy. In the survey, we present the

two equivalent code snippets shown in Figure 3.4, asking developers which one they prefer

based on a five-point Likert scale. We find that 30 % prefer to use conditional directives

inside function bodies, i.e., Figure 3.4 (a), while 60% prefer to use different functions to

solve portability concerns, i.e., Figure 3.4 (b). The remaining 10% of respondents had no

preference between both options.

Alternative In-language Runtime Mechanisms

Another alternative that was suggested frequently during our interviews is the use of

run-time variability binding (i.e., C if Statements) instead of compile-time binding with

the preprocessor (i.e., #ifdef directives). An example of this is shown in Figure 3.5 (b).2

Many developers state that they prefer to solve variability at run-time, when possible, since

it is more flexible (P1-P4, P6, P23, P40). One developer (P23) illustrates on this, saying:

“If something can reasonably be done without the preprocessor, I choose [to do it] that way.

[Once the binary is there,] it is much more flexible to enable functions at run-time or with a

configuration file than having to recompile the project again.”

To achieve run-time variability, interviewees suggest to use variables and enumerators

instead of macros with constant values. They also suggest using inline functions to optimize

the source code instead of function-like macros. However, developers caution that runtime

variability, e.g., the use of global variables and enumerators, is not thread-safe in C, and that

using runtime variability is not possible in some cases. For instance, when runtime checks

2While the decision here is still made statically, it could also be loaded from command-line options.
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are not feasible due to performance reasons. One developer clarifies that checks at runtime

would cause performance overheads when checking for debugging mode, for example. This

developer explains that when your goal is to process millions of I/O operations in the Linux

kernel, for example, having runtime (i.e., C if) debug checks to verify certain assumptions

would prevent you from scaling. However, developers still need a mechanism to easily verify

assumptions when checking for code correctness, and they suggest that this can be cheaply

achieved using the C preprocessor at compile-time.

Since developers’ comments about run-time checks were not entirely consistent, we use

the survey to see the preference of a broader population. This time, we present the two

code snippets shown in Figure 3.5. In Figure 3.5 (a), we use conditional directives, while in

Figure 3.5 (b), we use run-time variability with C ifs. We again ask survey participants to

indicate which style they prefer using. Surprisingly, 75 % mentioned that they prefer to use

conditional compilation directives, i.e., Figure 3.5 (a), while only 19 % prefer to use run-time

variability, see Figure 3.5 (b). The remaining 6 % of developers did not have a preference.

Based on the results of our interviews, we expected a higher percentage of developers to

prefer using run-time variability in the survey. Accordingly, we went back to our interview

data to see if we can find supporting reasons for why this might be the case. We find that

developers might be inclined to use #ifdefs instead of if checks because of the following

reasons. First, as stated by developer P1, when using conditional directives, it is easier to see

the optional code. In other words, it is clear that the block of code from lines 3 to 8 is optional

in Figure 3.5 (a). Second, developers P3 and P4 mentioned that by using variables instead

of macros, developers do not know whether the compiler will optimize the source code.

For instance, if the developer does not define PM3D in Figure 3.5 (b), variable PM3D_RT is

always zero, i.e., false, and the block of code from lines 7 to 10 becomes unreachable.

Developers argue that compilers may perform optimizations to remove such dead code, but

there are no guarantees (i.e., this is compiler specific and depends on the compiler settings).

Additionally, a few developers mention that some compilers may issue warnings about such

unreachable code or about cases where the if condition would always be true which they

find annoying (P3, P29).
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1.  if (*Y_AXIS.label.text) {
2.  #ifdef PM3D
3.      if (rot_x <= 90){
4.          double step = (end - x); 
5.          // lines of code..
6.          if (map)
7.              *t = text_angle;
8.      }
9.  #endif
10.     // lines of code..
11. }

(a)

1.  int PM3D_RT = 0;
2.  #ifdef PM3D
3.     PM3D_RT = 1;
4.  #endif
5.  if (*Y_AXIS.label.text) {
6.      if (PM3D_RT && rot_x <= 90){ 
7.          double step = (end - x);
8.          // lines of code..
9.          if (map) 
10.             *t = text_angle;
11.     }
12.     // lines of code..
13. }

(b)

Survey Results

Figure 3.5: Conditional compilation or run-time checks.

No Perceived Alternatives

Several interviewees mentioned that they have not thought about alternatives to the C

preprocessor (P17, P19-P21, P25-P28) and that they are comfortable with using it for the

purposes previously discussed. One developer (P40) said: “Preprocessor directives can be

used to remove the most tedious and error-prone parts of programming. It [is] also the only

C native way to conditionally compile the source code when runtime checks are unacceptable

[due] to performance [overheads]. [Thus], there are no alternatives to the C preprocessor

for this type of usage without using some tool outside the language.” Similarly, additional

developers mentioned that in some cases, they really need to remove parts of the source

code (P1, P6, P23, P27). Otherwise, the code will not compile because of platform-specific

parts that have not been removed. This leads them to argue that it does not matter which

alternative one comes up with, one will need the C preprocessor at some point for such

a platform-specific conditional compilation problem. Additionally, developers expressed

concern that new technologies that replace the C preprocessor are likely not going to be

present in all compilers (P1, P6, P20). This shows hesitation to adopt third-party tools or

alternate technologies (e.g., aspect-oriented programming [28; 15] or new macro languages

such as ASTEC [23]) because of portability concerns.

SUMMARY

The developers interviewed do not see any current technologies that can entirely replace

the C preprocessor. However, some developers routinely use alternate coding styles such

as dividing functionality into separate files or functions (preferred by 60 %) and using

run-time checks instead of #ifdef checks (preferred by 19 %).

Data Sources: Interviews, Survey, and Prior studies [105; 2]
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RQ3: What are the common problems of using the preprocessor?

We now try to understand what problems, if any, do developers face while using the C pre-

processor. We find that developers’ comments generally align with the problems raised in

the research literature. Specifically, developers mention the following problems: (1) dealing

with configuration-related bugs, (2) testing an exponential number of configurations, and (3)

difficulty with understanding code with too many #ifdefs.

Configuration-Related Bugs

Many developers confirm that bugs related to conditional compilation occur frequently

(P7, P18, P23, P35-P37) or at least sometimes (P8-P10, P13, P14, P27). Our interviewees

list different types of bugs related to the use the C preprocessor, such as: incompatible macro

selection (P17); macros resulting in erroneous control flow (P20, P22, P26); incorrect macro

expansion (P9); misspelled macro names (P22, P23); missing variables and functions such

as defining a variable in optional code and using it in mandatory code (P13); type errors

(P8, P18, P23); syntax errors like missing control flow tokens, e.g., opening and closing

brackets (P24); linking problems (P24); behavioral changes due to the interactions of macro

(P1, P9); memory and resource leaks, memory corruption, and race conditions (P14); and

incorrect use of #else and #elif. For instance, #else clause incorrectly treating some

configurations, or use of #elif without an #else at the end to treat the default case (P14).

Some interviewees (P3, P20, P27) argue that it is hard to deal with a high number of

different macro combinations, which may ease the introduction of bugs. Developer P1 points

out that code that does not compile is easy to deal with, but the runtime bugs are the hardest

ones to detect. Some developers (P8, P10, P13, P20) mention that even to detect simple

compiler errors, someone has to compile the source code using the specific configuration

that contains errors which is not that easy. The types of bugs developers mentioned align

with various results from previous studies [79; 77; 78; 91; 18; 12]. Additionally, the fact that

dealing with macro combinations is one of the sources of bugs is consistent with the findings

of Iago et al. [16].

Since the data from our interviews is qualitative, we used our survey to quantify the

frequency of C configuration-related bugs. We also asked developers about the difficulty

of introducing configuration-related bugs when compared to other types of bugs as well as
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Figure 3.6: Results of our survey to quantify some findings of our interviews.

difficulty of detection. We present the results in Figure 3.6 (a-d), which can be summarized

as follows. Even though developers believe that configuration-related bugs do not occur

very frequently, see Figure 3.6 (a), they find that they are slightly more critical than the

non-prerprocessor related bugs, see Figure 3.6 (b), and that they are easier to introduce, see

Figure 3.6 (c) and harder to detect, see Figure 3.6 (d). Our survey findings are consistent

with our prior work [17] that parsed all code of a Linux kernel (release x86, only) and did

not find any syntax errors. On the other hand, when the same authors analyzed BusyBox,

they only found a few type and linker errors that they reported to developers and which were

fixed in subsequent releases [72]. This supports our findings that such types of errors may

be rare, but are still important to fix nonetheless.
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Both our interview and survey results suggest that, similar to researchers [17; 4;

16], practitioners perceive the C preprocessor as error-prone. However, developers did not

mention having any tools that help them with avoiding such errors. Our findings suggest that

we need further research on developing tool support to minimize bugs related to preprocessor

usage and finding ways to make such tools attractive for developers to use.

Combinatorial Testing

Developers explain that another problem with using the C preprocessor is dealing with

combinatorial explosions. As mentioned by developer P19, the use of conditional directives

makes the code hard to test and debug since it increases the testing matrix. The number of

configurations to test grows exponentially when developers add new preprocessor macros in

#ifdefs. Assuming that there are n optional and independent macros, developers have

2n different configurations. Furthermore, developers explain that they also need to consider

different compilers, operating systems, and platforms, which is time-consuming and makes

automation difficult. For these reasons, many developers (P1-P6, P9, P17, P19, P20, P22,

P23, P25) mentioned that they normally do not test all different macro combinations due to

time and resource constraints. They explain that they do not have an easy way to test all

possible combinations.

Several developers (P9, P17, P19, P20, P22, P23, P25) mentioned that what happens in

practice is that they check only a few configurations of the code. Moreover, some developers

(P11, P18, P24) check only the default configuration on their own machine with all optional

macros active. However, a few developers (P1, P37) mention that they additionally consider

different platforms besides their own. They say that by compiling the source code with two

or three different compilers and using 32 and 64-bit platforms, they are comfortable enough

that the code is portable. Similarly, some developers (P19, P20, P22) said that they select

specific configurations to test by setting different macro combinations manually.

This variation in testing style tells us that there is no systematic way to fully test such

systems. We found that developers (P2, P26) often rely on end-users to test the source code

using different platform configurations. Developer P26 explains this as follows: “I check

whatever combinations I can, and some combinations can only be tested on systems to which

I have no access. I rely on others to help out or just cross my fingers.” Developer P2 echoes

this, also stating that he heavily relies on his user base to report back errors. This result
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aligns with a recent study on testing in the Eclipse platform by Greiler et al. [101]. Some

developers (P4, P10, P13) realize that they use a narrow testing strategy and perceive it as a

problem, expecting to find additional bugs if they are able to test more configurations. For

example, one developer (P26) tell us: “I do not find bugs related to preprocessor usage by

running tests, but when running the tests with different combinations of macros.”

We found that testing in industry and in open source are different. While our open source

interviewees repeatedly mention testing only a few configurations and relying on user testing,

industry developers (P31, P32, P38) mention that they test the source code on all supported

platforms with all macros active. Additionally, some industrial developers (P33-P36) state

that they check all combinations and platforms supported. This difference can be explained

by the lack of community involvement in the industry context and that the number of used

configurations tends to be smaller (companies can restrict the supported configurations).

To overcome some of the challenges above, several developers (P8-P12, P14, P31-P34)

mention that they use style checkers and static-analysis tools that often help them avoid

bugs. This is especially true in industry projects. Our interviewees used the following tools:

Checkpath, Vera++, Coverity, Cppcheck, Valgrind, Coccinelle, and Lint. Other developers

(P7, P13) mentioned that they use at least Gcc with all warnings active. However, these tools

consider only one configuration at a time, after preprocessing. Thus, these tools do not focus

on bugs related to preprocessor usage. Some tools, e.g., Cppcheck, try to deal with many

configurations by activating one macro at a time and performing the analysis to check the

code several times, which is time-consuming. Coccinelle also handles variability to some

extent by building a control-flow graph per function, where statement-level #ifdefs are

taken into consideration. During the interviews, only one Linux developer (P9) mentioned

a research tool, Undertaker [106], that can detect dead #ifdef-guarded blocks. However,

developers did not mention any of the research tools that could analyze all configurations,

such as TypeChef [17] or SuperC [38].

Code Comprehension

Our interviews suggest that many developers find it hard to understand code that is filled

with #ifdefs. Developers (P1, P5) mentioned that the mixing of C code and directives

interrupts the code logic since they are two independent languages. Developers (P1, P5, P6,

P19, P21, P25, P26) believe that this mixing can obfuscate the source code making it harder
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to read, comprehend, and maintain since it is difficult to determine which parts of the code are

going to be compiled under which conditions. For example, some developers (P1, P5, P23,

P24) complain about the use of fine-grained directives within function bodies. It requires the

analysis of control flow structures (such as, if, while, switch, and goto statements) as

well as #ifdef, #ifndef, #if, #else, and #elif directives. In addition, it becomes

harder to understand the control flow, more difficult to check whether opening and closing

brackets match, increases code complexity, and may lead to bugs. Additional developers

(P10, P18, P20, P24) confirm this, saying that they avoid preprocessor directives because of

readability problems. One developer (P6) specifically comments on this, saying “My main

problem is that [if] there are macros 7 layers deep[,] I don’t understand them.”

We used our survey to gain further insight into the impact of C preprocessor directives

on code comprehension and maintainability as shown in Figure 3.6 (e). We find that 14 %

of our interviewees state that they prefer to avoid nesting preprocessor conditional directives

altogether, 53 % do not mind using nesting up to level 2, and only 18 % find that three levels

of nesting is still acceptable. Note that only a few developers find that deep nesting levels

(i.e., those beyond three) are acceptable. Overall, implicitly, 85 % of the developers see that

nesting levels beyond three should be avoided. This aligns with previous work that finds that

the average nesting level across 40 analyzed C systems is approximately 1 [67].

SUMMARY

Developers face three configuration-related problems: (1) configuration-related bugs (do

not appear often, but are perceived as more critical than other bugs), (2) combinatorial

testing (conditional directives increase number of configurations to test), and (3) code

comprehension (due to the cluttering of #ifdefs and C statements, and the deep nesting

of #ifdefs).

Data Sources: Interviews, Survey, and Prior studies [67; 17; 4; 16; 79; 77; 78; 91; 18;

12]

RQ4: Do developers care about the discipline of directives?

The feasibility of introducing directives annotations is one of the most criticized aspects

of the C preprocessor [3; 4; 12; 17; 13; 38; 81; 30], which is why we dedicate a separate
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1. if (user_callbacks == NULL) {
2. #ifdef HAVE_PTHREAD
3.   callbacks=&ssh_pthread;
4. }
5. #else
6.   return SSH_ERROR;
7. }
8. #endif

1. if (user_callbacks == NULL) {
2. #ifdef HAVE_PTHREAD
3.   callbacks=&ssh_pthread;
4. #else
5.   return SSH_ERROR;
6. #endif
7. }

(a) (b)

Figure 3.7: Disciplining a preprocessor directive.

research question for it. Our goal is to find out whether developers also view undisciplined

annotations as problematic.

The majority of interviewees (P1, P5, P17-P28, P32) agree that the use of preprocessor

directives to encompass individual tokens or parts of C syntactical units impacts the quality

of code negatively. Developers emphasize that they would not use undisciplined annotations

because they hinder source code readability (P5, P17, P18, P22, P25, P26, P28), obfuscate

control flow (P1, P24), and make the code difficult to evolve and maintain (P20, P22, P23).

One developer (P20) elaborates on this, saying: “I avoid this kind of directives, they make

the source code hard to understand and maintain. My gut feeling keeps screaming possible

bugs when I’m faced with a code like that.” Along the same lines, one of these developers

recommends to discourage or disallow undisciplined annotations through code guidelines

to avoid the aforementioned problems (P26). Another developer (P30) stated that the use

of code guidelines are important for the homogeneity of the project and that he often asks

contributors to rewrite patches to follow the guidelines.

Despite the criticisms we received from most interviewees, some developers (P4, P22,

P31) mention that they would still use undisciplined annotations in very specific cases. In

such cases, they would also document the code to let others understand their reasoning.

Furthermore, some developers (P5, P7) are reluctant to change undisciplined annotations

once they exist. For instance, one developer (P5) states that: “One thing is to not fix what

is not broken. The problem is that to refactor a code, you have to understand [it]. If you

do not understand [it], it is not easy to refactor. Many developers would say: I am not

going to touch that.” Developer P39 mentioned that while he believes it is good to fix

undisciplined annotations, it has a very low priority. It is worth noting that none of the

developers mentioned using tools to enforce disciplined annotations or identified a lack of

tool support in general.
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To generalize the findings of our study, we use the survey to quantify the influence

of undisciplined directives on code understanding, maintainability, and error proneness as

shown in Figure 3.6 (f-h). Our results show that developers generally agree that the use

of undisciplined directives have a negative influence on source code understanding (88 %),

maintainability (81 %), and error proneness (86 %). However, in a previous study, Schulze

et al. [32] could not establish significant differences between disciplined and undisciplined

directives from a program comprehension perspective in a controlled experiment. However,

they observed that finding and correcting errors is a time-consuming and tedious task in

the presence of preprocessor directives. Additionally, although several developers see the

use of undisciplined directives negatively, other researchers [4] detected that almost 16 % of

conditional directives are undisciplined directives.

To investigate this gap between developer preferences and perceptions and the reality

in the code base, we performed an additional analysis of software repositories to identify

the reasons why developers introduce undisciplined annotations. By analyzing 14 software

repositories of our corpus, we detected that only 21 (7 %) out of 299 developers introduced

almost 85 % of all undisciplined annotations we found in the software repositories. When we

tried to contact these developers, some got defensive and excused their use of undisciplined

annotations. For instance, one developer argues that, “The code was actively rewritten at the

time, and it often happens that first drafts of an idea ends up in poor code.”

Figure 3.7 (a) presents an example of an undisciplined annotation introduced in one of

the C projects we examined. When we discussed this code fragment with its author, the

author mentioned to prefer the equivalent code snippet in Figure 3.7 (b) as a replacement.

Another developer who we contacted about undisciplined annotations stated to use such

annotations to avoid cloning the source code as well as compiler warnings. Figure 3.8 (a)

presents the undisciplined directive introduced by this developer. When discussing the code,

the developer showed us the alternative in Figure 3.8 (b) that clones the source code (see lines

5 and 8) and another that generates compiler warnings as shown in Figure 3.8 (c), both of

which seemed unacceptable to that developer. In this latter case, variable failed is always

true when macro USE_NTLM_AUTH is not defined. In addition, this developer mentioned

that since the undisciplined annotation in the original code was not repeated in many places,

this minimizes potential problems. Such examples show that there may be situations where
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1. #ifdef USE_NTLM_AUTH
2. if (priv->sso_available) {
3.   conn->state = SSO_FAILED;
4. } else {
5. #endif
6.   conn->state = NTLM_FAILED;
7. #ifdef USE_NTLM_AUTH
8. }
9. #endif

1. #ifdef USE_NTLM_AUTH
2. if (priv->sso_available) {
3.   conn->state = SSO_FAILED;
4. } else {
5.   conn->state = NTLM_FAILED;
6. }
7. #else
8. conn->state = NTLM_FAILED;
9. #endif

1. boolean failed = TRUE;
2. #ifdef USE_NTLM_AUTH
3. if (priv->sso_available) {
4.   conn->state = SSO_FAILED;
5.   failed = FALSE;
6. }
7. #endif
8. if (failed){
9.   conn->state = NTLM_FAILED;
10.}(a) (b) (c)

Figure 3.8: Avoiding code clone and compiler warnings.

developers would prefer to use undisciplined annotations. In a previous study, We proposed

alternatives to discipline annotations without cloning the source code [50]. However, they

did not take compiler warnings into consideration. According to our data, compiler warnings

seem to be a problem that may hinder the adoption of syntactical preprocessors despite of

the existence of compiler attributes to ignore specific warnings.

SUMMARY

The majority of developers agree that the use of undisciplined directives influences code

understanding, maintainability, and error proneness. However, there are cases where

developers use undisciplined annotations to avoid code clones and compiler warnings.

Data Sources: Interviews, Survey, Mining Repositories, and Previous work [13; 12; 50;

32; 107; 30; 4]

3.2.3 Threats to Validity

We selected interviewees by sending email to developers and only those interested in the

topic participated in our study. From 40 interviews, even though they cross 24 projects of

different sizes and domains and 3 companies, it is difficult to generalize results. Nonetheless,

we alleviated these threats by cross-validating with a survey from a larger population. Our

survey could be filled out in around 10-15 minutes, which encouraged more developers to

participate. Code snippets used in our survey might be misunderstood by developers or

might conflate multiple issues; that is, related results can only be interpreted in the context

of these snippets. To detect undisciplined directives, we used Cppstats [4], which is based on

heuristics and may miss-classify a small number of directives, but we expect that this does

not affect the bigger picture collected across multiple projects.



Chapter 4

A Sampling-Based Strategy to Detect

Configuration-Related Bugs

In this chapter, we present the sampling-based strategy to detect configuration-related bugs

with the purpose of better understanding this kind of bug. As the effectiveness of sam-

pling depends significantly on how samples are selected, we propose and present the Linear

Sampling Algorithm (LSA) to select configurations systematically. By using our strategy,

we performed an empirical study on a corpus of 27 C real-world projects to investigate

configuration-related bugs, including memory and resource leaks, dereferences of null point-

ers, and uninitialized variables.

We present the proposed strategy in Section 4.1. In Section 4.2, we describe a compar-

ative study of 10 sampling algorithms proposed in previous studies. Based on the results of

this study, we propose the Linear Sampling Algorithm (LSA), as presented in Section 4.3.

Last, in Section 4.4, we discuss an empirical study performed to investigate configuration-

related bugs using our sampling-based strategy, LSA, and Cppcheck.

4.1 The Sampling-Based Strategy

To detect configuration-related bugs, we need to consider multiple configurations of the code.

Checking every configuration individually is often infeasible, because real-world C projects

have high numbers of preprocessor macros, leading to configuration spaces of exponential

sizes. To tackle this scalability problem, we propose a sampling-based approach to select

a subset of configurations to analyze. This way, we preprocess the code to systematically

generate some configurations and analyze each selected configuration individually [47; 20].

52
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The strategy receives as input the source code of the project, a sampling algorithm, the

preprocessor macro constraints and build-system information available, and an analysis tool

to check the source code. The constraints and build-system information are not required,

though, as many C open-source projects do not have these pieces of information available.

We illustrate our strategy in Figure 4.1.
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Figure 4.1: A sampling-based strategy to detect configuration-related bugs.

The strategy starts by selecting each source file of the project individually to perform

a per-file analysis. We use a per-file analysis because a global analysis, considering the

preprocessor macros of all source files, does not scale in real-world projects, as we discuss

in Section 4.2.2. In this sense, the strategy considers the preprocessor macros of each source

file separately. Step 1 uses a sampling algorithm to select configurations systematically. In

this step, our strategy can use different sampling algorithms.

Step 2 makes sure that we do not check invalid configurations according to constraints.

For instance, the Linux Kernel uses two preprocessor macros (i.e., X86_32 and X86_64)

to represent 32 bit and 64 bit platforms respectively. There is a constraint that these macros

are mutually exclusive, so that developers can select only one at a time. During this step, our

strategy also receives build-system information, if available, to identify source files that are

conditionally included depending on preprocessor macros.

Last, Step 3 runs the analysis tool and presents a report. In this step, we run the tool

for every source file of the project, once for each selected configuration. By definition,

configuration-related bugs do not appear in all selected configurations. For bugs that appear

in all selected configurations, we perform additional manual analysis to detect whether they

are related to configurability or not.
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To analyze the history of our subject projects, we extended our strategy to analyze several

versions of the source code. For each set of files of a given commit, we apply our strategy

to find configuration-related bugs. In the first commit, we analyze all files. In the following

commits, we only consider the updated and added files. We avoid the overhead of analyzing

files that have not been changed. Figure 4.2 illustrates this process. After selecting the

source files to analyze (Step A), we use the strategy presented to find configuration-related

bugs (Step B).
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Figure 4.2: Analyzing different versions of the projects.

To select a suitable sampling algorithm for our sampling-based strategy, it is necessary to

understand the tradeoffs, especially with regard to effort, i.e., how large are the sample sets,

and bug-detection capabilities, i.e., how many bugs we find in the sampled configurations.

This way, we present a comparison of 10 sampling algorithms and 35 combinations of these

algorithms in the next section.

4.2 Comparison of Sampling Algorithms

Our overall goal is to compare state-of-the-art sampling algorithms regarding their capability

to detect configuration-related bugs and the size of their sample sets. Furthermore, we study

four assumptions of previous work, which often does not consider (1) constraints, (2) global

analysis, (3) build-system information, and (4) header files.
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In particular, we aim at answering the following research questions:

• RQ1. What is the number of configuration-related bugs detected by each sampling

algorithm?

• RQ2. What is the size of the sample set selected by each sampling algorithm?

• RQ3. Which combinations of algorithms increase the number of bugs detected and

minimize the number of configurations selected?

• RQ4. What is the influence of the four assumptions on the feasibility to perform the

analysis for each sampling algorithm?

• RQ5. What is the influence of the four assumptions on the number of bugs detected

by each sampling algorithm?

• RQ6. What is the influence of the four assumptions on the size of the sample set

selected by each sampling algorithm?

4.2.1 Overall Study Design

At first glance, a study comparing sampling algorithms (RQ1–3) seems straightforward. We

use a number of different sampling algorithms (independent variable) to measure how many

of the bugs we can find with them in different software systems and how big the sample set

is (dependent variables). However, there are several challenges to overcome in the design of

such an experiment.

Sampling the configuration space needs to be combined with a technique to detect bugs in

the respective selected configurations, such as inspection (which is unrealistically laborious),

executing existing test suites (if available), automated test-case generation (look for crashing

defects), or static analysis (prone to false positives). If not conduced carefully, we might be

evaluating the bug-detection technique instead of the sampling algorithm. We address this

potential bias by taking the bug-detection technique out of the loop and by using a corpus

of previously found configuration-related bugs. For each known bug, we check whether the

sampling algorithms select configurations in which the bug can be find, assuming a suitable

bug-detection technique. By using a corpus of configuration-related bugs, we eliminate the
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bug-detection technique as a confounding factor from our study setup. However, we actually

do not know if the sampling algorithms actually discovered more or different bugs. We

discuss this threat in Section 4.2.3, and an alternative study design in Section 4.2.2, which

uses an analysis tool to detect new bugs.

A second design challenge is how to evaluate the influence of the assumptions (regarding

global analysis, header files, constraints, and build-system information) on many sampling

algorithms. As we will show, lifting these assumptions can make it infeasible to apply some

of the algorithms to real-world software systems. Therefore, we decided to proceed in two

steps: First, we study tradeoffs among algorithms (RQ1-3) under favorable conditions (i.e.,

fulfilling all assumptions). Subsequently, we investigate the influence of the assumptions

(RQ4-6) on a smaller set of subject systems in a second study. The four assumptions are:

• Constraints: Constraints among macros may exclude certain configurations (e.g.,

macro X may only be selected if Y is selected) from the set of valid configurations. A

sample set may contain configurations that violate constraints. Unfortunately, macro

constraints are rarely documented explicitly. The Linux Kernel is an exception and

has been studied therefore extensively [108; 91]. In the presence of macro constraints,

sample sets are often larger to achieve the same code coverage, and highly optimized

covering array tables1 cannot be used. Since we do not know macro constraints for

most of our subject systems, we exclude them entirely from the sampling process in

our first study.

• Global analysis: We can select configurations per file or globally for the entire system.

Even in systems with many preprocessor macros, individual files are usually affected

only by few macros. Sampling over the global configuration space may detect inter-file

bugs (e.g., linker issues), but this often creates huge sample sets, which hardly affect

individual files. Thus, in the first study, we assume a per-file analysis.

• Header files: In C code, a significant amount of variability arises from header files.

However, detecting all preprocessor macros from header files in a sound way is often

1A covering array is a mathematical object used for software testing, which ensures specific coverage cri-

teria. For example, a pair-wise covering array ensures that all pairs of preprocessor macros are considered by

the array [109; 36].
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difficult and expensive, which requires some form of variability-aware analysis [110;

71; 17; 111]. It is necessary to resolve includes and macro expansions, but to keep

the conditional directives. We therefore analyze only preprocessor macros within the

source files in our first study.

• Build system: The build system may induce a significant amount of variability, such

that certain files are not compiled in all configurations [108; 111]. Since build systems

are inherently difficult to analyze [112], we do not use build-system information in the

first study.

In both studies, we analyzed the same set of 10 sampling algorithms: five variations of

t-wise, statement-coverage, random, most-enabled-disabled, one-enabled, and one-disabled,

proposed in prior work [16; 73; 34; 35; 36; 37; 47], and their combinations. We explained

these sampling algorithms in Section 2.4.

Detecting Bugs

In the first study, we compared the bug-detection capabilities and the sample sizes of

the 10 sampling algorithms using a corpus of 135 known bugs of 24 systems to answer

questions RQ1–3. As we explained, we performed this study under favorable assumptions,

that is, without constraints, global analysis, build-system information and header files.

We proceeded in three steps, as illustrated in Figure 4.3. In Step 1, we select each source

file of the subject system. Step 2 applies each sampling algorithm to select the samples for

every file. Step 3 determines the number of configuration-related bugs detected (RQ1) and

measures the size of the sample set (RQ2) for each sampling algorithm. The size of the

sample set is the sum of the numbers of sampled configurations for every source file. To

identify the algorithms that detect a bug, we consider the bug presence condition, which is

a subset of system configurations in which the bug can be found [113] (see Section 2.2.3),

assuming a suitable bug-detection technique. We checked whether we could find at least one

configuration of this subset in the sampled configurations for each algorithm. Finally, we

repeat the process for combinations of sampling algorithms (RQ3).
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Figure 4.3: Strategy used to compare the sampling algorithms.

Corpus of Bugs

Using a corpus of configuration-related bugs in a study raises the question of how to acquire

a proper corpus and whether it is a representative corpus of configuration-related bugs in

real systems. Bugs identified with existing sampling algorithms will obviously bias results

toward these specific algorithms. Instead, we assembled a corpus of bugs in which all bugs

have been identified in one of two ways:

• Variability-aware analysis tools are able to identify certain kinds of bugs, i.e., mostly

syntax and type errors, by covering the entire configuration space without sampling.

Difficulties in setting up these tools and narrow classes of detectable bugs limit their

applicability at this point. We collected only configuration-related bugs that have been

reported by such tools, reported to the original developers, and confirmed or fixed by

the system’s developers [17; 12].

• We used configuration-related bugs that have been identified and fixed by developers.

Bugs reported by users and fixed in the repository by the system’s developers may be

slightly biased toward more popular configurations, but are not systematically biased

toward specific sampling algorithms. They represent configuration-related bugs that

are routinely detected and fixed in real systems. We started with Abal’s corpus of bugs

of the Linux Kernel [16], and complemented it with bugs found in other studies [40;

19], and our own investigation of software repositories (see Table 4.1).
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Table 4.1: Configuration-related bugs considered in our first study.

Source Bugs Strategy Subject System (number of bugs)

[16] 30 Repository mining Linux (30)
[17] 10 TypeChef BusyBox (10)
[19] 5 Repository mining Gcc (3), Firefox (2)
[40] 3 Repository mining Gnome-keyring (1), Gnome-vfs (1), and Totem (1)
[12] 22 TypeChef Apache (3), Bash (2), Dia (2), Gnuplot (5),

Libpng (3), and Libssh (7)

- 65 Our repository mining Apache (9), Bison (2), Cherokee (3), Cvs (1),

Dia (1), Fvwm (10), Gnuplot (5), Irssi (4),

Libpng (1), Lua (1), Libssh (10), Linux (7),

Libxml (2), Lighttpd (1), Vim (5), Xfig (1), and

Xterm (2)
Total 135

Overall, the corpus of bugs used in our first study includes 135 configuration-related

bugs from 24 subject systems of various sizes and from different domains, over 125 different

files with distinct numbers of preprocessor macros (see Figure 4.4). Our corpus contains

bugs of different kinds, including syntax errors (34%), memory leaks (22%), null-pointer

dereferences (17%), uninitialized variables (13%), undeclared variables and functions (5%),

resource leaks (3%), array and buffer overflows (3%), arithmetic problems (2%), and type

errors (1%). Table 4.2 presents a characterization of the subject systems we used in the first

study, listing the project name, application domain, lines of code, number of files, number of

preprocessor macros and number of known bugs considered in our study.
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Figure 4.4: Number of distinct preprocessor macros in files with bugs.
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Table 4.2: Project characterization and the total number of known bugs.

Project Domain LOC Files Macros Bugs

Apache Web server 144 768 362 700 12

Bash language interpreter 44 824 138 1427 2

Bison parser generator 24 325 129 269 2

Busybox UNIX utilities 189 722 805 1418 10

Cherokee Web server 63 109 346 452 3

Cvs version control system 76 125 236 628 1

Dia diagramming software 28 074 132 307 3

Firefox Web browser 6 017 673 22 423 17 415 2

Fvwm windows manager 102 301 270 301 10

Gcc C/C++ compiler 1 946 622 22 034 3825 3

Gnome-keyring daemon application 76 525 376 213 1

Gnome-vfs file system library 78 380 286 427 1

Gnuplot plotting tool 79 557 152 500 10

Irssi IRC client 51 356 308 157 4

Libpng PNG library 44 828 61 327 4

Libssh SSH library 28 015 125 115 17

Libxml XML library 234 934 162 2126 2

Lighttpd web server 38 847 132 215 1

Linux operating system 12 594 584 37 520 26 427 37

Lua language interpreter 14 503 59 145 1

Totem movie player 31 596 135 84 1

Vim text editor 288 654 178 942 5

Xfig vector graphics editor 70 493 192 143 1

Xterm terminal emulator 50 830 58 501 2

Total 135

Table 4.3 shows the presence conditions of the bugs and the number of preprocessor

macros that we need to enable or disable to detect the configuration-related bugs we consider

in the first study: for 78 bugs (58%), we need to enable some macros; for 27 bugs (20%),

we need to disable some preprocessor macros; and for another 30 bugs (22%), we need to

enable some macros and disable others. The majority of bugs (83%) are related to one or two

preprocessor macros, while less than 5% are related to more than four preprocessor macros.
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Table 4.3: Presence conditions of the configuration-related bugs.

Some preprocessor macros enabled 78 (58%)

a 59
a ^ b 13
a ^ b ^ c 5
a ^ b ^ c ^ d ^ e 1
Some preprocessor macros disabled 27 (20%)

!a 16
!a ^ !b 8
!a ^ !b ^ !c 1
!a ^ !b ^ !c ^ !d 1
!a ^ !b ^ !c ^ !d ^ !e ^ !f ^ !g 1
Some macros enabled and some disabled 30 (22%)

(!a ^ b) _ (a ^ !b) 17
(a ^ b ^ !c) _ (!a ^ !b ^ c) 6
(a ^ b ^ !c ^ !d) _ (a ^ b ^ c ^ !d) 3
(a ^ b ^ c ^ d ^ !e) _ (!a ^ !b ^ !c ^ !d ^ e) 2
a ^ !b ^ !c ^ !d ^ !e ^ !f 1
a ^ b ^ !c ^ !d ^ !e ^ !f 1
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We discarded seven bugs of the Linux Kernel from our corpus that span multiple files,

because we performed a per-file analysis in our first study. We considered bugs that require

inter-procedural analysis, as long as all procedures are defined in the same file.

4.2.2 Results and Discussion

For each sampling algorithm, we answered research questions RQ1–2. Figure 4.5 presents

the number of bugs detected and the corresponding size of the sample set for each algo-

rithm. However, note that detecting more bugs does not mean more efficiency, because there

is a tradeoff between the number of bugs detected and size of sample set. We define an

efficiency function in terms of Efficiency: E = SizeOfSampleSet /NumberOfBugs. This

function returns the number of configurations that one needs to check per bug to be detected.

In addition, we analyzed 35 combinations of algorithms to answer research question RQ3,
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as illustrated in Figure 4.6. All data used in this study are available on our Website.2 We

discuss the results in terms of these research questions next.

RQ1. What is the number of configuration-related bugs detected by each algorithm?

Overall, we found that all algorithms detected at least more than 66% of all bugs of our

corpus. Statement-coverage detected the lowest number of bugs, while six-wise detected the

highest number. The majority of bugs in our corpus can be detected by enabling or dis-

abling fewer than six preprocessor macros. In this way, six-wise is able to detect all these

bugs. There is one bug for which developers need to disable seven preprocessor macros

for triggering it, which six-wise detected by chance, as six-wise does not check all combi-

nations between seven configuration options. Statement-coverage missed 45 bugs because

they require developers to enable some macros and disable others (i.e., require specific com-

binations of multiple blocks of codes), whereas statement-coverage is only concerned with

including each block of code at least once in a system configuration.

All t-wise algorithms detected more than 92% of the bugs. Six-wise and five-wise detected

all bugs. Most-enabled-disabled, one-enabled, and one-disabled detected all between 78%

to 80% of the bugs. Furthermore, we present the average values of random sampling with

a 95% confidence interval (gray area) in Figure 4.5. We ran random sampling with the

maximum number of configurations per file (n) ranging from 1 to 40, ten times for each

value of n.3 We report the mean of all runs; it detected 124 (92%) bugs.

RQ2. What is the size of the sample set selected by each sampling algorithm?

The sizes of the sample sets range from 1.3 to 10 configurations per file. The algorithm

most-enabled-disabled selected the smallest sample set; six-wise required the largest sample

set (with more than 500K sampled configurations considering all projects). The number of

configurations to check influences the time of analysis. It is not feasible to use algorithms

with large sample sets in all cases. Developers can use the results presented in Figure 4.5 to

select the sampling algorithm that fits their needs best. For instance, during initial phases of a

project, when developers are changing the source code frequently, they may prefer sampling

algorithms with small sample sets to run the analysis fast. At some point, such as before a

2http://www.dsc.ufcg.edu.br/~spg/sampling/
3Random selects 2.6 samples per file, on average, because the subject systems of our corpus contain many source files without

preprocessor macros, and others with only few macros.



4.2 Comparison of Sampling Algorithms 63

80 90 100 110 120 130 140

4
6
8

10
12

Configuration-Related Bugs

Pair-wise
Stmt-coverage

Random Four-wise
Five-wise

Six-wise

Three-wisemost-enabled-disabled
One-enabled One-disabled2

Sa
m

ple
s p

er
 F

ile

0

Sampling Algorithm Bugs Samples Sampling Algorithm Bugs Samples

Statement-coverage 90 1.3 Pair-wise 125 1.8
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One-disabled 108 1.7 Five-wise 135 6.0

Random 124 2.6 Six-wise 135 10.0

Figure 4.5: Number of bugs and samples per file for each algorithm.

release, developers might want to use algorithms with larger sample sets, to minimize the

number of configuration-related bugs.

Based on our efficiency measure, we rank the sampling algorithms starting from the

most efficient: most-enabled-disabled, pair-wise, stmt-coverage, one-disabled, one-enabled,

three-wise, random, four-wise, five-wise, and six-wise.

RQ3. Which combinations of sampling algorithms increase the number of bugs detected

and minimize the number of configurations selected?

In addition to the individual algorithms, we analyzed combinations (that is, the union of

the sample sets of the algorithms) of two and three sampling algorithms, excluding random,

five-wise, and six-wise algorithms. We excluded five-wise and six-wise because they already

detected all 135 bugs, and we excluded random because it detects different numbers of bugs

in different runs. Furthermore, we excluded combinations with more than three algorithms,

because they resulted in inefficient combinations according to our efficiency function.

Figure 4.6 relates the number of bugs and the size of sample sets for all combinations of

sampling algorithms. Based on the results, we determined the Pareto Front [114] to illustrate

tradeoffs between number of bugs and size of the sample sets. Figure 4.6 also presents the
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most four efficient combinations of sampling algorithms on the Pareto Front: C1, C2, C3,

and C4. On the other hand, the combination of one-enabled, one-disabled and four-wise is

the less efficient. The combination of sampling algorithms C3 represents LSA algorithm, as

presented in Section 4.3.
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C1 Pair-wise and one-disabled 131 3.5

C2 One-enabled, one-disabled, and statement-coverage 132 4.8

C3 One-enabled, one-disabled, and most-enabled-disabled 133 4.8

C4 One-enabled, one-disabled, and pair-wise 134 5.3

Figure 4.6: Number of bugs and samples per file for the combination of algorithms.

SUMMARY

All algorithms are able to detect at least 66% of the configuration-related bugs; most-

enabled-disabled, pair-wise and statement-coverage are the most efficient algorithms;

some combinations of algorithms provide an useful balance between sample size and

bug-detection capabilities.

Checking Assumptions

In the first study, we made simplifying assumptions that have been made also in previous

work on sampling: We ignored constraints, header files, and build-system information, and

we did a per-file analysis only. In more realistic conditions, these assumptions often do not

hold: For example, constraints often exist and ignoring them may lead to false positives,

but constraints are rarely documented systematically and therefore easily ignored. Similarly

information from the build system may increase precision but build systems are inherently
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difficult to analyze [110; 111]. The simplifying assumptions allow one to apply sampling

algorithms quickly to a large set of systems, as we did in our first study, but their influence

on practicability and effectiveness is not well understood. Therefore, in a second study, we

explore the effect of each assumption on the efficiency of the sampling algorithms.

In an exploratory setting, we replicate the first study for a subset of the corpus, with

the purpose of investigating how the assumptions affect each sampling algorithm (RQ4–6).

To increase internal validity, we considered each assumption separately as an independent

variable that we manipulate to understand the influence of each assumption on sampling.

We limit the second study to bugs of the Linux Kernel and BusyBox (47 bugs from the first

study), because these subject systems are the only ones for which we have build-system and

constraint information from the LVAT and TypeChef projects [115; 116; 117]. For the Linux

Kernel, we consider additionally seven known bugs that cross files, which we excluded from

our original corpus, as we discussed in Section 4.2.1.

Table 4.4 summarizes the number of configuration-related bugs detected, sizes of sample

sets, and the ranking of sampling algorithms per lifted assumption.

Constraints

Constraints exclude certain combinations of preprocessor macros (e.g., macro X must

be selected if macro Y is selected) from the set of valid configurations. Bugs identified in

invalid configurations are considered false positives (which did not occur in the first study,

because we consider only a corpus of true positives); hence sampling invalid configurations

adds no value. The analyzed version of the Linux Kernel has 293,826 constraint clauses

among its preprocessor macros; BusyBox has 615.

In the original sample sets of the first study, many sampled configurations are actually

invalid in these highly constrained configuration spaces. For instance, in our study, ran-

dom selects 24% of valid configurations and the percentage goes up to 43% when picking

most-enabled-disabled. Sampling within such constrained spaces is more challenging for

all sampling algorithms, as solvers or search-based strategies are needed. We incorporate

constraints as follows:

• Most-enabled-disabled: We cannot simply enable all preprocessor macros if some of

them are mutually exclusive. Instead, we use a solver to find two valid configurations

with the maximum number of preprocessor macros enabled and disabled. If there are
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multiple optimal solutions, we pick the first offered by the solver.

• One-enabled-disabled: Similarly, for each macro, we use a solver to identify the valid

configuration that disables/enables the most other macros.

• Random sampling: We randomly assigned true or false for every preprocessor

macro inside a file and discard invalid assignments until we find the desired number of

configurations. Truly random sampling in large constrained spaces with many macros

is still a research problem though, with recent progress in theory [118] and recent

pragmatic search heuristics [119].

• Statement-coverage: To select a minimal set of covering configurations, we need

to consider constraints. Conceptually we can use the original implementation of

statement-coverage, as part of Undertaker [73], as in our first study, but the tool is

not flexible to handle other projects than Linux. Thus, we used an implementation that

we created in a previous work [47].

• T-wise sampling: The covering array tables used in the first study are precomputed,

optimal solutions that, however, assume independence of all macros. Recent research

investigated strategies to generate t-wise covering arrays for constrained configuration

spaces, such as SPLCATool [36], CASA [120], and ACTS [121]. All tools use heuristics

and may produce larger-than-optimal sampling sets and the sample sets produced may

not actually achieve full t-wise coverage. To generate the pair-wise covering array,

we used SPLCATool. We failed to generate three-wise or even higher covering arrays

for the Linux Kernel: Even with 120 Gb RAM we ran out of memory; a developer

from CASA estimated that the generation could take months and would require a 1.6

terabyte array to track the covered macros. Overall, we could not find an alternative

to implement the three-wise, four-wise, five-wise and six-wise algorithms considering

constraints; existing approaches are intractable for the size and complexity of Linux.

The changes in sampling algorithms to incorporate constraints changed the efficiency of

the algorithms as summarized in Table 4.4. Most affected were t-wise strategies: Pair-wise

required a larger sample set and detected fewer bugs (including bugs that pair-wise should

have guarantee to find) from the Linux Kernel, because the used heuristics are unsound and
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do not cover all valid pairs of preprocessor macros. Three-wise and beyond sampling was

not tractable at all.

The time to compute sample sets increases significantly when adding constraints. Our use

of a SAT solver required significant additional time and memory to generate the sample sets.

On average, we created sample sets for each file in 0.04 seconds without constraints, while

the analysis with constraints took 0.75 seconds per file, on average. This time represents

an increase from 15 minutes to over 4 hours for the Linux Kernel. Regarding the ranking

of algorithms, most-enabled-disabled and statement-coverage remain at top positions (see

Table 4.4); the t-wise algorithms dropped significantly or were not feasible at all.

SUMMARY

When considering constraints, we substantially reduce false positives; but high costs for

generating sample sets, which are often not optimal; it is infeasible for three-wise and

higher at large scale.

Global Analysis

To perform global analysis, we created a single sample set across all files instead of a

distinct set per file. Such global set allows us to perform cross-file analysis to find bugs

that cannot be identified on a per-file basis, such as linking problems. However, for global

analysis, a sampling algorithm needs to consider all macros in the system, not just the subset

of macros used in each file.

We were not able to generate global sample sets with any t-wise algorithm at the scale of

our subject systems. The largest precomputed tables we found covered up to 2000 macros

(pair-wise) or 191 macros (six-wise). We are not aware of any tool that has the capability

to generate covering arrays for such a large number of preprocessor macros, even without

constraints. Statement-coverage also turns intractable, as it requires to solve the coverage

problem considering all source files of the project (i.e., equivalent to concatenating all source

code into a single file and finding a set of configurations that enabled all optional code blocks

at least once). One-enabled and one-disabled require substantially larger sample sets as more

macros are considered (from 1.7 to almost 8K). Also random requires larger sample sets, on

average, because previously we could use smaller sample sets when the file had only few

macros (see Section 4.2.1). Most-enabled-disabled is the only algorithm for which the size
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of sample sets was not influenced, because it is not sensitive to the number of macros, that

is, it always selects exactly two configurations.

To explore the ability of global analysis to identify non-modular bugs, we analyzed

7 known bugs of the Linux Kernel [16] that span multiple files, which we had to exclude

from our first study. We detected all seven bugs by applying one-enabled and one-disabled

with global analysis. Most-enabled-disabled detected five (71%) out of the seven bugs, and

random detected four (57%) bugs. The other algorithms are not feasible when applying

global analysis.

SUMMARY

Using a global analysis, we can potentially detect non-modular bugs that span multiple

files; it causes an explosion in the number of considered preprocessor macros that leads

to large sample sets; too large for t-wise and statement-coverage.

Header Files

In C source code, variability may be introduced by header files because macros used in

#ifdefs can have non-local effect. If sampling is applied only to variability in the main

source file, it may not detect bugs stemming from variability in header files. For example, a

function may not be declared in all configurations of the header, a type name may be defined

as either int or long depending on configuration decisions in the header, or a macro may

be defined in the header only in some configurations. Precisely analyzing header variability

is challenging, though, due to the interaction of file inclusion with conditional compilation

and macros. Precise analyses exist [17; 38], but are challenging and time-consuming to use,

because one needs to set up the environment with all header files used by the project.

Incorporating header files increases the number of macros per file significantly. Whereas

the files of the Linux Kernel contain, on average, 3 distinct macros when ignoring variability

from header files, headers add another 238 distinct preprocessor macros, on average. This

increases the size of the sample set for all algorithms, except for most-enabled-disabled. For

statement-coverage, five-wise, and six-wise, our subject systems reach configuration spaces

for which these algorithms become intractable.
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Since our corpus does not include bugs caused by misconfigurations from header files,

most sampling algorithms detect the same bugs. The one-enabled algorithm detected more

bugs, because including preprocessor macros from headers allowed it to disable more

macros, while enabling one at a time.

SUMMARY

When incorporating header files, there is a potential to detect additional bugs from

header files; but a difficult setup and much larger sample sets (if feasible at all), which

lead to ranking changes.

Build-System Information

The build system controls which files are compiled and included. Files may be included

only when specific preprocessor macros are selected or may be compiled with additional

parameters. This is equivalent to wrapping an additional #ifdef around each source file or

define additional macros in the beginning of a file. Like ignoring constraints, ignoring build-

system information can lead to false positives where bugs are reported in configurations that

are prevented in practice by the build system.

Build systems often have a strong influence on the configurability of a system; in the

Linux Kernel, for example, 97% of source files are compiled only in certain configurations,

and 80% in BusyBox. Still, extracting configuration knowledge from build systems is very

difficult in the general case. While Linux and Busybox have been addressed with specialized

parsers that recognize common patterns [116; 117], and more modern build systems use a

more declarative style, which is easier to analyze [122], analyzing Make files in general is

an open research problem with only few initial solutions [123; 124].

Considering build-system information, the presence conditions of bugs become more

complex, because we include the condition when the file is compiled: Whereas without

build system information 40 % of bugs in our corpus can be found by enabling or disabling

a single preprocessor macro, only 17 % can be found the same way when considering build-

system information. By requiring more macros to pinpoint bugs, incorporating build-system

information decreases the efficiency of algorithms. Pair-wise, three-wise, most-enabled-

disabled, and one-enabled detected fewer bugs than in the first study.
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The sizes of the sample sets are slightly increased in all sampling algorithms (except

most-enabled-disabled), as we consider additional preprocessor macros used in the build

system. Time required to compute sample sets is increased only by a few milliseconds.

SUMMARY

When including build-system information, the analysis considers a few more macros, but

no significant changes.

Experiment: Cppcheck Warnings

The goal of this experiment is to compare the sampling algorithms (RQ1–3) by using a

different perspective. Instead of measuring bug-detection capabilities in terms of a corpus

of known configuration-related bugs, we use a static-analysis tool (i.e., Cppcheck) as our

automated bug-detection mechanism.

They key difference to Study 1 is how we operationalize the dependent variable with

regards to bug-detection capabilities. Unfortunately, there is no tool that would produce a

reliable ground truth.4 We run Cppcheck on each sampled configuration of each file and

count all reported warnings. We discard warnings that occur in all configurations, because

they are not configuration related. Although a warning does not necessarily correspond to a

bug, it provides a rough estimate of the number of issues a developer needs to investigate,

and Cppcheck also claims to minimize false positives. We assume that the distribution of

warnings throughout the code is roughly similar to the distribution of real bugs in C code

and can hence serve as a proxy to measure how configuration-related bugs are distributed

over the configuration space.

We performed this experiment on a fresh set of subject systems, that does not overlap

with the corpus of Study 1: expat, flex, gimp, gnumeric, gzip, kindb, mplayer, mpsolve,

mptris, openldap, parrot, prc-tools, privoxy, sylpheed, tk, xine-lib. We selected these systems

guided by previous work [4; 67], which studied projects statically configurable with the

preprocessor.

Overall, Cppcheck reported 96 warnings that appear only in specific configurations of

the code over 77 distinct files. All 10 sampling algorithms reported more than 70% of the

4Variability-aware analysis tools, such as TypeChef [17; 72] and SuperC [38], could soundly cover all configurations regarding syntax

or type errors, but would require a time-consuming initial setup that would make our study infeasible.
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96 configuration-related warnings, and no sampling algorithm reported all 96 warnings. We

summarize the results of this experiment in Figure 4.7. Five-wise and six-wise reported the

highest number of warnings again. One-disabled and statement-coverage reported the lowest

number of warnings. There is a warning for Xine-lib, where developers need to disable

eight distinct macros to make Cppcheck report it. Six-wise misses this warning. However,

other sampling algorithms, such as most-enabled-disabled and one-enabled, reported the

warning for Xine-lib. Furthermore, we computed the number of warnings reported for the

combinations of sampling algorithms and found combinations that reported all 96 warnings

(e.g., C2 and C3), as depicted in Figure 4.8.

60 65 70 75 80 85 90 95

4
6
8

10
12
14

Configuration-Related Bugs

one-enabledstmt-coverageone-disabled pair-wiseall-enabled-disabled three-wiserandom four-wise
five-wise

six-wise

2
0Sa

m
ple

s p
er

 F
ile

Sampling Algorithm Bugs Samples Sampling Algorithm Bugs Samples

One-disabled 68 1.3 Pair-wise 90 2.5

Most-enabled-disabled 73 2.0 Three-wise 93 3.5

Statement-coverage 80 1.4 Four-wise 94 5.2

Random 80 3.1 Five-wise 94 8.1
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Figure 4.7: Number of warnings reported and samples per file for each algorithm.

The sizes of sample sets range from 1.3 to 13.2 configurations per file. Again, six-wise

selected the highest number of configurations (more than 100K across all projects), while

one-enabled and one-disabled selected the lowest number of configurations. The majority

of the combinations of algorithms created a very large sample set. Figure 4.8 presents four

combinations of sampling algorithms on the Pareto Front: C2, C3, C5, and C6.

We computed the ranking of sampling algorithms considering the efficiency function

of Section 4.2.2. The algorithms, starting from the most efficient, are: one-enabled, stmt-

coverage, one-disabled, pair-wise, most-enabled-disabled, three-wise, random, four-wise,
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five-wise, and six-wise. Overall, the ranking is stable when compared to Study 1 and there

were only minor changes: most-enabled-disabled and pair-wise are less efficient here, while

one-enabled, one-disabled, and statement-coverage are more efficient. These changes can

be explained by analyzing the number of files with only one preprocessor macro, which is

higher in our experiment than in Study 1. Most-enabled-disabled requires two configurations

for each file with one preprocessor macro; one-enabled and one-disabled require only one

configuration per file. It makes one-enabled and one-disabled more efficient and impacts the

ranking. Regarding the five least efficient algorithms, the ranking is exactly the same as in

the first study on our corpus.

Study 1 and this experiment complement and confirm each other, as we obtain essentially

the same results regarding the bug-detection capabilities of the sampling algorithms by using

different perspectives: known bugs reported in previous studies (Study 1) and Cppcheck

as our bug-detected mechanism. We found two combinations of sampling algorithms (C2,

and C3) that are on the Pareto Front of Study 1 as well, which support them as efficient

combinations. By triangulating the results, we gain confidence in the findings.
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C6 Pair-wise and one-enabled 95 3.7

Figure 4.8: Number of warnings and samples per file for the combinations of algorithms.
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SUMMARY

This experiment yielded comparable results and complements and confirms the first study

on our corpus of 135 known bugs, as we obtain essentially the same results regarding the

bug-detection capabilities of the sampling algorithms by using different perspectives:

known bugs reported in previous studies and Cppcheck as our bug-detected mechanism.

4.2.3 Threats to Validity

In this section, we discuss a number of threats to validity that are crucial for our study.

Internal validity

Regarding internal validity, the corpus of bugs is critical for our research study. Creating a

representative corpus is difficult, primarily because we have no means of knowing all bugs

in the system, because we do not have a comprehensive quality assurance strategy in the first

place. We address this threat with two strategies:

• We avoided biasing our corpus to any specific sampling algorithm. As the corpus

has been partially mined from software repositories, it might be biased towards more

popular system configurations. Still, our corpus is the most comprehensive corpus of

configuration-related bugs we are aware of.

• We conducted a complimentary experiment using an automated bug finding technique

instead of a corpus of known bugs, as presented in Section 4.2.2. This experiment

yielded comparable results, complements, and confirms the first study on our corpus.

In a nutshell, we measured which sampling algorithm the bug finding technique, static

analysis with Cppcheck, would expose the most warnings per sampled configuration.

This experiment introduces a different threat in terms of false positives, however, by

triangulating the results across both setups with orthogonal threats to validity increases

confidence in our findings.

External validity

Regarding external validity, we studied only subject systems that implement variability with

conditional compilation and cannot generalize to subject systems that use other mechanisms

to implement variability.
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Table 4.4: Number of bugs, size of sample sets and ranking of algorithms.

Algorithms Constraints Global Analysis

Bugs Configs Rank Bugs Configs Rank

Pair-wise 33 ↓ 30 ⇑ 5 – – –

Three-wise – – – – – –

Four-wise – – – – – –

Five-wise – – – – – –

Six-wise – – – – – –

Most-enabled-disabled 23 ↓ 1.4 = 1 27 = 1.4 = 1

One-enabled 30 ↑ 1.1 ↓ 3 31 ↑ 7943 ⇑ 3

One-disabled 38 ↓ 1.1 ↓ 4 39 = 7943 ⇑ 2

Random 39 ↓ 4.1 = 6 29 ⇓ 8123 ⇑ 4

Stmt-coverage 32 ↑ 4.1 ↑ 2 – – –

Algorithms Header Files Build System

Bugs Configs Rank Bugs Configs Rank

Pair-wise 39 = 936 ⇑ 4 33 ↓ 2.8 ↑ 4

Three-wise 43 = 1218 ⇑ 5 42 ↓ 3.9 ↑ 5

Four-wise 45 = 1639 ⇑ 7 45 = 5.7 ↑ 8

Five-wise – – – 47 = 8.3 ↑ 9

Six-wise – – – 47 = 12 ↑ 10

Most-enabled-disabled 27 = 1.4 = 1 26 ↓ 1.4 ↑ 2

One-enabled 31 ↑ 890 ⇑ 6 20 ↓ 2.3 ↑ 7

One-disabled 39 = 890 ⇑ 3 39 = 2.3 ↑ 3

Random 40 ↓ 17.2 ⇑ 2 41 = 4.2 ↑ 6

Stmt-coverage – – – 25 = 1.3 ↑ 1

Some algorithms do not scale, indicated using dashes (–). We use ↑ and ↓ to represent small changes in the number

of bugs and size of sample set, as compared to our first study. Furthermore, we use ⇑ and ⇓ to represent larger changes.
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4.3 The Linear Sampling Algorithm

To select configurations systematically, we propose the Linear Sampling Algorithm (LSA),

which combines the following sampling algorithms:

• One-disabled: Abal et al. [16] suggested this algorithm based on 42 configuration-

related bugs analyzed in the Linux Kernel. It deactivates one preprocessor macro at

a time; it requires n configurations per file, where n is the number of preprocessor

macros in each source file.

• One-enabled: the algorithm is similar to one-disabled, but one-enabled activates one

preprocessor macro at a time. One-enabled also requires n configurations per file.

• Most-enabled-disabled: this algorithm consists of activating all preprocessor macros

and then deactivating all macros, which require two configurations per source file.

The LSA sampling algorithm selects configurations linearly, that is, it selects 2n + 2

configurations, in which n is the number of configuration options.

According to our comparison of sampling algorithms, LSA increases the number of

configuration-related bugs detected without the need of selecting a large sample set. In

Figure 4.9, we show how LSA selects configurations using an example source file with four

preprocessor macros: A, B, C, and D. When considering constraints among preprocessor

macros, LSA selects configurations slightly differently: For instance, assuming that A and B

are mutually exclusive, most-enabled-disabled cannot activate all macros (i.e., configuration

9 is invalid). In this case, LSA activates the highest number of macros possible using a SAT

solver, that is, only three macros will be active (A or B, C, and D). The same situation occurs

for one-enabled and one-disabled, when we need to consider constraints.
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Figure 4.9: Selecting configurations systematically with LSA.

Notice that LSA ensures, in the absence of constraints, pair-wise coverage because it

selects configurations that analyze all pairs of preprocessor macros. By considering macros

A and B in Figure 4.9, we can see that there is a configuration where A and B are enabled

(configuration 7); another configuration in which both A and B are disabled (configuration

3); and other configurations where only A or B is enabled (for example, configurations 1

and 2). The same situation occurs for preprocessor macros A and C, A and D, B and C,

and macros B and D. LSA also ensures 3-way combinatorial interaction testing (three-wise

coverage) without considering constraints. We can use the same rationale to see that LSA

covers all combinations of three preprocessor macros.

4.4 Research Study

In this section, we present the setup of an empirical study performed to better understand

configuration-related bugs. To perform this empirical study, we instantiated the sampling-

based strategy using the LSA sampling algorithm and Cppcheck.

4.4.1 Overall Study Design

In particular, we address the following research questions:

• RQ7. How frequent are configuration-related bugs when compared to bugs that appear

in all configurations?
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• RQ8. Do configuration-related bugs remain longer in the source code than bugs that

appear in all configurations?

• RQ9. How do developers introduce configuration-related bugs?

• RQ10. Does undisciplined preprocessor usage influence developers to introduce

configuration-related bugs?

Before answering research questions RQ7 and RQ8, we confirmed each bug of both

sets by searching for fixes in the corresponding software repositories (i.e., made by actual

developers of the project) and by submitting patches to developers. We excluded from the

analysis bugs that we could not confirm as real bugs. To answer RQ7 and RQ8, we collected

two sets of bugs: (1) a set with bugs that appear in all configurations; and (2) another set with

configuration-related bugs that occur only in certain configurations.

To answer RQ7, we counted the number of bugs that appear in all configurations and the

number of configuration-related bugs. Answering RQ7 is important to identify how is the

distribution and frequency of configuration-related bugs.

Regarding RQ8, we analyzed each bug of both sets to analyze the dates that developers

introduce and fix the bug to measure the time in between. Then, we compared the numbers

of days to fix bugs that appear in all configurations and to fix configuration-related bugs.

This research question (RQ8) provides insights on how variability hinders the detection of

configuration-related bugs. Our hypothesis is that configuration-related bugs remain in the

source code longer than bugs that appear in all configurations because variability hinders the

detection of configuration-related bugs.

In RQ9, we analyzed how developers introduce the configuration-related bugs we found.

Then, we classified and quantified the different ways of introducing bugs. Notice that RQ9

considers only the set of configuration-related bugs and might provide useful information for

developers of variability-aware analysis tools [71].

In RQ10, we used the definition of Liebig at el. [67] of undisciplined preprocessor use,

that is, conditional directives that do not align with the underlying syntactic structure of the

source code (as discussed in Section 2.2.2). We counted the number of configuration-related

bugs that appear in disciplined and undisciplined preprocessor usage. Again, notice that

RQ10 considers only the set of configuration-related bugs. Research question RQ10 might
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influence developers to avoid certain types of preprocessor usage to minimize configuration-

related bugs in practice.

Subjects Selection

Overall, we analyzed 27 systems written in C ranging from 20 to 2126 preprocessor macros.

These projects are from different domains, such as Web servers, text editors, databases, and

games. We selected these projects guided by previous work [4; 67], which studied C projects

that are statically configurable with the C preprocessor (i.e., projects that use preprocessor

conditional directives). We present details of each project in Table 4.5, listing the project

name, application domain, lines of code, number of files, number of preprocessor macros,

number of developers, number of distinct code versions, and the number of configuration-

related bugs detected in our empirical study.

Conduct and Instrumentation

For the purpose of our study, we selected the current stable release of each of our 27 projects.

Furthermore, we considered previous versions of the code using the Git repositories of the

projects. After selecting configurations for each source file, we used Cppcheck version 1.67

to detect bugs in each selected configuration on a per-file basis. We also used Git version

2.3.2 to get information about the repositories. We counted the lines of code and the number

of files using the Count Lines of Code (CLOC) tool version 1.56. Finally, we used Cppstats

0.7 version to quantify the number of occurrences of undisciplined preprocessor usage.

4.4.2 Results and Discussion

Overall, we found 65 configuration-related bugs in 18 out of our 27 subject projects (67%),

as we present in Table 4.5. We counted in our statistics only bugs that developers fixed or

bugs for which we submitted patches that developers accepted. We found that developers

had already fixed 53 bugs (81%) detected in our study, and they accepted our patches to

fix 12 (19%) additional bugs.

We found different types of configuration-related bugs, as we present in Figure 4.10:

34 memory leaks (52%), 12 uninitialized variables (19%), 11 dereferences of null pointers

(17%), 6 resource leaks (9%), and 2 bugs related to buffer overflows (3%).
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Table 4.5: Overview of the subject projects and the total number of bugs.

Project Domain LOC Macros Versions Optional (%) Bugs

Apache Web server 144 768 700 25 615 10 5

Bash Language interpreter 44 824 1427 68 37 2

Bison Parser generator 24 325 269 5423 13 1

Cherokee Web server 63 109 452 5748 11 3

Clamav Antivirus 107 548 1632 13 457 17 1

Dia Diagramming software 28 074 307 5634 4 4

Expat XML library 17 103 84 47 20 0

Flex Lexical analyzer 16 501 130 1607 7 0

Fvwm Window manager 102 301 301 5439 8 6

Gawk GAWK interpreter 43 070 714 1345 27 1

Gnuchess Chess player 9293 39 236 9 0

Gnuplot Plotting tool 79 557 500 8024 26 3

Gzip File compressor 5809 141 445 21 1

Irssi IRC client 51 356 157 4130 3 5

Libpng PNG library 44 828 327 2188 81 3

Libsoup SOUP library 40 061 92 2005 1 0

Libssh SSH library 28 015 115 2915 35 13

Libxml2 XML library 234 934 2126 4246 71 0

Lighttpd Web server 38 847 215 1470 24 3

Lua Language interpreter 14 503 145 83 3 1

M4 Macro expander 10 469 106 953 29 1

Mpsolve Mathematical software 10 278 20 1434 2 0

Privoxy Proxy server 29 021 158 63 36 0

Rcs Revision control system 11 916 97 915 15 0

Sqlite Database system 94 113 467 553 57 0

Sylpheed E-mail client 83 528 286 2733 15 3

Vim Text editor 288 654 942 5720 63 9

Total 1666805 65

Lines of code; number of source files; number of compile-time preprocessor macros; number of developers contributing to the

project; number of versions analyzed; percentage of optional code; and number of configuration-related bugs detected.
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We further determined the number of preprocessor macros involved in each

configuration-related bug. The majority of bugs involves one preprocessor macro: 58 bugs

(89% of the preprocessor-related bugs considered in our study). Furthermore, we found

three bugs that involve 2 preprocessor macros; two bugs that relate to 3 macros; one bug

that involves 5 preprocessor macros; and one bug that relates to 7 macros. Previous studies

reported similar results [19; 16; 12; 39].

Uninitialized Variables 
19%

Buffer Overflows 
3%

Resource Leaks 
9%

Null Pointer Dereferences 
17%

Memory Leaks 
52%

Figure 4.10: Types of configuration-related bugs.

Here, we present an example of configuration-related uninitialized variable in Figure 4.11

for illustration. We found this uninitialized variable in Bash and this bug occurs only when

we disable macros TRACE and REGISTER, and enable macro WATCH. In this configuration,

variable ubytes is not initialized at Line 5, but used at Line 15. Technically, the value of

an uninitialized non-static, local variable is indeterminate in C, and accessing it leads to an

undefined behavior.

Next, we answer the research questions. Then, we present the patches submitted to the

projects in Section 4.4.2, and discuss the threats to validity in Section 4.4.3.

RQ7. How frequent are configuration-related bugs when compared to bugs that appear

in all configurations?

To answer this research question, we counted the Lines of Code (LOC) of each subject

system and measured the percentage of code related to preprocessor macros. In Table 4.5,

we present this percentage and LOC for each subject system. Then, we computed the average

of configuration-related code regarding all subject systems (i.e., we summed the percentage

of configuration-related code of all systems and divided by the number of systems). As a

result, on the average, 24% of the source code is related to configurability.
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#undef TRACE
#undef REGISTER
#define WATCH

#define TRACE
#define REGISTER
#define WATCH

1. static void internal_free (){
2.     int ubytes;
3.     // Lines of code..
4. #if (defined (TRACE) || defined (REGISTER))
5.     ubytes = p->minfo.mi_nbytes;
6. #endif
7.     // Lines of code..
8. #if definedEx (TRACE)
9.     mtrace_free (ubytes, file, line);
10.#endif
11.#if defined (REGISTER)
12.    mregister_free (ubytes, file, line);
13.#endif
14.#if defined (WATCH)
15.    malloc_ckwatch (file, line, ubytes);
16.#endif
17.} Uninitialized 

Variable

...

Configuration 1

#define TRACE
#define REGISTER
#undef WATCH

Configuration 2

Configuration 8

Figure 4.11: An example of configuration-related uninitialized variable in Bash.

We also counted the number of configuration-related bugs and the number of bugs that

appear in all configurations. Overall, Cppcheck reported 368 warnings, but we classified

136 (37%) warnings as false positives, that is, bugs that appear in invalid configurations and

warnings that are not real bugs. Regarding the other 232 (63%) warnings: 65 (28%) are

configuration-related bugs and 167 (72%) appear in all configurations.

Our results show that bugs are similarly distributed across all source code. We found

that 28% of the bugs are related to configurability and that they are distributed across 24%

of the source code, which is related to preprocessor macros. Thus, our findings indicate

that the frequency of configuration-related bugs is fairly similar to the frequency of bugs

that appear in all configurations. By dividing the LOC related to configurability by the

number of configuration-related bugs, we found 400 033/65 = 0.16 configuration-related

bugs per thousand lines of code, while the frequency of bugs that appear in all configuration

is: 1 266 771/167 = 0.13 bugs per thousand lines of code.

SUMMARY

Developers face configuration-related bugs in practice as frequent as they face bugs that

appear in all configurations. The frequency of bugs detectable by Cppcheck is 0.16 bugs

per thousand lines of code for configuration-related bugs, and 0.13 bugs per thousand

lines for bugs that appear in all configurations.
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RQ8. Do configuration-related bugs remain longer in the source code than bugs that

appear in all configurations?

To detect configuration-related bugs, developers need to analyze multiple configurations.

They find a specific configuration-related bug only when checking a configuration, in which

such bug occurs. Thus, the variability of configurable systems can hinder the detection of

configuration-related bugs. In our study, we found that the time to fix bugs varies from

days to years. However, we also found a number of bugs appearing in all configurations

that developers took years to fix. Figure 4.12 shows the times to fix bugs that appear in

all valid configurations, while Figure 4.13 presents the times to fix configuration-related

bugs. We can see that developers usually need a long time to fix configuration-related bugs

and bugs that appear in all configurations. We did not consider the configuration-related

bugs that developers fixed using our patches, because this could influence the results. In

addition, we considered only bugs that we know exactly when developers introduce and fix

the bug. Overall, we considered 49 configuration-related bugs and 110 bugs that appear in

all configurations.
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Figure 4.12: Number of days developers take to fix bugs that appear in all configurations.

To compare the time to fix bugs, we calculated the averages of the number of days to

fix bugs: 397 days to fix bugs that appear in all configurations; and 1143 for configuration-

related bugs. We ran an unpaired t-test and checked the null hypothesis that there is no

difference between the averages. We obtained a p-value = 1.27 ⇥ 10−4, so we rejected the

null hypothesis. So, our findings provide statistical evidence that configuration-related bugs

remain longer in the code than bugs that appear in all configurations, considering a 95%

confidence interval.
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Figure 4.13: Number of days developers take to fix configuration-related bugs.

SUMMARY

Configuration-related bugs remain almost three times longer in the source code, on the

average, than bugs that appear in all configurations.

RQ9. How do developers introduce configuration-related bugs?

We investigated how developers introduce the configuration-related bugs found in our study.

Our goal is to identify whether developers introduce more bugs when implementing new

functionalities or fixing other bugs in the source code. Our analysis reveal that developers

introduce configuration-related memory and resource leaks, dereferences of null pointers,

and uninitialized variables when modifying code (51%) and introducing new functionalities

(49%), such as a new source file or function. We present the detailed results regarding bugs

in the following order: memory leaks, resource leaks, uninitialized variables, dereferences

null pointers, and buffer overflows.

We found developers introducing configuration-related memory leaks in seven distinct

ways: (I) and (II), introducing a new function that allocates memory without freeing it;

(III) and (IV), modifying an existing function by allocating memory without freeing it; (V),

optionally calling a function that returns an allocated memory; (VI), conditionally passing a

pointer to a function that allocates memory to this pointer; and (VII), introducing an error

handler that terminates the execution of a function without freeing the allocated memory.

We show these seven cases in Figure 4.14. In the first two cases (I and II), developers

introduce new functionalities. In the other cases (III–VII), they introduce memory leaks

by modifying existing code. Overall, we found configuration-related memory leaks in the

following projects, as presented in Table 4.6.
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Table 4.6: Occurrences of configuration-related memory leaks.

Case Occurrences

I Apache (1), Cherokee (2), Irssi (1), Libpng (1), Libssh (3), and Vim (4).

II Fvwm (3), Gawk (1), Irssi (1), and Sylpheed (1).

III Fvwm (1), Gnuplot (1), Irssi (1), and Vim (2).

IV Libpng (1), Libssh (1), Lighttpd (1), and M4 (1).

V Libssh (1), and Vim (1).

VI Dia (1).

VII Libpng (1), Libssh (1), Lighttpd (1), and Vim (1).

+ Including line

  int f5(){
   int *p5;
   p5 = malloc(…);
   … 
   return *p5;
  }
  
  int f6(){
   … 
+ #ifdef A
+  int p6 = f5();
+ #endif
  }  

V
  void f7(int **p7){ 
   *p7 = malloc(…);       
   …
  }  
   
  void f8(){ 
   … 
+ #ifdef A
+  int *p8;
+  f7(&p8);
+ #endif
   … 
  }    

  type f9(){ 
   int *p9;  
   p9 = malloc(…);
   …    
+ #ifdef A
+  if (fail)    
+   return NULL;
+ #endif 
   free(p9); 
   … 
  }

VI VII

  void f3(){ 
   …     
+ #ifdef A
+  int *p3;
+ #endif
    … 
+ #ifdef A
+  p3 = malloc(…);
+ #endif
   … 
  }    

III

+ #ifdef A
+ void f1(){ 
+  …     
+  int *p1;
+  p1 = malloc(…);
+  … 
+ }
+ #endif    

I

+ void f2(){ 
+  … 
+ #ifdef A    
+  int *p2;
+  p2 = malloc(…);
+ #endif
+  … 
+ }    

II

  #ifdef A  
  void f4(){ 
   …     
+  int *p4;
+  p4 = malloc(…);

   … 
  } 
  #endif   

IV

Figure 4.14: Introducing configuration-related memory leaks.

Developers introduce configuration-related resource leaks in four ways: (I) altering a

function by conditionally opening a file without closing it after use; (II) altering a function

by conditionally adding an error handler that does not close an opening file; (III) and (IV),

adding a new function that conditionally opens a file without closing it after use. Cases I–II

modify existing code and cases III–IV introduce new functionalities. Figure 4.15 shows

these four cases. We found resource leaks in the six projects, as presented in Table 4.7.
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  int f3(){ 
   FILE *p3;  
   p3 = fopen(…);
   …    
+ #ifdef A
+  if (fail)    
+   return NULL;
+ #endif 
   close(p3); 
  }

II

+ Including line

  void f1(){ 
   …     
+ #ifdef A
+  FILE *p1;
+  p1 = fopen(…);
+ #endif
   … 
  }    

I
+ #ifdef A
+ int f4(){ 
+  FILE *p4;  
+  p4 = fopen(…);   
+  …
+  if (fail)    
+   return NULL; 
+  close(p4); 
+ }
+ #endif

IV

+ void f2(){ 
+  …     
+ #ifdef A
+  FILE *p2;
+  p2 = fopen(…);
+ #endif
+  … 
+ }    

III

Figure 4.15: Introducing configuration-related resource leaks.

Table 4.7: Occurrences of configuration-related resource leaks.

Case Occurrences

I Lua (1).
II Libssh (1), and Lighttpd (1).
III Clamav (1).
IV Libssh (1), and Sylpheed (1).

  void f3(){ 
   …     
+ #ifdef A
+  int p2;
+  f4(p2);
+ #endif
   … 
  }    

+ Including line

+ void f5(){ 
+  int p3;  
+  …     
+ #ifdef A
+  … 
+  p3 = 10;
+ #endif 
+  f6 (p3);
+  … 
+ }

IV
  void f7(){ 
   int p4;  
   …     
  #ifdef A 
   p4 = 10;
  #endif 
+ #ifdef B
+  f8(p4);
+ #endif 
  }

+ #ifdef A
+ void f1(){ 
+  …     
+  int p1;
+  f2(p1);
+  … 
+ }    
+ #endif

I IIIII

Figure 4.16: Introducing configuration-related uninitialized variables.

Developers introduce uninitialized variables in four ways: (I) and (II), introducing a new

function that declares a variable and use it without initialization; (III), modifying an existing

function by declaring a variable and using this variable without initializing it; and (IV), using

a conditionally defined variable in a new code with different condition. Figure 4.16 presents

these cases. We found configuration-related uninitialized variables in the following projects,

as presented in Table 4.8.
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Table 4.8: Occurrences of configuration-related uninitialized variables.

Case Occurrences

I Apache (1), Cherokee (1), Dia (2), Libssh (1), and Sylpheed (1).
II Bash (1).
III Apache (1), Fvwm (1), and Gzip (1).
IV Bash (1).

We found developers introducing null pointer dereferences in three ways: (I), adding a

new variable, allocating memory and using it without checking whether the allocation suc-

ceeds; (II), introducing a new function that receives a pointer and uses it without checking

whether it is NULL; and (III), using memory allocated previously without checking if the al-

location succeeds. Figure 4.17 presents all cases. We found the following null dereferences,

as presented in Table 4.9.

Table 4.9: Occurrences of configuration-related null pointer dereferences.

Case Occurrences

I Gnuplot (1), Irssi (1), and Libssh (3).

II Dia (1), Irssi (1), and Libssh (1).

III Apache (1), Fvwm (1), and Gnuplot (1).

+ Including line

III
  #ifdef A
  void f1(){ 
   …     
+  int *p1;
+  p1 = malloc(…);
+  f2(p1); 
   …
  }
  #endif    

I

+ #ifdef A
+ void f2(int *p2){ 
+  …
+  f3(p2);
+  … 
+ } 
+ #endif   

II
  void f4(){ 
   …
   int *p2;
   p2 = malloc(…);
+ #ifdef A
+  f3(p2);
+ #endif 
  … 
 }   

Figure 4.17: Introducing configuration-related null pointer dereferences.

Developers introduce buffer overflows in two ways: (I), introducing a buffer and trying

to access a position outside its boundaries; and (II), introducing a function that receives a

buffer as parameter and use it without checking its boundaries. We present these two cases
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in Figure 4.18. We found only two occurrences of configuration-related buffer overflows,

one follows case I: bison (1); and another case II: Vim (1).

+ Including line

  #ifdef A
  void f1(){ 
   …     
+  char *p1 [2];
+  int p2 = 3;
+  f2(p1[p2]); 
   …
  }
  #endif    

I

+ #ifdef A
+ void f3(char *p2){ 
+  …
+  f4(p2[3]);
+  … 
+ } 
+ #endif   

II

Figure 4.18: Introducing configuration-related buffer overflows.

SUMMARY

Developers introduce configuration-related bugs when modifying existing code (51%)

and also introducing new functionalities (49%).

RQ10. Does undisciplined preprocessor usage influence developers to introduce

configuration-related bugs?

The C preprocessor is flexible enough to allow developers to embrace any code fragment with

preprocessor conditional directives, even a single token such as an opening bracket. This

way, developers can introduce undisciplined directives that do not align with the underlying

syntactic structure of the source code [67; 17]. Undisciplined preprocessor use may influence

the code quality negatively [3; 13; 29], and might ease the introduction of configuration-

related bugs in practice, as discussed in Section 2.2.2.

By considering the 27 projects of our study: 15% of the directives are undisciplined.

However, only 8% of the optional lines of code are surrounded by these directives. By

analyzing the 65 configuration-related bugs considered in our study, we found that 6

configuration-related bugs (9%) occur in undisciplined preprocessor directives. In this way,

9% of the configuration-related bugs are distributed across 8% of undisciplined directives,

which does not support our hypothesis that configuration-related bugs are more frequent in

undisciplined directives. Overall, our results do not suggest that undisciplined directives

usage may influence the introduction of configuration-related memory and resource leaks,
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dereferences of null pointers, and uninitialized variables, as such bugs are similarly dis-

tributed across disciplined and undisciplined preprocessor directives. This result is not in

line with configuration-related syntax errors, which we will present in Chapter 5.

SUMMARY

The results refuted the hypothesis that undisciplined directives influence developers to

introduce configuration-related memory and resource leaks, dereferences of null point-

ers, and uninitialized variables.

Submitting Patches to Fix the Bugs

We submitted 20 patches—for each bug not already fixed by developers—to 11 subject

projects: Apache (4), Bash (2), Clamav (1), Dia (1), Gawk (2), Gnuplot (2), Gzip (1),

Lighttpd (2), Libxml2 (1), Sqlite (3), and Sylpheed (1).

We consider that developers accept a patch when they mention that it is a bug, or keep

the patch open after updating some patch information, such as its priority. Conversely, we

consider that developers reject the patch when they mention it is not a bug, or update this

information on the patch. Overall, developers accepted 12 (60%) out of 20 patches we

submitted to the C projects. We present information about the patches in Table 4.10, listing

the name of the project, file name with the bug, the type of bug, and the patch status.

Developers already fixed 9 bugs out of 12 patches accepted. Regarding one patch we

submitted to Dia and two patches to Bash, developers accepted them, but they have not fixed

the bugs yet. Regarding the 8 rejected patches, the Apache developers rejected four patches:

two bugs that arise in invalid configurations and two false positives. The Sqlite Developers

also rejected two patches as they were false positives. Moreover, the Gnuplot developers

rejected two patches arguing that resource leaks in the main function are not problematic, as

the operating system closes all resources when killing the process, but developers consider it

as bad style: “There are some fclose() statements missing at the end of main(). While this is

certainly not good style, it is also not a problem since the C runtime or the operating system

will close any open files on leaving main()."
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Table 4.10: Patches submitted to subject systems.

Project File Problem Status

Apache ssl_util.c Null dereference Rejected

Apache mpm_winnt.c Memory leak Rejected

Apache ap_regkey.c Uninitialized variable Rejected

Apache ap_regkey.c Uninitialized variable Rejected

Bash input.c Uninitialized variable Accepted

Bash malloc.c Uninitialized variable Accepted

Clamav clamconf.c Resource leak Fixed

Dia test-boundingbox.c Uninit variable Accepted

Gawk popen.c Memory leak Fixed

Gawk regcomp.c Memory leak Fixed

Gnuplot doc2html.c Resource leak Rejected

Gnuplot doc2html.c Resource leak Rejected

Gzip bits.c Uninit variable Fixed

Lighttpd mod_dirlisting.c Memory leak Fixed

Lighttpd mod_dirlisting.c Resource leak Fixed

Libxml2 catalog.c Resource leak Fixed

Sqlite test_quota.c Uninitialized variable Fixed

Sqlite os_win.c Uninitialized variable Rejected

Sqlite test_intarray.c Memory leak Rejected

Sylpheed jpilot.c Resource leak Fixed

4.4.3 Threats to Validity

In this section, we discuss a number of threats to validity that are crucial for our empirical

study.

Construct validity

The issue of whether the configuration-related bugs detected are real bugs or false positives

threatens construct validity. We addressed this threat by getting feedback from developers

to confirm each bug reported in our statistics. For each bugs, we checked it in two ways:

(1) finding a fix in newer versions of the code; and (2) submitting patches to the projects.

Developers accepted 12 out of the 20 configuration-related bugs reported, and we confirmed

53 bugs that developers fixed in newer versions of the source code.



4.4 Research Study 90

Internal validity

We used Cppcheck to detect bugs, thus limiting our study to bugs that this tool can detect,

such as memory leaks, uninitialized variables, and null pointer dereferences. Cppcheck may

also report false positives (more than 30% according to our study). However, we verified

false positives by asking the actual developers and did not count them in our statistics.

Our strategy analyzes one file at a time, which does not find bugs that span multiple files.

So, we may miss some bugs (false negatives). Furthermore, our strategy does not check all

possible configurations, as we used sampling which checks only a subset of configurations.

So, we might miss some bugs in configurations that we do not analyze. To minimize this

threat, we used a sampling algorithm that we defined based on a comparative study of 10

sampling algorithms, aiming at maximizing the number of detected bugs [43].

Our strategy to find configuration-related bugs in project repositories considered only

updated and added files, from the second to the last commit, as described in Section 4.1.

However, this approach may lead to false negatives. For instance, developers may update

a file A, which leads to bugs in a different file B. In our strategy, because only A has been

modified, we only analyze A. However, later, if developers modify B, our strategy potentially

catches the bugs.

During our study, we analyzed how developers introduce configuration-related bugs, such

as introducing new functionalities or changing existing code. However, we performed this

analysis manually, which may introduce errors. For instance, a developers might remove

code from a source file and introduce the code removed in a later commit. To minimize this

threat, we used the Source Tree5 tool that highlights removed and added code to make the

analysis less error prone.

External validity

We analyzed 27 projects of different domains, sizes, numbers of preprocessor macros, and

numbers of developers. We selected mature C projects used in industrial practice, but we

also selected some younger projects with a few developers to consider a broader range of

project’s characteristics. The corresponding communities exist for years and are very active.

This way, we alleviated threats related to external validity.

5https://www.sourcetreeapp.com/



Chapter 5

A Variability-Aware Strategy to Detect

Configuration-Related Bugs

In this chapter, we present our strategy to detect configuration-related bugs based on

variability-aware analysis. The sampling-based strategy presented in Chapter 4 is incom-

plete, that is, it checks only a subset of configurations. So, variability-aware analysis is a

complimentary strategy to detect additional configuration-related bugs. The strategy uses a

variability-aware parser to create abstract syntax trees enhanced with variability information

and applies a number of bug checkers to detect different types of configuration-related bugs,

including syntax errors, undeclared variables, and unused functions.

In Section 5.1, we present the variability-aware strategy, explaining two simplifications

to make the analysis scalable in detail: (1) the use of stubs to eliminate external depen-

dencies in Section 5.1.1, and (2) platform-specific headers to reduce configurations in Sec-

tion 5.1.2. Last, Section 5.2 discussed an empirical study we performed to evaluate the

proposed variability-aware strategy using a corpus of 40 C real-world systems.

5.1 The Variability-Aware Strategy

Variability-aware tools, such as TypeChef [17] and SuperC [38], analyze complete con-

figuration spaces, considering file inclusion (#include directives) and macro expansions

(#define directives). Instead of considering macro definitions, macro expansion, and file

inclusion intertwined, these tools perform partial preprocessing, which preprocesses file in-

clusion and macro expansion, but retains variability information for further analysis [70].

91



5.1 The Variability-Aware Strategy 92

This way, variability-aware tools generate abstract syntax trees enhanced with all variability

information.

Existing variability-aware tools consider file inclusion of many supported platforms and

application scenarios. For example, Libssh uses two alternative cryptography routines:

libcrypto and libgcrypt. When using variability-aware analysis, we need to consider the

#include directives of both libraries. Likewise, for other optional functionalities. It causes

large amounts of I/O operations during compilation, which slows down the compilation pro-

cess and needs a time-consuming setup. An average file in the Linux Kernel, for example,

includes over 300 header files [17]. Furthermore, incorporating header files increases the

number of preprocessor macros per file significantly. The files of the Linux Kernel contain,

on average, 3 distinct macros when ignoring variability from header files, headers add an-

other 238 distinct preprocessor macros, on average. This way, the time-consuming setup of

variability-aware tools hinders the analysis of several projects. Next, we present two simpli-

fications of our strategy to make the analysis scalable.

5.1.1 Stubs

In this section, we present our strategy to detect configuration-related bugs using stubs, we

refer to Figure 5.1, and detail its four steps in what follows.

The goal of the first step is to enable us to analyze several projects. In this step, we

exclude all external libraries from the project by eliminating #include directives. We

still consider the header files of the projects, but exclude the external ones. For example,

the C file used as input in Figure 5.1 includes the stdio.h library, which is not part of

the project code. Other external dependencies may be specific for an operating system,

e.g., we cannot include the external windows.h in Linux. Because finding and downloading

the correct library version is a manual and time consuming task, considering these external

libraries of all supported platforms would hinders our analysis. In this way, we only focus

on the project code.
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#include <stdio.h>
#include <types.h>

#ifdef WIN32
#include <windows.h>
#endif

#ifdef UNIX
#include <unix.h>
#endif

void function ( ) {
  TINT x = 10;
  #ifdef ENGLISH
     printf("Value: %d.", x);
  #endif
  #ifdef PORTUGUESE
     printf("Valor: %d.", x);
  #endif
}

Source Code

#include <stubs.h>

void function ( ) {
  TINT x = 10;
  #ifdef ENGLISH
     printf("Value: %d.", x);
  #endif
  #ifdef PORTUGUESE
     printf("Valor: %d.", x);
  #endif
}

Source Code

#define TINT t_int
typedef int t_int;

Stubs

1

Variability-Aware
Parser

3

2

Script

Report

4

Input

Output

Developers
FeedbackLegend: Manual task

Macro 
Constraints

A⇔¬B

Figure 5.1: Strategy to detect bugs using stubs.

By excluding #include directives, Step 1 may leave some types and macros undefined.

We generate stubs using C/C++ Development Tooling (CDT) with the default configuration

to replace the original types and macros. Then, we create a stubs.h file to contain these

stubs (Step 2). We use the CDT parser to generate an abstract syntax tree for each source

code file. Then, we navigate through the abstract syntax tree, get the types and macros that

CDT identifies, and add them to the stubs.h file. We include this file into the project

source code and now the variability-aware parser is able to parse the source code.

Step 3 generates a shell script that calls the variability-aware parser for each source file.

We built an Eclipse plug-in that automates Steps 1-3 (see Chapter 7). Finally, we run the

script our strategy generates in Step 4. When the variability-aware parser reports a bug, we

perform a manual check to verify whether the bug is a configuration-related bug, that is, a

bug that appears only in some configurations of the source code. After fixing the bug, we

may continue to analyze the project source file, i.e., depending on the bug, we add a missing

bracket, or remove an additional comma, and so on. This way, the variability-aware parser

continues to analyze the file. In case of a configuration-related bug, we create a bug report

with information like the problematic configuration and code snippet with the bug. In this

step, we get feedback from the actual projects developers to confirm the bugs.
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When generating the abstract syntax trees using the variability-aware parser, we detect

configuration-related syntax errors. During this step, our strategy may receive any known

constraints to eliminate invalid configurations (for example, preprocessor macros A and B

are mutually exclusive). We pass this information to the variability-aware tool, which then

ignores the invalid configurations. Next, by using the abstract syntax trees, we are able

to implement different bug checkers. Notice, though, that we cannot verify type errors as

we substituted the external libraries, which may define types. Furthermore, it is important

to mention that our strategy to detect bugs using stubs may generate false positives and

negatives. For example, CDT may not identify all types and macros. Additionally, external

libraries defining macros may influence the program family code. Section 5.2.3 discusses

these topics in detail.

5.1.2 Platform-Specific Headers

Our second simplification preprocesses header files to generate platform-specific headers.

This way, our strategy parses the system source code (C files only) without preprocessing

and generates an abstract syntax tree enhanced with variability information for each source

file. Figure 5.2 illustrates the three steps of our strategy, detailed in what follows.

The goal of Step 1 is to enable us to analyze several C systems. A common difficulty

in performing variability-aware analysis is that many preprocessor macros are related to

platform-specific definitions and libraries. Hence, our strategy preprocesses the included

header files and generates platform-specific versions of these files. Despite focusing only on

one platform at a time, the strategy enables us to analyze several software systems in such a

platform. To generate platform-specific headers, we remove the conditional directives (such

as #ifdef and #endif) of the header files, according to the characteristics of a specific

platform. For instance, Figure 5.3 presents how we generate platform-specific headers for

the Linux platform using Gcc. We use the argument -U to disable macro WIN32 and the ar-

gument -D to enable macro LINUX. After preprocessing the source code, the C preprocessor

removes the conditional codes associated with the WIN32 preprocessor macro, and resolves

the includes. Thus, our strategy considers only one configuration of each header file. To in-

stantiate our strategy for different platforms, one needs to generate platform-specific header

files for each different target platform. However, notice that we do not preprocess the C files.

For those files, we consider the entire configuration space, as we explain in what follows.
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gcc -E

Source Files

C
#ifdef
#endif

C
#ifdef
#endif

Header Files

H
#ifdef
#endif
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Platform-Specific
Header Files

Variability
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Global 
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Figure 5.2: Strategy to detect bugs using platform-specific headers.

In Step 2, we use a variability-aware tool to parse the source code (C files) and generate

an abstract syntax tree for each source file. When parsing each source file, the tool uses

the platform-specific header files generated in the first step. Since we do not preprocess the

source files, they still contain preprocessor conditional directives. Therefore, the resulting

abstract syntax tree has choice nodes to represent the optional and alternative code blocks.

During this step, our strategy may receive constraints to eliminate invalid configurations. We

pass this information to the parser, which then ignores the invalid configurations.

gcc -E

Header Files

#include <stdio.h>
#ifdef WIN32
#include <windows.h>
#elif defined (LINUX)
void test ();
#endif
...

Platform-Specific
Header Files

int printf (..);
// Definitions from stdio.h

void test ();
...

H H...

-U WIN32
-D LINUX

Figure 5.3: Generating platform-specific headers for Linux.

Step 3 uses the abstract syntax trees of the source files to detect the bugs. Notice that we

consider the abstract syntax trees of all source files, which allow us to detect configuration-
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related bugs that span multiple files. At this point, we have the following variability-aware

checkers implemented: undeclared variables, unused variables, undeclared functions, and

unused functions. Nonetheless, we can extend our infrastructure to add other checkers, such

as checking for return types, and fields in structure declarations.

To detect configuration-related bugs in repositories, we extend our strategy to detect bugs

to analyze Git repositories. For each set of files of a given commit in the repository, we apply

our strategies to detect bugs. In the first commit of a given program family, we analyze all

files. In the following commits, we only consider the updated and added files. In this way,

we avoid the overhead of analyzing files that have not changed, as explained in Chapter 4.

5.2 Research Study

In this section, we present the settings of an empirical study performed to understand

configuration-related bugs and to evaluate our variability-aware strategy. To perform the

study, we instantiate our strategy to detect bugs using the well-known Gcc compiler,

TypeChef [17], a variability-aware parser widely used in previous studies [47; 92; 113;

12], and the Linux operating system to generate platform-specific header files. We choose

Linux because it provides simple and effective packaging tools to identify and install

the software system dependencies. In this study, we considered the following types of

configuration-related bugs: syntax errors, undeclared variables, unused variables, undeclared

functions, and unused functions.

5.2.1 Overall Study Design

In particular, this empirical study addresses the following research questions:

• RQ1. What are the frequencies of configuration-related bugs and warnings?

• RQ2. Do configuration-related bugs involve multiple macros?

• RQ3. How do developers introduce configuration-related bugs?

• RQ4. How long do configuration-related bugs remain in the code?
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Before answering the research questions, we consider feedback from the actual system

developers to confirm each configuration-related bug. So, all numbers we report here do not

include false positives. We also receive feedback regarding macro constraints and we used

this information to avoid checking invalid configurations. To answer RQ1, we parse the code

to detect syntax errors, execute four bug checkers (i.e., undeclared function, unused function,

undeclared variables, and unused variables), and count their frequencies. Regarding RQ2,

we count the number of preprocessor macros involved in each configuration-related bug. In

RQ3, we analyze each bug to verify how developers introduced them by using the source

file history in the software repository. Regarding RQ4, we analyze the dates that developers

introduced and fixed the bugs to measure the time in-between.

Subjects Selection

We analyzed 40 subject systems written in C ranging from 2681 to 1 536 979 lines of code.

These systems are from different domains, such as revision control systems, programming

languages, and games. Furthermore, we considered mature systems with many developers

as well as small systems with few developers. We selected these subject systems inspired by

previous work [3; 30; 4], which performed studies with the C preprocessor. We present the

details of each subject system in Table 5.1.

Instrumentation

We used the strategy presented in this chapter to investigate configuration-related bugs. We

checked all systems by using stubs, and 15 systems by checking one platform at a time (see

column “Platform” in Table 5.1). For some subject systems with Git software repository

available, we also considered the commits history of the source files, as presented in column

“Git” of Table 5.1. We used TypeChef version 0.3.5 to parse all possible configurations,

CDT version 8.1.2 to create the stubs, and Gcc version 4.2.1 to generate platform-specific

headers. Furthermore, to automatize our strategy, we used Eclipse Classic 4.2.2 to implement

and run a plug-in to analyze the source code of the systems. We also counted the number

of lines of code and the number of files of each system using the Count Lines of Code

tool version 1.56, which eliminates blank lines and comments. Finally, we used Git version

1.7.12.4 to identify changes in files and get information about project repositories.
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Operation

As a first part of our analysis, we executed our strategy using stubs to find configuration-

related bugs in all 40 C systems we considered in this study. Next, we performed an analysis

of 15 projects based on one platform at a time. Then, we investigated configuration-related

bugs in projects history using the Git repositories of the subject systems. During the analysis

of the repositories, we considered only the trunk, i.e., we do not analyze the individual

branches. Next, we interpret and discuss the results of this empirical study to investigate

configuration-related bugs.

5.2.2 Results and Discussion

In this section, we answer the research questions, discuss the patches we submitted, and

present the threats to validity. All data used in this study are available on our Websites.1

RQ1: What are the frequencies of configuration-related bugs and warnings?

By analyzing the 40 subject systems, we detected 24 configuration-related syntax errors. For

instance, Figure 5.4 depicts a configuration-related syntax error that we found in the Vim

project. In this example, if we define macro WIN32, an error arises, as there is a missing

logical operator at Line 4. Notice that it is a syntax error that any traditional compiler,

such as Gcc, detect when compiling the source code. However, the variability hinders the

detection of even simple configuration-related syntax errors, as they appear only when we

compile specific configurations of the source code. Because of variability, more than 74% of

developers believe that configuration-related bugs are more difficult to detect than bugs that

appear in all configurations [29].

In 15 subject systems, which we analyzed using the one platform at a time approach, we

found 14 undeclared functions; 7 unused functions; 2 undeclared variables; and 23 unused

variables. Overall, we detected 39 configuration-related bugs of these four types. Figure 5.5

presents an example of undeclared variable. This code excerpt is part of the Libpng project,

and it fails to compile when we enable SPLT and disable POINTER. In this configuration,

1http://www.dsc.ufcg.edu.br/~spg/gpce2013/ and http://www.dsc.ufcg.edu.

br/~spg/gpce2015.



5.2 Research Study 99

Table 5.1: Subject characterization and number of bugs

Family Application Domain LOC Platform Git Bugs/Warnings

Apache web server 144 768 X 3

Atlantis operating system 2681

Bash command language interpreter 44 824 X X 24

Bc calculator 5177 X

Berkeley DB database system 185 111

Bison parser generator 24 325

Cherokee web server 63 109

Clamav antivirus 107 548

Cvs version control system 76 125 1

Dia diagramming software 28 074 X 2

Expat XML library 17 103 X X

Flex lexical analyzer 16 501 X X

Fvwm windows manager 102 301

Gawk GAWK interpreter 43 070

Ghostscript postscript interpreter 1 536 979

Gnuchess chess player 9293 X X 1

Gnuplot plotting tool 79 557 X 5

Gzip file compressor 5809 X X 3

Irssi IRC client 51 356

Kin DB database system 64 120

Libdsmcc DVB library 5453 X

Libpng PNG library 44 828 X X 12

Libsoup SOUP library 40 061 X X

Libssh SSH library 28 015 X X 4

Libxml2 XML library 234 934 X 2

Lighttpd web server 38 847

Lua programming language 14 503 X X 2

Lynx web browser 80 334

M4 macro expander 10 469 X X 1

Mpsolve mathematical software 10 278

Mptris game 4988 X

Prc-tools C/C++ library for palm OS 14 371

Privoxy proxy server 29 021 X 1

Sendmail mail transfer agent 91 288

Sqlite database system 94 113

Sylpheed e-mail client 83 528

Rcs revision control system 11 916 X X

Vim text editor 288 654 4

Xfig vector graphics editor 70 493 X 1

Xterm terminal emulator 50 830 2

Total 3 860 078 68
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1. …
2. int fd_tmp = mch_open(filename, O_RDONLY
3. #ifdef WIN32
4.     O_BINARY | O_NOINHERIT
5. #endif
6.     , 0);
7. …

#define WIN32

Compilation 
Error

Configuration 1

#undef WIN32

Configuration 2

Figure 5.4: Code snippet of Vim with a syntax error.

developers declare variable p at Line 5 only when POINTER is enabled. The problem is that

they use this variable at Lines 9 and 10, in which preprocessor macro POINTER is disabled,

causing a compilation error.

1. #ifdef SPLT
2. void png_handle_sPLT () {
3.    …
4.    #ifdef POINTER
5.       png_sPLT_entryp p;
6.       p = palette + i;
7.       p->red = *start++;
8.    #else
9.       p = new_palette;
10.      p[i].red = *start++;
11.   #endif
12.   …
13.}
14.#endif

#define SPLT
#define POINTER

Configuration 1

#undef SPLT
#define POINTER

Configuration 2

#define SPLT
#undef POINTER

Configuration 3

#undef SPLT
#undef POINTER

Configuration 4

Compilation succeed Compilation error

Compilation Error

Figure 5.5: An undeclared variable in Libpng.

We also found unused variables and functions. Traditional C compilers raise warnings

like unused variables and functions when developers set specific command line parameters.

Still, we are able to find several unused variables and functions related to configurability.

As these warnings do not cause compilation errors, developers might neglect them, even in

mandatory code. Figure 5.6 presents a code excerpt with an unused variable in Libssh. In

this code excerpt, variable strong is not used when we disable LIBCRYPTO and enable

LIBCRYPT. The warning disappears when the opposite configuration selection happens.

Although unused variable is a simple warning, some developers still care about them, by

raising bug reports and providing patches to fix them. Indeed, we found bug reports and
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patches to fix unused variables and functions, such as the one to fix the Libssh warning,

presented in Figure 5.6.

1. int get_random (int strong) {
2. #ifdef LIBGCRYPT
3.     gcry_randomize(len);
4.     return 1;
5. #elif defined (LIBCRYPTO)
6.     if(strong){
7.         return bytes(len);
8.     } else {
9.         return pseudo(len);
10.    }
11.#endif
12.}

Configuration 1

Configuration 2

No warnings

#undef LIBCRYPTO
#define LIBGCRYPT

#define LIBCRYPTO
#undef LIBGCRYPT

Unused Variable

Figure 5.6: An unused variable in Libssh.

SUMMARY

We found configuration-related bugs and warnings of all types considered in our empir-

ical study. The most frequent type of bug and warnings is unused variables, followed by

undeclared functions, unused functions, syntax errors, and undeclared variables respec-

tively.

RQ2: Do configuration-related bugs involve multiple macros?

We found that the majority of configuration-related bugs (more than 89%) involve two or

less preprocessor macros. The number of preprocessor macros involved in a configuration-

related bug is the number of macros that one needs to enable or disable to find a specific bug.

Table 5.2 details the number of preprocessor macros involved in the bugs. For example, we

found 16 bugs involving only one preprocessor macro. We also found 18 bugs depending on

two macros, 3 bugs involving three preprocessor macros, and only 2 bugs when setting four

or more preprocessor macros.

Studies that detected configuration-related bugs by analyzing software repositories and

by using sampling analysis report similar results [16; 19], as discussed in Chapter 4. Because

we use a different technique, i.e., variability-aware analysis, our empirical study provides

more evidence that configuration-related bugs involving more than two preprocessor macros
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are not common in C open source systems. Our findings also support the effectiveness of

sampling algorithms, as the majority of the bugs do not involve high numbers of preprocessor

macros.

Table 5.2: Preprocessor macros involved in bugs.

Some preprocessor macros enabled 25

a 20

a ^ b 5

Some preprocessor macros disabled 22

!a 14

!a ^ !b 7

!a ^ !b ^ !c 1

Some options enabled and some disabled 16

a ^ !b 9

a _ !b 1

a ^ !b ^ !c 4

a ^ !b ^ !c ^ !d 1

a ^ b ^ c ^ d ^ e ^ f ^ !g 1

SUMMARY

The majority of configuration-related bugs (more than 89%) detected involve two or less

preprocessor macros. Our results are in line with the results of previous studies [19;

16] and support the effectiveness of sampling algorithms to detect configuration-related

bugs, such as LSA and pair-wise [36].

RQ3: How do developers introduce configuration-related bugs?

We investigated how developers introduce the bugs we report in our empirical study. Our

goal here is to identify whether developers introduce more bugs when implementing new

functionalities or fixing other bugs in the code. According to the results, developers introduce

more undeclared variables and functions, and unused variables and functions (73%) when in-

troducing new functionalities, such as a new source file, or adding a new function [39]. In

contrast to configuration-related syntax errors, the results are the opposite: developers intro-

duce the majority of syntax errors (85%) when fixing existing code [12]. We now present
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the results in the following order: syntax errors, undeclared functions, undeclared variables,

unused functions, and unused variables.

Developers introduce syntax errors in eight different ways: (I) introducing a conditional

if statement with a syntax error in its condition; (II) altering an if statement condition;

(III) introducing directives to encompass if and else if statements; (IV) adding a new

statement inside a conditional case; (V) modifying a function prototype; (VI) removing

conditional directives that encompass closing brackets; (VII) adding optional elements in an

array; and (VIII) modifying conditional parameters in a function call. Figure 5.7 illustrates

these eight cases with small code excerpts. Overall, we found syntax errors in the following

projects, as presented in Table 5.3.

+ Including line

III

  void f1(){ 
   …     
+ #ifdef A
+  if (..)){
+   … 
+  }
+ #endif  
  }  

I

  void f2(){ 
   …     
  #ifdef A
-  if (..){
+  if (..)){
    … 
   }
  #endif  
  }  

- Removing line

II
  void f3(){ 
   …     
+ #ifdef A
   if (..)){
    … 
   }
+ #endif
+ #ifdef B
   else if (..){
    …
   }  
+ #endif
  }  

  void f4(){ 
   …     
  #ifdef A
   case X:
+   p1 = call()
    … 
   }
  #endif  
  }  

IV

  void f5(){    
+ #ifdef A
+ void f5(){
+ #endif
+ #ifdef B
+ int f5(){
+ #endif
    … 
  }  

V

  void f6(){ 
   …     
  #ifdef A
   if (..){ 
  #endif
    …
  #ifdef A 
   }
  #endif  
  }  

VI
  void f7(){ 
   int p2[10] = {
   0,
   1,     
+ #ifdef A
+  2 
+ #endif
+ #ifdef B 
+  3
+ #endif  
   };
  }  

VII

  void f8(){ 
   call(param1     
  #ifdef A
-  , param2
+  param3
  #endif
   );  
  }  

VIII

Figure 5.7: Introducing configuration-related syntax errors.



5.2 Research Study 104

Table 5.3: Occurrences of configuration-related syntax errors.

Case Occurrences

I Apache (1), Cherokee (2), Irssi (1), Libpng (1), Libssh (3), and Vim (4).

II Apache (1) and Bash (1).

III Apache (1), Dia (1), and Libxml2 (1).

IV Bash (1), Libxml2 (1), and Vim (1).

V Gnuplot (1) and Vim (2).

VI Gnuplot (1), Libpng (1), and Xterm (2).

VII Gnuplot (1), Xfig (1).

VIII Libpng (1), Libssh (1), and Vim (2).

Developers introduce configuration-related undeclared functions in three different cases:

(I) adding a call to an existing function without checking the preprocessor directives that

encompass such function definition; (II) adding a call to a function without including the

header file with the function definition; and (III) changing a function definition without

modifying the corresponding function calls. Figure 5.8 illustrates these three cases with

small code excerpts. Table 5.4 presents the occurrences of undeclared functions.

Table 5.4: Occurrences of configuration-related undeclared functions.

Case Occurrences

I Bash (1), Gnuchess (1), Gzip (2), Libpng (6), and Privoxy (1).

II Lua (1).

III Libssh (1), and Lua (1).
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  #ifdef A
  void func1 () {
    ...
  }
  #endif
+ void func2 () {
+   func1();
+ }

  #ifdef B
  void func3 () {
+    func4();
  }
  #endif

  #ifdef C
  void func5 () {
     func6();
  }
  #endif
- void func6 () {
+ void func6 (int p) {
     ...
  }

+- Including lineRemoving line

I II III

Figure 5.8: Introducing configuration-related undeclared functions.

Figure 5.9 presents the only two cases we detected for undeclared variables. In case

(I), developers try to eliminate a shadowed declaration of variable p1 at Line 6. However,

they change the conditional directive at Line 1, raising an undeclared variable at Line 9.

Developers introduce another undeclared variable following case (II), i.e., they introduce a

new source file that defines variable p2 conditionally, but uses it in mandatory code. We

found only one bug for each case: (I) Libpng (1), and (II) Gzip (1).

 -  1. #ifndef A
 +  2. #ifdef A
    3.   int p1;
    4. #endif
    5. #ifdef A
 -  6.   int p;
    7.   p1 = func1();
    8. #else
    9.   p1 = func2();
   10. #endif

+- Including lineRemoving line

I II

 + void func3 () {
 + #ifdef A
 +   int p2;
 + #endif
 +   ...
 +   p2 = func4();
 +   ...
 + }

Figure 5.9: Introducing configuration-related undeclared variables.

Developers introduce unused functions in two cases: (I) conditionally defining a function

and calling it in code encompassed with different preprocessor directives; and (II) removing

a call to a conditionally defined function, and adding another call to a mandatory function.

Figure 5.10 depicts these two cases. We found unused functions following case (I): Bash (4),

Libpng (1), and M4 (1); and (II): Libpng (1).
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 +  #ifdef A
 +  void func1 () {
 +    ...
 +  }
 +  #endif
 +  void func2 (){
 +  #if defined(A) && defined(B)
 +    func1();
 +  #endif
 +  }

+- Including lineRemoving line

I II
 - #ifdef A   
 - void func3 () {
 -   ...
 - }
 - #endif
   void func4 () {
     ...
   }
   void func5 () {     
   #ifdef A
 -   func3();
 +   func4();
   #endif
   }

Figure 5.10: Introducing configuration-related unused functions.

We found unused variables being introduced in the following three cases: (I) adding a

new variable to an optional code without using such variable; (II) adding a new variable to

mandatory code and using this variable only in optional code; and (III) moving the uses of

a variable to optional code. Figure 5.11 depicts these three cases. We found the following

occurrences of case (I): Bash (6); (II): Bash (8); and (III): Bash (1), and Libssh (1).

  #ifdef A
  ...
+ void func1 () {
+   int p1;
+   ...
+ }
  #endif

  void func2 () {
    ...
+   int p2;
     ...
+   #ifdef B
+     p2 = func3();
+   #endif
    ...
  }

  
  void func4 () {
    int p3;
    ...
+   #ifdef C
    p3 = func5();  
+   #endif
    ...
  }

+ Including line

I II III

Figure 5.11: Introducing configuration-related unused variables.

SUMMARY

Developers introduce configuration-related bugs by introducing new functionalities and

by fixing existing code. Most undeclared variables and functions, and unused variables

and functions (73%), developers introduce when adding new functionalities. In contrast

to configuration-related syntax errors, the results are the opposite: developers introduce

the majority of syntax errors (85%) when fixing existing code.
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RQ4: For how long do configuration-related bugs remain in the code?

In this section, we analyze the time that developers take to fix configuration-related bugs.

Our results show that the time varies from days to years. For example, developers fix a bug

of the Libssh system (keyfiles.c) after 69 days. In contrast, developers took more than

5 years to fix the error in parser.c of Gnuplot. Notice that we only list bugs we know

exactly when developers introduce them, and bugs already fixed.

Developers may take a long time to fix bugs due to different reasons. First, the

configuration-related bugs may be difficult to detect because of variability [29]. Second,

developers might have problems to understand code that they are not familiar with, possibly

written by another developer [29]. Third, in case the bugs arise in not exercised or deliverable

configurations, developers tend to rank the fixing task as lower priority [12].

SUMMARY

Developers take a long time to fix even simple configuration-related bugs, such as syntax

errors, which are detected by traditional C tools, such as Gcc. However, the variability

of program families hinders the detection of configuration-related bugs in practice.

Submitting Patches to Fix Bugs

We submitted 38 patches—for each bug not fixed—to 6 program families: Bash (21),

CVS (1), Libpng (7), Libssh (6), Vim (2), and Xfig (1). We submitted these patches using

bug tracking systems and via email directly to the main developer of the subject system. We

consider that developers accept a patch when they mention that it is a problem by email, or

keep the patch open after updating information, such as priority. Conversely, we consider

that developers reject the patch when they mention it is not a problem by email, or update

this information on the patch. Thus, developers accepted 13 patches, rejected 6 patches,

ignored 15 patches, and we did not receive feedback regarding 4 patches we submitted to

Libssh. Notice that we do not consider these 4 bugs of Libssh in our statistics. We present

information about the patches submitted in Table 5.6, which does not include the 15 patches

ignored by the Bash developers.
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Table 5.5: Time to fix configuration-related bugs.

Family File Kind Days to Fix

Apache ssl_util_ssl.c syntax error 278

Apache ab.c syntax error 222

Apache mod_include.c syntax error 353

Bash getcppsyms.c syntax error 119

Dia app_procs.c syntax error 232

Dia preferences.c syntax error 385

Gnuplot plot.c syntax error 160

Gnuplot util.c syntax error 7

Gnuplot parser.c syntax error 1924

Gnuplot graph3d.c syntax error 78

Gnuplot datafile.c syntax error 414

Gzip deflate.c undeclared function 6678

Gzip util.c undeclared function 5983

Libpng iccfrompng.c undeclared function 1289

Libpng iccfrompng.c undeclared function 1289

Libpng iccfrompng.c undeclared function 1289

Libpng iccfrompng.c undeclared function 1289

Libpng pngpixel.c undeclared function 1289

Libpng pngpixel.c undeclared function 1289

Libpng pngrutil.c undeclared variable 530

Libpng pngtrans.c syntax error 259

Libssh keyfiles.c undeclared function 69

Libssh channels.c unused variable 4

Libssh dh.c syntax error 268

Libxml2 xmlregexp.c syntax error 150

Libxml2 xpath.c syntax error 2

Lua loadlib_rel.c undeclared function 748

Lua loadlib_rel.c undeclared function 999

Vim ex_cmds2.c syntax error 99

We submitted 20 patches to Bash and developers accepted only one. Four bugs do not

happen in practice (i.e., they are false positives), as the build system avoids the specific

configurations they appear in. In addition, one particular developer confirmed but ignored

the 15 patches we report to fix unused variables: “I don’t care about unused variables too

much; the compiler gets rid of them. So, they have no cost."
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Despite having no performance cost, unused variables and functions slightly pollute the

code, which might explain other developers caring about them. For instance, we find a single

patch to Gnuchess that fixes 19 unused variables.

Regarding the patches we submit to Libpng, developers accepted all 7 patches, and they

have already fixed the bugs in the software repository. Libpng developers fixed a syntax error

immediately after our patch submission. Vim developers accepted one patch and rejected

another by just arguing that it arises in an invalid configuration. Developers rejected a patch

submitted to the Xfig program family as well. In this case, developers mention they do

not use (at least for now) the erroneous macro we identify. According to the following

quotation, it seems that the macro will be used when they decide to distribute the Xfig manual

in Japanese. So, we still count this as an error, since it may arise in the future, as mentioned

by a developer: “It is not used now as Japanese PDF manual is not distributed with Xfig,

and I think you can simply ignore it."

5.2.3 Threats to Validity

In this section, we discuss some threats to validity.

Construct Validity

Checking whether the configuration-related bugs detected are real or represent false positives

threatens construct validity. To minimize this threat, we perform two tasks: (i) for the

systems we know preprocessor macro constraints in advance, we set TypeChef to take them

into account and consequently avoid analyzing invalid configurations; and (ii) ask the actual

developers to confirm each bug not fixed in the software repository. Developers accepted 13

configuration-related bugs we report.

Internal Validity

We analyzed the bugs manually, which is a time-consuming and error-prone activity, which

threatens internal validity. Nevertheless, because we got feedback from developers and con-

firmed the bugs we report, we minimized this threat.

Our strategy excludes #include directives to eliminate external libraries in order to

scale. However, notice that we may face false negatives due to the exclusion of these

#include directives, which makes our strategy unsound. Some external libraries may
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Table 5.6: Patches submitted to subject systems.

Family File Accept Status Variable / Function

Bash execute_cmd.c valid open syntax error

Bash execute_cmd.c valid open arith_cmd undeclared

Bash bashline.c invalid closed add_history undeclared

Bash flags.c invalid closed init_hist undeclared

Bash jobs.c invalid closed imp_sigchld undeclared

Bash strerror.c invalid closed strerror undeclared

Cvs buffer.c valid open syntax error

Libpng iccfrompng.c valid fixed init_io undeclared

Libpng iccfrompng.c valid fixed get_iCCP undeclared

Libpng iccfrompng.c valid fixed read_info undeclared

Libpng iccfrompng.c valid fixed destroy undeclared

Libpng pngpixel.c valid fixed get_depth undeclared

Libpng pngpixel.c valid fixed get_type undeclared

Libpng pngvalid.c valid fixed syntax error

Libssh keys.c valid fixed syntax error

Libssh keys.c valid fixed syntax error

Libssh sftp.c - open sftp_read undeclared

Libssh main.c - open sftp_open undeclared

Libssh torture_rand.c - open ssh_pthread undeclared

Libssh chmodtest.c - open sftp_new undeclared

Vim os_unix.c valid open syntax error

Vim if_mzsch.c invalid closed syntax error

Xfig w_cmdpanel.c invalid closed syntax error

(-) We did not receive feedback regarding 4 bugs of Libssh, so we do not consider them in our statistics.

introduce additional code through macro definitions that may cause configuration-related

bugs into the family source code. In this context, our strategy may miss some syntax errors.

Moreover, the strategy may yield false positives due to types and macros that the CDT parser

does not identify, i.e., these types and macros may not be included in our stubs.h file. So,

we add the type or macro manually, which is an error-prone task.

The strategy considers only one configuration of header files when performing our second

simplification to scale. We used Gcc and generated header files for the Linux platform only.

However, notice that we may face false negatives due to this simplification, which threatens

internal validity. In this context, our strategy may miss some configuration-related bugs that

occur only for other platforms, such as Windows and Mac OS. Still, in our study, we found
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63 configuration-related bugs, and we confirmed them either by checking if developers fixed

them in software repositories or by getting feedback from developers.

Our strategy analyzes only updated and added files in software repositories from the

second to the last commit. However, this approach may lead to false negatives. For instance,

developers may update a macro definition in a file A, which leads to errors in a different file

B. In our approach, because only A has been modified, we only analyze A. However, later, if

developers modify B, the strategy may catch the bug. Furthermore, we may miss some bugs

during the analysis of the repositories since we analyze only the trunk, i.e., branches may

contain configuration-related bugs as well.

External Validity

We analyzed 40 systems of different domains, sizes, and different number of developers. We

selected well-known and active program families used in industrial practice. The families

communities exist for years and seem very active: there are commits in 2016. In this way,

we alleviate this threat.



Chapter 6

Catalog of Refactorings

In this chapter, we present our catalog of refactorings to resolve undisciplined directives and

an evaluation of the evaluation of the catalog of refactorings considering four perspectives:

frequency of application possibilities in real-world software systems, opinion of developers,

behavior preservation, and quality of the refactored code in terms of amount of additional

code clone, lines of code, and preprocessor directives.

In Section 6.1, we present the catalog of refactorings, explaining the code transformation

and showing the preconditions of each refactoring. In Section 6.2, we present the evaluation

of the catalog of refactorings in detail.

6.1 Refactorings

Our refactorings are transformations, where each transformation is an unidirectional refactor-

ing and consists of two templates of C code snippets: Left-Hand Side (LHS) and Right-Hand

Side (RHS). The LHS defines a template of C code that contains undisciplined preprocessor

usage. The RHS defines a corresponding template of the refactored code without undis-

ciplined preprocessor usage. We can apply a refactoring whenever the LHS template is

matched by a piece of C code and satisfies the preconditions (!). A matching is an assign-

ment of all meta-variables occurring in the LHS/RHS templates to concrete values arising

from the code. We highlight meta-variables using capital letters and ⊕ to represent boolean

operators. Any element not mentioned in both C code snippets remains unchanged, so the

refactoring templates only show the differences between pieces of code.

112
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To define this catalog, we analyzed preprocessor directives in 12 C subject systems, and

identified recurrent patterns of undisciplined directives that occur frequently in practice. In

Table 6.1, we present the characterization of these systems. Overall, we defined 14 refac-

torings and classify them into four categories: single statements, conditions, wrappers, and

comma-separated elements. Next, we present the catalogue of refactorings. In Appendix A,

we list the complete list of refactorings, including some refactoring variations that we omit

in this chapter.

Table 6.1: Subject characterization

Project Application Domain LOC #ifdefs

Apache web server 144 768 2173

Bc calculator 5177 91

Dia diagramming software 28 074 320

Expat XML library 17 103 362

Flex lexical analyzer 16 501 216

Fvwm windows manager 102 301 1375

Ghostscript postscript interpreter 1 536 979 3168

Gnuchess chess player 9293 67

Gzip file compressor 5809 298

Lighttpd web server 38 847 933

Lua programming language 14 503 193

Mptris game 4988 61

Total 1 916 828 9257

6.1.1 Single Statements

A single statement contains no compound blocks, such as variable initializations, function

calls, and return statements. In Refactoring 1, we present our refactoring to resolve undis-

ciplined preprocessor usage in single statements. In this refactoring, we duplicate language

tokens to encompass with preprocessor directives entire statements only. Notice that we du-

plicate the token COND_1 to make the preprocessor directive disciplined. We use a return

statement as an example, but we handle similar statements in the same way.
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Refactoring 1 hundisciplined returnsi

return COND_1
#ifdef EXP
     COND_2
#else
     COND_3
#endif
;

#ifdef EXP
return COND_1    COND_2;
#else
return COND_1    COND_3;
#endif

⊕

⊕

⊕

⊕

6.1.2 Conditions

To resolve undisciplined directives surrounding boolean expressions (used in if and while

statements), we propose Refactoring 2. In this refactoring, we use an extra variable to pre-

serve the statement’s conditions. In this sense, we define a precondition that the code is not

using the specific identifier (test), as we cannot define variables with the same identifier in

the same scope. We refactor while statements with undisciplined conditions using a similar

refactoring.

Refactoring 2 hundisciplined if conditionsi

if ( COND_1
#ifdef EXP
     COND_2
#endif
){
  STMTS
}

bool test;
#ifdef EXP
test = COND_1    COND_2;
#else
test = COND_1;
#endif
if (test) {
  STMTS
}

⊕
⊕

(!) test is not used in the code

6.1.3 Wrappers

In Refactoring 3, we target another case of undisciplined preprocessor usage: alternative

statements. We use an alternative if statement as an example, but there are similar refactor-

ings for other alternative control-flow statements, such as while and switch statements.

In this refactoring, we also need an extra program variable to keep the statement condition.

Notice that test receives the evaluation of COND_1 or COND_2 depending on whether we

define macro EXP or not. Likewise, we define a precondition that text is not used in the

code to avoid possible compilation errors.
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Refactoring 3 halternative if statementsi

#ifdef EXP
if (COND_1) {
#else
if (COND_2) {
#endif
  STMTS
}

bool test;
#ifdef EXP
test = COND_1;
#else
test = COND_2;
#endif
if (test) {
  STMTS
}

(!) test is not used in the code

In Refactoring 4, we present a refactoring to remove wrappers. In this refactoring, we

also use variable test to preserve the statement’s condition and to discipline the prepro-

cessor directive. We use an if wrapper as an example, but there are similar refactorings for

removing undisciplined while, for, and else-if wrappers.

Refactoring 4 hif wrapperi

#ifdef EXP
if (COND_1)
#endif
{
  STMTS
}

bool test = 1;
#ifdef EXP
test = COND_1;
#endif
if (test) {
  STMTS
}

(!) test is not used in the code

In Refactoring 5, we define a refactoring to remove if statements ending with an else

statement. In this case, we replace the else by another if statement to resolve the undis-

ciplined usage of the preprocessor. In this refactoring, variable test works like a flag to

avoid executing STMTS_2 when macro EXP is disabled.

6.1.4 Comma-Separated Elements

Refactoring 6 targets undisciplined directives in comma-separated program elements. In this

refactoring, we set a precondition that the original code does not define a macro PARAM or

contains a token with that name, such as a type definition or identifier. If we change a macro
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definition that the original code is already using, we may introduce behavioral changes. This

way, we modify the code locally without global impact. We handle other types of comma-

separated elements, such as array and enum elements, with a similar refactoring.

Refactoring 5 hif statements with an elsei

#ifdef EXP
if (COND_1){
  STMTS_1
} else
#endif
{
  STMTS_2
}

bool test = 1;     
#ifdef EXP
if (COND_1){
  STMTS_1
  test = 0;
}
#endif
if (test){
  STMTS_2
}

(!) test is not used in the code

Refactoring 6 hundisciplined function definitionsi

type function_name ( 
#ifdef EXP 
type param_id 
#endif 
){ 
  STMTS
} 

#ifdef EXP
#define PARAM type param_id 
#else
#define PARAM "" 
#endif 
type function_name (PARAM){
  STMTS 
}

(!) PARAM is not used in the code

6.2 Evaluation

In this section, we present the settings of our study performed to evaluate the catalog of

refactorings. We performed complimentary empirical studies to evaluate the catalog of refac-

torings with regards to the frequency of application possibilities in practice, opinion of de-

velopers, behavior preservation, and quality of the refactored code in terms of code clone,

LOC, and number of preprocessor directives. The goal of our evaluation is to provide evi-

dence that developers prefer to use our refactored code instead of using the preprocessor in

undisciplined ways, to increase confidence that our catalog of refactorings resolves undisci-

plined preprocessor usage without introducing behavioural changes, and to show that there
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are many application possibilities to use our refactorings in real-world C projects. All data

used in this study are available on our Website.1

6.2.1 Overall Study Design

In particular, to answer the following research questions:

• RQ1: What is the frequency of possibilities to apply the refactorings in practice?

• RQ2: What is the opinion of developers regarding the catalog of refactorings?

• RQ3: Are the refactorings behavior preserving?

• RQ4: Do the refactorings increase code clones, LOC and preprocessor directives?

To answer RQ1, we analyzed 63 subject system searching for opportunities to apply the

refactorings of the catalog in practice. We considered systems of different sizes and from

various domains, such as games, operating systems, web servers, and database systems.

Regarding RQ2, we analyzed data from an online survey among 202 developers [29]. We

asked developers about their code preferences showing two equivalent code snippets: (1) the

original code from a real-world system with undisciplined directives, and (2) a disciplined

version of the original code snippet created by applying one of our refactorings.

To answer RQ3, we developed a formal model of a subset of the C language and a

corresponding code generator, based on Alloy, to automatically generate program families

with application possibilities for our refactorings and test cases. Appendix B presents more

information about the C model. In addition, we used BusyBox, OpenSSL, and SQLite, three

real-world systems with test cases available, and applied our refactorings. For all subjects,

we ran the test cases before and after applying our refactorings, in the generated program

families as well as in the three real-world systems to verify behavior preservation.

To answer RQ4, we used a similarity detector to identify clones in the parts modified by

the refactorings and compare the original and the refactored source files. Then, we counted

the LOC and the number of preprocessor directives of the original source files and the LOC

of the source files after applying our refactorings.

6.2.2 Results and Discussion

Next, we present the results and discuss each research question.
1http://www.dsc.ufcg.edu.br/~spg/catalog/.
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RQ1: What is the frequency of possibilities to apply the refactorings in practice?

To count the number of application possibilities for the refactorings of our catalog, we

performed an analysis of 63 C popular systems, including Bash, Gcc, Linux, and Vim.

We selected projects from different domains, such as games, text editors, web servers,

and operating systems. Furthermore, our analysis considers popular, big and mature

projects, but also newer and smaller systems without widespread use in practice. We

selected the projects based on the corpus of prior studies on the C preprocessor [3;

67], covering a range of different sizes (2.6 thousand to 7.8 million lines of code). Moreover,

we also selected systems that use GitHub and its pull request infrastructure actively to submit

patches to the subject systems.

We used the SrcML2 tool to identify application possibilities for our refactorings. SrcML

transforms C source code into an XML representation, which we used to detect the different

patterns of undisciplined directives. Table 6.2 presents the number of application possibilities

in the 63 systems analyzed in this study. Overall, we found 5670 opportunities, showing that

we can apply our refactorings to several real-world subject systems.

According to our analysis, Refactorings 2 and 6 are the most frequent ones in practice,

while Refactorings 1 and 3 are the less frequent. We found that some projects heavily make

use of undisciplined preprocessor directives, such as Gcc, Glibc, Linux, and Vim. There are

also projects that avoid undisciplined directives at all, such as Bison and Mpsolve, and others

use only a few undisciplined directives, such as Libssh and Totem. We found application

possibilities in almost all projects analyzed (97%) in this study, showing that developers use

undisciplined directives in practice.

SUMMARY

We considered subject systems of different sizes and from various domains, we

found 5670 application possibilities (90 per project) for the refactorings in practice.

There are places to apply the refactorings in almost all systems (97%) analyzed in this

study, showing that developers use undisciplined directives in practice.

2http://www.srcml.org/
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Table 6.2: Application possibilities in 63 C projects.

Project Version Domain R1 R2 R3 R4 R5 R6

Angband 4.0.4 game 0 0 1 1 0 1

Amxmodx 1.8.3 server administration tool 0 21 7 12 84 6

Asfmapready 3.2.1 command line tools 0 0 3 0 0 0

Bash 4.2 command language interpreter 2 5 26 12 6 7

Berkeley DB 4.7.25 database system 5 18 6 1 9 16

Bison 2.0 parser generator 0 0 0 0 0 0

Busybox 1.23.1 common UNIX utilities 20 15 6 20 4 19

Cherokee 1.2.101 Web server 0 7 1 2 23 0

Clamav 0.97.6 antivirus software 9 9 4 4 17 12

Collectd 5.5.0 system administration tool 0 5 2 0 1 3

Curl 7.46.0 data transferring tool 5 19 2 8 38 7

Cvs 1.11.17 version control system 4 23 7 14 26 6

Dmd 2.069.2 language interpreter 2 37 12 9 2 15

Emacs 24.4 text editor 20 41 9 24 34 14

Ethersex 0.1.2 processor firmware 5 11 30 11 5 3

Freeradius 3.0.10 radius server 0 19 1 4 21 44

Gawk 3.1.4 interpreter 0 11 4 7 32 5

Gcc 4.9.2 compiler 51 371 32 172 121 114

Glibc 2.20 C library 29 53 16 76 71 38

Gnumeric 1.12.20 spreadsheet program 4 0 1 1 0 5

Gnuplot 4.6.1 plotting tool 2 6 4 15 42 7

Irssi 0.8.15 chat client 0 0 3 1 4 0

Kerberos 1.14 network authentication protocol 0 10 4 3 3 4

Kindb 1.0 database system 0 0 7 0 2 0

Hexchat 2.10.2 chat client 0 0 5 2 2 5

Libdsmcc 0.5 DVB library 0 0 0 0 0 0

Libpng 1.5.14 PNG library 5 12 9 5 23 1

Libsoup 2.41.1 SOUP library 0 0 0 0 0 0
Libssh 0.5.3 SSH library 0 0 0 0 1 1

Libxml2 2.9.0 XML library 1 27 6 5 57 8

Linux 3.18.5 operating system kernel 129 60 40 71 277 518

M4 1.4.17 macro expander 0 3 4 5 15 2

Machinekit 0.1 machine control platform 0 5 3 1 3 4

Mapserver 7.0.0 Web application framework 0 4 4 2 5 2

Mongo 1.1.8 MongoDB client library 0 2 0 0 1 1

Mpsolve 2.2 mathematical software 0 0 0 0 0 0

Opensc 0.15.0 smart card tools and middleware 0 0 3 0 0 7

Openssl 1.0.2 SSL library 3 11 23 8 114 9

Opentx 2.1.6 radio transmitter firmware 0 3 1 1 2 7

Openvpn 2.3.6 virtual network tool 8 14 5 5 20 2

Ossec-hids 2.8.3 intrusion detection system 0 5 12 4 9 13

Pacemaker 1.1 cluster resource manager 0 1 0 0 0 5

Parrot 7.0.2 virtual machine 0 1 0 1 0 38

Pidgin 2.10.11 chat client 11 17 2 2 4 10

Prc-tools 2.3 gcc for Palm OS 1 0 0 0 0 0

Privoxy 3.0.19 proxy server 2 11 12 7 9 5

Python 2.7.9 language interpreter 34 33 12 14 49 72

Rcs 5.7 revision control system 2 0 0 0 0 1

Retroarch 1.2.2 libretro API 9 11 11 8 23 14

Sendmail 8.14.6 mail transfer agent 5 21 16 3 9 2

Sleuthkit 4.2.0 command line tools 0 1 5 0 15 6

Sqlite 3080200 database system 8 7 4 5 17 6

Syslog-ng 3.7 log management application 0 2 1 0 0 6

Sylpheed 3.3.0 e-mail client 13 2 3 0 2 2

Taulabs 20150922 autopilot system library 0 6 3 3 8 24

Tk 8.6.3 widget toolkit 2 5 2 1 0 8

Totem 2.17.5 video application 0 0 0 0 1 1

Uwsgi 1.9 application container 0 3 0 0 3 9

Vim 6.0 text editor 62 279 46 82 365 14

Wiredtiger 2.6.1 data management platform 0 3 0 0 0 9

Xfig 3.2.4 vector graphics editor 1 3 0 0 20 10

Xorg-server 1.9.3 window system 14 47 14 20 48 7

Xterm 2.2.4 terminal emulator 2 15 1 9 1 6

Total 470 1295 435 661 1648 1161
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RQ2: What is the opinion of developers regarding the catalog of refactorings?

To learn about the opinion of developers regarding our catalogue of refactorings and undis-

ciplined directives, we performed a survey among 202 developers and submitted 28 patches

to real-world C project converting undisciplined into disciplined preprocessor directives.

Survey

We performed an online survey among 202 developers asking for developer’s prefer-

ences [29]. To select participants, we collected information about developers by mining the

repositories of several popular systems, including the Linux Kernel and Apache. This way,

we randomly selected a number of developers from each system, and sent 3091 emails asking

developers to fill our survey. Overall, 202 (6.5%) developers completed the online survey, as

discussed in Chapter 3.

In particular, we asked three specific questions about our refactorings. We presented three

pairs of two equivalent code snippets: (1) the original code from a real C project; and (2)

the refactored version of the original code created by applying one of our refactorings. For

each pair of code snippets, we asked developers about their preferences. Next, we present

the code snippets used in the survey questions.

In Figure 6.1, we present a concrete instance of Refactoring 1. Figure 6.1 (a) shows part

of the Vim source code with undisciplined preprocessor directives. Figure 6.1 (b) presents

the refactored (i.e., disciplined) version of the code snippet. According to the results of our

survey, 87% of developers preferred the refactored version of the code snippet, 7% preferred

the undisciplined version, and 6% mentioned that they have no preference.

 mfp = open(mf_fname
 #ifdef UNIX
   , (mode_t)0600
 #else
   , S_IREAD | S_IWRITE
 #endif
 );       

(a)

 
 #ifdef UNIX
 mfp = open(mf_fname, (mode_t)0600);
 #else
 mfp = open(mf_fname, S_IREAD | S_IWRITE);
 #endif

(b)

Figure 6.1: Duplicating tokens to discipline preprocessor directives.

In Figure 6.2, we show a pair of code snippets, in which we show an application of Refac-

toring 2. Figure 6.2 (a) shows part of the Libpng source code with the refactoring application
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possibility, that is, the original code with undisciplined preprocessor usage. Figure 6.2 (b)

presents the refactored version of the code snippet (i.e., with disciplined preprocessor usage

only). From the 202 developers that completed the online survey, 67% preferred the refac-

tored version, 20% preferred the undisciplined version, and 13% of the developers stated that

they have no preference.

 if (bit_depth < 8
 #if defined (TESTS_SUPPORTED)
     && row != NULL
 #endif
 ){
     // Lines of code here..
 }          

(a)

 int test = (bit_depth < 8);
 #if defined (TESTS_SUPPORTED)
 test = test && (row != NULL);
 #endif
 if (test){
     // Lines of code here..
 }          

(b)

Figure 6.2: Adding a local variable to discipline preprocessor directives.

In Figure 6.3, we depict an instance of Refactoring 6. Figure 6.3 (a) shows part of the

source code of Vim, while Figure 6.3 (b) presents the refactored version of the code snippet.

From the developers that completed our survey, 57% preferred the refactored version, 30%

preferred the undisciplined version, and 13% stated that they have no preference.

 void msgNetbeansW32(  
 #if defined (GUI_W32)
   Xt client,
 #endif
 XtInputId *id){ 
   // lines of code..
 }

(a)

 #if defined (GUI_W32)
 #define PARAM Xt client,
 #else
 #define PARAM
 #endif
 void msgNetbeansW32(PARAM XtInputId *id){ 
   // Lines of code..
 }

(b)

Figure 6.3: Using macros to discipline preprocessor directives.

So, overall we considered three types of refactorings: (1) a refactoring that introduces

local variables, (2) a refactoring that introduces macros, and (3) a refactoring that duplicates

a few language tokens. We conclude that most developers agree with our three strategies of

resolving undisciplined directives. The repetition of a few tokens, as we present in Figure 6.1,

received support from almost 90% of developers, while the use of preprocessor macros, as

presented in Figure 6.3, received the weakest support. So, developers seem prefer to resolve

undisciplined directives by duplicating a few tokens and by adding a local variable, showing

that we should make use of preprocessor macros more carefully.
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SUMMARY

The results of our survey reveal that most developers preferred to use the refactored (i.e.,

disciplined) code instead of using the preprocessor in undisciplined ways. Almost 90%

of developers support the repetition of a few tokens to discipline preprocessor directives,

but we should use additional macros more carefully.

Patches

To further understand how developers perceive undisciplined directives, we submit-

ted 38 patches to open source projects. For selecting projects, we used SHTorrent3 for

identifying active projects that heavily use pull requests on GitHub,4 the infrastructure

we used to submit the patches. We submitted 28 patches to the most active projects in

which we found application possibilities for our refactorings. Overall, developers accepted

21 (75%) patches submitted: Angband (1); Amxmodx (1); Asfmapready (1); Collectd (1);

Curl (1); Dmd (1); Libpng (1); Linux (1); Mapserver (1); Machinekit (1); Mongo (1);

Opensc (1); Openssl (1); Opentx (1); Ossec-hids (1); Retroarch (1); Sleuthkit (1); Syslog-

ng (1); Taulabs (1); Uwsgi (1); and Wiredtiger (1).

The feedback we received supports the perception that undisciplined preprocessor usage

influences the code quality negatively. We received feedback by using the GitHub, which

allows us to talk to developers by including comments in each patch. We submitted one

refactoring converting an undisciplined into a disciplined directive per patch, and one patch

per system. In this sense, our patches were judged by a broad audience of developers of the

28 systems used in this study. This way, we minimized the problem of having many patches

accepted by the same developers.

For most patches, developers agreed with our suggestion to resolve the undisciplined

preprocessor usage. For example, one developer mentioned that the refactoring “makes sense

[to him] and it is a good idea.” Developers accepted 12 patches without asking for changes.

However, for some patches, developers asked us, for example, to rename local variables,

and to include or exclude spaces between brackets to better follow the project’s standards.

For instance, one developers said that “[the patch] would be fine except for the unnecessary

3http://ghtorrent.org/
4https://github.com/
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extra parentheses.” Table 6.3 presents the patches developers accepted after we applied a few

minor changes.

Table 6.3: Patches accepted after minor changes.

Project Changes requested by developers

Dmd Remove unnecessary parentheses.
Linux Fix typo.
Libpng Duplicate the code instead of adding a new local variable.
Machinekit Fix indentation.
Openssl Rename local variable.
Opentx Remove unnecessary parentheses.
Retroarch Use integer instead of boolean.
Syslog-ng Extract code to a helper function.
Uwsgi Extract directives to a macro.

We noticed that some developers are resistant to apply any changes to their source code.

Such developers raised some reasons, saying that “we know that [the code] works, and a

change there would need very close scrutiny to ensure [that] no combination of features gets

broken, review time needed.” In another project, developers complained about introducing

local variables, for example, a developer said that “I agree with you. But the resources are

limited [in our context] and we should make every effort to not waste them.” So, they did not

accept our patch because of a new local variable that we used to discipline the preprocessor

directives. Table 6.4 presents the patches rejected by developers.

Table 6.4: Patches rejected.

Project Argument against changes

Ethersex Patch defines a new local variable, we have limited resources.
Freeradius Patch needs improvements, it is harder to read.
Hexchat New code is harder to read.
Kerberos The code is old, what we need is to remove the conditional directives.
Irssi Patch needs to be improved.
Openvpn The code is working and changes will require test effort and time.
Pacemaker Changes require test effort and time.
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SUMMARY

Overall, we conclude that developers support the idea of converting undisciplined into

disciplined directives. Developers accepted 21 (75%) out of the 28 patches submitted,

showing more evidence that they prefer to use disciplined directives.

RQ3: Are the refactorings behavior preserving?

The C preprocessor hinders the development of tool support available in other languages,

such as automated refactoring [21; 17; 22; 23; 24; 25]. After applying refactorings in C,

developers need time to review the different configurations of the source code. This way,

it is important to make sure that the refactorings of our catalog do not introduce behavioral

changes. To get confidence into our catalog, we analyzed a subset of application possibilities

to improve confidence in behavior preservation by using manual code reviews. Furthermore,

we used automated testing applying the refactoring in: (1) programs automatically generated

based on a formal model of a subset of the C language, which we specified using Alloy;5 and

(2) real-world projects with test cases available, as discussed next.

Formal Model

To test behavior preservation, we use regression testing by running test cases before and

after applying the refactorings. For this purpose, we used a strategy proposed by Soares

et al. [125], as illustrated in Figure 6.4. In Step 1, we created a formal model to generate

program families (i.e., A, B, and C) with an opportunity to apply our refactorings. In Step

2, we select each family generated previously (e.g., family A) and use the preprocessor to

create all different configurations of that specific family. In Figure 6.4, we show the two

possible configurations of family A: (C1) with macro EXP enabled; and (C2) with macro

EXP disabled. Then, for each configuration of the generated family, in Step 3, we generate

test cases automatically by using a test case generator for C programs [126]. In Step 4, we

apply a refactoring of our catalogue to each family generated previously using Colligens,

our tool that we will present in Chapter 7. For example, considering our example family

A, it generates an equivalent family A’ without undisciplined preprocessor usage. In Step 5,

we use the preprocessor to generate each possible configuration for the refactored families

5http://alloy.mit.edu
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(i.e., C1’ and C2’). In Step 6, we run the test cases using the original and refactored families

to search for behavioral changes. For instance, the output of a test case for family A, with

macro EXP enabled, must be the same as the output for family A’, with macro EXP enabled,

giving the same input value for both families. The same must hold for all configurations of

the generated program families.

Figure 6.4: Applying regression testing to verify behavior preservation.

In Figure 6.5 (a), we list a family generated with the possibility to apply Refactoring 2.

The preprocessor directives at Lines 11 and 13 split up parts of the if condition, that is,

it is an undisciplined directive. In Figure 6.5 (b), we present the code snippet generated

after applying Refactoring 2. Notice that our strategy generates small families like the one

presented in Figure 6.5 (a). This way, we can use a brute force approach to test for behavioral

changes, i.e., checking all possible configurations.

Table 6.5 presents the results obtained from generating 10K program families for each

refactoring. Regarding Refactoring 4, which contains two variations, we generated 10K

families for each. According to the results, our formal model generated up to 77% of valid

families. We applied our refactorings to all valid families and we introduced no compilation

errors after applying the refactorings. Overall, we detected 13 behavioral changes: five

behavioral changes caused by a conceptual problem in the first version of Refactoring 2
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1. int Global0 = 1;
2.
3. float F1(float P0){
4.   Global0 = 0;
5.   return P0;
6. }
7.
8. float F0(float P0){
9.   float Local0 = 1;
10.  if (Global0
11.#ifdef TAG
12.       & F1(P0)
13.#endif
14.  ){
15.    Local0 += 9;
16.    return P0;
17.  }
18.  return P0;
19.}            

(a)

1. int Global0 = 1;
2.
3. float F1(float P0){
4.   Global0 = 0;
5.   return P0;
6. }
7.
8. float F0(float P0){
9.   float Local0 = 1;
10.  bool test = Global0; 
11.#ifdef TAG
12.  test = test & F1(P0);
13.#endif
14.  if (test){
15.    Local0 += 9;
16.    return P0;
17.  }
18.  return P0;
19.}               

(b)

Figure 6.5: Examples of generated and refactored programs.

(already fixed in the current version), and eight behavioral changes caused by bugs in the

implementation of our refactorings.

Table 6.5: Results of behavioral changes regarding the generated families.

R2 R3 R4 R5

Valid Programs 7746 7723 14 448 6700

Invalid Programs 2254 2277 5452 2300

Valid Refactorings 7746 7723 14 448 6700

Behavioral Changes 5 1 5 2

Behavioral Changes (after fixes) 0 0 0 0

Refactoring 6.6 presents the previous version of Refactoring 2 that introduced behavioral

changes. The problem with this refactoring is that the C language does not specify the order

of precedence when evaluating expressions with boolean operators, which makes different

compilers to evaluate if conditions differently. We detected this problem when verifying

the behavior of the family presented in Figure 6.5 (a). When running this program family on

Linux using Gcc, the compiler evaluates the function call (F1) at Line 12 before evaluating

variable Global0 at Line 10. On the other hand, Gcc evaluates variable Global0 first

when running the program on Mac OS. Notice that, by applying Refactoring 6.6, as we can

see in Figure 6.5 (b), variable Global0 is always evaluated before calling function F1. This

way, Refactoring 6.6 introduces a behavioral change when running the program family on

the Linux platform. Refactoring 2 fixed this problem.
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if ( COND_1
#ifdef EXP
     COND_2
#endif
){
  STMTS
}

bool test = COND_1;
#ifdef EXP
  test = test    COND_2;
#endif
if (test) {
  STMTS
}

⊕ ⊕X

Figure 6.6: Undisciplined if condition that introduced behavioral changes.

Regarding behavioral changes caused by bugs in the implementation of our refactorings,

we found five bugs in the pretty printer, which missed white spaces between identifiers and

operators, and three bugs related to the use of integer instead of boolean variables in if

conditions. Our catalogue of refactorings uses the boolean type as defined in the stdbool

library. By using integer variables, the implementation of the catalog of refactorings caused

behavioral changes when converting float values to integer. We fixed all these bugs in the

current implementation.

SUMMARY

By performing regression testing in the generated program families to verify behavior

preservation, we found and fixed a few behavioral changes introduced by our refactorings

and a number of problems in the implementation of our catalog, the majority related

to unspecified behavior in the C language. This way, we improved confidence that the

refactorings are behavior-preserving.

Application in Practice

To evaluate behavior preservation in real-world subject systems, we implemented the

refactorings on the Morpheus infrastructure [92]. We selected BusyBox,6 OpenSSL,7 and

SQLite8 as our case studies. BusyBox is a project that combines small versions of many

common UNIX utilities into a single small executable. It contains 522 files and 19K lines

of C code (version 1.18.5). BusyBox provides 792 preprocessor macros implemented with

preprocessor directives. OpenSSL implements secure internet protocols, contains 733 files

and 233K lines of C code. OpenSSL provides 589 preprocessor macros. SQLite is a library

6http://www.busybox.net/
7https://www.openssl.org/
8https://www.sqlite.org/
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implementing a relational database management system, its code base consists only of two

source-code files (amalgamation version 3.8.1), with 143K lines of C code, which can be

configured using 93 preprocessor macros.

We applied our refactorings to all 45 cases of undisciplined directives of BusyBox, all 146

cases in OpenSSL, and all 33 cases in SQLite, as presented in Table 6.6. BusyBox comes with

a test suite with 410 test cases for 74 files, out of which 46 tests fail (which we ignored during

our evaluation). OpenSSL provides a test suite for each individual component, including the

implementation of hashing functions (such as MD5 and SHA-256) and key-generation and

encryption algorithms. The test suite of OpenSSL does not indicate the exact number of test

cases, but it provides an output message informing the failure or success of the complete test

suite. For SQLite, we used the proprietary TH3 test suite.

To test that our refactorings are behavior preserving, we applied the approach used by

Liebig et al. [92]. We used two oracles: (1) the code of our subject systems still compiles;

and (2) the results of the test cases of the projects (pre-refactoring and post-refactoring) do

not vary. To incorporate variability, we detected the configurations affected by refactorings

and test them. Notice that the brute-force approach used previously does not scale to these

systems. So, we consider only the configurations impacted by refactorings. After running the

test cases before and after applying our refactorings in the three systems using the Morpheus

infrastructure, we found no behavioral changes or implementation problems in our catalog

of refactorings.

Table 6.6: Results of testing on BusyBox, OpenSSL, and SQLite.

R2 R3 R4 R5

BusyBox 15 6 20 4

OpenSSL 11 23 8 114

SQLite 7 4 5 17

Behavioral changes 0 0 0 0

SUMMARY

By performing regression testing in three real-world C systems (BusyBox, OpenSSL, and

SQLite), we found no behavioral changes in the catalog of refactorings, improving con-

fidence that the refactorings of our catalog are behavior-preserving.
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RQ4. Do the refactorings increase code clones, LOC and preprocessor directives?

We used the catalog to remove 477 undisciplined directives without cloning code. We did

not find any block of code clone with at least two lines of code introduced by our refactorings

(we used the Simian similarity analyser). Notice that we only analyzed the parts of the source

code that we modify with our catalog of refactorings. The catalog introduced 0.04% lines of

code regarding the total lines of code for all families. Furthermore, the catalog introduced

extra directives, which represents 2.10% of the total number of directives of all families.

Table 6.7: Subject characterization

Project Undisc. Directives Cloning LOC LOC (%) #ifdefs #ifdefs (%)

Apache 178 0 +257 +0.18% +48 +2.21%

Bc 6 0 +6 +0.12% 0 0.00%

Dia 31 0 +59 +0.31% +13 +4.06%

Expat 31 0 +76 +0.44% +14 +3.87%

Flex 16 0 +16 +0.09% 0 0.00%

Fvwm 61 0 +115 +0.11% +46 +3.35%

Ghostscript 87 0 +143 +0.01% +30 +0.95%

Gnuchess 2 0 +2 +0.02% 0 0.00%

Gzip 19 0 +37 +0.64% +12 +4.03%

Lighttpd 23 0 +33 +0.08% +11 +1.18%

Lua 6 0 +18 +0.12% +6 +3.11%

Mptris 17 0 +39 +0.78% +11 +3.05%

Total 477 0 +801 +0.04% +191 +2.1%

SUMMARY

The catalog of refactoring does not introduce code clone as previous refactorings [32;

67; 30], but introduces an insignificant amount of preprocessor conditional directives

and lines of code.

6.2.3 Threats to Validity

In this section, we discuss some threats to validity.

Internal validity

We defined our catalog of refactorings based on patterns of undisciplined directives detected

in 12 subject systems [50], including Apache, Gzip and Lighttpd. By using the catalog of
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refactorings, we removed 477 undisciplined directives in these projects. The catalog is not

complete, and variations of our refactorings are necessary to remove undisciplined directives

in other systems. However, the catalog of refactorings considers the most frequent patterns

of undisciplined directives that we detected in practice.

We asked developers about their preferences using two equivalent code snippets. We did

not ask developers about each refactoring individually and considered only one refactoring of

each group: (1) a refactoring that introduces local variables; (2) a refactoring that introduces

macros; and (3) a refactoring that duplicates a few language tokens. This way, we can only

conclude that developers accept our three strategies to resolve undisciplined directives.

Regarding application possibilities in practice, we used an XML-based tool to detect

application possibilities. SrcML9 uses heuristics that may fail in code with undisciplined

directives. To minimize this threat, we also determined the application possibilities of three

projects (BusyBox, Libssh, and Libpng) using TypeChef [17], which works soundly in the

presence of undisciplined preprocessor directives. TypeChef requires a time-consuming

setup, though, hindering the analysis of all 63 projects. The numbers of possibilities vary by

two percentage points when comparing the results of TypeChef and SrcML.

External validity

We used a formal model to generate program families with application possibilities for our

refactorings. Our model considers only a subset of the C language, though. Thus, we might

miss behavioral changes caused by other C constructs that we have not considered. Further-

more, the undisciplined directives that we generate might be different from the ones used in

practice. To minimize this threat, we also used three real-world projects, BusyBox, OpenSSL,

and SQLite, to test for behavior preservation.

9http://www.srcml.org/
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Tool Support: Colligens

In this chapter, we present our tool—named Colligens—that automatizes our strategies to

detect configuration-related bugs, detects bad smells, and applies our catalog of refactorings

to remove undisciplined directives automatically. Colligens is an Eclipse plug-in written

in Java and provides an integrated, sampling-based, and variability-aware environment to

develop and evolve C program families. Colligens is open-source and the tool is available

for downloading at our Website.1

In Section 7.1, we show the integration of the macro constraints editor of FeatureIDE [71]

and Colligens. Next, we present the three main functionalities of Colligens: investigation of

configuration-related bugs based on variability-aware analysis in Section 7.2; investigation

of configuration-related bugs using sampling-based analysis in Section 7.3; and refactorings

to remove undisciplined directives in Section 7.4.

7.1 Macro Constraints Integration

To illustrate how Colligens integrates the macro constraints of FeatureIDE, we use an ex-

ample of Libssh, as presented in Figure 7.1. By making TypeChef aware of the macro

constraints, it recognizes that features HAVE_LIBCRYPTO and HAVE_LIBGCRYPT are

alternatives and does not detect any syntax error. In other words, TypeChef now knows that

the problematic configuration !HAVE_LIBCRYPTO and !HAVE_LIBGCRYPT is invalid.

Colligens makes it possible by implementing a mapping between features of the model and

1https://sites.google.com/a/ic.ufal.br/colligens/
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preprocessor macros. This way, developers do not waste time analyzing bugs in invalid

configurations. The explain the other configuration parameters in the following sections.

...
510. static int sig_verify(SSH_SESSION *session, PUBKEY *pubkey, SIGNATURE *signature){
....   // Code here..
524.   switch (pubkey->type){
525.      case TYPE_DSS:
526.         #ifdef HAVE_LIBGCRYPT
....              // Code here..
532.              if (gcry_err_code (valid) != GPG_ERR_BAD_SIGNATURE){
533.                  ssh_set_error(2, "DSA error : %s", gcry_strerror(valid));
534.         #elif defined (HAVE_LIBCRYPTO)
....              // Code here..
539.              if (valid == -1){
540.                  ssh_set_error(session, 2, "DSA error : %s", ERR_get_error());
541.         #endif
542.                 return -1;
543.              }
544.              ssh_set_error(session, 2, "Invalid DSA signature");
545.              return -1;
....      // Other case options
571.   }
572.   return -1;
573. }
....

Figure 7.1: Code snippet of Libssh and its macro constraints.

In Figure 7.2, we present some configuration parameters of Colligens. Notice that there

is a configuration parameter to decide whether the tool takes the macro constraints into ac-

count. The reason is that many open source projects in C do not provide macro constraint

information. So, Colligens provides de option of ignoring macros constraints entirely. By

setting this configuration, developers will restrict the number of configurations to analyze.

This way, Colligens considers the macro constraints, and ignores invalid configurations.

7.2 Variability-Aware Analysis

Colligens integrates functionalities of TypeChef [17] and FeatureIDE [71] to automatize our

variability-aware strategy to detect configuration-related bugs. By using our tool, developers

can set how Colligens performs this investigation of bugs as we can see in Figure 7.2. We

explain each configuration parameter with regards to variability-aware analysis next:

• Use #include directives: developers can investigate the presence of configuration-

related bugs in C program families by considering all #include directives;
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Figure 7.2: Colligens view to set configuration parameters.

• Use stubs: developers can investigate the presence of configuration-related bugs in C

program families by ignoring #include directives, i.e., using our stubs and making

the analysis faster;

• Syntax errors: this option allows Colligens to execute its analysis to detect

configuration-related bugs regarding syntax issues;

• Type errors: this option allows Colligens to execute its analysis to detect configuration-

related bugs with regards to type issues, such as undeclared variables and functions,

and unused variables and functions;

• Runtime errors: this option allows Colligens to execute its analysis to detect

configuration-related runtime bugs, such as memory and resource leaks, uninitialized

variables, and dereferences of null pointers.

After running Colligens to investigate configuration-related bugs, the tool presents the

bugs detected in a view, as presented in Figure 7.3. By using this view, developers see

the files with configuration-related bugs and the problematic configurations, i.e., the con-
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figurations with configuration-related bugs. Furthermore, by clicking on the view over a

configuration-related bug, developers can reach the exact line of the code with the bug.

Syntax Bugs

Figure 7.3: Colligens view to present bugs detected by using variability-aware analysis.

7.3 Sampling-Based Analysis

Colligens also integrates functionalities of the CppCheck tool to automatize our strategy

to detect configuration-related bugs. When using our tool, developers can investigate the

presence of configuration-related bugs in a program family using a sampling-based approach.

In this context, Colligens preprocesses the source code to generate individual configurations

and uses CppCheck to check each generated configuration individually. In this analysis,

developers can select different sampling algorithms to select configurations to test, such as

LSA, pair-wise, and statement-coverage. In Figure 7.2, we can see the Colligens view to

select sampling algorithms.

After running Colligens to investigate configuration-related bugs, the tool lists the bugs

detected in a view, as presented in Figure 7.4. Here, developers can also reach the exact line

of the source code with the configuration-related bug by clicking on the view over a bug.

Figure 7.4: Colligens view to present bugs detected by using sampling.
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7.4 Detecting and Removing Bad Smells

Colligens also implements our strategy to detect bad smells and applies our catalog of refac-

torings automatically, i.e., it removes undisciplined directives (bad smells) using the refactor-

ings presented in Chapter 6. We present a refactoring example using Colligens in Figure 7.5.

In this refactoring, we select a file with an undisciplined directive and the tool proposes

a refactoring to remove the undisciplined directives. Developers can check the refactored

source code proposed by Colligens before accept it. Otherwise, developers can just can-

cel it and Colligens makes no changes on the source code. In Figure 7.2, we can see the

Colligens view to select whether the tool check for behavior preservation after applying the

refactorings.

Figure 7.5: Colligens view to refactor undisciplined directives.



Chapter 8

Related Work

In this chapter we present the related work. We separate it into six areas directly related to our

study. In Section 8.1, we present research that studies the use of the preprocessor. We discuss

studies that propose static analysis tools to detect bugs in Section 8.2 and Section 8.3 presents

variability-aware parsers. In Section 8.4, we discuss approaches to perform combinatorial

testing to detect configuration-related bugs. Then, we present strategies to extract variability

information from source code in Section 8.5. Finally, we present research to refactor program

families in Section 8.6.

8.1 Analysis of C Preprocessor Usage

Some approaches studied the way developers use the C preprocessor in practice. Ernst et

al. [3] presented an empirical study on how the C preprocessor by analyzing 26 packages

comprising 1.4 MLOC. They found that most C preprocessor usage follows simple patterns.

It also discussed about the undisciplined use of the C preprocessor and its problems, such as

that it makes the program more difficult to understand. However, it focused mainly on macro

definitions using #define directives. In this sense, our work complements the analysis of

using the C preprocessor and presents findings about configuration-related bugs in practice.

Baxter and Mehlich proposed DMS, a source-code transformation tool for C and

C++ [68]. In a more recent work, these authors used DMS and emphasized the problem

of using unstructured directives [13], similar to undisciplined directives. Furthermore, the

authors presented examples of configuration-related syntax errors, emphasizing the error

prone characteristics of the C preprocessor as discussed in our study.

136
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Liebig et al. [4] analyzed 40 systems, and also suggested that developers can introduce

subtle syntax errors when using undisciplined directives. The authors found that the use of

undisciplined directives corresponds to 15.6% of the total number of directives. Garrido et

al. use the term incomplete as a substitute for undisciplined directives [81; 107; 30].

Others approaches also complemented these studies providing more information about

the preprocessor usage. In a previous work, Ribeiro et al. [104] analyzed how often methods

with preprocessor directives contain feature dependencies. Liebig et al. [67] proposed and

collected some metrics using 40 subject systems to analyze the feature code scattering and

tangling when using preprocessor directives.

All prior studies on the C preprocessor that we are aware of were based on conceptual

arguments or evidence extracted from software repositories. In our study, we elicited the

perception of developers by talking to them, and by performing an online survey.

8.2 Static Analysis to Find Bugs

We also find studies proposing tools that perform static analysis to find bugs, such as memory

leaks, resource leaks, null dereferences and initialized variables. Torlak et al. [76] present

Tracker, a tool to identify resource leaks by performing inter-procedural analysis in Java

source code. Hovemeyer et al. [127] presents FindBugs based on automatic detectors for

a variety of bug patterns of Java code as well. Artho and Biere propose Jlint2, a tool that

performs static analysis in large-scale and multi-threaded Java systems [128].

In the context of the C language, Evans and Larochelle propose the Splint tool to detect

semantic bugs in C [77; 78]. Splint statically checks C programs for security vulnerabilities

and coding mistakes. Novark et al. presents a tool, named Plug, to detect memory leaks in

C and C++ programs [79]. Nethercote and Seward proposes Valgrind, an instrumentation

framework for building dynamic analysis tools. There are tools implemented, for example,

to detect memory management and threading bugs [129].

Other studies have analyzed software repositories by considering bugs already fixed

by developers to understand the characteristics of configuration-related bugs [12; 16]. In

this context, researchers analyzed configuration-related bugs in configurable systems [19;

130]. They concluded that the majority of configuration-related bugs involve a few macros,
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a result similar to ours. Abal et al. [16] analyzed the Linux Kernel software repository to

study configuration-related bugs. Tartler et al. [20] also performed studies using the tool

Undertaker [73] to find configuration-related bugs in the Linux Kernel. We considered some

configuration-related bugs reported by these previous studies in our study to compare the

sampling algorithms, as discussed in Chapter 4. By understanding the tradeoffs of sampling

algorithms, we can leverage these tools to detect configuration-related bugs, even the ones

that do not take variability into account.

8.3 Variability-Aware Analysis

There are some strategies to parse C code in the presence of preprocessor directives. Many

approaches [131; 30; 89] applied the strategy of preprocessing or modifying the source code

before parsing it. However, this strategy is not interesting to analyze variability since we

loose information about the preprocessor directives. Other researchers introduce additional

language constructions [132], which are not supported by traditional compilers, hindering

their widespread use in practice. In our study, we used a variability-aware parser to consider

all variability information, allowing us to detect configuration-related bugs also performing

variability-aware analysis.

Kästner et al. [17] proposed a variability-aware parser that analyzes all configurations

of a C program family at once. In addition, it performs type checking analysis [133;

134]. In our work, we used TypeChef to identify bugs in C program families, i.e., it is

the basis of our variability-aware strategy to investigate configuration-related bugs bugs.

Furthermore, we also used TypeChef to generate abstract syntax tree enhanced with vari-

ability information to perform our refactorings. Gazzillo and Grimm [38] proposed another

variability-aware parser named SuperC. This parser is faster than TypeChef, but it does not

perform type checking analysis.

Difficulties in setting up these tools and narrow classes of detectable faults limit their

applicability and lead to false positives. This is the reason that motivated us to propose the

two simplifications (stubs and platform-specific headers), presented in Chapter 5, to make

our variability-aware analysis scalable. Furthermore, variability-aware tools work at the

preprocessor level, which hinders the reuse of existing bug checkers of traditional C tools,
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including Gcc and Clang. Our sampling-based strategy allows us to reuse these tools by

performing sampling.

8.4 Sampling Analysis

Although researchers have proposed approaches to analyze complete configuration spaces

in a sound fashion for some classes of defects [71; 17; 72; 38; 18], the vast majority of

mature quality-assurance techniques consider only a single configuration at a time, such

as Gcc, Clang, and Eclipse. Static-analysis tools operate typically on C code after the C

preprocessor has resolved the variability implemented through conditional compilation (e.g.,

implemented with #ifdef directives). To reuse state-of-the-art tools, such as gcc, to detect

configuration-related bugs, sampling is a viable alternative [34; 35; 36; 37; 20] that we used

in our research study to detect configuration-related bugs.

Researchers have proposed various strategies to deal with configuration-related bugs.

They considered combinatorial testing to check different combinations of configuration

options and prioritize test cases [135; 130; 136; 137; 46; 109]. For instance, Nie et

al. [90] performed a survey with combinatorial testing approaches. Other researchers

used t-wise sampling algorithms to cover all t configuration option combinations [34; 35;

36; 37; 45]. Petke et al. [138] compared strategies to generate covering arrays for t-

wise algorithms, such as simulated annealing and greedy algorithms. Tartler et al. pro-

posed the statement-coverage [73] sampling algorithm, and Abal et al. [16] suggested

the one-disabled algorithm. However, many studies on sampling make assumptions that

might not be realistic in practice, such as ignoring constraints among macros. Including

constraints, build-system information, and header files is a non-trivial task. Sánchez et

al. [139] applied realistic settings and studied the use of non-functional data for test case

prioritization. Other researchers applied t-wise algorithms with constraints [45; 36; 120;

121], and Grindal et al. [140] studied different constraint handling methods. In our study,

we compared different sampling algorithms and the influence of constraints, build-system

information, header files, and global analysis on sampling, as discussed in Chapter 4.
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Some studies have compared sample-based and variability-aware strategies. Apel et

al. [141] developed a model checking tool for product lines and used it to compare sample-

based and variability-aware strategies with regard to verification performance and the ability

to find defects. Liebig et al. [47] performed studies to detect the strengths and weaknesses

of variability-aware and sampling-based analyses. They considered two type of analysis

(type checking and liveness analysis) and applied them to a number of subject systems,

such as Busybox and the Linux kernel. Kolesnikov et al. [142] compared variability-aware,

feature-based, and product-based type checking. In our study, we performed complimentary

analyses regarding sampling algorithms and filled a gap by comparing sampling algorithms

considering the influence of assumptions made in previous studies.

8.5 Extracting Variability Information

Others proposed techniques to extract variability information from C program families.

Some researches considered the Linux kernel in their studies and analyzed its source code

files, Kconfig files, and Makefiles [143; 144; 111; 145]. Other researches analyzed the rapid

evolution of the Linux configurations. The number of features had doubled in the period

analyzed [146]. She et al. [147] analyzed operating systems, such as FreeBSD and eCos. In

our work, we decide to contact the developers of the program families to check configuration

constraints, i.e., avoiding the effort of gathering information about configuration constraints

for each family.

Tartler et al. [106] revealed the presence of zombie configurations in the Linux Kernel,

i.e., preprocessor macros that cannot be either enabled or disabled at all. Other researches

found several inconsistencies in the Linux kernel by analyzing source files, Kconfig and

makefiles [91; 18]. In our work, we focused only on configuration-related bugs in source

code files and their presence in valid configurations. To the best of our knowledge, there is

no existing work that investigated the impact of configuration-related bugs considering such

a high number of C program families.
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8.6 Refactoring Program Families

Opdyke [80] defines refactoring as a behavior-preserving program transformation. To check

behavior preservation, an approach with successive compilation and tests is used. Opdyke

considers refactorings in object-oriented frameworks, which focuses only on refactorings of

a single program. Fowler [33] uses the concept of bad smells, i.e., code with poor quality

like methods with many lines of code, several parameters, and duplicated code. He also

presents refactorings to object-oriented systems, such as extract method, replace array with

object, and pull up method. In other words, structural refactorings for languages like Java.

The refactoring of C code is different from refactoring in other languages due to the presence

of the C preprocessor. In this context, we have a number of program variants and not a single

program. This way, refactoring tools have to consider all possible program variants. In

addition, refactorings in C focuses on code inside functions and not on structural refactorings,

since C is a structural programming language.

There are some approaches to refactor C code with preprocessor directives. Garrido

and Johnson [107] developed the CRefactory, a refactoring tool for C program families

that considers all possible configurations. Garrido and Johnson also propose a strategy to

remove undisciplined directives [30], but it introduces code cloning. Moreover, CRefactory

focuses on C refactorings such as renaming functions and extracting macros [22]. Our work

has a different focus. We propose C refactorings to the directives themselves to remove

undisciplined directives without cloning code. Thus, we minimize the problems related to

undisciplined directives, such as syntax bugs and code understanding.

Vittek presents Xrefactory, a refactoring browser for C source code and discusses certain

complications introduced by the CPP [21]. Vittek uses a strategy that preprocesses the code

keeping information about the conditional directives and refactoring the code directly. In

our work, we perform our refactorings on the abstract syntax trees, which contain variability

information, i.e., we do not preprocess the code. Thus, we take into account all the variability

information.

Tokuda and Batory also propose a refactoring tool to class diagrams of C++ programs

[148]. Their work focuses on refactorings of object-oriented systems. Moreover, their work

does not deal with preprocessor directives. This way, applying a simple refactoring, such as

a function renaming, may introduce behavioral changes, since the tool does not change the
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function name in all possible configurations. Basically, this work refactors only a single C++

program. In our study, we refactor a C program family, and not a single program.

In a recent study, Liebig et al. [92] proposed a variability-aware refactoring approach,

which preserves the behavior of all variants of a configurable system. Liebig et al. uses

variability-aware analysis, which considers all possible configurations of the source code at

the same time. Their study keeps all variability information, different from strategies that

preprocess or modify the source code before parsing it [89; 131]. Liebig at el. showed the

applicability and scalability of their approach by implementing a sound refactoring engine

(Morpheus) and by performing refactorings (Extract Function, Rename, and Inline Function)

in three real-world projects: BusyBox, OpenSSL, and SQLite. Liebig et al. also provided

evidence for the correctness of the refactorings implemented by running the original test

cases of the projects before and after applying the refactorings. Our work also use TypeChef

as Liebig et al., but we focus on refactorings to remove undisciplined directives, different

from all studies discussed.

Other studies investigate the refactorings of conditional directives into aspects. Adams

et al. [28] propose a model and analyze the feasibility of refactoring #ifdef to aspects, but

it does not implement any tool to perform the refactorings automatically. According to their

work, it is possible to refactor 99% of the conditional compilation into aspects. Lohmann

et al. [15] refactor the eCos operating system kernel using AspectC++, an Aspect-Oriented

Programming (AOP) extension to the C++ language, and analyze the runtime and memory

costs of aspects. Our work also focuses on refactorings of preprocessor directives, but we

refactor the directives without introducing another variability implementation mechanism

like aspects.

Borba et al. [149] define a theory to refactor software families. In their work, they use

specific artifacts, such as feature models and configuration knowledges, and propose a theory

to detect when a product line refactors another. Furthermore, it defines a theory using a

formal specification language and proves some compositionality properties of the theory.

Alves et al. [150] extend the theory of refactorings in software families with refactorings

based on feature models. We used the theory of Borba et al. to verify behavior preservation

in our refactorings. The theory specifies refactorings that involve changes in the source

code, feature model, and configuration knowledge. As our refactorings do not change the
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feature model and the configuration knowledge of the program family, we focused only on

refactorings of the source code.

In another study, Ferreira et at. [151] present an implementation of this software family

theory. It proposes tools to evaluate if an SPL transformation preserves behavior. These tools

use test cases to avoid behavioral changes in refactorings. They are based on SafeRefactor,

which creates test cases automatically to increase confidence that a transformation preserves

behavior [152]. In their study, they define four strategies to identify behavioral changes using

dynamic analysis. Thus, SafeRefactor generates test cases and runs the same test suite in the

original and refactored code to detect bugs in refactoring engines. In our work, we used

a similar approach as in SafeRefactor, but extending it the context of program families, to

increase confidence that our refactorings are behavior-preserving.

Recent study proposes a technique to test C refactoring engines [153]. It uses a program

generator (CDolly) and a test case generator to detect bugs in refactoring engines, strategy

similar to SafeRefactor. By analyzing refactoring engines, such as Eclipse, it finds some

bugs, including bugs related to preprocessor directives. In our study, we have a different

focus, i.e., we refactor the source code using our catalogue. However, the technique proposed

do not support to test our refactorings, since CDolly does not generate program with different

types of preprocessor directives as we find in real word.

Other studies propose strategies to verify if all program variants are well-formed. They

used strategies to verify type errors and missing dependencies by using feature models, SAT

solvers [154; 155; 156], and configuration knowledges, i.e., the safe composition problem.

However, existing C program families, such as Apache, Dia and Gzip, do not have some

artifacts that these studies uses, such as feature models and configuration knowledge. In

our study, our strategy to apply refactorings does not strictly require feature models and

configuration knowledge, making it possible to apply refactorings in real-world C systems

and to check behavior preservation.



Chapter 9

Concluding Remarks

In this work, we propose an approach to safely evolve configuration-related program families

in C and performed interviews to consider the perception of developers. To support defec-

tive evolution, we presented strategies to detect configuration-related bugs using sampling

and variability-aware analysis. To support perfective evolution and to remove bad smells in

preprocessor directives, we proposed 14 refactorings to remove undisciplined directives in C

program families.

We evaluated the proposed strategies using a corpus of 40 subject systems to investigate

configuration-related bugs. The results of our study, including interviews with 40 developers

and a survey among 202 participants, show that configuration-related bugs occur in practice

and developers perceive these bugs as a problem, giving relevance to the problem we address

in this thesis. According to the perception of developers, the use of undisciplined directives

is also problematic, which motivated our catalog of refactorings.

We evaluated our catalog regarding frequency of application possibilities in practice,

opinion of developers, behavior preservation, and introduction of code clone. We found

5670 application possibilities for our refactorings in 63 real-world projects and our survey

show that the majority of developers prefer to use our refactoring, disciplined code instead of

undisciplined directives. We submitted 28 patches to convert undisciplined into disciplined

directives and developers accepted 21 (75%). To verify that our refactorings are behavior

preserving, we applied differential testing to more than 36 thousand programs generated

automatically using a formal model as well as in three real-world projects. Based on the

results of our study, we concluded that our refactorings do not clone code, different from

previous studies.

144
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To support developers when implementing C program families, we presented Colligens,

a tool capable of detecting different types of configuration-related bugs, including syntax

problems, memory leaks, resource leaks, null dereferences, and uninitialized variables. In

addition, our tool applies our refactorings automatically. By using Colligens, developers

gain the benefits of a sampling-based and variability-aware environment to safely evolve

configuration-related C program families.

9.1 Review of the Contributions

By performing an interview study to understand how developers perceive the C preproces-

sor and complimentary studies (survey, literature review, and repository mining) to cross-

validate and to quantify the results [29], we found that:

• Developers are aware of the criticism the C preprocessor receives, but still use it in the

following situations: (1) supporting portability, (2) supporting variability, (3) provid-

ing code optimizations, (4) supporting code evolution, and (5) overcoming limitations

of the C language;

• Developers do not see any current technologies that can entirely replace the C pre-

processor. However, some developers routinely use alternate coding styles such as

dividing functionality into separate files or functions (preferred by 60%) and using

run-time checks instead of #ifdef checks (preferred by 19 %) to avoid preprocessor

directives;

• Developers face three configuration-related problems: (1) configuration-related bugs

(do not appear often, but are perceived as more critical than other bugs), (2) combina-

torial testing (conditional directives increase number of configurations to test), and (3)

code comprehension (due to the cluttering of #ifdefs and C statements, and the deep

nesting of #ifdefs);

• The majority of developers agree that the use of undisciplined directives influences

code understanding, maintainability, and error proneness negatively. However, there

are cases where developers use undisciplined annotations to avoid code clones and

compiler warnings.
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We performed a comparison of 10 sampling algorithms for program families regarding

effort and bug-detection capability [43], and we proposed the Linear Sampling Algorithm

(LSA), guiding developers to perform combinatorial testing. We found that:

• All 10 algorithms analyzed are able to detect at least 66% of the configuration-

related bugs considered in our study; most-enabled-disabled, pair-wise and statement-

coverage are the most efficient algorithms;

• Some combinations of sampling algorithms provide an useful balance between sample

size and bug-detection capabilities, such as the combination of most-enabled-disabled,

one-enabled, and one-disabled, which we proposed as the linear sampling algorithm;

• When considering constraints to perform sampling, we substantially reduce false pos-

itives, but high costs for generating sample sets; it is infeasible for three-wise and

higher at large scale;

• Using a global analysis when sampling configurations, we can potentially detect non-

modular bugs that span multiple files; it causes an explosion in the number of con-

sidered preprocessor macros that leads to large sample sets; too large for t-wise and

statement-coverage;

• When incorporating header files during sampling, there is a potential to detect addi-

tional bugs from header files; but a difficult setup and much larger sample sets (if

feasible at all);

• When including build-system information to select configurations, the analysis con-

siders a few more macros, but no significant changes.

We performed empirical studies to quantify and investigate configuration-related bugs in

C program families. We considered bugs of different types, including memory and resource

leaks, undeclared functions, uninitialized variables, syntax errors, and dereferences of null

pointers [12; 39; 49]. To perform these empirical studies considering several real-world

projects, we proposed strategies to detect configuration-related bugs in C program families

using sampling and variability-aware analysis [12; 39; 48]. Based on the results of our

studies, we concluded that:



9.1 Review of the Contributions 147

• Developers face configuration-related bugs in practice as frequent as they face bugs

that appear in all configurations. We found configuration-related bugs of all types

considered in our empirical studies;

• Configuration-related bugs remain almost three times longer in the source code, on the

average, than bugs that appear in all configurations. The variability of program families

hinders the detection of even simple configuration-related bugs, such as syntax errors;

• The majority of configuration-related bugs (more than 89%) detected involve two or

less preprocessor macros. Our results support the effectiveness of sampling algorithms

to detect configuration-related bugs.

We proposed a catalog of refactorings to remove undisciplined directives in C pro-

gram families without code cloning, leaving the source code less conducive to introduce

configuration-related bugs and improving code readability [50; 12]. The Colligens tool ap-

plies our catalogue of refactorings automatically [51]. When evaluating the catalog of refac-

torings, we found:

• 5670 application possibilities for the refactorings in practice considering real-world

systems of different sizes and from various domains. There are places to apply the

refactorings in almost all systems (97%) analyzed in this study, showing that develop-

ers still use undisciplined directives in practice;

• Most developers preferred to use the refactored (i.e., disciplined) code instead of using

the preprocessor in undisciplined ways;

• Developers support the idea of converting undisciplined into disciplined directives.

Developers accepted 21 (75%) out of the 28 patches submitted, showing more evidence

that they prefer to use disciplined directives;

• By performing differential testing in the generated program families to verify behavior

preservation, we found and fixed a few behavioral changes introduced by our refac-

torings and a number of problems in the implementation of our catalog, the majority

related to unspecified behavior in the C language. This way, we improved confidence

that the refactorings are behavior-preserving.
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• By performing differential testing in three real-world C systems (BusyBox, OpenSSL,

and SQLite), we found no behavioral changes in the catalog of refactorings, improving

confidence that the refactorings of our catalog are behavior-preserving.

• The catalog of refactoring does not introduce code clone as previous refactorings [32;

4; 30], but introduces a minimal amount of preprocessor conditional directives and

lines of code.

9.2 Future Work

We proposed strategies to detect configuration-related bugs based on sampling and

variability-aware analysis. However, there are opportunities to implement new bug checkers

using a variability-aware approach, such as checkers to detect memory and resource leaks,

uninitialized variables, and dereferences of null pointers. Notice that we detected these types

of bugs using sampling and Cppcheck. There are also possibilities to apply our sampling-

based strategy using other static analysis tools, such as Clang and Gcc. Furthermore, we

can extend the strategies to detect configuration-related bugs by performing other kinds of

analysis, such as dynamic analysis and symbolic execution.

Regarding the comparison of sampling algorithms for configurable systems, there are

possibilities to extend our comparative study to configurable systems that implement vari-

ability using other mechanisms, such as aspect-oriented programming [28] and delta-

oriented programming [157], as we have considered only conditional compilation. Likewise,

there are possibilities to extend the evaluation of our proposed sampling algorithm (i.e., LSA)

as well to consider other types of variability implement mechanisms. Furthermore, one can

perform more studies comparing sampling-based and variability-aware strategies with re-

gards to effort, bug-detection capabilities, and time of analysis.

We have proposed refactorings to remove undisciplined directives, but many possibilities

remain to explore. There are possibilities to work on refactorings that remove preprocessor

directives entirely from source files (.c), moving them all to header files (.h). This way, we

refactor the source code and apply a similar strategy to evaluate these new refactorings, that

is, submitting patches to C projects, and performing interviews and surveys to evaluate the

other catalogs of refactorings.
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Regarding our evaluation of behavior preservation, there are opportunities to extend the

evaluation to a higher number of real-world systems. One can extend our technique to im-

prove confidence in behavior preservation to all types of refactorings in C program families.

Thus, we can evaluate our refactorings, such as the ones implemented by Liebig et al. [47],

to improve behavior preservation.

There are also possibilities to extend Colligens. We concluded that developers support

the idea of converting undisciplined into disciplined directives. However, it is also clear that

some developers prefer to refactor the code when making other necessary changes in the

code, for example, to fix bugs. This way, our results show that we need better integration

between refactoring tools and software repositories. Thus, it might be appropriate to perform

more research studies with regards to the integration of Colligens and GitHub, for example,

to suggest refactorings based on events of the GitHub pull request infrastructure.
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Appendix A

The Complete Catalog of Refactorings

In this appendix, we present the complete catalog of refactorings to remove undisciplined

directives, including some refactoring variations that we omitted in Chapter 6. Overall, we

present 14 refactorings grouped into four category: single statements, conditions, wrappers,

and comma-separated elements.

Single Statements

A single statement contains no compound blocks. It includes three kinds of statements:

return statements, function calls, and variable initializations. We define one refactoring

to each kind of statement, as we show in what follows. In Refactoring 1 (a), we present

our refactoring to resolve undisciplined preprocessor usage in return statements. In this

refactoring, we duplicate language tokens to encompass with preprocessor directives entire

statements only. Notice that we duplicate the token COND_1 to make the preprocessor

directive disciplined.

Refactoring 1 (a) hundisciplined returnsi

return COND_1
#ifdef EXP
     COND_2
#else
     COND_3
#endif
;

#ifdef EXP
return COND_1    COND_2;
#else
return COND_1    COND_3;
#endif

⊕

⊕

⊕

⊕
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In Refactoring 1 (b), we present our refactoring to remove undisciplined directives in

function calls. Likewise, we duplicate language tokens (i.e., FUNC_NAME) to encompass

with preprocessor directives the entire function call.

Refactoring 1 (b) hundisciplined function callsi

FUNC_NAME (
#ifdef EXP
   PARAM_1
#else
   PARAM_2
#endif
);

#ifdef EXP
FUNC_NAME (PARAM_1);
#else
FUNC_NAME (PARAM_2);
#endif

Refactoring 3 (c) presents the last variation of undisciplined single statements to remove

undisciplined directives in variable attributions. Again, we duplicate language tokens (i.e.,

ID) to encompass with preprocessor directives the entire variable attribution.

Refactoring 1 (c) hundisciplined variable attributionsi

bool ID =
#ifdef EXP
   VALUE_1
#else
   VALUE_2
#endif
;

#ifdef EXP
bool ID = VALUE_1;
#else
bool ID = VALUE_2;
#endif

Conditions

To resolve undisciplined preprocessor directives surrounding boolean expressions used

in if statements, we propose Refactoring 2 (a). In this refactoring, we use an extra variable

to preserve the statement’s conditions. In this sense, we define a precondition that the code is

not using the specific identifier (test), as we cannot define variables with the same identifier

in the same scope.
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Refactoring 2 (a) hundisciplined if conditionsi

if ( COND_1
#ifdef EXP
     COND_2
#endif
){
  STMTS
}

bool test;
#ifdef EXP
test = COND_1    COND_2;
#else
test = COND_1;
#endif
if (test) {
  STMTS
}

⊕
⊕

(!) test is not used in the code

We refactor while statements with undisciplined conditions using a similar refactoring,

as presented in Refactoring 2 (b). Here, we also use the local variable to preserve the while

statement conditions and the precondition to avoid compilation errors.

Refactoring 2 (b) hundisciplined while conditionsi

while ( COND_1
#ifdef EXP
     COND_2
#endif
){
  STMTS
}

bool test;
#ifdef EXP
test = COND_1    COND_2;
#else
test = COND_1;
#endif
while (test) {
  STMTS
}

⊕
⊕

(!) test is not used in the code

Wrappers

In Refactoring 3 (a), we target another case of undisciplined preprocessor directive in

alternative statements. In this refactoring, we present an if statement. Here, we also need

an extra program variable to keep the statement’s condition. Notice that test receives the

evaluation of COND_1 or COND_2 depending on whether we define macro EXP or not.

Likewise, we define a precondition that test is not used in the code to avoid possible

compilation errors.
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Refactoring 3 (a) halternative if statementsi

#ifdef EXP
if (COND_1) {
#else
if (COND_2) {
#endif
  STMTS
}

bool test;
#ifdef EXP
test = COND_1;
#else
test = COND_2;
#endif
if (test) {
  STMTS
}

(!) test is not used in the code

In Refactoring 3 (b), we present our refactoring to remove undisciplined preprocessor

directives in alternative while statements. Again, we used a similar refactoring to remove

the undisciplined directive in while statements, also needing to introduce a local variable

to preserve the statement’s condition, and a precondition to avoid compilation errors.

Refactoring 3 (b) halternative while statementsi

#ifdef EXP
while (COND_1) {
#else
while (COND_2) {
#endif
  STMTS
}

bool test;
#ifdef EXP
test = COND_1;
#else
test = COND_2;
#endif
while (test) {
  STMTS
}

(!) test is not used in the code

In Refactoring 4 (a), we present a refactoring to remove if wrappers. This refactoring

also uses variable test to preserve the statement’s condition and the precondition with the

purpose of disciplining the preprocessor directive.
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Refactoring 4 (a) hif wrapperi

#ifdef EXP
if (COND_1)
#endif
{
  STMTS
}

bool test = 1;
#ifdef EXP
test = COND_1;
#endif
if (test) {
  STMTS
}

(!) test is not used in the code

In Refactoring 4 (b), we present a similar refactoring to remove undisciplined directives

in while wrappers.

Refactoring 4 (b) hwhile wrapperi

#ifdef EXP
while (COND_1)
#endif
{
  STMTS
}

bool test = 1;
#ifdef EXP
test = COND_1;
#endif
while (test) {
  STMTS
}

(!) test is not used in the code

Refactoring 4 (c) targets a directive surrounding an else-if statement. To resolve the

undisciplined usage of the preprocessor, we use an extra variable to keep the statement’s

condition as well as the precondition.

Refactoring 4 (c) helse-if wrappersi

if (COND_1){
   STMTS_1
}
#ifdef EXP
else if (COND_2) {
   STMTS_2
}
#endif

bool test = COND_1;
if (test) {
   STMTS_1
}
#ifdef EXP
if (!(test) && COND_2) {
   STMTS_2
}
#endif

(!) test is not used in the code.
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In Refactoring 4 (d), we define a refactoring to remove if statements ending with an

else statement. In this case, we replace the else by another if statement to resolve the

undisciplined usage of the preprocessor. In this refactoring, variable test works like a flag

to avoid executing STMTS_2 when macro EXP is disabled.

Refactoring 4 (d) hif statements with an elsei

#ifdef EXP
if (COND_1){
  STMTS_1
} else
#endif
{
  STMTS_2
}

bool test = 1;     
#ifdef EXP
if (COND_1){
  STMTS_1
  test = 0;
}
#endif
if (test){
  STMTS_2
}

(!) test is not used in the code.

In Refactoring 4 (e), we show a refactoring to remove case wrappers. Here, we use

an additional macro to define the case statement. Despite we can define the same macro

several times, we set a precondition that the code does not define macro C_1. If we change

a macro definition that the original code is already using, we may add behavioral changes.

Using this strategy, we modify the source code locally without global impact.

Refactoring 4 (e) hcase wrappersi

switch (ID){
  …
#ifdef EXP
  case VALUE_1: STMTS
#endif
  …
;

#ifdef EXP
#define C_1 case VALUE_1: STMTS
#else
#define C_1  ""
#endif
switch (ID){
  …
    C_1
  …
}

(!) CASE1 is not used in the code.
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Comma-Separated Elements

Refactoring 5 (a) targets undisciplined directives in comma-separated program elements.

In this refactoring, we set a precondition that the original code does not define a macro

PARAM or contains a token with that name, such as a type definition or identifier. Again, we

use a precondition to modify the code locally without global impact.

Refactoring 5 (a) hundisciplined function definitionsi

TYPE FUNC_NAME (
#ifdef EXP
   TYPE ID
#endif
){
   STMTS
}

#ifdef EXP
#define PARAM TYPE ID
#else
#define PARAM ""
#endif
TYPE FUNC_NAME (PARAM){
   STMTS
}

(!) PARAM is not used in the code

In Refactoring 5 (b), we present a refactoring to remove undisciplined array definitions.

Again, we use an additional macro (ELEM) to maintain the array or enum elements and define

a precondition to modify the source code locally.

Refactoring 5 (b) hundisciplined array definitionsi

TYPE ID[] = {
   element_1,
   element_2
#ifdef EXP
   , element_3
#endif
};

#ifdef EXP
   #define ELEM , element_3
#else
   #define ELEM ""
#endif
TYPE ID[] = {
   element_1,
   element_2
   ELEM
};

(!) ELEMS is not used in the code.



Appendix B

The C Model

In this appendix, we present the model of a subset of the C language that we used to gen-

erate programs with application possibilities for our refactorings automatically, as discussed

in Chapter 6. The subset that we consider includes local and global variables, function def-

initions, if statements, and the following types: char, int, and float. We have not

considered pointers, structures, loops, and concurrency.

Based on our C model, we used the Alloy Analyzer [158] to find instances that satisfy the

model constraints. By using the instances provided by the Alloy Analyzer, our tool Colligens

converts the instances into real C configurable programs with application possibilities for our

refactorings. Colligens is responsible to introduce preprocessor conditional directives, such

as #ifdef and #endif, in the generated programs. We have not considered the C pre-

processor language in our model because of the complexities of dealing with undisciplined

directives. As we discuss in Chapter 2, undisciplined directives can appear anywhere in the

code and may wrap only parts of C constructors, making their specification in Alloy difficult.

In Listing B.1, we present part of the C model in which we define signatures to represent

the main structure of a C program. We define that C program is a translation unit signature

that contains a set of declarations. We define an identifier signature to name variables and

functions that need to have unique identification. Next, we define a variable that has a specific

type. We have signatures for other elements, such as statements, local and global variables,

and parameters. Our complete C model is available at the Web site of the project.1

1http://www.dsc.ufcg.edu.br/~spg/catalog/
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Listing B.1: Declarations of the C model.

1 abstract sig Declaration {}

2 sig TranslationUnit {

3 declares: set Declaration

4 }

5 abstract sig Identifier {}

6 abstract sig Variable {

7 type: one Type

8 }

9 // more signatures...

In Listing B.2, we present a signature for function definitions. In C, a function is a

declaration with a unique identifier that receives a set of parameters, returns a value, and

contains a set of statements. Notice that we considered in our model only functions that

receives a single parameter. Furthermore, all functions considered in our model must return

a value and must have exactly one if statement in its body. The reason to add these constraints

is to generate programs with application possibilities for our refactorings.

Listing B.2: Declaration of a C function.

1 sig Function extends Declaration {

2 id: one FunctionId,

3 returnType: one Type,

4 ...

5 if: one If,

6 returnStmt: lone ReturnStmt

7 }

A valid C program must satisfy a number of well-formed rules. For example, a program

cannot have two variables with the same identifier in the same scope, and a function should

not have statements after returning a value and finish its execution. In Listing B.3, we present

a few rules defined in our model. As we can see, we define that all programs must have

declarations, all identifier used are unique, and that all local variable are declared in the

function body.
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Listing B.3: Well-formed rules for a C program.

1 fact Rules {

2 translationUnitNotEmpty

3 allIdentifiersAreUnique

4 allLocalVariablesExistInFunction

5 // more rules..

6 }

7 pred translationUnitNotEmpty {

8 all src:TranslationUnit |

9 #src.declares > 0

10 }

11 // more predicates..

To reduce the number of instances generated by the Alloy Analyzer with the purpose

of avoiding the explosion of spaces, we defined some optimizations, such as that functions

cannot have empty bodies, and all programs must have one global variable, one if statement,

and two function definitions. We present part of the optimization predicate in Listing B.4.

Listing B.4: Optimizations to avoid explosion of spaces.

1 pred optimization[] {

2 ...

3 all f:Function | #f.stmt < 4 and #f.stmt > 0

4 #Function = 2

5 #GlobalVarDecl = 1

6 #If = 1

7 }

By using the C model that we specified in Alloy, we can generate configurable programs

with application possibilities for the refactorings of our catalogue, as we discussed in Chap-

ter 6. After generating the configurable programs, Colligens generates the corresponding test

cases and applies our refactorings automatically.
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In addition to the configurable program presented in Chapter 6, we present another ex-

ample of generated C program. In Figure B.1 (a), we present a configurable program with

application possibility for Refactoring 3, with alternative if statements. Notice that the

generated program follows the constraints defined in the model, e.g., all functions have a

return statement and start with a local variable definition. Furthermore, the program does

not have functions with empty bodies, contains an if statement, and exactly two function

definitions. Notice that the generated program can be configured by defining macro TAG

or not. So, we have two configurations in this program: (1) macro TAG enabled, and (2)

macro TAG disabled. In Figure B.1 (b), we present the code that Colligens generates after

refactoring the source code of the generated configurable program.

float Glob = -1.0F;

int Func1(int P0){
  int Local0 = 2;
  return Local0;
}

int Func0(int P0){
  int Local0 = 2;
#ifdef TAG
  if (Glob && Func1(P0)){ 
#else 
  if (Glob){ 
#endif
    Glob += 1.0F;
    return Local0;
  }
  return Local0;
}

(a)

float Glob = -1.0F;

int Func1(int P0){
  int Local0 = 2;
  return Local0;
}

int Func0(int P0){
  int Local0 = 2;
  bool test;
#ifdef TAG
  test = Glob && Func1(P0); 
#else 
  test = Glob;
#endif
  if (test){
    Glob += 1.0F;
    return Local0;
  }
  return Local0;
}

(b)

Figure B.1: Program generated with possibility to apply our refactoring.


