
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Automatização de Feedback para Apoiar o

Aprendizado no Processo de Resolução de

Problemas de Programação

Eliane Cristina de Araújo

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus I

como parte dos requisitos necessários para a obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Educação em Ciência da Computação

Ph.D. Dalton Dario Serey Guerrero (Orientador)

Ph.D. Jorge Cesar Abrantes de Figueiredo (Orientador)

Campina Grande, Paraíba, Brasil

©Eliane Cristina de Araújo, 05/09/2017

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

A663a

 Araújo, Eliane Cristina de.

 Automatização de feedback para apoiar o aprendizado no processo de resolução

de problemas de programação / Eliane Cristina de Araújo. – Campina Grande, 2017.

 167 f. : il.

 Tese (Doutorado em Ciência da Computação) – Universidade Federal de

Campina Grande, Centro de Engenharia Elétrica e Informática, 2017.

 "Orientação: Prof. Dr. Dalton Serey Guerrero, Prof. Dr. Jorge César Abrantes de

Figueiredo”.
 Referências.

 1.
 1. Educação em Ciência da Computação. 2. Ensino de Programação. 3. Feedback

Automático. I. Guerrero, Dalton Serey. II. Figueiredo, Jorge César Abrantes de. III.

Título.

 CDU 004.41:37(043)

Resumo

No ensino de programação, é fundamental que os estudantes realizem atividades

práticas. Para que sejam bem sucedidos nessas atividades, os professores devem guiá-los,

especialmente os iniciantes, ao longo do processo de programação. Consideramos que

o processo de programação, no contexto do ensino desta prática, engloba as atividades

necessárias para resolver um problema de computação. Este processo é composto por uma

série de etapas que são executadas de forma não linear, mas sim iterativa.

Nós consideramos o processo de programação adaptado de Polya (1957) para a resolução

de problemas de programação, que inclui os seguintes passos [Pól57]: (1) Entender o

problema, (2) Planejar a solução, (3) Implementar o programa e (4) Revisar. Com o foco

no quarto estágio, nós almejamos que os estudantes tornem-se proficientes em corrigir as

suas estratégias e, através de reflexão crítica, serem capazes de refatorar os seus códigos

tendo em vista a boa qualidade de programação.

Durante a pesquisa deste doutorado, nós desenvolvemos uma abordagem para gerar e

fornecer feedback na última fase do processo de programação: avaliação da solução. O

desafio foi entregar aos estudantes feedback elaborado e a tempo, referente ás atividades de

programação, de forma a estimulá-los a pensar sobre o problema e a sua solução e melhorar

as suas habilidades. Como requisito para a geração de feedback, comprometemo-nos a não

impor mais carga de trabalho aos professores, evitando-os de criar novos artefatos. Extraímos

informações a partir do material instrucional já desenvolvido pelos professores quando da

criação de uma nova atividade de programação: a solução de referência.

Implementamos e avaliamos nossa proposta em um curso de programação introdutória

em um estudo longitudinal. Os resultados obtidos no nosso estudo vão além da desejada

melhoria na qualidade de código. Observamos que os alunos foram incentivados a melhorar

as suas habilidades de programação estimulados pelo exercício de raciocinar sobre uma

solução para um problema que já está funcionando.

ii

Abstract

In programming education, the development of students’ programming skills through

practical programming assignments is a fundamental activity. In order to succeed in those

assignments, instructors need to provide guidance, especially to novice learners, about

the programming process. We consider that this process, in the context of programming

education, encompasses steps needed to solve a computer-programming problem.

We took into consideration the programming process adapted from Polya (1957) to

computer programming problem-solving, that includes the following stages [Pól57]: (1)

Understand the problem; (2) Plan the solution; (3) Implement the program and (4) Look

Back. Focusing on the fourth stage, we want students to be proficient in correcting strategies

and, with critical reflection, being able to refactor their code caring about good programming

quality.

During this doctoral research, we developed an approach to generate formative feedback

to leverage programming problem-solving in the last stage of the programming process:

targeting the solution evaluation. The challenge was to provide timely and elaborated

feedback, referring to programming assignments, to stimulate students to reason about the

problem and their solution, aiming to improve their programming skills. As a requirement

for generating feedback, we compromised not to impose the creation of new artifacts or

instructional materials to instructors, but to take advantage of a usual resource already created

when proposing a new programming assignment: the reference solution.

We implemented and evaluated our proposal in an introductory programming course

in a longitudinal study. The results go beyond what we initially expected: the improved

assignments’ code quality. We observed that students felt stimulated, and in fact,

improved their programming abilities driven by the exercise of reasoning about their already

functioning solution.

iii

Contents

1 Introduction 1

1.1 General Problem and Proposed Solution 3

1.2 Overview of this Thesis . 4

1.3 Contributions . 5

1.4 Thesis’ Outline . 6

2 Background 8

2.1 Considerations About Learning and the Science of Instruction 9

2.2 Programming Learning Challenges . 11

2.3 Feedback and its Effects on Learning . 16

2.4 Related Works . 20

2.4.1 Automated Assessment in Programming Education 20

2.4.2 Intelligent Tutoring Systems . 21

2.4.3 TST – Programming Assignments Testing System 25

3 Feedback Generation to Support Computer Programming Problem-Solving 28

3.1 Research Roadmap . 29

3.2 Methods . 31

3.2.1 Context . 31

3.2.2 Data Collection . 32

3.2.3 Demographics . 33

3.2.4 Metrics . 34

3.2.5 Analysis . 36

3.2.6 Qcheck . 37

iv

CONTENTS v

3.2.7 Setting Up Activities . 38

3.2.8 Summary of Studies . 39

4 Generation of Automated Code Quality Improvement Feedback 42

4.1 Context . 44

4.2 Measuring Students’ Code Quality Through Software Metrics 44

4.2.1 Methods . 44

4.2.2 Metrics . 45

4.2.3 Data Collection . 47

4.2.4 Results and Analysis . 48

4.2.5 Discussion . 50

4.3 Assessing Students’ Code Quality with qcheck Support 50

4.3.1 Methods . 51

4.3.2 Metrics . 51

4.3.3 Data Collection . 52

4.3.4 Results and Analysis . 53

4.3.5 Qualitative Evaluation . 54

4.3.6 Summary and Discussion . 58

5 Code Quality Improvement Prompted by Automated Feedback 60

5.1 Context . 61

5.2 On the Impact of Code Quality Feedback Generation with qcheck 62

5.2.1 Methods . 62

5.2.2 Metrics . 63

5.2.3 Data Collection . 64

5.2.4 Results and Analysis . 65

5.3 On the Use of Code Quality Feedback Messages 67

5.3.1 Methods . 67

5.3.2 Metrics . 68

5.3.3 Data Collection . 69

5.3.4 Results and Analysis . 69

5.3.5 Qualitative Evaluation . 72

CONTENTS vi

5.4 On Producing Summative Feedback . 74

5.4.1 Methods . 74

5.4.2 Metrics . 75

5.4.3 Data Collection . 77

5.4.4 Results and Analysis . 78

5.4.5 Discussion . 78

6 Consequences of Code Quality Improvement Feedback on the Learning of

Programming 80

6.1 Context . 81

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course . 81

6.2.1 Methods . 82

6.2.2 Data Collection . 84

6.2.3 Metrics . 85

6.2.4 Results and Analysis . 85

6.3 Do Learners Think that Qcheck is Useful? 92

6.3.1 Methods . 92

6.3.2 Participant Selection . 93

6.3.3 Data Collection . 95

6.3.4 Results and Analysis . 95

6.3.5 Discussion . 99

7 Discussion 101

7.1 Theoretical Implications . 108

7.2 Pedagogical Implications and Opportunities 109

7.2.1 Learning Conversations and Interactions 109

7.2.2 Critical Reflection About Code 109

7.2.3 Clear Marking Criteria to Programming Assignments 110

7.2.4 Summative Assessment of Code Quality Produced by Students . . . 110

8 Concluding Remarks 111

8.1 Future Works . 112

CONTENTS vii

A Uma revisão sobre sistemas automáticos para a avaliação de atividades de

programação 121

B Qualitative aspects of studentS’ programs: Can we make them measurable? 132

C Applying Spectrum-based Fault Localization on Novice’s Programs 141

D Questionnaire – Do learners think that qcheck is useful? 150

E Avaliação da Legibilidade de Programas Escritos por Alunos Iniciantes 153

List of Figures

1.1 Stages of Computer Programming Problem-Solving Stages. 2

2.1 Students’ View of TST Web Interface. 26

3.1 Students Performance During the Longitudinal Study. 33

3.2 Students Course Performance Expectancy. 34

4.1 Distribution of Manual Grades Assigned to Functionally Correct Submissions. 48

4.2 Distribution of Instructors’ Grades and Each Metric. 49

5.1 Problem Specification of ’Life Collatz’ Programming Assignment. 63

5.2 Number of Quality Warnings per Group. 70

5.3 Warnings Distribution on each Group. 71

5.4 Distribution of ∆W According to Groups. 71

5.5 Quality Improvement According to Groups. 71

5.6 Code Changes Categorization per Group. 73

5.7 Code Production Quality Report Automatically Generated by Qcheck. . . . 74

5.8 Assessment of Students (a) and (b) Programming Assignments. 77

6.1 Aggregated Number of Qcheck Use by Students by Date. 84

6.2 Occurrences of Qcheck Uses X Activities Performed by Students. 86

6.3 Distribution of ∆W per Assignments. 87

6.4 Number of Warnings According to Qcheck User Category. 88

6.5 Mean of W and S According to Qcheck Use. 90

6.6 Qualitative Evaluation - Questions of the Interview and Questionnaire. . . . 95

6.7 Students’ Perception About Code Improvement Directed by qcheck Hints. . 99

viii

LIST OF FIGURES ix

7.1 Summary of Costs and Benefits on Providing Assistance. 108

List of Tables

2.1 Pass and Failure Rates of Computer Science Students at the UFCG

Introductory Programming Course. 15

2.2 ITS Objectives and Strategies. 23

2.3 Conceptual Components of ITS. 24

3.1 Demographic Data of Students of 2017.1 Programming 1 Course. 34

4.1 Measurements Proposed to Assess Code Quality. 47

4.2 Pairwise Code Quality Evaluations Among Raters X Tool. 52

4.3 Agreement Index Value Among Raters and qcheck Tool. 54

4.4 Disagreement Among Ratings (Rn and qcheck). 55

5.1 Number of Correct Submissions. 64

5.2 Distribution of Quality Warnings Account According to Each Group 69

5.3 Dataset Summary. 77

5.4 Contingency Table Contrasting Students’ qcheck Usage Proficiency to Grades. 78

6.1 Students Code Production Data Collection. 85

6.2 Students Usage Pattern of Qcheck Relating to Occurrences and Activities. . 87

6.3 Contrasts of Final Number of Warnings According to qcheck Usage per

Assignment. 88

6.4 Value of the Mean of Quality Warnings – W 90

6.5 Values of the Mean of Style Warnings – S. 90

6.6 Data Set of Qualitative Users’ Study. 96

x

Chapter 1

Introduction

A central activity in programming courses is the development of students’ programming

skills with practical programming assignments. Enough practical activities are paramount

to students to effectively achieve learning goals. The assessment of these activities and

the feedback provided by instructors about them is a fundamental aspect of the learning

process. Besides showing that learning outcomes are being met; literature has shown that

feedback can affect the learning process at various levels and have different functions, such

as: stimulating, informing, correcting, making suggestions, completing knowledge, advising

and so on [Nar08].

In fact, one of the central pillars of the interaction between instructor and learner is the

feedback provided by the first about the work produced by the last [Yai14]. In his essay,

Yair argues that grades offer the obvious and tangible type of feedback, they are merely a

’right-wrong’ indication and have a rather limited benefit to students. Useful feedback goes

beyond right-wrong or pass-fail information. Students need to be aware of how they are

performing regarding the instructors’ expectations and how they can improve. This type of

feedback is usually referred in educational research as "formative feedback". Shute explains

that formative feedback "can signal a gap between a current level of performance and some

desired level of performance or goal" [Shu08] .

In 2005, Bennedsen and Caspersen discussed the idea of "revealing the programming

process" as fundamental to teach novice programming students [BC05]. According to them,

the idea of perceiving the development of computer programs as "programming process" is

not new. The process encompasses a set of activities that are interactively executed and can

1

2

be revisited, differently from a linear process.

In a similar perspective, Polya’s methodology on how to solve mathematical problems

[Pól57] was mapped and adapted to programming teaching and learning scenario. In

fact, learning how to program goes beyond than acquiring abilities on language syntax or

managing a development environment. It requires analytical skills that must be trained.

We believe that the development and strengthening of problem-solving skills may help to

learners cross the chasm between understanding the problem specification and programming

an adequate solution. Figure 1.1 summarizes the programming problem-solving stages,

adapted from Polya’s methodology [Tho97].

Figure 1.1: Stages of Computer Programming Problem-Solving Stages.

In this work, we use Thompson (1997) definition of the programming process, which

encompasses a set of steps needed to solve a computer-programming problem. These steps

are: (1) Understand the problem, (2) Plan the solution, (3) Implement the program and

(4) Look back. This process can be seen as a natural and effective pathway for students

accomplish their programming assignments. However, the whole process can be too complex

to novices whilst struggling with their first programming experiences, increasing their need

for guidance and assistance.

As the number of enrollments in programming courses is steadily growing and

teachers’ duties go far beyond teacher-student time, one-to-one personalized feedback about

programming assignments is rare. In this context, Automated Assessment Systems (AAS)

play an important role as they allow for rapid, frequent, cheap and standardized feedback.

Furthermore, data acquired about students’ interaction with the course instructional materials

by these systems, increase teachers’ ability to track, map and assess students learning

1.1 General Problem and Proposed Solution 3

patterns [Yai14]. They empower and aid instructors to direct their efforts to higher analysis

levels.

In almost every programming course nowadays, AAS provides delivering, submission

and assessment of programming assignments. Those systems give to students different

levels of feedback about their assignments, depending on the AAS specific strategy. Several

strategies to automatically assess programs have been adopted by those systems [AM05].

Most of them provide feedback on functional correctness test-based analysis.

Nowadays, AAS have extended their scope and include features such as: gamification

[IE14], test coverage analysis [JU97], managing human-authored feedback, contest

adjudication [Mil11], secure remote code execution [MM13], and more [DSPQ+17].

A positive aspect highlighted by Gulwani (2014) about AAS, is that they provide

immediate automated feedback and can enable new pedagogical benefits such as allowing

resubmission opportunities to students who have submitted imperfect solutions and

providing an immediate diagnosis for teachers on class performance, allowing them to adapt

instruction accordingly [GRZ14]. On the other hand, students still need a better support from

them to deal with the complexity of programming process. It is not rare that students feel

helpless, as they cannot make progress in their programming assignments autonomously.

Sometimes, they are only able to move on after a personal interaction with instructors or

teachers assistants. The problem is that many students do not receive this qualified feedback

because they avoid human contact or simply do not have a chance to make it on time.

In a broader sense, this work is in the context of computer supported learning tools

aimed at helping to teach and learn how to program. It explores automated assessment as a

mean to provide personalized instruction to students about their programming assignments

in introductory programming courses. Given that, it relies on fully automated strategies and

can be applied to distance learning or online courses such as MOOCs and others.

1.1 General Problem and Proposed Solution

The problem is that the feedback provided by automated assessment systems is focused

mainly on the "Implement the Program" phase of the programming process, which comprises

the production of a functional correct program according to a set of tests. The "Look Back"

1.2 Overview of this Thesis 4

phase, when the problem solution is evaluated, is usually neglected. Students need a better

support from AAS to deal with the complexity of this phase and its particular difficulties.

We claim that timely automated feedback can be generated and delivered to students to

satisfy this need. We intend to generate rich feedback, which is useful formative feedback

typically provided by human instructors. We argue that there are aspects of program

validation feedback, in terms of code quality, that can be automated.

Our proposal is to provide feedback to the last phase of the programming process,

typically neglected by usual AAS. We intend to obtain information at a low cost, using

instructional materials already produced by instructors to the programming assignment. The

feedback will be timely delivered to the students by an AAS.

We claim that it is possible to assist novice programmers with adequate and useful

feedback, in order to improve programming problem-solving support, increase student

programming skills with the aim to leverage introductory programming learning.

1.2 Overview of this Thesis

During this doctoral research, we explored the generation and delivery of automated

feedback to students during the programming process. The challenge was to provide

timely and enriched feedback that stimulates students to reason about problems and their

solution and to improve programming skills. We intended to leverage programming

problem-solving teaching and learning generating enriched automated feedback, regarding

students programming assignments, with information typically delivered by human

instructors. Furthermore, we constrained our strategies of feedback generation to obtain

information at a low cost from instructional materials already produced by teachers, aiming

to minimize burdens imposed to them.

We focus deeply on providing feedback with respect to the last phase (4 - Look Back),

when the program is revisited and refactored. Usually, when the program passes all tests

cases and is considered functionally correct, students move on to a new assignment. In

fact, we have observed in our empirical studies that the vast majority of students neglect

this fourth phase, as they do not make new submissions after the first correct one. In other

situations, when the program is manually evaluated, they are assessed under qualitative and

1.3 Contributions 5

subjective factors considered by instructors. However, manual and personalized feedback is

produced at a high cost and, depending on the number of students and assignments, may be

prohibitive. We dedicated our efforts on generating automated feedback on code quality for

novice’s programming assignments.

In an effort to achieve this purpose we conducted research studies, such as experiments,

surveys and case studies, to gather empirical evidence to answer the following research

questions:

RQ1: How can we generate automated code quality feedback based on

introductory programming teachers’ expectations?

RQ2: Can students improve the code of their programming assignments

prompted by timely and automated feedback?

RQ3: Is it possible to improve students programming skills stimulating

reflection about their code quality?

We proposed and evaluated a set of software metrics that could be used to provide

qualitative feedback about novice programming assignments. We proposed and developed an

automated feedback tool, which was plugged into an AAS and evaluated its efficacy. Finally,

we evaluated in a real introductory programming course its effects during a period of time

and found positive results. Although, there is room for adjusts and customizations so that we

could improve the approach.

1.3 Contributions

In summary, this Ph.D. research proposes and evaluates strategies to improve automated

feedback provided by AAS to support computer-programming problem solving of

introductory programming learners. Students lack elaborated feedback, typically provided

by humans, in key parts of this process. The main contribution of this Ph.D. thesis relies

on the automated generation of code quality feedback, targeted to aid students on the fourth

stage, known as "Look back", of the programming problem-solving process.

We proposed a set of metrics that are able to capture, in some extent, teachers notion of

students’ code quality; then we implemented and evaluated in a real programming course

1.4 Thesis’ Outline 6

a proof-of-concept feedback tool plugged into their AAS. Results found in our longitudinal

evaluation goes beyond what we initially expected: the improved assignments’ code quality.

We observed that students felt stimulated, and in fact, improved their programming abilities

driven by the exercise of reasoning about their already functioning solution. To sum up, the

contributions we aim to deliver with this work are:

1. A proposal to provide feedback generation, based on software measures, to aid

students in improving their code on instructors’ code quality perspective;

2. A proof-of-concept tool – qcheck – built to refine and evaluate the proposal. It is

publicly available to use;

3. A set of lessons learned on providing automated feedback related to program quality

improvement through an automated assessment tool in an introductory programming

course.

1.4 Thesis’ Outline

This document is organized as follows:

Chapter 2 – Background: This chapter presents the background in computer science

education that motivated us to pursue this research and the theoretical framework relating to

concepts we used to develop this work. Experienced readers may safely skip it.

Chapter 3 – Feedback Generation to Code Quality Improvement: This chapter

details our proposal and strategies on providing automated feedback about code quality. It

summarizes the roadmap of this research and discusses the methodology we followed to

construct knowledge and evaluate our claims.

Chapter 4 – Generation of Automated Code Quality Improvement Feedback: This

chapter details our proposal and strategies on providing automated feedback about code

quality. It shows our proposal on how to generate automated code quality feedback.

Chapter 5 – Code Quality Improvement Prompted by Automated Feedback: This

chapter discuss the possibility of the code quality improvement feedback delivered to

students directs the improvement of their programming assignments’ code.

1.4 Thesis’ Outline 7

Chapter 6 – Consequences of Code Quality Improvement Feedback on the Learning

of Programming: Lastly, this chapter considers the consequences to learners of providing

feedback about code quality improvement using the proposed tools during a programming

course. We are going to present our main findings in a longitudinal study and discuss its

implications to learners, instructors and the course itself. Furthermore, we are going to

present an evaluation of the approach performed with the students that used the tool in their

activities.

Chapter 7 – Discussion: This chapter sums up the discussion about the proposal and

ideas we brought to light in this doctoral research. We will observe the practical significance

of those approaches and pedagogical implication arisen by them. In addition, we will briefly

contrast it with other related works and present some threats to our conclusions validity.

Chapter 8 – Conclusions: This chapter will concisely wrap up this work emphasizing

what was done and why it was good. Furthermore, it will address some opportunities and

future works that might be done to extend and improve this research.

Chapter 2

Background

Multi-national and multi-institutional studies on Computer Science Education (CSE)

literature showed that teaching programming to novices is a worldwide challenge

[LAF+04][MM13] [MAD+01]. Many researchers and academics discuss alternatives

to better teaching and learning programming skills [SS89] [RRR03]. Others examine

characteristics and difficulties of novice students [ESPQ+09] [LAMJ05]. Different

approaches have been proposed to minimize the hurdle imposed to learners, each one with

their own advantages and drawbacks.

In this thesis, we argue that formative feedback has the potential to leverage programming

learning in helping students to improve their code quality while reasoning about another

potential solutions. Hattie and Timperley (2007) published a thorough review of the potential

of feedback on learning and achievement. They propose that effective feedback must answer

three major questions asked by students to her teacher/instructor: "Where am I going? (What

are the goals?), How am I going? (What progress is being made toward the goal?), and Where

to next? (What activities need to be undertaken to make better progress?" [HT07]. However,

there are some issues to consider when generating and delivering feedback, for example, type

of feedback, characteristics of the learner that will receive it, timing (delayed or immediate).

Shute (2008) presented a broad literature review and summarized recommendations and

guidelines for formative feedback. Her study presents suggestions about "what to do" and

"what to avoid" when delivering formative feedback [Shu08] . She also discusses formative

feedback timing and issues regarding learners’ characteristics. Technology that supports

programming learning challenges and opportunities or grader systems, has the capability

8

2.1 Considerations About Learning and the Science of Instruction 9

to empower the generation of adequate and timely feedback, bearing in mind the learner

characteristics.

Research and development of this kind of systems are not new as reviewed by [AM05]

[IAKS10]. In a comprehensive survey, Douce discussed the development of those systems

for the last forty years [DLO05]. Following a chronological approach, he classified the

systems into generations. Recently, communications technologies have pushed the frontier

of e-learning forward with the advent of massive open online courses. So, systems that

support programming learning have become even more complex and important.

In this chapter, we present an overview of CSE literature addressing the subjects in

this thesis and aiming to make this document self-contained. Firstly, we discuss aspects of

cognition and learning. Then, we present some programming learning challenges, based on

the literature and in our practice as teachers. We also identify opportunities to contribute

and advance the research in this field. Next, we examine the potential of feedback to

programming learning. For clarification, we define feedback related terms that will be used

in the rest of this document. Lastly, we provide an overview of the existing assessment

system for introductory programming learning and intelligent tutoring systems, which are

works related to ours. We discuss different strategies employed by those systems to support

learning. We devoted special attention to an AAS developed in-house to our university

introductory programming course - TST. This system has been used for, at least, five years

and it is in constant evolution. We used data collected by TST in our studies.

2.1 Considerations About Learning and the Science of

Instruction

Learning theory is a vast research area that congregates psychologists, neuroscientists,

educators and other professionals. Numerous and important specialists contributed to

constructing knowledge about the science of learning and its challenges, such as: Jean Piaget

(1896-1980), Lev Vygotsky (1896-1934), Benjamin Bloom (1913-1999), Seymour Papert

(1929- 2016), Richard Mayer (1947-) and so on. Due to their ideas, they are usually cited in

researches and works that ultimate intend to improve learning.

According to cognitive sciences, human learning and working activities rely on two types

2.1 Considerations About Learning and the Science of Instruction 10

of memory: working memory and long-term memory. When people are in learning mode,

the new information acquired from the environment is processed in working memory to form

knowledge structures that are stored in long-term memory. When new information enters

in working memory they must be integrated into pre-existing structures of the long-term

memory [Cas07].

"Learning depends on the learner’s cognitive processing during learning

and includes (a) selecting - attending to the relevant incoming material;

(b) organizing - organizing the incoming material into coherent mental

representation; and (c) integrating - relating the incoming material with existing

knowledge from long-term memory" [May08].

In this work, we propose to provide elaborated feedback during the programming process

to improve students’ learning. We searched for the theoretical basis on the "Science of

Instruction" so that we could guide our work. We shall refrain from discussing in more

details this theory here, as it is not our intention to provide a comprehensive survey about the

theme in this session. In summary, the key elements of the science of instruction, which are:

1. Reducing extraneous processing - cognitive processing that does not support the

instructional goal and is attributable to confusing instructional design;

2. Managing essential processing - cognitive processing needed to mentally represent the

incoming material and that is attributable to the complexity of the material;

3. Fostering generative processing - cognitive processing aimed at making sense of the

incoming material, including organizing and integrating it with prior knowledge.

Mayer (2008) presented and discussed a set of principles to elaborate and design

multimedia instruction so that it could achieve the above-mentioned principles [May08].

We also tried to adhere to some of these principles when proposing and implementing

our proof-of-concept tool for code quality improvement feedback – qcheck. Our proposal

in providing feedback on code quality improvement seeks the alignment with his theory

and cognitive load reducing principles. These principles were targeted on the "Design of

Multimedia Instruction" [May08], but we consider that it can also be applied to our context

of programming instructional material.

2.2 Programming Learning Challenges 11

We attempted to "reduce extraneous processing" using the Coherence principle.

Reducing extraneous processing is important so that learners do not waste cognitive capacity

in activities that do not contribute to their final goals. To follow the coherence principle,

implemented a plugin to the already existing AAS - TST - used by the introductory

programming course.Qcheck installation and usage were extremely similar to the way

students are used to doing with TST. In fact, we tried to adhere qcheck to TST as much

as we could, but they are independent software. In this sense, students did not have to learn

a new instruction on how to use it, but only how to make use of it.

Then, we followed the principle of the Personalization, in order to foster generative

processing. On the first experiments and versions of qcheck software the textual style of

the feedback messages were too impersonal (example: "There are too many lines of code").

This principle claims: "People learn better from a lesson when words are in conversational

style rather than in formal style." [May08]. The theoretical rationale of this technique is that

the conversational style induces learners to create a sense of partnership with the message

narrator, so they will try harder to make sense of what is being advised. According to

this principle, we updated all feedback messages to conversational style (example: "Your

program has too many lines of code."). We did not have empirical evidence about the effect

size of this change in our research.

2.2 Programming Learning Challenges

Programming is considered to be a central and a distinguished feature of Computer Science

curriculum [Fin99]. Programming learning in higher education challenges researchers and

educators with different issues experienced worldwide. Lahtinen and colleagues, in a study

about the difficulties of novice programmers (2005), argued:

"Programming is not an easy subject to be studied. It requires the correct

understanding of abstract concepts. Many students have learning problems due

to the nature of the subject. In addition, there are often not enough of resources

and students suffer from a lack of personal instruction. Also, the student groups

are large and heterogeneous and thus it is difficult to design the instruction so

that it would be beneficial for everyone. This often leads to high drop-out rates

2.2 Programming Learning Challenges 12

on programming courses" [LAMJ05].

In this subsection, we are going deep into this claim resembling discussions about those

issues reported in the literature and presenting our own personal experience as an instructor.

At the end of this section, we will discuss the results of Lahtinen studies and debate if it still

remains valid 10 years later.

Programming encompasses abstract concepts and problem-solving skills that usually

frighten students that have just started a university course. Many students that cannot make

progress on introductory programming course simply consider dropping out the course, as

they feel inadequate to it. Difficulties in this subject may mine self-esteem and deeply

affect psychologically students. High dropout rates are considered to be an important issue

in computer science education and are referred as motivation by many studies [VAW14]

[Yad11]. Another issue referred by educators is that "students suffer from a lack of personal

instruction" [LAMJ05].

Teachers’ assistants and tutors are other critical resources to practical programming

classes. They support learners with their assignments and, sometimes, assess their code

or test production providing them with feedback on how to make it better. However, it

is expected that assistance and assessment provided by them, follow the same instructors’

criteria and orientations. For example, the course instructors explained that there are

situations to better use ’While True’ statement. This same orientation must be replicated

in laboratory classes. It may be difficult to standardize teachers’ assistants and tutors

procedures since they have their own judgments and limitations. One-to-one tutoring

provided by them is simply prohibitive for the number of students enrolled in some courses,

mainly in online courses [SGSL13]

A different approach that some courses are adopting to deal with the challenge of

providing feedback about programming assignments to a large number of students is

peer-review. In this case, other "peers" review the student code and generate a feedback

with suggestions on how to improve the code or even grading it. But this approach has its

own problems, besides standardization mentioned before. It has been reported that students

may wait for a long time to get any feedback [SGSL13].

In a different perspective, there are controversial debates about what are the most

effective or adequate methodology and teaching approach to teach programming. As

2.2 Programming Learning Challenges 13

programming issues were considered one of the top grand challenges in Computer Science

education, McGettrick and colleagues stated the following, as research objectives in this

area:

"(...) Teach using the right methods by choosing between different approaches:

for example, those based on formal definitions of syntax and semantics and those

relying on informal description and example; between conventional lectures and

practical classes and e-learning, collaborative learning, peer tutoring and other

approaches, and using the right assessment and evaluation strategies" [MBI+05].

Fincher, more than a decade before, comparatively evaluated methodologies and models

for teaching programming. She presented four approaches that used to be adopted by

different instructors, named and classified them regarding their degree of abstraction:

literacy, computation as interaction, problem solving and syntax-free [Fin99]. As a

conclusion, the study argues that practitioners need to be reflective and to know the possible

approaches in order to adhere to them. It is also pointed that there is no quantitative evidence

of the success of any of those teaching approaches and this is a challenge for researchers in

computer science education.

Years later, Vihavainen and colleagues systematically reviewed the literature in teaching

approaches for programming in order to measure the effects of each proposed intervention

and, finally, to yield quantitative evidence of success [VAW14] [VPL11]. They evaluated the

study of thirteen approaches, or teaching interventions, using pass rates as a success metric.

The interventions were grouped on activities tagged as:

• collaboration;

• content change;

• contextualization;

• CS0 (it means a preliminary course, before the introductory programming course);

• game-theme;

• grading schema;

2.2 Programming Learning Challenges 14

• group work;

• media computation;

• peer support;

• support activities (such as tutors, more teaching hours, etc);

They found that the novel approach improved pass rates, on average, in one third in

comparison with the traditional method previously adopted. Vihavainen et al. assured that

it was not possible to choose the most effective approach. They suggested that perhaps just

the willingness of educators to change and their move from a traditional way of teaching to

a new one will be responsible for improvements in pass rates.

In fact, low pass rates or high failure rates in introductory programming courses have

been used as motivations of hundreds of studies [BC07]. Still, there are few studies devoted

to quantitatively evaluate what is considered to be this high failure rate in introductory

programming courses worldwide. Bennedsen and Caspersen, in a first attempt of producing

evidence about this, conducted a survey among different institutions about failure rates

[BC07]. The study results found on average 33% of failure to the number of enrollments.

They concluded that this number is not "alarmingly high", but they cannot make firm

conclusions about this since the number of respondents of their survey was considerably

low.

In a worthy initiative, Watson (2014) revisited Bennedsen (2007) study animated by the

same aim: to find "substantial evidence" of introductory programming courses failure-rates

[WL14] [BC07]. This study was awarded the best paper at the 19th edition of the annual

conference on Innovation and Technology in Computer Science Education - ITiCSE/ACM.

They systematic reviewed the literature and performed statistical analysis to find the average

of introductory programming course failure-rate worldwide. Their study sample size was

a double of the previous work sample size. However, it is still statistically not sufficient

to make firm global conclusions. The authors were very cautious when stating their

conclusions. Interestingly, the average failure rate found was 32.3%. It was almost the same

as the one obtained by Bennedsen and Caspersen survey. The study also concluded, just

like their predecessors, that this number is not "alarmingly high", but it has a "considerable

potential for improvement" [WL14].

2.2 Programming Learning Challenges 15

The reality of our introductory programming courses at UFCG is not as different as the

worldwide scenario as we can observe in Table 2.1. It is worthy to observe that on the term

2014.2 there was a drastic change in pedagogical direction of that course. Instructors have

adopted flipped classroom with mastery learning strategy and this change might have caused

the improvement of pass/fail numbers.

Motivated by this possibility of improvement and by the need to teach programming

more effectively there is a great academic effort in this area. Mcgettick et al. claims "when

we set out to teach programming skills to students, we are less successful than we need to be

and ought to be." Also, "we might teach programming more effectively, making better use

of resources and with greater student and staff satisfaction." [MBI+05].

Table 2.1: Pass and Failure Rates of Computer Science Students at the UFCG Introductory

Programming Course.

Term Passed (%) Failed (%)

2011.1 69.0 31.0

2011.2 51.0 49.0

2012.1 77.0 23.0

2012.2 54.0 46.0

2013.1 72.0 28.0

2013.2 63.4 36.6

2014.1 70.6 29.4

2014.2 84.5 15.5

Many educators fiercely study to better understand the programming process and how the

novice programmer comes to understand and major this cognitive ability [SS89] [RRR03].

In general, they report that students have greater difficulties in understanding the "big

picture" of the programming process, such as abstraction or how to solve the problem

programmatically, than details about it, such as programming language syntax.

Lahtinen and colleagues deep dived into novice programmers’ universe to find out,

in minor details, what were their struggles. Specifically, they aimed at contrasting if

programming courses that are adopting Java/C++ corroborate with difficulties reported in

2.3 Feedback and its Effects on Learning 16

previous studies. They conducted a multi-institutional survey answered by more then

500 students, that perceived as the most difficult issues in programming were [LAMJ05]:

"understanding how to design a program to solve a certain task; dividing functionality

into procedures and finding bugs from their own programs." The findings corroborates

with previous studies: the biggest issue educators need to deal with is to help students to

master programming abstract concepts. Furthermore, they find that students and teachers

have a different perception about content understanding. Students tend to overestimate their

understanding about the subject. On the other hand, teachers have a more realistic view of

students’ difficulties as they assess their exams [LAMJ05].

In fact, students need to be aware, through instructor’s feedback, about how they are

performing in a particular task and, certainly, in the whole course. This knowledge may

drive their attitudes about giving up or keeping on trying to succeed. Shute declares that

feedback can reduce the uncertainty about how well the student is performing, as it closes

the gap between learners understanding and, the desired understanding [Shu08]. We also

agree with this claim and recognized the opportunity to improve the support to students

through providing formative feedback along the programming process to let them achieve

the expected learning outcomes.

The challenge we address is narrowing the student’s self-referential assessment of their

knowledge, code production and expectations with the teacher’s assessment about them. In

fact, teachers have their own expectations about what is supposed to be mastered in a given

moment in the course, according to the exercises or lectures students have been exposed

to. These expectations are the so-called learning outcomes. Formative feedback seems to

be the key to uncover to the student the teachers’ expectancies, in a giving moment of the

programming process, about his/her code production.

2.3 Feedback and its Effects on Learning

There are numerous definitions about educational feedback in the literature. In this

document, we adhere to Hattie and Timperley conceptualization that conceive "feedback

as the information provided by an agent (e.g. teacher, peer, book, etc) regarding aspects

of one’s performance or understanding" [HT07]. Though, feedback is a consequence of a

2.3 Feedback and its Effects on Learning 17

process started before. For example, a teacher proposes a set of programming assignments

to students. As a result, students produce programs as responses to those assignments. It is

possible to provide feedback about the product, the code itself, and also to students’ attitudes

towards the programming process.

In educational research, feedback can be characterized according to its purpose as (a)

formative, to support and improve students learning skills and (b) summative, to make a

judgment and to declare that learning objectives have been reached by the student [DLO05].

In a simplistic analysis, we can say that formative feedback is addressed to students and

teachers and drives improvements on their teaching and learning activities along the process.

Summative feedback is provided at the end of a cycle, aiming to measure the student growth,

for example, students’ grades or progress reports. This kind of feedback is important not

only to students but also to teachers and educational institutions, in order to re-configure

courses or curricula.

In fact, formative feedback provided by instructors about the work produced by learners

is considered to be one of the central pillars of the interaction between them [GMD11]

[Yai14]. In his essay, Yair argues, "Grades offer an obvious and tangible type of feedback

(...) and have a rather limited benefit to students". Effective formative feedback assesses the

learners’ work and is composed of, at least, two components: verification and elaboration

[Shu08].

The most frequent strategy to perform verification in programming assignments is the

test-based assessment. A set of test cases produced by instructors is used to dynamically

verify students’ programs. On the other hand, feedback elaboration on programming

assignments has a lot of variations. It can address different topics, such: test coverage,

when the programs were delivered (is it on time or delayed?), discuss code quality, guide

students to further studies on a given topic, propose instructional material to improve

understanding, etc. Formative feedback goes beyond "right-wrong" indication about the

student’s task. In the context of our work, the formative feedback includes all the information

and communication exchanged by learners and instructors that may contribute to modify

an erroneous behavior and to demonstrate that expected abilities have been mastered. In

fact, feedback closes the gap between learners’ current understanding and the desired

goal, according to instructors [Shu08]. Feedback has the potential to enhance learners’

2.3 Feedback and its Effects on Learning 18

performance, but when it effectively does?

There are several characteristics that must be observed to generate useful feedback. In

regards to timing, it can be classified as delayed or immediate feedback. For example, in

programming assignments, automated assessment systems can provide immediate test-based

feedback about each submission of the student’s code. It allows for students to instantly

discover if the submitted code meets the requirements expected to solve that given problem.

This automation can fasten studies sessions since students do not need to wait for an

instructor to assess the code. However, researchers are reconsidering this kind of immediate

feedback arguing that it may refrain students to think critically and thoroughly test their

code before submitting it [BE14]. This practice has possibly changed the student behavior

on the programming process, as they discourage the testing phase. Students can rely on the

instructor’s tests, which are executed when the program is submitted. Petit and colleagues

proposed an alternative to mitigate this issue delaying the feedback. They investigated a

throttling dynamic to accept code submissions, restricting students to submit only 3 times

in a period of 15 minutes [PHG+15]. In doing such, students are forced to submit a more

mature version of the program; delaying the feedback that students would receive. Delayed

feedback might be seen as positive as it provides the opportunity for reflection when a task

is difficult or it involves a deeper degree of processing [HT07].

In Narciss (2008) study, she discusses the content of the feedback for iterative learning

tasks [Nar08]. She presents a content-related classification that provides a "structured

overview of simple and elaborated feedback components by organizing the components with

regard to which aspect of the instructional context is addressed". Simple feedback messages

can be categorized according to their components as:

• KP – Knowledge of performance: Provide learners with a summative feedback (e.g.,

percentage of correctly solved tasks, number of errors, grade)

• KR – Knowledge of result/response: Provide learners with information on the

correctness or quality of their actual response or outcome (e.g. correct/incorrect,

flagging errors, good job)

• KCR – Knowledge of correct results: Provide the correct response or a sample

solution to a given task.

2.3 Feedback and its Effects on Learning 19

Elaborated feedback messages can be categorized according to their components as:

• KTC – Knowledge about task constraints: Provide information on task rules, task

constraints and/or task requirements.

• KM – Knowledge about mistakes: Provide information on errors or mistakes (e.g.

correct/incorrect, flagging errors, good job).

• KC – Knowledge about concepts: Address conceptual knowledge by providing for

example response hints on concept attributes or attribute-isolation examples.

• KMC – Knowledge about metacognition: Address and elicits meta-cognitive

knowledge and strategies necessary for self-regulating the learning process (e.g.,

topic-contingent hints about useful sources of information).

In a similar perspective, other researchers characterize the feedback message in its

complexity. It refers to how much and what information feedback message must contain.

One can think that the more specific the feedback message, the better. However, a more

specific feedback that includes long texts can dilute the message that instructors want to

communicate. Lengthy or complicated explanations may be useless, as students will not read

them [Shu08]. In a recent study, Denny and colleagues proposed to enhance the compiler

errors messages in order to the user identify the error line and correct their code easily. They

included concrete examples illustrating the error that occurred and how to correct that kind of

error in a given situation. Surprisingly, the evaluation of this approach revealed that there was

no effect on students’ ability to correct their code errors [DSPQ+17] [DLRC14]. This study

illustrates that there must exist a balance between what is important and what is necessary to

exist in a feedback message to be useful.

Finally, another important perspective in order to evaluate feedback effectiveness is

related to the learner characteristics. There are many studies in feedback research proposing

to craft a different feedback message according to the learners’ characteristics. Personalized

feedback, the core of an adaptative/personalized learning environment, seems to be a

prominent area in computer-based education research.

Another studies, claims that there are gender differences in feedback consuming: boys

benefit less than girls from feedback [NSS+14] [TWV15]. Meaning that girls are more

2.4 Related Works 20

enticed than boys to modify their erroneous behavior in a given task, according to feedback

guidance and to improve their performance on it. However, we cannot assure that this

behavior would be reproduced in programming assignments. To the best of our knowledge,

none of those studies were replicated on introductory programming courses.

In closing, we claim that formative feedback potentially has the power to enhance

programming learning and teaching, but we still need more evidences to elect what are the

most effective approaches to do so. We know that feedback messages need to be objective

and clear. It must provide enough information to push the learner further on his or her

current understanding. It must be timely and adaptive, according to learners’ characteristics.

Certainly, it must be provided automatically.

2.4 Related Works

In this section, we are going to present some computer-based learning environments which

are in line with our proposal in this research. They provide students with valuable feedback

on the learning process. Initially, we discuss about automated assessment systems – AAS

– in the context of programming education. These are works related to ours in the sense

that the strategies we intend to use to deliver the generated feedback must be associated

with an AAS. Next, we summarize some aspects of intelligent tutoring systems. These

systems "are typically found toward the high end of the interactive spectrum" [KA07] of

computer-based learning environments. The discussion about feedback provided by those

systems was important to our work. Finally, we present the AAS adopted by Programming

1 course at UFCG. This system was used to help us in producing and gathering data about

students interaction with programming assignments during the course. Furthermore, it is

important to present TST to clearly delineate the scope of our research and existing related

works.

2.4.1 Automated Assessment in Programming Education

There exist many available automated assessment systems (AAS) focusing on introductory

programming assignments, such as WEB-Cat [Edw03], Mooshak [RSKPFVI14], Marmoset

[SHP+06], BlueJ [Jad05], among others. AAS became widely used in programming courses.

2.4 Related Works 21

However, they are not exactly a new approach, as the first appeared in 1960. Thenceforth,

they promise to produce objective and consistent feedback to students, while mitigate the

heavy workload of the instructors when performing manual assessment [DLO05] [AM05]

[IAKS10].

They are indeed fundamental to provide feedback to students and help instructors to deal

with modern challenges of programming courses such as increasing enrollments number,

e-learning, and MOOCs. Nevertheless, in this myriad of systems, it is worth to evaluate

what kind of information they provide on feedback and if students are effectively using it to

improve their programming practice.

In general, AAS employ comparable approaches and provide similar features [IAKS10].

The most common feature of automated assessment systems is code functional correctness

evaluation. A typical system executes a set of test cases, provided by the instructors, and

compares the expected output to the observed, obtained from students’ programs. Another

feature provided by AAS is grading [CAMF+03] [Nor07]. Grader systems may weigh other

factors, besides correctness, such as deadline penalty, resubmission times, type of errors, test

coverage, etc.

We claim that the richest possible feedback on students’ programs is the result of

human inspection and analysis of both functional and qualitative aspects of the code. Good

instructors enrich their feedback with impressions about the code quality to help students

to reason on their solution and leverage their critical abilities. Certainly, many subjective

aspects are indeed immeasurable, but we think that it is possible to find objective and

measurable factors on the code that reflect most of the so-called qualitative aspects reported

on the feedback provided by instructors in their assessments. This is part of our proposal and

will be explained afterward in this document. Appendix A presents a review on AAS in a

paper we submitted for publication at SBIE - Simpósio Brasileiro de Informática e Educação:

"Uma revisão sobre sistemas automáticos para a avaliação de atividades de programação".

2.4.2 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITSs) are computers’ programs intended to provide

personalized instruction and feedback to learners usually without requiring human teachers

intervention. These systems were born into Artificial Intelligence laboratories, evolved and

2.4 Related Works 22

spanned including knowledge from different areas such as cognitive sciences, psychology

and others. Usually, their development is highly grounded in human learning theories or

models. Even though, "no single teaching environment has been shown to be appropriate

for a majority of people or even a majority of domains, in part because human learning is

imperfectly understood" [Woo10].

The technological approach adopted by ITS potentially may produce highly

individualized, pedagogically effective, and accessible instructional material and to involve

more students in effective learning. They might unveil the extent to which students of

different gender, cognitive abilities, and learning styles learn with different forms of teaching,

given the capability of being sensitive to learners differences [Van06].

There are many projects which endeavor is to build and distribute an ITS for a given

knowledge domain. Also, it can be found in literature meta-analysis contrasting ITS

initiatives learning outcomes, suitability and effect sizes [KF16] [MANL14]. These works

first challenge is to come up with a common definition about such diverse systems. In

general, an ITS is a student-centered computer program whose objectives and strategies are

presented in Table 2.2 [MANL14].

Typically, an ITS targets to achieve the benefits of one-to-one tutoring [Blo84], in

contexts where students would otherwise have access to one-to-many instruction from a

single teacher (e.g., classroom lectures), or no teacher at all (e.g., online homework) [Van06].

"(...) this age of rapidly changing technology and Internet support of meaningful

interactions, intelligent tutors have the potential to provide a skilled teacher, or

community of teachers, for every student, anywhere, at any moment" [Woo10].

Furthermore, learners can benefit from impartiality, flexibility and standardized quality

of instruction from intelligent tutors. Also, they can evolve at their own pace, in order to

construct their own knowledge.

Achieving these benefits are possible given the design of the conceptual components

of an ITS. They are composed of rich and dynamic models which are: the domain model

that contains what is being taught, the student model that may contain common learners’

conceptions and misconceptions and the tutor model that represents the instructional strategy

adopted by the system. The following Table 2.3 describes the conceptual model of an ITS

2.4 Related Works 23

Table 2.2: ITS Objectives and Strategies.

Objectives?

Performs tutoring functions by (a) presenting information to be learned,

(b) asking questions or assigning learning tasks, (c) providing feedback

or hints, (d) answering questions posed by students, or (e) offering

prompts to provoke cognitive, motivational or metacognitive change

Strategies?

By computing inferences from student responses constructs either

apersistent multidimensional model of the student’s psychological states

(such as subject matter knowledge, learning strategies, motivations, or

emotions) or locates the student’s current psychological state in a

multidimensional domain model

How?

Uses the student modeling functions identified using those Strategies

to adapt one or more of the tutoring functions identified in Objectives.

2.4 Related Works 24

[MANL14].

Table 2.3: Conceptual Components of ITS.

Interface

Specially tailored for the ITS purpose. Through the system interface the learner

communicates presenting and receiving information. Often constrained to the subject

domain (e.g., algebra), the interface determines the moves the learner can make in

solving problems, seeking information or responding to questions.

Domain model

Represents the knowledge the student is intended to learn. The model is a set of

logical propositions, production rules, natural language statements, or any suitable

knowledge representation format.

Student model

Represents relevant aspects of the student’s knowledge determined by the student’s

responses to questions or other interactions with the system it also represents common

misconceptions or other faults in the student’s knowledge.

Tutor model

Represents instructional strategies such as feedback and content elaboration and delivering.

Example: When to offer a hint to a learner that is unable to generate a correct response or

assign problems that requires knowledge only slightly beyond the current student model.

All things considered, we can see that ITSs are an approach that can bring great benefits

to computer aided education and e-learning. There exist advances in different research lines,

motivated by ITS development and evolution, which can be used in other computer science

areas. However, it seems that these systems are conceptually more complex that what, in fact,

has been delivered, since the challenges imposed nowadays to on-line education are huge.

As an example of these challenges, Baker (2016) argues that will became essential that ITS

developers build models that are robust to instructor dynamic behavior and that change as

their context of application changes [Bak16].

Even though our proposal in this work aims to deliver personalized feedback in learning

activities as ITS do, it presents great differences in scope. We intended to present an approach

2.4 Related Works 25

that can be used by existing automated assessment systems of introductory programming

assignments. In this sense, as a conceptual requirement, we want to provide a low-cost

solution to instructors (and AAS developers) so they do not have to create more artifacts than

they usually do when proposing a new assignment (i.e. usually, the problem specification, a

set of tests and a reference solution) nor to learn a different language or model to implement

it. Our proposal is lightweight in comparison with a whole ITS. However, aspects such as

feedback and hints delivering, vastly studied in AIED (Artificial Intelligence in Education),

literature must certainly be considered.

2.4.3 TST – Programming Assignments Testing System

In this subsection, we will briefly present TST, the automated programming assignment

testing system adopted by Programming 1 course. This system was used as a test-bed for

our proposals in this thesis. For this motive, it is worthwhile to know its scope in order to

recognize the boundaries of our work. TST has been developed and evolved by Dalton Serey,

Programming 1 faculty at UFCG, with valuable collaboration of other colleagues, instructors

of the same course; especially Jorge Abrantes, pioneer on the present course configuration.

TST was tailored to support the Programming 1 course programming assignments and

other activities from students and instructors perspective. Instructors use TST system

to produce, test and publish instructional materials such as programming assignments,

quizzes and laboratory scripts. They also create, configure and control programming

practical activities, such as exams and marathons. Students use TST to have access to

their assignments and reports about their course performance. TST provides a personalized

experience for students, as they can only have access to activities according to their

performance on the exams (regarding the content unit). Besides, the list of activities is

randomly chosen for each student.

TST is a cloud application whose backend is built on Google App engine platform. This

server is accessed, through REST API, from a web application – tst-online, as seen in Figure

2.1, and command line clients. There are also TST workers aimed at executing assignments’

tests that run at another local cloud facility at UFCG. They were created to cope with the

server access overloading during exams. Authentication and authorization issues are dealt

using students institutional email provided by Google accounts service. Data referring to

2.4 Related Works 26

students and their submissions are stored at Google’s cloud storage facilities. A smaller

amount of data is shared through a Dropbox account so that other instructors can have an

easier access to them.

Figure 2.1: Students’ View of TST Web Interface.

Students’ typical routine to solve programming assignments using TST starts with a

command line invocation to login into the system. Next, they access tst-online to login

using Google accounts. In sequence, the students have access to their dashboard of ongoing

work assignments. They can ask for new activities, of an informed unit, according to their

performance in the course. From this point on, students interact with TST using command

line commands. These commands are used to check out the assignment’s files and test the

program. TST provides feedback about passed and failed test cases. Initially, students are

stimulated to locally test their program against a set of public tests. The test feedback

referring to public test cases are more elaborated as it shows the expected and obtained

output to a given input. When the program passes all public tests, it must be submitted to

TST server so it is possible to test it against a set of secret tests. When the activity is finished,

it must be closed at tst-online.

Instructor’s typical routine to create programming assignments to TST starts with the

problem creation. The specification must adhere to a pattern with the following sections:

problem title, problem description, input, output and examples of execution. Next, the

2.4 Related Works 27

instructor creates a test file composed of public and secret tests. The tests are specified

in markdown language in a .json file. Then, he creates a reference solution to the problem

and commits its file with private visibility. The programming assignment must be associated

with a unit and marked as available to use. There are many other features provided by TST,

such as activities versioning, but they are out of the scope of this summary.

TST modular architecture allows for the adherence of new commands as third party

plugins. We used this feature to implement tst-qcheck and tst-oracle software as custom

commands. They are the proof-of-concept tools we have created to test our proposals on code

quality improvement and problem specification clarification, respectively. These programs

use the same structure of TST installation, such as configuration files and libraries. However,

they are not distributed along TST and must be installed apart. It means that it is up to the

user to set their TST instance as they wish, including or not plugins.

In order to qcheck works, the instructors must include in their routine to the creation of

programming assignments a generation and inclusion of a configuration file: qcheck.json. It

is very simple to create a qcheck.json file. It is just necessary to execute a qcheck command

informing the reference solution and the file will be created and saved to the current directory.

This file must be committed with public visibility, to be distributed to users when they check

out the assignment.

On the students’ perspective, the use of qcheck is included in their routine to solve

programming assignments just after their first correct submission to TST Server. At this

point, it’s known that the program is functionally correct. Students run qcheck commands

to obtain feedback regarding code quality. This feedback is generated considering the

information contained on qcheck.json file. Next, the student refactors the code until she

finds "no warnings" message. A new submission must be done to TST server in order to

register the changes done locally. Older submissions to TST server are overwritten and it is

only took into consideration the last one.

Chapter 3

Feedback Generation to Support

Computer Programming

Problem-Solving

This chapter presents the general idea in providing automated formative feedback to support

the programming process and how we have conducted the research toward this intent.

Initially, it summarizes the roadmap of our studies and discusses the methodology we have

followed to construct knowledge and evaluate our claims. Then, it provides an overview of

the context in which the research happened and the strategies used to collect and filter data

used in our analysis. Lastly, it examines the metrics and briefly exposes the statistical tools

employed in the study.

In order to undertake the empirical studies on feedback generation, we need a tool

support. For this reason, we have implemented a software, that would later become a

TST plug-in: qcheck. This system is publicly available 1 and can be used for research

purposes. A brief overview of qcheck tool is provided in this chapter. This can be useful

to better understand the studies and the overall proposal of this thesis. Then, we will explain

the environmental set up we performed to conduct the studies. We consider as setting

up activities the instructional material we have produced to students, such as a guide to

code quality in Programming one and programming assignments used on the qualitative

exam, computational environment adapted to the experimental studies and more than one

1https://github.com/elianearaujo

28

3.1 Research Roadmap 29

hundred activities that were instrumented to qcheck usage. The environmental setting up

was especially complex when we designed the longitudinal study. It required a long-term

planning and resilience to change plans as new situations appear.

3.1 Research Roadmap

The ultimate goal of this research is to leverage introductory programming learning. As

long as solving programming assignments plays a central role in this process, we focused

our attention on this learning activity. It is known that computer programming goes far

beyond crafting a code. In fact, teachers want that their students become proficient on solving

programming problems.

The automated generation and delivering of formative feedback are essential to support

this process mainly nowadays when we face a crescent interest on learning how to program.

For this motive, the scale is an important issue we have to deal with. Automated assessment

systems are an essential support for programming courses that deal with a high number of

students, assignments and scarce human resources. AAS, typically, delivers feedback to

students during the execution of programming assignments.

In this thesis, we propose an approach to generate automated feedback addressing the last

stage of the programming process. At this moment, the proposed solution to the problem will

be evaluated. In the original Polya method [Pól57], reasoning about other possible solutions

and the encouragement to improve the existing one happens in this stage. When mapping

this method to the programming process, is natural to think about software verification

and validation. Which means to verify if the software meets the specified functional and

non-functional requirements.

Apart from that, it is also necessary to assess the code in terms of readability, simplicity,

efficiency, among others. Those aspects are fundamental to assure software quality. The

process of perfecting code internal structure, improving its non-functional attributes and

maintaining the same external behavior, is known as refactoring. We proposed to provide

automated feedback so we can stimulate code refactoring aimed at code quality. Although

refactoring in software engineering has a broader definition and includes different concerns,

from this point of the document on we will refer to refactoring with this narrower perspective.

3.1 Research Roadmap 30

We performed a study and found that functional correctness alone, verified by automated

assessment through tests, is not enough to explain the human assessment of a given

assignment. After that, we proposed a set of measures, inspired by software metrics and

the reference solution provided by instructors, to capture instructors quality expectations in

regards to students’ code to a given assignment. We performed a retrospective case study

to evaluate the effectiveness of this approach in explaining teachers’ manual grades. From

this point on, we conducted a sequence of experiments, case studies, exploratory analyses,

including a longitudinal study to refine and evaluate the proposal.

Firstly, we implemented a proof-of-concept tool, named qcheck, so that we can test

our proposals in providing automated feedback. In an initial experiment, we examined

if students would feel stimulated to refactor their code and improve its quality. We also

observed if they effectively were able to improve their code quality. Secondly, we wanted

to test if they improved their code because they used the tool qcheck, or if it happens in

spite of it. This behavior was assessed in another controlled experiment using code quality

feedback along the process. Then, we evaluated the validity of qcheck assessment. We

wanted to check if the notion of code quality expected by experts, who are introductory

programming course instructors, agreed with the tool code quality assessment. To this end,

we conducted a blind-study to examine the agreement and better understand the situations

when they disagree.

Finally, we conducted a longitudinal study in which we could perform quantitative and

qualitative analysis regarding students’ pattern of qcheck usage, post-feedback behaviors,

code quality comparisons and evolution of programming skills. During the period of study,

we were in laboratory classes and witnessed students’ successes and difficulties in using the

tool. It was a rich experience so we could gather insights about what is good and what needs

to improve in our approach. Lastly, we conducted another human evaluation, by this time

with students, in order to get their impressions about qcheck and the process of improving

code quality using the feedback it provides. In the whole period of this study, we collected,

under authorization, qcheck usage data. There is a lot more to discover mining this dataset.

We refer these activities as future works.

3.2 Methods 31

3.2 Methods

This subsection presents the overall procedures applied on the empirical studies we have

conducted throughout this research. Even though they belong to different categories:

experiments, case studies, surveys and exploratory analyses, they share some common

characteristics that we grouped in this section. Furthermore, methodological particularities

of each study are detailed in its respective chapter.

3.2.1 Context

This research took place at UFCG in Computer Science undergraduate course. In particular,

we analyzed students and used data produced during their interaction in Programming 1 and

Laboratory of Programming 1 courses. These courses may be considered as one (theoretical

and practical classes respectively). They are the first programming course of Computer

Science major; so we can consider it equivalent to a CS1 course.

The research happened under the supervision of my advisors who were also part of the

academic staff of Programming 1 course. The staff is composed of 4 instructors, graduate and

undergraduate students that provide support as teacher assistants or students’ tutors. Students

are divided into three classes of Programming 1 and 4 classes of Laboratory of Programming

1. The programming language adopted in the course is Python. There are some peculiarities

of the course that is worth to mention as it may impact in our research, given that it is our

context of the study.

Programming 1 course does not follow a traditional teacher-centered approach: based on

lectures and few exams. Nowadays, they employ flipped classroom, continuous assessment

and self-paced with mastering learning. The course is divided into 10 thematic units, each

of them with specific learning outcomes students have to master. The self-paced allows

students to be in different units, according to the knowledge they have mastered and coexist

in the same course. There is a set of programming assignments for each unit. Students unlock

the access to a subsequent unit when they have correctly solved a 65% of the total number of

assignments for that unit. Exams are composed by a set of assignments, from various units,

similar to those students are used to do in laboratory classes and at home. There are exams

every week. Students are encouraged to solve assignments as much as they can in the exam

3.2 Methods 32

so that, they can evolve to the next unit (at their own pace).

The course greatly stimulates students’ code production through programming

assignments. They are used, for example, as a starting point of classroom discussions, as they

are flipped. To support this intense activity, the course relies on TST. This already described

system is intended to randomly assign activities to students (observing their unit), gather

students submissions and provide feedback on code functional correctness. With a view to

evaluate our proposals, we evolved our proof-of-concept tools to be plugged into TST. This

allowed students to have a seamless experience of the use of our "under evaluation" tools.

Since 2016, this research was subscribed under the committee of ethics in research

involving human beings under the number CAAE 54944716.1.0000.5182. 2.

3.2.2 Data Collection

In general, the studies of this research were performed using data collected from the

interaction between students and the instructional material through TST. We also used

data produced by instructors during Programming 1 course evaluations, such as: grades

resulting from a manual assessment of students’ programs; annotations made on students

code; students’ performance status according to their evolution on the course, etc. Besides,

we gathered data from human studies, such as the interview and survey with students and the

blind-study with experts.

At the longitudinal study, we instrumented qcheck tool to send reports of its usage, under

the user authorization. The software sends to a central server minimal data, so it does not

overload the net nor reduce its performance, regarding its use in an assignment. This data,

for example, contains: datetime, user, IP, activity, metrics, among others.

An important aspect of this dataset refers to the total number of students. As qcheck can

only be used in assignments of the 3rd, 4th and 5th unit, our students’ sample was changing

along the time. Initially, students with greater performance composed the sample. By the

end of the study, students that were retained on those units lasted on the sample. We plotted

in Figure 3.1 students’ exams performance over five weeks, the period of observation. We

can observe that students’ retention on unit 4 is outstanding /footnoteThe subject of the 3rd,

2More information about the project we have submitted to that board can be found at

http://plataformabrasil.saude.gov.br/

3.2 Methods 33

Figure 3.1: Students Performance During the Longitudinal Study.

4th and 5th units refer to, conditional structures, iterations with for and while, respectively..

Data filtering was done in different ways according to the objective of the empirical study.

In general, we have used TST to separate correct from incorrect submissions and qcheck to

count the number of quality warnings of a given code.

3.2.3 Demographics

Each experimental study we have performed in this research was conducted with different

subjects (students from different semesters). But, the data we have collected during the

longitudinal study was used in various analyses. For this motive, we are going to provide

some information about this group here. We obtained this data at the beginning of the

semester when we explained to the students that they were taking part of a research study

and its purposes. They signed the term of agreement and filled a socio-demographics

questionnaire.

There were 115 students enrolled in Programming 1 course in 2017.1, by the time we

3.2 Methods 34

finished the longitudinal study data collecting, at least 109 students have advanced for the

first unit. The Table 3.1 shows some basic information that might help us to delineate the

subjects’ profile.

Table 3.1: Demographic Data of Students of 2017.1 Programming 1 Course.

Total of students 115

Gender Male Female

80.9 % 19.1 %

Age <18 18 to 22 >22

25.2 % 64.3 % 10.5 %

Previous programming experience Yes No

47.8 % 52.2 %

The Figure 3.2 corresponds to students’ answers referring to their self-confidence about

their performance in the course. They have answered a Likert scale question.

Figure 3.2: Students Course Performance Expectancy.

3.2.4 Metrics

The metrics that we have used in the studies are detailed in their respective chapter. For

instance, the metrics created to reflect code quality according to teachers’ expectations.

However, in those involving qcheck, there are common measures that will be described in

this subsection in order to avoid information replication.

3.2 Methods 35

The metric nsub refers to the number of submissions done by a student to a programming

assignment to TST server. It differs from the number of revisions of the assignment that is

the number of attempts to the correct answer, according to a set of tests. In TST dynamic,

students receive a set of public tests when check out the assignment and can use it to test

the program in their own environment. When they submit the solution to the server, another

set of tests, namely secret tests, is added and the code is evaluated under more restrictive

conditions. The metric nsub accounts only functional correct submissions, code that meets

functional requirements and passes public and secret input/output tests proposed to that

assignment.

The metric W summarizes the number of code quality issues of a given program

according to qcheck tool assessment. The tool produces warnings referring to code and

style. Style warnings (S) refers to the number unconformities with Python programming

language coding standards orientation registered under pep8 [Pep15], for example, lack of

white spaces between operators or indentation problems. Code warnings (C) are based

on the set of software metrics proposed in this work to assess introductory programming

assignments’ code.

W = C + S’

C - value may vary from 1 to 4, as four metrics are evaluated by qcheck;

S’ - value vary from 0 to 1, standing for the presence or

absence of style warning related by qcheck.

Other important metrics are the derivative of metrics S and W, respectively ∆S and ∆W.

These metrics are only computed using functionally correct submissions according to TST

server tests. They are computed as the difference between the measures extracted from the

code of last correct submission and the first correct submission. ∆S refers to style warnings

S and ∆W to the normalized number of warnings W. We expect these values to be negatives.

∆S = Sf - S0

Sf - Is the number of style warnings of the last correct submission

S0 - Is the number of style warnings of the first correct submission.

∆W= Wf - W0

Wf - Normalized number of warnings of the last correct submission

W0 - Normalized number of warnings of the first correct submission.

From metric ∆W, we came up with three situations:

3.2 Methods 36

• ∆W < 0: It means that the student was capable to recognize and fix aspects in his/her

code to improve its quality.

• ∆W = 0: It means that the program’s number of warning remained the same.

• ∆W > 0: It means that the student was not capable to improve the quality of his/her

code; instead the last code submission became worse than the first submission.

The same analysis is valid for ∆S.

3.2.5 Analysis

We quantitatively evaluated the data we have collected using descriptive and inferential

statistics. We performed some simple statistical analyses using hypothesis test. As a rule, we

used the nonparametric Wilcoxon signed-rank test to compare two distributions. As response

variables, we generally used the metrics previously described. We used Wilcoxon test instead

of the usual t-tests, since we could not find normality on our distributions.

We performed other analyses using Pearson’s chi-squared tests when investigating the

relation among categorical variables. Using this test we assessed if the observed differences

among the values in the distributions happened by chance.

We analyzed longitudinal data carefully, as this type of data has characteristics that

elevate them to a different level of analysis:

"The distinguished features of a longitudinal study is that the response variable

of interest and a set of explanatory variables are measured several times on each

individual in the study. The main objective of the study is to characterize the

change in the repeated values of the response variables and to determine the

explanatory variables most associated with any change" [HE06].

In this study, we have summarized, using ∆S and ∆W, a sequence of observations

regarding the tuple (student, activity) along the time. We filtered a sequence of observations

(student, activity) in only one entry and composed a new dataset. Certainly, we missed the

benefits that a more complex longitudinal data analysis could potentially have provided to us.

But we could still achieve significant results, employing a more modest analysis approach.

3.2 Methods 37

3.2.6 Qcheck

Our approaches to provide automated feedback to aid students’ code quality improvement

were made concrete on a proof-of-concept tool: qcheck. This tool is an instantiation of the

proposed approach. Its code is publicly available at GitHub under AGPL-3.0 license. Qcheck

was created to assess our proposals validity with students of an introductory programming

course in a set of empirical studies, especially the longitudinal study. Naturally, the

conclusions we came up with this research were drawn regarding our studies’ context, but

the ideas here exposed can be used and adapted to other programming courses and AAS.

In short, qcheck is a TST custom command that is used to check student’s solution code

quality to a given problem. It is based on well-known static metrics that help to evaluate

software maintainability, such as logical lines-of-code, cyclomatic complexity, and others.

qcheck takes the canonical solution provided by the assignments’ author as the reference to

generate feedback hints to advise students in what aspect their code can improve. It has

its own installation process, separated from TST bundle. It must be installed in each user

environment.

The tool was conceived to use in an environment with TST already installed. When a

new programming assignment is created, the author needs to execute a qcheck command

informing the reference solution. This command creates a file qcheck.json, containing the

values used by qcheck on the client side to generate the feedback. This file must be uploaded

along with other files of the assignment. When a student checks out a new activity, this file

is downloaded to her or his working directory.

$ t s t qcheck −s r e f e r e n c e . py

From the student point of view, qcheck usage is very simple. We advise students to

use qcheck after their program is completely tested. Qcheck produces two blocks of warning

messages: it gives hints about code (programming solution to the problem) and style (Python

coding standards). Style hints are based on PEP8 - Python community canonical style guide

[Pep15]. An example of use is following listed: (a) first qcheck invocation and (b) second

qcheck invocation after student change her code including more header lines.

(a)

$ t s t qcheck p e d r o _ f i l h o . py

3.2 Methods 38

p e d r o _ f i l h o . py

**6 Warning (s) **

Code

− Your program h e a d e r i s t o o s h o r t .

− Your program has t o o many d e c i s i o n p o i n t s .

− Your program has t o o many l i n e s o f code .

− Your program has t o o many o p e r a t i o n s (Example : + ,− ,== , e t c) .

S t y l e

− 1 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

− 2 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

(b)

$ t s t qcheck p e d r o _ f i l h o . py

p e d r o _ f i l h o . py

**5 Warning (s) **

Code

− Your program has t o o many d e c i s i o n p o i n t s .

− Your program has t o o many l i n e s o f code .

− Your program has t o o many o p e r a t i o n s (Example : + ,− ,== , e t c) .

S t y l e

− 1 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

− 2 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

3.2.7 Setting Up Activities

Setting the environment up to perform the longitudinal study was a complex and

time-consuming activity. It included a study design foreseen 5 weeks of observations and

data collecting, settlements with the course staff including meetings and lectures, adaptation

of more than a hundred activities from Programming 1 course asset to qcheck usage,

computational environment setting up at university laboratories, availability to students’

3.2 Methods 39

requests at discussion forum, they use Slack 3 as an official communication channel, among

others.

An already existing system simplified the environmental set up at computing laboratories

at the UFCG. The system Prog1Box 4 was developed in-house and works as a virtual box. It

is used during Programming 1 exams and in some laboratories activities, such as marathons.

It restricts users’ access only to authorized Internet sites, physical locations or hardware

devices. Using Prog1Box we could easily set up different software configurations for the

experimental and control group in different computing laboratories physical locations.

As a preparation for the longitudinal study, that happened during 2017.1 classes of

Programming 1 course, we adjusted 106 assignments available to students referring to unit

3rd, 4th, and 5th. It was necessary to adapt all available activities in the asset since TST

randomly chose the activities to students as they request. Legacy questions do not have a

qcheck.json file and some of them, also, do not have a reference solution associated with it.

Each assignment preparation included to:

• Search for the assignment author;

• Find the original reference solution on historical database;

• Produce or, when possible, having the author to produce a reference solution;

• Validate the reference solution according to intended learning outcomes;

• Create qcheck.json files;

• Upload assignments’ files and

• Commit the activity to TST system.

3.2.8 Summary of Studies

In the following chapters, we are going to present studies and results of our research

on generating formative feedback aimed at programming assignments’ code quality

improvement. Each chapter refers to a broad research question and details a sequence of

3http://slack.com
4https://prog1box.appspot.com

3.2 Methods 40

empirical studies intended to investigate it. We decided not to follow a chronological order

of the studies developed during our doctoral research but a logical order. The idea was

to emphasize the claims we came up with, as a result of the research effort, using distinct

methods.

These claims summarize the main contributions of this work. In order to construct

knowledge about them, we took into consideration the mature and vast literature on

programming education. Yet, refurbished by new challenges brought by the growing number

of students’ enrollment and the need to scale pedagogical practices with quality.

• C1 - We generate automated feedback based on teachers of introductory programming

code quality expectations;

• C2 - Students improve programming assignments’ code prompted by timely and

automated feedback;

• C3 - Students improve programming skills stimulated by the reflection on their

programming assignments code with the purpose to improve its quality.

The chapter 4 examines the "Generation of automated code quality feedback". In this

chapter, we will investigate and demonstrate that it is possible to attain this objective with

qcheck. Initially, we present our first study when we investigated software metrics that could

explain the difference in manual grades of functionally correct programming assignments.

In sequence, we use these metrics as a foundation to generate feedback messages about code

quality improvement. The second study reports an evaluation with human specialists of the

direct and indirect effects of qcheck.

In chapter 5, discuss the possibility of the code quality improvement feedback delivered

to students directs the improvement of their programming assignments’ code. The first

and second studies present experiments with randomized controlled samples. We assessed

the use of qcheck in experimental groups. The main difference of these studies was the

evaluation of the willingness of improving code quality and its consequence. On the first

study, we wanted to investigate if the novelty of an instrument to produce feedback about

code quality would motivate students to attempt to generate a better code and if they, in

fact, succeed. On the second study, both experimental and control group were stimulated

3.2 Methods 41

to improve their codes quality, and they also received a written material to help them:

"Programming 1 code quality expectations". However, only students from the experimental

group were able to use qcheck feedback. The last study presented in this section discusses

and contrasts the summative assessment of the quality of students’ code production in a given

period of time in the Programming 1 course with the use of qcheck by the students during

this same period.

The chapter 6, finally, considers the consequences to learners of providing feedback about

code quality improvement using the proposed tools during a programming course. Recently,

De Nero and colleagues (2017) discussed that there were many initiatives and advances in

automated feedback platforms aimed at programming education, but few studies on its effects

on real programming courses [DSPQ+17]. In this chpater, we are going to present our main

findings in a longitudinal study and discuss its implications to learners, instructors and the

course itself. Furthermore, we are going to present an evaluation of the approach performed

with the students that used the tool in their activities.

Chapter 4

Generation of Automated Code Quality

Improvement Feedback

In this chapter, we will investigate and demonstrate that it is possible to generate automated

feedback of code quality and stimulate students to reflect on their code, besides functional

correctness. Initially, we present our first study when we investigated software metrics

that could explain the difference in manual grades of functionally correct programming

assignments. In sequence, we use these metrics as a foundation to generate feedback

messages about code quality improvement. The second study reports an evaluation with

human specialists of the direct and indirect effects of our proposal.

We are going to report studies regarding the information we used to compose feedback

about students’ code quality since its proposal until the feedback validation by experts. The

general question we made was:

"Is it possible to generate automated feedback based on code quality

expectations of introductory programming teachers?"

The starting point of this research is the generation of data that will be used to compose

code quality feedback. Initially, we performed an empirical study, reported in the paper

[AGF13], aimed at identifying whether the adherence to coding standards would be an

indication of better code quality. In sequence, we sought for other measures to help us

identify what could be automated from the human quality assessment of students’ programs.

The retrospective case study conducted to achieve these goals was discussed in the paper

42

43

[ASF16].

The first study of this chapter, reports an investigation of the validity of using measures

as surrogates of the quality expected by instructors on students’ code. As a baseline for such

code quality, we use the reference solution provided by the instructors when creating the

programming assignment. It is important to notice that this reference solution must convey

the learning outcomes students have to master, as well as, the expected code quality.

We propositioned a set of software measures that can be used to express qualitative

aspects: RLLOC, RCC, RH and RPEP8. They are based on software quality metrics,

largely used by the industry and referred to in other academic initiatives towards novice

programming [AM05] [MY99] [PHG+15]. First, these measures are extracted from the

reference solution code and from the student code. In sequence, we calculate the relation

between them. Using this data, the system can generate and provide a feedback message to

the student, i.e. a hint of what it could be improved in order to obtain a better quality code.

The research question that directed the study was:

RQ1: Can the measures RLLOC, RCC, RH and RPEP8 explain the differences

observed on the grades, manually assessed, of functionally correct submissions?

The second study was intended to evaluate the contrast between a human expert

assessment and the assessment provided by a tool that took into consideration the proposed

metrics, implemented in our proof-of-concept tool - qcheck. We proposed the research

question:

The research question that directed the study was:

RQ2: Does qcheck approach capture expert notion of code quality?

In this study, experts evaluated a pair of students’ programs versions of a program before

and after qcheck feedback. Those pairs of codes are functionally correct versions of students’

assignments that were randomly presented to the expert. We contrasted the agreement on

quality assessment among experts and qcheck.

4.1 Context 44

4.1 Context

The proposed studies took place at the UFCG, in the Computer Science undergraduate

course, in the context Programming 1 course. The studies happened in different academic

semesters between 2013.2 to 2015.1

In the study 4.2, a retrospective case study, we used data gathered using TST in a former

course edition – 2013.2. Our dataset was composed by 403 functionally correct submissions,

from 102 students, referring to 12 different programming assignments. Each assignment was

manually assessed, annotated and graded by at least one instructor. By this time, 4 instructors

composed the course staff – 3 colleagues and me.

In the study 4.3, we collected programs produced by students that took part in a controlled

experiment and have instructors to assess them. This study, which happened in 2015 with

students of Programming 1 course. The experts that we have recruited to this study were

three instructors of the course. They have a compared background in teaching the course.

4.2 Measuring Students’ Code Quality Through Software

Metrics

Our initiative toward generating and delivering formative feedback about qualitative aspects

of code started on performing an empirical study that aimed to evaluate the measures

we proposed as surrogates of some extent for the human quality assessment of students’

programs.

4.2.1 Methods

In the case study, we conjectured that there is a set of measurements, automatically obtained,

that can capture quality aspects weighed by instructors when they assess and manual grade

a student program. In order to test it, we have formulated the following research question:

RQ1: Do we have good measures to capture some aspect of assessment

subjectivity?

4.2 Measuring Students’ Code Quality Through Software Metrics 45

In answering this research question, we investigated whether the the measures RLLOC,

RCC, RH and RPEP8 explain the differences observed on the grades, manually assessed, of

functionally correct submissions. In practice, if student’s code measurements were similar

or better than the measurements of the reference solution, the instructor would perceive a

better code quality. In consequence, it would deserve a better grade. Thus, if code quality

impacts on grades, they could be captured by the proposed metrics.

We collected students’ submissions of programming assignments from an introductory

programming course of our university. Three experienced instructors manually graded

them on a scale that ranges from 0-10. In our study design, these values correspond to

the dependent variable ig. The measures RLLOC, RCC, RH and RPEP8 are independent

variables. We used radon [Rad14], a free Python tool, to compute raw metrics: lloc, h and cc.

The number of pep8 violations was extracted using a script produced by Python developers’

community [Pep15]. It is worth to note that we used the reference solution version provided

by the instructor who graded the assignment when extracting the measures RLLOC, RCC,

RH and RPEP8 of the students’ submissions.

4.2.2 Metrics

We propose a set of software measures to express qualitative aspects. They are based on

software quality metrics, largely used by the industry and referred to in other academic

initiatives towards novice programming [AM05] [MY99] [PHG+15].

Instructors approach the manual grading activity in different ways. However, they usually

agree whether a program is "very good" or "very bad" [FHL+13]. Besides correctness, there

are other factors weighed by instructors in manual assessment in terms of code quality. For

example, a program that is abnormally longer than the others and solves the same problem

needs a closer look. Other common pitfalls of programming beginners are nesting multiple

"if" statements and using unnecessary variables to compute temporary values. There are

software metrics that could be statically extracted from the code at a low cost and serve as

input to a quality analysis [AM05]. We evaluated in this work: logical lines of code (lloc),

Halstead volume (h), cyclomatic complexity (cc) and adherence to coding standards. In

short, these measures stand for:

4.2 Measuring Students’ Code Quality Through Software Metrics 46

• lloc: The number of lines effectively used as programming language code statements.

This measure does not consider blank lines, comments and headings.

• h: Metrics proposed by Halstead aims to evaluate a program regarding on static

analysis. The measurement consists of counting the number of operators and operands

in a program [AM05]. In this study, we have measured the Halstead volume.

• cc: It was conceived by McCabe [McC76] and refers to the number of linearly

independent paths of a program. Each decision in a program can lead to a different

path. So to compute cc, there are considered not only conditional structures but also

iterative structures, such as for and while loops.

Ala-Mutka study pointed that: to make software metrics relevant to students they need

to be comparative [AM05]. She argued, "there is no sense in requiring students to submit a

program that has a complexity number X, or contains Y lines of code". On the educational

context, there is a benefit, which could not be experienced in real world software: the

instructor reference solution approximates to the best possible solution to the problem. The

measurements extracted from the student source code will be compared with those extracted

from reference solution code. The rationale is that the measures extracted from the reference

solution are an idealized target expected by the instructor for all students’ submissions.

We have also measured adherence to coding standards in a metric named: RPEP8. As

Python is the programming language adopted by the course we have collected our data,

we relied on the coding standards defined by Python community in PEP8 [Pep15]. The

number of pep8 violations indicates how distant a given code is from the defined coding

standard. This measure is calculated differently from the others, as we cannot compare the

violations happened in the student code with the violations that happened in the reference

solution overlooking their nature. In order to calculate this measure, we extract the number

of pep8 violations for each submission for a given assignment. Then, we rank the number

of violations of these submissions. The value of RPEP8 for each submission is its ranking

position. The other measures are defined as the ratio of the measurement extracted from the

student submission to the real-world extracted from the reference solution.

The Table 4.1 presents the measurements we proposed to assess code quality along with

its acronym. From this point forward, we are going to refer to these measurements by the

4.2 Measuring Students’ Code Quality Through Software Metrics 47

Table 4.1: Measurements Proposed to Assess Code Quality.

Acronym Description Formula

RLLOC
Ratio between reference solution’s lloc and

student’s code lloc.

lloc(studentCode)
lloc(referenceSolutionCode)

RCC
Ratio between reference solution’s cc and

student’s code cc.

cc(studentCode)
cc(referenceSolutionCode)

RH
Ratio between reference solution’s h and

student’s code h.

h(studentCode)
h(referencesolutionCode)

RPEP8
Ranking position of the number of pep8

violations of the student’s code.
-

acronyms. For example, if the value of RLLOC for a particular code is 1.2, it means that: the

code provided by the student to that programming assignment is 20% greater than the size

of the reference solution code for that assignment. Conversely, if the value of RLLOC was

0.8, the code provided by the student is 20% smaller than the reference solution code. RCC

and RH calculation is done similarly.

4.2.3 Data Collection

The Figure 4.1 shows the distribution of instructor’s grades of functionally correct

submissions. These submissions obtained "green-bar" as passed all automatic tests provided

by the instructor. If they were automatically graded, all of them would obtain the highest

score: 10. However, the figure shows a left-skewed distribution and only 29.5% of the

evaluated submissions got the highest score. If the assessment relied solely on automatic

tests, more than 70% of the submissions would obtain a grade higher than a human instructor

thinks it deserves.

Grades produced manually by the instructors take into consideration a set of criteria that

goes beyond functional correctness, as it could be apprehended by the grades’ variance.

A qualitative evaluation of those submissions revealed structural code problems (such as

incorrect use of conditional structures) that were not captured by the traditional functional

test. The Figure 4.1 exposes that functional correctness, alone, does not reflect the instructor

4.2 Measuring Students’ Code Quality Through Software Metrics 48

Figure 4.1: Distribution of Manual Grades Assigned to Functionally Correct Submissions.

manual assessment.

4.2.4 Results and Analysis

This subsection reports the results of the studies to answer our research question: Whether

the proposed quality measurements can explain the differences observed in the scores of

functionally correct submissions.

In order to answer this question, we investigated the contrast between the student’s code

measurements and the reference solution measurements’. We used Wilcoxon ranking sum

test to compare grades. This non-parametric statistical test assesses if two independent

distributions are the same. The null hypothesis is that the population is the same against

the alternative hypothesis that the population differs in a location measure, in this case, the

median of the grades. Since this test is based on rank observations, it makes no assumptions

about the normality distribution of the assessed variables.

We divided the distribution into two groups according to its measurements: (1)

equal-lower than 1; meaning that the measures of student’s code are equal or better than

the reference solution code or (2) greater than 1; it means that measures of the student

code are greater than the measures of the reference solution code. For example, in a given

student submission for a programming assignment, it was accounted 3 pep8 violations.

The reference solution code, for that same assignment, accounted 1 pep8 violation. This

submission is part of the group 2. In this sense, each metric was analyzed individually.

Tests results confirmed that RLLOC, RCC, RH and RPEP8 do capture the notion of

4.2 Measuring Students’ Code Quality Through Software Metrics 49

quality, as the distributions differ in their grades medians. Instructor’s grades for the

equal-lower group are higher, on average than the grades of the other group with adequate

statistic significance (p-value < 0.001 and 0.05 significance level.). Hence, we can reject

the null hypothesis in favor of the alternative. The results reveal, at least for these data, the

better the measurements the better are the grades. As the practical significance of this result,

we can state that stimulating students to consider not only program correctness but also its

quality is indeed beneficial.

Figure 4.2 shows boxplots of ig (instructor’s grades) distribution. In the first boxplot, it

can be noticed a wider variation on ig on the first group of submissions (RLLOC(x) > 1).

Apart from some outliers, the second group of submissions (RLLOC(x) <= 1) presents a

narrower variation and a higher median value. A similar behavior could be observed on the

other plots. Besides the hypothesis test, we performed a correlational analysis to investigate

the association of each measure (RLLOC, RCC, RH and RPEP8) with ig using data collected

from all 12 programming assignments. At this point, we must recall that RLLOC, RCC

and RH are ratio metrics. It means, for example, that we are not observing the correlation

between the size, in lloc, of a student’s submission and its grade. We are measuring the

relation between the size of a student’s submission and the size of the instructor’s reference

solution. Then, whether this value correlates with the programming assignment grade.

Figure 4.2: Distribution of Instructors’ Grades and Each Metric.

We used Spearman’s rank correlation coefficient to measure the extent of the correlation

and found that 91.67% of Spearman’s rho values are negative. What means that as one

4.3 Assessing Students’ Code Quality with qcheck Support 50

variable increases, the other decreases. This behavior corroborates our hypothesis: the

smaller the measure the greater the value of ig. The strongest correlation in absolute value

is between RCC and ig (-0.94 Spearman’s rho). In general, the strongest correlation values

were observed between RLLOC and RCC measurement. There were also rho values near

zero, meaning that the correlation is negligible or inexistent in some cases.

4.2.5 Discussion

In this study, we focused on measuring aspects of the code that instructors usually took

into consideration when manually assess programming assignments: qualitative aspects that

go beyond functional correctness. We wanted to investigate program features regarding

code quality issues. We conjectured that instructors’ reference solution for a programming

assignment includes most of his expectations about a student’s code quality. Based on this

idea, we proposed and evaluated a set of candidate quality measures using the assignment’s

reference solution as a baseline. The results showed that they seem to capture what is

usually considered to be subjective: the qualitative aspects of an instructors’ assessment. Our

aim is to use these findings to generate feedback regarding code quality about introductory

programming assignments.

4.3 Assessing Students’ Code Quality with qcheck Support

This study intends to gather evidence that the feedback we generate using the proposed

metrics to a given program indeed reveals instructors expectations about code quality to that

program. We conducted the study motivated by the research question:

RQ2: Does qcheck capture expert notion of code quality in programming

assignment assessments?

We had experts to assess a set of programs made by students that used qcheck and its

feedback messages to improve their code quality. Different versions of the programs were

evaluated by the experts. We expected that the study confirmed our conjecture that qcheck

really captures this notion.

4.3 Assessing Students’ Code Quality with qcheck Support 51

4.3.1 Methods

From a set of 35 students, we selected a set of submissions that meet the following criteria:

students that make more than one submission and whose submissions differ from each other.

After applying these filters, we composed our dataset with the lasting 16 pairs of submissions

(S0, Sn) from students of control and experimental groups. In sequence, we used qcheck to

calculate the value of W (number of qcheck warnings) for each submission pairs.

Finally, we set up a single-blind study to have experts’ evaluating these codes. We

recruited three domain experts that are experienced teachers of Programming 1 course. We

printed and handed them out a booklet with all programs. Each page had a pair of students’

programs and the question: "Is code A better than B?" They had to choose an answer among:

Yes, Equivalent or No. The printing order of the pair (S0, Sn) on each page was randomly

chosen and also the order of the pages in the booklet - they may vary from teacher to teacher.

Teachers were invited to a meeting room and, together, received a brief explanation of the

study purpose and how to proceed. They performed their evaluation individually. The

experiment lasted less than 30 minutes. At the end, we collected data evaluation of each

expert – R1, R2 and R3 – and contrasted them among each other and qcheck tool – T.

4.3.2 Metrics

The metric used to assess programs, regarding qcheck, is W that represents the number of

code quality warnings captured by the tool in the student code. As qcheck flags quality issues

with warnings, the lower the value of W, the better the program code quality.

We took into consideration a set of submissions from a student to a programming

assignment (S0, S1, S2, . . . , Sn), we selected a pair composed by the first and last functional

correct submissions (S0, Sn) and calculated the value of W0 and Wn.

As we have seen, qcheck code quality evaluation yields:

• Y: Sn presents better code quality than S0, if Wn < W0.

• N: Sn does not present better code quality than S0, if Wn > W0.

• E: Sn code quality is equivalent to S0, if Wn = W0.

4.3 Assessing Students’ Code Quality with qcheck Support 52

Experts used their own judgment, based on Programming 1 course’s criteria, to evaluate

programs’ quality. From this point of the document on, we will also refer these experts

as raters. Provided we know that the notion of code quality is predominantly a subjective

measurement, we want to verify if qcheck can assess code quality just as the experts do.

Given that, we pose the following hypotheses:

H1: Raters R1, R2, R3 judgment about code quality is consistent among each

other.

H1-0: Raters R1, R2, R3 judgment about code quality is inconsistent among each

other.

H2: Rm judgment about code quality is consistent with qcheck judgment T.

H2-0: Rm judgment about code quality is inconsistent with qcheck judgment T.

By "consistent judgment", we mean that their agreement is statistically significant.

4.3.3 Data Collection

The following Table 4.2 summarizes ratings of each pair (Rn,T). Each cell accounts the

occurrence of a pair of evaluations between (Rn, T) that matched. The diagonal line in each

table represents the highest rating agreement. The last column and row summarize the total

of evaluations of each category, provided there were 15 programs.

Table 4.2: Pairwise Code Quality Evaluations Among Raters X Tool.

Rater1 Tool Rater2 Tool Rater3 Tool

N E Y N E Y N E Y

N 3 1 1 N 5 0 1 N 5 1 1

E 2 3 0 E 0 3 0 E 0 3 0

Y 0 1 5 Y 0 2 5 Y 0 1 5

TOTAL 5 5 6 5 5 6 5 5 6

4.3 Assessing Students’ Code Quality with qcheck Support 53

4.3.4 Results and Analysis

In accordance to the proposed hypotheses, we first investigated raters agreement (H1.1) and,

as we found they were consistent, we proceeded to the agreement evaluation (H2.1) between

qcheck tool and the raters.

In order to investigate agreement consistency among three raters, we computed the

Fleiss’ kappa inter-raters reliability index. Unlike Cohen’s kappa, which is a more common

statistical measure that assesses agreement between two raters, Fleiss’ kappa can be used to

a fixed number m of raters when evaluating a trait with categorical rates. This index aims to

calculate the degree of raters’ agreement when evaluating a trait over it would be expected

to happen by chance. This index ranges from 0 (zero) to 1 (one). The agreement improves

as Kappa’s index value approximates to one.

The value of kappa index calculated among R1, R2 and R3 is approximately 0.81 (the

statistic is significant as p-value < 0.001), which indicates that agreement is almost perfect

[LK77]. Thus we can reject the null hypothesis in favor of the alternative (H1.1) and, as a

result, we have strong evidence to assume that experts’ judgment is consistent.

Next, we computed Cohen’s kappa index for each rater (R1, R2, R3) and qcheck tool

(T). In this study, we used this measure to compute the disagreement of each rater with the

tool and the raters among each other. We intended to investigate if raters’ judgment was,

individually, similar or unlike of those provided by the tool.

Ratings provided in this experiment for code quality are considered ordered-categorical

data N, E, Y. It means that a pair of raters agrees more if they answer the experimental

question "code A is better than B?" with Y and E, than Y and N. So, we mapped the values

of N, E, Y to 1, 2, 3 to quantify this distance in agreement. As the traditional Cohen’s

kappa measurement does not take into consideration the degree of disagreement, we used

the modified weighted Cohen’s kappa. This method ponders disagreements between two

raters with a set of weights for each possible categorical rate: the higher the disagreement

the higher the weight. The following Table 4.3 shows Cohen’s kappa index for each pair

(Rn, T) and raters among each other.

The values presented indicate a substantial agreement among raters and tool. The p-value

for all tests was less than 0.01 (ranging from 0.01 to 0.0002), meaning that Kappa index value

is statistically significant. Although the interpretation of this index is controversial [LK77],

4.3 Assessing Students’ Code Quality with qcheck Support 54

Table 4.3: Agreement Index Value Among Raters and qcheck Tool.

R1 R2 R3 Tool

R1 - 0.75 0.92 0.69

R2 0.75 - 0.85 0.80

R3 0.92 0.85 - 0.80

Tool 0.69 0.80 0.80 -

it directs us towards interesting analysis. The best agreement found was between teachers

(R1, R3 - 0.92), meaning that their assessment of code quality is almost perfect, at least in

the proposed study. In general, agreement among teachers is slightly more significant than

each rater with the tool. The worse agreement index value was found between (R1, T - 0.69).

Although this absolute value is the smallest found, it can still be considered an indicator of

significant agreement.

In order to investigate the second hypothesis (H2.1) of this study, if raters and tool

consistently agree, it was necessary to determine a consensus among raters evaluation on

the study items. We were inspired by a real course situation to find a consensus: when two

or more instructors are assessing a student assignment. If there is any divergence in their

opinion, they usually agree to assess the assignment with the more frequent rate. For this

reason, we chose the statistical measure mode to represent the consensual evaluation among

raters. In sequence, we computed weighted Cohen’s kappa between (T, Rm), where Rm

stands for the mode among raters evaluation.

As a result, the computed index value revealed a significant agreement between human

raters and the qcheck tool. Cohen’s kappa index value was 0.80 for a p-value of 0.001. So,

we can reject the null hypothesis in favor of the alternative and claim that "raters judgment

about code quality is consistent with qcheck judgment, at least for this study".

4.3.5 Qualitative Evaluation

This qualitative evaluation was motivated by the question: "If raters agreed so much, when

do they disagree?". It is perhaps even more insightful to discover what are the divergences

among ratings than to confirm their agreement, at this point. We found that there were only

4.3 Assessing Students’ Code Quality with qcheck Support 55

4 items in the dataset that made evaluations controversial, shown in Table 4.4.

Table 4.4: Disagreement Among Ratings (Rn and qcheck).

ID R1 R2 R3 Tool Mode

S67 2 1 1 1 1

S70 2 1 1 1 1

S62 1 3 1 2 1

S64 1 1 1 3 1

The first and second line of the table shows similar ratings: raters 3 and 2 agreed with the

tool that assesses 1 to both pairs of codes. It means that they consider that code B presents

better quality than code A. Conversely, rater 1 assesses them as an equivalent code. Although

the difference among rating weight is small, they are consistent as can be seen in the code

excerpts below.

We list both versions of the student S67 code in order to discuss the disagreement among

ratings. The difference between the code (A, B) of student S67 is on lines 5 and 14. On code

A in line 5, the variable "cont" initiates with the value 0, while on code B, on line 5, this

same variable initiates with value 1. This change causes suppression of the operation "+1"

on line 14, on code B. It appears that rater 2, rater 3, and qcheck tool considered it as positive

when assessing code B better than code A.

The issue found on student S70’s code A is a redundant line: it increments a variable

inside an "if and else" block (lines 10 and 13). As can be seen in code B version, S70

excludes one of these lines bringing the line out of the conditional structure (line 12). Both

codes are listed in sequence.

S67 and S70 eliminated one operation in their codes. It seems that, in Rater 1 judgment,

this is not sufficient to assert, in terms of code quality, that one code is better than the other.

He/she considered both pairs equivalent. We believe that this is a positive case for our study

in two aspects. First, it shows the consistency of judgment of the rater assessment. We

assume that there is a component of subjectivity in the human evaluation of code quality,

for this reason, the tool cannot, and is not intended to, perfectly mimic human assessments.

Second, the tool evaluation agreed with the majority of raters in this case. This signals

4.3 Assessing Students’ Code Quality with qcheck Support 56

1 # coding: utf-8

2 # vida collatz

3 # Xxxx Xxxx / programacao 1

4 Ni = int(raw_input())

5 cont = 0

6 while True:

7 if Ni % 2 == 0:

8 Ni = Ni / 2

9 cont += 1

10 else:

11 Ni = (Ni * 3) + 1

12 cont += 1

13 if Ni == 1: break

14 print cont + 1

1 # coding: utf-8

2 # vida collatz

3 # Xxxx Xxxx / programacao 1

4 Ni = int(raw_input())

5 cont = 1

6 while True:

7 if Ni % 2 == 0:

8 Ni = Ni / 2

9 cont += 1

10 else:

11 Ni = (Ni * 3) + 1

12 cont += 1

13 if Ni == 1: break

14 print cont

Listing 1: Student S67 Assignment’s Code Comparison (A) and (B).

1 #coding: utf-8

2 #Ler da entrada um numero.

3

4 numero = int(raw_input())

5

6 cont = 1

7 while numero != 1:

8 if numero % 2 == 0:

9 numero = numero / 2

10 cont += 1

11 else:

12 numero = 3 * numero + 1

13 cont += 1

14 print cont

1 #coding: utf-8

2 #Ler da entrada um numero.

3

4 numero = int(raw_input())

5

6 cont = 1

7 while numero != 1:

8 if numero % 2 == 0:

9 numero = numero / 2

10 else:

11 numero = 3 * numero + 1

12 cont += 1

13 print cont

Listing 2: Student S70 Assignment’s Code Comparison (A) and (B).

4.3 Assessing Students’ Code Quality with qcheck Support 57

that there exist cases that evaluations produced by qcheck are not identical to those from a

particular teacher, but it is still representative and useful.

The evaluation of student S62’s code, listed in sequence, revealed the biggest discrepancy

among raters. Rater 1 and 3 assess code B better than A, while in rater 2 opinion is the

opposite. Qcheck evaluates the pair of code as equivalents. In fact, the pair of code is

very similar. It main difference is that one uses the programming idiom "while True/ If

/ break" and the other employs "while <condition>". In this introductory programming

course, students are encouraged to use the first construction "while True/ If / break", when

possible. However, this is a controversial point in programming style and, sometimes, can

be considered a matter of personal taste. Again, we recall the human subjectivity issue of

code quality analysis. In this case, the tool assessed both codes as equivalent, in the middle

distance from both opposite ratings (Y, N). Once again, we considered Qcheck evaluation

disagreement as positive as it can be.

1 # coding: utf-8

2 # vida_collatz

3 # Xxxx Xxxxx

4

5 num_ini = int(raw_input())

6 contador = 0

7

8 while True:

9 contador +=1

10 if num_ini == 1: break

11 elif num_ini % 2 == 0:

12 num_ini /= 2

13 else:

14 num_ini = 3 * num_ini + 1

15

16 print contador

1 # coding: utf-8

2 # vida_collatz

3 # Xxxx Xxxxx

4

5 num_ini = int(raw_input())

6 contador = 1

7

8 while num_ini != 1:

9 if num_ini % 2 == 0:

10 num_ini /= 2

11 else:

12 num_ini = 3 * num_ini + 1

13 contador +=1

14 print contador

Listing 3: Student S62 Assignment’s Code Comparison (A) and (B).

Student S64 code represents the most discrepant case in terms of the agreement between

qcheck tool and the raters. Raters agreed among each other that code B is better than code A.

But, qcheck assessed code A better than code B. The following code listing shows the pair

of code in order to depict this divergence.

As can be seen, the main difference between both codes is that code B encapsulates code

4.3 Assessing Students’ Code Quality with qcheck Support 58

1 # coding: utf-8

2

3 numero = int(raw_input())

4 conta = 0

5 while True:

6 if numero % 2 == 0:

7 numero = numero/2

8 conta += 1

9 else:

10 numero = 3*numero + 1

11 conta += 1

12 if numero == 1:

13 conta += 1

14 break

15

16 print conta

1 # coding: utf-8

2

3 numero = int(raw_input())

4

5 def collatz(numero):

6 conta = 0

7 while True:

8 if numero % 2 == 0:

9 numero = numero/2

10 conta += 1

11 else:

12 numero = 3*numero + 1

13 conta += 1

14 if numero == 1:

15 conta += 1

16 return conta

17 print collatz(numero)

Listing 4: Student S64 Assignment’s Code Comparison (A) and (B).

A in a function named collatz(numero) and invokes it just after its definition. Perhaps raters’

judgment about code quality touched a wider layer not covered by qcheck metrics as all

human raters agreed that code B is better than code A. Or, maybe, it is just another case of

human subjectivity that could not be captured by the tool. In fact, this case is controversial

and it reaches the limitations of qcheck assessment when compared to human evaluations.

4.3.6 Summary and Discussion

In this empirical study, we summoned three Programming 1 instructors to act as raters

evaluating students’ code quality between submissions for a given programming assignment.

We also used qcheck to evaluate the code quality of the submissions. We investigated if

qcheck approach is able to capture experts’ notion of code quality.

Firstly we examined the consistency of the evaluations among instructors. We found that

their level of agreement is almost perfect, according to Fleiss Cohen’s kappa, a statistical

measurement of the degree of agreement that ponders agreements that occurred by chance.

Then, we made a pairwise evaluation and found that qcheck and each instructors’

agreement were statistically relevant. We use the mode of instructors’ ratings as a consensual

measurement and calculated its agreement with qcheck ratings. At least for this study, raters’

4.3 Assessing Students’ Code Quality with qcheck Support 59

judgment is consistent with tool judgment, so qcheck is able to capture experts’ notion of

code quality.

Finally, we qualitatively evaluated each code that caused divergences among raters and

tool. In general, they seem to be related to a matter of personal taste of raters. When

proposing qcheck tool, we assume that there is a component of subjectivity in the human

evaluation of code quality. The tool is not intended to, perfectly mimic human assessments. It

tries to capture, in a great extent, code quality standards using instructors’ reference solution

as a beacon. This study shows that there are cases that instructors and qcheck evaluations are

not identical, but, in general, qcheck evaluations are representative. The bottomline is that

this results give us confidence that qcheck evaluation are perfectly useful as representative of

instructor’s assessment. In this sense, we can rely on the approach to generate feedback that

helps code quality improvement or when evaluating students’ code quality.

Chapter 5

Code Quality Improvement Prompted by

Automated Feedback

In this Chapter we discuss the possibility of the code quality improvement feedback delivered

to students directs the improvement of their programming assignments’ code. The first

and second studies present experiments with randomized controlled samples. We assessed

the use of qcheck in experimental groups. The main difference of these studies was the

evaluation of the willingness of improving code quality and its consequence. On the first

study, we wanted to investigate if the novelty of an instrument to produce feedback about

code quality would motivate students to attempt to generate a better code and if they, in

fact, succeed. On the second study, both experimental and control group were stimulated

to improve their codes quality, and they also received a written material to help them:

"Programming 1 code quality expectations". However, only students from the experimental

group were able to use qcheck feedback. The last study presented in this section discusses

and contrasts the summative assessment of the quality of students’ code production in a given

period of time in the Programming 1 course with the use of qcheck by the students during

this same period.

We proposed a set of measures with the aim to capture code quality and generate useful

feedback for novice programmers. These measures, based on traditional quality software

metrics, can be automatically obtained provided we have a reference solution. This solution

must encompass the programming abilities and code quality expected by the instructor for

the programming assignment. We proposed the generation of automated feedback using that

60

5.1 Context 61

information. In the studies that we report in this chapter, we gathered evidences to ground

the claim:

"Students can improve code of their programming assignments prompted by

timely and automated feedback"

5.1 Context

The studies we report in this section happened in February/2015, September/2016, and

June/2017, in this sequence. They all occurred at UFCG, in the Computer Science

undergraduate course, in the context Programming 1 course. We will briefly summarize

the nature of the studies.

In the study reported on section 5.2, we present a controlled experiment to assess the idea

of using proposed metrics to generate code quality feedback and whether students adhere to

the idea and improve their code.

Furthermore, the study presented on section 5.3 discusses another controlled experiment

to assess the potential of the feedback messages in providing effectively help on code quality

improvement. In this study, students in both groups were explicitly asked to submit the best

version of their programs according to written directions about code quality. Only students

from the experimental group could have access to qcheck tool and follow their code quality

improvement hints.

In section 5.4, we report what happened during the longitudinal study undertaken with

2017.1 class of Programming 1 course. Instructors of this course requested a summative

feedback, based on the whole code production of each student, to be produced automatically

using qcheck. We implemented this request and used the obtained information to perform an

analysis contrasting the summative assessment with students’ qcheck pattern of usage.

5.2 On the Impact of Code Quality Feedback Generation with qcheck 62

5.2 On the Impact of Code Quality Feedback Generation

with qcheck

In this section, we will present our first experience on using a set of measures, inspired

on software metrics, to generate and deliver feedback messages to students. We wanted to

investigate the effectiveness of the quality feedback generation approach. If students, in fact,

care about the feedback received and actuate in their code so that it improves.

By this time, the facility of providing quality feedback generation with qcheck was

implemented in a modified version of TST automated assessment system differently from

the actual integration solution, as a software plugin. We designed an experiment with a

randomized sample, providing qcheck tool to just one of the two groups. We posed the

following research questions:

RQ1: Do students who receive quality feedback about their submission tend to

make more submissions, after the first correct one?

RQ2: Do students who receive quality feedback about their submissions tend to

deliver improved quality code?

5.2.1 Methods

We invited students of Programming I course to take part in the study and 45 voluntarily

accepted. We randomly divided students into two groups: control and experimental.

Students from both groups received one programming assignment to solve and submit to

TST assessment system in 60 minutes. The activity, listed below, is a typical assignment the

students are able to solve after being exposed to conditional and repetition control structures’

classes. It is based on the well-known mathematician Collatz’ conjecture. It asks the student

to inform the number of iterations it takes to a given number to converge to 1. The complete

specification is presented on Figure 5.1.

Students from the control group performed the activity using the computational resources

and the automated assessment system of the course – TST in the usual manner. Students

from the experimental group counted on the same usual support but also, had access to code

quality feedback messages qcheck.

5.2 On the Impact of Code Quality Feedback Generation with qcheck 63

Figure 5.1: Problem Specification of ’Life Collatz’ Programming Assignment.

The messages were presented in the command-line interface, just after the student

submits her/his code to automatic testing and receives the results. It was empirically

established a threshold for each quality measure (RLLOC, RCC, RH and RPEP8) in order to

show the warnings: when it reaches 1.2, i.e. a value 20% greater than the same measurement

in the reference solution, a message is produced and delivered to the student. RPEP8

warnings messages were translated from English and slightly modified from the original

style checker implementation. The current version of qcheck kept the original, messages in

English.

It was also added an extra warning message regarding the number of lines of the heading

the student is supposed to add in their code. This is an "easy-to-solve" warning aimed at

making students learn by themselves how the cycle submit/receive feedback/refactor works.

There was an explanation on how to use qcheck command but no directions on how to

proceed after receiving the feedback message were given during the experiment. It was

only advised that those messages could help to improve their code quality.

5.2.2 Metrics

The metric nsub is a response variable and refers to the number of functional correct, passed

in all test cases, submissions are done by a student referring to a programming assignment

5.2 On the Impact of Code Quality Feedback Generation with qcheck 64

to TST server. The metric W is a response variable that summarizes the number of qcheck

quality warnings on the last correct submission of the programming assignment.

In an effort to investigate those proposed research questions for this study, we formulated

the following concrete hypotheses referring to each research question:

H1.1 Students who uses qcheck make more submissions(nsub) than those who

do not use.

H1.0 There is no difference between the mean value of nsub relating to students’

group origin.

H2.1 Students who uses qcheck presents a lower mean value of W on their final

submissions.

H2.0 There is no difference between the mean value of W relating to students’

group origin.

The study happened in two computing laboratories so that we could isolate each group

of students. The experiment was supervised by teacher assistants and graduate students, part

of the Programming 1 course staff, usinf an application script provided by the researcher.

5.2.3 Data Collection

The experiment data was collected by TST. As a premise, only functionally correct

submissions were considered to the study. A small amount of 10 students (22.2%) failed

the assignment and 35 (77.7%) succeeded.

As shown in Table 5.1, the number of correct submissions after the first correct one that

is greater in students of the experimental than the others. It could be observed that the mean

value was drawn up because of some individual cases; therefore, we consider that median

statistic provides a more reliable measure in this context.

Table 5.1: Number of Correct Submissions.

N Min. 1st Qu. Med Mean 3rd Qu. Max

Control 17 1 1 1 1.588 2 4

Experimental 18 1 2 2.5 2.667 3.750 5

5.2 On the Impact of Code Quality Feedback Generation with qcheck 65

5.2.4 Results and Analysis

In RQ1 we investigated if the students who receive quality feedback about their submission

tend to make more submissions, after the first correct one. The data collected in the

experiment indeed revealed that students of the experimental group (who received quality

feedback) make more subsequent submissions than the students of the control group. The

median of submissions performed by the subjects in the experimental group was 2.5; which

is greater than the median of submissions performed by control group subjects. We studied

this behavior, performing a Mann-Whitney nonparametric hypothesis test. As a result,

we rejected the null hypothesis in favor of the alternative. For this test, p-value = 0.009

with 0.05 significance level. This means that students who received warning messages as

feedback about their code quality tend to make more submissions of that same assignment.

As practical significance, we can state that: apparently, quality feedback messages are taken

into consideration by students and not ignored by them. It encourages students to reflect on

their code beside it correctness.

In RQ2 we examined if students that receive quality feedback about their submission

tend to deliver a better quality code. It was evaluated if quality measurements of the

last submissions W of the students’ submissions of each group differ depending on their

exposition to feedback quality warnings. We have performed the same hypothesis test

successfully. It was possible to reject the null-hypothesis in favor of the alternative as p-value

= 0.0267, with 0.05 significance level. This means that, at least for our data, the number of

quality warnings of the last submission from the students of the experimental group is lower

than the number of quality warnings of the last submission from the students of the control

group.

Then, we took into consideration all functional correct submissions of each student in

the experimental group, not only the last one. This qualitative analysis uncovers details that

could not be captured by statistical tests. We have observed that 66.67% of the students

which received at least one quality feedback warning about their first submission, presents a

positive derivative: they succeed in solving the feedback warning and reduced the number of

warnings obtained in relation to the previous submission. Our results indicate that students

are able to actuate on their code based the quality warning feedback messages. It suggests

that this type of feedback is useful and adequate to promote the improvement of student’s

5.2 On the Impact of Code Quality Feedback Generation with qcheck 66

code, at least for this study.

The following Listing 5 shows an example of qcheck usage that happened during the

experiment. The code on the left is the first (a) and the code on the right is the last (b) correct

submissions of a student. Code (a) is the first correct submission of the student. It caused the

warning "It appears that your program has too many operations." due to lines 10, 15 and 18.

Code (b) is the last submission made by the same student. It caused "No warnings" message.

The student "solved the warnings" making a better use of conditional structures and reducing

the number of lines of duplicated code.

1 # coding: utf-8

2 # xxxx.xxxxxxxx / xxxx / 2014.2

3 # Collatz life

4

5 number = int(raw_input())

6 cont = 0

7

8 while True:

9 if number == 1:

10 cont += 1

11 break

12

13 if number % 2 == 0:

14 number = number/2.0

15 cont += 1

16 else:

17 number = 3 * number + 1

18 cont += 1

19 print cont

1 # coding: utf-8

2 # xxxx.xxxxxxxx / xxxx / 2014.2

3 # Collatz life

4

5 number = int(raw_input())

6 cont = 0

7

8 while True:

9 cont += 1

10 if number == 1:

11 break

12 elif number % 2 == 0:

13 number = number/2.0

14 else:

15 number = 3 * number + 1

16 print cont

Listing 5: Contrast Between Submissions – Before CQI Feedback.

On the other hand, data collected from the control group, reveals a typical student

behavior: they assume their submission is done when it receives an "ok" or "green-bar"

from a test-based automated assessment tool. A careful look exposes that some programs

could have their quality improved in different ways, preserving their functional correctness.

If students were not pushed to review and refactor, they will simply move forward to another

assignment and, maybe, will repeat the same mistakes in the next assignment.

5.3 On the Use of Code Quality Feedback Messages 67

5.3 On the Use of Code Quality Feedback Messages

In the previous study, we have observed that students who receive quality feedback with

qcheck tool tend to deliver a code with better quality, fewer quality warnings. However, we

want to better understand if this result occurs due to the feedback we have provided or if it

resulted only of the student willingness to improve their code.

In the present study, we contrasted two groups of students that were both stimulated to

improve their assignments’ code quality after finishing it. The groups were instructed on

Programming 1 course code quality standards through a written document we produced and

delivered to them. Only the experiment group had access to qcheck tool. We contrasted

quantitatively and qualitatively the final outcomes gathered from both groups in terms of the

number of warnings and what they have changed in their code (churn). As a result, we found

that, in fact, students that use qcheck are able to make more relevant code changes towards a

better code quality.

The research questions that directed this study were:

RQ1: Do students who receive quality feedback about their submission tend to

deliver a better quality code?

RQ2: Do students tend to improve their code quality considering quality

feedback?

5.3.1 Methods

Firstly, students were invited to an extra-class activity in order to train them to qualitative

evaluation instructors perform in Programming 1. In this activity, they were asked to answer

at most 5 programming assignments, from units three to five. In these content units, students

are exposed to programming concepts such as conditional structures and iterative structures

(for and while loops). The activity lasts the same of a regular laboratory class 120 minutes.

It was given to students a written document, which can be found in this thesis Appendix,

containing Programming 1 code quality standards and orientation. Students were explicitly

stimulated to do the best as they can to improve their code, after making it work. They

were divided into two groups experimental and control group and also located in different

computing laboratories (LCC2 and LCC1).

5.3 On the Use of Code Quality Feedback Messages 68

During the activity, students from the experimental group could have access to qcheck

quality feedback warnings. There was a previous pre-training session on how to use install

and use qcheck with the whole class. Students from control group answered the assignment

just like they were used to do, under TST support. The experiment was conducted under

the orientation of graduate students that were also part of the course staff. At the end, we

evaluated the proposed research questions under quantitative and qualitative analysis.

5.3.2 Metrics

The metric W is a response variable that summarizes the number of qcheck quality warnings

on the last correct submission of the programming assignment. ∆W is the difference between

the number of warnings of last correct submission and the first correct submission: ∆W =

Wf - W0. From this metric we came up with three situations:

∆W < 0: The student was able to recognize and fix aspects in his/her code to improve its

quality.

∆W = 0: The student was not able to improve his/her code quality.

∆W > 0: The student was not able to improve his/her code quality, instead, the last code

submission became worse than the first submission.

Considering the posed research question we established the following concrete

hypotheses:

H1.1 Students from the experimental group that had access to qcheck messages

presented a lower mean value of W on their final submissions.

H1.0 There is no difference between the mean value of W in relating to students’

group origin.

H2.1 Students who use qcheck present ∆W < 0 among their submissions.

H2.0 There is no difference on the mean value of ∆W relating to students’ origin

group.

5.3 On the Use of Code Quality Feedback Messages 69

5.3.3 Data Collection

We collected a total of 242 programs, from 35 students, 20 from the control group and

15 from the experimental. Since student’s participation on the experiment was volunteer,

some of them were absent and unbalanced the groups size. We discarded unsuccessful

submissions, which are those that did not pass functional tests. This restriction greatly

reduced our dataset. Furthermore, many students, despite being stimulated to produce a

better version of their correct code in both experimental and control groups, simply do

not deliver a different version of their submitted solutions for a given assignment. In this

sense, each entry of the dataset is a submitted set of solutions to a given assignment of the

experiment. This set is composed only by functionally correct submissions. Submissions

must have lines of code that cause relevant difference from each other, for example, blank

lines are not enough to make two submissions different. Conversely, comment lines, such as

header lines, are considered to be a relevant difference. As we are measuring the evolution of

quality warnings, we also excluded from our dataset submissions that accounted zero quality

warnings (no warnings).

During the evaluation of the RQ2, we define as an entry in our dataset a pair composed

by the first and last submission for a given programming assignment. At the end, the dataset

accounted 28 entries, referring to 56 programs. The evaluation of RQ1 was done using only

the last correct submission. Table 5.2 summarizes those data.

Table 5.2: Distribution of Quality Warnings Account According to Each Group

Control Experiment TOTAL

Entries 19 9 28

TOTAL number of submissions 38 18 56

5.3.4 Results and Analysis

In RQ1 we investigated the number of quality warnings on the final submissions according

to students’ origin group. The Figure 5.2, presents the values of W for students from the

experimental group are more concentrated and left shifted than the W values from the

control group, which are more scattered and right-shifted. This indicates that subjects from

5.3 On the Use of Code Quality Feedback Messages 70

experimental group submit code containing fewer quality warnings - most of them with zero

warnings. Furthermore, it can be observed that this behavior is a strong characteristic of

the group, as data are more concentrated on the left portion of the plot. Conversely, data

from control group are more dispersed, indicating that subjects from data group cannot be

characterized by a common behavior. The distribution of "number of quality warnings" from

control group presents a wide range of values.

Figure 5.2: Number of Quality Warnings per Group.

Finally, we verified our conjecture expressed on the RQ1 in a nonparametric hypotheses

test and found it is statistically valid. We performed Wilcoxon test, our dataset was composed

of 28 observations in a non-normal distribution, as found a p-value < 0.001. So we could

reject the null hypotheses in favor of the alternative. Our data shows that the mean of

quality warnings found on students code in control group is approximately 4.4 and in the

experimental group is 1.0. The Figure 5.3 shows the number of warning’s distribution in

each group. Our conjecture that "students that receive quality warnings during development

can produce code with better quality than those who receive only written orientation" finds

statistical support in this study.

In RQ2 we investigated if "students tend to improve their code quality considering

quality feedback" according to ∆W. In Figure 5.4 the continuous red curve represents ∆W

distribution of control group and the dashed green curve represents ∆W distribution of the

experimental group.

It can be observed that ∆W values from students of the experimental group are lower than

zero, meaning that they were able to recognize and fix aspects in his/her code to improve its

quality. We also showed in finer detail, on Figure 5.5, a barplot of the raw data regarding

5.3 On the Use of Code Quality Feedback Messages 71

Figure 5.3: Warnings Distribution on each Group.

Figure 5.4: Distribution of ∆W According to Groups.

∆W of each group. Notice that there is not a superposition of the bars.

Figure 5.5: Quality Improvement According to Groups.

We also verified our conjecture expressed on the RQ2 in a nonparametric hypotheses

test and found it is statistically valid. We performed a Wilcoxon test and found a p-value <

0.001. So we could reject the null hypotheses in favor of the alternative. Our data shows that

the mean ∆W of each entry of students code from control group is -0.22 and in students’

5.3 On the Use of Code Quality Feedback Messages 72

code from the experimental group is -2.56. This data shows a greater Delta reduction from

students’ code of the experimental group. The 95% confidence interval of the difference

in mean Delta is between 0.96 and 3.72. Our conjecture that "students that receive quality

warnings during development improve their code, using the feedback messages delivered"

finds statistical support in this study.

5.3.5 Qualitative Evaluation

We manually evaluated each dataset entry in order to discover what students were thinking

when trying to improve their code. We compared the difference on codes of the first and the

last correct submission, S0 and Sn respectively. Then, we classified those code improvements

into six categories: code, style, code+style, header, naming and comments. In order to

categorize each change we observed the following:

• Code: Includes changes that impact on coding strategy. We find indications of this

kind of improvement when we observed changes in the number of lines of code, code

statements such as conditional structures and iterations, among others.

• Style: It refers to modifications relating to adherence to coding standards or attempt to

make the code more readable including, for instance, spaces before operators.

• Code+Style: This improvement category exists because we found some cases that the

code difference includes changes in both categories. We considered being worth to

highlight those cases, instead of categorizing it in a single one.

• Header: Changes to include code heading.

• Naming: Refers to changes in variable names.

• Comments: Refers to the addition of comments lines in the code.

We also observed that the number of submissions nsub in each group is very similar, in

general 2 or 3 submissions, with a few outliers. We credit this behavior to this experiment

design: subjects of both groups were stimulated to submit the best possible functional

correct code. The Figure 5.6 summarizes code changes executed by students and manually

5.3 On the Use of Code Quality Feedback Messages 73

categorized on 28 entries of the dataset: 9 entries from the experimental group and 19 entries

from the control group.

Figure 5.6: Code Changes Categorization per Group.

We observed in this qualitative analysis that students from the control group were not able

to act in terms of code improvement. The majority of students in this group tried to improve

their code quality including comments to their code. We find it awkward, as the already

mentioned quality advice document does not mention comments as a way to improve code

quality. Students from control group worried about header and naming while students from

experimental group centered their attention in code and style improvements. We can infer

that students from the control group felt stimulated and had the genuine intention to improve

their code but do not have the correct guidance for that. They lack guidance in what really

matters.

On the other hand, students that had access to qcheck managed to make significant

changes in their code. Their changes in code quality include improvements that impacts

algorithm simplicity, better conditional/logical constructions, readability and adherence to

coding standards, among others. We believe that the notion of these premises is fundamental

to educate and train a good programmer.

Finally, we notice that students who do not receive qcheck feedback, even when

stimulated to improve their code quality, feel lost and are not able to make significant

changes. It appears that qcheck act as a relevant guide showing what can be done towards

code quality improvement.

5.4 On Producing Summative Feedback 74

5.4 On Producing Summative Feedback

In this study, we will present our efforts on producing summative feedback about students’

code production, requested by Programming 1 instructors during the longitudinal study. This

feedback information was used to compose a report that was semi-automatically generated

using qcheck. Students had access to their individual report in TST environment, at the

middle of the term, advising about the quality level of their code production until the

moment. This was intended to stimulate students to care about code quality issues as they

were going to be assessed in this aspect soon. The Figure 5.7 shows some reports examples

in TST screen shots.

Figure 5.7: Code Production Quality Report Automatically Generated by Qcheck.

Besides, we took advantage of these data produced regarding all students to contrast with

qcheck users to find out if: "Are qcheck users producing code with better quality than the

other students?"

We conducted this study using two datasets: the first referring to general code production

gathered from TST server and the last referring to data collected through qcheck usage logs.

5.4.1 Methods

Qcheck was adapted to assess the quality of students code production and summarize the

feedback in a grade. This grade ranged from A to D, meaning: A - Good; B - Can improve;

5.4 On Producing Summative Feedback 75

C - Must improve and D - Undefined. This adaptation was challenging and we faced many

problems. The first is that students’ code production is a skewed distribution: few students

solve many assignments and many students solve few assignments. For this motive, care

must be taken with this summative feedback interpretation and how to communicate it to

students.

In this sense, it was not possible to express the grade considering just one dimension. We

proposed to use confidence as a second assessment dimension. This measure refers to the

number of programming assignments evaluated to produce such grade. It can be interpreted

as how confident we are that a given code production deserves the grade. We defined

confidence values as: null, low, medium and high. The summative feedback produced can

be viewed as a tuple (grade, confidence).

We started the study by fixing a period of 16 days to collect data from TST Server

regarding students’ submissions to programming assignments from units 3, 4, and 5. Then,

we tested all submissions using TST to select only functional correct submissions. Next,

we used qcheck to compute W for each entry (student, activity) and produced a mark for

them as a ratio of W. We classified this marks in 3 ranges, according to the course intended

learning objectives. The final grade (from A to D) was calculated as a proportion of activities

in each range. This assessment approach was defined in accordance with Programming

1 course staff. Finally, we created the script to produce a personalized report including

message and metadata. The feedback message that was personalized and delivered to 95

students considering grade and confidence dimensions. We here list a translated instance of

the feedback we provided to students:

"Hello Maria. We assessed 11 activities that you produced during the course.

We consider that the code quality that you produced until now is good, with

low confidence. Congratulations! Keep up the good working. Automatically

produced with qcheck."

5.4.2 Metrics

In order to answer the research question that motivated this study, we have created a concrete

hypothesis, considering some metrics detailed below.

5.4 On Producing Summative Feedback 76

RQ1: Do students who use qcheck presents a better code production quality then

the other students?

H1.1 Students of category "users" presents a better grade of code production

quality.

H1.0 There is no difference regarding the category of students on the grade of

code production quality.

In a detailed qcheck log analysis, we observed that students’ usage patterns were very

different. Some of them just installed and used one or two times while others used the tool

as much as they could. For this reason, we categorized students regarding their proficiency

in qcheck use. This sounds to be fairer, when conducting whichever study aiming to evaluate

qcheck effect. A more detailed explanation in how to compute these categories will be

presented later on.

In the present study, we want to evaluate the performance of students who are qcheck

users and compare them to those who do not. We intend to gather evidence that, even if

these students do not use the tool they care about quality and produce good code. So, we

verified if proficient qcheck users achieved the highest grades with adequate confidence in

relation to other students, by chance or not with adequate statistical significance.

We categorize students according to their proficiency of using qcheck. First, we

calculated the correlation and found it significant (Spearman’s rho 0.97 with p-value < 0.01),

between the occurrences of qcheck use with the number of activities solved by students.

Then, using the distribution of the number of activities solved in the period we classified

students’ qcheck proficiency in a categorical order as users, testers, curious, non-users. The

category is used as a factor in this study.

The metric students’ grades, a response variable of this study, varied from A to D,

meaning: A - Good; B - Can improve; C - Must improve and D - Undefined. The Figure 5.8

presents a practical example of this grade as the methodology to calculate it was previously

described. It shows the assessment of the code production of two students. Each cell

represents one programming assignment. The mark is a ratio considering W. Ranges depicted

by different colors in the image, relates to course pedagogical assessment decisions. The final

grade is a proportion of the activities in each range. Distribution (a) was graded as A and

5.4 On Producing Summative Feedback 77

distribution (b) was graded as C.

Figure 5.8: Assessment of Students (a) and (b) Programming Assignments.

The confidence metric ranges in four categories, regarding the number of programming

assignments completed by the students: null < 10; low < 20, medium < 30 and high >=30.

Although these numbers might appear too high, we would rather keep high standards in this

aspect. It means that our approach is conservative: A high confidence in the assessment is

only possible if we evaluate many assignments. For this reason, we pruned the dataset and

discarded entries with null confidence.

5.4.3 Data Collection

The Table 5.3 presents a summary of the data collection of code production quality

assessment and qcheck usage. Note that, regarding users’ proficiency, those in "Not"

category are students that did not use qcheck in the period of the study. It differs from

"Non-users" as this group used qcheck only once in the period.

Table 5.3: Dataset Summary.

Total of students 47

User Proficiency
User Tester Curious Non-user Not

17 5 8 5 12

Confidence
High Medium Low

7 12 28

Grade
A B C

23 19 5

5.4 On Producing Summative Feedback 78

5.4.4 Results and Analysis

Observing the data collected, (grade, confidence), in order to evaluate the research question

we found that all (100%) students (A, high) are categorized according to qcheck proficiency

as users. If we consider a broader confidence, keeping the same grade (A, high + medium)

we found that 83.3% of the students are categorized as users and 16.7% as not.

In order to evaluate the whole distribution and gather statistical evidence that it did not

occur by chance we produced the contingency table and tested this hypothesis. As a result,

we found it relevant and could reject the null hypothesis in favor of the alternative that in

fact there is a difference between the distributions. We applied Pearson’s Chi-squared test

to assess whether the differences in the distributions happened by chance. The result was

relevant with df = 8 and p-value =0.008. The contingency table 5.4 used in this test is

presented in sequence.

Table 5.4: Contingency Table Contrasting Students’ qcheck Usage Proficiency to Grades.

A B C

User 13 4 0

Tester 2 3 0

Curious 4 3 1

Non-user 0 5 0

Not 4 4 4

5.4.5 Discussion

In this study, we conjectured whether students who were qcheck users perform better on the

assessment of their code production, in a given period of time than others student that did

not use the tool. We came to very positive results observing and testing the data distribution

we collected. However, care must be taken while interpreting these results due to some bias

that could threaten its validity.

Confidence metric is directly related with the number of assignments the student solves.

It perhaps may be an indication that these are students most motivated or better performing in

the course. On the other hand, we collected data from programming assignments regarding

5.4 On Producing Summative Feedback 79

3, 4 and 5 units and top performing students in the course have passed by this units solving

few assignments.

Another issue is that this result must not be considered a final evaluation about code

quality in students’ production. They were not warned that we were going to collect their

submission in a given period to assess them. In fact, students have contacted us after the

report release questioning that they had produced much more activities than it was assessed.

We advised that this report was just a checkpoint and is not intended to provide a final

diagnostic, but to warn students about how they are performing.

In fact, 49 students with null confidence were excluded from the study. It means that

51.4% of the students have not completed enough programming assignments, by the time

we performed the study, to have their code production qualitatively assessed.

Chapter 6

Consequences of Code Quality

Improvement Feedback on the Learning

of Programming

In this chapter we consider the consequences to learners of providing feedback about code

quality improvement using the proposed tools during a programming course. Recently, De

Nero and colleagues (20017) discussed that there were many initiatives and advances in

automated feedback platforms aimed at programming education, but few studies on its effects

on real programming courses [DSPQ+17]. We are going to present our main findings in a

longitudinal study and discuss its implications to learners, instructors and the course itself.

Furthermore, we are going to present an evaluation of the approach performed with the

students that used the tool in their activities.

In order to evaluate how students consume code quality improvement feedback and how

it is effective in helping them to improve their code, we proposed a longitudinal empirical

study. At this point, we have already proposed, implemented an adjusted qcheck as a

proof-of-concept instrument that was plugged into TST, the automated assessment system

used in our introductory programming course at the UFCG. The theoretical goal of this study

was to find evidence that could help us to answer the research question:

"How learners that used qcheck increased knowledge about code quality and

transferred it to their programming practice?"

80

6.1 Context 81

However, answering this question and finding a causal link between the use of the

instrument and its repercussion in ones’ knowledge it’s impracticable, at least in the scope

of this work. For this motive, we rephrased this research questions into more modest

ones, in order to gather empirical evidence of the repercussion of our proposal on students

programming practice and skills along a period of time in their introductory programming

course. The following research questions guided the studies reported in this section:

RQ1: Do learners incorporate "code improvement" as part of their

programming process cycle?

RQ2: Do learners that consume qcheck code quality feedback is succeeded in

improving their programming assignments code quality?

RQ3: Do learners that consume qcheck code quality feedback improve their

programming abilities regarding code quality?

RQ4: How is students’ perception about qcheck usefulness in the aid of

improving programming assignments’ code quality?

6.1 Context

This study took place at UFCG in the Computer Science undergraduate course in

Programming 1 course under the supervision of our advisors. They were also part of

the academic staff the course that was composed by 4 instructors and 15 graduate and

undergraduate students that provide support to the course as teacher assistants or students’

tutors. It happened in the academic period of 2017.1 with an enrollment of 115 students.

This is the official number, which includes those students who have dropped out the course

later on.

6.2 Evaluation of Providing Code Quality Feedback in a

Programming Course

In order to evaluate how students consume qcheck feedback and how effective it is in

supporting code quality improvement, we took into consideration two outcomes: the

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 82

programming assignment code and the student that used or not qcheck tool when solving

programming assignments.

6.2.1 Methods

The nature of this empirical study aimed at contrasting and exploring the consequences of

using qcheck on the introductory programming course is quantitative. However, in order

to unveil relations and results, it was necessary to recur to qualitative analysis of students

programs and behaviors. In general, this study had the following characteristics:

• Analytic - as it uses statistical methods to uncover relations and make inferences;

• Longitudinal - as we collected a set of measurements along time of the study;

• Prospective - as students under the research will be followed by their exposure to

qcheck to the outcome (response variables);

• non-Randomized - in fact, we did not intentionally divide two groups of study, but it

naturally happened when students chose to use or not the instrument. Certainly, qcheck

users’ group is biased by their willingness to invest in code quality improvement. For

this motive, care must be taken when reporting conclusions about the hypothesis that

contrast users/non-users groups.

In order to investigate each research questions mentioned above, we made a set of

concrete hypothesis considering some metrics and the data collection context. We also used

descriptive statistic in an exploratory analysis to report data about the observed phenomena.

RQ1: Do learners incorporate "code improvement" as part of their programming process

cycle?

EA1.1 What was the proportion of students that used qcheck to improve their

code quality?

EA1.2. How students that used qcheck behaves in terms of frequency of its use?

RQ2: Do learners that consume qcheck code quality feedback is succeeded in improving

their programming assignments code quality?

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 83

EA2.1 Among students that used qcheck what is the proportion of students that

managed to reduce their W?

EA2.2 Among students that used qcheck what is the proportion of students

that managed to reduce to 0 (they received the message "No warnings,

congratulations!") their W?

H2.1.1 The value of W in the code of the last submission is smaller in students

that consumed qcheck feedback.

H2.1.0 The value of W in the code of the last submission does not depend if

students consumed qcheck or not.

H2.2.1 Students that uses qcheck presents ∆S<0 among their submissions of the

same assignment.

H2.2.0 The value of ∆S among submissions of the same assignment of students

that uses qcheck are not necessarily less than 0.

H2.3.1 Students that uses qcheck presents ∆W<0 among their submissions of

the same assignment.

H2.3.0 The value of ∆W among submissions of the same assignment of students

that uses qcheck are not necessarily less than 0.

RQ3: Do learners that consume qcheck code quality feedback improve their

programming abilities regarding code quality?

H3.1.1 The value of S in the code of the last submission is less than in students

that use qcheck.

H3.1.0 The value of S in the code of the last submission does not depend if

students use qcheck or not.

H3.2.1 The value of W in the code of the last submission is less than in students

that use qcheck.

H3.2.0 The value of W in the code of the last submission does not depend if

students use qcheck or not.

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 84

6.2.2 Data Collection

We used two collections of data to investigate the proposed hypotheses of this study. The

first one was the data gathered using qcheck log bot and saved in our server from the period

2017-05-29 to 2017-06-26. We filtered this data in order to prune the distribution. In the first

three days of study, when the tool was presented to the students, it was proposed an activity

to teach them how to use qcheck. During these days, almost all students used qcheck, as

it was a laboratory activity. After that, using qcheck was no longer asked or incentive by

the course instructors. So, as it can be observed in the Figure 6.1, the number of qcheck

occurrences of use declined.

Figure 6.1: Aggregated Number of Qcheck Use by Students by Date.

The distribution is skilled revealing an abnormal pattern of usage at the beginning of data

collecting. It is worth to note that these data refer only to students that used qcheck at least

once during this period. Another unusual pattern of usage was detected at 2017-06-26 when

happened the first exam to assess students’ code quality as an official activity the course.

Students could use qcheck, if they wished to. As this day, we registered more than 800

occurrences of qcheck invocation. We omitted this data in the plot and excluded them from

our analysis of qcheck usage.

The second data set was collected from TST server and is composed by submissions done

by students during the same period of time. Differently from the first mentioned data set,

this one contains data from students that used or not qcheck tool. However, it contains only

the last functional correct submission of each student for a given assignment. In summary,

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 85

Table 6.1 presents a summary of the data set.

Table 6.1: Students Code Production Data Collection.

Summary

Users 96

Activities 85

Units 3, 4 and 5

Used qcheck
Yes 464

No 1030

Consumed qcheck feedback
Yes 356

No 1138

Total number of submissions 1494

6.2.3 Metrics

The metric W is a response variable that summarizes the number of qcheck quality warnings

on the last correct submission of the programming assignment. ∆W is a difference between

the number of warnings of last correct submission and the first correct submission: ∆W =

Wf - W0. Similarly, ∆S is a difference between the number of style warnings of last correct

submission and the first correct submission: ∆S = Sf - S0. We expect these values to be

negatives.

6.2.4 Results and Analysis

In order to investigate whether learners incorporated ’code improvement’ as part of their

programming process, we first searched what proportion of students used qcheck during

the study (EA1.1). We took into consideration that the initial 3 days of data collection

corresponded to a specific activity to install and present qcheck to students, then we found

that more than 66.3% of students used qcheck in theirs everyday activities while 33.7% did

not.

Among those students that used qcheck in their routine, we found, as could be expected,

that the number of qcheck invocations (occurrences of use) are strongly positively correlated

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 86

to the number of programming assignments (activities) the student did. We used Spearman’s

rank correlation method since it is less sensitive to outliers. The value of rho is = 0.87,

p-value=2.2 x 10
−16.The Figure 6.2 shows this distribution.

Figure 6.2: Occurrences of Qcheck Uses X Activities Performed by Students.

Furthermore, the pattern of qcheck usage is diverse (EA1.2). We categorized students,

according to the number of activities they submitted and used qcheck to improve its quality,

as: users, testers, curious and non-users. Considering that occurrences of use and activities

are strongly correlated, we found that number of activities was more significant to make this

categorization, observe a summary is shown on Table 6.2. Students in the category of users

are those that the number of activities performed using qcheck tool is above the 3rd quartile,

referring to 30.4 %. Students in the category of testers are above the median and below

the 3rd quartile, referring to 21.7%. Students in the category of curious are 26.1% that are

students that submitted fewer activities than the median, but more than the 1st quartile. The

category of non-users corresponds to students that installed, tested and used qcheck but did

not incorporate it into their programming process routine as they used when performing just

one or two activities. It differs from those 33.7% proportion, previously mentioned, that did

not use the tool (besides in activities proposed by instructors) at all.

In the second research question (RQ2) we wanted to evaluate if "Learners that consume

qcheck feedback is succeeded in improving their programming assignments code quality".

Initially, we explored data collected with qcheck log bot in the longitudinal study to know

what was the proportion of students that used qcheck, receive its feedback and managed

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 87

Table 6.2: Students Usage Pattern of Qcheck Relating to Occurrences and Activities.

Min 1* Quartile Median 3* Quartile Max

Occurrences 1 5 11 27 172

Activities 1 2 4 8 56

CATEGORY Non-user Curious Tester User

to reduce the value of metric W among their programming assignments, ∆W < 0 (EA2.1).

We found that 63.04% reduced the number or quality warnings of its codes, 32.4% did not

increase nor reduced the value of W and a small amount of 4.4% increased the value of W. It

is important to notice that, since the tool runs in the client side, it means that an unsuccessful

attempting in improving their code quality does not compromise students code assessment.

They only submit to TST server the best version of their code. The Figure 6.3 shows the

frequency of distributions of the value of ∆W.

Figure 6.3: Distribution of ∆W per Assignments.

Furthermore, we looked for students that managed to eliminate the warnings emitted

by qcheck, so that W = 0 in their activities (EA2.2). Considering 618 assignments (user,

activity) in our dataset, we observed that, 24.75% of the students that used qcheck tool were

able to accomplish "No warnings" at their first attempt. A proportion of 25.56%, consumed

qcheck feedback and managed to also accomplish W = 0. A considerably large number of

students, 20.37%, just checked the quality feedback and 29.28% of them were not capable

to eliminate the warnings Table 6.3.

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 88

Table 6.3: Contrasts of Final Number of Warnings According to qcheck Usage per

Assignment.

W = 0 W >0 TOTAL

Checked quality feedback 153 126 279

Consumed quality feedback 158 181 339

TOTAL 311 307 618

In order to better understand this post-feedback behavior, we contrasted these results

with the categories of qcheck users. We found that "users" and "testers" are more proficient

in consuming quality feedback message and improving their code than other categories of

users, as can be seen in the boxplot in Figure 6.4. Recall that "users" and "testers" are those

students who have more occurrences of qcheck use. It can represent a signal that students in

these categories have learned "how to use qcheck to improve their code".

Figure 6.4: Number of Warnings According to Qcheck User Category.

We also tested and found significantly, the hypothesis that the mean of W on assignments

depends on the use of feedback (if it was just checked or consumed). We reject the

null hypothesis in favor of the alternative that there are differences in terms of the mean

location of W (response variable) in the distribution (feedback "just checked" or "consumed")

executing the Wilcoxon signed rank test, with p-value < 0.001.

H2.1.1 The value of W in the code of the last submission are smaller in students

that consumed qcheck feedback.

H2.1.0 The value of W in the code of the last submission does not depend if

students consumed qcheck or not.

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 89

We investigated if the derivative of metrics W and S (∆W and ∆S) in this study

performing some statistical tests. We also made some assumptions about the ability of

learners in consuming feedback and improving their codes. We hypothesized that ∆W and

∆S tends to be smaller than 0 in the observations of the distribution, meaning students were

able to reduce the initial value of W and S on the final submission. The concrete hypothesis

H2.2 used to perform the statistical test is presented in sequence. We omitted H2.3 because

is similar H2.2, but using ∆W.

H2.2.1 Students that uses qcheck presents ∆S<0 among submissions of the same

assignment.

H2.2.0 The value of ∆S among submissions of the same assignment of students

that uses qcheck are not necessarily less than 0.

We computed ∆S on the distribution and found that 56.05% reduced the number of S,

which is the style warning. A proportion of 40.41% did not increase nor reduce the value of

S and few students, 3.54%, increased the value of S. We executed statistical tests that were

capable to support our initial claims for both variables. For both variables ∆S and ∆W, using

Wilcoxon signed rank it was possible to reject the null hypothesis in favor of the alternative,

with p-value «0.001.

Finally, in the last question (RQ3) we examined if "learners that consume qcheck code

quality feedback improve their programming abilities regarding code quality in relation to

those who have not used". Until this point, we have only dealt with students that executed

qcheck. Certainly, a considerable proportion of students in this group has the willingness to

improve their code. Although, we have observed that not all of them could accomplish it. In

this final study, we are going to contrast metrics W and S from students of the whole class:

that used or not qcheck in their final submission to TST Server.

We observed in this sample distribution, of given period of time in Programming 1

course, that 31.05% of students have used qcheck in when doing their assignments, while

68.95% did not. From the amount of those who used qcheck 76.72% consumed the quality

feedback, meaning that they executed qcheck more than once or obtained "No warnings"

in the first execution. Considering the mean of W and S metrics as response variables and

qchecked and consumed as factors we have the following data presented in Figure 6.5, Table

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 90

6.4 and Table 6.5.

Figure 6.5: Mean of W and S According to Qcheck Use.

Table 6.4: Value of the Mean of Quality Warnings – W

Mean of W Consumed qcheck feedback

Used qcheck

No Yes

No 1.88 -

Yes 1.75 0.82

Table 6.5: Values of the Mean of Style Warnings – S.

Mean of S Consumed qcheck feedback

Used qcheck

No Yes

No 3.10 -

Yes 1.18 0.45

We conjecture that students that used qcheck tool might improve their programming

abilities regarding code quality in relation to those who have not used that used the tool.

In order to investigate the validity of this conjecture, we proposed the hypotheses H3.1 and

H3.2, which are similar and refers to S and W respectively. We recall only the first one here:

H3.1.1 The value of S in the code of the last submission is smaller in students

that use qcheck.

H3.1.0 The value of S in the code of the last submission does not depend if

students use qcheck or not.

6.2 Evaluation of Providing Code Quality Feedback in a Programming Course 91

It was observed the mean value of S and W, as response variables for students that used or

not qcheck. The results of the hypotheses tests we have used to investigate those conjectures

were significant for both variables. It was used a nonparametric test as we cannot observe

normality in the distribution. Its results yield that we can reject the null hypothesis in favor

of the alternative that there is a difference on the mean (mean_sim < mean_nao) of the

distributions. As we previously discussed in this section, if we considered students that

effectively processed qcheck feedback (variable consumed qcheck), we would observe even

greater impact on the value of W and especially on S.

We deeply evaluated the relations among the factors and their effects on the response

variables W and tried to adjust a model to observe the statistical significance of them. As

the variable W represents an observed count (normalized number of warnings ranging from

0-5) and we could not guarantee the assumptions of normality for a trivial linear regression

model. For this motive, we fitted a generalized linear model with Poisson distribution.

We took as explanatory variables: consumedqcheck, unit, lloc, cc, vhalstead, utype. As

a result, we found that the intercept and the values of consumedqcheck, lloc and utype=user

were highly significant for the value of W (p-value approximately 3 X 10-5). The final model

could be written as:

W= 0.510 - 0.660 consumedqcheck + 0.020 lloc - 0.275 utypeuser

A free interpretation of the model coefficients, at least for our dataset, may represent that:

• When consume qcheck feedback, we observe an decreasing W value;

• Longer programs impacts the number of defects (lloc positive), we observe an

increasing W value;

• When the student is a qcheck proficient user (utypeuser), we observe decreasing W

value;

Other interesting conclusions can be observed regarding the coefficients that were not

relevant to the overall explanation of W value. The factor "unit of the programming

assignment" that could be related to additional difficulty on the programming level and also

on the programmer maturity was not relevant for W observed value. It possibly gives us

6.3 Do Learners Think that Qcheck is Useful? 92

an indication that code quality is a transversal concern, at least in these initial units of an

introductory programming level.

It is worth to note that when we use a Poisson regression model, we assume that the

response variable follows this distribution and so, that the mean and variance are equal. In

these data, for the response variable W, mean and variance estimates were approximately

1.62 and 1.86, respectively. Thus, we have no reason to suspect about Poisson modeling.

We have also modeled S variable using the same methodology, however, results were not

acceptable.

6.3 Do Learners Think that Qcheck is Useful?

The aim of this study was to gather observations and comments of students that were using

qcheck tool in order to evaluate its experience during their programming process. The

research question raised by this study was:

RQ4: How is students’ perception about qcheck usefulness in the aid of

improving programming assignments’ code quality?

We want to better understand student’s post-feedback behavior from their own

perspective: (1) how students use qcheck in their programming process; (2) how students

consume qcheck quality feedback; (3) What preclude or motivate them to use qcheck and (4)

If students agree that their code is effectively improved if they follow qcheck hints.

Firstly, we selected and informally interviewed students during their laboratory classes.

Then, we asked them to register our conversation and other important information in a form.

They were asked to answer a questionnaire composed by almost the same questions but

in a more structured way. Next, we processed the answers, coding and categorizing the

answers for each posed question. Lastly, we summarized the results for each topic and drew

conclusions about students’ perception of the usefulness of qcheck.

6.3.1 Methods

In this study we interviewed a set of students that voluntarily used qcheck in their

programming process during laboratory classes. After three weeks of in situ observation, we

6.3 Do Learners Think that Qcheck is Useful? 93

started the fourth week remotely monitoring qcheck usage log. This distance was intended to

reduce researcher’s influence on the natural order of events. When we detected an occurrence

of qcheck use, that met our requirements, we ’rushed into the scene’ in order to get fresh

impressions about the event.

We adopted a research methodology inspired by as ’firehouse research’ [BBBL15]. In

this methodology, the process begins with the researcher ’at-the-ready’, prepared to act as

soon as the event starts or happens. Researcher’s actions are driven by the events not by

him or her. It requires a careful design plan previously defined, monitoring and controlling

of tool’s usage and automated subjects’ selection. It requires less formalism; in contrast

with others social science research methods, but more automation and readiness. Another

positive aspect of firehouse research methodology is the way it transports researchers to

subjects’ reality. In our study, we adapted this methodology as we included a questionnaire

to the subjects themselves register their information. While this can hinder students from

speaks freely about their impressions on the subject it gives us the agility to talk to others

students at the same class and avoid the step of interviews transcriptions.

6.3.2 Participant Selection

The process of participant selection for this study was based on two aspects: the student and

the event - an occurrence of qcheck use.

We chose students considering their temporal distribution on each one of the four

laboratory classes of Programming 1 course: T1, T2, T3 and T4 (two of them occur at the

same time). This was intended to maximize the number of respondents and mitigate biases

regarding the student class and instructor.

Furthermore, in the beginning of the course students were advised that they would take

part in a research; they may opt to decline or accept. Also, during qcheck tool installation

they are asked if they want to report or not data for research purposes. If they accept to report

their data, they are warned that are contributing to our research. According to our dataset,

only 4.2% students declined to report data. We can only count on participants who accepted

to take part in the research.

We also prioritized selecting users from different clusters based on their code quality

level. We took into consideration students’ code production and performed a careful analysis,

6.3 Do Learners Think that Qcheck is Useful? 94

using qcheck tool, on their assignments submitted for TST server. We adapted qcheck to

produce a summative feedback and using this information we categorized students into three

groups based on the level of quality of their code production, until this moment. Ideally, we

wanted to select students at least from each one of the three clusters.

In regards to the event qcheck use, we set the following criteria:

• It needs to happen on the course of a laboratory class;

• It must be observed at least two occurrences of qcheck invocation;

• The number of warnings (style and code warning) must be zero on the last invocation.

The first two student’s criteria were established for convenience: as we know where

the student is. We contacted students during laboratory classes, upon an agreement with

the teacher. Laboratory classes of T1, T2, T3 and T4 occur on the first three days of the

week, so we concentrated our interviews activities on those days. The second criterion was

fixed to guarantee that it happened at least one cycle of feedback: (1) report-feedback, (2)

feedback-consumption and (3) code-refactoring. Finally, we fixed, as a tiebreaker, an ideal

event: students managed to solve all warnings. Certainly, if we only choose participants that

can meet this last criterion, our results would be biased, and the contrary is also true. So, we

were careful to ensure that we have a balanced selection.

After the subject selection, the interviews occurred sequentially. During laboratory

classes, we remotely monitored qcheck activity log aiming to find a pair (student+event)

that meet those specified criteria. When it happens, we contacted the student, asked if we

can talk about their qcheck usage and ask them to answer the online questionnaire with the

same discussion.

The Figure 6.6 lists the questions we have discussed with the study participants in order

to gather elements to answer the research question (RQ4). The main topic is listed in the first

line and in sequence, the question elaboration is maintained in Portuguese to show what was

effectively asked to the students. The instrument used is in the Appendix.

6.3 Do Learners Think that Qcheck is Useful? 95

Figure 6.6: Qualitative Evaluation - Questions of the Interview and Questionnaire.

6.3.3 Data Collection

At last, we interviewed 19 students selected using the reported approach and other different

reasons. For example, some students asked to take part in the research during the laboratory

class. We included these students because they already passed the units allowed to use qcheck

tool and they could not be selected looking at qcheck log. The final subject selection included

students from a diverse profile according: to laboratory class provenance, experience with

programming, performance on the course, grade of qualitative evaluation regarding code

production and proficiency of qcheck use, as can be seen in Table 6.6. We naturally preferred

users with a higher level of qcheck proficiency so they could assess it more properly.

6.3.4 Results and Analysis

The first topic was intended to verify if students were including qcheck quality verification

correctly on the programming process: on the fourth stage - "Look back". In the

proposed approach, students are encouraged to verify their code quality after their program

verification. In Programming 1, students can tell their program is functionally correct when

it passes public and secret TST tests.

In response to (Q1) "How students use qcheck tool in their programming process?" the

majority of the respondents 47.35% answered that they used after TST server tests when

the program is correct. A proportion of 31.6% answered that they execute qcheck before

6.3 Do Learners Think that Qcheck is Useful? 96

Table 6.6: Data Set of Qualitative Users’ Study.

Student lab newbie unit grade proficiency

S1 1 yes 4 A user

S6 1 yes 8 A user

S15 1 yes 4 B user

S2 2 yes 5 A user

S5 2 yes 5 A user

S8 2 yes 10 A tester

S16 2 yes 9 A user

S17 2 yes 4 A user

S3 3 yes 4 B user

S4 3 yes 7 A user

S7 3 yes 10 A user

S11 3 yes 7 A user

S12 3 yes 8 D tester

S13 3 yes 10 D tester

S18 3 yes 9 A user

S9 4 yes 6 B user

S10 4 no 4 A non-user

S14 4 no 4 D curious

S19 4 no 4 D user

6.3 Do Learners Think that Qcheck is Useful? 97

submitting the code to the server. This can concern us, as it means that students do not know

the basic recommendation about the stages of programming process and how to include

quality improvement on it. It also can be the cause of students’ alleged difficulties in solving

the warnings - if the code is not functionally correct the metrics used by qcheck to generate

code warnings are not valid. The rest of 21.05% of students answered this question with

other information. Curiously, student S8 misunderstood the question and revealed "where"

he used the tool "Only when I am solving programming assignments at home". This may

corroborate to other arguments raised in subsequent questions that it takes a time to improve

the code.

In the second topic, we wanted to investigate the quality of the feedback messages and

how students process them. Qcheck feedback message is divided into two parts: code

warnings and style warnings. Style warnings hints are composed by a message and the

numerical indication of column and code line where the problem can be found. Code

warnings are those related to the program structure and the algorithm used to solve the

problem. Sometimes, to solve those warnings it is necessary to reason about other solution

- a better algorithm. For this motive, solve this type of warning is more difficult. Possibly

a good working strategy is to start solving style warnings and then proceed to solve code

warnings.

In response to the topic raised by (Q2) "How students consume qcheck feedback?" we

noticed that 31.6% of the respondents use the strategy of solving code warnings first. Some

of them argued they proceed this way, as style warnings are easier to solve. Only one student

answered that he starts solving code warnings. The other responses address diverse issues.

Student S9 manifests his concern in "fixing the quality warnings and keep the code still

working". Another student (S17) asserts "There were cases that I left unsolved warnings

because it was more difficult to solve them than to solve the programming assignment". We

agree that solving code warnings are indeed more difficult than solving style warnings as it

needs more reasoning about the solution recruiting more depth cognitive work.

In the third topic, we intended to understand what precludes or stimulates students in

using qcheck tool. The answer to this question may be evaluated in a twofold perspective:

the tool and the task. The first and more direct is the tool evaluation: if qcheck meets the

requirements of their users. The second is the task: if students felt stimulated to invest their

6.3 Do Learners Think that Qcheck is Useful? 98

time and efforts in improving code quality in the context of programming 1 course.

In order to investigate this topic we have formulated two questions:

(Q3.1) Which are the positive and negative aspects of qcheck tool?

(Q3.2) What precludes or stimulates you to use qcheck tool?

Evaluating Q3.1 answers we found many interesting and revealing views. As positive

aspects, 42.1% of students evaluated the tool as "an excellent way to help them to improve

their code". Other 21.05% argued that it stimulates good programming practices. Other

students reported that the process stimulates them to reason about other ways of solving

the problem. It was also mentioned twice that it raises students’ confidence that they are

producing good code. Student S10 declares that as a positive aspect of qcheck is that "it

stimulates you to create new ways to solve the same problem, though we learn deeper".

Regarding negative aspects, 21.05% of the respondents reinforced that there is no negative

aspect. Three students sustained that qcheck did not consider their solution as a valid one and

"complained" about their chosen programming structures. We observe that students feel that

the system could provide a better support for the refactoring process itself: "needs to improve

integration with TST", "it is difficult when we change the code to solve a warning and break

it" and "somehow show the references on how to improve code warnings". A student that

related (anecdotally?) OCD – obsessive-compulsive disorder – about correctness, reported

frustration when keep receiving warning messages and could not get rid of them. To sum

up, we claim that it is possible to fine tune to qcheck warning generation, to make it more

resilient to students’ solution. However, we propose it as future work in Chapter 8, as we

consider that is necessary to evaluate the motivations to make these parameters changing and

ground it with an experimental evaluation using evidence-based approach.

Evaluating Q3.2 answers we found as the main motivation to invest in quality

improvement, on 36.84% of the respondents, is the "willingness to write code clearer, cleaner

and more efficient". Other 15.8% of the students reported that they felt stimulated observing

"the results" they have obtained using the tool. Student S2 reports "a visible improvement

in his code". Interestingly, S17 posed that what motivates him is the feedback message

"No warnings! Congratulations!", reinforcing the motivational power of the feedback. Few

impediments to qcheck usage were reported. The most relevant declared were: "quality

6.3 Do Learners Think that Qcheck is Useful? 99

accounts on 10% of our grade" and "the time spent on code improvement". Three students

answered, regretting, that what preclude them to use qcheck is "it is unavailable in higher

units of the course".

In the last topic, of this evaluation we intended to understand if students considered that

their code is effectively improved after their actuation following qcheck hints. We asked the

following question to the students:

(Q4) Do you think that final version of your code, after solving qcheck warnings,

is worse or better than the first version?

This question was answered using a Likert scale ranging from 1 - worse than the first

version to 5 - better than the first version. The responses are shown in the following Figure

6.7.

Figure 6.7: Students’ Perception About Code Improvement Directed by qcheck Hints.

6.3.5 Discussion

We highlight student S16’s testimonial about his experience with qcheck on the course as

this discussion starting point. His opinion summarizes many observations of other students

collected in the study and raises other concerns:

"The most important thing about qcheck is that it leverages the ’learning

of programming’ to the ’learning of good programming’. I found that the

experience of learning how to program in a system that is explicitly worried

about producing code with quality was more fulfilling than the experience

of ’what is important is that your code works’. However, I think that in

6.3 Do Learners Think that Qcheck is Useful? 100

Programming 1 classes it must be emphasized the importance of the skills such

a tool helps students to develop. Many students of my class do not feel that using

qcheck it’s important due to this lack of incentive."

In fact, we realize that having code quality improvement on the list of concerns of an

introductory programming course is challenging not only to students but also to instructors.

In order to be successful, we perceived that including code quality improvement refactoring

activity needs to be part of the pedagogical orientation of the course. Furthermore, repeating

the study to improve the tool according to quantitative and qualitative evaluation is necessary.

Consequently, the overall proposal can be refined and improved.

In general, we gathered very positive evaluations and good suggestions on how to

improve the tool. It was important to observe that some students were not using qcheck

as we expected: after the program is functionally correct. Also important, it was to hear

from them what precludes them to use the tool. Some affective issues were reported, both

negatives "frustration and anger" as they cannot overcome their difficulties and positives

"joy" when they obtain the message ’No warnings. Congratulations!’ and "hope" to become

a better programmer.

Chapter 7

Discussion

In this work, we presented an approach to generate formative feedback to leverage

programming problem-solving in the last stage of the programming process: targeting the

solution evaluation. As long as solving programming assignments plays a central role in

learning the skills of programming, we focused our attention on this task. This research

results can be applied on introductory programming courses supported by automated

assessment systems to programming assignments. As a requirement for generating feedback,

we compromised not to impose the creation of new artifacts or instructional materials to

instructors, but to take advantage of a usual resource already created when proposing a new

programming assignment: the reference solution.

To design and implement the proposed feedback strategy, we took into consideration

the programming process adapted from Polya (1957) [Pól57] to computer programming

problem-solving. We intend that students become proficient on solving programming

problems and successfully attend the goals of a programming process that includes: (1)

Understand the problem; (2) Plan the solution; (3) Implement the program and (4) Look

Back. Considering the fourth stage, we want students to be fluent in correcting strategies

and, with critical reflection, being able to refactor their code caring about good programming

quality.

Our proposal on providing feedback regarding code quality improvement – CQI was

initially motivated by contrasting the manual and automated assessment and questioning:

why do human instructors grade functionally correct programs so differently? Instructors

approach the manual grading activity in different ways but usually agree whether a program

101

102

is "very good" or "very bad" [FHL+13] [Fin99].

Besides correctness, there are other factors weighed by instructors in manual assessment

in terms of code quality. In this sense, we seek for measures that could help us reveal the

quality expected by instructors in students’ programs and evaluate its validity in a case study

with real data. Our tests confirmed that the proposed metrics RLLOC, RCC, RH and RPEP8

do capture that notion of code quality.

After validating this construct, we designed, implemented and evaluated a feedback

strategy regarding CQI. In order to perform the studies required for this approach evaluation,

we implemented qcheck, a proof-of-concept tool. We also conducted a blind-study with

human experts to confront the agreement of their evaluation and the one provided by

the tool. We achieved very positive results regarding the agreement level and insightful

disagreements. So, we can sustain the claim that: we can generate automated feedback

based on teachers of introductory programming code quality expectations.

We designed and conducted another evaluative study with human experts, during the

longitudinal study. However, as it happened along Programming 1 course and the term has

not finished by the time of this writing, we could not report its results. We summarize

the studies conducted to evaluate if the feedback we provide in terms of code quality

improvement reflects experts’ expectancies of students code quality.

C1 - We generate automated feedback based on teachers of introductory

programming code quality expectations.

O1
Proposal and investigation of measures to reveal the quality expected by

instructors on students’ code.

RQ1
Can the measures RLLOC, RCC, RH and RPEP8 explain the differences

observed on the grades, manually assessed, of functionally correct submissions?

O2
Evaluation of the contrast between a human expert assessment and qcheck

assessment.

RQ2 Does qcheck capture expert notion of code quality?

We used qcheck to assess the quality of the feedback generation regarding CQI. We found

significant results when performed the first controlled experiment and introduced feedback

on CQI: students made more submissions after the first correct one, acting differently from

103

they used to do and, in fact, they were able to improve the code quality.

In a second study, intrigued by these first findings, we wanted to assess if students

improved their code quality directed by qcheck hints or because they were motivated to

do so. In this sense, we designed and conducted another controlled experiment having both

groups stimulated to produce the best code they could in accordance with a set of directions.

Again, we could find positive results on qcheck users group. Students from control group

acted on the code and tried to improve it in less relevant aspects.

Finally, we evaluated students’ code quality and contrasted those who had used qcheck

from those who had not in a more realistic context, during the longitudinal study of the

Programming 1 course. Differently from the previous studies when the first and last correct

submissions of an assignment were evaluated, we now assessed a snapshot of the students’

code production. We provided a summative feedback: intended to evaluate the student

achievements in this aspect. We assessed 1497 submissions, regarding 85 programming

assignments of 96 students. Our statistical results showed that experienced qcheck users

achieved better performance in contrast with other students. This performance was expressed

in terms of grade – a summative mark based on metric W and reliability – referring to the

number of solved assignments.

In summary, we consider that we have got enough evidence to claim that: students can

improve the code of their programming assignments prompted by timely and automated

feedback. Following, we present a summary of the studies and claims to assess the feedback

messages of CQI and it impacts on students’ code.

104

C3 - Students improve code of their programming assignments prompted by

timely and automated feedback

O1 Evaluation of the quality feedback generation

RQ1
Students who receive quality feedback about their submission tend to make more

submissions, after the first correct one?

RQ2
When students receive quality feedback about their submission they tend to deliver

a better quality code?

O2 On the use of qcheck’s feedback messages

RQ1
When students receive quality feedback about their submission they tend to deliver

a better quality code?

RQ2
Do students they tend to improve their code quality considering CQI feedback

messages?

O3
Assessing the quality of students’ code production: summative feedback to

teachers - study performed in the context of the longitudinal research

RQ1 Are qcheck users producing code with better quality than other students?

We designed and conducted a longitudinal study, in a real introductory programming

course. We aimed at evaluating the experience of providing automated quality feedback

during a programming course based on students’ performance perspective. Besides, we

wanted to catch a glimpse of the relations and patterns of use and post-feedback behaviors

of students.

In the first study, we investigated if students included CQI in their programming

assignments solving process routine, after qcheck has been presented in the course. Although

we observed that a high proportion of students (66.3%) have installed and used qcheck at

least once during the observation period, a smaller fraction of users engaged in the cycle of

consuming CQI feedback and actuate in their code. In [Nar08], she observes that:

"...even the most sophisticated feedback is useless if learners do not attend to it

or are not willing to invest time and effort in error correction."

Considering the concepts defined by [Nar08] that external feedback comes from an

external source of information while internal feedback is resultant from learners reasoning,

105

we can evaluate some possible post-feedback behaviors that may hinder code quality

improvement feedback intended effect. In [CB93] they list factors that make the effect of

the external feedback small: (1) ignore feedback; (2) reject the feedback; (3) judge the

feedback irrelevant, (4) consider external and internal feedback unrelated, (5) reinterpret

external feedback to make it conform to the internal feedback and (6) make superficial rather

than fundamental changes to their knowledge and beliefs.

Contrasting those factors with the data gathered and our observations in the reported

study, it was possible to observe each one of them. (1) Some students ignored the CQI

feedback provided by qcheck. In our studies, there were some students that had not used

qcheck tool in their programming assignments solving routine. Those students had their

proficiency of qcheck use labeled as not in such situations. In some cases, it happens

due to the scope of the study design: only programming assignments of units 3, 4 and 5

were prepared for qcheck use. So, extremely high performing students went through these

units without solving any exercise, just solving the exams. On the other hand, extremely

poor performing students had not the chance to use qcheck either, as they had only solved

assignments from units 1 and 2. By the time we finished the data collection, 7.83% students

in the class were in this situation.

Situation (2) and (3) are different and indeed happened, but produce the same result:

students just checked but did not consume the CQI feedback. The discourse analysis of

students’ questionnaire about qcheck evaluation and our observation in laboratory classes

gave us some hints why it happened. Some students argued that (2) they had rejected the

feedback because it raised so many warnings that "solving them will be more difficult than

solving the task.", said S15. Some of them judged the CQI feedback irrelevant (3), mainly

when it is related to style warnings. As an example, we may cite PEP8 restriction "Limit all

lines to a maximum of 79 characters". This may also be mixed with (4) situation. Another

style warning that is usually rejected is the PEP8 recommendation that compound statements

(multiple statements on the same line) must be discouraged. It happens because the course

instructors usually use such construction in class: if a_condition: break. Students mimic

instructors examples and, for this reason, internal and external feedback conflicts in this

situation.

In situation (5) and (6) students may have the will but not the skill to solve the problems

106

raised by the warnings. This can be observed in many situations that students interact and

engages the CQI cycle but cannot completely eliminate all code quality warnings and attain

W = 0 and the "No warnings" message.

In fact, on RQ2 we asked if learners that consume qcheck code quality feedback are

succeeded in improving their programming assignments code quality. We observed that

24.75% of the students that used qcheck tool were able to accomplish "No warnings" in their

first attempt. Considering only students who engaged the CQI cycle, 25.56% that consumed

qcheck feedback also accomplish W = 0, 20.37% just checked CQI feedback and 29.28%

were not capable to eliminate the warnings. In order to better understand why some students

managed to reduce the number of W, we deeply evaluated their patterns of qcheck usage.

We categorized students according to their proficiency in using qcheck and found that most

proficient users produce better code. In practice, it means that not all students understood or

played "the game", but those who did achieve good results regarding code quality. Although

not all students accomplished total warning elimination, we observed that the majority of

them reduced their number of warnings (∆W and ∆S). It means that students who checked

and consumed CQI were able to improve their code in at least one point. We also find

statistical significance when comparing two distributions.

In practice, we conclude that qcheck usage is positive as users improve their code quality

and reduced the number of observed warnings in the final submission. Eliminating warnings

is more common in qcheck proficient users. Besides analyzing causes of success, we need a

deeper investigation on why some did not succeed. Apart from the lack of skill to accomplish

the task, there are other factors that might be involved. We conjectured that some of them

might be related to the tool adjustments and feedback strategies improvement. We address

this as future work.

Lastly, an investigation was performed to contrast the students who have used and those

who have not used qcheck during their programming assignments resolution. The results

confirm previous experimental findings, whether the mean of warnings tends to be smaller

among qcheck users and even smaller among those who consumed CQI feedback. Using

statistical tools, we were able to observe that some factors influences on the decreasing of

the number of defects W: qcheck feedback consumption and if the students are qcheck user

proficient. We also found that lloc, influence increasing W, as expected.

107

We performed a qualitative evaluation considering users’ perspective using a

semi-structured interview and having students to register their impressions in a questionnaire.

This instrument was valuable to uncover important usage pitfalls. Some students, for

example, used qcheck before the code is thoroughly tested. This may be the cause that some

of them could not manage to eliminate their warnings (W=0). As for negatives aspects, some

students refer "frustration" and "difficulties" when trying to reduce the number of warnings.

As it can be lack of skill to accomplish the task, it may also be a signal that we need to

evaluate such situations in order to understand if it is the level of feedback we really intend

to deliver. Many positive aspects were reported regarding qcheck usage and the support it

provides.

Those comments were stimulating and revealed that the strategy of CQI we proposed

successfully fill a gap on these students learning opportunities. Overall, we considered

that we have gathered minimal support to claim that: Students improve programming skills

stimulated by the reflection on their programming assignments code with the purpose to

improve its quality. We summarize in sequence the studies we conducted to support the

claim.

C3 - Students improve programming skills stimulated by the reflection

on their programming assignments code with the purpose to improve its quality

O1
Evaluation of providing automated quality feedback along a programming

course - study performed in the context of the longitudinal research

RQ1
Do learners incorporate "code improvement" as part of their programming

process cycle?

RQ2
Do learners that consume qcheck code quality feedback succeed in improving their

programming assignments code quality?

RQ3
Do learners that consume qcheck code quality feedback improve their

programming abilities regarding code quality?

O2 Users evaluation of qcheck tool

RQ4
How is students’ perception about qcheck usefulness in the aid of

improving programming assignments’ code quality?

7.1 Theoretical Implications 108

7.1 Theoretical Implications

An important discussion referring to our approach on providing feedback to code quality

improvement refers to how much information to deliver. In general, computer-based learning

environments differ in terms of whether or how they give or withhold information or

assistance. In the proposal hereby discussed we raised the question: Do we need more

elaborate hints on ’how to solve’ the warnings? Or when to deliver such elaborate and direct

hint?

This problem on "how should learning environments balance information or assistance

giving and withholding to achieve optimal student learning" is known as the ’assistance

dilemma’ [KA07]. In this sense, we have to consider the possible benefits and costs of

information delivering versus omitting in order to design effective instruction, summarized

on Figure 7.1 [KA07].

Figure 7.1: Summary of Costs and Benefits on Providing Assistance.

There are many benefits that we observed in withholding information "on how to solve

the warning" with qcheck during the longitudinal studies. We can cite the opportunity

students have to think about other ways to solve the task. It pushes their knowledge

boundaries and as they are impelled to improve their skills to, for example, solve warnings

that demand reduction: the lines of code or the number of conditional statements they use in

their solution.

We witnessed students, motivated by qcheck warnings, debating on how to improve a

functioning code on the discussion board (Slack), an extremely rare phenomenon in the

course. In another situation, a graduate teachers assistant reacted with "Wow! I need to study

more Python." when we assisted him with a student code that qcheck raised some warnings.

During an experiment when qcheck was first introduced, a student declared, expressing

hesitation, that "using qcheck, I feel that I have been watched".

7.2 Pedagogical Implications and Opportunities 109

We argue that the threshold of the dilemma assistance is not a one-size-fits-all solution. It

depends on the maturity of the approach. This maturity is only attained after many evolutions

and evaluations in real programming courses. Furthermore, this balance is extremely related

to the pedagogical approach of the course. Decisions about what to reveal or withdrawn must

not be dissociated of instructors orientation.

7.2 Pedagogical Implications and Opportunities

There are some pedagogical implications and other opportunities raised by our approach and

feedback strategy. We highlighted some of them in this section.

7.2.1 Learning Conversations and Interactions

In a study by Robinson and Udall (2006), they demonstrate that interactive "learning

conversations" with engineering students lead to a greater sense of ownership in students’

learning [RU06]. The feedbacks we intend to provide stimulate conversation and discussion

about how to (better) solve the problem. We believe that interactions are extremely beneficial

to engage students in learning activities. Furthermore, it inverts the information flow: from

the student to the instructor. Instructors’ assistance is now directed by students request,

promoting the significant learning process.

7.2.2 Critical Reflection About Code

Feedback on CQI provides to the student the opportunity to reflect about their code, after

a task completion. Literature shows that such opportunities to "critically evaluate the

quality of their own work during, as well as after, its production" can foster the desired

self-regulation learning [SBCP11]. It means that it can stimulate students to actively engage

in evaluating their performance, including the processes underlying their performance, which

are aimed at the regulation of learning [TWV15]. In the users’ evaluation, many students

stated that qcheck use was stimulated by their willingness to "became a better programmer",

"write better and cleaner code", "learn more about how to improve my code" and other

self-assessment about their code production and role as a programmer.

7.2 Pedagogical Implications and Opportunities 110

7.2.3 Clear Marking Criteria to Programming Assignments

It is important that students be aware and stimulated that code quality matters. Qcheck users

reported that what may hinder them to invest time in CQI, in this particular course, is that

code quality represents only "10% of the final grade". More students will consider and

actively engage in refactoring activities if it was rewarded in the course context. In arguing

about effective feedback for students in CS1 courses, Claudia Ott and colleagues declare:

" (...) marking criteria for a programming task should not only address the

program’s functionality but also the programming process and matters of good

programming style. A clear communication of those marking criteria up

front would help students understand the expectations and act accordingly. If

process-related goals are clearly stated, feedback can address unsatisfactory

programming approaches and assist improvement toward these goals for the

next tasks."[ORS16]

7.2.4 Summative Assessment of Code Quality Produced by Students

While formative assessment goal is to monitor student learning, summative assessment

goal is to evaluate students’ learning [Shu08]. However, we argue that the opportunity of

providing a summative assessment about code quality production automatically using qcheck

can be beneficial to not only to instructors but also to students. The proposal aims to aid

students in the process of self-monitoring. In our experience, in this longitudinal study, we

personalized the feedback to each student in the course and delivered in his or her personal

AAS dashboard. Claudia Ott and colleagues also refer this approach as highly valuable:

"To help students in the process of self-monitoring their performance providing

course information seems highly valuable. Adding meaning to available course

data would inform students about their prospects in the course. Based on

individual performance data, feedback could be personalized by adopting

performance goals (e.g., goals to catch up or attend labs more regularly),

relating students’ actual performance to what was observed as "successful"

performance in the past, and pointing out aspects to improve." [ORS16]

Chapter 8

Concluding Remarks

In this work, we proposed and evaluated an approach to generate and deliver feedback

to students in the programming process. The challenge was to provide timely and

enriched feedback that stimulates students to reason about the problem and their solution

and to improve their programming skills. We intended to leverage programming

problem-solving learning generating enriched automated feedback, regarding students

programming assignments, with information typically delivered by human instructors.

Furthermore, we constrained our strategies of feedback generation to obtain information

from instructional materials already produced by teachers, what aims to minimize burdens

imposed to them.

We focused on providing feedback with respect to the last phase of the programming

process, when the program is revisited and refactored. The main contribution of this Ph.D.

thesis relies on the lessons learned with the proposal and evaluation of automated generation

of code quality feedback to an introductory programming course. We conducted research

studies, such as experiments, case studies and a survey to gather empirical evidence to

support the following claims:

(1) We can generate automated feedback based on teachers of introductory programming

code quality expectations;

(2) Students can improve code of their programming assignments prompted by timely and

automated feedback;

(3) Students improve programming skills stimulated by the reflection on their

programming assignments code with the purpose to improve its quality.

111

8.1 Future Works 112

We performed an evaluation of this approach with students of an introductory

programming course in a longitudinal study. We used a proof-of-concept tool – qcheck

to materialize our proposal. Results found in our longitudinal evaluation goes beyond what

we initially expected: the improved assignments’ code quality. We observed that students

felt stimulated, and in fact, improved their programming abilities driven by the exercise

of reasoning about their already functioning solution. Furthermore, we conducted a users

assessment among students. We gathered very positive evaluations and good suggestions

on how to improve the tool. It was important to observe that some students were not using

qcheck as we expected: after the program is functionally correct it was also important, to

hear from them what precludes them to use the tool.

8.1 Future Works

There are several opportunities for future works that arise from this doctoral research. Some

are specific directions to improve our work and others are proposals of new studies regarding

the data collection of the longitudinal study on code quality improvement.

• Evaluation of other metrics to assess code quality such as dynamic software metrics,

vocabulary related, design constraints, and so on;

• Investigation on how students’ perceptions of feedback influence their engagement

with the feedback process, in CQI context;

• Performing qualitative studies using the code submissions of students who could not

manage to improve their code quality using feedback messages;

• Studis exploring the ’assistance dilemma’ and search for the balance in providing

feedbacks on CQI;

• Uncovering relations on data gathered from longitudinal studies in, an exploratory

analysis, contrasting students profile and post-feedback behavior and performance on

the task and course.

Bibliography

[AGF13] E.C. Araujo, D.S. Guerrero, and J.A. Figueiredo. Avaliando a legibilidade

em programas de iniciantes. Workshop de EducaÃğÃčo em ComputaÃğÃčo,

2013.

[AM05] Kirsti M Ala-Mutka. A survey of automated assessment approaches for

programming assignments. Computer science education, 15(2):83–102,

2005.

[ASF16] Eliane Araujo, Dalton Serey, and Jorge Figueiredo. Qualitative aspects

of students’ programs: Can we make them measurable? In Frontiers in

Education Conference (FIE), 2016 IEEE, pages 1–8. IEEE, 2016.

[Bak16] Ryan S Baker. Stupid tutoring systems, intelligent humans. International

Journal of Artificial Intelligence in Education, 26(2):600–614, 2016.

[BBBL15] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K Lahiri. Helping

developers help themselves: Automatic decomposition of code review

changesets. In Proceedings of the 37th International Conference on Software

Engineering-Volume 1, pages 134–144. IEEE Press, 2015.

[BC05] Jens Bennedsen and Michael E Caspersen. Revealing the programming

process. In ACM SIGCSE Bulletin, volume 37, pages 186–190. ACM, 2005.

[BC07] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory

programming. ACM SIGCSE Bulletin, 39(2):32–36, 2007.

[BE14] Kevin Buffardi and Stephen H Edwards. A formative study of influences

113

BIBLIOGRAPHY 114

on student testing behaviors. In Proceedings of the 45th ACM technical

symposium on Computer science education, pages 597–602. ACM, 2014.

[Blo84] Benjamin S Bloom. The 2 sigma problem: The search for methods of

group instruction as effective as one-to-one tutoring. Educational researcher,

13(6):4–16, 1984.

[CAMF+03] Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick, John English,

William Fone, and Judy Sheard. How shall we assess this? SIGCSE Bull.,

35(4):107–123, June 2003.

[Cas07] Michael Edelgaard Caspersen. Educating novices in the skills of

programming. PhD thesis, Department of Computer Science, 2007.

[CB93] Clark A Chinn and William F Brewer. The role of anomalous data in

knowledge acquisition: A theoretical framework and implications for science

instruction. Review of educational research, 63(1):1–49, 1993.

[DLO05] Christopher Douce, David Livingstone, and James Orwell. Automatic

test-based assessment of programming: A review. Journal on Educational

Resources in Computing (JERIC), 5(3):4, 2005.

[DLRC14] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. Enhancing syntax

error messages appears ineffectual. In Proceedings of the 2014 conference

on Innovation & technology in computer science education, pages 273–278.

ACM, 2014.

[DSPQ+17] John DeNero, Sumukh Sridhara, Manuel Pérez-Quiñones, Aatish Nayak,

and Ben Leong. Beyond autograding: Advances in student feedback

platforms. In Proceedings of the 2017 ACM SIGCSE Technical Symposium

on Computer Science Education, pages 651–652. ACM, 2017.

[Edw03] Stephen H Edwards. Improving student performance by evaluating how

well students test their own programs. Journal on Educational Resources

in Computing (JERIC), 3(3):1, 2003.

BIBLIOGRAPHY 115

[ESPQ+09] Stephen H Edwards, Jason Snyder, Manuel A Pérez-Quiñones, Anthony

Allevato, Dongkwan Kim, and Betsy Tretola. Comparing effective and

ineffective behaviors of student programmers. In Proceedings of the fifth

international workshop on Computing education research workshop, pages

3–14. ACM, 2009.

[FHL+13] Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley, and Laurie

Murphy. What are we thinking when we grade programs? In Proceeding of

the 44th ACM technical symposium on Computer science education, pages

471–476. ACM, 2013.

[Fin99] Sally Fincher. What are we doing when we teach programming? In

Frontiers in Education Conference, 1999. FIE’99. 29th Annual, volume 1,

pages 12A4–1. IEEE, 1999.

[GMD11] Joyce Wangui Gikandi, Donna Morrow, and Niki E Davis. Online formative

assessment in higher education: A review of the literature. Computers &

education, 57(4):2333–2351, 2011.

[GRZ14] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Feedback generation

for performance problems in introductory programming assignments. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 41–51. ACM, 2014.

[HE06] Torsten Hothorn and Brian S Everitt. A handbook of statistical analyses

using R. CRC press, 2006.

[HT07] John Hattie and Helen Timperley. The power of feedback. Review of

educational research, 77(1):81–112, 2007.

[IAKS10] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review

of recent systems for automatic assessment of programming assignments. In

Proceedings of the 10th Koli Calling International Conference on Computing

Education Research, pages 86–93. ACM, 2010.

BIBLIOGRAPHY 116

[IE14] Alexandru Iosup and Dick Epema. An experience report on using

gamification in technical higher education. In Proceedings of the 45th ACM

technical symposium on Computer science education, pages 27–32. ACM,

2014.

[Jad05] Matthew C Jadud. A first look at novice compilation behaviour using bluej.

volume 15, pages 25–40. Taylor & Francis, 2005.

[JU97] David Jackson and Michelle Usher. Grading student programs using assyst.

In ACM SIGCSE Bulletin, volume 29, pages 335–339. ACM, 1997.

[KA07] Kenneth R Koedinger and Vincent Aleven. Exploring the assistance dilemma

in experiments with cognitive tutors. Educational Psychology Review,

19(3):239–264, 2007.

[KF16] James A Kulik and JD Fletcher. Effectiveness of intelligent tutoring systems:

a meta-analytic review. Review of Educational Research, 86(1):42–78, 2016.

[LAF+04] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John

Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate

Sanders, Otto Seppälä, et al. A multi-national study of reading and tracing

skills in novice programmers. In ACM SIGCSE Bulletin, volume 36, pages

119–150. ACM, 2004.

[LAMJ05] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the

difficulties of novice programmers. In Acm Sigcse Bulletin, volume 37, pages

14–18. ACM, 2005.

[LK77] J Richard Landis and Gary G Koch. The measurement of observer agreement

for categorical data. biometrics, pages 159–174, 1977.

[MAD+01] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne

Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting,

and Tadeusz Wilusz. A multi-national, multi-institutional study of

assessment of programming skills of first-year cs students. ACM SIGCSE

Bulletin, 33(4):125–180, 2001.

BIBLIOGRAPHY 117

[MANL14] Wenting Ma, Olusola O Adesope, John C Nesbit, and Qing Liu. Intelligent

tutoring systems and learning outcomes: A meta-analysis., 2014.

[May08] Richard E Mayer. Applying the science of learning: Evidence-based

principles for the design of multimedia instruction. American psychologist,

63(8):760, 2008.

[MBI+05] Andrew Mcgettrick, Roger Boyle, Roland Ibbett, John Lloyd, Gillian

Lovegrove, and Keith Mander. Grand challenges in computing:

EducationâĂŤa summary. The Computer Journal, 48(1):42–48, 2005.

[McC76] Thomas J McCabe. A complexity measure. IEEE Transactions on software

Engineering, (4):308–320, 1976.

[Mil11] Dejan Milojicic. Autograding in the cloud: interview with david o’hallaron.

IEEE Internet Computing, 15(1):9–12, 2011.

[MM13] Tommy MacWilliam and David J Malan. Streamlining grading toward better

feedback. In Proceedings of the 18th ACM conference on Innovation and

technology in computer science education, pages 147–152. ACM, 2013.

[MY99] Susan A Mengel and Vinay Yerramilli. A case study of the static analysis of

the quality of novice student programs. In ACM SIGCSE Bulletin, volume 31,

pages 78–82. ACM, 1999.

[Nar08] Susanne Narciss. Feedback strategies for interactive learning tasks.

Handbook of research on educational communications and technology,

3:125–144, 2008.

[Nor07] Pete Nordquist. Providing accurate and timely feedback by automatically

grading student programming labs. Journal of Computing Sciences in

Colleges, 23(2):16–23, 2007.

[NSS+14] Susanne Narciss, Sergey Sosnovsky, Lenka Schnaubert, Eric Andrès, Anja

Eichelmann, George Goguadze, and Erica Melis. Exploring feedback

and student characteristics relevant for personalizing feedback strategies.

Computers & Education, 71:56–76, 2014.

BIBLIOGRAPHY 118

[ORS16] Claudia Ott, Anthony Robins, and Kerry Shephard. Translating principles of

effective feedback for students into the cs1 context. ACM Transactions on

Computing Education (TOCE), 16(1):1, 2016.

[Pep15] Pep8. Style guide for python code. http://legacy.python.org/

dev/peps/pep-0008/, March 2015.

[PHG+15] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam

Starbuck. An empirical study of iterative improvement in programming

assignments. In Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, pages 410–415. ACM, 2015.

[Pól57] George Pólya. How to solve lt. Princeton University, 1957.

[Rad14] Radon. Radon. https://radon.readthedocs.org/en/latest/

index.html, March 2014.

[RRR03] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and

teaching programming: A review and discussion. Computer science

education, 13(2):137–172, 2003.

[RSKPFVI14] Manuel Rubio-Sánchez, Päivi Kinnunen, Cristóbal Pareja-Flores, and

Ángel Velázquez-Iturbide. Student perception and usage of an automated

programming assessment tool. Computers in Human Behavior, 31:453–460,

2014.

[RU06] Alan Robinson and Mark Udall. Using formative assessment to improve

student learning through critical reflection. Innovative assessment in higher

education, pages 92–99, 2006.

[SBCP11] Kay Sambell, Elizabeth Barry-Cutter, and Nicholas Price. Rethinking

feedback in higher education: an assessment for learning perspective;

learning to learn: learning to cook: the f-word, feedback. 2011.

[SGSL13] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated

feedback generation for introductory programming assignments. ACM

SIGPLAN Notices, 48(6):15–26, 2013.

BIBLIOGRAPHY 119

[SHP+06] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K

Hollingsworth, and Nelson Padua-Perez. Experiences with marmoset:

designing and using an advanced submission and testing system for

programming courses. ACM Sigcse Bulletin, 38(3):13–17, 2006.

[Shu08] Valerie J Shute. Focus on formative feedback. Review of educational

research, 78(1):153–189, 2008.

[SS89] E. Soloway and J. Spohrer. Studying the Novice Programmer. Lawrence

Erlbaum Associates, Hillsdale, New Jersey. 497 p., 1989.

[Tho97] Simon Thompson. Where do i begin? a problem solving approach

in teaching functional programming. In International Symposium on

Programming Language Implementation and Logic Programming, pages

323–334. Springer, 1997.

[TWV15] Caroline F Timmers, Amber Walraven, and Bernard P Veldkamp. The

effect of regulation feedback in a computer-based formative assessment on

information problem solving. Computers & education, 87:1–9, 2015.

[Van06] Kurt Vanlehn. The behavior of tutoring systems. International journal of

artificial intelligence in education, 16(3):227–265, 2006.

[VAW14] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. A systematic

review of approaches for teaching introductory programming and their

influence on success. In Proceedings of the tenth annual conference on

International computing education research, pages 19–26. ACM, 2014.

[VPL11] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. Extreme

apprenticeship method in teaching programming for beginners. In

Proceedings of the 42nd ACM technical symposium on Computer science

education, pages 93–98. ACM, 2011.

[WL14] Christopher Watson and Frederick WB Li. Failure rates in introductory

programming revisited. In Proceedings of the 2014 conference on Innovation

& technology in computer science education, pages 39–44. ACM, 2014.

BIBLIOGRAPHY 120

[Woo10] Beverly Park Woolf. Building intelligent interactive tutors: Student-centered

strategies for revolutionizing e-learning. Morgan Kaufmann, 2010.

[Yad11] Aharon Yadin. Reducing the dropout rate in an introductory programming

course. ACM inroads, 2(4):71–76, 2011.

[Yai14] Yoav Yair. Did you let a robot check my homework? ACM Inroads,

5(2):33–35, 2014.

Appendix A

Uma revisão sobre sistemas automáticos

para a avaliação de atividades de

programação

121

Uma revisão sobre sistemas automáticos para a avaliação
de atividades de programação

Abstract. In this article we will review the literature on automatic assessment
systems (AA) for programming activities. These systems have been developed
over time with different characteristics as to: feedback given to the student,
approaches to assess student’s programs, security issues, among others. In
this research, we seek to evolve existing studies in the literature that presents
those systems published until 2010. We shall present our perspective on the
surveyed systems relating to those characteristics and provide our perception
of future works in the area.

Resumo. Neste artigo faremos uma revisão da literatura sobre sistemas
automáticos para avaliação de atividades de programação (AA). Estes
sistemas têm sido desenvolvidos ao longo do tempo com características
distintas quanto: ao feedback dado ao aluno, à abordagem utilizada para
avaliar os programas, às questões de segurança, dentre outras. Nesta
pesquisa, procuraremos evoluir estudos existentes na literatura que
apresentam dados até o ano de 2010, com o propósito de ampliar o corpo de
conhecimento da área. Apresentaremos a nossa perspectiva sobre os sistemas
catalogados de acordo com as características investigadas, além de
enriquecer o trabalho apontando as direções sobre os trabalhos futuros.

1. Introdução
Nos cursos da área de computação, o ensino de programação ocupa papel de destaque.
Um estudo realizado por Pears et al [Pears, 2005] classificou e mapeou a literatura na
área de ciência da computação. Neste estudo, constatou-se que os relatos e pesquisas
sobre ferramentas e sistemas de auxílio ao ensino compõem o grupo com mais artigos
publicados, em veículos da ACM – Association for Computing Machinery1, estando à
frente de temas como: currículo, pedagogia e linguagens de programação.

No contexto das ferramentas computacionais de auxílio ao ensino, estão os
sistemas automáticos para avaliação de atividades de programação (AA). A avaliação
automática de programas é um recurso didático que vem sendo cada vez mais utilizado,
especialmente devido ao aumento do tamanho das turmas de cursos de programação.
Com o uso dos sistemas de AA, é possível manter a consistência das correções, garantir
que será dado algum feedback rapidamente ao aluno sobre suas atividades e diminuir a
carga de trabalho sobre o professor. Tais sistemas são especialmente úteis em cursos de
programação onde há ênfase na realização de muitos exercícios.

Embora haja muitos sistemas de AA já desenvolvidos, professores,
pesquisadores ou outros desenvolvedores continuam criando seus próprios sistemas para
suprir necessidades específicas. Creditamos este fenômeno ao desconhecimento dos

1 http://www.acm.org/

sistemas existentes, à impossibilidade de adaptação dos sistemas a peculiaridades do
curso de programação, ou à necessidade de implementar o resultado de uma pesquisa
com fins de avaliação. Com este trabalho de revisão de literatura, pretendemos ampliar
o corpo de conhecimento sobre as iniciativas já empreendidas nesta área, de modo que
professores, desenvolvedores e pesquisadores possam melhor direcionar os seus
esforços de pesquisa e implementação.

Neste trabalho, evoluímos os estudos sobre o desenvolvimento de sistemas
catalogados até o ano de 2010 nos trabalhos publicados por Douce et al (2005), Ala-
Mutka (2005) e Ihantola et al (2010). Descrevemos as características dos sistemas e os
diferenciais apresentados por eles. Identificamos as oportunidades de atuação e
trabalhos de pesquisa, ao identificar lacunas nos sistemas desenvolvidos desta época até
os dias atuais. Enfatizamos, principalmente, as questões que dizem respeito ao feedback
dado ao aluno com respeito à qualidade de seu código e ao caminho que o conduziu a
uma solução bem sucedida para o problema.

Ao término do estudo, pudemos observar que aspectos que foram considerados
relevantes em estudos anteriores não eram mais mencionados nos sistemas atuais, como
o caso das políticas de re-submissão de exercícios. Por outro lado, as preocupações com
os problemas de escala são mais presentes nos sistemas contemporâneos. O estudo
revela, ainda, que não houve evolução na ênfase dada pelos sistemas de AA nas
questões de segurança, que é, em geral, baixa.

Este artigo apresenta uma revisão sobre a literatura de sistemas automáticos de
avaliação para atividades de programação. O restante documento está organizado como
segue: a seção 2 apresenta o referencial teórico do estudo e ressalta os trabalhos
relacionados, a seção 3 detalha a metodologia empregada para a condução da revisão da
literatura, a seção 4 exibe os resultados encontrados tanto na coleta de dados quanto na
análise dos sistemas que são, posteriormente, discutidos na seção 5, onde são delineadas
algumas conclusões.

2. Referencial Teórico e Trabalhos Relacionados
Os sistemas para avaliação automática de exercícios de programação (AA) são
utilizados em diversos cursos introdutórios de programação no mundo [Cheang,
2003][Ala-Mutka, 2005]. Impulsionados pelos juízes online das maratonas de
programação [Kolstad, 2009][Revilla, 2008], os testadores foram sendo adaptados para
a realidade de cada curso ou laboratórios de programação. Estudos mostram que já
existem e, continuam sendo desenvolvidos, muitos sistemas com este propósito
[Ihantola, 2010][Ala-Mutka, 2005]. Poucos têm seu código aberto, o que prejudica a
tentativa de reutilização e adaptação para outros cursos diferentes daquele para o qual
foram projetados.

Uma revisão de literatura na área de sistemas de avaliação automática que
pretende dar uma perspectiva histórica da área é o trabalho de Douce et al (2005). Neste
trabalho, ele classifica o sistemas em “gerações” com base na abordagem tecnológica
utilizada. A primeira geração inclui os primeiros sistemas, desenvolvidos na década de
60 até o final da década de oitenta. Para usar esses sistemas, era necessário muito
conhecimento, o que na prática significava que o desenvolvedor e o usuário eram, em
geral, a mesma pessoa. A segunda geração é composta por ferramentas que poderiam
ser operadas via linha de comando ou com uma interface gráfica para o usuário (GUI)

bem simples. A terceira geração é marcada por sistemas orientados à interface Web.
Além disso, Douce ainda discute os sistemas de avaliação automáticos sob a perspectiva
pedagógica.

Outro trabalho fundamental no tocante ao mapeamento dos sistemas de
avaliação automáticos até 2005 é o de Kristi Ala-Mutka. Neste trabalho as diferentes
técnicas de avaliação dos sistemas analisados são ressaltadas. São elencadas muitas
vantagens da utilização de tais sistemas como a velocidade, a disponibilidade a
consistência e a objetividade das avaliações. Ala-Mutka adverte que é necessário que
haja uma cuidadosa justificativa pedagógica para cada uma das decisões de projeto, nas
avaliações empreendidas e, também, no feedback que é fornecido ao aluno.

Finalmente, o trabalho de Ihantola et al de 2010, procura revisar
sistematicamente a literatura na área de sistemas de avaliação automáticos no período
que abrange 2006 a 2010. Os sistemas que interessam àqueles autores são 1) sistemas de
avaliação automática para competições de programação e 2) sistemas de avaliação para
apoio de cursos de programação introdutória. Como parte de suas conclusões, estão os
principais pontos de diferenciação entre os sistemas estudados: a forma como lidam
com as re-submissões de questões; a forma como os testes automáticos são definidos e
como questões de segurança são tratadas.

3. Metodologia
Para conduzir este trabalho de revisão sobre a literatura de sistemas automáticos para
avaliação de atividades de programação é necessário definir o escopo dos sistemas que
são de nosso interesse nesta pesquisa. Inicialmente, esclarecemos o que consideramos
como sendo “atividades de programação” e “avaliação automática”.

As atividades de programação são quaisquer código ou trecho de código gerado
pelos estudantes em resposta a um problema ou especificação passado pelo
professor/tutor em um curso de ensino de programação. Estes códigos são artefatos que
podem ser analisados dinâmica ou estaticamente. Não necessariamente trata-se de
código executável. Muitas vezes, as respostas a estas atividades de programação, ou
seja, o código dos programas produzidos pelos estudantes são chamados simplesmente
de “submissões”, pois são “submetidos” ao AA. Observe que atividades de
programação que incluam diagramas, especificações ou documentações estão fora do
escopo deste trabalho.

A avaliação automática refere-se à analise de quaisquer dados produzidos a
respeito submissão do estudante (data, hora, quantas vezes foi submetido, etc) além de
dados a respeito do próprio programa, tais como a correção funcional, caso ele seja
submetido a testes automáticos. Os sistemas de AA, que interessam a este trabalho de
pesquisa, devem fornecer algum tipo de feedback. Por este motivo, o nosso estudo
engloba e ultrapassa o conjunto dos sistemas de avaliação automática com o propósito
estrito de dar nota ou pontuar o programa do estudante (grading systems).

Este trabalho evolui a pesquisa de Ihantola et al (2010). As questões de pesquisa
que nos motivaram para a realização desta revisão são:

1. Quais são as características dos sistemas automáticos de avaliação relatados na
literatura após 2010?

2. Para quais direções estes sistemas impulsionam os trabalhos futuros?

Há muitos sistemas desenvolvidos com o propósito da avaliação automática. É
bastante comum que professores criem sua própria solução para cursos específicos de
programação ao invés de aderir ou adaptar sistemas já existentes. Além do mais, muitos
sistemas que estão em uso na prática sequer foram publicados em artigos. A
metodologia adotada procura seguir os passos propostos por Brereton et al (2010) para
revisões sistemáticas no domínio de Engenharia de Software.

Na fase inicial do planejamento da revisão, foram definidos os serviços de
indexação utilizados como base para a pesquisa, bem como os termos ou palavras-chave
da busca. A revisão será realizada sobre as consagradas bases de dados em ciência da
computação: ACM Digital Library, IEEE Xplore, Science Direct (Elsevier), Taylor and
Francis on-line. Os artigos entre 2010 e 2014 dos anais da Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE) e das revistas
científicas Computer Science Education (CSE), Olympiads in Informatics International
Journal (OI) e Transactions on Education (ToE) foram considerados, para manter a
consistência com o estudo de Ihantola et al. Além disso, ampliamos o nosso espectro de
pesquisa, incluindo os trabalhos das conferências Anual Conference of the Special
Interest Group on Computer Science Education (SIGCSE), Simpósio Brasileiro de
Informática na Educação (SBIE), Workshop de Informática na Escola (WIE), da
Revista Brasileira de Informática na Educação (RBIE) e do jornal Computers &
Education (C&E).

O processo de seleção dos trabalhos é iterativo [Brereton, 2010], de modo que
após uma triagem inicial feita através da consulta na base de dados pelos termos
adequados, uma nova triagem foi realizada considerando as restrições que guiam os
interesses deste trabalho. Nas publicações da SBC, a pesquisa foi realizada de forma
semi-automática. Na primeira triagem utilizamos o termo “programação” na consulta
das bases de dados. Em seguida, de modo manual, os artigos anteriores a 2010 foram
descartados e foram considerados apenas os artigos relevantes de acordo com os termos.
Nas demais bases de dados, a sentença de pesquisa utilizada para a recuperação dos
artigos foi derivada das questões de pesquisa deste trabalho. Ela foi composta usando as
seguintes palavras-chave e conectores: (“automatic” OR “automated”) AND
(“assessment” OR “grading”) AND “programming”. A restrição temporal, nestes casos,
foi aplicada na sentença do engenho de busca.

Após a fase inicial de busca por palavras chave, ao conjunto de artigos
selecionados foram aplicados alguns filtros. Consideramos apenas os sistemas inéditos
para o meio acadêmico, ou seja, publicados pela primeira vez em artigos de revistas,
jornais científicos ou em periódicos de conferências. Os sistemas devem ser voltados ao
ensino de programação de computadores para nível superior/universitário e fornecer
algum tipo de feedback ao aluno ou instrutor.

As características consideradas relevantes para a avaliação dos sistema de AA
foram definidas tomando-se por referência aquelas que foram levantadas no trabalho de
Ihantola et al (2010) e incluindo a nova categoria “feedback”. Embora existentes no
estudo anterior, as características “Re-submissão” e “Especialidades” não aparecem no
estudo atual. A primeira por não haver menção à política de re-submissão de códigos
nos sistemas pesquisados e a segunda por não haver espaço suficiente no trabalho. Mais
informações sobre os sistemas podem ser encontradas no apêndice disponível on-line
em: http://goo.gl/upcekv.

4. Resultados
A apresentação dos resultados desta pesquisa, inicia-se com a visualização dos dados
sobre a busca dos artigos seguindo a mesma abordagem adotada por Aureliano e
Tedesco (2012). Em seguida, daremos ênfase nas características que guiaram as
decisões pedagógicas e de projeto dos sistemas selecionados.

4.1 Coleta de dados
A pesquisa foi capaz de recuperar 132 artigos completos atendendo às restrições
temporal e dos termos da sentença de pesquisa. Foram selecionados 10 artigos que
atendiam as demais restrições descritas na metodologia deste trabalho. O quadro com o
resultado geral encontra-se na TABELA 1

PUBLICAÇÃO BASE DE DADOS ARTIGOS RECUPERADOS ARTIGOS SELECIONADOS
OI VU2 6 2
C&E Elsevier 30 2
CSE Taylor and Francis 6 0
ItiCSE ACM 18 1
SIGCSE ACM 12 1
ToE IEEE 0 0
SBIE SBC 30 4
WIE SBC 16 0
RBIE SBC 10 0
TOTAL 132 10

TABELA 1. RESULTADO DAS BUSCAS NAS BASES DE DADOS

A FIGURA 1 mostra: (a) a distribuição das publicações no tempo e (b) nos meios em
que elas apareceram. Observa-se que o ano de 2012 foi responsável pela maior
concentração de publicações sobre sistemas de avaliação automáticos. Uma justificativa
possível para que não apareçam publicações nos anos subsequentes é a tendência de
criação de ferramentas de apoio ao ensino mais abrangentes, onde o AA é parte de um
ecossistema maior. Sendo assim, publicações deste tipo de sistema não foram
capturadas pela nossa pesquisa. Analisando pela perspectiva das publicações,
observamos que o SBIE concentrou o maior número de artigos. Possivelmente, este
fenômeno seja decorrente da busca semi-automática realizada na base das publicações
nacionais que tornou a sentença de pesquisa mais abrangente.

FIGURA 1. (A)DISTRIBUIÇÃO TEMPORAL DOS ARTIGOS E (B) DISTRIBUIÇÃO DOS ARTIGOS NAS PUBLICAÇÕES

2 Vilnius University Institute of Mathematics and Informatics

4.2 Linguagens de Programação
Os sistemas avaliados neste estudo, suportam, em sua maioria a linguagem Java de
programação. Em seguida, vêm os sistemas que suportam C/C++ e depois Python e
Java. Esta escolha reflete a tendência dos cursos introdutórios de programação de
adotarem tais linguagens para o seu processo de ensino. Os sistemas Jutge [Petit, 2012]
e Pythia [Combéfis, 2012] oferecem seus serviços de modo independente de linguagem,
ou seja, as soluções submetidas pelos alunos podem ser escritas em uma linguagem
previamente escolhida, dentre o elenco de linguagens de programação disponibilizados
pelo sistema. Jutge, por exemplo, suporta submissões em mais de 22 linguagens de
programação.

4.3 Avaliação dos Programas
O processo de avaliação das submissões dos alunos é o ponto chave do estudo das
funcionalidades do AA. As avaliações podem ser estáticas ou dinâmica, manuais ou
automáticas; ou uma combinação destas abordagens como no ProgTest [de Souza,
2012]. Além disso, há sistemas que promovem, o aprendizado da disciplina de testes de
software. Neste sistemas, os casos de testes criados pelos aluno são fornecidos para o
AA junto com a solução dos programas e são avaliados de modo adequado.

Nas avaliações de programas de modo dinâmico, os códigos são exercitados
frente a uma bateria de testes provida pelo instrutor/autor do problema. Este processo
permite que o sistema dê feedback sobre a correção funcional da solução. Além disso, é
possível verificar a evolução da execução do programa na CPU da máquina, fornecendo
feedback sobre a complexidade do programa [Combéfis, 2012][Brown, 2012]. A
avaliação dinâmica é a abordagem mais prevalente entre os sistemas avaliados. Nas
avaliações estáticas, é possível detectar erros de sintaxe e compilação além da
verificação da similaridade a modelos de soluções cadastradas no sistema. No AutoLEP
[Wang, 2011], o programa do aluno é comparado a modelos de programas que
representam a forma correta de resolver o problema. Quanto mais semelhante aos
modelos cadastrados, maior será a nota do aluno. Mesmo que o programa esteja
incompleto ou apresente erros de sintaxe, ele terá uma nota considerada justa, pelos
autores. O ProgTest [de Souza, 2012], segue abordagem semelhante.

Alguns sistemas, principalmente os que fornecem notas, adotam o processo
semi-automático de avaliação a fim de corrigir ou mitigar distorções causadas nas notas
dos alunos devido a processos muito estritos de avaliação. O processo de avaliação
adotado pelo Jutge [Petit, 2012] é uma alternativa interessante para lidar com esse
problema. O processo é configurável através de elementos chamados checkers. O
professor pode definir se a avaliação das submissões será estrita ou se cabe algum nível
de flexibilização. Isto é particularmente interessante do ponto de vista do ensino de
programação. Há problemas de programação, por exemplo, que podem ser resolvidos de
maneiras distintas, de modo que o resultado apresentado na saída, não siga exatamente a
mesma ordem para todas as abordagens de solução possíveis. Forçar que a saída do
aluno esteja exatamente na mesma ordem da saída produzida pela solução de referência
pode causar impacto negativo na liberdade criativa do aluno. O Jutge oferece diferentes
níveis de flexibilizações na avaliação das submissões usando os checkers.

4.4 Testes
Em geral, os sistemas baseiam-se em testes de entrada e saída ou testes de unidade
previamente cadastrados pelo autor do problema. No Putka [Trampus, 2012], os testes
são realizados em máquinas de diferentes arquiteturas e configurações de hardware, de
modo que o tempo de execução e o consumo de memória possa ser corretamente
monitorado.

Nos sistemas em que os testes dos alunos são avaliados, deve ser criado um
arcabouço para viabilizar esta avaliação e, definir como o resultado da mesma
influenciará na nota do aluno. No ProgTest [de Souza, 2012], o autor do problema
fornece, além de uma solução de referência um conjunto de casos de testes com total
cobertura do programa. Na nomenclatura adotada pelo sistema, este é o "trabalho
oráculo". Os testes são realizados utilizando ferramentas próprias, que integram-se ao
sistema como plugins para a realização de testes de: unidade, estruturais e baseados em
erros. A avaliação dos testes fundamenta-se, especialmente, na teoria de Análise de
Mutantes. O professor define os pesos dado à avaliação dos testes e do programa para
compor a nota do estudante.

4.5 Segurança
O principal problema de segurança experimentado pelos sistemas de AA é comum para
todos eles: as submissões podem conter códigos maliciosos que afetem o sistema onde
eles são executados para avaliação. Ou, por outro lado, o código submetido pode sofrer
adulteração na máquina em que ele está sendo avaliado. Surpreendentemente, poucos
sistemas relatam alguma preocupação ou medida tomada para enfrentar estes desafios,
como já relatado por Ihantola et al (2010) em sua revisão. Os AA que surgiram a partir
de juízes online ou da comunidade de competições de programação são os que
incorporam alguma medida de segurança. No Jutge [Petit, 2012], por exemplo, os
programas dos alunos são executados em um ambiente sandbox com privilégios e
acessos ao sistema restritos. O tempo de acesso à CPU, ao clock e o uso de memória são
controlados. Além disso, as conexões remotas usam protocolos de comunicação SSH ou
HTTPS. O Pythia [Combéfis, 2012] segue abordagem semelhante. Já no Putka
[Trampus,2012], as chamadas ao sistema realizadas pelos programas são interceptadas
e analisadas, para posteriormente, serem autorizadas.

4.6 Feedback
A principal motivação para o uso de AA nos cursos de programação é a possibilidade de
se obter feedback, rápido, padronizado e relevante. É importante avaliar como o
feedback sobre os submissões dos alunos vêm sendo produzidos e se, efetivamente, eles
têm contribuído para a melhora da qualidade dos programas produzidos pelo aluno, bem
como sua motivação e consequentemente, o seu desempenho no curso. Os AA que
fornecem uma nota automática para o aluno devem ser capazes de oferecer algum grau
de flexibilidade para a configuração da composição das notas.

A maioria dos artigos não dá a devida ênfase ao feedback ou não detalham de
que forma ele é produzido. Em geral, é mostrado para o aluno os erros de compilação ou
sintaxe caso existam e os erros nos testes providos pelo professor. Alguns sistemas
mostram os casos de entrada que fizeram o programa falhar. Essa abordagem costuma,
fazer com que o aluno programe usando o método tentativa-e-erro. Preocupação

semelhante é relatada em [Pelz, 2012], já que aquele sistema permite testar se a
submissão do aluno apresenta algumas estruturas obrigatórias para a criação do código
da solução. O feedback fornecido neste tipo de teste era usado pelos alunos para tentar
“adivinhar” como o programa deveria ser escrito. As soluções para mitigar estes
problemas podem ser simples como, caracterizar alguns casos de testes como “secretos”
e não divulgar as entradas destes casos. Ou, como em [Brown, 2012] mostrar relatórios
de feedback diferentes: antes e depois do prazo para a entrega das atividades. Os
relatórios mais completos são apresentados ao aluno posteriormente.

Nos sistemas em que os AA estão integrados a ambientes de aprendizagem, o
feedback fornecido, muitas vezes, inclui sugestões de um novo conjunto de exercícios
que o aluno pode começar a responder ou qual unidade de conhecimento ele deve ler ou
trabalhar mais. A personalização dos caminhos que levam ao aprendizado, a partir dos
resultados das avaliações automáticas, parece ser a tendência mais forte na evolução dos
sistemas desta área.

5. Discussão e Conclusões
Os sistemas de avaliação automáticos (AA) são uma peça importante no processo de
ensino e aprendizagem dos cursos de programação. A adoção de tais sistemas
amplificou a possibilidade de dar feedback aos alunos sobre suas respostas aos
exercícios de programação o que, por conseguinte, permitiu que os professores
disponibilizassem mais exercícios para os alunos. Estudos mostram que a quantidade de
exercícios realizados pelos alunos tem papel importante no desempenho ao final do
curso [Araujo, 2013], o que parece estar de acordo com as experiências que muitos
professores têm em sala de aula.

Neste trabalho, evoluímos os estudos sobre o desenvolvimento de sistemas
automatizados de avaliação de atividades de programação [Ihantola, 2010] partindo do
ano de 2010 até os dias atuais. A seção 4 procurou responder a primeira pergunta de
pesquisa apresentada na metodologia deste trabalho: “Quais são as características dos
sistemas de avaliação automatizados relatados na literatura após 2010?”.

Já a segunda pergunta de pesquisa questiona: “Para quais direções estes sistemas
impulsionam os trabalhos futuros?”. A tendência da integração dos AA com ambientes
virtuais de aprendizagem promete sistemas mais abrangentes. Isto permite a
centralização de esforços do professor em um só conjunto de software, do qual o AA
faz parte, para a criação e gerência de seus cursos. Além disso, a personalização do
aprendizado é outra área de pesquisa para a qual os sistemas de AA podem ser de
grande relevância. Atualmente, os dados produzidos e mantidos por estes sistemas são
foco de bastante interesse nas pesquisas que utilizam as técnicas de Learning Analytics
(LA). Percebemos que a integração dos AA com os ambientes de ensino, a
personalização do ensino e LA é o que impulsiona, agora, os trabalhos nesta área.

Como limitações deste trabalho, apontamos os possíveis erros de execução no
processo de revisão descrito na metodologia. Principalmente, devido ao fato de usarmos
na, mesma pesquisa, bases de dados nacionais e internacionais. Além disso, a restrição
imposta pela sentença de pesquisa adotada e pelos veículos de publicação escolhidos,
que são assunções do trabalho, podem não cobrir todos os sistemas que seriam de nosso
interesse.

Como trabalhos futuros, vislumbramos ampliar o espectro de pesquisa para
outros jornais, conferências e workshops, como o Frontiers in Education e o workshop
de Informática na Escola – WIE, não contemplados neste primeiro estudo. Além disso,
pretendemos incluir sistemas existentes, que são referência na área, e que ainda passam
por ativo desenvolvimento e pesquisa: como o Web-CAT [Edwards, 2004] e Marmoset
[Spacco, 2006]. Tais sistemas ficaram de fora de nosso estudo por haverem sido criados
antes de 2010, muito embora figurem em publicações recentes, mostrando novos
avanços nos sistemas.

Referências
Ala-Mutka, K. (2005). A survey of automated assessment approaches for programming

assignments, Journal of Computer Science Education 15(2), 83 102.
Araujo, E. C., Gaudencio, M., Menezes, A., Ferreira, I., Ribeiro, I., Fagner, A.,

Ponciano, L., Morais, F., Guerrero, D. S., e Figueiredo, J. A. (2013). O papel do
hábito de estudo no desempenho do aluno de programação. In Workshop de
Educação em Computação, Congresso anual da SBC 2013, Maceió, Brasil. SBC.

Aureliano V. C. O., Tedesco P. C. A. R. (2012) Ensino-aprendizagem de Programação
para Iniciantes: uma Revisão Sistemática da Literatura focada no SBIE e WIE. In:
23o Simpósio Brasileiro de Informática na Educação, Rio de Janeiro, Brasil.

Brereton P. , Kitchenham B. A., Budgen D., Turner M., e Khalil M. (2007). Lessons
from applying the systematic literature review process within the software
engineering domain. Journal System Software 80, 4, 571-583.

Brown, C., Pastel, R., Siever, B., & Earnest, J. (2012). JUG: A JUnit generation, time
complexity analysis and reporting tool to streamline grading. InProceedings of the
17th ACM annual conference on Innovation and technology in computer science
education (pp. 99-104). ACM.

Cardell-Oliver, R. (2011). How can software metrics help novice
programmers? Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114 (ACE '11) Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 55-62.

Cheang, B., Kurnia, A., Lim, A., e Oon, W. (2003). On automated grading of
programming assignments in an academic institution. Comput. Educ. 41, 2, 121-131.

Combéfis, S., de Saint-Marcq, V. L. C. (2012). Teaching programming and algorithm
design with pythia, a web-based learning platform. Olympiads in Informatics, 6, 31-
43.

de Souza, D. M., Maldonado, J. C., & Barbosa, E. F. (2012). Aspectos de
Desenvolvimento e Evolução de um Ambiente de Apoio ao Ensino de Programação
e Teste de Software. In Anais do Simpósio Brasileiro de Informática na
Educação, Vol. 23(1).

Douce C., Livingstone D., e Orwell J. (2005). Automatic test-based assessment of
programming: A review. ACM Journal of Educational Resources in Computing. Vol
5(3) – 4.

Edwards, S. H. (2004). Using software testing to move students from trial-and-error to
reflection-in-action. SIGCSE Bulletin, Vol 36(1), 26–30.

Gikandi J.W., Morrow D., Davis N.E. (2011), Online formative assessment in higher
education: A review of the literature, Computers & Education, Vol 57(4), 2333-
2351.

Ihantola, P., Ahoniemi, T., Karavirta, V. e Seppälä, O. (2010). Review of recent systems
for automatic assessment of programming assignments. In Anais do 10o Koli Calling
International Conference on Computing Education Research (Koli Calling '10).
ACM, 86-93.

Kolstad, R. Infrastructure for contest task development (2009). Olympiads in
Informatics, 3:38--59.

Pears, A., Seidman, S., Eney C., Kinnunen P. e Malmi L. (2005). Constructing a core
literature for computing education research. SIGCSE Bulletin. 37, 4, 152-161.

Pelz, F. D., de Jesus, E. A., Raabe, A. L. (2012). Um Mecanismo para Correção
Automática de Exercícios Práticos de Programação Introdutória. InAnais do
Simpósio Brasileiro de Informática na Educação. Vol. 23, No. 1.

Petit, J., Giménez, O., & Roura, S. (2012). Jutge. org: an educational programming
judge. In Anais do 43o ACM Technical Symposium on Computer Science Education.
445-450.

Píccolo, H. L., Sena, V. D. F., Nogueira, K. B., da Silva, M. O., & Maia, Y. A. (2010).
Ambiente Interativo e Adaptável para ensino de Programação. In Anais do Simpósio
Brasileiro de Informática na Educação Vol. 1, No. 1.

Revilla, M. A., Manzoor, S., e Liu, R.. Competitive learning in informatics: The uva
online judge experience (2008). Olympiads in Informatics, Vol 2, 131-148.

Santos, J., Ribeiro, A. R. (2011). JOnline: proposta preliminar de um juiz online
didático para o ensino de programação. In Anais do Simpósio Brasileiro de
Informática na Educação. Vol 1, 964-967.

Spacco, J., Pugh, W., Ayewah, N., and Hovemeyer, D. (2006). The Marmoset project:
an automated snapshot, submission, and testing system. In Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems, languages,
and applications, OOPSLA ’06, 669–670.

Trampus, M., & Urbančič, J. (2012). Putka: A web application in support of computer
programming education. Olympiads in Informatics, Vol 6, 205-211.

Verdú, E., Regueras, L. M., Verdú, M. J., Leal, J. P., de Castro, J. P., & Queirós, R.
(2012). A distributed system for learning programming on-line. Computers &
Education, 58(1), 1-10.

Wang, T., Su, X., Ma, P., Wang, Y., Wang, K. (2011). Ability-training-oriented
automated assessment in introductory programming course. Computers &
Education, 56(1), 220-226.

Appendix B

Qualitative aspects of studentS’

programs: Can we make them

measurable?

132

Qualitative aspects of students’ programs: Can we
make them measurable?

Eliane Araujo, Dalton Serey, Jorge Figueiredo
Department of Computer Science

Federal University of Campina Grande
Campina Grande, Brasil

{eliane, dalton, abrantes}@dsc.ufcg.edu.br

Abstract — Proper feedback can leverage students to better
understand their difficulties and shorten the characteristic
program-submit-refactor cycle of programming exercises. The ideal
feedback is the result of a human inspection and analysis
considering both functional and qualitative aspects of programs
produced by students. On the other hand, automated assessment
systems can provide rapid, cheap and standardized feedback. In this
paper, we focus on measuring aspects of code that instructors
usually assess in programming assignments which are deemed
unmeasurable: qualitative aspects that go beyond functional
correctness. The aim of this work is to produce richer feedback
messages that go beyond functional correctness as it involves code
quality issues. We found that if an instructor is required to produce
a reference solution for a programming assignment, then most of
the expectations the instructor has about a student’s code quality
are concretely present in the reference solution. Based on this idea,
we proposed and evaluated a set of candidate quality measures
using the assignment’s reference solution as a baseline. The results
showed that they seem to capture what is usually considered to be
the subjective and qualitative aspects of an instructors’ assessment.
We used these findings to generate feedback and conducted an
experiment to evaluate it effectiveness. The results enforce that this
kind of feedback stimulates students to improve their quality code in
a higher degree than purely functional feedback, yet it still can be
fully automated.

Keywords— human factors; experimentation; automated
assessment; programming; coding standards; software quality

I. INTRODUCTION
A fundamental aspect of the programming learning process

is providing feedback to the students about their assignments.
Further than showing that learning outcomes are being met; it
can boost the student self-confidence or help her modify a
recurrent behavior. Richer feedback can leverage students to
better understand their difficulties and shorten the
characteristic program-submit-refactor cycle of programming
exercises. Currently, the richest possible feedback on students’
programs is the result of human inspection and analysis of
both functional and qualitative aspects of the code. In
programming courses, automated tools play an important role
as they allow for rapid, frequent, cheap and standardized
feedback. They free instructors to direct their efforts to higher
levels of analysis. For the last two decades, different strategies
have been proposed to develop these tools. Several approaches
for automatically assess programs were adopted [1]. Most of

the systems, however, are based on functional analysis of the
programs.

We focus on whether we can measure what is usually
seemed unmeasurable: the so-called qualitative and subjective
factors considered by instructors when they assess a program
as a solution for a programming assignment. Studies discussed
that functional correctness is the most important component
when assessing a program [2]. Our experimental results also
corroborate with this idea, since automatic grades, obtained
from tests’ results, are strongly correlated with manual grading
(Spearman’s rho of 0.85). While it explains at large extent the
assignment score, tests results are insufficient to give students
personalized rich feedback. Dedicated instructors enrich their
feedback with advices on the code quality and help students to
reason on their solution. We claim that while many subjective
aspects are indeed unmeasurable, certain objective and
measurable factors of the code can reflect most qualitative
aspects reported on the feedback provided by instructors in
their manual assessments.

In this paper, we intend to generate automated code quality
feedback so that we can stimulate students to reflect on their
code, besides functional correctness. As a baseline for such
quality, we used the reference solution provided by the
instructors for the assignment. This solution must convey the
learning outcomes students have to master, as well as, the
expected code quality. We propose a set of software measures
to express qualitative aspects. They are based on software
quality metrics, largely used by the industry and referred in
other academic initiatives towards novice programming
[1][3][4]. First, these measures are extracted from the
reference solution code and from the student code. In
sequence, we calculate the relation between them. Using this
data, the system will generate and provide a feedback message
to the student, i.e. a hint of what it could be improved in order
to obtain better quality code. It is noteworthy to observe that
this feedback must be delivered only to functionally correct
submissions.

This proposal was evaluated following a two-pronged
approach: a case study and an experiment. The case study
aimed to investigate the validity of the suggested measures as
surrogates of the quality expected by the instructors on the
student code. Our dataset was composed by 403 functionally
correct submissions, from 102 students, referring to 12
different programming assignments. Our results showed that

students whose programs have measurements close to or better
than the measurements of instructor’s reference solution
program tend to obtain higher grades. In consequence, we
could say that the proposed approach do capture most of the
quality rationale behind the program's assessment performed
by instructors. At the cost of providing a reference solution for
each programming assignment, the measures can be fast,
automatically produced and used to deliver feedback through
automated assessment systems.

The experiment evaluated the impact of generating quality
feedback in students’ final code. As results, we perceived that
the quality feedback promote reflection about the
implementation and directs the student to refactor the code, as
the solution is already functionally correct. We observed and
also confirmed in hypothesis tests that students who receive
such enriched feedback (correctness + quality) tend to make
more submissions than those who do not. Also, 66.67% of the
students that received quality feedback managed to deliver a
better code.

This paper is organized as follows: Section II discusses
how instructors consider qualitative aspects of programs when
they assess students’ code. It also describes a set of measures
proposed to capture some of these aspects. Section III
describes the case study conducted to evaluate the proposal,
including a discussion about our findings. Section IV presents
the experiment on generation and delivering of quality
feedback. A discussion about the obtained result and its
findings is presented on section V. We considered and argue
about validity threats on section VI. Section VII reports some
related works related. Finally, we address the conclusions of
the study along with directions to further works in Section
VIII.

II. ASSESSMENT OF QUALITATIVE ASPECTS OF STUDENT’S
CODE

Assessment is a central activity in higher education and is
considered a core component for effective learning [5]. An
essential part of assessment is the feedback it produces: to the
instructor, to the student and to the educational institution. In
educational research, assessments can be characterized
according to its purpose as: (a) formative, to support and
improve students learning skills and (b) summative, to make a
judgment and verify if the learning objectives have been
reached by the student [6]. Our study focuses on code quality
and aims to rapidly deliver valuable formative feedback in
order to motivate students to produce a better code. In the
context of our work, formative feedback includes all the
information and communication exchanged by students and
instructors that contribute to modify an erroneous behavior
and to demonstrate that expected abilities have been mastered.

We are especially interested in approaches to produce
automated assessment feedback for programming
assignments. In programming courses, enough practical
activities are paramount to students effectively achieve
learning goals. Automated assessment systems (AAS) are
essential to support such a great number of programming
assignments and also provide student feedback. It produces
objective and consistent feedback to students, while it

mitigates the heavy workload of the instructors when they
perform manual assessment [1][7].

There are many automated assessment systems focusing on
introductory programming assignments. Some of them provide
grading support [8][9] and are classified as grader systems.
They normally take into account factors such as: deadline
penalty, resubmission policy, type of errors, test coverage, etc.
In general, AASs employ comparable approaches when
assessing students programs and provide common features [6].
A typical system executes a set of test cases, provided by
instructors, and compares the expected output to the observed
output from students’ programs. The most common feature
assessed by automated systems is functional correctness.

However, as observed by Buffardi and Edwards in [10],
while “automated grading systems help students identify bugs
in their code, the systems may inadvertently discourage
students from thinking critically and testing thoroughly and
instead encourage dependence on the instructor's tests”. A
similar behavior could be noticed in regards to code quality.
Many students submit their programs until they pass the
instructors’ tests or program in a trial-and-error mode, without
critically thinking on their solution. Another typical behavior
is to assume that the program is finished when it receives an
"ok" or "green-bar" of a test-based automated assessment tool.
A careful look exposes that some programs could have their
quality improved in different ways, preserving their functional
correctness. If students were not pushed to review and
refactor, they will simply move forward to another assignment
and, maybe, will repeat the same programming pitfalls. The
purpose of this work is to promote formative feedback about
qualitative aspects of code, which are usually neglected by
many test-based automated assessment systems.

Instructors approach the manual grading activity in
different ways but usually agree whether a program is “very
good” or “very bad” [11]. Besides correctness, there are other
factors weighed by instructors in manual assessment in terms
of code quality. For example, a program that is abnormally
longer than the others and solves the same problem needs a
closer look. Other common pitfalls of programming beginners
are nesting multiple “if” statements and using unnecessary
variables to compute temporary values. There are software
metrics that could be statically extracted from the code at a
low cost and serves as input to a quality analysis [1]. We
evaluated in this work: logical lines of code (lloc), Halstead
volume (h), cyclomatic complexity (cc) and adherence to
coding standards. In short, these measures stand for:

- lloc: The number of lines effectively used as programming
language code statements. This measure does not consider
blank lines, comments and headings.

- h: Metrics proposed by Halstead aims to evaluate a
program regarding on static analysis. The measurement
consists on counting the number of operators and
operands in a program [1]. In this study, we have
measured the Halstead volume.

- cc: It was conceived by McCabe [12] and refers to the
number of linearly independent paths of a program. Each
decision in a program can lead to a different path. So to

compute cc, there are considered not only conditional
structures but also iterative structures, such as for and
while loops.

Ala-Mutka study pointed that: to make software metrics
relevant to students they need to be comparative [1]. She
argued “there is no sense in requiring students to submit a
program that has a complexity number X, or contains Y lines
of code”. On the educational context, there is a benefit, which
could not be experienced in real world software: the instructor
referential solution approximates to the best possible solution
to the problem. The measurements extracted from the student
source code will be compared with those extracted from
reference solution code. The rationale is that the measures
extracted from the reference solution are an idealized target
expected by instructor for all students’ submissions.

We have also measured adherence to coding standards in a
metric named: RPEP8. As Python is the programming
language adopted by the course we have collected our data, we
relied on the coding standards defined by Python community
in PEP8 [13]. The number of pep8 violations indicates how
distant a given code is from the defined coding standard. This
measure is calculated differently from the others, as we cannot
compare the violations happened in the student code with the
violations that happened in the reference solution overlooking
their nature. Furthermore, ideally should not exist pep8
violations in the reference code. In practice, a reduced number
of violations indeed exists and are considered to be acceptable.
In order to calculate this measure, we extract the number of
pep8 violations for each submission for a given assignment.
Then, we rank the number of violations of these submissions.

The value of RPEP8 for each submission is its ranking
position. The other measures are defined as the ratio of the
measurement extracted from the student submission to the
measurement extracted from the reference solution.

TABLE ITable I presents the measurements we proposed to
assess code quality along with its acronym. From this point
forward, we are going to refer these measurements by the
acronyms.

For example, if the value of RLLOC for a particular code
is 1.2, it means that: the code provided by the student to that
programming assignment is 20% greater than the size of the
reference solution code for that assignment. Conversely, if the
value of RLLOC was 0.8, the code provided by the student is
20% smaller than the reference solution code. RCC and RH
calculation is done similarly.

TABLE I. MEASUREMENTS PROPOSED TO ASSESS CODE QUALITY

Acro. Description Formula

RLLOC Ratio between reference solution’s lloc
and student’s code lloc.

lloc(student code)
/ lloc(reference
solution code)

RCC Ratio between reference solution’s cc
and student’s code cc

cc(student code) /
cc(reference
solution code)

RH Ratio between reference solution’s h
and student’s code h.

h(student code) /
h(reference
solution code)

Acro. Description Formula

RPEP8 Ranking position of the number of
pep8 violations of the student’s code.

III. CASE STUDY: MEASURING STUDENT CODE QUALITY
Our initiative toward generating and delivering formative

feedback about qualitative aspects of code started on
performing an empirical study that aimed to evaluate the
measures we proposed as surrogates of some extent for the
human quality assessment of students’ programs.

A. Research Context and Data Collection
In the case study, we conjectured that there is a set of

measurements, automatically obtained, that can capture
quality aspects weighed by instructors when they assess and
manual grade a student program. In order to test it, we have
formulated the following research question:

RQ1: Can the measures RLLOC, RCC, RH and RPEP8
explain the differences observed on the grades, manually
assessed, of functionally correct submissions?

In answering this research question, we investigated
whether the student's code measurements were similar or
better than the measurements of the reference solution, the
instructor would perceive a better code quality. In
consequence, it would deserve a better grade. Thus, if code
quality impacts on grades, they could be captured by the
proposed metrics.

We collected students’ submissions of programming
assignments from an introductory programming course of our
university. The data was collected using an automated
assessment system developed in-house and tailored for our
introductory programming course. The dataset was composed
by 403 functionally correct submissions, from 102 students,
referring to 12 different programming assignments that
appeared in midterm exams. Experienced instructors manually
graded them in a scale from 0-10. In our study design, these
values correspond to the dependent variable ig. The measures
RLLOC, RCC, RH and RPEP8 are independent variables. We
used radon [14], a free Python tool, to compute raw metrics:
lloc, h and cc. The number of pep8 violations was extracted
using a script produced by Python developers’ community
[13]. It is worth to note that we used the reference solution
version provided by the instructor who graded the assignment
when extracting the measures RLLOC, RCC, RH and RPEP8
of the students’ submissions.

B. Data Distribution and Analysis
Fig. 1 shows the distribution of instructor’s grades of

functionally correct submissions. These submissions obtained
“green-bar” as passed all automatic tests provided by
instructor. If they were automatic graded, all of them would
obtain the highest score: 10. However, the figure shows a left
skewed distribution and only 29.5% of the evaluated
submissions got the highest score. If the assessment were
relied solely on automatic tests, more than 70% of the
submissions would obtain a grade greater than a human
instructor thinks it deserves.

The grades produced manually by the instructors take into
consideration a set of criteria that goes beyond functional
correctness, as it could be apprehended by the grades’
variance. A qualitative evaluation of those submissions
revealed structural code problems (such as incorrect use of
conditional structures) that were not captured by traditional
functional test. Fig. 1 exposes that functional correctness,
alone, does not reflect the instructor manual assessment.

C. Results and Discussion
This subsection reports the results of the studies to answer

our research question: Whether the proposed quality
measurements can explain the differences observed on the
scores of functionally correct submissions.

In order to answer this question, we investigated the
contrast between the student's code measurements and the
reference solution measurements’. We used Wilcoxon rank
sum test to compare submissions’ grades. This non-parametric
statistical test assesses if two independent distributions are the
same. The null hypothesis is that the population is the same
against the alternative hypothesis that the population differs in
a location measure, in this case the median of the grades.
Since this test is based on rank observations, it makes no
assumptions about the normality distribution of the assessed
variables.

We divided the distribution in two groups according to its
measurements: (1) equal-lower than 1; meaning that the
measures of student’s code are equal or better than the
reference solution code or (2) greater than 1; it means that
measures of the student code are greater than the measures of
the reference solution code. For example, in a given student
submission for a programming assignment it was accounted 3
pep8 violations. The reference solution code, for that same
assignment, accounted 1 pep8 violation. This submission is
part of the group 2. In this sense, each metric was analyzed
individually.

Tests results confirmed that RLLOC, RCC, RH and
RPEP8 do capture the notion of quality, as the distributions
differ in their medians. Instructor’s grades for equal-lower
group are higher, on average, than the grades of the other
group with adequate statistic significance (p-value < 2.20E-16,
0.05 significance level). Hence, it rejects the null hypothesis in
favour of the alternative. The results reveals, at least for these
data, the better the measurements the better the grade. As
practical significance of this result, we can state that

stimulating students to consider not only program correctness
but also its quality is indeed beneficial.

Figure 2 shows boxplots of ig (instructor’s grades)
distribution. In the first boxplot, it can be noticed a wider
variation on ig on the first group of submissions (RLLOC(x) >
1). Apart from some outliers, the second group of submissions
(RLLOC(x) <= 1) presents a narrower variation and a higher
median value. A similar behavior could be observed on the
other plots. Besides the hypothesis test, we performed a
correlational analysis to investigate the association of each
measure (RLLOC, RCC, RH and RPEP8) with ig using data
collected from all 12 programming assignments. At this point,
we must recall that RLLOC, RCC and RH are ratio metrics. It
means, for example, that we are not observing the correlation
between the size, in lloc, of a student’s submission and its
grade. We are measuring the relation between the size of a
student’s submission and the size of the instructor’s reference
solution. Then, whether this value correlates with the
programming assignment grade.

We used Spearman’s rank correlation coefficient to
measure the extent of the correlation and found that 91.67% of
Spearman’s rho values are negative. What means that as one
variable increases, the other decreases. This behavior
corroborates our hypothesis: the smaller the measure the
greater the value of ig. The strongest correlation found, in
absolute value, is between RCC and ig (-0.94 Spearman’s
rho). In general, the strongest correlation values were
observed between RLLOC and RCC measurement. There
were also rho values near zero, meaning that the correlation is
negligible or inexistent in some cases.

IV. EXPERIMENT: EVALUATING QUALITY FEEDBACK
GENERATION

In the previous sections, we have investigated and
proposed a set of measures that can give us indicators of code
quality in student’s programs. In this section, we will describe
the experience of using these measures to generate and deliver
feedback messages to students. We wanted to investigate the
effectiveness of the quality feedback generation approach. If
students, in fact, care about the feedback received and actuate

Fig. 1. Distribution of manual grades assigned to functionally correct
submissions

Figure 2. Boxplot of instructor's grades and the values of each RLLOC,
RCC, RH and RPEP8

in their code so that it improves. We performed an experiment
animated by two research questions:

RQ2: Students who receive quality feedback about their
submission tend to make more submissions, after the first
correct one?

RQ3: When students receive quality feedback about their
submission they tend to deliver a better quality code?

A. Experiment Setting and Data Collection
We performed an experiment in the same introductory

programming course of the case study reported previously. We
proposed a programming exercise to 48 students, divided into
experimental and control group. Students’ submissions have
their functional correctness automatically tested. We
considered that a student failed to solve a problem if his or her
submission fails in at least one test case. Only 20.8% (13
students) failed the assignment. The quality feedback was
generated and delivered only to students of the experimental
group who succeeded.

We instrumented the automated assessment system already
used in the course to perform quality checking and feedback
generation. The warning messages are presented in a
command-line interface, just after the student submits her code
to automatic testing and receives the results. We empirically
established a threshold for each quality measure (RLLOC,
RCC, RH and RPEP8) in order to show the warnings: when it
reaches 1.2, i.e. a value 20% greater than the same
measurement in the reference solution, a message is produced
and delivered to the student. Table II presents the warning
messages generated for the other measurements. They
represent advices, rather than prescriptions, in what could be
done to improve the code. We have also added an extra
warning message regarding to the number of lines of the
heading the student are supposed to add in their code. This is
an "easy-to-solve" warning aimed to make students learn by
themselves how the cycle submit/receive feedback/refactor
works. This was useful, because no directions were given
about how to proceed after the feedback message during the
experiment. RPEP8 warnings messages were translated from
English and slightly modified from the original style checker
implementation [13].

TABLE II. MAPPING OF WARNING MESSAGES DELIVERED TO STUDENTS.
MESSAGES PRESENT HINTS ON HOW TO IMPROVE CODE QUALITY

Measur. Message

RLLOC
“It appears that your program has too many lines of

code.”

RCC
“It appears that your program has too many conditionals

structures or loops.”

RH “It appears that your program has too many operations.”

Header

issues
“It appears that your program has few header lines.”

B. Programming Assignment
The problem chosen is a typical programming assignment

the students are able to solve after been exposed to conditional
and repetition control structures lectures. It is the well-known
3x+1 problem, or Collatz problem. Fig. 3 presents the
reference solution provided by the instructor who proposed the
assignment “Collatz Life”. It prompts the student to inform the
number of iterations (lifes) does it take to a given number to
converge to 1, repeating the process:

C. Results and Discussion
This subsection reports on the results of the studies

performed to answer the second and third research questions
of this work.

The second research question posed the investigation:
Whether the students who receive quality feedback about their
submission tend to make more submissions, after the first
correct one. The data collected in the experiment indeed
revealed that students of the experimental group (who
received quality feedback) make more subsequent submissions
than the students of the control group. The median of
submissions performed by the subjects on the experimental
group was 2.5 greater than the median of submissions
performed by control group subjects. We studied this
behaviour, performing Mann-Whitney nonparametric
hypothesis test. As a result, we rejected the null hypothesis in
favour of the alternative (p-value = 0.009, with 0.05
significance level). This means that, at least for our data,
students who received warning messages as feedback about
their code quality tend to make more submissions of that same
assignment. As practical significance, we can state that:
apparently, quality feedback messages are took into
consideration by students and not ignored by them. It
encourages students to reflect on their code besides it
correctness.

In the third research questions we examined: Whether
students that receive quality feedback about their submission
tend to deliver a better quality code. It evaluated if quality

1 # Collatz life
2 # Reference solution
3
4 N = int(raw_input())
5 life = 1
6 while N != 1:
7 if N % 2 == 0:
8 N = N / 2
9 else:
10 N = 3 * N + 1
11 life += 1
12
13 print life

Fig. 3. Python reference solution provided by a teacher to Collatz
programming assignment

measurements of the last submissions of the students of each
group differs depending on the their exposition to feedback
quality warnings. We have performed the same hypothesis test
and verified that it is possible to reject the null-hypothesis in
favor of the alternative (p-value = 0.0267, with 0.05
significance level). This means that, at least for our data, the
number of quality warnings of the last submission from the
students of experimental group is lower than number of
quality warnings of the last submission from the students of
the control group.

We have evaluated each student’s submission from the
experimental group in order to verify if, provided they have
access to the quality feedback, they managed to produce a
better code. This qualitative analysis uncovers details that
could not be captured by statistical tests. We have observed
that 66.67% of the students which received at least one quality
feedback warning about their first submission, presents a
positive derivative: they succeed on solving the feedback
warning and reduced the number of warnings obtained in
relation to the previous submission. Our results indicates that
students are able to actuate on their code based the quality
warning feedback messages. It suggests that this type of
feedback is useful and adequate to promote the improvement
of student’s code. Fig. 4 shows the first and the last
submissions of a given student along with the quality feedback
messages it received.

Data collected from control group, reveals a typical
behavior of our students: they assume their submission is done
when it receives an "ok" or "green-bar" from a test-based
automated assessment tool. A careful look exposes that some
programs could have their quality improved in different ways,

preserving their functional correctness. If students were not
pushed to review and refactor, they will simply move forward
to another assignment and, maybe, will repeat the same
mistakes in the next assignment.

V. DISCUSSION
Functional correctness is the most important aspect of

assessment in manual grading. However, there are other
features took into account by the instructors when they are
grading. We claim that subjective and quality factors impact
on instructors’ assessment, besides functional correctness.
Subjective factors, in this context, are those inherent from
human beings: such as affective/emotional (willingness to give
good grades or the opposite, fatigue, etc.) and errors/mistakes
that may occur and are difficult to identify and to explain.

Whilst subjective factors would remain unmeasurable, this
study revealed that there are some quality factors that
influence instructors’ assessment of programming assignments
and can be automatically measured. The novel approach of
this work is not the use of software metrics to assess student’s
code quality, but to compare student’s submissions
measurements with the measurements of the reference code,
provided by the instructor. This indirect method reveals the
target of quality aspects expected by the instructor for a given
programming assignment. We claim that instructors idealize a
reference solution when they assess students’ code. They
grade the assignment by comparing and assessing how similar
the students’ code is to its own reference solution code.

(a)
1 # coding: utf-8
2 # xxxx.xxxxxxxx / xxxx / 2014.2
3 # Collatz life

4 number = int(raw_input())
5 cont = 0

6 while True:
7 if number == 1:
8 cont += 1
9 break

10 if number % 2 == 0:
11 number = number/2.0
12 cont += 1
13 else:
14 number = 3 * number + 1
15 cont += 1
16 print cont

(b)
It appears that your
program has too many
operations.

(c)
1 # coding: utf-8
2 # xxxx.xxxxxxxx / xxxx / 2014.2
3 # Collatz life

4 number = int(raw_input())
5 cont = 0

6 while True:
7 cont += 1
8 if number == 1:
9 break
10 elif number % 2 == 0:
11 number = number/2.0
12 else:
13 number = 3 * number + 1
14 print cont

Fig. 4. Code (a), is the first correct submission of the student. It caused the quality warning (b) "It appears that your program has too many operations." regarding
to the lines 8,12 and 15. Code (c) is the last submission made by the same student. It caused no warning messages. The student “solved the warning” making a
better use of conditional structures and reducing the number of lines with duplicated code.

In fact, analogous or, even better solutions could appear when
assessing students’ submissions. This circumstance does not
invalidate our results, rather is accommodated by the proposed
metrics.

It is important to observe that this approach does not
intend to provide an exhaustive analysis of the code quality of
the programming assignment, including aspects such as:
problem solving strategy, algorithm and solution design. It
focuses on readability as a relevant indicative of code quality,
mainly in introductory programming. In fact, we planned to
deliver quality feedback only to functionally correct
submissions. We believe that the problems the submissions we
focused presents are, in great part, on readability nature and
could be captured by the metrics we proposed. However, it is
only an anecdotal suspicion, as our empirical studies were not
intended to prove this assumption.

In a different perspective, from the observed in this study,
the quality information could be delivered to students whose
submissions are functionally incorrect. The measure RLLOC,
for example, would help students to realize that the code is
very far from the correct solution and there is a need to start
over. Another possible approach is to evaluate the semantic of
each measurement individually. For example, if one’s
submissions consistently present high RCC values, it possible
suggests difficulties in mastering the concepts related to
conditional or iterative structures. This type of information
would be useful to instructors when monitoring the students’
learning process.

VI. THREATS TO VALIDITY

A. Internal Validity
Human assessment: As expected in a study that involves

human assessment, human factors threaten its validity. We
collected instructor’s grades of a set composed by 12
programming assignments as baseline for our analysis. The
grades were provided by four instructors in different moments
along the course, as a result of a manual inspection. We
believe that this threat is diminished in the course we collected
our data, since instructors share the same marking criteria as
defined in a document of assignment rubrics [15].

B. Construct Validity
Reference solution: We used the programming assignment

reference solution as the target of expected code quality
measurements. However, different instructors may vary the
way they produce their reference solutions for the same
assignment. In order to mitigate this threat, we qualitatively
evaluated the reference solutions provided by the instructors
of the course to each programming assignment of the dataset.
We analyzed their solutions and assured that they were very
similar. We also found out that the metrics values extracted
from their solutions code presents little variance and high
degree of concordance. To perform this quantitative
evaluation, we used Jaccard distance approach to measure the
dissimilarity between the original reference solution and the
other solutions. In this approach, we performed a pairwise
comparison between each value of the vector of measurements

extracted form the solutions’ code. In theory, the value of
Jaccard distance may vary from zero (no distance) to one. In
this study, we found distance values ranging from 0 to 0.293.
This means that the instructors have a strong agreement about
the expected assignment solution code and about the level of
quality that could be apprehended by the metrics. It shows
that, even though the instructors have different background,
they have a consistent thinking about the problems’ solutions.
Finally, we chose the reference solution code proposed by the
same instructor who created the assignment.

Set of software quality metrics: We have chosen a set of
software quality metrics that are known to be representative of
good quality code [4][16] and are obtained through static
analysis. We left out of the scope of this study efficiency
metrics, which are obtained dynamically. Those metrics might
improve students' program quality assessment [2]. However,
we believe this is only a minor threat, since introductory
programming assignments are usually specifications to solve a
limited problem that produces relatively small programs (in
our database student’s programs are composed by ~30 lines of
code). In this case, efficiency measurements are not as
relevant in a pedagogical context.

C. External Validity
Application of the results to other introductory

programming courses: Caution must be taken when applying
the results of this study to other introductory programming
courses with different assessment methodology and different
programming languages. We rely on the quality of instructor’s
tests to assess functional correctness through an automated
assessment system. Furthermore, we took advantage of Python
well-defined coding standard that focus fundamentally on
code readability. Although the findings could not be
generalized to every course, the ideas and research
methodology applied in this work can be adapted to be used in
other contexts.

VII. RELATED WORKS
Lister, Hanks and Murphy researched about the grading

process [11]. They discussed about methods used by
instructors to manually grade students’ programs. They show
that graders have different motivations to judge and also apply
different approaches in their assessments. They conclude that
the teaching community must discuss grading, to learn with
each other in order to benefit their students. Our work also
discusses the grading process. Differently from Lister, Hanks
and Murphy study objectives’, the purpose is not the grade at
all, but is to reveal the quality features considered by the
instructors when they are grading. We propose that software
metrics could capture common quality factors usually cited in
grading rubrics.

The use of software metrics, as a relevant aspect to be
assessed in novice programming exercises, was referred in the
study of Mengel and Ulans [3] and Cardell-Oliver [16]. They
proposed that metrics could be used as an indicator of student
performance. Cardell-Oliver proposes that software metrics
can enhance the feedback delivered to students and to the
instructors. Our proposed metrics, in some extent, are similar

to those presented in Cardell-Oliver study but different in its
purposes. Our work goes beyond, as it reveals, at least for our
data, which metrics are really relevant to provide quality and
useful formative feedback to novice programming students. In
this context, the instructor played a central role as we
examined their assessments and reference solutions provided
to the students programming assignments.

VIII. CONCLUSION AND FUTURE WORK
This paper proposed a set of measures with the aim to

capture code quality and generate useful feedback for novice
programmers. These measures, based on traditional quality
software metrics, can be automatically obtained provided we
have a reference solution. This instructor’s provided solution
encompasses the programming abilities and code quality
expected for that assignment.

 Firstly, we conducted a case study on a dataset composed
by more than 400 functionally correct submissions, to 12
programming assignments, from about 100 students to
evaluate our proposal validity. We calculated the proposed
measurements for all submissions in the dataset and assessed
how they compare to instructors' grades. We tested our
hypothesis with adequate statistic significance. The results
confirmed that RLLOC, RCC, RH and RPEP8 indeed capture,
at some extent, the notion of quality as it is reflected in the
variation of the instructor’s grades.

Then, we have performed an experiment on generating
quality feedback using the proposed quality measurements
aiming to assess its influence on students’ code. As results, we
observed that students manage to work on their code and
improve it, after receiving the quality feedback message. We
confirmed using hypothesis tests that students who received
such quality feedback are more likely to submit a larger
number of revisions than those who do not. Furthermore,
66.67% of the students that received quality feedback
delivered a revision with better quality code.

In this work, we used the solution code provided by the
instructor who manually assessed the programming
assignment as a reference. In future works, we will explore
other alternatives of reference solutions such as: the median of
the metrics between all instructors’ reference solutions, the
most common solution submitted by students, etc. With regard
to feedback messages, we intend to create a hierarchy of
messages, for each measurement, to deliver to students. The
idea is to deliver messages whose contents vary from more
general to direct, as the student tries to fix the warning. So, the
system does not repeat the same messages among
unsuccessful fixing attempts.

Finally, it is necessary to recall that the motivation of this
study was to enrich the automated feedback provided to the
students about their code submissions. We envision that using
those quality measures, the students will obtain useful advise
in how to improve their solutions. Also, it will leverage novice
programmers to adhere to software quality premises since
their early coding experiences.

ACKNOWLEDGMENT		
The authors would like to thank Programming I

instructors, at UFCG for their valuable collaboration in
producing reference solutions for the studied programming
assignments and providing feedback about our data analysis.
We are also thankful for our Computer Science students who
diligently submitted their programs. This research was
partially sponsored by the agreement No 754664/2010
between UFCG and ePol/DPF.

REFERENCES

[1] K. Ala-Mutka, “A Survey of Automated Assessment Approaches for
Programming Assignments”. Computer science education, vol. 15, pp.
83-102, 2005

[2] B. Cheang, A. Kurnia, A. Lim and W.-C. Oon. “On Automatic Grading
of Programming Assignments in an Academic Institution.” Computers &
Education, 41, 121-131, 2003.

[3] S.A., Mengel, and J.V., Ulans. “A case study of the analysis of the
quality of novice students programs.” Proc. 12th Conference on
Software Engineering Education and Training, pp. 40–49, 1999

[4] R. Pettit , J. Homer , R. Gee, S. Mengel and A. Starbuck. “An Empirical
Study of Iterative Improvement in Programming Assignments”.
 Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE '15). ACM, pp. 410-415

[5] J.W. Gikandi, D. Morrow, N.E. Davis, Online formative assessment in
higher education: A review of the literature, Computers & Education,
Volume 57, Issue 4, pp 2333-2351, 2011

[6] C. Douce, “Automatic Test-based Assessment of Programming: A
Review”, Journal on Educational Resources in Computing, Vol. 5, Issue
3, 2006.

[7] P. Ihantola, T. Ahoniemi, V. Karavirta and O. Seppälä. “Review of
recent systems for automatic assessment of programming assignments”.
Proc. 10th Koli Calling International Conference on Computing
Education Research (Koli Calling '10). ACM, pp. 86-93. 2010.

[8] J. Carter, J. English, K. Ala-Mutka, M. Dick, W. Fone, U. Fuller, and J.
Sheard. ITICSE working group report: How shall we assess this?
SIGCSE Bulletin, 35(4):107–123, 2003.

[9] P. Nordquist. “Providing accurate and timely feedback by automatically
grading student programming labs”. J. Comput. Small Coll., 23(2):16–
23, 2007.

[10] K. Buffardi and S. H. Edwards “Reconsidering Automated Feedback: A
Test-Driven Approach”. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education(SIGCSE '15). ACM, New
York, NY, USA, pp. 416-420, 2015.

[11] S.Fitzgerald, B. Hanks, R. Lister, R. McCauley, and L. Murphy, "What
are we thinking when we grade programs?", In Proc. of the 44th ACM
technical symposium on Computer science education (SIGCSE '13),
ACM, pp. 471-476, 2013.

[12] T. J. McCabe “A complexity measure”. IEEE Transactions on Software
Engineering, vol. SE-2, num. 4, pp. 308-320, 1976

[13] PEP 8 – Style Guide for Python Code [Online. Accessed in March,
2014] http://legacy.python.org/dev/peps/pep-0008/

[14] Radon – [Online. Acessed in March, 2014]
https://radon.readthedocs.org/en/latest/index.html

[15] Becker K. “Grading programming assignments using rubrics”.
Proceedings of the 8th annual conference on Innovation and technology
in computer science education (ITiCSE '03). ACM, New York, NY,
USA, 253-253.

[16] R. Cardell-Oliver. “How can software metrics help novice
programmers?”. Proc. Thirteenth Australasian Computing Education
Conference - Volume 114 (ACE '11) Australian Computer Society, Inc.
pp. 55-62, 2011.

Appendix C

Applying Spectrum-based Fault

Localization on Novice’s Programs

141

Applying Spectrum-based Fault Localization on
Novice’s Programs

Eliane Araujo, Matheus Gaudencio, Dalton Serey, Jorge Figueiredo
Department of Computer Science

Federal University of Campina Grande
Campina Grande, Brasil

{eliane, matheusgr, dalton, abrantes}@computacao.ufcg.edu.br

Abstract—Most introductory programming courses count on
automated assessment systems (AAS) to support practical
programming assignments and give fast feedback. AAS usually
rely on tests results to check the program's functional correctness
to provide feedback to students. Novice programmers, however,
may find it difficult to map such feedback to the root failures’
cause in their programs. It can be even more frustrating when
the code is “almost right”. In this paper we investigated the use of
a fault localization technique on programs produced by students
of introductory programming. Our proposed approach is
grounded on spectrum-based fault localization (SBFL). The
results of our empirical study showed that this lightweight
technique is promising. It can be easily adapted to different AAS
to generate useful feedback not only to students but also to
instructors. We also delineate the scope where SBFL use is
jeopardized. The main contribution of this paper is to present the
benefits and drawbacks of applying SBFL, in the context of
programming learning, as a novel source of information about
students' programming assignments faults.

Keywords— programming, automated assessment; software
fault diagnosis; novices, experimentation.

I. INTRODUCTION
Nowadays, many programming courses are supported by

automated assessment systems (AAS) that provide feedback to
the students and also collect data about their interaction with
the instructional material. However, the feedback provided by
those systems about the students’ difficulties in programming
assignments are distant from the instructors’ enriched
feedback. The problem is that AAS may not provide adequate
feedback in some phases of the programming process, so that
students may feel frustrated and face difficulties to proceed
autonomously on their learning pathway.

AAS usually rely on tests results to check the program's
functional correctness to provide feedback to students. Novice
programmers, however, may find it difficult to map errors in
their code with failing test cases [1]. It can be even more
frustrating when the code is “almost right”. Sometimes, even if
the student knows how to solve the proposed problem, she may
fail in producing a functionally correct implementation. The
failure revealed by tests can be caused by a wrong operator
(“greater than” instead of “greater than or equal to”), a wrong
value on the “if” conditional statement or even a misplaced
parenthesis. An adequate feedback in this situation would help
and stimulate the student to solve the problem and move on. In

fact, there are on the literature different strategies proposed to
find bugs on student code [1][2]. However, they may not be
easily adopted by whichever programming course, as they
increase instructors’ duties requiring the production of new
artifacts.

This paper investigates the use of a lightweight fault
localization technique on programs produced by students of
introductory programming. Spectrum-based fault localization
(SBFL) has been used successfully in different areas of
software development [3][4][5]. This technique relies on
program spectra: program traces that reveal which parts of the
code are active during a failed or successful execution. SBFL
predicts the likelihood of a software component, for example,
to be responsible for faulty executions. This research focuses
on programming assignments proposed along with a test cases
suite that are automatically executed by an AAS. In this sense,
those systems would compute SBFL measures at a low cost. It
does not demand artifacts different from those instructors are
used to provide.

We conducted an empirical study to investigate the
suitability of using SBFL on novice’s programs as a novel
source of information aimed to AAS feedback generation. We
collected data from an entire edition of an introductory
programming course comprising more than 10,000 Python
programs, referring to almost 300 programming assignments,
from approximately 100 students. We analyzed the tests results
of each program submission to characterize them. We observed
that 25.9% of the submissions in the data set were considered
incorrect, as they did not pass the complete set of tests. In order
to be adequate to SBFL use, the submission has to pass at least
one test. In this sense, 61.6% of incorrect submissions are
initially adequate to SBFL application. A broader exploratory
study was able to characterize these programs and provides a
more comprehensive knowledge of the extent of situations
where the technique could be relevant.

Then, we performed a quantitative study with 5
programming assignments to assess the quality of SBFL
diagnostics. We used as baseline instructor's assessments and
annotations on the programs. On average, using SBFL, it is
necessary to look in only ~20% of the program's lines of code
to find the flaw. This study also corroborated with the previous
findings on literature. We discuss situations where SBFL was
inappropriate to provide feedback about the programs' faults.

The contributions of this work, addressed to instructors and
AAS developers, are the following:

• We present and adapt SBFL as lightweight alternative
to find faults in students programs. It is a new source
of information for feedback generation to instructors or
students. Instructors or AAS developers must be
responsible for modulate the information before deliver
it to students, so it could make better sense in
pedagogical context.

• We discuss the use limitations of this technique
towards introductory programming assignments, in
particular Python procedural programs, as lessons
learned from an exploratory study.

• We report a case study evaluation, on real
programming assignments, highlighting good results in
terms of diagnostic accuracy.

• We summarize strategies on how to maximize SBFL
use in programming learning context and propose them
as future works.

II. RELATED WORKS
Automated assessment systems are used for decades in

programming learning context [6]. In general, AAS employ
comparable approaches and provide similar features [7]. The
most common feature assessed by them is code functional
correctness. A typical system executes a set of test cases,
provided by the instructors, and compares the expected output
to the observed output produced by students’ programs. Some
systems, characterized as grading systems [8], use those results
to grade the programming assignment. Grading systems may
weigh another factors, besides correctness, such as deadline
penalty, resubmission times, type of errors, test coverage
[9][10], etc. AAS may also provide features such as quality
assessment, in terms of: efficiency [11], static software metrics
[12] and programming style [13]. The work hereby described,
focuses on fault localization [1][2] and code repair strategies
[1], which are discussed in more details in the following
subsection.

A. Fault localization and repair
The approach adopted in [2], to localize bugs in student

code and provide feedback, is based on the automatic
generation of program execution traces. An execution trace is a
list of each program execution step, line by line, and the value
of the variables at each time. By reading these traces, students
can understand their program execution path and how it has
evolved to reach the end. In order to generate feedback to
students, the authors suggested comparing students’ trace to the
one generated from the instructors’ reference solution. This
works resembles the approach here presented, as it is also
based on execution traces. However, SBFL can go further as it
can map faults to software elements. The code is an artifact
students are used to deal with, differently from an execution
trace.

In another way, Singh and colleagues’ work tries to identify
the error in the students’ code and guides them to it correction

[1]. The authors argue that most of students’ errors in
programming assignments are predictable as students who are
solving the problems were exposed to the same classes and
learning materials. For these and other reasons, their errors tend
to follow a typical pattern. They generate feedback based on
possible fixes to error models that are typically found in
particular programming assignments. Their approach could
provide detailed information about the error localization and
how to solve it. It also allows the message customization
according to the level of feedback the teachers want students to
see.

However, to use this approach instructors must provide, in
addition to the assignment’s reference solution, the model of
typical mistakes that could be made by students in that
assignment. Errors must be described in an Error Model
Language - EML proposed by the authors. This approach has
been successfully evaluated in MIT online and regular
introductory programming courses. We argue that the overhead
required to use Singh and colleagues’ proposal is higher than to
use our approach. We speculate that having the instructors to
foresee every error possibility and also learn a new language to
model them is a big hurdle to impose. SBFL is simple and
easily adaptable to existing AAS, as it does not require
additional artifacts besides the test cases already provided by
instructors. In contrast, the precision level of faults localization
in our approach is lower than the observed with Singh’s
approach.

In a very recent work, Edmison and Edwards evaluated the
use of SBFL on object-oriented programming learning context
[14]. They recognized it as a “feasible strategy” to provide
feedback on where to look for faults on programs. Differently
from our work, addressed to novice programmers, the authors
focus CS2 students, which are not complete beginners as they
are taken their second or third programming course.
Furthermore, the work deals with objected-oriented Java
programs with the aim to locate and identify what methods are
most likely to contain the fault. Our proposal has a finer
granularity as it ranks the lines where the fault could be found
in a procedural Python program. In addition, our research goes
a step further as it discusses when not to apply SBFL. As a
result of an exploratory study, performed in a dataset from over
10,000 programs submissions, we characterized the students’
solutions and discussed the scope of the technique: when and
why it is useful. The present work considers practical
significance of the results as it gives insights into how to make
better use of the SBFL in programming learning context.

III. BACKGROUND
In this section we describe the key concepts related to

Spectrum-based Fault Localization (SBFL) technique and how
we have adapted it to introductory programming learning
context. Introductory programming assignments are usually
well-formed specifications of problems to produce relatively
small programs. These programs receive inputs and transform
them in testable outputs. In this setting, faults can be seen as
bugs in the programs and failures are evidenced by unexpected
outputs for a given input [3].

A. Spectrum-based Fault Localization
SBFL is a technique that dynamically analyses a program

in order to calculate the likelihood of a given component to be
faulty. For diagnosis purpose, the concept component stands
for an element of the system considered to be atomic. In
multiple application of SBFL, components can be mapped to
different targets: blocks of code when analyzing industry
software systems [3]; cells in case of spreadsheets analysis [4];
agents when examining multi-agent systems [5] and methods in
the study of object-oriented student programs [14].

The idea is to observe multiple runs of the program, where
components are exercised in failed and passed executions and
calculate how a component is “suspicious” to be faulty. Failure
detection is a precondition to fault localization: it is necessary
to recognize that something is wrong before trying to locate the
fault [3]. In this scenario, we use test cases provided by
instructors to each programming assignment. However, seeking
for failures through test cases are an elementary way of
detecting faults. Some of them may not be disclosed if the set
of test cases were not complete. Provided we cannot guarantee
this completion, we assume, in this study, that all program’s
faults are revealed by test cases. In this sense, a failed run
occurs when an error is detected – the expected output is
different from the observed. On the other hand, a passed run
occurs when the output is equal to the expected.

The data collected from failed/pass runs are used to
compose a hit-spectra matrix, see Fig. 1. This is an NxM
matrix; where N represents the number of components
inspected in the program and M the number of runs (test
executions, for example). Each aij element of the matrix
corresponds to a binary value: (1) if it was hit in that particular
run and (0) in the contrary [4]. In practice, this means that we
aim to identify which component is “involved” in a failure.
Another necessary element used to calculate components’
suspicious in SBFL is the error vector. This N-length binary
vector holds the information about “fail” and “pass” to N runs,
see Figure 1.

After computing the hit-matrix and error vector, the next
step is to identify which column in the matrix resembles most
the error vector. Similarity coefficients, which are largely
known in the literature, are used in this activity. Passos and
colleagues cited in their work the use of more than 40
heuristics to compute similarity between vectors [5]. The idea
is simple: the more a spectrum of a given component is similar
to the error vector, the more it is suspicious to be the cause of
the detected error.

In this work, we used Jaccard similarity coefficients in
order to calculate the value of “suspiciousness index” for a
given component. Refer to [3] in order to obtain more
information about how to compute those coefficients in SBFL
context.

Finally, the coefficient values assigned for each component
are ranked in descending order (most similar figures on top
most positions). It means that, in order to find the fault in a
given code, it is recommended to inspect the components
following the SBFL ranking order. It can be noticed that the
accuracy of this technique diagnosis is limited: it is a
recommendation not a prescription. However, SBFL merit is to
greatly reduce the range of code inspection. In the work
reported by [3], it exonerated, on average, 80% of the blocks of
code of being faulty.

B. Students’ Programs Fault Localization with SBFL
We argue that using SBFL to generate information to

provide automatic feedback in the context of programming
learning is relatively simple. AAS are increasingly been used in
programming courses. They can be used to calculate SBFL
coefficients and compose the rank, as they already count on a
set of tests provided by instructors.

In this paper, we applied SBFL to Python programming
assignments of an introductory programming course. Each
component of the technique is mapped to one line of the
program, excluding comments or blank lines. We rely on the
set of tests provided by the instructors in order to thoroughly
test the code. In this sense, the diagnostic accuracy of the
strategy also relies on instructors test quality.

 Fig. 2 presents an example of real student code. This
assignment specification asks students to write a program to
calculate the body mass index of males and females. The value
of suspiciousness index s, for each line, is showed on the left
side. It can be observed that the last two lines (7, 8) obtained
the highest values of s. The faulty line of code is indeed the last
line (8), as the variable used should have been bmi_female
instead of bmi_male.

IV. RESEARCH METHODOLOGY
In this section, we are going to present the research

methodology applied in the empirical study of this work. In
order to investigate the applicability of SBFL on novice
programs, we followed a two-pronged approach: an
exploratory study and a case study. The first aimed at having a
broader look on students’ code production, qualitatively
evaluating their errors and evaluating the soundness of SBFL

0.5 1. genre = raw_input()
0.5 2. height = float(raw_input())
0.5 3. bmi_male = 72.7 * height - 58
0.5 4. bmi_female = 62.1 * height - 44.7
0.5 5. if genre == "m" or genre == "M":
0.0 6. print "%.03f" % bmi_male
1.0 7. elif genre == "f" or genre == "F":
1.0 8. print "%.03f" % bmi_male

Fig. 2. Sample of student code is on the right. Values of suspiciousness
index of each line are on the left.

Fig. 1. MxN hit-spectra matrix and N-length error vector. Each
column represents a component spectrum

in the context of programming learning. The latter intended to
quantitatively evaluate the approach, measuring its accuracy
and other metrics, in a given set of real students’ programs
sample.

A. Data Collection
This research was performed in an introductory

programming course with undergraduate students of Computer
Science. In this course students learn programing skills using
Python language. Students learn how to use expressions,
alternative statements, collections, strings, collection-controlled
loops, conditional-controlled loops and functions. Their
laboratory activities focus on solving problems by coding
programs and submitting them to an AAS to be automatically
tested. Each programming assignment presents a basic input
and output test. Students are used to test their programs with
this basic test before submitting their solution to the system.
After the code submission to the AAS, additional hidden tests
are executed. As a result, students receive the number of tests
failed and passed for that code. They are not penalized for
multiple submissions for the same question.

In the exploratory study, we collected students’
submissions for programming assignments of a complete
course edition. They were collected using an instrumented
AAS, which was developed in-house and tailored for our
course. The dataset of the exploratory study comprises 10,357
programs, referring to 277 programming assignments, from
115 students. On average, each student submitted 90 programs
along the course. Some of them were selected to a more in-
depth qualitative analysis.

In the case study, we selected a set of 5 assignments
focusing on different programming learning outcomes expected
in the course, such as conditional structures (if), iterations (for
and while), simple algorithms with data structures (lists). We
seek for assignments that students faced difficulties to succeed.
For this reason, of 181 submissions that composes this study
dataset, 53.6% failed in at least one test case. It is worthy to
note that each assignment has their own set of tests and they
were also necessary to compute SBFL values.

B. Exploratory Study
In general, the purpose of an exploratory study is to answer

research questions about the studied phenomena without
formulating any previous hypothesis [15]. In this study we
investigated the suitability of using SBFL in different
configurations of defects observed on students’ programs.
From this point on, we are going to refer this “configurations of
defects” as scenarios. Our main purpose is to define the scope
of action of SBFL in programming learning context. For this
reason, we want to answer the research questions:

RQ1) What are the preconditions to use SBFL in students’
programs, according to their tests’ results?

RQ2) SBFL performance depends on the programs’ defects
configuration?

RQ3) Which are the scenarios of defects configuration in
which SBFL performance is good or is jeopardized?

SBFL is a technique that dynamically analysis a program in
order to calculate the likelihood of a given component to be
faulty. In this study, each logical line of the code (program
lines excluding comments, headers and blank lines) is
considered a component. It means that, the likelihood of being
faulty is calculated for each line according to the technique
algorithm. This value is referred as index s, for suspicious. It
represents the similarity between the line spectrum and error
vector (see Section III.A). We chose Jaccard heuristic to
compute the similarity coefficient in this study because it is a
simple strategy that yields good results on related work [5].

Initially, we inspected the dataset and determined which
program submissions could be used as subject of this
investigation. Such definitions of criteria helped us to answer
the first research question. In sequence, we executed SBFL
strategy to calculate s indexes for each program line and to
create the rank. These are the steps of the process: Firstly, for
each test of the test suite associated with that programming
assignment, we generate an execution trace of the program.
Each trace has a set of lines that represents the lines exercised
during the test execution. Secondly, we compute the hit-matrix
and the error vector (Fig. 1) for those executions. Then, we
calculate the s value of each line using the Jaccard similarity
coefficient SJ described in (1) with the values from Table I [3].

In Table I, C11 represents the number of failed tests that
executed that line. C10 is the number of passed tests that hit
such line. C01 is the number of failed tests that do not exercise
the line and C00 is the number of passed tests that do not hit the
line. All those values are calculated from the hit-matrix and
error vector. Finally, we create a rank with the values of s. In
theory, the lines more likely to be faulty are on the initial
ranking positions.

(1)

TABLE I. DICHOTOMY TABLE REPRESENTING THE STATES OF A LINE

Test Result
Line Hit

Yes = 1 No = 0

Failed = 1 C11 C01

Passed = 0 C10 C00

The index s, calculated using Jaccard similarity heuristic,
can range from 0 to 1. With this in mind, we perceived four
possible situations when we observed the SBFL rank and
compared with the real localization of defects in students’
programs. Table II presents these scenarios.

In order to answer posed research questions, we searched
the dataset and found programs that match each one of these
situations. We performed a qualitative evaluation in such
programs to better understand SBFL performance on those
cases. Furthermore, there were other programs that did not fit
in those categories and presented notable characteristics such
as: multiple lines of errors, dead code and runtime errors. They
also helped on the definitions of SBFL applicability scope.

TABLE II. SCENARIOS OF DEFECTS OBSERVATIONS IN REGARDS TO SBFL
SUSPICIOUSNESS INDEX.

s
Real Defects Found

Yes = 1 No = 0

High (>=0.5) S1 S2

Low (< 0.5) S3 S4

C. Case Study
In the case study, we conjectured if SBFL could really help

us to identify which are the lines responsible for the faults
observed in students’ programming assignments. So that, the
values obtained through the technique could be used to
generate feedback in the context of programming learning. In
order to test it, we applied SBFL and used a set of evaluative
metrics to analyze its results and practical significance. To
conduct this study, we formulated the following research
question:

RQ4) Is the quality of diagnosis delivered by SBFL good
enough to generate useful feedback about faults localization in
novice programming assignments?

In answering this research question, we applied SBFL
technique to a set of programming assignments, as described
on the previous section. This set of assignments was collected
from mid-term exams of different course editions of
Programming I. Experienced instructors manually assessed and
annotated the programs highlighting its errors. We executed
automatic tests and collected faulty program submissions. We
also manually analyzed these submissions to make sure that the
faulty lines were indeed identified. This inspection was work
intensive, but it was fundamental to this study. Its results was
used to compose the baseline of the study, an oracle of “true
positives” faults, used to compute the evaluation metrics.

We instrumented the AAS to calculate s indexes and
generate SBFL rank. The order in this rank indicates the
likelihood of a line to be faulty. After applying the technique
for each submission, we evaluated the success of the fault
localization in contrast to the baseline using different metrics.
Precision and recall are traditional metrics of information
retrieval. They are used in this study with the following
meaning:

- Precision: Measures the fraction of the “number of lines
marked as faulty by SBFL, which are real faulty lines
according to the baseline” by the “total number of lines
indicated by SBFL”.

- Recall: Measures the fraction of the “number of lines
marked as faulty by SBFL, which are real faulty lines
according to the baseline” by the “number of faulty lines
according to the baseline”.

In addition, we used another metrics proposed by Abreu
and colleagues to evaluate SBFL diagnosis quality in terms of
accuracy (qd) and quality of the error detection (qe) [3]. We
are going to briefly describe the equations and the meaning of
its compound values. Finer details about the underlying
motivation can be found in [3].

Accuracy represents the quality of diagnosis of the
technique in locating a faulty line along the program. It means
the percentage of the program lines that does not need to be
inspected when searching for a fault by traversing the ranking.

Let d ∈{1, …, N}be the index of the faulty line. For all j
∈{1, …, N}, sj is the similarity coefficient calculated for the
line j. The ranking amplitude also considers that when two
lines have the same similarity coefficient, we use the average
ranking position for them. The first term |{j|sj > sd}| counts the
number of lines ranked before the faulty line. The term |{j|sj
sd}| calculates the number of lines with the same or higher
similarity coefficient compared to the faulty line [5].

(2)

The value of accuracy is calculated considering the rank
amplitude and the total number of lines of code N, according
to (3).

(3)

The metric error quality detection aims to quantify a
problem of diagnosis based on the observation of tests results.
An error only appears when the faulty line is exercised by a test
case. In this sense, the purpose of this metric is to measure the
“unambiguity of the passed/failed” data in relation to the fault
being exercised [3]. Equation 4 computes the metric using the
definitions of Table I:

(4)

V. RESULTS

A. Exploratory Study
The dataset of this study contains 10,357 students’

programs: 7,670 passed all tests and 2,687 failed at least one
test. We are investigating what are the preconditions to use
SBFL in students’ programs, according to their tests’ results.
As SBFL is a technique to locate faults, clearly we are not
interested on functionally correct submissions, i.e. when they
pass all test cases. The requirements to use SBFL in students’
programs, is to have traces of failed and passed executions. In
the subset of codes that failed at least one test 1,031 codes did
not passed any test (38.37%). It means that we can apply SBFL
in 1,656 of 2,687 codes with defects (61.63%).

Although this result could be considered a large number,
for the dataset we evaluated, it is important to understand what
kind of submission is not “suitable” for using SBFL as a
strategy for fault localization. Code submissions that did not
pass in any test case may present failures on the algorithm or
strategy to solve the problem. Possibly the student does not
understood the problem specification or does not know how to
program it correctly and need to start its code over. Depending
on the test suite, it also may occur that a program passes “by

chance” in few test cases. Overall, SBFL is not suitable for
these cases, as its purpose is to help to pinpoint faults. Students
whose code submissions are “almost right” can benefit better
of the information obtained from SBFL results.

In order to study the functioning of the technique in regards
to the programs’ defects configuration, we sought the dataset in
order to locate programs that fits on the scenarios S1, S2, S3 and
S4, as defined on Table II. We present examples of real student
code for each scenario and discuss how the suspiciousness
index s can be interpreted. Then we highlight the lessons
learned when looking for defects using SBFL, in programs
with such defect configurations. For each example code, the
values of s are on the left side and the real defects are
underlined.

S1) Defect found in line with high s value. In this scenario,
the faulty line is on the top positions of SBFL rank. This could
be considered the ideal case: as s index is high. One who is
looking for defects in the code can find it almost directly. Fig.
2 (of Section III) shows an example of program of this
scenario. This program was tested against four test cases. It
passes two and failed other two tests. Lines whose s value is
0.5 were executed in all test cases. The value of s of line 6 is
0.0, as this line was not executed in a failed test. The value of s
of line 7 and 8 is 1.0, as they are executed in failed runs. In
fact, line 8 is only executed when the test fails, as the real
defect is found on it. Lines 7 and 8 are the top-ranked lines
according to SBFL.

S2) Defect not found in line with high s value. In this
scenario, the faulty line is not on the top position of SBFL
rank. The program example, showed in Fig. 3, was tested
against 5 test cases and failed 2 tests. In this scenario, the faulty
line (line 7) is not the top most line on SBFL rank. The highest
value of s indexes is 1.0, corresponding to line 6. This happens
because this line is executed in all the failed runs. Although the
faulty line is not on the first rank position, it is one of the top
most lines ranked. In this sense, one who is looking for defects
in the code can find it in few lines attempts. So, this scenario
also represents a successful case of SBFL use. This program
can be fixed if we substitute the if statement on line 7 by an elif
when checking if the sum is divisible by three.

S3) Defect found in line with low s value. In this scenario, all
lines have low values of index s. This indicates that all lines
were executed in at least one successful test. However, some
lines were not executed on failed runs. Although, no line in this
example presented high values for the suspiciousness index s,

when the rank is composed the faulty line (line 9) is in one of
the highest positions of the rank, see Fig. 4. The problem of the
faulty statement of this program is a truncate division
operation. In Python version 2.7, the result of an integer
division is truncated which may result in a failure for some
inputs: when b is not a multiple of 2*a. To effectively correct
this code, it is necessary to convert int values into floats. This
could be done in line 9 or in lines 2 and 3. This ambiguity may
make it harder to find a way to correct the fault but the
technique still gives a good hint. For this reason, we argue that
SBFL, in this scenario, also can help to produce useful
information about the fault localization.

S4) Defect not found in line with low s values. In this

scenario, the faulty line does not appear on top most positions
of SBFL rank. It means that SBFL failed in suggests the lines
that contain the real defect. In this example, presented by Fig.
5, the faulty line is line 7. To better understand this situation,
we debugged this code and we found that the failure happened
because we short-circuit (don't evaluate) the elif statement
when the second input (dna_2) is lower than the first input
(dna_1). Thus, in any situation in which "dna_3 < dna_2 <
dna_1" we will observe the same problem. To correct this
program, it is necessary to substitute elif to an if condition.

 This scenario is not common to happen. In fact, it was hard
to find a situation where a defect was not indicated correctly by
the highest SBFL value. We identified that situations like this
can happen when the defect is located in the conditional
structure, such as if/elif/else. When the alternative condition is
accepted the other conditional test is not executed, even in
failed runs. This situation poses a great challenge to this
strategy.

Other perceptions about SBFL functioning and
interpretation were observed on programs that does not fit on
the characteristics of the scenarios previously described.
However, SBFL can be applied and give us insights about the
code execution or defect location. For example, when you have
information about lines that were not executed (dead code) is
possible to reason about a possible defect on the condition that
make that code unreachable.

Fig. 3. Student code with the suspicious value on the left side and the
faulty statement underlined. Example of scenario 2.

0.1 1. import math
0.1 2. a = int(raw_input())
0.1 3. b = int(raw_input()
0.1 4. c = int(raw_input())
0.1 5. delta = b**2 - 4*a*c
0.1 6. if delta < 0:
0.0 7. print "no real roots"
0.2
0.3
0.3
0.0
0.0
0.0
0.0
0.0

8. elif delta == 0:
9. x = -(b)/(2*a)
10. print "%s = %.2f" % ('x', x)
11.else:
12. x1 = (-b+math.sqrt(delta))/(2*a)
13. x2 = (-b-math.sqrt(delta))/(2*a)
14. print "%s = %.2f" % ('x1', x1)
15. print "%s = %.2f" % ('x2', x2)

0.4 1. num1 = int(raw_input())
0.4 2. num2 = int(raw_input())
0.4 3. num3 = int(raw_input())
0.4 4. sum= num1 + num2 + num3
0.4 5. if sum % 3 == 0 and sum % 5 == 0:
1.0 6. print "fizzbuzz"
0.6 7. if sum % 3 == 0:
0.0
0.0
0.0

8. print "fizz"
9. elif sum % 5 == 0:
10. print "buzz"

Fig. 4. Student code and the value of suspicious index on the left side of
each line and the faulty statement underlined. Example of scenario 3.

B. Case Study
In this subsection we report on the results of the study that

helped us to answer the research question that drove our study:
Is the quality of diagnosis delivered by SBFL good enough to
generate useful feedback about faults localization in novice
programming assignments?

We studied five programming assignments (PA),
emphasizing different learning outcomes of programming
learning: (1) for loops, (2) sorting, (3) conditional structures,
(4) lists and (5) while loops. These PA were chosen due to its
high failure rate (53.59%). Table III shows each PA and the
data about their total number of submissions and the number of
failed submissions. Additionally, it shows the number of
submissions suitable for SBFL use, failed submissions that
pass at least one test.

TABLE III. PROGRAMMING ASSIGNMENTS DATA ABOUT SUBMISSIONS AND
TESTS FAILURES

 Submissions Failed Passed at least 1 test

PA_1 29 24 19

PA_2 31 17 3

PA_3 18 10 5

PA_4 16 8 3

PA_5 87 38 28

TOTAL 181 53.59% 59.79%

The quality of SBFL diagnosis was assessed using the

metrics defined in Section IV: precision, recall, accuracy and
quality of error diagnosis. PA_2 and PA_4 values were omitted
from the results table. Each one has only 3 submissions. The
manual evaluation of these programs revealed severe defects
caused by multiple lines in 4/6 programs. As we learned in the
exploratory study, programs with such characteristics are not
suitable to SBFL strategy. Table IV shows the average of the
evaluative metrics for the others programming assignments.

TABLE IV. AVERAGE VALUES OF EVALUATION METRICS

 Recall Precision qd qe

PA_1 1 0.18 0.84 0.17

PA_3 1 0.13 0.82 0.79

PA_5 1 0.08 0.73 0.30

 Recall Precision qd qe

Avg 1 0.10 79.67% 42.00%

The first two metrics (recall and precision) present
contrasting values. Recall value is perfect for each
programming assignment presented on Table 4. It means in
practice, that all real faulty lines are successfully detected by
SBFL technique. However, the precision value is low, meaning
that many lines are detected, but some of them are false
positives. This behavior was expected since SBFL strategy
includes creating a rank of possible faulty lines to be inspected
in a given order, so that a great part of the code could be
exonerated of being inspected. It is likely that the top-ranked
lines present the defect.

The quality of defect diagnosis is measured on metric qd.
This measure shows the accuracy of SBFL in terms of the
percentage of lines of code that do not need to be considered
when searching for a defect on the code. The values obtained
for each PA are considerable high. The metric quality of the
error detection qe measures, in practice, how good is the test
suite used to apply SBFL to a given programming assignment.
It seems that the values obtained for this metric does not follow
any trend. They can be considered low values, meaning that the
quality of error detection for our dataset is not good. However,
in a deeper analysis, we could not observe correlation between
the measurements of: accuracy (qd) and the quality of error
detection (qe). This result corroborates Abreu and colleagues’
findings [3]. It means that even if the test suite used to apply
SBFL technique results in low error detection quality, the
diagnosis accuracy is still high.

VI. DISCUSSION
There is a set of necessary preconditions, regarding tests’

results, to use SBFL to locate faults in a given programming
assignment. Besides failing in at least one test case, what is
obvious as our aim is to locate failures, it is also necessary to
pass at least on test case. Though, the test suite must have at
least 2 test cases. In dataset we evaluated on the exploratory
study, 61.63% of code with failures met these requirements and
could be used to assess SBFL.

The performance of SBFL technique depends on the
programs’ defect configuration. In the exploratory study, we
identified four error scenarios and characterized other errors
configurations. It helped us to better understand the meaning of
SBFL suspiciousness indexes and devise hints on how to look
for the fault. For example: If there is dead code in the program,
it is important to understand why the test suite did not exercise
such lines. Possibly, the defect is on the statement that
precludes that code to be executed. Another lesson learned on
using SBFL strategy is that if the defect were not found on the
lines top-ranked consider analyze the neighborhood. It is
worthy to verify conditional expressions near those lines to see
if there is some defect there, especially if the defect were not
find on top ranked lines.

There are indeed some scenarios in which SBFL
performance is jeopardized. This technique is useful to
highlight obvious and punctual defects. Programs containing

Fig. 5. Student code with the suspiciousness index value on the left side
and the faulty statement underlined. Example of scenario 4.

0.1 1. dna_1 = raw_input()
0.1 2. dna_2 = raw_input()
0.1 3. dna_3 = raw_input()
0.1 4. small = dna_1
0.1 5. if len(dna_2) < len(smal):
0.5 6. smallest = dna_2
0.0 7. elif len(dna_3) < len(smal):
0.0 8. smallest = dna_3
0.1 9.print "%s %d" % (smal,len(smal))

multiple lines of errors, structural problems or error on its
problem solving strategy is not suitable for applying SBFL.
Even when manually evaluating punctual defects, there existed
few situations where SBFL was not able to locate the fault. The
type of feedback generated with SBFL information, in
programming learning context, is useful and ideal for situations
in which the program is “almost right”.

Overall, we considered the quality of diagnosis delivered
by SBFL good enough to generate useful feedback about fault
localization in novice programming assignments. At least for
the dataset on the performed case study, SBFL accuracy was
on average 80%. It means that guided by SBFL rank, one just
need to scan 20% of the program to find it defect. This result
approximates to the values obtained by other studies that
applied SBFL in contexts such as spreadsheets [4], multi-agent
systems [5] and software products [3].

VII. CONCLUSIONS AND FUTURE WORK
This paper investigated the use of SBFL, a fault localization

technique, on programs produced by students of introductory
programming. This technique relies on program spectra,
defined as a set of program’ statements that were active during
an execution. It predicts the likelihood of each program
statement to be responsible for faulty executions. In order to
make better use of this information, regarding to pedagogical
context, instructors or AAS developers must fine-tune it before
delivering to students.

We discussed how to interpret the values of SBFL
suspiciousness index and the limitations of use of this
technique. Our exploratory study characterized programs
according to their errors configurations in scenarios. We claim,
as lessons learned from this study, that SBFL is useful to
pinpoint punctual defects. It is worthy to note that this
technique is not fail-proof and there exist scenarios where
looking only for the top most positions in SBFL rank may not
be enough to find the fault. We report a case study evaluation,
using real programming assignments, highlighting good results
in terms of diagnostic accuracy: using SBFL we just need to
look at 20% of the code in order to find the fault. This result
corroborates with other studies found on the literature and
obtained an approximate result when applying SBFL to other
software engineering contexts.

The main contribution of this work, to instructors and AAS
developers, is the investigation of SBFL benefits and
limitations, as promising lightweight alternative to find faults
in students programs and, as a new source of information, for
student feedback generation. As future work we address the
need of further investigation in the scenario in which the
technique performance was jeopardized: when the fault is
found on the conditional statement. Furthermore, it would be
worthwhile to use item response item theory in order to
validate the test suite provided to the programming assignment,
since its quality is fundamental to this approach.

ACKNOWLEDGMENT
The authors would like to thank Programming I instructors

and students at UFCG for their valuable collaboration. This
research was partially sponsored by the agreement No
754664/2010 between UFCG and ePol/DPF.

REFERENCES
[1] R. Singh, S. Gulwani, and A. Solar-Lezama. “Automated feedback

generation for introductory programming assignments”. In PLDI, pp 15–
26, 2013.

[2] M. Striewe and M. Goedicke. “Using run time traces in automated
programming tutoring”. In ITiCSE, pp 303–307, 2011.

[3] R. Abreu, P. Zoeteweij, and A. van Gemund. “On the Accuracy of
Spectrum-based Fault Localization”. In Proc. of Testing: Academic and
Industrial Conference Practice and Research Techniques-MUTATION
(TAICPART-MUTATION), pp 89–98, Windsor, UK, 2007. IEEE
Computer Society.

[4] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, and J. Saraiva,
“Smelling faults in spreadsheets,” in Proc. 30th IEEE Int. Conf. Softw.
Maintenance Evol., 2014, pp. 111–120

[5] L.Passos, R. Abreu and R. J. F. Rossetti., "Spectrum-based fault
localisation for multi-agent systems", In Proc. 24th International
Conference on Artificial Intelligence (IJCAI'15), 2015, AAAI Press, pp.
1134-1140

[6] K. Ala-Mutka, "A Survey of Automated Assessment Approaches for
Programming Assignments", In Computer science education, vol. 15, pp
83-102, 2005.

[7] P. Ihantola, T. Ahoniemi, V. Karavirta and O. Seppälä, "Review of
recent systems for automatic assessment of programming assignments",
In Proc. 10th Koli Calling International Conference on Computing
Education Research (Koli Calling '10). ACM, pp. 86-93.

[8] B. Cheang, A. Kurnia, A. Lim, and W. Oon. “On automated grading of
programming assignments in an academic institution”. Comput.
Educ. 41, 2. pp. 121-131, September 2003.

[9] S. H. Edwards, "Improving student performance by evaluating how well
students test their own programs", In J. Educational Resources in
Computing, Vol 3, 2003, pp.1–24.

[10] H. S. Edwards, J. Snyder, M. A. Pérez-Quiñones, A. Allevato, D. Kim,
and B. Tretola. 2009. “Comparing effective and ineffective behaviors of
student programmers”. In Proc. of the fifth international workshop on
Computing education research workshop (ICER '09), pp. 3-14.

[11] S. Gulwani, I. Radiček, and F. Zuleger. “Feedback generation for
performance problems in introductory programming assignments”.
In Proc. of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014), pp. 41-51.

[12] R. Cardell-Oliver, “How can software metrics help novice
programmers?”. In Proc. of the Thirteenth Australasian Computing
Education Conference. Australian Computer Society, Inc. Vol 114,
2011, pp. 55-62.

[13] H. Blau and J. E. B. Moss, "FrenchPress Gives Students Automated
Feedback on Java Program Flaws", In Proc. ACM Conference on
Innovation and Technology in Computer Science Education, 2015, pp.
15-20.

[14] B. Edminson and S.H. Edwards, "Applying Spectrum-based Fault
Localization to generate Debbuging Suggestions for Student
Programmers", In Proc. of the 2015 IEEE International Symposium on
Software Reliability Engineering Workshops, pp. 93-99.

[15] R. A. Bittencourt, D. M. B. dos Santos, C. A. Rodrigues, W. P. Batista
and H. S. Chalegre, "Learning programming with peer support, games,
challenges and scratch," Frontiers in Education Conference (FIE), 2015.
32614 2015. IEEE, El Paso, TX, 2015, pp. 1-9.

Appendix D

Questionnaire – Do learners think that

qcheck is useful?

150

Minha experiência usando o Qcheck
Queremos melhorar a experiência de uso do Qcheck ­ uma ferramenta que dá dicas de como melhorar a
qualidade dos códigos dos exercícios de programação 1. Para isso contamos com o seu valioso feedback.
Estas perguntas objetivam descobrir como foi a sua experiência usando o Qcheck.

1. Endereço de e­mail *

2. Em que momento (ou como) você está usando o qcheck na resolução de suas atividades de
programação?

3. Como você processa (ou interpreta) a mensagem fornecida pelo teste?

4. Quais são os pontos positivos e negativos da ferramenta?

5. O que impede ou o motiva/motivou a utilizar o qcheck?

6. Após uso a resolução dos warnings do qcheck, seu código se apresenta:
Marcar apenas uma oval.

1 2 3 4 5

Pior que a primeira versão Melhor que a primeira versão

 Envie para mim uma cópia das minhas respostas.

Powered by

Appendix E

Avaliação da Legibilidade de Programas

Escritos por Alunos Iniciantes

153

Avaliação da Legibilidade de Programas Escritos por Alunos
Iniciantes

Eliane Cristina de Araujo1, Dalton Serey Guerrero1, Jorge César Abrantes de
Figueiredo1

1Departamento de Sistemas e Computação
Universidade Federal de Campina Grande – Campina Grande, PB – Brasil

{eliane,dalton,abrantes}@computacao.ufcg.edu.br
Abstract. In this paper, we report on a study that was carried out, in the
context of an introductory programming course, to investigate how code
readability correlates with the students’ achievements. We suggest a simple
metric to automatically assess beginners code readability. The study revealed
a correlation between code readability and students’ course performance. In
parallel, we brought to light other factors which, taken together with the
readability metric, can better explain students performance in the course.
Resumo. Neste artigo, apresentamos um estudo realizado, no contexto de um
curso de introdução à programação, em que investigamos a relação entre a
legibilidade dos programas produzidos pelos alunos e o seu desempenho na
disciplina. Propusemos e avaliamos uma métrica simples de legibilidade de
código Python para programas produzidos por estudantes de programação
introdutória. Nossos resultados confirmam que há uma correlação entre a
métrica de legibilidade dos programas e o desempenho dos alunos, indicando
que a métrica captura um aspecto considerado pelos professores na avaliação
dos programas.

1. Introdução
O desenvolvimento de programas por estudantes em cursos introdutórios de
programação é uma das atividades que mais pode contribuir na aprendizagem desta
disciplina. Entretanto a avaliação destes programas e o consequente feedback dado ao
aluno, demanda muito trabalho do professor. Por essa razão, professores têm optado por
diminuir a quantidade de programas/exercícios propostos para os alunos (Cheang et al
2003).
Os sistemas de verificação e testes automáticos de programas podem reduzir a carga dos
professores e viabilizar o estímulo à produção de muitos programas pelos estudantes.
Nesse modelo, os programas são verificados automaticamente e se produz um feedback
imediato para o estudantes sobre o programa-solução produzido (Campos et al, 2004).
Os verificadores, por se nortearem pelos testes automáticos, consideram para avaliação
apenas a resposta produzida pelos programas para um conjunto pré-definido de casos de
teste, desconsiderando as qualidades internas do código submetido pelo estudante.
Neste trabalho, apresentamos os resultados de um estudo cujo objetivo foi analisar
como a legibilidade dos códigos dos alunos pode ser avaliada de forma automática e
como ela se relaciona com o desempenho dos estudantes no curso. Para isso,
propusemos uma métrica para avaliar a legibilidade do código produzido por

programadores iniciantes e que pode ser obtida de forma automática. Neste estudo
procuramos verificar em que medida a capacidade de escrever programas mais legíveis
pode estar correlacionada com o desempenho do aluno no curso.
O trabalho está organizado da seguinte forma: a Seção 2 apresenta o referencial teórico
e alguns trabalhos relacionados à legibilidade de códigos. A seção 3 explica a
metodologia adotada para realizar o estudo e descreve o contexto de produção dos
dados relatando a forma como foram coletados e tratados. A Seção 4 apresenta os
resultados alcançados pelo estudo, que são analisados e discutidos na seção 5. Os
comentários finais, bem como as idéias para refinar e melhorar o trabalho, são tratados
na seção 6.

2. Referencial Teórico e Trabalhos Relacionados
Estudos apresentam diferentes definições sobre a noção de legibilidade. Posnett et al.
(2011) consideram que a legibilidade é a impressão subjetiva que os programadores têm
sobre o quão difícil de entender é determinado código. Para estes autores, um trecho de
código é dito legível se for fácil de ler, compreender e manter. No entanto, esta noção
de legibilidade está fortemente relacionada a fatores humanos cognitivos, o que a torna
difícil de quantificar e medir. Buse et al. (2010) propuseram uma métrica para medir a
legibilidade do código com base em uma pesquisa experimental envolvendo anotadores
humanos. Posnett apresentou uma outra proposta, seguindo a mesma linha.
Os modelos para legibilidade de código tanto de Buse quanto de Posnett, foram obtidos
experimentalmente observando códigos produzidos sob condições diferentes dos
programas de alunos iniciantes. Em geral, os programas de iniciantes são respostas para
exercícios de programação propostos pelos professores, podendo ser abertos ou não
(Blinkstein, 2011). Estes programas são compostos geralmente por poucas linhas de
código. Além disso, cursos introdutórios de programação tendem a não optar pelo
paradigma de orientação a objetos, mesmo utilizando linguagens que dêem este suporte.
Os programas avaliados pelos autores citados na obtenção de suas métricas são escritos
em linguagens orientadas a objetos. Só este fator já é motivo de impedimento para a
utilização das métricas por eles propostas.
Neste trabalho, propusemos uma métrica para avaliar a legibilidade dos programas dos
estudantes considerando a adesão ao padrão de codificação estabelecido pela
comunidade Python que é a linguagem de programação adotada para a escrita de
programas no curso. Esta simplificação da análise da legibilidade é amparada pela
experiência da comunidade de prática da linguagem através dos objetivos do Guia de
Estilo para Código Python, conhecido como PEP08 (Python, 2013) “(...) as regras aqui
descritas objetivam melhorar a legibilidade dos códigos Python e torná-los consistentes
com o amplo espectro de códigos Python desenvolvidos mundialmente.”.
Com uma ferramenta de verificação de conformidade ao padrão PEP08, medimos a
quantidade de itens do código que estão em desacordo com este guia de estilo. Neste
estudo, a métrica legibilidade foi reduzida em sua complexidade e quantificada de
forma inversa: medindo o número de PEP08-defeitos (ao que chamaremos apenas de
defeitos). Por exemplo: o programa 1 será mais legível que o programa 2 se ele
apresentar menos defeitos de legibilidade que o outro.

3. Metodologia
A pesquisa foi realizada no contexto da disciplina Programação I do curso de
Bacharelado em Ciência da Computação da UFCG. É dado um grande enfoque à
resolução de problemas e ao desenvolvimento de muitos programas. Essa abordagem é
suportada por um ferramental técnico de apoio ao ensino desenvolvido pela própria
equipe pedagógica. Em síntese, do ponto de vista do estudante, o ferramental permite
que ele: tenha acesso ao enunciado dos exercícios propostos cuja resposta é um pequeno
programa ou função e envie sua resposta ao professor. Estes sistemas ampliaram a
possibilidade de interação com o aluno fora de sala de aula através da Web. Desta forma
foi possível, atendendo às necessidades da disciplina, aumentar a quantidade de
exercícios propostos sem prejuízo para o feedback dado ao aluno. O sistema viabiliza a
correção mais rápida e padronizada dos exercícios.
Neste contexto, realizamos um estudo de caso utilizando dados do curso ministrado no
período de 2011.2. Para a realização do estudo verificamos os programas dos alunos
coletados após submissão ao sistema de correção e armazenados no banco de respostas.
A submissão do programa indica, em sua maioria, que o aluno considera que aquela é
uma implementação válida para especificação do programa dada no exercício.
Assumimos que cada exercício proposto ao aluno é a especificação de um programa. Os
exercícios que são propostos ao longo do curso são corrigidos automaticamente através
do testador automático. Os exercícios propostos nas provas são testados
automaticamente e também corrigidos por um professor, ou seja, há uma avaliador
humano para checar além da corretude outros atributos como: desempenho, eficiência,
estilo, complexidade, legibilidade, etc.

3.1. Medidas, variáveis e conjunto de dados
A questão de pesquisa que norteou o estudo foi: Como a qualidade – corretude e
legibilidade – e a quantidade de código produzido pelo estudante ao longo do curso
podem influenciar seu desempenho?
A corretude dos programas foi medida em função da nota emitida pelo testador
automático, que é uma ponderação entre os casos de testes em que o programa é bem
sucedido, a relevância e a quantidade de casos de testes totais formuladas pelo
professor. A quantidade de código produzida pelo aluno no período de estudo foi
medida em termos de questões para as quais foi submetida pelo menos uma solução e
também em número de linhas de código destes programas (LoC, tradicional métrica da
engenharia de software). O desempenho do estudante no curso foi medido em função de
sua nota na segunda prova da disciplina. Optou-se por analisar as notas da segunda
prova por ser uma avaliação central no curso, cobrindo aproximadamente 70% do
conteúdo. A legibilidade dos programas foi medida considerando o padrão de
codificação estabelecido pelo PEP08. Como já ressaltado, medimos o número de não-
conformidades ao padrão encontradas no código, ou seja o número de defeitos. A
densidade de defeitos é a medida que procura quantificar a habilidade que o aluno tem
em escrever programas com menos defeitos, ou seja mais legíveis. Para tanto, medimos
a quantidade de defeitos de um conjunto de programas e dividimos pelo seu número de
linhas de código (LoC).
Os dados que utilizamos no estudo referem-se aos programas desenvolvidos pelos
estudantes e as notas atribuídas pelo testador automático, com base nos testes propostos

pelos professores. Foram coletados 170 programas de 76 alunos. Consideramos os
programas submetidos pelos estudantes no período compreendido entre duas provas da
disciplina (intervalo de aproximadamente de 30 dias). Apenas a última versão
submetida de cada questão enviada ao sistema por cada aluno, foi considerada para a
análise. Os dados coletados neste período correspondem a 64 exercícios diferentes. No
total, para esta fase, coletamos 3080 programas de 76 alunos.

4. Resultados
Observamos uma série de programas escritos pelo aluno e calculamos o índice
densidade defeitos. Procuramos estabelecer a correlação entre este valor e a nota do
aluno na segunda prova da disciplina, mostrado na Tabela 1. Além disso, aprofundamos
a análise dos mesmos fatores através do agrupamento dos indivíduos de acordo com a
nota. Usamos o método de Spearman para o cálculo da correlação, já que não
verificamos normalidade no conjunto de dados.

 Questões LoC Defeitos Densidade

 Nota do aluno 0,550 0,530 0,365 0,056

Tabela 1 – Valores dos coeficientes de correlação

A Tabela 1 mostra os coeficientes de correlação entre a nota da prova e as variáveis:
número de exercícios resolvidos, número de linhas de códigos produzidas - LoC,
número de defeitos de legibilidade e densidade de defeitos de legibilidade. Há uma
correlação moderada/forte (0,550) entre o número de questões resolvidas por cada aluno
com sua nota na segunda prova. A mesma força, também é observada na correlação
entre o número de linhas de código produzidas pelo aluno e a nota da prova (0,530).
Chama à atenção o valor positivo encontrado para o coeficiente de correlação entre a
nota na prova e a densidade de defeitos de legibilidade (0,056), embora em valor
absoluto, seja inexpressivo. Este valor parece contrariar resultados obtidos em um
estudo correlacional anterior quando avaliamos os programas individualmente,
mostrando que para programas corretos, quanto menos legível o programa menor será
sua nota por um avaliador humano. Tal diferença nos motivou a refinar o estudo,
agrupando estudantes em função de seu desempenho geral na disciplina, cujo resultado
pode ser visto na Figura 1.

Figura 1 - Coeficientes de correlação entre a nota atribuída pelo professor e os

fatores número de linhas de código produzidas, número de questões
resolvidas e densidade de defeitos de legibilidade em cada grupo de

estudantes. Grupo 1 = regular ou fraco. Grupo 2 = bom. Grupo 3 = excelente.

Os alunos foram agrupados em três grupos. No grupo 1 estão os estudantes com notas
inferiores a 7.5, com desempenho considerado de regular a fraco. No grupo 2, estão os
estudantes com notas entre 7.5 e 8.7, com desempenho considerado bom. E, finalmente,
no grupo 3, os estudantes com notas acima de 8.7, com desempenho considerado
excelente pelos professores. Novamente produzimos os coeficientes de correlação entre
as notas na segunda prova e os fatores LoC, número de questões e densidade de defeitos
de legibilidade.
O gráfico da Figura 1 mostra que para o Grupo 1, os alunos com desempenho regular ou
fraco, o volume de programação realizado até a data da prova está mais correlacionado
com nota do aluno do que a densidade de defeitos de legibilidade. Em contraste, para os
alunos do Grupo 3, o valor absoluto da densidade de defeitos de legibilidade é bem
superior aos outros fatores neste grupo. Isto indica que na análise das notas dos alunos
do Grupo 3, as maiores notas são dos alunos com menor densidade de defeitos de
legibilidade em seus códigos. Os resultados encontrados para o Grupo 2, mostram uma
correlação negativa moderada entre densidade de defeitos e a nota dos alunos. Contudo,
o valor absoluto da força desta correlação é menor que a dos outros dois fatores,
consideradas correlações moderadas.

5. Análise e Discussão
A correlação moderada entre a quantidade de código produzida e a nota do aluno na
prova corrobora com a noção intuitiva de que quanto mais o aluno pratica, produzindo
código, melhor será a sua nota. Entretanto, a análise da qualidade do código, no quesito
legibilidade deve ser ponderada mais cuidadosamente. A correlação observada entre o
total de defeitos de legibilidade acumulados nos programas do aluno até a data da prova
e nota nesta prova é de 0,365. O que parece indicar que, mesmo de forma moderada,
quanto maior a quantidade de defeitos maior a nota do aluno. Temos que considerar,
contudo, que a quantidade de defeitos é função das variáveis número de questões
resolvidas e total de linhas de código produzidas. Uma forma melhor de interpretar essa
correlação seria: quanto mais o aluno pratica e, portanto, quanto mais se dispõe a errar,
mais chances tem de ter um bom desempenho.
A medida de densidade de defeitos procura eliminar a influência dos fatores ligados ao
volume de prática de cada estudante, dividindo a quantidade de defeitos pelo número de
linhas de código do aluno. Neste caso, contudo, a correlação observada foi praticamente
inexistente (0,056). Agrupamos os estudantes de acordo com sua nota, a fim de obter
resultados mais esclarecedores. Observa-se que a correlação entre a nota do aluno e a
densidade de defeitos de legibilidade dos seus programas aumenta à medida que
aumenta a nota do estudante (em valores absolutas, temos para o grupo 1: 0,05; para o
grupo 2: 0,27; e para o grupo 3: 0,33). Esse fenômeno parece indicar que há uma lógica
na forma de avaliação dos programas que é dominada pela componente corretude. Isto
é, o professor só parece levar em conta a questão da legibilidade dos programas, depois
que o programa é considerado minimamente correto, em termos do número de casos de
teste a que satisfaz. Ainda assim, é necessário observar que ou a densidade de defeitos
de legibilidade não é o único fator envolvido ou a métrica não captura adequadamente o
conceito de legibilidade adotado pelo professor.

6. Conclusões e Trabalhos Futuros
Neste trabalho realizamos um estudo para investigar como a legibilidade dos códigos
dos alunos relaciona-se com o desempenho dos estudantes no curso. Para isso,
propusemos uma métrica simples e automática para o cálculo da legibilidade dos
códigos produzidos por programadores iniciantes.
Como resultado deste trabalho, verificamos que o desempenho do estudante é
fortemente correlacionado com a quantidade de código por ele produzida ao longo do
curso. No geral, o estudo mostra que produzir programas legíveis é menos relevante
para o desempenho do que produzir muitos programas. Na análise por grupos de acordo
com o desempenho, no entanto, a legibilidade dos códigos é um fator relevante quanto
melhor for o desempenho do aluno.
O estudo mostra que, além da corretude, a legibilidade é um fator analisado pelo
professor na composição da nota. É importante questionar, como um caminho natural
para uma futura pesquisa, quais são os outros fatores? Também interessaria repetir o
estudo com outros conjuntos de dados, a fim de dar maior sustentação aos resultados.
Incluir legibilidade de código e outros aspectos de qualidade interna em uma suíte de
testes automáticos enriquece o feedback dado aos estudantes. Isto pode ser útil não só
para os cursos regulares/presenciais de programação que são fortemente baseados em
resolução de problemas como também nos MOOCs – Massive Open Online Courses
onde a escala é uma questão relevante.

Referências
Blinkstein, P.. 2011. “Using learning analytics to assess students' behavior in open-

ended programming tasks”. In: Anais do 1st International Conference on Learning
Analytics and Knowledge (LAK '11). ACM, New York, NY, USA, 110-116.

Buse, R. P. L. e Weimer, W. R.. 2010. “Learning a Metric for Code Readability”. In:
IEEE Trans. Softw. Eng. 36, 4 (Julho 2010), 546-558.

Campos, C. P. e Ferreira, C. E. . “BOCA: um sistema de apoio a competições de
programação (BOCA: A Support System for Programming Contests)”. In: Workshop
de Educação em Computação (Brazilian Workshop on Education in Computing),
2004, Salvador. Anais do Congresso da SBC, 2004.

Cheang B., Kurnia A., Lim A., e Oon W.. 2003. “On automated grading of
programming assignments in an academic institution”. In: Comput. Educ. 41, 2
(setembro 2003), 121-131. 30-7

Posnett, D., Hindle, A., e Devanbu, P. “A simpler model of software readability”. In:
Anais do 8th Working Conference on Mining Software Repositories (MSR '11).
ACM, New York 2011, NY, USA, 73-82.

Style Guide for Python Code. http://www.python.org/dev/peps/pep-0008/#introduction.
[Online. Acesso 01-março-2013].

