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Resumo

No ensino de programação, é fundamental que os estudantes realizem atividades

práticas. Para que sejam bem sucedidos nessas atividades, os professores devem guiá-los,

especialmente os iniciantes, ao longo do processo de programação. Consideramos que

o processo de programação, no contexto do ensino desta prática, engloba as atividades

necessárias para resolver um problema de computação. Este processo é composto por uma

série de etapas que são executadas de forma não linear, mas sim iterativa.

Nós consideramos o processo de programação adaptado de Polya (1957) para a resolução

de problemas de programação, que inclui os seguintes passos [Pól57]: (1) Entender o

problema, (2) Planejar a solução, (3) Implementar o programa e (4) Revisar. Com o foco

no quarto estágio, nós almejamos que os estudantes tornem-se proficientes em corrigir as

suas estratégias e, através de reflexão crítica, serem capazes de refatorar os seus códigos

tendo em vista a boa qualidade de programação.

Durante a pesquisa deste doutorado, nós desenvolvemos uma abordagem para gerar e

fornecer feedback na última fase do processo de programação: avaliação da solução. O

desafio foi entregar aos estudantes feedback elaborado e a tempo, referente ás atividades de

programação, de forma a estimulá-los a pensar sobre o problema e a sua solução e melhorar

as suas habilidades. Como requisito para a geração de feedback, comprometemo-nos a não

impor mais carga de trabalho aos professores, evitando-os de criar novos artefatos. Extraímos

informações a partir do material instrucional já desenvolvido pelos professores quando da

criação de uma nova atividade de programação: a solução de referência.

Implementamos e avaliamos nossa proposta em um curso de programação introdutória

em um estudo longitudinal. Os resultados obtidos no nosso estudo vão além da desejada

melhoria na qualidade de código. Observamos que os alunos foram incentivados a melhorar

as suas habilidades de programação estimulados pelo exercício de raciocinar sobre uma

solução para um problema que já está funcionando.
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Abstract

In programming education, the development of students’ programming skills through

practical programming assignments is a fundamental activity. In order to succeed in those

assignments, instructors need to provide guidance, especially to novice learners, about

the programming process. We consider that this process, in the context of programming

education, encompasses steps needed to solve a computer-programming problem.

We took into consideration the programming process adapted from Polya (1957) to

computer programming problem-solving, that includes the following stages [Pól57]: (1)

Understand the problem; (2) Plan the solution; (3) Implement the program and (4) Look

Back. Focusing on the fourth stage, we want students to be proficient in correcting strategies

and, with critical reflection, being able to refactor their code caring about good programming

quality.

During this doctoral research, we developed an approach to generate formative feedback

to leverage programming problem-solving in the last stage of the programming process:

targeting the solution evaluation. The challenge was to provide timely and elaborated

feedback, referring to programming assignments, to stimulate students to reason about the

problem and their solution, aiming to improve their programming skills. As a requirement

for generating feedback, we compromised not to impose the creation of new artifacts or

instructional materials to instructors, but to take advantage of a usual resource already created

when proposing a new programming assignment: the reference solution.

We implemented and evaluated our proposal in an introductory programming course

in a longitudinal study. The results go beyond what we initially expected: the improved

assignments’ code quality. We observed that students felt stimulated, and in fact,

improved their programming abilities driven by the exercise of reasoning about their already

functioning solution.
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Chapter 1

Introduction

A central activity in programming courses is the development of students’ programming

skills with practical programming assignments. Enough practical activities are paramount

to students to effectively achieve learning goals. The assessment of these activities and

the feedback provided by instructors about them is a fundamental aspect of the learning

process. Besides showing that learning outcomes are being met; literature has shown that

feedback can affect the learning process at various levels and have different functions, such

as: stimulating, informing, correcting, making suggestions, completing knowledge, advising

and so on [Nar08].

In fact, one of the central pillars of the interaction between instructor and learner is the

feedback provided by the first about the work produced by the last [Yai14]. In his essay,

Yair argues that grades offer the obvious and tangible type of feedback, they are merely a

’right-wrong’ indication and have a rather limited benefit to students. Useful feedback goes

beyond right-wrong or pass-fail information. Students need to be aware of how they are

performing regarding the instructors’ expectations and how they can improve. This type of

feedback is usually referred in educational research as "formative feedback". Shute explains

that formative feedback "can signal a gap between a current level of performance and some

desired level of performance or goal" [Shu08] .

In 2005, Bennedsen and Caspersen discussed the idea of "revealing the programming

process" as fundamental to teach novice programming students [BC05]. According to them,

the idea of perceiving the development of computer programs as "programming process" is

not new. The process encompasses a set of activities that are interactively executed and can

1
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be revisited, differently from a linear process.

In a similar perspective, Polya’s methodology on how to solve mathematical problems

[Pól57] was mapped and adapted to programming teaching and learning scenario. In

fact, learning how to program goes beyond than acquiring abilities on language syntax or

managing a development environment. It requires analytical skills that must be trained.

We believe that the development and strengthening of problem-solving skills may help to

learners cross the chasm between understanding the problem specification and programming

an adequate solution. Figure 1.1 summarizes the programming problem-solving stages,

adapted from Polya’s methodology [Tho97].

Figure 1.1: Stages of Computer Programming Problem-Solving Stages.

In this work, we use Thompson (1997) definition of the programming process, which

encompasses a set of steps needed to solve a computer-programming problem. These steps

are: (1) Understand the problem, (2) Plan the solution, (3) Implement the program and

(4) Look back. This process can be seen as a natural and effective pathway for students

accomplish their programming assignments. However, the whole process can be too complex

to novices whilst struggling with their first programming experiences, increasing their need

for guidance and assistance.

As the number of enrollments in programming courses is steadily growing and

teachers’ duties go far beyond teacher-student time, one-to-one personalized feedback about

programming assignments is rare. In this context, Automated Assessment Systems (AAS)

play an important role as they allow for rapid, frequent, cheap and standardized feedback.

Furthermore, data acquired about students’ interaction with the course instructional materials

by these systems, increase teachers’ ability to track, map and assess students learning
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patterns [Yai14]. They empower and aid instructors to direct their efforts to higher analysis

levels.

In almost every programming course nowadays, AAS provides delivering, submission

and assessment of programming assignments. Those systems give to students different

levels of feedback about their assignments, depending on the AAS specific strategy. Several

strategies to automatically assess programs have been adopted by those systems [AM05].

Most of them provide feedback on functional correctness test-based analysis.

Nowadays, AAS have extended their scope and include features such as: gamification

[IE14], test coverage analysis [JU97], managing human-authored feedback, contest

adjudication [Mil11], secure remote code execution [MM13], and more [DSPQ+17].

A positive aspect highlighted by Gulwani (2014) about AAS, is that they provide

immediate automated feedback and can enable new pedagogical benefits such as allowing

resubmission opportunities to students who have submitted imperfect solutions and

providing an immediate diagnosis for teachers on class performance, allowing them to adapt

instruction accordingly [GRZ14]. On the other hand, students still need a better support from

them to deal with the complexity of programming process. It is not rare that students feel

helpless, as they cannot make progress in their programming assignments autonomously.

Sometimes, they are only able to move on after a personal interaction with instructors or

teachers assistants. The problem is that many students do not receive this qualified feedback

because they avoid human contact or simply do not have a chance to make it on time.

In a broader sense, this work is in the context of computer supported learning tools

aimed at helping to teach and learn how to program. It explores automated assessment as a

mean to provide personalized instruction to students about their programming assignments

in introductory programming courses. Given that, it relies on fully automated strategies and

can be applied to distance learning or online courses such as MOOCs and others.

1.1 General Problem and Proposed Solution

The problem is that the feedback provided by automated assessment systems is focused

mainly on the "Implement the Program" phase of the programming process, which comprises

the production of a functional correct program according to a set of tests. The "Look Back"
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phase, when the problem solution is evaluated, is usually neglected. Students need a better

support from AAS to deal with the complexity of this phase and its particular difficulties.

We claim that timely automated feedback can be generated and delivered to students to

satisfy this need. We intend to generate rich feedback, which is useful formative feedback

typically provided by human instructors. We argue that there are aspects of program

validation feedback, in terms of code quality, that can be automated.

Our proposal is to provide feedback to the last phase of the programming process,

typically neglected by usual AAS. We intend to obtain information at a low cost, using

instructional materials already produced by instructors to the programming assignment. The

feedback will be timely delivered to the students by an AAS.

We claim that it is possible to assist novice programmers with adequate and useful

feedback, in order to improve programming problem-solving support, increase student

programming skills with the aim to leverage introductory programming learning.

1.2 Overview of this Thesis

During this doctoral research, we explored the generation and delivery of automated

feedback to students during the programming process. The challenge was to provide

timely and enriched feedback that stimulates students to reason about problems and their

solution and to improve programming skills. We intended to leverage programming

problem-solving teaching and learning generating enriched automated feedback, regarding

students programming assignments, with information typically delivered by human

instructors. Furthermore, we constrained our strategies of feedback generation to obtain

information at a low cost from instructional materials already produced by teachers, aiming

to minimize burdens imposed to them.

We focus deeply on providing feedback with respect to the last phase (4 - Look Back),

when the program is revisited and refactored. Usually, when the program passes all tests

cases and is considered functionally correct, students move on to a new assignment. In

fact, we have observed in our empirical studies that the vast majority of students neglect

this fourth phase, as they do not make new submissions after the first correct one. In other

situations, when the program is manually evaluated, they are assessed under qualitative and
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subjective factors considered by instructors. However, manual and personalized feedback is

produced at a high cost and, depending on the number of students and assignments, may be

prohibitive. We dedicated our efforts on generating automated feedback on code quality for

novice’s programming assignments.

In an effort to achieve this purpose we conducted research studies, such as experiments,

surveys and case studies, to gather empirical evidence to answer the following research

questions:

RQ1: How can we generate automated code quality feedback based on

introductory programming teachers’ expectations?

RQ2: Can students improve the code of their programming assignments

prompted by timely and automated feedback?

RQ3: Is it possible to improve students programming skills stimulating

reflection about their code quality?

We proposed and evaluated a set of software metrics that could be used to provide

qualitative feedback about novice programming assignments. We proposed and developed an

automated feedback tool, which was plugged into an AAS and evaluated its efficacy. Finally,

we evaluated in a real introductory programming course its effects during a period of time

and found positive results. Although, there is room for adjusts and customizations so that we

could improve the approach.

1.3 Contributions

In summary, this Ph.D. research proposes and evaluates strategies to improve automated

feedback provided by AAS to support computer-programming problem solving of

introductory programming learners. Students lack elaborated feedback, typically provided

by humans, in key parts of this process. The main contribution of this Ph.D. thesis relies

on the automated generation of code quality feedback, targeted to aid students on the fourth

stage, known as "Look back", of the programming problem-solving process.

We proposed a set of metrics that are able to capture, in some extent, teachers notion of

students’ code quality; then we implemented and evaluated in a real programming course
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a proof-of-concept feedback tool plugged into their AAS. Results found in our longitudinal

evaluation goes beyond what we initially expected: the improved assignments’ code quality.

We observed that students felt stimulated, and in fact, improved their programming abilities

driven by the exercise of reasoning about their already functioning solution. To sum up, the

contributions we aim to deliver with this work are:

1. A proposal to provide feedback generation, based on software measures, to aid

students in improving their code on instructors’ code quality perspective;

2. A proof-of-concept tool – qcheck – built to refine and evaluate the proposal. It is

publicly available to use;

3. A set of lessons learned on providing automated feedback related to program quality

improvement through an automated assessment tool in an introductory programming

course.

1.4 Thesis’ Outline

This document is organized as follows:

Chapter 2 – Background: This chapter presents the background in computer science

education that motivated us to pursue this research and the theoretical framework relating to

concepts we used to develop this work. Experienced readers may safely skip it.

Chapter 3 – Feedback Generation to Code Quality Improvement: This chapter

details our proposal and strategies on providing automated feedback about code quality. It

summarizes the roadmap of this research and discusses the methodology we followed to

construct knowledge and evaluate our claims.

Chapter 4 – Generation of Automated Code Quality Improvement Feedback: This

chapter details our proposal and strategies on providing automated feedback about code

quality. It shows our proposal on how to generate automated code quality feedback.

Chapter 5 – Code Quality Improvement Prompted by Automated Feedback: This

chapter discuss the possibility of the code quality improvement feedback delivered to

students directs the improvement of their programming assignments’ code.
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Chapter 6 – Consequences of Code Quality Improvement Feedback on the Learning

of Programming: Lastly, this chapter considers the consequences to learners of providing

feedback about code quality improvement using the proposed tools during a programming

course. We are going to present our main findings in a longitudinal study and discuss its

implications to learners, instructors and the course itself. Furthermore, we are going to

present an evaluation of the approach performed with the students that used the tool in their

activities.

Chapter 7 – Discussion: This chapter sums up the discussion about the proposal and

ideas we brought to light in this doctoral research. We will observe the practical significance

of those approaches and pedagogical implication arisen by them. In addition, we will briefly

contrast it with other related works and present some threats to our conclusions validity.

Chapter 8 – Conclusions: This chapter will concisely wrap up this work emphasizing

what was done and why it was good. Furthermore, it will address some opportunities and

future works that might be done to extend and improve this research.



Chapter 2

Background

Multi-national and multi-institutional studies on Computer Science Education (CSE)

literature showed that teaching programming to novices is a worldwide challenge

[LAF+04][MM13] [MAD+01]. Many researchers and academics discuss alternatives

to better teaching and learning programming skills [SS89] [RRR03]. Others examine

characteristics and difficulties of novice students [ESPQ+09] [LAMJ05]. Different

approaches have been proposed to minimize the hurdle imposed to learners, each one with

their own advantages and drawbacks.

In this thesis, we argue that formative feedback has the potential to leverage programming

learning in helping students to improve their code quality while reasoning about another

potential solutions. Hattie and Timperley (2007) published a thorough review of the potential

of feedback on learning and achievement. They propose that effective feedback must answer

three major questions asked by students to her teacher/instructor: "Where am I going? (What

are the goals?), How am I going? (What progress is being made toward the goal?), and Where

to next? (What activities need to be undertaken to make better progress?" [HT07]. However,

there are some issues to consider when generating and delivering feedback, for example, type

of feedback, characteristics of the learner that will receive it, timing (delayed or immediate).

Shute (2008) presented a broad literature review and summarized recommendations and

guidelines for formative feedback. Her study presents suggestions about "what to do" and

"what to avoid" when delivering formative feedback [Shu08] . She also discusses formative

feedback timing and issues regarding learners’ characteristics. Technology that supports

programming learning challenges and opportunities or grader systems, has the capability

8
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to empower the generation of adequate and timely feedback, bearing in mind the learner

characteristics.

Research and development of this kind of systems are not new as reviewed by [AM05]

[IAKS10]. In a comprehensive survey, Douce discussed the development of those systems

for the last forty years [DLO05]. Following a chronological approach, he classified the

systems into generations. Recently, communications technologies have pushed the frontier

of e-learning forward with the advent of massive open online courses. So, systems that

support programming learning have become even more complex and important.

In this chapter, we present an overview of CSE literature addressing the subjects in

this thesis and aiming to make this document self-contained. Firstly, we discuss aspects of

cognition and learning. Then, we present some programming learning challenges, based on

the literature and in our practice as teachers. We also identify opportunities to contribute

and advance the research in this field. Next, we examine the potential of feedback to

programming learning. For clarification, we define feedback related terms that will be used

in the rest of this document. Lastly, we provide an overview of the existing assessment

system for introductory programming learning and intelligent tutoring systems, which are

works related to ours. We discuss different strategies employed by those systems to support

learning. We devoted special attention to an AAS developed in-house to our university

introductory programming course - TST. This system has been used for, at least, five years

and it is in constant evolution. We used data collected by TST in our studies.

2.1 Considerations About Learning and the Science of

Instruction

Learning theory is a vast research area that congregates psychologists, neuroscientists,

educators and other professionals. Numerous and important specialists contributed to

constructing knowledge about the science of learning and its challenges, such as: Jean Piaget

(1896-1980), Lev Vygotsky (1896-1934), Benjamin Bloom (1913-1999), Seymour Papert

(1929- 2016), Richard Mayer (1947-) and so on. Due to their ideas, they are usually cited in

researches and works that ultimate intend to improve learning.

According to cognitive sciences, human learning and working activities rely on two types
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of memory: working memory and long-term memory. When people are in learning mode,

the new information acquired from the environment is processed in working memory to form

knowledge structures that are stored in long-term memory. When new information enters

in working memory they must be integrated into pre-existing structures of the long-term

memory [Cas07].

"Learning depends on the learner’s cognitive processing during learning

and includes (a) selecting - attending to the relevant incoming material;

(b) organizing - organizing the incoming material into coherent mental

representation; and (c) integrating - relating the incoming material with existing

knowledge from long-term memory" [May08].

In this work, we propose to provide elaborated feedback during the programming process

to improve students’ learning. We searched for the theoretical basis on the "Science of

Instruction" so that we could guide our work. We shall refrain from discussing in more

details this theory here, as it is not our intention to provide a comprehensive survey about the

theme in this session. In summary, the key elements of the science of instruction, which are:

1. Reducing extraneous processing - cognitive processing that does not support the

instructional goal and is attributable to confusing instructional design;

2. Managing essential processing - cognitive processing needed to mentally represent the

incoming material and that is attributable to the complexity of the material;

3. Fostering generative processing - cognitive processing aimed at making sense of the

incoming material, including organizing and integrating it with prior knowledge.

Mayer (2008) presented and discussed a set of principles to elaborate and design

multimedia instruction so that it could achieve the above-mentioned principles [May08].

We also tried to adhere to some of these principles when proposing and implementing

our proof-of-concept tool for code quality improvement feedback – qcheck. Our proposal

in providing feedback on code quality improvement seeks the alignment with his theory

and cognitive load reducing principles. These principles were targeted on the "Design of

Multimedia Instruction" [May08], but we consider that it can also be applied to our context

of programming instructional material.
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We attempted to "reduce extraneous processing" using the Coherence principle.

Reducing extraneous processing is important so that learners do not waste cognitive capacity

in activities that do not contribute to their final goals. To follow the coherence principle,

implemented a plugin to the already existing AAS - TST - used by the introductory

programming course.Qcheck installation and usage were extremely similar to the way

students are used to doing with TST. In fact, we tried to adhere qcheck to TST as much

as we could, but they are independent software. In this sense, students did not have to learn

a new instruction on how to use it, but only how to make use of it.

Then, we followed the principle of the Personalization, in order to foster generative

processing. On the first experiments and versions of qcheck software the textual style of

the feedback messages were too impersonal (example: "There are too many lines of code").

This principle claims: "People learn better from a lesson when words are in conversational

style rather than in formal style." [May08]. The theoretical rationale of this technique is that

the conversational style induces learners to create a sense of partnership with the message

narrator, so they will try harder to make sense of what is being advised. According to

this principle, we updated all feedback messages to conversational style (example: "Your

program has too many lines of code."). We did not have empirical evidence about the effect

size of this change in our research.

2.2 Programming Learning Challenges

Programming is considered to be a central and a distinguished feature of Computer Science

curriculum [Fin99]. Programming learning in higher education challenges researchers and

educators with different issues experienced worldwide. Lahtinen and colleagues, in a study

about the difficulties of novice programmers (2005), argued:

"Programming is not an easy subject to be studied. It requires the correct

understanding of abstract concepts. Many students have learning problems due

to the nature of the subject. In addition, there are often not enough of resources

and students suffer from a lack of personal instruction. Also, the student groups

are large and heterogeneous and thus it is difficult to design the instruction so

that it would be beneficial for everyone. This often leads to high drop-out rates
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on programming courses" [LAMJ05].

In this subsection, we are going deep into this claim resembling discussions about those

issues reported in the literature and presenting our own personal experience as an instructor.

At the end of this section, we will discuss the results of Lahtinen studies and debate if it still

remains valid 10 years later.

Programming encompasses abstract concepts and problem-solving skills that usually

frighten students that have just started a university course. Many students that cannot make

progress on introductory programming course simply consider dropping out the course, as

they feel inadequate to it. Difficulties in this subject may mine self-esteem and deeply

affect psychologically students. High dropout rates are considered to be an important issue

in computer science education and are referred as motivation by many studies [VAW14]

[Yad11]. Another issue referred by educators is that "students suffer from a lack of personal

instruction" [LAMJ05].

Teachers’ assistants and tutors are other critical resources to practical programming

classes. They support learners with their assignments and, sometimes, assess their code

or test production providing them with feedback on how to make it better. However, it

is expected that assistance and assessment provided by them, follow the same instructors’

criteria and orientations. For example, the course instructors explained that there are

situations to better use ’While True’ statement. This same orientation must be replicated

in laboratory classes. It may be difficult to standardize teachers’ assistants and tutors

procedures since they have their own judgments and limitations. One-to-one tutoring

provided by them is simply prohibitive for the number of students enrolled in some courses,

mainly in online courses [SGSL13]

A different approach that some courses are adopting to deal with the challenge of

providing feedback about programming assignments to a large number of students is

peer-review. In this case, other "peers" review the student code and generate a feedback

with suggestions on how to improve the code or even grading it. But this approach has its

own problems, besides standardization mentioned before. It has been reported that students

may wait for a long time to get any feedback [SGSL13].

In a different perspective, there are controversial debates about what are the most

effective or adequate methodology and teaching approach to teach programming. As
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programming issues were considered one of the top grand challenges in Computer Science

education, McGettrick and colleagues stated the following, as research objectives in this

area:

"(...) Teach using the right methods by choosing between different approaches:

for example, those based on formal definitions of syntax and semantics and those

relying on informal description and example; between conventional lectures and

practical classes and e-learning, collaborative learning, peer tutoring and other

approaches, and using the right assessment and evaluation strategies" [MBI+05].

Fincher, more than a decade before, comparatively evaluated methodologies and models

for teaching programming. She presented four approaches that used to be adopted by

different instructors, named and classified them regarding their degree of abstraction:

literacy, computation as interaction, problem solving and syntax-free [Fin99]. As a

conclusion, the study argues that practitioners need to be reflective and to know the possible

approaches in order to adhere to them. It is also pointed that there is no quantitative evidence

of the success of any of those teaching approaches and this is a challenge for researchers in

computer science education.

Years later, Vihavainen and colleagues systematically reviewed the literature in teaching

approaches for programming in order to measure the effects of each proposed intervention

and, finally, to yield quantitative evidence of success [VAW14] [VPL11]. They evaluated the

study of thirteen approaches, or teaching interventions, using pass rates as a success metric.

The interventions were grouped on activities tagged as:

• collaboration;

• content change;

• contextualization;

• CS0 (it means a preliminary course, before the introductory programming course);

• game-theme;

• grading schema;
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• group work;

• media computation;

• peer support;

• support activities (such as tutors, more teaching hours, etc);

They found that the novel approach improved pass rates, on average, in one third in

comparison with the traditional method previously adopted. Vihavainen et al. assured that

it was not possible to choose the most effective approach. They suggested that perhaps just

the willingness of educators to change and their move from a traditional way of teaching to

a new one will be responsible for improvements in pass rates.

In fact, low pass rates or high failure rates in introductory programming courses have

been used as motivations of hundreds of studies [BC07]. Still, there are few studies devoted

to quantitatively evaluate what is considered to be this high failure rate in introductory

programming courses worldwide. Bennedsen and Caspersen, in a first attempt of producing

evidence about this, conducted a survey among different institutions about failure rates

[BC07]. The study results found on average 33% of failure to the number of enrollments.

They concluded that this number is not "alarmingly high", but they cannot make firm

conclusions about this since the number of respondents of their survey was considerably

low.

In a worthy initiative, Watson (2014) revisited Bennedsen (2007) study animated by the

same aim: to find "substantial evidence" of introductory programming courses failure-rates

[WL14] [BC07]. This study was awarded the best paper at the 19th edition of the annual

conference on Innovation and Technology in Computer Science Education - ITiCSE/ACM.

They systematic reviewed the literature and performed statistical analysis to find the average

of introductory programming course failure-rate worldwide. Their study sample size was

a double of the previous work sample size. However, it is still statistically not sufficient

to make firm global conclusions. The authors were very cautious when stating their

conclusions. Interestingly, the average failure rate found was 32.3%. It was almost the same

as the one obtained by Bennedsen and Caspersen survey. The study also concluded, just

like their predecessors, that this number is not "alarmingly high", but it has a "considerable

potential for improvement" [WL14].
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The reality of our introductory programming courses at UFCG is not as different as the

worldwide scenario as we can observe in Table 2.1. It is worthy to observe that on the term

2014.2 there was a drastic change in pedagogical direction of that course. Instructors have

adopted flipped classroom with mastery learning strategy and this change might have caused

the improvement of pass/fail numbers.

Motivated by this possibility of improvement and by the need to teach programming

more effectively there is a great academic effort in this area. Mcgettick et al. claims "when

we set out to teach programming skills to students, we are less successful than we need to be

and ought to be." Also, "we might teach programming more effectively, making better use

of resources and with greater student and staff satisfaction." [MBI+05].

Table 2.1: Pass and Failure Rates of Computer Science Students at the UFCG Introductory

Programming Course.

Term Passed (%) Failed (%)

2011.1 69.0 31.0

2011.2 51.0 49.0

2012.1 77.0 23.0

2012.2 54.0 46.0

2013.1 72.0 28.0

2013.2 63.4 36.6

2014.1 70.6 29.4

2014.2 84.5 15.5

Many educators fiercely study to better understand the programming process and how the

novice programmer comes to understand and major this cognitive ability [SS89] [RRR03].

In general, they report that students have greater difficulties in understanding the "big

picture" of the programming process, such as abstraction or how to solve the problem

programmatically, than details about it, such as programming language syntax.

Lahtinen and colleagues deep dived into novice programmers’ universe to find out,

in minor details, what were their struggles. Specifically, they aimed at contrasting if

programming courses that are adopting Java/C++ corroborate with difficulties reported in
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previous studies. They conducted a multi-institutional survey answered by more then

500 students, that perceived as the most difficult issues in programming were [LAMJ05]:

"understanding how to design a program to solve a certain task; dividing functionality

into procedures and finding bugs from their own programs." The findings corroborates

with previous studies: the biggest issue educators need to deal with is to help students to

master programming abstract concepts. Furthermore, they find that students and teachers

have a different perception about content understanding. Students tend to overestimate their

understanding about the subject. On the other hand, teachers have a more realistic view of

students’ difficulties as they assess their exams [LAMJ05].

In fact, students need to be aware, through instructor’s feedback, about how they are

performing in a particular task and, certainly, in the whole course. This knowledge may

drive their attitudes about giving up or keeping on trying to succeed. Shute declares that

feedback can reduce the uncertainty about how well the student is performing, as it closes

the gap between learners understanding and, the desired understanding [Shu08]. We also

agree with this claim and recognized the opportunity to improve the support to students

through providing formative feedback along the programming process to let them achieve

the expected learning outcomes.

The challenge we address is narrowing the student’s self-referential assessment of their

knowledge, code production and expectations with the teacher’s assessment about them. In

fact, teachers have their own expectations about what is supposed to be mastered in a given

moment in the course, according to the exercises or lectures students have been exposed

to. These expectations are the so-called learning outcomes. Formative feedback seems to

be the key to uncover to the student the teachers’ expectancies, in a giving moment of the

programming process, about his/her code production.

2.3 Feedback and its Effects on Learning

There are numerous definitions about educational feedback in the literature. In this

document, we adhere to Hattie and Timperley conceptualization that conceive "feedback

as the information provided by an agent (e.g. teacher, peer, book, etc) regarding aspects

of one’s performance or understanding" [HT07]. Though, feedback is a consequence of a
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process started before. For example, a teacher proposes a set of programming assignments

to students. As a result, students produce programs as responses to those assignments. It is

possible to provide feedback about the product, the code itself, and also to students’ attitudes

towards the programming process.

In educational research, feedback can be characterized according to its purpose as (a)

formative, to support and improve students learning skills and (b) summative, to make a

judgment and to declare that learning objectives have been reached by the student [DLO05].

In a simplistic analysis, we can say that formative feedback is addressed to students and

teachers and drives improvements on their teaching and learning activities along the process.

Summative feedback is provided at the end of a cycle, aiming to measure the student growth,

for example, students’ grades or progress reports. This kind of feedback is important not

only to students but also to teachers and educational institutions, in order to re-configure

courses or curricula.

In fact, formative feedback provided by instructors about the work produced by learners

is considered to be one of the central pillars of the interaction between them [GMD11]

[Yai14]. In his essay, Yair argues, "Grades offer an obvious and tangible type of feedback

(...) and have a rather limited benefit to students". Effective formative feedback assesses the

learners’ work and is composed of, at least, two components: verification and elaboration

[Shu08].

The most frequent strategy to perform verification in programming assignments is the

test-based assessment. A set of test cases produced by instructors is used to dynamically

verify students’ programs. On the other hand, feedback elaboration on programming

assignments has a lot of variations. It can address different topics, such: test coverage,

when the programs were delivered (is it on time or delayed?), discuss code quality, guide

students to further studies on a given topic, propose instructional material to improve

understanding, etc. Formative feedback goes beyond "right-wrong" indication about the

student’s task. In the context of our work, the formative feedback includes all the information

and communication exchanged by learners and instructors that may contribute to modify

an erroneous behavior and to demonstrate that expected abilities have been mastered. In

fact, feedback closes the gap between learners’ current understanding and the desired

goal, according to instructors [Shu08]. Feedback has the potential to enhance learners’



2.3 Feedback and its Effects on Learning 18

performance, but when it effectively does?

There are several characteristics that must be observed to generate useful feedback. In

regards to timing, it can be classified as delayed or immediate feedback. For example, in

programming assignments, automated assessment systems can provide immediate test-based

feedback about each submission of the student’s code. It allows for students to instantly

discover if the submitted code meets the requirements expected to solve that given problem.

This automation can fasten studies sessions since students do not need to wait for an

instructor to assess the code. However, researchers are reconsidering this kind of immediate

feedback arguing that it may refrain students to think critically and thoroughly test their

code before submitting it [BE14]. This practice has possibly changed the student behavior

on the programming process, as they discourage the testing phase. Students can rely on the

instructor’s tests, which are executed when the program is submitted. Petit and colleagues

proposed an alternative to mitigate this issue delaying the feedback. They investigated a

throttling dynamic to accept code submissions, restricting students to submit only 3 times

in a period of 15 minutes [PHG+15]. In doing such, students are forced to submit a more

mature version of the program; delaying the feedback that students would receive. Delayed

feedback might be seen as positive as it provides the opportunity for reflection when a task

is difficult or it involves a deeper degree of processing [HT07].

In Narciss (2008) study, she discusses the content of the feedback for iterative learning

tasks [Nar08]. She presents a content-related classification that provides a "structured

overview of simple and elaborated feedback components by organizing the components with

regard to which aspect of the instructional context is addressed". Simple feedback messages

can be categorized according to their components as:

• KP – Knowledge of performance: Provide learners with a summative feedback (e.g.,

percentage of correctly solved tasks, number of errors, grade)

• KR – Knowledge of result/response: Provide learners with information on the

correctness or quality of their actual response or outcome (e.g. correct/incorrect,

flagging errors, good job)

• KCR – Knowledge of correct results: Provide the correct response or a sample

solution to a given task.
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Elaborated feedback messages can be categorized according to their components as:

• KTC – Knowledge about task constraints: Provide information on task rules, task

constraints and/or task requirements.

• KM – Knowledge about mistakes: Provide information on errors or mistakes (e.g.

correct/incorrect, flagging errors, good job).

• KC – Knowledge about concepts: Address conceptual knowledge by providing for

example response hints on concept attributes or attribute-isolation examples.

• KMC – Knowledge about metacognition: Address and elicits meta-cognitive

knowledge and strategies necessary for self-regulating the learning process (e.g.,

topic-contingent hints about useful sources of information).

In a similar perspective, other researchers characterize the feedback message in its

complexity. It refers to how much and what information feedback message must contain.

One can think that the more specific the feedback message, the better. However, a more

specific feedback that includes long texts can dilute the message that instructors want to

communicate. Lengthy or complicated explanations may be useless, as students will not read

them [Shu08]. In a recent study, Denny and colleagues proposed to enhance the compiler

errors messages in order to the user identify the error line and correct their code easily. They

included concrete examples illustrating the error that occurred and how to correct that kind of

error in a given situation. Surprisingly, the evaluation of this approach revealed that there was

no effect on students’ ability to correct their code errors [DSPQ+17] [DLRC14]. This study

illustrates that there must exist a balance between what is important and what is necessary to

exist in a feedback message to be useful.

Finally, another important perspective in order to evaluate feedback effectiveness is

related to the learner characteristics. There are many studies in feedback research proposing

to craft a different feedback message according to the learners’ characteristics. Personalized

feedback, the core of an adaptative/personalized learning environment, seems to be a

prominent area in computer-based education research.

Another studies, claims that there are gender differences in feedback consuming: boys

benefit less than girls from feedback [NSS+14] [TWV15]. Meaning that girls are more
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enticed than boys to modify their erroneous behavior in a given task, according to feedback

guidance and to improve their performance on it. However, we cannot assure that this

behavior would be reproduced in programming assignments. To the best of our knowledge,

none of those studies were replicated on introductory programming courses.

In closing, we claim that formative feedback potentially has the power to enhance

programming learning and teaching, but we still need more evidences to elect what are the

most effective approaches to do so. We know that feedback messages need to be objective

and clear. It must provide enough information to push the learner further on his or her

current understanding. It must be timely and adaptive, according to learners’ characteristics.

Certainly, it must be provided automatically.

2.4 Related Works

In this section, we are going to present some computer-based learning environments which

are in line with our proposal in this research. They provide students with valuable feedback

on the learning process. Initially, we discuss about automated assessment systems – AAS

– in the context of programming education. These are works related to ours in the sense

that the strategies we intend to use to deliver the generated feedback must be associated

with an AAS. Next, we summarize some aspects of intelligent tutoring systems. These

systems "are typically found toward the high end of the interactive spectrum" [KA07] of

computer-based learning environments. The discussion about feedback provided by those

systems was important to our work. Finally, we present the AAS adopted by Programming

1 course at UFCG. This system was used to help us in producing and gathering data about

students interaction with programming assignments during the course. Furthermore, it is

important to present TST to clearly delineate the scope of our research and existing related

works.

2.4.1 Automated Assessment in Programming Education

There exist many available automated assessment systems (AAS) focusing on introductory

programming assignments, such as WEB-Cat [Edw03], Mooshak [RSKPFVI14], Marmoset

[SHP+06], BlueJ [Jad05], among others. AAS became widely used in programming courses.
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However, they are not exactly a new approach, as the first appeared in 1960. Thenceforth,

they promise to produce objective and consistent feedback to students, while mitigate the

heavy workload of the instructors when performing manual assessment [DLO05] [AM05]

[IAKS10].

They are indeed fundamental to provide feedback to students and help instructors to deal

with modern challenges of programming courses such as increasing enrollments number,

e-learning, and MOOCs. Nevertheless, in this myriad of systems, it is worth to evaluate

what kind of information they provide on feedback and if students are effectively using it to

improve their programming practice.

In general, AAS employ comparable approaches and provide similar features [IAKS10].

The most common feature of automated assessment systems is code functional correctness

evaluation. A typical system executes a set of test cases, provided by the instructors, and

compares the expected output to the observed, obtained from students’ programs. Another

feature provided by AAS is grading [CAMF+03] [Nor07]. Grader systems may weigh other

factors, besides correctness, such as deadline penalty, resubmission times, type of errors, test

coverage, etc.

We claim that the richest possible feedback on students’ programs is the result of

human inspection and analysis of both functional and qualitative aspects of the code. Good

instructors enrich their feedback with impressions about the code quality to help students

to reason on their solution and leverage their critical abilities. Certainly, many subjective

aspects are indeed immeasurable, but we think that it is possible to find objective and

measurable factors on the code that reflect most of the so-called qualitative aspects reported

on the feedback provided by instructors in their assessments. This is part of our proposal and

will be explained afterward in this document. Appendix A presents a review on AAS in a

paper we submitted for publication at SBIE - Simpósio Brasileiro de Informática e Educação:

"Uma revisão sobre sistemas automáticos para a avaliação de atividades de programação".

2.4.2 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITSs) are computers’ programs intended to provide

personalized instruction and feedback to learners usually without requiring human teachers

intervention. These systems were born into Artificial Intelligence laboratories, evolved and
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spanned including knowledge from different areas such as cognitive sciences, psychology

and others. Usually, their development is highly grounded in human learning theories or

models. Even though, "no single teaching environment has been shown to be appropriate

for a majority of people or even a majority of domains, in part because human learning is

imperfectly understood" [Woo10].

The technological approach adopted by ITS potentially may produce highly

individualized, pedagogically effective, and accessible instructional material and to involve

more students in effective learning. They might unveil the extent to which students of

different gender, cognitive abilities, and learning styles learn with different forms of teaching,

given the capability of being sensitive to learners differences [Van06].

There are many projects which endeavor is to build and distribute an ITS for a given

knowledge domain. Also, it can be found in literature meta-analysis contrasting ITS

initiatives learning outcomes, suitability and effect sizes [KF16] [MANL14]. These works

first challenge is to come up with a common definition about such diverse systems. In

general, an ITS is a student-centered computer program whose objectives and strategies are

presented in Table 2.2 [MANL14].

Typically, an ITS targets to achieve the benefits of one-to-one tutoring [Blo84], in

contexts where students would otherwise have access to one-to-many instruction from a

single teacher (e.g., classroom lectures), or no teacher at all (e.g., online homework) [Van06].

"(...) this age of rapidly changing technology and Internet support of meaningful

interactions, intelligent tutors have the potential to provide a skilled teacher, or

community of teachers, for every student, anywhere, at any moment" [Woo10].

Furthermore, learners can benefit from impartiality, flexibility and standardized quality

of instruction from intelligent tutors. Also, they can evolve at their own pace, in order to

construct their own knowledge.

Achieving these benefits are possible given the design of the conceptual components

of an ITS. They are composed of rich and dynamic models which are: the domain model

that contains what is being taught, the student model that may contain common learners’

conceptions and misconceptions and the tutor model that represents the instructional strategy

adopted by the system. The following Table 2.3 describes the conceptual model of an ITS
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Table 2.2: ITS Objectives and Strategies.

Objectives?

Performs tutoring functions by (a) presenting information to be learned,

(b) asking questions or assigning learning tasks, (c) providing feedback

or hints, (d) answering questions posed by students, or (e) offering

prompts to provoke cognitive, motivational or metacognitive change

Strategies?

By computing inferences from student responses constructs either

apersistent multidimensional model of the student’s psychological states

(such as subject matter knowledge, learning strategies, motivations, or

emotions) or locates the student’s current psychological state in a

multidimensional domain model

How?

Uses the student modeling functions identified using those Strategies

to adapt one or more of the tutoring functions identified in Objectives.
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[MANL14].

Table 2.3: Conceptual Components of ITS.

Interface

Specially tailored for the ITS purpose. Through the system interface the learner

communicates presenting and receiving information. Often constrained to the subject

domain (e.g., algebra), the interface determines the moves the learner can make in

solving problems, seeking information or responding to questions.

Domain model

Represents the knowledge the student is intended to learn. The model is a set of

logical propositions, production rules, natural language statements, or any suitable

knowledge representation format.

Student model

Represents relevant aspects of the student’s knowledge determined by the student’s

responses to questions or other interactions with the system it also represents common

misconceptions or other faults in the student’s knowledge.

Tutor model

Represents instructional strategies such as feedback and content elaboration and delivering.

Example: When to offer a hint to a learner that is unable to generate a correct response or

assign problems that requires knowledge only slightly beyond the current student model.

All things considered, we can see that ITSs are an approach that can bring great benefits

to computer aided education and e-learning. There exist advances in different research lines,

motivated by ITS development and evolution, which can be used in other computer science

areas. However, it seems that these systems are conceptually more complex that what, in fact,

has been delivered, since the challenges imposed nowadays to on-line education are huge.

As an example of these challenges, Baker (2016) argues that will became essential that ITS

developers build models that are robust to instructor dynamic behavior and that change as

their context of application changes [Bak16].

Even though our proposal in this work aims to deliver personalized feedback in learning

activities as ITS do, it presents great differences in scope. We intended to present an approach
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that can be used by existing automated assessment systems of introductory programming

assignments. In this sense, as a conceptual requirement, we want to provide a low-cost

solution to instructors (and AAS developers) so they do not have to create more artifacts than

they usually do when proposing a new assignment (i.e. usually, the problem specification, a

set of tests and a reference solution) nor to learn a different language or model to implement

it. Our proposal is lightweight in comparison with a whole ITS. However, aspects such as

feedback and hints delivering, vastly studied in AIED (Artificial Intelligence in Education),

literature must certainly be considered.

2.4.3 TST – Programming Assignments Testing System

In this subsection, we will briefly present TST, the automated programming assignment

testing system adopted by Programming 1 course. This system was used as a test-bed for

our proposals in this thesis. For this motive, it is worthwhile to know its scope in order to

recognize the boundaries of our work. TST has been developed and evolved by Dalton Serey,

Programming 1 faculty at UFCG, with valuable collaboration of other colleagues, instructors

of the same course; especially Jorge Abrantes, pioneer on the present course configuration.

TST was tailored to support the Programming 1 course programming assignments and

other activities from students and instructors perspective. Instructors use TST system

to produce, test and publish instructional materials such as programming assignments,

quizzes and laboratory scripts. They also create, configure and control programming

practical activities, such as exams and marathons. Students use TST to have access to

their assignments and reports about their course performance. TST provides a personalized

experience for students, as they can only have access to activities according to their

performance on the exams (regarding the content unit). Besides, the list of activities is

randomly chosen for each student.

TST is a cloud application whose backend is built on Google App engine platform. This

server is accessed, through REST API, from a web application – tst-online, as seen in Figure

2.1, and command line clients. There are also TST workers aimed at executing assignments’

tests that run at another local cloud facility at UFCG. They were created to cope with the

server access overloading during exams. Authentication and authorization issues are dealt

using students institutional email provided by Google accounts service. Data referring to
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students and their submissions are stored at Google’s cloud storage facilities. A smaller

amount of data is shared through a Dropbox account so that other instructors can have an

easier access to them.

Figure 2.1: Students’ View of TST Web Interface.

Students’ typical routine to solve programming assignments using TST starts with a

command line invocation to login into the system. Next, they access tst-online to login

using Google accounts. In sequence, the students have access to their dashboard of ongoing

work assignments. They can ask for new activities, of an informed unit, according to their

performance in the course. From this point on, students interact with TST using command

line commands. These commands are used to check out the assignment’s files and test the

program. TST provides feedback about passed and failed test cases. Initially, students are

stimulated to locally test their program against a set of public tests. The test feedback

referring to public test cases are more elaborated as it shows the expected and obtained

output to a given input. When the program passes all public tests, it must be submitted to

TST server so it is possible to test it against a set of secret tests. When the activity is finished,

it must be closed at tst-online.

Instructor’s typical routine to create programming assignments to TST starts with the

problem creation. The specification must adhere to a pattern with the following sections:

problem title, problem description, input, output and examples of execution. Next, the
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instructor creates a test file composed of public and secret tests. The tests are specified

in markdown language in a .json file. Then, he creates a reference solution to the problem

and commits its file with private visibility. The programming assignment must be associated

with a unit and marked as available to use. There are many other features provided by TST,

such as activities versioning, but they are out of the scope of this summary.

TST modular architecture allows for the adherence of new commands as third party

plugins. We used this feature to implement tst-qcheck and tst-oracle software as custom

commands. They are the proof-of-concept tools we have created to test our proposals on code

quality improvement and problem specification clarification, respectively. These programs

use the same structure of TST installation, such as configuration files and libraries. However,

they are not distributed along TST and must be installed apart. It means that it is up to the

user to set their TST instance as they wish, including or not plugins.

In order to qcheck works, the instructors must include in their routine to the creation of

programming assignments a generation and inclusion of a configuration file: qcheck.json. It

is very simple to create a qcheck.json file. It is just necessary to execute a qcheck command

informing the reference solution and the file will be created and saved to the current directory.

This file must be committed with public visibility, to be distributed to users when they check

out the assignment.

On the students’ perspective, the use of qcheck is included in their routine to solve

programming assignments just after their first correct submission to TST Server. At this

point, it’s known that the program is functionally correct. Students run qcheck commands

to obtain feedback regarding code quality. This feedback is generated considering the

information contained on qcheck.json file. Next, the student refactors the code until she

finds "no warnings" message. A new submission must be done to TST server in order to

register the changes done locally. Older submissions to TST server are overwritten and it is

only took into consideration the last one.



Chapter 3

Feedback Generation to Support

Computer Programming

Problem-Solving

This chapter presents the general idea in providing automated formative feedback to support

the programming process and how we have conducted the research toward this intent.

Initially, it summarizes the roadmap of our studies and discusses the methodology we have

followed to construct knowledge and evaluate our claims. Then, it provides an overview of

the context in which the research happened and the strategies used to collect and filter data

used in our analysis. Lastly, it examines the metrics and briefly exposes the statistical tools

employed in the study.

In order to undertake the empirical studies on feedback generation, we need a tool

support. For this reason, we have implemented a software, that would later become a

TST plug-in: qcheck. This system is publicly available 1 and can be used for research

purposes. A brief overview of qcheck tool is provided in this chapter. This can be useful

to better understand the studies and the overall proposal of this thesis. Then, we will explain

the environmental set up we performed to conduct the studies. We consider as setting

up activities the instructional material we have produced to students, such as a guide to

code quality in Programming one and programming assignments used on the qualitative

exam, computational environment adapted to the experimental studies and more than one

1https://github.com/elianearaujo

28
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hundred activities that were instrumented to qcheck usage. The environmental setting up

was especially complex when we designed the longitudinal study. It required a long-term

planning and resilience to change plans as new situations appear.

3.1 Research Roadmap

The ultimate goal of this research is to leverage introductory programming learning. As

long as solving programming assignments plays a central role in this process, we focused

our attention on this learning activity. It is known that computer programming goes far

beyond crafting a code. In fact, teachers want that their students become proficient on solving

programming problems.

The automated generation and delivering of formative feedback are essential to support

this process mainly nowadays when we face a crescent interest on learning how to program.

For this motive, the scale is an important issue we have to deal with. Automated assessment

systems are an essential support for programming courses that deal with a high number of

students, assignments and scarce human resources. AAS, typically, delivers feedback to

students during the execution of programming assignments.

In this thesis, we propose an approach to generate automated feedback addressing the last

stage of the programming process. At this moment, the proposed solution to the problem will

be evaluated. In the original Polya method [Pól57], reasoning about other possible solutions

and the encouragement to improve the existing one happens in this stage. When mapping

this method to the programming process, is natural to think about software verification

and validation. Which means to verify if the software meets the specified functional and

non-functional requirements.

Apart from that, it is also necessary to assess the code in terms of readability, simplicity,

efficiency, among others. Those aspects are fundamental to assure software quality. The

process of perfecting code internal structure, improving its non-functional attributes and

maintaining the same external behavior, is known as refactoring. We proposed to provide

automated feedback so we can stimulate code refactoring aimed at code quality. Although

refactoring in software engineering has a broader definition and includes different concerns,

from this point of the document on we will refer to refactoring with this narrower perspective.
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We performed a study and found that functional correctness alone, verified by automated

assessment through tests, is not enough to explain the human assessment of a given

assignment. After that, we proposed a set of measures, inspired by software metrics and

the reference solution provided by instructors, to capture instructors quality expectations in

regards to students’ code to a given assignment. We performed a retrospective case study

to evaluate the effectiveness of this approach in explaining teachers’ manual grades. From

this point on, we conducted a sequence of experiments, case studies, exploratory analyses,

including a longitudinal study to refine and evaluate the proposal.

Firstly, we implemented a proof-of-concept tool, named qcheck, so that we can test

our proposals in providing automated feedback. In an initial experiment, we examined

if students would feel stimulated to refactor their code and improve its quality. We also

observed if they effectively were able to improve their code quality. Secondly, we wanted

to test if they improved their code because they used the tool qcheck, or if it happens in

spite of it. This behavior was assessed in another controlled experiment using code quality

feedback along the process. Then, we evaluated the validity of qcheck assessment. We

wanted to check if the notion of code quality expected by experts, who are introductory

programming course instructors, agreed with the tool code quality assessment. To this end,

we conducted a blind-study to examine the agreement and better understand the situations

when they disagree.

Finally, we conducted a longitudinal study in which we could perform quantitative and

qualitative analysis regarding students’ pattern of qcheck usage, post-feedback behaviors,

code quality comparisons and evolution of programming skills. During the period of study,

we were in laboratory classes and witnessed students’ successes and difficulties in using the

tool. It was a rich experience so we could gather insights about what is good and what needs

to improve in our approach. Lastly, we conducted another human evaluation, by this time

with students, in order to get their impressions about qcheck and the process of improving

code quality using the feedback it provides. In the whole period of this study, we collected,

under authorization, qcheck usage data. There is a lot more to discover mining this dataset.

We refer these activities as future works.
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3.2 Methods

This subsection presents the overall procedures applied on the empirical studies we have

conducted throughout this research. Even though they belong to different categories:

experiments, case studies, surveys and exploratory analyses, they share some common

characteristics that we grouped in this section. Furthermore, methodological particularities

of each study are detailed in its respective chapter.

3.2.1 Context

This research took place at UFCG in Computer Science undergraduate course. In particular,

we analyzed students and used data produced during their interaction in Programming 1 and

Laboratory of Programming 1 courses. These courses may be considered as one (theoretical

and practical classes respectively). They are the first programming course of Computer

Science major; so we can consider it equivalent to a CS1 course.

The research happened under the supervision of my advisors who were also part of the

academic staff of Programming 1 course. The staff is composed of 4 instructors, graduate and

undergraduate students that provide support as teacher assistants or students’ tutors. Students

are divided into three classes of Programming 1 and 4 classes of Laboratory of Programming

1. The programming language adopted in the course is Python. There are some peculiarities

of the course that is worth to mention as it may impact in our research, given that it is our

context of the study.

Programming 1 course does not follow a traditional teacher-centered approach: based on

lectures and few exams. Nowadays, they employ flipped classroom, continuous assessment

and self-paced with mastering learning. The course is divided into 10 thematic units, each

of them with specific learning outcomes students have to master. The self-paced allows

students to be in different units, according to the knowledge they have mastered and coexist

in the same course. There is a set of programming assignments for each unit. Students unlock

the access to a subsequent unit when they have correctly solved a 65% of the total number of

assignments for that unit. Exams are composed by a set of assignments, from various units,

similar to those students are used to do in laboratory classes and at home. There are exams

every week. Students are encouraged to solve assignments as much as they can in the exam
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so that, they can evolve to the next unit (at their own pace).

The course greatly stimulates students’ code production through programming

assignments. They are used, for example, as a starting point of classroom discussions, as they

are flipped. To support this intense activity, the course relies on TST. This already described

system is intended to randomly assign activities to students (observing their unit), gather

students submissions and provide feedback on code functional correctness. With a view to

evaluate our proposals, we evolved our proof-of-concept tools to be plugged into TST. This

allowed students to have a seamless experience of the use of our "under evaluation" tools.

Since 2016, this research was subscribed under the committee of ethics in research

involving human beings under the number CAAE 54944716.1.0000.5182. 2.

3.2.2 Data Collection

In general, the studies of this research were performed using data collected from the

interaction between students and the instructional material through TST. We also used

data produced by instructors during Programming 1 course evaluations, such as: grades

resulting from a manual assessment of students’ programs; annotations made on students

code; students’ performance status according to their evolution on the course, etc. Besides,

we gathered data from human studies, such as the interview and survey with students and the

blind-study with experts.

At the longitudinal study, we instrumented qcheck tool to send reports of its usage, under

the user authorization. The software sends to a central server minimal data, so it does not

overload the net nor reduce its performance, regarding its use in an assignment. This data,

for example, contains: datetime, user, IP, activity, metrics, among others.

An important aspect of this dataset refers to the total number of students. As qcheck can

only be used in assignments of the 3rd, 4th and 5th unit, our students’ sample was changing

along the time. Initially, students with greater performance composed the sample. By the

end of the study, students that were retained on those units lasted on the sample. We plotted

in Figure 3.1 students’ exams performance over five weeks, the period of observation. We

can observe that students’ retention on unit 4 is outstanding /footnoteThe subject of the 3rd,

2More information about the project we have submitted to that board can be found at

http://plataformabrasil.saude.gov.br/
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Figure 3.1: Students Performance During the Longitudinal Study.

4th and 5th units refer to, conditional structures, iterations with for and while, respectively..

Data filtering was done in different ways according to the objective of the empirical study.

In general, we have used TST to separate correct from incorrect submissions and qcheck to

count the number of quality warnings of a given code.

3.2.3 Demographics

Each experimental study we have performed in this research was conducted with different

subjects (students from different semesters). But, the data we have collected during the

longitudinal study was used in various analyses. For this motive, we are going to provide

some information about this group here. We obtained this data at the beginning of the

semester when we explained to the students that they were taking part of a research study

and its purposes. They signed the term of agreement and filled a socio-demographics

questionnaire.

There were 115 students enrolled in Programming 1 course in 2017.1, by the time we
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finished the longitudinal study data collecting, at least 109 students have advanced for the

first unit. The Table 3.1 shows some basic information that might help us to delineate the

subjects’ profile.

Table 3.1: Demographic Data of Students of 2017.1 Programming 1 Course.

Total of students 115

Gender Male Female

80.9 % 19.1 %

Age <18 18 to 22 >22

25.2 % 64.3 % 10.5 %

Previous programming experience Yes No

47.8 % 52.2 %

The Figure 3.2 corresponds to students’ answers referring to their self-confidence about

their performance in the course. They have answered a Likert scale question.

Figure 3.2: Students Course Performance Expectancy.

3.2.4 Metrics

The metrics that we have used in the studies are detailed in their respective chapter. For

instance, the metrics created to reflect code quality according to teachers’ expectations.

However, in those involving qcheck, there are common measures that will be described in

this subsection in order to avoid information replication.
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The metric nsub refers to the number of submissions done by a student to a programming

assignment to TST server. It differs from the number of revisions of the assignment that is

the number of attempts to the correct answer, according to a set of tests. In TST dynamic,

students receive a set of public tests when check out the assignment and can use it to test

the program in their own environment. When they submit the solution to the server, another

set of tests, namely secret tests, is added and the code is evaluated under more restrictive

conditions. The metric nsub accounts only functional correct submissions, code that meets

functional requirements and passes public and secret input/output tests proposed to that

assignment.

The metric W summarizes the number of code quality issues of a given program

according to qcheck tool assessment. The tool produces warnings referring to code and

style. Style warnings (S) refers to the number unconformities with Python programming

language coding standards orientation registered under pep8 [Pep15], for example, lack of

white spaces between operators or indentation problems. Code warnings (C) are based

on the set of software metrics proposed in this work to assess introductory programming

assignments’ code.

W = C + S’

C - value may vary from 1 to 4, as four metrics are evaluated by qcheck;

S’ - value vary from 0 to 1, standing for the presence or

absence of style warning related by qcheck.

Other important metrics are the derivative of metrics S and W, respectively ∆S and ∆W.

These metrics are only computed using functionally correct submissions according to TST

server tests. They are computed as the difference between the measures extracted from the

code of last correct submission and the first correct submission. ∆S refers to style warnings

S and ∆W to the normalized number of warnings W. We expect these values to be negatives.

∆S = Sf - S0

Sf - Is the number of style warnings of the last correct submission

S0 - Is the number of style warnings of the first correct submission.

∆W= Wf - W0

Wf - Normalized number of warnings of the last correct submission

W0 - Normalized number of warnings of the first correct submission.

From metric ∆W, we came up with three situations:
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• ∆W < 0: It means that the student was capable to recognize and fix aspects in his/her

code to improve its quality.

• ∆W = 0: It means that the program’s number of warning remained the same.

• ∆W > 0: It means that the student was not capable to improve the quality of his/her

code; instead the last code submission became worse than the first submission.

The same analysis is valid for ∆S.

3.2.5 Analysis

We quantitatively evaluated the data we have collected using descriptive and inferential

statistics. We performed some simple statistical analyses using hypothesis test. As a rule, we

used the nonparametric Wilcoxon signed-rank test to compare two distributions. As response

variables, we generally used the metrics previously described. We used Wilcoxon test instead

of the usual t-tests, since we could not find normality on our distributions.

We performed other analyses using Pearson’s chi-squared tests when investigating the

relation among categorical variables. Using this test we assessed if the observed differences

among the values in the distributions happened by chance.

We analyzed longitudinal data carefully, as this type of data has characteristics that

elevate them to a different level of analysis:

"The distinguished features of a longitudinal study is that the response variable

of interest and a set of explanatory variables are measured several times on each

individual in the study. The main objective of the study is to characterize the

change in the repeated values of the response variables and to determine the

explanatory variables most associated with any change" [HE06].

In this study, we have summarized, using ∆S and ∆W, a sequence of observations

regarding the tuple (student, activity) along the time. We filtered a sequence of observations

(student, activity) in only one entry and composed a new dataset. Certainly, we missed the

benefits that a more complex longitudinal data analysis could potentially have provided to us.

But we could still achieve significant results, employing a more modest analysis approach.
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3.2.6 Qcheck

Our approaches to provide automated feedback to aid students’ code quality improvement

were made concrete on a proof-of-concept tool: qcheck. This tool is an instantiation of the

proposed approach. Its code is publicly available at GitHub under AGPL-3.0 license. Qcheck

was created to assess our proposals validity with students of an introductory programming

course in a set of empirical studies, especially the longitudinal study. Naturally, the

conclusions we came up with this research were drawn regarding our studies’ context, but

the ideas here exposed can be used and adapted to other programming courses and AAS.

In short, qcheck is a TST custom command that is used to check student’s solution code

quality to a given problem. It is based on well-known static metrics that help to evaluate

software maintainability, such as logical lines-of-code, cyclomatic complexity, and others.

qcheck takes the canonical solution provided by the assignments’ author as the reference to

generate feedback hints to advise students in what aspect their code can improve. It has

its own installation process, separated from TST bundle. It must be installed in each user

environment.

The tool was conceived to use in an environment with TST already installed. When a

new programming assignment is created, the author needs to execute a qcheck command

informing the reference solution. This command creates a file qcheck.json, containing the

values used by qcheck on the client side to generate the feedback. This file must be uploaded

along with other files of the assignment. When a student checks out a new activity, this file

is downloaded to her or his working directory.

$ t s t qcheck −s r e f e r e n c e . py

From the student point of view, qcheck usage is very simple. We advise students to

use qcheck after their program is completely tested. Qcheck produces two blocks of warning

messages: it gives hints about code (programming solution to the problem) and style (Python

coding standards). Style hints are based on PEP8 - Python community canonical style guide

[Pep15]. An example of use is following listed: (a) first qcheck invocation and (b) second

qcheck invocation after student change her code including more header lines.

(a)

$ t s t qcheck p e d r o _ f i l h o . py
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# p e d r o _ f i l h o . py

**6 Warning ( s ) **

### Code

− Your program h e a d e r i s t o o s h o r t .

− Your program has t o o many d e c i s i o n p o i n t s .

− Your program has t o o many l i n e s o f code .

− Your program has t o o many o p e r a t i o n s ( Example : + ,− ,== , e t c ) .

### S t y l e

− 1 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

− 2 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

(b)

$ t s t qcheck p e d r o _ f i l h o . py

# p e d r o _ f i l h o . py

**5 Warning ( s ) **

### Code

− Your program has t o o many d e c i s i o n p o i n t s .

− Your program has t o o many l i n e s o f code .

− Your program has t o o many o p e r a t i o n s ( Example : + ,− ,== , e t c ) .

### S t y l e

− 1 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

− 2 : 1 : E265 b l o c k comment s h o u l d s t a r t w i th ' # '

3.2.7 Setting Up Activities

Setting the environment up to perform the longitudinal study was a complex and

time-consuming activity. It included a study design foreseen 5 weeks of observations and

data collecting, settlements with the course staff including meetings and lectures, adaptation

of more than a hundred activities from Programming 1 course asset to qcheck usage,

computational environment setting up at university laboratories, availability to students’
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requests at discussion forum, they use Slack 3 as an official communication channel, among

others.

An already existing system simplified the environmental set up at computing laboratories

at the UFCG. The system Prog1Box 4 was developed in-house and works as a virtual box. It

is used during Programming 1 exams and in some laboratories activities, such as marathons.

It restricts users’ access only to authorized Internet sites, physical locations or hardware

devices. Using Prog1Box we could easily set up different software configurations for the

experimental and control group in different computing laboratories physical locations.

As a preparation for the longitudinal study, that happened during 2017.1 classes of

Programming 1 course, we adjusted 106 assignments available to students referring to unit

3rd, 4th, and 5th. It was necessary to adapt all available activities in the asset since TST

randomly chose the activities to students as they request. Legacy questions do not have a

qcheck.json file and some of them, also, do not have a reference solution associated with it.

Each assignment preparation included to:

• Search for the assignment author;

• Find the original reference solution on historical database;

• Produce or, when possible, having the author to produce a reference solution;

• Validate the reference solution according to intended learning outcomes;

• Create qcheck.json files;

• Upload assignments’ files and

• Commit the activity to TST system.

3.2.8 Summary of Studies

In the following chapters, we are going to present studies and results of our research

on generating formative feedback aimed at programming assignments’ code quality

improvement. Each chapter refers to a broad research question and details a sequence of

3http://slack.com
4https://prog1box.appspot.com
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empirical studies intended to investigate it. We decided not to follow a chronological order

of the studies developed during our doctoral research but a logical order. The idea was

to emphasize the claims we came up with, as a result of the research effort, using distinct

methods.

These claims summarize the main contributions of this work. In order to construct

knowledge about them, we took into consideration the mature and vast literature on

programming education. Yet, refurbished by new challenges brought by the growing number

of students’ enrollment and the need to scale pedagogical practices with quality.

• C1 - We generate automated feedback based on teachers of introductory programming

code quality expectations;

• C2 - Students improve programming assignments’ code prompted by timely and

automated feedback;

• C3 - Students improve programming skills stimulated by the reflection on their

programming assignments code with the purpose to improve its quality.

The chapter 4 examines the "Generation of automated code quality feedback". In this

chapter, we will investigate and demonstrate that it is possible to attain this objective with

qcheck. Initially, we present our first study when we investigated software metrics that could

explain the difference in manual grades of functionally correct programming assignments.

In sequence, we use these metrics as a foundation to generate feedback messages about code

quality improvement. The second study reports an evaluation with human specialists of the

direct and indirect effects of qcheck.

In chapter 5, discuss the possibility of the code quality improvement feedback delivered

to students directs the improvement of their programming assignments’ code. The first

and second studies present experiments with randomized controlled samples. We assessed

the use of qcheck in experimental groups. The main difference of these studies was the

evaluation of the willingness of improving code quality and its consequence. On the first

study, we wanted to investigate if the novelty of an instrument to produce feedback about

code quality would motivate students to attempt to generate a better code and if they, in

fact, succeed. On the second study, both experimental and control group were stimulated
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to improve their codes quality, and they also received a written material to help them:

"Programming 1 code quality expectations". However, only students from the experimental

group were able to use qcheck feedback. The last study presented in this section discusses

and contrasts the summative assessment of the quality of students’ code production in a given

period of time in the Programming 1 course with the use of qcheck by the students during

this same period.

The chapter 6, finally, considers the consequences to learners of providing feedback about

code quality improvement using the proposed tools during a programming course. Recently,

De Nero and colleagues (2017) discussed that there were many initiatives and advances in

automated feedback platforms aimed at programming education, but few studies on its effects

on real programming courses [DSPQ+17]. In this chpater, we are going to present our main

findings in a longitudinal study and discuss its implications to learners, instructors and the

course itself. Furthermore, we are going to present an evaluation of the approach performed

with the students that used the tool in their activities.



Chapter 4

Generation of Automated Code Quality

Improvement Feedback

In this chapter, we will investigate and demonstrate that it is possible to generate automated

feedback of code quality and stimulate students to reflect on their code, besides functional

correctness. Initially, we present our first study when we investigated software metrics

that could explain the difference in manual grades of functionally correct programming

assignments. In sequence, we use these metrics as a foundation to generate feedback

messages about code quality improvement. The second study reports an evaluation with

human specialists of the direct and indirect effects of our proposal.

We are going to report studies regarding the information we used to compose feedback

about students’ code quality since its proposal until the feedback validation by experts. The

general question we made was:

"Is it possible to generate automated feedback based on code quality

expectations of introductory programming teachers?"

The starting point of this research is the generation of data that will be used to compose

code quality feedback. Initially, we performed an empirical study, reported in the paper

[AGF13], aimed at identifying whether the adherence to coding standards would be an

indication of better code quality. In sequence, we sought for other measures to help us

identify what could be automated from the human quality assessment of students’ programs.

The retrospective case study conducted to achieve these goals was discussed in the paper

42



43

[ASF16].

The first study of this chapter, reports an investigation of the validity of using measures

as surrogates of the quality expected by instructors on students’ code. As a baseline for such

code quality, we use the reference solution provided by the instructors when creating the

programming assignment. It is important to notice that this reference solution must convey

the learning outcomes students have to master, as well as, the expected code quality.

We propositioned a set of software measures that can be used to express qualitative

aspects: RLLOC, RCC, RH and RPEP8. They are based on software quality metrics,

largely used by the industry and referred to in other academic initiatives towards novice

programming [AM05] [MY99] [PHG+15]. First, these measures are extracted from the

reference solution code and from the student code. In sequence, we calculate the relation

between them. Using this data, the system can generate and provide a feedback message to

the student, i.e. a hint of what it could be improved in order to obtain a better quality code.

The research question that directed the study was:

RQ1: Can the measures RLLOC, RCC, RH and RPEP8 explain the differences

observed on the grades, manually assessed, of functionally correct submissions?

The second study was intended to evaluate the contrast between a human expert

assessment and the assessment provided by a tool that took into consideration the proposed

metrics, implemented in our proof-of-concept tool - qcheck. We proposed the research

question:

The research question that directed the study was:

RQ2: Does qcheck approach capture expert notion of code quality?

In this study, experts evaluated a pair of students’ programs versions of a program before

and after qcheck feedback. Those pairs of codes are functionally correct versions of students’

assignments that were randomly presented to the expert. We contrasted the agreement on

quality assessment among experts and qcheck.
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4.1 Context

The proposed studies took place at the UFCG, in the Computer Science undergraduate

course, in the context Programming 1 course. The studies happened in different academic

semesters between 2013.2 to 2015.1

In the study 4.2, a retrospective case study, we used data gathered using TST in a former

course edition – 2013.2. Our dataset was composed by 403 functionally correct submissions,

from 102 students, referring to 12 different programming assignments. Each assignment was

manually assessed, annotated and graded by at least one instructor. By this time, 4 instructors

composed the course staff – 3 colleagues and me.

In the study 4.3, we collected programs produced by students that took part in a controlled

experiment and have instructors to assess them. This study, which happened in 2015 with

students of Programming 1 course. The experts that we have recruited to this study were

three instructors of the course. They have a compared background in teaching the course.

4.2 Measuring Students’ Code Quality Through Software

Metrics

Our initiative toward generating and delivering formative feedback about qualitative aspects

of code started on performing an empirical study that aimed to evaluate the measures

we proposed as surrogates of some extent for the human quality assessment of students’

programs.

4.2.1 Methods

In the case study, we conjectured that there is a set of measurements, automatically obtained,

that can capture quality aspects weighed by instructors when they assess and manual grade

a student program. In order to test it, we have formulated the following research question:

RQ1: Do we have good measures to capture some aspect of assessment

subjectivity?
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In answering this research question, we investigated whether the the measures RLLOC,

RCC, RH and RPEP8 explain the differences observed on the grades, manually assessed, of

functionally correct submissions. In practice, if student’s code measurements were similar

or better than the measurements of the reference solution, the instructor would perceive a

better code quality. In consequence, it would deserve a better grade. Thus, if code quality

impacts on grades, they could be captured by the proposed metrics.

We collected students’ submissions of programming assignments from an introductory

programming course of our university. Three experienced instructors manually graded

them on a scale that ranges from 0-10. In our study design, these values correspond to

the dependent variable ig. The measures RLLOC, RCC, RH and RPEP8 are independent

variables. We used radon [Rad14], a free Python tool, to compute raw metrics: lloc, h and cc.

The number of pep8 violations was extracted using a script produced by Python developers’

community [Pep15]. It is worth to note that we used the reference solution version provided

by the instructor who graded the assignment when extracting the measures RLLOC, RCC,

RH and RPEP8 of the students’ submissions.

4.2.2 Metrics

We propose a set of software measures to express qualitative aspects. They are based on

software quality metrics, largely used by the industry and referred to in other academic

initiatives towards novice programming [AM05] [MY99] [PHG+15].

Instructors approach the manual grading activity in different ways. However, they usually

agree whether a program is "very good" or "very bad" [FHL+13]. Besides correctness, there

are other factors weighed by instructors in manual assessment in terms of code quality. For

example, a program that is abnormally longer than the others and solves the same problem

needs a closer look. Other common pitfalls of programming beginners are nesting multiple

"if" statements and using unnecessary variables to compute temporary values. There are

software metrics that could be statically extracted from the code at a low cost and serve as

input to a quality analysis [AM05]. We evaluated in this work: logical lines of code (lloc),

Halstead volume (h), cyclomatic complexity (cc) and adherence to coding standards. In

short, these measures stand for:



4.2 Measuring Students’ Code Quality Through Software Metrics 46

• lloc: The number of lines effectively used as programming language code statements.

This measure does not consider blank lines, comments and headings.

• h: Metrics proposed by Halstead aims to evaluate a program regarding on static

analysis. The measurement consists of counting the number of operators and operands

in a program [AM05]. In this study, we have measured the Halstead volume.

• cc: It was conceived by McCabe [McC76] and refers to the number of linearly

independent paths of a program. Each decision in a program can lead to a different

path. So to compute cc, there are considered not only conditional structures but also

iterative structures, such as for and while loops.

Ala-Mutka study pointed that: to make software metrics relevant to students they need

to be comparative [AM05]. She argued, "there is no sense in requiring students to submit a

program that has a complexity number X, or contains Y lines of code". On the educational

context, there is a benefit, which could not be experienced in real world software: the

instructor reference solution approximates to the best possible solution to the problem. The

measurements extracted from the student source code will be compared with those extracted

from reference solution code. The rationale is that the measures extracted from the reference

solution are an idealized target expected by the instructor for all students’ submissions.

We have also measured adherence to coding standards in a metric named: RPEP8. As

Python is the programming language adopted by the course we have collected our data,

we relied on the coding standards defined by Python community in PEP8 [Pep15]. The

number of pep8 violations indicates how distant a given code is from the defined coding

standard. This measure is calculated differently from the others, as we cannot compare the

violations happened in the student code with the violations that happened in the reference

solution overlooking their nature. In order to calculate this measure, we extract the number

of pep8 violations for each submission for a given assignment. Then, we rank the number

of violations of these submissions. The value of RPEP8 for each submission is its ranking

position. The other measures are defined as the ratio of the measurement extracted from the

student submission to the real-world extracted from the reference solution.

The Table 4.1 presents the measurements we proposed to assess code quality along with

its acronym. From this point forward, we are going to refer to these measurements by the
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Table 4.1: Measurements Proposed to Assess Code Quality.

Acronym Description Formula

RLLOC
Ratio between reference solution’s lloc and

student’s code lloc.

lloc(studentCode)
lloc(referenceSolutionCode)

RCC
Ratio between reference solution’s cc and

student’s code cc.

cc(studentCode)
cc(referenceSolutionCode)

RH
Ratio between reference solution’s h and

student’s code h.

h(studentCode)
h(referencesolutionCode)

RPEP8
Ranking position of the number of pep8

violations of the student’s code.
-

acronyms. For example, if the value of RLLOC for a particular code is 1.2, it means that: the

code provided by the student to that programming assignment is 20% greater than the size

of the reference solution code for that assignment. Conversely, if the value of RLLOC was

0.8, the code provided by the student is 20% smaller than the reference solution code. RCC

and RH calculation is done similarly.

4.2.3 Data Collection

The Figure 4.1 shows the distribution of instructor’s grades of functionally correct

submissions. These submissions obtained "green-bar" as passed all automatic tests provided

by the instructor. If they were automatically graded, all of them would obtain the highest

score: 10. However, the figure shows a left-skewed distribution and only 29.5% of the

evaluated submissions got the highest score. If the assessment relied solely on automatic

tests, more than 70% of the submissions would obtain a grade higher than a human instructor

thinks it deserves.

Grades produced manually by the instructors take into consideration a set of criteria that

goes beyond functional correctness, as it could be apprehended by the grades’ variance.

A qualitative evaluation of those submissions revealed structural code problems (such as

incorrect use of conditional structures) that were not captured by the traditional functional

test. The Figure 4.1 exposes that functional correctness, alone, does not reflect the instructor
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Figure 4.1: Distribution of Manual Grades Assigned to Functionally Correct Submissions.

manual assessment.

4.2.4 Results and Analysis

This subsection reports the results of the studies to answer our research question: Whether

the proposed quality measurements can explain the differences observed in the scores of

functionally correct submissions.

In order to answer this question, we investigated the contrast between the student’s code

measurements and the reference solution measurements’. We used Wilcoxon ranking sum

test to compare grades. This non-parametric statistical test assesses if two independent

distributions are the same. The null hypothesis is that the population is the same against

the alternative hypothesis that the population differs in a location measure, in this case, the

median of the grades. Since this test is based on rank observations, it makes no assumptions

about the normality distribution of the assessed variables.

We divided the distribution into two groups according to its measurements: (1)

equal-lower than 1; meaning that the measures of student’s code are equal or better than

the reference solution code or (2) greater than 1; it means that measures of the student

code are greater than the measures of the reference solution code. For example, in a given

student submission for a programming assignment, it was accounted 3 pep8 violations.

The reference solution code, for that same assignment, accounted 1 pep8 violation. This

submission is part of the group 2. In this sense, each metric was analyzed individually.

Tests results confirmed that RLLOC, RCC, RH and RPEP8 do capture the notion of
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quality, as the distributions differ in their grades medians. Instructor’s grades for the

equal-lower group are higher, on average than the grades of the other group with adequate

statistic significance (p-value < 0.001 and 0.05 significance level.). Hence, we can reject

the null hypothesis in favor of the alternative. The results reveal, at least for these data, the

better the measurements the better are the grades. As the practical significance of this result,

we can state that stimulating students to consider not only program correctness but also its

quality is indeed beneficial.

Figure 4.2 shows boxplots of ig (instructor’s grades) distribution. In the first boxplot, it

can be noticed a wider variation on ig on the first group of submissions (RLLOC(x) > 1).

Apart from some outliers, the second group of submissions (RLLOC(x) <= 1) presents a

narrower variation and a higher median value. A similar behavior could be observed on the

other plots. Besides the hypothesis test, we performed a correlational analysis to investigate

the association of each measure (RLLOC, RCC, RH and RPEP8) with ig using data collected

from all 12 programming assignments. At this point, we must recall that RLLOC, RCC

and RH are ratio metrics. It means, for example, that we are not observing the correlation

between the size, in lloc, of a student’s submission and its grade. We are measuring the

relation between the size of a student’s submission and the size of the instructor’s reference

solution. Then, whether this value correlates with the programming assignment grade.

Figure 4.2: Distribution of Instructors’ Grades and Each Metric.

We used Spearman’s rank correlation coefficient to measure the extent of the correlation

and found that 91.67% of Spearman’s rho values are negative. What means that as one
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variable increases, the other decreases. This behavior corroborates our hypothesis: the

smaller the measure the greater the value of ig. The strongest correlation in absolute value

is between RCC and ig (-0.94 Spearman’s rho). In general, the strongest correlation values

were observed between RLLOC and RCC measurement. There were also rho values near

zero, meaning that the correlation is negligible or inexistent in some cases.

4.2.5 Discussion

In this study, we focused on measuring aspects of the code that instructors usually took

into consideration when manually assess programming assignments: qualitative aspects that

go beyond functional correctness. We wanted to investigate program features regarding

code quality issues. We conjectured that instructors’ reference solution for a programming

assignment includes most of his expectations about a student’s code quality. Based on this

idea, we proposed and evaluated a set of candidate quality measures using the assignment’s

reference solution as a baseline. The results showed that they seem to capture what is

usually considered to be subjective: the qualitative aspects of an instructors’ assessment. Our

aim is to use these findings to generate feedback regarding code quality about introductory

programming assignments.

4.3 Assessing Students’ Code Quality with qcheck Support

This study intends to gather evidence that the feedback we generate using the proposed

metrics to a given program indeed reveals instructors expectations about code quality to that

program. We conducted the study motivated by the research question:

RQ2: Does qcheck capture expert notion of code quality in programming

assignment assessments?

We had experts to assess a set of programs made by students that used qcheck and its

feedback messages to improve their code quality. Different versions of the programs were

evaluated by the experts. We expected that the study confirmed our conjecture that qcheck

really captures this notion.
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4.3.1 Methods

From a set of 35 students, we selected a set of submissions that meet the following criteria:

students that make more than one submission and whose submissions differ from each other.

After applying these filters, we composed our dataset with the lasting 16 pairs of submissions

(S0, Sn) from students of control and experimental groups. In sequence, we used qcheck to

calculate the value of W (number of qcheck warnings) for each submission pairs.

Finally, we set up a single-blind study to have experts’ evaluating these codes. We

recruited three domain experts that are experienced teachers of Programming 1 course. We

printed and handed them out a booklet with all programs. Each page had a pair of students’

programs and the question: "Is code A better than B?" They had to choose an answer among:

Yes, Equivalent or No. The printing order of the pair (S0, Sn) on each page was randomly

chosen and also the order of the pages in the booklet - they may vary from teacher to teacher.

Teachers were invited to a meeting room and, together, received a brief explanation of the

study purpose and how to proceed. They performed their evaluation individually. The

experiment lasted less than 30 minutes. At the end, we collected data evaluation of each

expert – R1, R2 and R3 – and contrasted them among each other and qcheck tool – T.

4.3.2 Metrics

The metric used to assess programs, regarding qcheck, is W that represents the number of

code quality warnings captured by the tool in the student code. As qcheck flags quality issues

with warnings, the lower the value of W, the better the program code quality.

We took into consideration a set of submissions from a student to a programming

assignment (S0, S1, S2, . . . , Sn), we selected a pair composed by the first and last functional

correct submissions (S0, Sn) and calculated the value of W0 and Wn.

As we have seen, qcheck code quality evaluation yields:

• Y: Sn presents better code quality than S0, if Wn < W0.

• N: Sn does not present better code quality than S0, if Wn > W0.

• E: Sn code quality is equivalent to S0, if Wn = W0.



4.3 Assessing Students’ Code Quality with qcheck Support 52

Experts used their own judgment, based on Programming 1 course’s criteria, to evaluate

programs’ quality. From this point of the document on, we will also refer these experts

as raters. Provided we know that the notion of code quality is predominantly a subjective

measurement, we want to verify if qcheck can assess code quality just as the experts do.

Given that, we pose the following hypotheses:

H1: Raters R1, R2, R3 judgment about code quality is consistent among each

other.

H1-0: Raters R1, R2, R3 judgment about code quality is inconsistent among each

other.

H2: Rm judgment about code quality is consistent with qcheck judgment T.

H2-0: Rm judgment about code quality is inconsistent with qcheck judgment T.

By "consistent judgment", we mean that their agreement is statistically significant.

4.3.3 Data Collection

The following Table 4.2 summarizes ratings of each pair (Rn,T). Each cell accounts the

occurrence of a pair of evaluations between (Rn, T) that matched. The diagonal line in each

table represents the highest rating agreement. The last column and row summarize the total

of evaluations of each category, provided there were 15 programs.

Table 4.2: Pairwise Code Quality Evaluations Among Raters X Tool.

Rater1 Tool Rater2 Tool Rater3 Tool

N E Y N E Y N E Y

N 3 1 1 N 5 0 1 N 5 1 1

E 2 3 0 E 0 3 0 E 0 3 0

Y 0 1 5 Y 0 2 5 Y 0 1 5

TOTAL 5 5 6 5 5 6 5 5 6
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4.3.4 Results and Analysis

In accordance to the proposed hypotheses, we first investigated raters agreement (H1.1) and,

as we found they were consistent, we proceeded to the agreement evaluation (H2.1) between

qcheck tool and the raters.

In order to investigate agreement consistency among three raters, we computed the

Fleiss’ kappa inter-raters reliability index. Unlike Cohen’s kappa, which is a more common

statistical measure that assesses agreement between two raters, Fleiss’ kappa can be used to

a fixed number m of raters when evaluating a trait with categorical rates. This index aims to

calculate the degree of raters’ agreement when evaluating a trait over it would be expected

to happen by chance. This index ranges from 0 (zero) to 1 (one). The agreement improves

as Kappa’s index value approximates to one.

The value of kappa index calculated among R1, R2 and R3 is approximately 0.81 (the

statistic is significant as p-value < 0.001), which indicates that agreement is almost perfect

[LK77]. Thus we can reject the null hypothesis in favor of the alternative (H1.1) and, as a

result, we have strong evidence to assume that experts’ judgment is consistent.

Next, we computed Cohen’s kappa index for each rater (R1, R2, R3) and qcheck tool

(T). In this study, we used this measure to compute the disagreement of each rater with the

tool and the raters among each other. We intended to investigate if raters’ judgment was,

individually, similar or unlike of those provided by the tool.

Ratings provided in this experiment for code quality are considered ordered-categorical

data N, E, Y. It means that a pair of raters agrees more if they answer the experimental

question "code A is better than B?" with Y and E, than Y and N. So, we mapped the values

of N, E, Y to 1, 2, 3 to quantify this distance in agreement. As the traditional Cohen’s

kappa measurement does not take into consideration the degree of disagreement, we used

the modified weighted Cohen’s kappa. This method ponders disagreements between two

raters with a set of weights for each possible categorical rate: the higher the disagreement

the higher the weight. The following Table 4.3 shows Cohen’s kappa index for each pair

(Rn, T) and raters among each other.

The values presented indicate a substantial agreement among raters and tool. The p-value

for all tests was less than 0.01 (ranging from 0.01 to 0.0002), meaning that Kappa index value

is statistically significant. Although the interpretation of this index is controversial [LK77],
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Table 4.3: Agreement Index Value Among Raters and qcheck Tool.

R1 R2 R3 Tool

R1 - 0.75 0.92 0.69

R2 0.75 - 0.85 0.80

R3 0.92 0.85 - 0.80

Tool 0.69 0.80 0.80 -

it directs us towards interesting analysis. The best agreement found was between teachers

(R1, R3 - 0.92), meaning that their assessment of code quality is almost perfect, at least in

the proposed study. In general, agreement among teachers is slightly more significant than

each rater with the tool. The worse agreement index value was found between (R1, T - 0.69).

Although this absolute value is the smallest found, it can still be considered an indicator of

significant agreement.

In order to investigate the second hypothesis (H2.1) of this study, if raters and tool

consistently agree, it was necessary to determine a consensus among raters evaluation on

the study items. We were inspired by a real course situation to find a consensus: when two

or more instructors are assessing a student assignment. If there is any divergence in their

opinion, they usually agree to assess the assignment with the more frequent rate. For this

reason, we chose the statistical measure mode to represent the consensual evaluation among

raters. In sequence, we computed weighted Cohen’s kappa between (T, Rm), where Rm

stands for the mode among raters evaluation.

As a result, the computed index value revealed a significant agreement between human

raters and the qcheck tool. Cohen’s kappa index value was 0.80 for a p-value of 0.001. So,

we can reject the null hypothesis in favor of the alternative and claim that "raters judgment

about code quality is consistent with qcheck judgment, at least for this study".

4.3.5 Qualitative Evaluation

This qualitative evaluation was motivated by the question: "If raters agreed so much, when

do they disagree?". It is perhaps even more insightful to discover what are the divergences

among ratings than to confirm their agreement, at this point. We found that there were only
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4 items in the dataset that made evaluations controversial, shown in Table 4.4.

Table 4.4: Disagreement Among Ratings (Rn and qcheck).

ID R1 R2 R3 Tool Mode

S67 2 1 1 1 1

S70 2 1 1 1 1

S62 1 3 1 2 1

S64 1 1 1 3 1

The first and second line of the table shows similar ratings: raters 3 and 2 agreed with the

tool that assesses 1 to both pairs of codes. It means that they consider that code B presents

better quality than code A. Conversely, rater 1 assesses them as an equivalent code. Although

the difference among rating weight is small, they are consistent as can be seen in the code

excerpts below.

We list both versions of the student S67 code in order to discuss the disagreement among

ratings. The difference between the code (A, B) of student S67 is on lines 5 and 14. On code

A in line 5, the variable "cont" initiates with the value 0, while on code B, on line 5, this

same variable initiates with value 1. This change causes suppression of the operation "+1"

on line 14, on code B. It appears that rater 2, rater 3, and qcheck tool considered it as positive

when assessing code B better than code A.

The issue found on student S70’s code A is a redundant line: it increments a variable

inside an "if and else" block (lines 10 and 13). As can be seen in code B version, S70

excludes one of these lines bringing the line out of the conditional structure (line 12). Both

codes are listed in sequence.

S67 and S70 eliminated one operation in their codes. It seems that, in Rater 1 judgment,

this is not sufficient to assert, in terms of code quality, that one code is better than the other.

He/she considered both pairs equivalent. We believe that this is a positive case for our study

in two aspects. First, it shows the consistency of judgment of the rater assessment. We

assume that there is a component of subjectivity in the human evaluation of code quality,

for this reason, the tool cannot, and is not intended to, perfectly mimic human assessments.

Second, the tool evaluation agreed with the majority of raters in this case. This signals
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1 # coding: utf-8

2 # vida collatz

3 # Xxxx Xxxx / programacao 1

4 Ni = int(raw_input())

5 cont = 0

6 while True:

7 if Ni % 2 == 0:

8 Ni = Ni / 2

9 cont += 1

10 else:

11 Ni = (Ni * 3) + 1

12 cont += 1

13 if Ni == 1: break

14 print cont + 1

1 # coding: utf-8

2 # vida collatz

3 # Xxxx Xxxx / programacao 1

4 Ni = int(raw_input())

5 cont = 1

6 while True:

7 if Ni % 2 == 0:

8 Ni = Ni / 2

9 cont += 1

10 else:

11 Ni = (Ni * 3) + 1

12 cont += 1

13 if Ni == 1: break

14 print cont

Listing 1: Student S67 Assignment’s Code Comparison (A) and (B).

1 #coding: utf-8

2 #Ler da entrada um numero.

3

4 numero = int(raw_input())

5

6 cont = 1

7 while numero != 1:

8 if numero % 2 == 0:

9 numero = numero / 2

10 cont += 1

11 else:

12 numero = 3 * numero + 1

13 cont += 1

14 print cont

1 #coding: utf-8

2 #Ler da entrada um numero.

3

4 numero = int(raw_input())

5

6 cont = 1

7 while numero != 1:

8 if numero % 2 == 0:

9 numero = numero / 2

10 else:

11 numero = 3 * numero + 1

12 cont += 1

13 print cont

Listing 2: Student S70 Assignment’s Code Comparison (A) and (B).
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that there exist cases that evaluations produced by qcheck are not identical to those from a

particular teacher, but it is still representative and useful.

The evaluation of student S62’s code, listed in sequence, revealed the biggest discrepancy

among raters. Rater 1 and 3 assess code B better than A, while in rater 2 opinion is the

opposite. Qcheck evaluates the pair of code as equivalents. In fact, the pair of code is

very similar. It main difference is that one uses the programming idiom "while True/ If

/ break" and the other employs "while <condition>". In this introductory programming

course, students are encouraged to use the first construction "while True/ If / break", when

possible. However, this is a controversial point in programming style and, sometimes, can

be considered a matter of personal taste. Again, we recall the human subjectivity issue of

code quality analysis. In this case, the tool assessed both codes as equivalent, in the middle

distance from both opposite ratings (Y, N). Once again, we considered Qcheck evaluation

disagreement as positive as it can be.

1 # coding: utf-8

2 # vida_collatz

3 # Xxxx Xxxxx

4

5 num_ini = int(raw_input())

6 contador = 0

7

8 while True:

9 contador +=1

10 if num_ini == 1: break

11 elif num_ini % 2 == 0:

12 num_ini /= 2

13 else:

14 num_ini = 3 * num_ini + 1

15

16 print contador

1 # coding: utf-8

2 # vida_collatz

3 # Xxxx Xxxxx

4

5 num_ini = int(raw_input())

6 contador = 1

7

8 while num_ini != 1:

9 if num_ini % 2 == 0:

10 num_ini /= 2

11 else:

12 num_ini = 3 * num_ini + 1

13 contador +=1

14 print contador

Listing 3: Student S62 Assignment’s Code Comparison (A) and (B).

Student S64 code represents the most discrepant case in terms of the agreement between

qcheck tool and the raters. Raters agreed among each other that code B is better than code A.

But, qcheck assessed code A better than code B. The following code listing shows the pair

of code in order to depict this divergence.

As can be seen, the main difference between both codes is that code B encapsulates code
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1 # coding: utf-8

2

3 numero = int(raw_input())

4 conta = 0

5 while True:

6 if numero % 2 == 0:

7 numero = numero/2

8 conta += 1

9 else:

10 numero = 3*numero + 1

11 conta += 1

12 if numero == 1:

13 conta += 1

14 break

15

16 print conta

1 # coding: utf-8

2

3 numero = int(raw_input())

4

5 def collatz(numero):

6 conta = 0

7 while True:

8 if numero % 2 == 0:

9 numero = numero/2

10 conta += 1

11 else:

12 numero = 3*numero + 1

13 conta += 1

14 if numero == 1:

15 conta += 1

16 return conta

17 print collatz(numero)

Listing 4: Student S64 Assignment’s Code Comparison (A) and (B).

A in a function named collatz(numero) and invokes it just after its definition. Perhaps raters’

judgment about code quality touched a wider layer not covered by qcheck metrics as all

human raters agreed that code B is better than code A. Or, maybe, it is just another case of

human subjectivity that could not be captured by the tool. In fact, this case is controversial

and it reaches the limitations of qcheck assessment when compared to human evaluations.

4.3.6 Summary and Discussion

In this empirical study, we summoned three Programming 1 instructors to act as raters

evaluating students’ code quality between submissions for a given programming assignment.

We also used qcheck to evaluate the code quality of the submissions. We investigated if

qcheck approach is able to capture experts’ notion of code quality.

Firstly we examined the consistency of the evaluations among instructors. We found that

their level of agreement is almost perfect, according to Fleiss Cohen’s kappa, a statistical

measurement of the degree of agreement that ponders agreements that occurred by chance.

Then, we made a pairwise evaluation and found that qcheck and each instructors’

agreement were statistically relevant. We use the mode of instructors’ ratings as a consensual

measurement and calculated its agreement with qcheck ratings. At least for this study, raters’
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judgment is consistent with tool judgment, so qcheck is able to capture experts’ notion of

code quality.

Finally, we qualitatively evaluated each code that caused divergences among raters and

tool. In general, they seem to be related to a matter of personal taste of raters. When

proposing qcheck tool, we assume that there is a component of subjectivity in the human

evaluation of code quality. The tool is not intended to, perfectly mimic human assessments. It

tries to capture, in a great extent, code quality standards using instructors’ reference solution

as a beacon. This study shows that there are cases that instructors and qcheck evaluations are

not identical, but, in general, qcheck evaluations are representative. The bottomline is that

this results give us confidence that qcheck evaluation are perfectly useful as representative of

instructor’s assessment. In this sense, we can rely on the approach to generate feedback that

helps code quality improvement or when evaluating students’ code quality.



Chapter 5

Code Quality Improvement Prompted by

Automated Feedback

In this Chapter we discuss the possibility of the code quality improvement feedback delivered

to students directs the improvement of their programming assignments’ code. The first

and second studies present experiments with randomized controlled samples. We assessed

the use of qcheck in experimental groups. The main difference of these studies was the

evaluation of the willingness of improving code quality and its consequence. On the first

study, we wanted to investigate if the novelty of an instrument to produce feedback about

code quality would motivate students to attempt to generate a better code and if they, in

fact, succeed. On the second study, both experimental and control group were stimulated

to improve their codes quality, and they also received a written material to help them:

"Programming 1 code quality expectations". However, only students from the experimental

group were able to use qcheck feedback. The last study presented in this section discusses

and contrasts the summative assessment of the quality of students’ code production in a given

period of time in the Programming 1 course with the use of qcheck by the students during

this same period.

We proposed a set of measures with the aim to capture code quality and generate useful

feedback for novice programmers. These measures, based on traditional quality software

metrics, can be automatically obtained provided we have a reference solution. This solution

must encompass the programming abilities and code quality expected by the instructor for

the programming assignment. We proposed the generation of automated feedback using that

60
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information. In the studies that we report in this chapter, we gathered evidences to ground

the claim:

"Students can improve code of their programming assignments prompted by

timely and automated feedback"

5.1 Context

The studies we report in this section happened in February/2015, September/2016, and

June/2017, in this sequence. They all occurred at UFCG, in the Computer Science

undergraduate course, in the context Programming 1 course. We will briefly summarize

the nature of the studies.

In the study reported on section 5.2, we present a controlled experiment to assess the idea

of using proposed metrics to generate code quality feedback and whether students adhere to

the idea and improve their code.

Furthermore, the study presented on section 5.3 discusses another controlled experiment

to assess the potential of the feedback messages in providing effectively help on code quality

improvement. In this study, students in both groups were explicitly asked to submit the best

version of their programs according to written directions about code quality. Only students

from the experimental group could have access to qcheck tool and follow their code quality

improvement hints.

In section 5.4, we report what happened during the longitudinal study undertaken with

2017.1 class of Programming 1 course. Instructors of this course requested a summative

feedback, based on the whole code production of each student, to be produced automatically

using qcheck. We implemented this request and used the obtained information to perform an

analysis contrasting the summative assessment with students’ qcheck pattern of usage.
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5.2 On the Impact of Code Quality Feedback Generation

with qcheck

In this section, we will present our first experience on using a set of measures, inspired

on software metrics, to generate and deliver feedback messages to students. We wanted to

investigate the effectiveness of the quality feedback generation approach. If students, in fact,

care about the feedback received and actuate in their code so that it improves.

By this time, the facility of providing quality feedback generation with qcheck was

implemented in a modified version of TST automated assessment system differently from

the actual integration solution, as a software plugin. We designed an experiment with a

randomized sample, providing qcheck tool to just one of the two groups. We posed the

following research questions:

RQ1: Do students who receive quality feedback about their submission tend to

make more submissions, after the first correct one?

RQ2: Do students who receive quality feedback about their submissions tend to

deliver improved quality code?

5.2.1 Methods

We invited students of Programming I course to take part in the study and 45 voluntarily

accepted. We randomly divided students into two groups: control and experimental.

Students from both groups received one programming assignment to solve and submit to

TST assessment system in 60 minutes. The activity, listed below, is a typical assignment the

students are able to solve after being exposed to conditional and repetition control structures’

classes. It is based on the well-known mathematician Collatz’ conjecture. It asks the student

to inform the number of iterations it takes to a given number to converge to 1. The complete

specification is presented on Figure 5.1.

Students from the control group performed the activity using the computational resources

and the automated assessment system of the course – TST in the usual manner. Students

from the experimental group counted on the same usual support but also, had access to code

quality feedback messages qcheck.
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Figure 5.1: Problem Specification of ’Life Collatz’ Programming Assignment.

The messages were presented in the command-line interface, just after the student

submits her/his code to automatic testing and receives the results. It was empirically

established a threshold for each quality measure (RLLOC, RCC, RH and RPEP8) in order to

show the warnings: when it reaches 1.2, i.e. a value 20% greater than the same measurement

in the reference solution, a message is produced and delivered to the student. RPEP8

warnings messages were translated from English and slightly modified from the original

style checker implementation. The current version of qcheck kept the original, messages in

English.

It was also added an extra warning message regarding the number of lines of the heading

the student is supposed to add in their code. This is an "easy-to-solve" warning aimed at

making students learn by themselves how the cycle submit/receive feedback/refactor works.

There was an explanation on how to use qcheck command but no directions on how to

proceed after receiving the feedback message were given during the experiment. It was

only advised that those messages could help to improve their code quality.

5.2.2 Metrics

The metric nsub is a response variable and refers to the number of functional correct, passed

in all test cases, submissions are done by a student referring to a programming assignment
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to TST server. The metric W is a response variable that summarizes the number of qcheck

quality warnings on the last correct submission of the programming assignment.

In an effort to investigate those proposed research questions for this study, we formulated

the following concrete hypotheses referring to each research question:

H1.1 Students who uses qcheck make more submissions(nsub) than those who

do not use.

H1.0 There is no difference between the mean value of nsub relating to students’

group origin.

H2.1 Students who uses qcheck presents a lower mean value of W on their final

submissions.

H2.0 There is no difference between the mean value of W relating to students’

group origin.

The study happened in two computing laboratories so that we could isolate each group

of students. The experiment was supervised by teacher assistants and graduate students, part

of the Programming 1 course staff, usinf an application script provided by the researcher.

5.2.3 Data Collection

The experiment data was collected by TST. As a premise, only functionally correct

submissions were considered to the study. A small amount of 10 students (22.2%) failed

the assignment and 35 (77.7%) succeeded.

As shown in Table 5.1, the number of correct submissions after the first correct one that

is greater in students of the experimental than the others. It could be observed that the mean

value was drawn up because of some individual cases; therefore, we consider that median

statistic provides a more reliable measure in this context.

Table 5.1: Number of Correct Submissions.

N Min. 1st Qu. Med Mean 3rd Qu. Max

Control 17 1 1 1 1.588 2 4

Experimental 18 1 2 2.5 2.667 3.750 5
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5.2.4 Results and Analysis

In RQ1 we investigated if the students who receive quality feedback about their submission

tend to make more submissions, after the first correct one. The data collected in the

experiment indeed revealed that students of the experimental group (who received quality

feedback) make more subsequent submissions than the students of the control group. The

median of submissions performed by the subjects in the experimental group was 2.5; which

is greater than the median of submissions performed by control group subjects. We studied

this behavior, performing a Mann-Whitney nonparametric hypothesis test. As a result,

we rejected the null hypothesis in favor of the alternative. For this test, p-value = 0.009

with 0.05 significance level. This means that students who received warning messages as

feedback about their code quality tend to make more submissions of that same assignment.

As practical significance, we can state that: apparently, quality feedback messages are taken

into consideration by students and not ignored by them. It encourages students to reflect on

their code beside it correctness.

In RQ2 we examined if students that receive quality feedback about their submission

tend to deliver a better quality code. It was evaluated if quality measurements of the

last submissions W of the students’ submissions of each group differ depending on their

exposition to feedback quality warnings. We have performed the same hypothesis test

successfully. It was possible to reject the null-hypothesis in favor of the alternative as p-value

= 0.0267, with 0.05 significance level. This means that, at least for our data, the number of

quality warnings of the last submission from the students of the experimental group is lower

than the number of quality warnings of the last submission from the students of the control

group.

Then, we took into consideration all functional correct submissions of each student in

the experimental group, not only the last one. This qualitative analysis uncovers details that

could not be captured by statistical tests. We have observed that 66.67% of the students

which received at least one quality feedback warning about their first submission, presents a

positive derivative: they succeed in solving the feedback warning and reduced the number of

warnings obtained in relation to the previous submission. Our results indicate that students

are able to actuate on their code based the quality warning feedback messages. It suggests

that this type of feedback is useful and adequate to promote the improvement of student’s
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code, at least for this study.

The following Listing 5 shows an example of qcheck usage that happened during the

experiment. The code on the left is the first (a) and the code on the right is the last (b) correct

submissions of a student. Code (a) is the first correct submission of the student. It caused the

warning "It appears that your program has too many operations." due to lines 10, 15 and 18.

Code (b) is the last submission made by the same student. It caused "No warnings" message.

The student "solved the warnings" making a better use of conditional structures and reducing

the number of lines of duplicated code.

1 # coding: utf-8

2 # xxxx.xxxxxxxx / xxxx / 2014.2

3 # Collatz life

4

5 number = int(raw_input())

6 cont = 0

7

8 while True:

9 if number == 1:

10 cont += 1

11 break

12

13 if number % 2 == 0:

14 number = number/2.0

15 cont += 1

16 else:

17 number = 3 * number + 1

18 cont += 1

19 print cont

1 # coding: utf-8

2 # xxxx.xxxxxxxx / xxxx / 2014.2

3 # Collatz life

4

5 number = int(raw_input())

6 cont = 0

7

8 while True:

9 cont += 1

10 if number == 1:

11 break

12 elif number % 2 == 0:

13 number = number/2.0

14 else:

15 number = 3 * number + 1

16 print cont

Listing 5: Contrast Between Submissions – Before CQI Feedback.

On the other hand, data collected from the control group, reveals a typical student

behavior: they assume their submission is done when it receives an "ok" or "green-bar"

from a test-based automated assessment tool. A careful look exposes that some programs

could have their quality improved in different ways, preserving their functional correctness.

If students were not pushed to review and refactor, they will simply move forward to another

assignment and, maybe, will repeat the same mistakes in the next assignment.
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5.3 On the Use of Code Quality Feedback Messages

In the previous study, we have observed that students who receive quality feedback with

qcheck tool tend to deliver a code with better quality, fewer quality warnings. However, we

want to better understand if this result occurs due to the feedback we have provided or if it

resulted only of the student willingness to improve their code.

In the present study, we contrasted two groups of students that were both stimulated to

improve their assignments’ code quality after finishing it. The groups were instructed on

Programming 1 course code quality standards through a written document we produced and

delivered to them. Only the experiment group had access to qcheck tool. We contrasted

quantitatively and qualitatively the final outcomes gathered from both groups in terms of the

number of warnings and what they have changed in their code (churn). As a result, we found

that, in fact, students that use qcheck are able to make more relevant code changes towards a

better code quality.

The research questions that directed this study were:

RQ1: Do students who receive quality feedback about their submission tend to

deliver a better quality code?

RQ2: Do students tend to improve their code quality considering quality

feedback?

5.3.1 Methods

Firstly, students were invited to an extra-class activity in order to train them to qualitative

evaluation instructors perform in Programming 1. In this activity, they were asked to answer

at most 5 programming assignments, from units three to five. In these content units, students

are exposed to programming concepts such as conditional structures and iterative structures

(for and while loops). The activity lasts the same of a regular laboratory class 120 minutes.

It was given to students a written document, which can be found in this thesis Appendix,

containing Programming 1 code quality standards and orientation. Students were explicitly

stimulated to do the best as they can to improve their code, after making it work. They

were divided into two groups experimental and control group and also located in different

computing laboratories (LCC2 and LCC1).
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During the activity, students from the experimental group could have access to qcheck

quality feedback warnings. There was a previous pre-training session on how to use install

and use qcheck with the whole class. Students from control group answered the assignment

just like they were used to do, under TST support. The experiment was conducted under

the orientation of graduate students that were also part of the course staff. At the end, we

evaluated the proposed research questions under quantitative and qualitative analysis.

5.3.2 Metrics

The metric W is a response variable that summarizes the number of qcheck quality warnings

on the last correct submission of the programming assignment. ∆W is the difference between

the number of warnings of last correct submission and the first correct submission: ∆W =

Wf - W0. From this metric we came up with three situations:

∆W < 0: The student was able to recognize and fix aspects in his/her code to improve its

quality.

∆W = 0: The student was not able to improve his/her code quality.

∆W > 0: The student was not able to improve his/her code quality, instead, the last code

submission became worse than the first submission.

Considering the posed research question we established the following concrete

hypotheses:

H1.1 Students from the experimental group that had access to qcheck messages

presented a lower mean value of W on their final submissions.

H1.0 There is no difference between the mean value of W in relating to students’

group origin.

H2.1 Students who use qcheck present ∆W < 0 among their submissions.

H2.0 There is no difference on the mean value of ∆W relating to students’ origin

group.
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5.3.3 Data Collection

We collected a total of 242 programs, from 35 students, 20 from the control group and

15 from the experimental. Since student’s participation on the experiment was volunteer,

some of them were absent and unbalanced the groups size. We discarded unsuccessful

submissions, which are those that did not pass functional tests. This restriction greatly

reduced our dataset. Furthermore, many students, despite being stimulated to produce a

better version of their correct code in both experimental and control groups, simply do

not deliver a different version of their submitted solutions for a given assignment. In this

sense, each entry of the dataset is a submitted set of solutions to a given assignment of the

experiment. This set is composed only by functionally correct submissions. Submissions

must have lines of code that cause relevant difference from each other, for example, blank

lines are not enough to make two submissions different. Conversely, comment lines, such as

header lines, are considered to be a relevant difference. As we are measuring the evolution of

quality warnings, we also excluded from our dataset submissions that accounted zero quality

warnings (no warnings).

During the evaluation of the RQ2, we define as an entry in our dataset a pair composed

by the first and last submission for a given programming assignment. At the end, the dataset

accounted 28 entries, referring to 56 programs. The evaluation of RQ1 was done using only

the last correct submission. Table 5.2 summarizes those data.

Table 5.2: Distribution of Quality Warnings Account According to Each Group

Control Experiment TOTAL

Entries 19 9 28

TOTAL number of submissions 38 18 56

5.3.4 Results and Analysis

In RQ1 we investigated the number of quality warnings on the final submissions according

to students’ origin group. The Figure 5.2, presents the values of W for students from the

experimental group are more concentrated and left shifted than the W values from the

control group, which are more scattered and right-shifted. This indicates that subjects from
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experimental group submit code containing fewer quality warnings - most of them with zero

warnings. Furthermore, it can be observed that this behavior is a strong characteristic of

the group, as data are more concentrated on the left portion of the plot. Conversely, data

from control group are more dispersed, indicating that subjects from data group cannot be

characterized by a common behavior. The distribution of "number of quality warnings" from

control group presents a wide range of values.

Figure 5.2: Number of Quality Warnings per Group.

Finally, we verified our conjecture expressed on the RQ1 in a nonparametric hypotheses

test and found it is statistically valid. We performed Wilcoxon test, our dataset was composed

of 28 observations in a non-normal distribution, as found a p-value < 0.001. So we could

reject the null hypotheses in favor of the alternative. Our data shows that the mean of

quality warnings found on students code in control group is approximately 4.4 and in the

experimental group is 1.0. The Figure 5.3 shows the number of warning’s distribution in

each group. Our conjecture that "students that receive quality warnings during development

can produce code with better quality than those who receive only written orientation" finds

statistical support in this study.

In RQ2 we investigated if "students tend to improve their code quality considering

quality feedback" according to ∆W. In Figure 5.4 the continuous red curve represents ∆W

distribution of control group and the dashed green curve represents ∆W distribution of the

experimental group.

It can be observed that ∆W values from students of the experimental group are lower than

zero, meaning that they were able to recognize and fix aspects in his/her code to improve its

quality. We also showed in finer detail, on Figure 5.5, a barplot of the raw data regarding
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Figure 5.3: Warnings Distribution on each Group.

Figure 5.4: Distribution of ∆W According to Groups.

∆W of each group. Notice that there is not a superposition of the bars.

Figure 5.5: Quality Improvement According to Groups.

We also verified our conjecture expressed on the RQ2 in a nonparametric hypotheses

test and found it is statistically valid. We performed a Wilcoxon test and found a p-value <

0.001. So we could reject the null hypotheses in favor of the alternative. Our data shows that

the mean ∆W of each entry of students code from control group is -0.22 and in students’
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code from the experimental group is -2.56. This data shows a greater Delta reduction from

students’ code of the experimental group. The 95% confidence interval of the difference

in mean Delta is between 0.96 and 3.72. Our conjecture that "students that receive quality

warnings during development improve their code, using the feedback messages delivered"

finds statistical support in this study.

5.3.5 Qualitative Evaluation

We manually evaluated each dataset entry in order to discover what students were thinking

when trying to improve their code. We compared the difference on codes of the first and the

last correct submission, S0 and Sn respectively. Then, we classified those code improvements

into six categories: code, style, code+style, header, naming and comments. In order to

categorize each change we observed the following:

• Code: Includes changes that impact on coding strategy. We find indications of this

kind of improvement when we observed changes in the number of lines of code, code

statements such as conditional structures and iterations, among others.

• Style: It refers to modifications relating to adherence to coding standards or attempt to

make the code more readable including, for instance, spaces before operators.

• Code+Style: This improvement category exists because we found some cases that the

code difference includes changes in both categories. We considered being worth to

highlight those cases, instead of categorizing it in a single one.

• Header: Changes to include code heading.

• Naming: Refers to changes in variable names.

• Comments: Refers to the addition of comments lines in the code.

We also observed that the number of submissions nsub in each group is very similar, in

general 2 or 3 submissions, with a few outliers. We credit this behavior to this experiment

design: subjects of both groups were stimulated to submit the best possible functional

correct code. The Figure 5.6 summarizes code changes executed by students and manually
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categorized on 28 entries of the dataset: 9 entries from the experimental group and 19 entries

from the control group.

Figure 5.6: Code Changes Categorization per Group.

We observed in this qualitative analysis that students from the control group were not able

to act in terms of code improvement. The majority of students in this group tried to improve

their code quality including comments to their code. We find it awkward, as the already

mentioned quality advice document does not mention comments as a way to improve code

quality. Students from control group worried about header and naming while students from

experimental group centered their attention in code and style improvements. We can infer

that students from the control group felt stimulated and had the genuine intention to improve

their code but do not have the correct guidance for that. They lack guidance in what really

matters.

On the other hand, students that had access to qcheck managed to make significant

changes in their code. Their changes in code quality include improvements that impacts

algorithm simplicity, better conditional/logical constructions, readability and adherence to

coding standards, among others. We believe that the notion of these premises is fundamental

to educate and train a good programmer.

Finally, we notice that students who do not receive qcheck feedback, even when

stimulated to improve their code quality, feel lost and are not able to make significant

changes. It appears that qcheck act as a relevant guide showing what can be done towards

code quality improvement.
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5.4 On Producing Summative Feedback

In this study, we will present our efforts on producing summative feedback about students’

code production, requested by Programming 1 instructors during the longitudinal study. This

feedback information was used to compose a report that was semi-automatically generated

using qcheck. Students had access to their individual report in TST environment, at the

middle of the term, advising about the quality level of their code production until the

moment. This was intended to stimulate students to care about code quality issues as they

were going to be assessed in this aspect soon. The Figure 5.7 shows some reports examples

in TST screen shots.

Figure 5.7: Code Production Quality Report Automatically Generated by Qcheck.

Besides, we took advantage of these data produced regarding all students to contrast with

qcheck users to find out if: "Are qcheck users producing code with better quality than the

other students?"

We conducted this study using two datasets: the first referring to general code production

gathered from TST server and the last referring to data collected through qcheck usage logs.

5.4.1 Methods

Qcheck was adapted to assess the quality of students code production and summarize the

feedback in a grade. This grade ranged from A to D, meaning: A - Good; B - Can improve;
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C - Must improve and D - Undefined. This adaptation was challenging and we faced many

problems. The first is that students’ code production is a skewed distribution: few students

solve many assignments and many students solve few assignments. For this motive, care

must be taken with this summative feedback interpretation and how to communicate it to

students.

In this sense, it was not possible to express the grade considering just one dimension. We

proposed to use confidence as a second assessment dimension. This measure refers to the

number of programming assignments evaluated to produce such grade. It can be interpreted

as how confident we are that a given code production deserves the grade. We defined

confidence values as: null, low, medium and high. The summative feedback produced can

be viewed as a tuple (grade, confidence).

We started the study by fixing a period of 16 days to collect data from TST Server

regarding students’ submissions to programming assignments from units 3, 4, and 5. Then,

we tested all submissions using TST to select only functional correct submissions. Next,

we used qcheck to compute W for each entry (student, activity) and produced a mark for

them as a ratio of W. We classified this marks in 3 ranges, according to the course intended

learning objectives. The final grade (from A to D) was calculated as a proportion of activities

in each range. This assessment approach was defined in accordance with Programming

1 course staff. Finally, we created the script to produce a personalized report including

message and metadata. The feedback message that was personalized and delivered to 95

students considering grade and confidence dimensions. We here list a translated instance of

the feedback we provided to students:

"Hello Maria. We assessed 11 activities that you produced during the course.

We consider that the code quality that you produced until now is good, with

low confidence. Congratulations! Keep up the good working. Automatically

produced with qcheck."

5.4.2 Metrics

In order to answer the research question that motivated this study, we have created a concrete

hypothesis, considering some metrics detailed below.
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RQ1: Do students who use qcheck presents a better code production quality then

the other students?

H1.1 Students of category "users" presents a better grade of code production

quality.

H1.0 There is no difference regarding the category of students on the grade of

code production quality.

In a detailed qcheck log analysis, we observed that students’ usage patterns were very

different. Some of them just installed and used one or two times while others used the tool

as much as they could. For this reason, we categorized students regarding their proficiency

in qcheck use. This sounds to be fairer, when conducting whichever study aiming to evaluate

qcheck effect. A more detailed explanation in how to compute these categories will be

presented later on.

In the present study, we want to evaluate the performance of students who are qcheck

users and compare them to those who do not. We intend to gather evidence that, even if

these students do not use the tool they care about quality and produce good code. So, we

verified if proficient qcheck users achieved the highest grades with adequate confidence in

relation to other students, by chance or not with adequate statistical significance.

We categorize students according to their proficiency of using qcheck. First, we

calculated the correlation and found it significant (Spearman’s rho 0.97 with p-value < 0.01),

between the occurrences of qcheck use with the number of activities solved by students.

Then, using the distribution of the number of activities solved in the period we classified

students’ qcheck proficiency in a categorical order as users, testers, curious, non-users. The

category is used as a factor in this study.

The metric students’ grades, a response variable of this study, varied from A to D,

meaning: A - Good; B - Can improve; C - Must improve and D - Undefined. The Figure 5.8

presents a practical example of this grade as the methodology to calculate it was previously

described. It shows the assessment of the code production of two students. Each cell

represents one programming assignment. The mark is a ratio considering W. Ranges depicted

by different colors in the image, relates to course pedagogical assessment decisions. The final

grade is a proportion of the activities in each range. Distribution (a) was graded as A and
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distribution (b) was graded as C.

Figure 5.8: Assessment of Students (a) and (b) Programming Assignments.

The confidence metric ranges in four categories, regarding the number of programming

assignments completed by the students: null < 10; low < 20, medium < 30 and high >=30.

Although these numbers might appear too high, we would rather keep high standards in this

aspect. It means that our approach is conservative: A high confidence in the assessment is

only possible if we evaluate many assignments. For this reason, we pruned the dataset and

discarded entries with null confidence.

5.4.3 Data Collection

The Table 5.3 presents a summary of the data collection of code production quality

assessment and qcheck usage. Note that, regarding users’ proficiency, those in "Not"

category are students that did not use qcheck in the period of the study. It differs from

"Non-users" as this group used qcheck only once in the period.

Table 5.3: Dataset Summary.

Total of students 47

User Proficiency
User Tester Curious Non-user Not

17 5 8 5 12

Confidence
High Medium Low

7 12 28

Grade
A B C

23 19 5
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5.4.4 Results and Analysis

Observing the data collected, (grade, confidence), in order to evaluate the research question

we found that all (100%) students (A, high) are categorized according to qcheck proficiency

as users. If we consider a broader confidence, keeping the same grade (A, high + medium)

we found that 83.3% of the students are categorized as users and 16.7% as not.

In order to evaluate the whole distribution and gather statistical evidence that it did not

occur by chance we produced the contingency table and tested this hypothesis. As a result,

we found it relevant and could reject the null hypothesis in favor of the alternative that in

fact there is a difference between the distributions. We applied Pearson’s Chi-squared test

to assess whether the differences in the distributions happened by chance. The result was

relevant with df = 8 and p-value =0.008. The contingency table 5.4 used in this test is

presented in sequence.

Table 5.4: Contingency Table Contrasting Students’ qcheck Usage Proficiency to Grades.

A B C

User 13 4 0

Tester 2 3 0

Curious 4 3 1

Non-user 0 5 0

Not 4 4 4

5.4.5 Discussion

In this study, we conjectured whether students who were qcheck users perform better on the

assessment of their code production, in a given period of time than others student that did

not use the tool. We came to very positive results observing and testing the data distribution

we collected. However, care must be taken while interpreting these results due to some bias

that could threaten its validity.

Confidence metric is directly related with the number of assignments the student solves.

It perhaps may be an indication that these are students most motivated or better performing in

the course. On the other hand, we collected data from programming assignments regarding
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3, 4 and 5 units and top performing students in the course have passed by this units solving

few assignments.

Another issue is that this result must not be considered a final evaluation about code

quality in students’ production. They were not warned that we were going to collect their

submission in a given period to assess them. In fact, students have contacted us after the

report release questioning that they had produced much more activities than it was assessed.

We advised that this report was just a checkpoint and is not intended to provide a final

diagnostic, but to warn students about how they are performing.

In fact, 49 students with null confidence were excluded from the study. It means that

51.4% of the students have not completed enough programming assignments, by the time

we performed the study, to have their code production qualitatively assessed.



Chapter 6

Consequences of Code Quality

Improvement Feedback on the Learning

of Programming

In this chapter we consider the consequences to learners of providing feedback about code

quality improvement using the proposed tools during a programming course. Recently, De

Nero and colleagues (20017) discussed that there were many initiatives and advances in

automated feedback platforms aimed at programming education, but few studies on its effects

on real programming courses [DSPQ+17]. We are going to present our main findings in a

longitudinal study and discuss its implications to learners, instructors and the course itself.

Furthermore, we are going to present an evaluation of the approach performed with the

students that used the tool in their activities.

In order to evaluate how students consume code quality improvement feedback and how

it is effective in helping them to improve their code, we proposed a longitudinal empirical

study. At this point, we have already proposed, implemented an adjusted qcheck as a

proof-of-concept instrument that was plugged into TST, the automated assessment system

used in our introductory programming course at the UFCG. The theoretical goal of this study

was to find evidence that could help us to answer the research question:

"How learners that used qcheck increased knowledge about code quality and

transferred it to their programming practice?"

80
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However, answering this question and finding a causal link between the use of the

instrument and its repercussion in ones’ knowledge it’s impracticable, at least in the scope

of this work. For this motive, we rephrased this research questions into more modest

ones, in order to gather empirical evidence of the repercussion of our proposal on students

programming practice and skills along a period of time in their introductory programming

course. The following research questions guided the studies reported in this section:

RQ1: Do learners incorporate "code improvement" as part of their

programming process cycle?

RQ2: Do learners that consume qcheck code quality feedback is succeeded in

improving their programming assignments code quality?

RQ3: Do learners that consume qcheck code quality feedback improve their

programming abilities regarding code quality?

RQ4: How is students’ perception about qcheck usefulness in the aid of

improving programming assignments’ code quality?

6.1 Context

This study took place at UFCG in the Computer Science undergraduate course in

Programming 1 course under the supervision of our advisors. They were also part of

the academic staff the course that was composed by 4 instructors and 15 graduate and

undergraduate students that provide support to the course as teacher assistants or students’

tutors. It happened in the academic period of 2017.1 with an enrollment of 115 students.

This is the official number, which includes those students who have dropped out the course

later on.

6.2 Evaluation of Providing Code Quality Feedback in a

Programming Course

In order to evaluate how students consume qcheck feedback and how effective it is in

supporting code quality improvement, we took into consideration two outcomes: the
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programming assignment code and the student that used or not qcheck tool when solving

programming assignments.

6.2.1 Methods

The nature of this empirical study aimed at contrasting and exploring the consequences of

using qcheck on the introductory programming course is quantitative. However, in order

to unveil relations and results, it was necessary to recur to qualitative analysis of students

programs and behaviors. In general, this study had the following characteristics:

• Analytic - as it uses statistical methods to uncover relations and make inferences;

• Longitudinal - as we collected a set of measurements along time of the study;

• Prospective - as students under the research will be followed by their exposure to

qcheck to the outcome (response variables);

• non-Randomized - in fact, we did not intentionally divide two groups of study, but it

naturally happened when students chose to use or not the instrument. Certainly, qcheck

users’ group is biased by their willingness to invest in code quality improvement. For

this motive, care must be taken when reporting conclusions about the hypothesis that

contrast users/non-users groups.

In order to investigate each research questions mentioned above, we made a set of

concrete hypothesis considering some metrics and the data collection context. We also used

descriptive statistic in an exploratory analysis to report data about the observed phenomena.

RQ1: Do learners incorporate "code improvement" as part of their programming process

cycle?

EA1.1 What was the proportion of students that used qcheck to improve their

code quality?

EA1.2. How students that used qcheck behaves in terms of frequency of its use?

RQ2: Do learners that consume qcheck code quality feedback is succeeded in improving

their programming assignments code quality?
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EA2.1 Among students that used qcheck what is the proportion of students that

managed to reduce their W?

EA2.2 Among students that used qcheck what is the proportion of students

that managed to reduce to 0 (they received the message "No warnings,

congratulations!") their W?

H2.1.1 The value of W in the code of the last submission is smaller in students

that consumed qcheck feedback.

H2.1.0 The value of W in the code of the last submission does not depend if

students consumed qcheck or not.

H2.2.1 Students that uses qcheck presents ∆S<0 among their submissions of the

same assignment.

H2.2.0 The value of ∆S among submissions of the same assignment of students

that uses qcheck are not necessarily less than 0.

H2.3.1 Students that uses qcheck presents ∆W<0 among their submissions of

the same assignment.

H2.3.0 The value of ∆W among submissions of the same assignment of students

that uses qcheck are not necessarily less than 0.

RQ3: Do learners that consume qcheck code quality feedback improve their

programming abilities regarding code quality?

H3.1.1 The value of S in the code of the last submission is less than in students

that use qcheck.

H3.1.0 The value of S in the code of the last submission does not depend if

students use qcheck or not.

H3.2.1 The value of W in the code of the last submission is less than in students

that use qcheck.

H3.2.0 The value of W in the code of the last submission does not depend if

students use qcheck or not.
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6.2.2 Data Collection

We used two collections of data to investigate the proposed hypotheses of this study. The

first one was the data gathered using qcheck log bot and saved in our server from the period

2017-05-29 to 2017-06-26. We filtered this data in order to prune the distribution. In the first

three days of study, when the tool was presented to the students, it was proposed an activity

to teach them how to use qcheck. During these days, almost all students used qcheck, as

it was a laboratory activity. After that, using qcheck was no longer asked or incentive by

the course instructors. So, as it can be observed in the Figure 6.1, the number of qcheck

occurrences of use declined.

Figure 6.1: Aggregated Number of Qcheck Use by Students by Date.

The distribution is skilled revealing an abnormal pattern of usage at the beginning of data

collecting. It is worth to note that these data refer only to students that used qcheck at least

once during this period. Another unusual pattern of usage was detected at 2017-06-26 when

happened the first exam to assess students’ code quality as an official activity the course.

Students could use qcheck, if they wished to. As this day, we registered more than 800

occurrences of qcheck invocation. We omitted this data in the plot and excluded them from

our analysis of qcheck usage.

The second data set was collected from TST server and is composed by submissions done

by students during the same period of time. Differently from the first mentioned data set,

this one contains data from students that used or not qcheck tool. However, it contains only

the last functional correct submission of each student for a given assignment. In summary,
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Table 6.1 presents a summary of the data set.

Table 6.1: Students Code Production Data Collection.

Summary

Users 96

Activities 85

Units 3, 4 and 5

Used qcheck
Yes 464

No 1030

Consumed qcheck feedback
Yes 356

No 1138

Total number of submissions 1494

6.2.3 Metrics

The metric W is a response variable that summarizes the number of qcheck quality warnings

on the last correct submission of the programming assignment. ∆W is a difference between

the number of warnings of last correct submission and the first correct submission: ∆W =

Wf - W0. Similarly, ∆S is a difference between the number of style warnings of last correct

submission and the first correct submission: ∆S = Sf - S0. We expect these values to be

negatives.

6.2.4 Results and Analysis

In order to investigate whether learners incorporated ’code improvement’ as part of their

programming process, we first searched what proportion of students used qcheck during

the study (EA1.1). We took into consideration that the initial 3 days of data collection

corresponded to a specific activity to install and present qcheck to students, then we found

that more than 66.3% of students used qcheck in theirs everyday activities while 33.7% did

not.

Among those students that used qcheck in their routine, we found, as could be expected,

that the number of qcheck invocations (occurrences of use) are strongly positively correlated
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to the number of programming assignments (activities) the student did. We used Spearman’s

rank correlation method since it is less sensitive to outliers. The value of rho is = 0.87,

p-value=2.2 x 10
−16.The Figure 6.2 shows this distribution.

Figure 6.2: Occurrences of Qcheck Uses X Activities Performed by Students.

Furthermore, the pattern of qcheck usage is diverse (EA1.2). We categorized students,

according to the number of activities they submitted and used qcheck to improve its quality,

as: users, testers, curious and non-users. Considering that occurrences of use and activities

are strongly correlated, we found that number of activities was more significant to make this

categorization, observe a summary is shown on Table 6.2. Students in the category of users

are those that the number of activities performed using qcheck tool is above the 3rd quartile,

referring to 30.4 %. Students in the category of testers are above the median and below

the 3rd quartile, referring to 21.7%. Students in the category of curious are 26.1% that are

students that submitted fewer activities than the median, but more than the 1st quartile. The

category of non-users corresponds to students that installed, tested and used qcheck but did

not incorporate it into their programming process routine as they used when performing just

one or two activities. It differs from those 33.7% proportion, previously mentioned, that did

not use the tool (besides in activities proposed by instructors) at all.

In the second research question (RQ2) we wanted to evaluate if "Learners that consume

qcheck feedback is succeeded in improving their programming assignments code quality".

Initially, we explored data collected with qcheck log bot in the longitudinal study to know

what was the proportion of students that used qcheck, receive its feedback and managed
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Table 6.2: Students Usage Pattern of Qcheck Relating to Occurrences and Activities.

Min 1* Quartile Median 3* Quartile Max

Occurrences 1 5 11 27 172

Activities 1 2 4 8 56

CATEGORY Non-user Curious Tester User

to reduce the value of metric W among their programming assignments, ∆W < 0 (EA2.1).

We found that 63.04% reduced the number or quality warnings of its codes, 32.4% did not

increase nor reduced the value of W and a small amount of 4.4% increased the value of W. It

is important to notice that, since the tool runs in the client side, it means that an unsuccessful

attempting in improving their code quality does not compromise students code assessment.

They only submit to TST server the best version of their code. The Figure 6.3 shows the

frequency of distributions of the value of ∆W.

Figure 6.3: Distribution of ∆W per Assignments.

Furthermore, we looked for students that managed to eliminate the warnings emitted

by qcheck, so that W = 0 in their activities (EA2.2). Considering 618 assignments (user,

activity) in our dataset, we observed that, 24.75% of the students that used qcheck tool were

able to accomplish "No warnings" at their first attempt. A proportion of 25.56%, consumed

qcheck feedback and managed to also accomplish W = 0. A considerably large number of

students, 20.37%, just checked the quality feedback and 29.28% of them were not capable

to eliminate the warnings Table 6.3.
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Table 6.3: Contrasts of Final Number of Warnings According to qcheck Usage per

Assignment.

W = 0 W >0 TOTAL

Checked quality feedback 153 126 279

Consumed quality feedback 158 181 339

TOTAL 311 307 618

In order to better understand this post-feedback behavior, we contrasted these results

with the categories of qcheck users. We found that "users" and "testers" are more proficient

in consuming quality feedback message and improving their code than other categories of

users, as can be seen in the boxplot in Figure 6.4. Recall that "users" and "testers" are those

students who have more occurrences of qcheck use. It can represent a signal that students in

these categories have learned "how to use qcheck to improve their code".

Figure 6.4: Number of Warnings According to Qcheck User Category.

We also tested and found significantly, the hypothesis that the mean of W on assignments

depends on the use of feedback (if it was just checked or consumed). We reject the

null hypothesis in favor of the alternative that there are differences in terms of the mean

location of W (response variable) in the distribution (feedback "just checked" or "consumed")

executing the Wilcoxon signed rank test, with p-value < 0.001.

H2.1.1 The value of W in the code of the last submission are smaller in students

that consumed qcheck feedback.

H2.1.0 The value of W in the code of the last submission does not depend if

students consumed qcheck or not.
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We investigated if the derivative of metrics W and S (∆W and ∆S) in this study

performing some statistical tests. We also made some assumptions about the ability of

learners in consuming feedback and improving their codes. We hypothesized that ∆W and

∆S tends to be smaller than 0 in the observations of the distribution, meaning students were

able to reduce the initial value of W and S on the final submission. The concrete hypothesis

H2.2 used to perform the statistical test is presented in sequence. We omitted H2.3 because

is similar H2.2, but using ∆W.

H2.2.1 Students that uses qcheck presents ∆S<0 among submissions of the same

assignment.

H2.2.0 The value of ∆S among submissions of the same assignment of students

that uses qcheck are not necessarily less than 0.

We computed ∆S on the distribution and found that 56.05% reduced the number of S,

which is the style warning. A proportion of 40.41% did not increase nor reduce the value of

S and few students, 3.54%, increased the value of S. We executed statistical tests that were

capable to support our initial claims for both variables. For both variables ∆S and ∆W, using

Wilcoxon signed rank it was possible to reject the null hypothesis in favor of the alternative,

with p-value «0.001.

Finally, in the last question (RQ3) we examined if "learners that consume qcheck code

quality feedback improve their programming abilities regarding code quality in relation to

those who have not used". Until this point, we have only dealt with students that executed

qcheck. Certainly, a considerable proportion of students in this group has the willingness to

improve their code. Although, we have observed that not all of them could accomplish it. In

this final study, we are going to contrast metrics W and S from students of the whole class:

that used or not qcheck in their final submission to TST Server.

We observed in this sample distribution, of given period of time in Programming 1

course, that 31.05% of students have used qcheck in when doing their assignments, while

68.95% did not. From the amount of those who used qcheck 76.72% consumed the quality

feedback, meaning that they executed qcheck more than once or obtained "No warnings"

in the first execution. Considering the mean of W and S metrics as response variables and

qchecked and consumed as factors we have the following data presented in Figure 6.5, Table
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6.4 and Table 6.5.

Figure 6.5: Mean of W and S According to Qcheck Use.

Table 6.4: Value of the Mean of Quality Warnings – W

Mean of W Consumed qcheck feedback

Used qcheck

No Yes

No 1.88 -

Yes 1.75 0.82

Table 6.5: Values of the Mean of Style Warnings – S.

Mean of S Consumed qcheck feedback

Used qcheck

No Yes

No 3.10 -

Yes 1.18 0.45

We conjecture that students that used qcheck tool might improve their programming

abilities regarding code quality in relation to those who have not used that used the tool.

In order to investigate the validity of this conjecture, we proposed the hypotheses H3.1 and

H3.2, which are similar and refers to S and W respectively. We recall only the first one here:

H3.1.1 The value of S in the code of the last submission is smaller in students

that use qcheck.

H3.1.0 The value of S in the code of the last submission does not depend if

students use qcheck or not.
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It was observed the mean value of S and W, as response variables for students that used or

not qcheck. The results of the hypotheses tests we have used to investigate those conjectures

were significant for both variables. It was used a nonparametric test as we cannot observe

normality in the distribution. Its results yield that we can reject the null hypothesis in favor

of the alternative that there is a difference on the mean (mean_sim < mean_nao) of the

distributions. As we previously discussed in this section, if we considered students that

effectively processed qcheck feedback (variable consumed qcheck), we would observe even

greater impact on the value of W and especially on S.

We deeply evaluated the relations among the factors and their effects on the response

variables W and tried to adjust a model to observe the statistical significance of them. As

the variable W represents an observed count (normalized number of warnings ranging from

0-5) and we could not guarantee the assumptions of normality for a trivial linear regression

model. For this motive, we fitted a generalized linear model with Poisson distribution.

We took as explanatory variables: consumedqcheck, unit, lloc, cc, vhalstead, utype. As

a result, we found that the intercept and the values of consumedqcheck, lloc and utype=user

were highly significant for the value of W (p-value approximately 3 X 10-5). The final model

could be written as:

W= 0.510 - 0.660 consumedqcheck + 0.020 lloc - 0.275 utypeuser

A free interpretation of the model coefficients, at least for our dataset, may represent that:

• When consume qcheck feedback, we observe an decreasing W value;

• Longer programs impacts the number of defects (lloc positive), we observe an

increasing W value;

• When the student is a qcheck proficient user (utypeuser), we observe decreasing W

value;

Other interesting conclusions can be observed regarding the coefficients that were not

relevant to the overall explanation of W value. The factor "unit of the programming

assignment" that could be related to additional difficulty on the programming level and also

on the programmer maturity was not relevant for W observed value. It possibly gives us
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an indication that code quality is a transversal concern, at least in these initial units of an

introductory programming level.

It is worth to note that when we use a Poisson regression model, we assume that the

response variable follows this distribution and so, that the mean and variance are equal. In

these data, for the response variable W, mean and variance estimates were approximately

1.62 and 1.86, respectively. Thus, we have no reason to suspect about Poisson modeling.

We have also modeled S variable using the same methodology, however, results were not

acceptable.

6.3 Do Learners Think that Qcheck is Useful?

The aim of this study was to gather observations and comments of students that were using

qcheck tool in order to evaluate its experience during their programming process. The

research question raised by this study was:

RQ4: How is students’ perception about qcheck usefulness in the aid of

improving programming assignments’ code quality?

We want to better understand student’s post-feedback behavior from their own

perspective: (1) how students use qcheck in their programming process; (2) how students

consume qcheck quality feedback; (3) What preclude or motivate them to use qcheck and (4)

If students agree that their code is effectively improved if they follow qcheck hints.

Firstly, we selected and informally interviewed students during their laboratory classes.

Then, we asked them to register our conversation and other important information in a form.

They were asked to answer a questionnaire composed by almost the same questions but

in a more structured way. Next, we processed the answers, coding and categorizing the

answers for each posed question. Lastly, we summarized the results for each topic and drew

conclusions about students’ perception of the usefulness of qcheck.

6.3.1 Methods

In this study we interviewed a set of students that voluntarily used qcheck in their

programming process during laboratory classes. After three weeks of in situ observation, we
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started the fourth week remotely monitoring qcheck usage log. This distance was intended to

reduce researcher’s influence on the natural order of events. When we detected an occurrence

of qcheck use, that met our requirements, we ’rushed into the scene’ in order to get fresh

impressions about the event.

We adopted a research methodology inspired by as ’firehouse research’ [BBBL15]. In

this methodology, the process begins with the researcher ’at-the-ready’, prepared to act as

soon as the event starts or happens. Researcher’s actions are driven by the events not by

him or her. It requires a careful design plan previously defined, monitoring and controlling

of tool’s usage and automated subjects’ selection. It requires less formalism; in contrast

with others social science research methods, but more automation and readiness. Another

positive aspect of firehouse research methodology is the way it transports researchers to

subjects’ reality. In our study, we adapted this methodology as we included a questionnaire

to the subjects themselves register their information. While this can hinder students from

speaks freely about their impressions on the subject it gives us the agility to talk to others

students at the same class and avoid the step of interviews transcriptions.

6.3.2 Participant Selection

The process of participant selection for this study was based on two aspects: the student and

the event - an occurrence of qcheck use.

We chose students considering their temporal distribution on each one of the four

laboratory classes of Programming 1 course: T1, T2, T3 and T4 (two of them occur at the

same time). This was intended to maximize the number of respondents and mitigate biases

regarding the student class and instructor.

Furthermore, in the beginning of the course students were advised that they would take

part in a research; they may opt to decline or accept. Also, during qcheck tool installation

they are asked if they want to report or not data for research purposes. If they accept to report

their data, they are warned that are contributing to our research. According to our dataset,

only 4.2% students declined to report data. We can only count on participants who accepted

to take part in the research.

We also prioritized selecting users from different clusters based on their code quality

level. We took into consideration students’ code production and performed a careful analysis,
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using qcheck tool, on their assignments submitted for TST server. We adapted qcheck to

produce a summative feedback and using this information we categorized students into three

groups based on the level of quality of their code production, until this moment. Ideally, we

wanted to select students at least from each one of the three clusters.

In regards to the event qcheck use, we set the following criteria:

• It needs to happen on the course of a laboratory class;

• It must be observed at least two occurrences of qcheck invocation;

• The number of warnings (style and code warning) must be zero on the last invocation.

The first two student’s criteria were established for convenience: as we know where

the student is. We contacted students during laboratory classes, upon an agreement with

the teacher. Laboratory classes of T1, T2, T3 and T4 occur on the first three days of the

week, so we concentrated our interviews activities on those days. The second criterion was

fixed to guarantee that it happened at least one cycle of feedback: (1) report-feedback, (2)

feedback-consumption and (3) code-refactoring. Finally, we fixed, as a tiebreaker, an ideal

event: students managed to solve all warnings. Certainly, if we only choose participants that

can meet this last criterion, our results would be biased, and the contrary is also true. So, we

were careful to ensure that we have a balanced selection.

After the subject selection, the interviews occurred sequentially. During laboratory

classes, we remotely monitored qcheck activity log aiming to find a pair (student+event)

that meet those specified criteria. When it happens, we contacted the student, asked if we

can talk about their qcheck usage and ask them to answer the online questionnaire with the

same discussion.

The Figure 6.6 lists the questions we have discussed with the study participants in order

to gather elements to answer the research question (RQ4). The main topic is listed in the first

line and in sequence, the question elaboration is maintained in Portuguese to show what was

effectively asked to the students. The instrument used is in the Appendix.
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Figure 6.6: Qualitative Evaluation - Questions of the Interview and Questionnaire.

6.3.3 Data Collection

At last, we interviewed 19 students selected using the reported approach and other different

reasons. For example, some students asked to take part in the research during the laboratory

class. We included these students because they already passed the units allowed to use qcheck

tool and they could not be selected looking at qcheck log. The final subject selection included

students from a diverse profile according: to laboratory class provenance, experience with

programming, performance on the course, grade of qualitative evaluation regarding code

production and proficiency of qcheck use, as can be seen in Table 6.6. We naturally preferred

users with a higher level of qcheck proficiency so they could assess it more properly.

6.3.4 Results and Analysis

The first topic was intended to verify if students were including qcheck quality verification

correctly on the programming process: on the fourth stage - "Look back". In the

proposed approach, students are encouraged to verify their code quality after their program

verification. In Programming 1, students can tell their program is functionally correct when

it passes public and secret TST tests.

In response to (Q1) "How students use qcheck tool in their programming process?" the

majority of the respondents 47.35% answered that they used after TST server tests when

the program is correct. A proportion of 31.6% answered that they execute qcheck before
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Table 6.6: Data Set of Qualitative Users’ Study.

Student lab newbie unit grade proficiency

S1 1 yes 4 A user

S6 1 yes 8 A user

S15 1 yes 4 B user

S2 2 yes 5 A user

S5 2 yes 5 A user

S8 2 yes 10 A tester

S16 2 yes 9 A user

S17 2 yes 4 A user

S3 3 yes 4 B user

S4 3 yes 7 A user

S7 3 yes 10 A user

S11 3 yes 7 A user

S12 3 yes 8 D tester

S13 3 yes 10 D tester

S18 3 yes 9 A user

S9 4 yes 6 B user

S10 4 no 4 A non-user

S14 4 no 4 D curious

S19 4 no 4 D user
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submitting the code to the server. This can concern us, as it means that students do not know

the basic recommendation about the stages of programming process and how to include

quality improvement on it. It also can be the cause of students’ alleged difficulties in solving

the warnings - if the code is not functionally correct the metrics used by qcheck to generate

code warnings are not valid. The rest of 21.05% of students answered this question with

other information. Curiously, student S8 misunderstood the question and revealed "where"

he used the tool "Only when I am solving programming assignments at home". This may

corroborate to other arguments raised in subsequent questions that it takes a time to improve

the code.

In the second topic, we wanted to investigate the quality of the feedback messages and

how students process them. Qcheck feedback message is divided into two parts: code

warnings and style warnings. Style warnings hints are composed by a message and the

numerical indication of column and code line where the problem can be found. Code

warnings are those related to the program structure and the algorithm used to solve the

problem. Sometimes, to solve those warnings it is necessary to reason about other solution

- a better algorithm. For this motive, solve this type of warning is more difficult. Possibly

a good working strategy is to start solving style warnings and then proceed to solve code

warnings.

In response to the topic raised by (Q2) "How students consume qcheck feedback?" we

noticed that 31.6% of the respondents use the strategy of solving code warnings first. Some

of them argued they proceed this way, as style warnings are easier to solve. Only one student

answered that he starts solving code warnings. The other responses address diverse issues.

Student S9 manifests his concern in "fixing the quality warnings and keep the code still

working". Another student (S17) asserts "There were cases that I left unsolved warnings

because it was more difficult to solve them than to solve the programming assignment". We

agree that solving code warnings are indeed more difficult than solving style warnings as it

needs more reasoning about the solution recruiting more depth cognitive work.

In the third topic, we intended to understand what precludes or stimulates students in

using qcheck tool. The answer to this question may be evaluated in a twofold perspective:

the tool and the task. The first and more direct is the tool evaluation: if qcheck meets the

requirements of their users. The second is the task: if students felt stimulated to invest their
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time and efforts in improving code quality in the context of programming 1 course.

In order to investigate this topic we have formulated two questions:

(Q3.1) Which are the positive and negative aspects of qcheck tool?

(Q3.2) What precludes or stimulates you to use qcheck tool?

Evaluating Q3.1 answers we found many interesting and revealing views. As positive

aspects, 42.1% of students evaluated the tool as "an excellent way to help them to improve

their code". Other 21.05% argued that it stimulates good programming practices. Other

students reported that the process stimulates them to reason about other ways of solving

the problem. It was also mentioned twice that it raises students’ confidence that they are

producing good code. Student S10 declares that as a positive aspect of qcheck is that "it

stimulates you to create new ways to solve the same problem, though we learn deeper".

Regarding negative aspects, 21.05% of the respondents reinforced that there is no negative

aspect. Three students sustained that qcheck did not consider their solution as a valid one and

"complained" about their chosen programming structures. We observe that students feel that

the system could provide a better support for the refactoring process itself: "needs to improve

integration with TST", "it is difficult when we change the code to solve a warning and break

it" and "somehow show the references on how to improve code warnings". A student that

related (anecdotally?) OCD – obsessive-compulsive disorder – about correctness, reported

frustration when keep receiving warning messages and could not get rid of them. To sum

up, we claim that it is possible to fine tune to qcheck warning generation, to make it more

resilient to students’ solution. However, we propose it as future work in Chapter 8, as we

consider that is necessary to evaluate the motivations to make these parameters changing and

ground it with an experimental evaluation using evidence-based approach.

Evaluating Q3.2 answers we found as the main motivation to invest in quality

improvement, on 36.84% of the respondents, is the "willingness to write code clearer, cleaner

and more efficient". Other 15.8% of the students reported that they felt stimulated observing

"the results" they have obtained using the tool. Student S2 reports "a visible improvement

in his code". Interestingly, S17 posed that what motivates him is the feedback message

"No warnings! Congratulations!", reinforcing the motivational power of the feedback. Few

impediments to qcheck usage were reported. The most relevant declared were: "quality
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accounts on 10% of our grade" and "the time spent on code improvement". Three students

answered, regretting, that what preclude them to use qcheck is "it is unavailable in higher

units of the course".

In the last topic, of this evaluation we intended to understand if students considered that

their code is effectively improved after their actuation following qcheck hints. We asked the

following question to the students:

(Q4) Do you think that final version of your code, after solving qcheck warnings,

is worse or better than the first version?

This question was answered using a Likert scale ranging from 1 - worse than the first

version to 5 - better than the first version. The responses are shown in the following Figure

6.7.

Figure 6.7: Students’ Perception About Code Improvement Directed by qcheck Hints.

6.3.5 Discussion

We highlight student S16’s testimonial about his experience with qcheck on the course as

this discussion starting point. His opinion summarizes many observations of other students

collected in the study and raises other concerns:

"The most important thing about qcheck is that it leverages the ’learning

of programming’ to the ’learning of good programming’. I found that the

experience of learning how to program in a system that is explicitly worried

about producing code with quality was more fulfilling than the experience

of ’what is important is that your code works’. However, I think that in
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Programming 1 classes it must be emphasized the importance of the skills such

a tool helps students to develop. Many students of my class do not feel that using

qcheck it’s important due to this lack of incentive."

In fact, we realize that having code quality improvement on the list of concerns of an

introductory programming course is challenging not only to students but also to instructors.

In order to be successful, we perceived that including code quality improvement refactoring

activity needs to be part of the pedagogical orientation of the course. Furthermore, repeating

the study to improve the tool according to quantitative and qualitative evaluation is necessary.

Consequently, the overall proposal can be refined and improved.

In general, we gathered very positive evaluations and good suggestions on how to

improve the tool. It was important to observe that some students were not using qcheck

as we expected: after the program is functionally correct. Also important, it was to hear

from them what precludes them to use the tool. Some affective issues were reported, both

negatives "frustration and anger" as they cannot overcome their difficulties and positives

"joy" when they obtain the message ’No warnings. Congratulations!’ and "hope" to become

a better programmer.



Chapter 7

Discussion

In this work, we presented an approach to generate formative feedback to leverage

programming problem-solving in the last stage of the programming process: targeting the

solution evaluation. As long as solving programming assignments plays a central role in

learning the skills of programming, we focused our attention on this task. This research

results can be applied on introductory programming courses supported by automated

assessment systems to programming assignments. As a requirement for generating feedback,

we compromised not to impose the creation of new artifacts or instructional materials to

instructors, but to take advantage of a usual resource already created when proposing a new

programming assignment: the reference solution.

To design and implement the proposed feedback strategy, we took into consideration

the programming process adapted from Polya (1957) [Pól57] to computer programming

problem-solving. We intend that students become proficient on solving programming

problems and successfully attend the goals of a programming process that includes: (1)

Understand the problem; (2) Plan the solution; (3) Implement the program and (4) Look

Back. Considering the fourth stage, we want students to be fluent in correcting strategies

and, with critical reflection, being able to refactor their code caring about good programming

quality.

Our proposal on providing feedback regarding code quality improvement – CQI was

initially motivated by contrasting the manual and automated assessment and questioning:

why do human instructors grade functionally correct programs so differently? Instructors

approach the manual grading activity in different ways but usually agree whether a program

101
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is "very good" or "very bad" [FHL+13] [Fin99].

Besides correctness, there are other factors weighed by instructors in manual assessment

in terms of code quality. In this sense, we seek for measures that could help us reveal the

quality expected by instructors in students’ programs and evaluate its validity in a case study

with real data. Our tests confirmed that the proposed metrics RLLOC, RCC, RH and RPEP8

do capture that notion of code quality.

After validating this construct, we designed, implemented and evaluated a feedback

strategy regarding CQI. In order to perform the studies required for this approach evaluation,

we implemented qcheck, a proof-of-concept tool. We also conducted a blind-study with

human experts to confront the agreement of their evaluation and the one provided by

the tool. We achieved very positive results regarding the agreement level and insightful

disagreements. So, we can sustain the claim that: we can generate automated feedback

based on teachers of introductory programming code quality expectations.

We designed and conducted another evaluative study with human experts, during the

longitudinal study. However, as it happened along Programming 1 course and the term has

not finished by the time of this writing, we could not report its results. We summarize

the studies conducted to evaluate if the feedback we provide in terms of code quality

improvement reflects experts’ expectancies of students code quality.

C1 - We generate automated feedback based on teachers of introductory

programming code quality expectations.

O1
Proposal and investigation of measures to reveal the quality expected by

instructors on students’ code.

RQ1
Can the measures RLLOC, RCC, RH and RPEP8 explain the differences

observed on the grades, manually assessed, of functionally correct submissions?

O2
Evaluation of the contrast between a human expert assessment and qcheck

assessment.

RQ2 Does qcheck capture expert notion of code quality?

We used qcheck to assess the quality of the feedback generation regarding CQI. We found

significant results when performed the first controlled experiment and introduced feedback

on CQI: students made more submissions after the first correct one, acting differently from
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they used to do and, in fact, they were able to improve the code quality.

In a second study, intrigued by these first findings, we wanted to assess if students

improved their code quality directed by qcheck hints or because they were motivated to

do so. In this sense, we designed and conducted another controlled experiment having both

groups stimulated to produce the best code they could in accordance with a set of directions.

Again, we could find positive results on qcheck users group. Students from control group

acted on the code and tried to improve it in less relevant aspects.

Finally, we evaluated students’ code quality and contrasted those who had used qcheck

from those who had not in a more realistic context, during the longitudinal study of the

Programming 1 course. Differently from the previous studies when the first and last correct

submissions of an assignment were evaluated, we now assessed a snapshot of the students’

code production. We provided a summative feedback: intended to evaluate the student

achievements in this aspect. We assessed 1497 submissions, regarding 85 programming

assignments of 96 students. Our statistical results showed that experienced qcheck users

achieved better performance in contrast with other students. This performance was expressed

in terms of grade – a summative mark based on metric W and reliability – referring to the

number of solved assignments.

In summary, we consider that we have got enough evidence to claim that: students can

improve the code of their programming assignments prompted by timely and automated

feedback. Following, we present a summary of the studies and claims to assess the feedback

messages of CQI and it impacts on students’ code.
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C3 - Students improve code of their programming assignments prompted by

timely and automated feedback

O1 Evaluation of the quality feedback generation

RQ1
Students who receive quality feedback about their submission tend to make more

submissions, after the first correct one?

RQ2
When students receive quality feedback about their submission they tend to deliver

a better quality code?

O2 On the use of qcheck’s feedback messages

RQ1
When students receive quality feedback about their submission they tend to deliver

a better quality code?

RQ2
Do students they tend to improve their code quality considering CQI feedback

messages?

O3
Assessing the quality of students’ code production: summative feedback to

teachers - study performed in the context of the longitudinal research

RQ1 Are qcheck users producing code with better quality than other students?

We designed and conducted a longitudinal study, in a real introductory programming

course. We aimed at evaluating the experience of providing automated quality feedback

during a programming course based on students’ performance perspective. Besides, we

wanted to catch a glimpse of the relations and patterns of use and post-feedback behaviors

of students.

In the first study, we investigated if students included CQI in their programming

assignments solving process routine, after qcheck has been presented in the course. Although

we observed that a high proportion of students (66.3%) have installed and used qcheck at

least once during the observation period, a smaller fraction of users engaged in the cycle of

consuming CQI feedback and actuate in their code. In [Nar08], she observes that:

"...even the most sophisticated feedback is useless if learners do not attend to it

or are not willing to invest time and effort in error correction."

Considering the concepts defined by [Nar08] that external feedback comes from an

external source of information while internal feedback is resultant from learners reasoning,
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we can evaluate some possible post-feedback behaviors that may hinder code quality

improvement feedback intended effect. In [CB93] they list factors that make the effect of

the external feedback small: (1) ignore feedback; (2) reject the feedback; (3) judge the

feedback irrelevant, (4) consider external and internal feedback unrelated, (5) reinterpret

external feedback to make it conform to the internal feedback and (6) make superficial rather

than fundamental changes to their knowledge and beliefs.

Contrasting those factors with the data gathered and our observations in the reported

study, it was possible to observe each one of them. (1) Some students ignored the CQI

feedback provided by qcheck. In our studies, there were some students that had not used

qcheck tool in their programming assignments solving routine. Those students had their

proficiency of qcheck use labeled as not in such situations. In some cases, it happens

due to the scope of the study design: only programming assignments of units 3, 4 and 5

were prepared for qcheck use. So, extremely high performing students went through these

units without solving any exercise, just solving the exams. On the other hand, extremely

poor performing students had not the chance to use qcheck either, as they had only solved

assignments from units 1 and 2. By the time we finished the data collection, 7.83% students

in the class were in this situation.

Situation (2) and (3) are different and indeed happened, but produce the same result:

students just checked but did not consume the CQI feedback. The discourse analysis of

students’ questionnaire about qcheck evaluation and our observation in laboratory classes

gave us some hints why it happened. Some students argued that (2) they had rejected the

feedback because it raised so many warnings that "solving them will be more difficult than

solving the task.", said S15. Some of them judged the CQI feedback irrelevant (3), mainly

when it is related to style warnings. As an example, we may cite PEP8 restriction "Limit all

lines to a maximum of 79 characters". This may also be mixed with (4) situation. Another

style warning that is usually rejected is the PEP8 recommendation that compound statements

(multiple statements on the same line) must be discouraged. It happens because the course

instructors usually use such construction in class: if a_condition: break. Students mimic

instructors examples and, for this reason, internal and external feedback conflicts in this

situation.

In situation (5) and (6) students may have the will but not the skill to solve the problems
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raised by the warnings. This can be observed in many situations that students interact and

engages the CQI cycle but cannot completely eliminate all code quality warnings and attain

W = 0 and the "No warnings" message.

In fact, on RQ2 we asked if learners that consume qcheck code quality feedback are

succeeded in improving their programming assignments code quality. We observed that

24.75% of the students that used qcheck tool were able to accomplish "No warnings" in their

first attempt. Considering only students who engaged the CQI cycle, 25.56% that consumed

qcheck feedback also accomplish W = 0, 20.37% just checked CQI feedback and 29.28%

were not capable to eliminate the warnings. In order to better understand why some students

managed to reduce the number of W, we deeply evaluated their patterns of qcheck usage.

We categorized students according to their proficiency in using qcheck and found that most

proficient users produce better code. In practice, it means that not all students understood or

played "the game", but those who did achieve good results regarding code quality. Although

not all students accomplished total warning elimination, we observed that the majority of

them reduced their number of warnings (∆W and ∆S). It means that students who checked

and consumed CQI were able to improve their code in at least one point. We also find

statistical significance when comparing two distributions.

In practice, we conclude that qcheck usage is positive as users improve their code quality

and reduced the number of observed warnings in the final submission. Eliminating warnings

is more common in qcheck proficient users. Besides analyzing causes of success, we need a

deeper investigation on why some did not succeed. Apart from the lack of skill to accomplish

the task, there are other factors that might be involved. We conjectured that some of them

might be related to the tool adjustments and feedback strategies improvement. We address

this as future work.

Lastly, an investigation was performed to contrast the students who have used and those

who have not used qcheck during their programming assignments resolution. The results

confirm previous experimental findings, whether the mean of warnings tends to be smaller

among qcheck users and even smaller among those who consumed CQI feedback. Using

statistical tools, we were able to observe that some factors influences on the decreasing of

the number of defects W: qcheck feedback consumption and if the students are qcheck user

proficient. We also found that lloc, influence increasing W, as expected.
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We performed a qualitative evaluation considering users’ perspective using a

semi-structured interview and having students to register their impressions in a questionnaire.

This instrument was valuable to uncover important usage pitfalls. Some students, for

example, used qcheck before the code is thoroughly tested. This may be the cause that some

of them could not manage to eliminate their warnings (W=0). As for negatives aspects, some

students refer "frustration" and "difficulties" when trying to reduce the number of warnings.

As it can be lack of skill to accomplish the task, it may also be a signal that we need to

evaluate such situations in order to understand if it is the level of feedback we really intend

to deliver. Many positive aspects were reported regarding qcheck usage and the support it

provides.

Those comments were stimulating and revealed that the strategy of CQI we proposed

successfully fill a gap on these students learning opportunities. Overall, we considered

that we have gathered minimal support to claim that: Students improve programming skills

stimulated by the reflection on their programming assignments code with the purpose to

improve its quality. We summarize in sequence the studies we conducted to support the

claim.

C3 - Students improve programming skills stimulated by the reflection

on their programming assignments code with the purpose to improve its quality

O1
Evaluation of providing automated quality feedback along a programming

course - study performed in the context of the longitudinal research

RQ1
Do learners incorporate "code improvement" as part of their programming

process cycle?

RQ2
Do learners that consume qcheck code quality feedback succeed in improving their

programming assignments code quality?

RQ3
Do learners that consume qcheck code quality feedback improve their

programming abilities regarding code quality?

O2 Users evaluation of qcheck tool

RQ4
How is students’ perception about qcheck usefulness in the aid of

improving programming assignments’ code quality?
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7.1 Theoretical Implications

An important discussion referring to our approach on providing feedback to code quality

improvement refers to how much information to deliver. In general, computer-based learning

environments differ in terms of whether or how they give or withhold information or

assistance. In the proposal hereby discussed we raised the question: Do we need more

elaborate hints on ’how to solve’ the warnings? Or when to deliver such elaborate and direct

hint?

This problem on "how should learning environments balance information or assistance

giving and withholding to achieve optimal student learning" is known as the ’assistance

dilemma’ [KA07]. In this sense, we have to consider the possible benefits and costs of

information delivering versus omitting in order to design effective instruction, summarized

on Figure 7.1 [KA07].

Figure 7.1: Summary of Costs and Benefits on Providing Assistance.

There are many benefits that we observed in withholding information "on how to solve

the warning" with qcheck during the longitudinal studies. We can cite the opportunity

students have to think about other ways to solve the task. It pushes their knowledge

boundaries and as they are impelled to improve their skills to, for example, solve warnings

that demand reduction: the lines of code or the number of conditional statements they use in

their solution.

We witnessed students, motivated by qcheck warnings, debating on how to improve a

functioning code on the discussion board (Slack), an extremely rare phenomenon in the

course. In another situation, a graduate teachers assistant reacted with "Wow! I need to study

more Python." when we assisted him with a student code that qcheck raised some warnings.

During an experiment when qcheck was first introduced, a student declared, expressing

hesitation, that "using qcheck, I feel that I have been watched".
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We argue that the threshold of the dilemma assistance is not a one-size-fits-all solution. It

depends on the maturity of the approach. This maturity is only attained after many evolutions

and evaluations in real programming courses. Furthermore, this balance is extremely related

to the pedagogical approach of the course. Decisions about what to reveal or withdrawn must

not be dissociated of instructors orientation.

7.2 Pedagogical Implications and Opportunities

There are some pedagogical implications and other opportunities raised by our approach and

feedback strategy. We highlighted some of them in this section.

7.2.1 Learning Conversations and Interactions

In a study by Robinson and Udall (2006), they demonstrate that interactive "learning

conversations" with engineering students lead to a greater sense of ownership in students’

learning [RU06]. The feedbacks we intend to provide stimulate conversation and discussion

about how to (better) solve the problem. We believe that interactions are extremely beneficial

to engage students in learning activities. Furthermore, it inverts the information flow: from

the student to the instructor. Instructors’ assistance is now directed by students request,

promoting the significant learning process.

7.2.2 Critical Reflection About Code

Feedback on CQI provides to the student the opportunity to reflect about their code, after

a task completion. Literature shows that such opportunities to "critically evaluate the

quality of their own work during, as well as after, its production" can foster the desired

self-regulation learning [SBCP11]. It means that it can stimulate students to actively engage

in evaluating their performance, including the processes underlying their performance, which

are aimed at the regulation of learning [TWV15]. In the users’ evaluation, many students

stated that qcheck use was stimulated by their willingness to "became a better programmer",

"write better and cleaner code", "learn more about how to improve my code" and other

self-assessment about their code production and role as a programmer.
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7.2.3 Clear Marking Criteria to Programming Assignments

It is important that students be aware and stimulated that code quality matters. Qcheck users

reported that what may hinder them to invest time in CQI, in this particular course, is that

code quality represents only "10% of the final grade". More students will consider and

actively engage in refactoring activities if it was rewarded in the course context. In arguing

about effective feedback for students in CS1 courses, Claudia Ott and colleagues declare:

" (...) marking criteria for a programming task should not only address the

program’s functionality but also the programming process and matters of good

programming style. A clear communication of those marking criteria up

front would help students understand the expectations and act accordingly. If

process-related goals are clearly stated, feedback can address unsatisfactory

programming approaches and assist improvement toward these goals for the

next tasks."[ORS16]

7.2.4 Summative Assessment of Code Quality Produced by Students

While formative assessment goal is to monitor student learning, summative assessment

goal is to evaluate students’ learning [Shu08]. However, we argue that the opportunity of

providing a summative assessment about code quality production automatically using qcheck

can be beneficial to not only to instructors but also to students. The proposal aims to aid

students in the process of self-monitoring. In our experience, in this longitudinal study, we

personalized the feedback to each student in the course and delivered in his or her personal

AAS dashboard. Claudia Ott and colleagues also refer this approach as highly valuable:

"To help students in the process of self-monitoring their performance providing

course information seems highly valuable. Adding meaning to available course

data would inform students about their prospects in the course. Based on

individual performance data, feedback could be personalized by adopting

performance goals (e.g., goals to catch up or attend labs more regularly),

relating students’ actual performance to what was observed as "successful"

performance in the past, and pointing out aspects to improve." [ORS16]



Chapter 8

Concluding Remarks

In this work, we proposed and evaluated an approach to generate and deliver feedback

to students in the programming process. The challenge was to provide timely and

enriched feedback that stimulates students to reason about the problem and their solution

and to improve their programming skills. We intended to leverage programming

problem-solving learning generating enriched automated feedback, regarding students

programming assignments, with information typically delivered by human instructors.

Furthermore, we constrained our strategies of feedback generation to obtain information

from instructional materials already produced by teachers, what aims to minimize burdens

imposed to them.

We focused on providing feedback with respect to the last phase of the programming

process, when the program is revisited and refactored. The main contribution of this Ph.D.

thesis relies on the lessons learned with the proposal and evaluation of automated generation

of code quality feedback to an introductory programming course. We conducted research

studies, such as experiments, case studies and a survey to gather empirical evidence to

support the following claims:

(1) We can generate automated feedback based on teachers of introductory programming

code quality expectations;

(2) Students can improve code of their programming assignments prompted by timely and

automated feedback;

(3) Students improve programming skills stimulated by the reflection on their

programming assignments code with the purpose to improve its quality.

111
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We performed an evaluation of this approach with students of an introductory

programming course in a longitudinal study. We used a proof-of-concept tool – qcheck

to materialize our proposal. Results found in our longitudinal evaluation goes beyond what

we initially expected: the improved assignments’ code quality. We observed that students

felt stimulated, and in fact, improved their programming abilities driven by the exercise

of reasoning about their already functioning solution. Furthermore, we conducted a users

assessment among students. We gathered very positive evaluations and good suggestions

on how to improve the tool. It was important to observe that some students were not using

qcheck as we expected: after the program is functionally correct it was also important, to

hear from them what precludes them to use the tool.

8.1 Future Works

There are several opportunities for future works that arise from this doctoral research. Some

are specific directions to improve our work and others are proposals of new studies regarding

the data collection of the longitudinal study on code quality improvement.

• Evaluation of other metrics to assess code quality such as dynamic software metrics,

vocabulary related, design constraints, and so on;

• Investigation on how students’ perceptions of feedback influence their engagement

with the feedback process, in CQI context;

• Performing qualitative studies using the code submissions of students who could not

manage to improve their code quality using feedback messages;

• Studis exploring the ’assistance dilemma’ and search for the balance in providing

feedbacks on CQI;

• Uncovering relations on data gathered from longitudinal studies in, an exploratory

analysis, contrasting students profile and post-feedback behavior and performance on

the task and course.



Bibliography

[AGF13] E.C. Araujo, D.S. Guerrero, and J.A. Figueiredo. Avaliando a legibilidade

em programas de iniciantes. Workshop de EducaÃğÃčo em ComputaÃğÃčo,
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Uma revisão sobre sistemas automáticos para a avaliação 
de atividades de programação  

 

Abstract. In this article we will review the literature on automatic assessment 
systems (AA) for programming activities. These systems have been developed 
over time with different characteristics as to: feedback given to the student, 
approaches to assess student’s programs, security issues, among others. In 
this research, we seek to evolve existing studies in the literature that presents 
those systems published until 2010. We shall present our perspective on the 
surveyed systems relating to those characteristics and provide our perception 
of future works in the area. 

Resumo. Neste artigo faremos uma revisão da literatura sobre sistemas 
automáticos para avaliação de atividades de programação (AA). Estes 
sistemas têm sido desenvolvidos ao longo do tempo com características 
distintas quanto: ao feedback dado ao aluno, à abordagem utilizada para 
avaliar os programas, às questões de segurança, dentre outras. Nesta 
pesquisa, procuraremos evoluir estudos existentes na literatura que 
apresentam dados até o ano de 2010, com o propósito de ampliar o corpo de 
conhecimento da área. Apresentaremos a nossa perspectiva sobre os sistemas 
catalogados de acordo com as características investigadas, além de 
enriquecer o trabalho apontando as direções sobre os trabalhos futuros. 

1. Introdução 
Nos cursos da área de computação, o ensino de programação ocupa papel de destaque. 
Um estudo realizado por  Pears et al [Pears, 2005] classificou e mapeou a literatura na 
área de ciência da computação. Neste estudo, constatou-se que os relatos e pesquisas 
sobre ferramentas e sistemas de auxílio ao ensino compõem o grupo com mais artigos 
publicados, em veículos da ACM – Association for Computing Machinery1, estando à 
frente de temas como: currículo, pedagogia e linguagens de programação.  

No contexto das ferramentas computacionais de auxílio ao ensino, estão os 
sistemas automáticos para avaliação de atividades de programação (AA). A avaliação 
automática de programas é um recurso didático que vem sendo cada vez mais utilizado, 
especialmente devido ao aumento do tamanho das turmas de cursos de programação. 
Com o uso dos sistemas de AA, é possível manter a consistência das correções, garantir 
que será dado algum feedback rapidamente ao aluno sobre suas atividades e diminuir a 
carga de trabalho sobre o professor. Tais sistemas são especialmente úteis em cursos de 
programação onde há ênfase na realização de muitos exercícios. 

Embora haja muitos sistemas de AA já desenvolvidos, professores, 
pesquisadores ou outros desenvolvedores continuam criando seus próprios sistemas para 
suprir necessidades específicas. Creditamos este fenômeno ao desconhecimento dos 

                                                
1 http://www.acm.org/ 



  

sistemas existentes, à impossibilidade de adaptação dos sistemas a peculiaridades do 
curso de programação, ou à necessidade de implementar o resultado de uma  pesquisa 
com fins de avaliação. Com este trabalho de revisão de literatura, pretendemos ampliar 
o corpo de conhecimento sobre as iniciativas já empreendidas nesta área, de modo que 
professores, desenvolvedores e pesquisadores possam melhor direcionar os seus 
esforços de pesquisa e implementação.   

Neste trabalho, evoluímos os estudos sobre o desenvolvimento de sistemas 
catalogados até o ano de 2010 nos trabalhos publicados por Douce et al (2005), Ala-
Mutka (2005) e Ihantola et al (2010). Descrevemos as características dos sistemas e os 
diferenciais apresentados por eles. Identificamos as oportunidades de atuação e 
trabalhos de pesquisa, ao identificar lacunas nos sistemas desenvolvidos desta época até 
os dias atuais. Enfatizamos, principalmente, as questões que dizem respeito ao feedback 
dado ao aluno com respeito à qualidade de seu código e ao caminho que o conduziu a 
uma solução bem sucedida para o problema.  

Ao término do estudo, pudemos observar que aspectos que foram considerados 
relevantes em estudos anteriores não eram mais mencionados nos sistemas atuais, como 
o caso das políticas de re-submissão de exercícios. Por outro lado, as preocupações com 
os problemas de escala são mais presentes nos sistemas contemporâneos. O estudo 
revela, ainda, que não houve evolução na ênfase dada pelos sistemas de AA nas 
questões de segurança, que é, em geral, baixa. 

Este artigo apresenta uma revisão sobre a literatura de sistemas automáticos de 
avaliação para atividades de programação. O restante documento está organizado como 
segue: a seção 2 apresenta o referencial teórico do estudo e ressalta os trabalhos 
relacionados, a seção 3 detalha a metodologia empregada para a condução da revisão da 
literatura, a seção 4 exibe os resultados encontrados tanto na coleta de dados quanto na 
análise dos sistemas que são, posteriormente, discutidos na seção 5, onde são delineadas 
algumas conclusões.       

2. Referencial Teórico e Trabalhos Relacionados 
Os sistemas para avaliação automática de exercícios de programação (AA) são 
utilizados em diversos cursos introdutórios de programação no mundo [Cheang, 
2003][Ala-Mutka, 2005]. Impulsionados pelos juízes online das maratonas de 
programação [Kolstad, 2009][Revilla, 2008], os testadores foram sendo adaptados para 
a realidade de cada curso ou laboratórios de programação. Estudos mostram que já 
existem e, continuam sendo desenvolvidos, muitos sistemas com este propósito 
[Ihantola, 2010][Ala-Mutka, 2005]. Poucos têm seu código aberto, o que prejudica a 
tentativa de reutilização e adaptação para outros cursos diferentes daquele para o qual 
foram projetados. 

Uma revisão de literatura na área de sistemas de avaliação automática que 
pretende dar uma perspectiva histórica da área é o trabalho de Douce et al (2005). Neste 
trabalho, ele classifica o sistemas em “gerações” com base na abordagem tecnológica 
utilizada. A primeira geração inclui os primeiros sistemas, desenvolvidos na década de 
60 até o final da década de oitenta. Para usar esses sistemas, era necessário muito 
conhecimento, o que na prática significava que o desenvolvedor e o usuário eram, em 
geral, a mesma pessoa. A segunda geração é composta por ferramentas que poderiam 
ser operadas via linha de comando ou com uma interface gráfica para o usuário (GUI) 



  

bem simples. A terceira geração é marcada por sistemas orientados à interface Web. 
Além disso, Douce ainda discute os sistemas de avaliação automáticos sob a perspectiva 
pedagógica. 

Outro trabalho fundamental no tocante ao mapeamento dos sistemas de 
avaliação automáticos até 2005 é o de Kristi Ala-Mutka. Neste trabalho as diferentes 
técnicas de avaliação dos sistemas analisados são ressaltadas. São elencadas muitas 
vantagens da utilização de tais sistemas como a velocidade, a disponibilidade a 
consistência e a objetividade das avaliações. Ala-Mutka adverte que é necessário que 
haja uma cuidadosa justificativa pedagógica para cada uma das decisões de projeto, nas 
avaliações empreendidas e, também, no feedback que é fornecido ao aluno.  

Finalmente, o trabalho de Ihantola et al de 2010, procura revisar 
sistematicamente a literatura na área de sistemas de avaliação automáticos no período 
que abrange 2006 a 2010. Os sistemas que interessam àqueles autores são 1) sistemas de 
avaliação automática para competições de programação e 2) sistemas de avaliação para 
apoio de cursos de programação introdutória. Como parte de suas conclusões, estão os 
principais pontos de diferenciação entre os sistemas estudados: a forma como lidam 
com as re-submissões de questões; a forma como os testes automáticos são definidos e 
como questões de  segurança são tratadas. 

3. Metodologia 
Para conduzir este trabalho de revisão sobre a literatura de sistemas automáticos para 
avaliação de atividades de programação é necessário definir o escopo dos sistemas que 
são de nosso interesse nesta pesquisa. Inicialmente, esclarecemos o que consideramos 
como sendo “atividades de programação” e “avaliação automática”.  

As atividades de programação são quaisquer código ou trecho de código gerado 
pelos estudantes em resposta a um problema ou especificação passado pelo 
professor/tutor em um curso de ensino de programação. Estes códigos são artefatos que 
podem ser analisados dinâmica ou estaticamente. Não necessariamente trata-se de 
código executável. Muitas vezes, as respostas a estas atividades de programação, ou 
seja, o código dos programas produzidos pelos estudantes são chamados simplesmente 
de “submissões”, pois são “submetidos” ao AA. Observe que atividades de 
programação que incluam diagramas, especificações ou documentações estão fora do 
escopo deste trabalho. 

A avaliação automática refere-se à analise de quaisquer dados produzidos a 
respeito submissão do estudante (data, hora, quantas vezes foi submetido, etc) além de 
dados a respeito do próprio programa, tais como a correção funcional, caso ele seja 
submetido a testes automáticos. Os sistemas de AA, que interessam a este trabalho de 
pesquisa, devem fornecer algum tipo de feedback. Por este motivo, o nosso estudo 
engloba e ultrapassa o conjunto dos sistemas de avaliação automática com o propósito 
estrito de dar nota ou pontuar o programa do estudante (grading systems).  

Este trabalho evolui a pesquisa de Ihantola et al (2010). As questões de pesquisa 
que nos motivaram para a realização desta revisão são: 

1. Quais são as características dos sistemas automáticos de avaliação relatados na 
literatura após 2010? 

2. Para quais direções estes sistemas impulsionam os trabalhos futuros? 



  

Há muitos sistemas desenvolvidos com o propósito da avaliação automática. É 
bastante comum que professores criem sua própria solução para cursos específicos de 
programação ao invés de aderir ou adaptar sistemas já existentes. Além do mais, muitos 
sistemas que estão em uso na prática sequer foram publicados em artigos. A 
metodologia adotada procura seguir os passos propostos por Brereton et al (2010) para 
revisões sistemáticas no domínio de Engenharia de Software. 

Na fase inicial do planejamento da revisão, foram definidos os serviços de 
indexação utilizados como base para a pesquisa, bem como os termos ou palavras-chave 
da busca. A revisão será realizada sobre as consagradas bases de dados em ciência da 
computação: ACM Digital Library, IEEE Xplore, Science Direct (Elsevier), Taylor and 
Francis on-line. Os artigos entre 2010 e 2014 dos anais da Annual Conference 
on Innovation and Technology in Computer Science Education  (ITiCSE) e das revistas 
científicas Computer Science Education (CSE), Olympiads in Informatics International 
Journal (OI) e Transactions on Education (ToE) foram considerados, para manter a 
consistência com o estudo de Ihantola et al. Além disso, ampliamos o nosso espectro de 
pesquisa, incluindo os trabalhos das conferências Anual Conference of the Special 
Interest Group on Computer Science Education (SIGCSE), Simpósio Brasileiro de 
Informática na Educação (SBIE), Workshop de Informática na Escola (WIE), da 
Revista Brasileira de Informática na Educação (RBIE) e do jornal Computers & 
Education (C&E).  

O processo de seleção dos trabalhos é iterativo [Brereton, 2010], de modo que 
após uma triagem inicial feita através da consulta na base de dados pelos termos 
adequados, uma nova triagem foi realizada considerando as restrições que guiam os 
interesses deste trabalho.  Nas publicações da SBC, a pesquisa foi realizada de forma 
semi-automática. Na primeira triagem utilizamos o termo “programação” na consulta 
das bases de dados. Em seguida, de modo manual, os artigos anteriores a 2010 foram 
descartados e foram considerados apenas os artigos relevantes de acordo com os termos. 
Nas demais bases de dados, a sentença de pesquisa utilizada para a recuperação dos 
artigos foi derivada das questões de pesquisa deste trabalho. Ela foi composta usando as 
seguintes palavras-chave e conectores: (“automatic” OR “automated”) AND 
(“assessment” OR “grading”) AND “programming”. A restrição temporal, nestes casos, 
foi aplicada na sentença do engenho de busca. 

Após a fase inicial de busca por palavras chave, ao conjunto de artigos 
selecionados foram aplicados alguns filtros. Consideramos apenas os sistemas inéditos 
para o meio acadêmico, ou seja, publicados pela primeira vez em artigos de revistas, 
jornais científicos ou em periódicos de conferências. Os sistemas devem ser voltados ao 
ensino de programação de computadores para nível superior/universitário e fornecer 
algum tipo de feedback ao aluno ou instrutor.  

As características consideradas relevantes para a avaliação dos sistema de AA 
foram definidas tomando-se por referência aquelas que foram levantadas no trabalho de  
Ihantola et al (2010) e incluindo a nova categoria “feedback”. Embora existentes no 
estudo anterior, as características “Re-submissão” e “Especialidades” não aparecem no 
estudo atual. A primeira por não haver menção à política de re-submissão de códigos 
nos sistemas pesquisados e a segunda por não haver espaço suficiente no trabalho. Mais 
informações sobre os sistemas podem ser encontradas no apêndice disponível on-line 
em: http://goo.gl/upcekv. 



  

4. Resultados 
A apresentação dos resultados desta pesquisa, inicia-se com a visualização dos dados 
sobre a busca dos artigos seguindo a mesma abordagem adotada por Aureliano e 
Tedesco (2012). Em seguida, daremos ênfase nas características que guiaram as 
decisões pedagógicas e de projeto dos sistemas selecionados.  

4.1 Coleta de dados 
A pesquisa foi capaz de recuperar 132 artigos completos atendendo às restrições 
temporal e dos termos da sentença de pesquisa. Foram selecionados 10 artigos que 
atendiam as demais restrições descritas na metodologia deste trabalho. O quadro com o 
resultado geral encontra-se na TABELA 1  
 

PUBLICAÇÃO BASE DE DADOS ARTIGOS RECUPERADOS ARTIGOS SELECIONADOS 
OI VU2 6 2 
C&E Elsevier 30 2 
CSE Taylor and Francis 6 0 
ItiCSE ACM 18 1 
SIGCSE ACM 12 1 
ToE IEEE 0 0 
SBIE SBC 30 4 
WIE SBC 16 0 
RBIE SBC 10 0 
TOTAL 132 10 

TABELA 1. RESULTADO DAS BUSCAS NAS BASES DE DADOS 

A FIGURA 1 mostra: (a) a distribuição das publicações no tempo e (b) nos meios em 
que elas apareceram. Observa-se que o ano de 2012 foi responsável pela maior 
concentração de publicações sobre sistemas de avaliação automáticos. Uma justificativa 
possível para que não apareçam publicações nos anos subsequentes é a tendência de 
criação de ferramentas de apoio ao ensino mais abrangentes, onde o AA é parte de um 
ecossistema maior. Sendo assim, publicações deste tipo de sistema não foram 
capturadas pela nossa pesquisa. Analisando pela perspectiva das publicações, 
observamos que o SBIE concentrou o maior número de artigos. Possivelmente, este 
fenômeno seja decorrente da busca semi-automática realizada na base das publicações 
nacionais que tornou a sentença de pesquisa mais abrangente. 

 

  
FIGURA 1. (A)DISTRIBUIÇÃO TEMPORAL DOS ARTIGOS E (B) DISTRIBUIÇÃO DOS ARTIGOS NAS PUBLICAÇÕES 
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4.2 Linguagens de Programação 
Os sistemas avaliados neste estudo, suportam, em sua maioria a linguagem Java de 
programação. Em seguida, vêm os sistemas que suportam C/C++ e depois Python e 
Java. Esta escolha reflete a tendência dos cursos introdutórios de programação de 
adotarem tais linguagens para o seu processo de ensino. Os sistemas Jutge [Petit, 2012] 
e Pythia [Combéfis, 2012] oferecem seus serviços de modo independente de linguagem, 
ou seja, as soluções submetidas pelos alunos podem ser escritas em uma linguagem 
previamente escolhida, dentre o elenco de linguagens de programação disponibilizados 
pelo sistema. Jutge, por exemplo, suporta submissões em mais de 22 linguagens de 
programação. 

4.3 Avaliação dos Programas 
O processo de avaliação das submissões dos alunos é o ponto chave do estudo das 
funcionalidades do AA. As avaliações podem ser estáticas ou dinâmica, manuais ou 
automáticas; ou uma combinação destas abordagens como no ProgTest [de Souza, 
2012]. Além disso, há sistemas que promovem, o aprendizado da disciplina de testes de 
software. Neste sistemas, os casos de testes criados pelos aluno são fornecidos para o 
AA junto com a solução dos programas e são avaliados de modo adequado.  

Nas avaliações de programas de modo dinâmico, os códigos são exercitados 
frente a uma bateria de testes provida pelo instrutor/autor do problema. Este processo 
permite que o sistema dê feedback sobre a correção funcional da solução. Além disso, é 
possível verificar a evolução da execução do programa na CPU da máquina, fornecendo 
feedback sobre a complexidade do programa [Combéfis, 2012][Brown, 2012]. A 
avaliação dinâmica é a abordagem mais prevalente entre os sistemas avaliados. Nas 
avaliações estáticas, é possível detectar erros de sintaxe e compilação além da 
verificação da similaridade a modelos de soluções cadastradas no sistema. No AutoLEP 
[Wang, 2011], o programa do aluno é comparado a modelos de programas que 
representam a forma correta de resolver o problema. Quanto mais semelhante aos 
modelos cadastrados, maior será a nota do aluno. Mesmo que o programa esteja 
incompleto ou apresente erros de sintaxe, ele terá uma nota considerada justa, pelos 
autores. O ProgTest [de Souza, 2012], segue abordagem semelhante.  

Alguns sistemas, principalmente os que fornecem notas, adotam o processo 
semi-automático de avaliação a fim de corrigir ou mitigar distorções causadas nas notas 
dos alunos devido a processos muito estritos de avaliação. O processo de avaliação 
adotado pelo Jutge [Petit, 2012] é uma alternativa interessante para lidar com esse 
problema. O processo é configurável através de elementos chamados checkers. O 
professor pode definir se a avaliação das submissões será estrita ou se cabe algum nível 
de flexibilização. Isto é particularmente interessante do ponto de vista do ensino de 
programação. Há problemas de programação, por exemplo, que podem ser resolvidos de 
maneiras distintas, de modo que o resultado apresentado na saída, não siga exatamente a 
mesma ordem para todas as abordagens de solução possíveis. Forçar que a saída do 
aluno esteja exatamente na mesma ordem da saída produzida pela solução de referência 
pode causar impacto negativo na liberdade criativa do aluno. O Jutge oferece diferentes 
níveis de flexibilizações na avaliação das submissões usando os checkers.  



  

4.4 Testes 
Em geral, os sistemas baseiam-se em testes de entrada e saída ou testes de unidade 
previamente cadastrados pelo autor do problema. No Putka [Trampus, 2012], os testes 
são realizados em máquinas de diferentes arquiteturas e configurações de hardware, de 
modo que o tempo de execução e o consumo de memória possa ser corretamente 
monitorado.  

Nos sistemas em que os testes dos alunos são avaliados, deve ser criado um 
arcabouço para viabilizar esta avaliação e, definir como o resultado da mesma 
influenciará na nota do aluno. No ProgTest [de Souza, 2012], o autor do problema 
fornece, além de uma solução de referência um conjunto de casos de testes com total 
cobertura do programa. Na nomenclatura adotada pelo sistema, este é o "trabalho 
oráculo". Os testes são realizados utilizando ferramentas próprias, que integram-se ao 
sistema como plugins para a realização de testes de: unidade, estruturais e baseados em 
erros. A avaliação dos testes fundamenta-se, especialmente, na teoria de Análise de 
Mutantes. O professor define os pesos dado à avaliação dos testes e do programa para 
compor a nota do estudante. 

4.5 Segurança 
O principal problema de segurança experimentado pelos sistemas de AA é comum para 
todos eles: as submissões podem conter códigos maliciosos que afetem o sistema onde 
eles são executados para avaliação. Ou, por outro lado, o código submetido pode sofrer 
adulteração na máquina em que ele está sendo avaliado. Surpreendentemente, poucos 
sistemas relatam alguma preocupação ou medida tomada para enfrentar estes desafios, 
como já relatado por Ihantola et al (2010) em sua revisão. Os AA que surgiram a partir 
de juízes online ou da comunidade de competições de programação são os que 
incorporam alguma medida de segurança. No Jutge [Petit, 2012], por exemplo, os 
programas dos alunos são executados em um ambiente sandbox com privilégios e 
acessos ao sistema restritos. O tempo de acesso à CPU, ao clock e o uso de memória são 
controlados. Além disso, as conexões remotas usam protocolos de comunicação SSH ou 
HTTPS. O Pythia [Combéfis, 2012] segue abordagem semelhante. Já no Putka 
[Trampus,2012],  as chamadas ao sistema realizadas pelos programas são interceptadas 
e analisadas, para posteriormente, serem autorizadas. 

4.6 Feedback 
A principal motivação para o uso de AA nos cursos de programação é a possibilidade de 
se obter feedback, rápido, padronizado e relevante. É importante avaliar como o 
feedback sobre os submissões dos alunos vêm sendo produzidos e se, efetivamente, eles 
têm contribuído para a melhora da qualidade dos programas produzidos pelo aluno, bem 
como sua motivação e consequentemente, o seu desempenho no curso. Os AA que 
fornecem uma nota automática para o aluno devem ser capazes de oferecer algum grau 
de flexibilidade para a configuração da composição das notas. 

A maioria dos artigos não dá a devida ênfase ao feedback ou não detalham de 
que forma ele é produzido. Em geral, é mostrado para o aluno os erros de compilação ou 
sintaxe caso existam e os erros nos testes providos pelo professor. Alguns sistemas 
mostram os casos de entrada que fizeram o programa falhar. Essa abordagem costuma, 
fazer com que o aluno programe usando o método tentativa-e-erro. Preocupação 



  

semelhante é relatada em [Pelz, 2012], já que aquele sistema permite testar se a 
submissão do aluno apresenta algumas estruturas obrigatórias para a criação do código 
da solução. O feedback fornecido neste tipo de teste era usado pelos alunos para tentar 
“adivinhar” como o programa deveria ser escrito. As soluções para mitigar estes 
problemas podem ser simples como, caracterizar alguns casos de testes como “secretos” 
e não divulgar as entradas destes casos. Ou, como em [Brown, 2012] mostrar relatórios 
de feedback diferentes: antes e depois do prazo para a entrega das atividades. Os 
relatórios mais completos são apresentados ao aluno posteriormente.  

Nos sistemas em que os AA estão integrados a ambientes de aprendizagem, o 
feedback fornecido, muitas vezes, inclui sugestões de um novo conjunto de exercícios 
que o aluno pode começar a responder ou qual unidade de conhecimento ele deve ler ou 
trabalhar mais. A personalização dos caminhos que levam ao aprendizado, a partir dos 
resultados das avaliações automáticas, parece ser a tendência mais forte na evolução dos 
sistemas desta área.  

5. Discussão e Conclusões 
Os sistemas de avaliação automáticos (AA) são uma peça importante no processo de 
ensino e aprendizagem dos cursos de programação. A adoção de tais sistemas 
amplificou a possibilidade de dar feedback aos alunos sobre suas respostas aos 
exercícios de programação o que, por conseguinte, permitiu que os professores 
disponibilizassem mais exercícios para os alunos. Estudos mostram que a quantidade de 
exercícios realizados pelos alunos tem papel importante no desempenho ao final do 
curso [Araujo, 2013], o que parece estar de acordo com as experiências que muitos 
professores têm em sala de aula. 

Neste trabalho, evoluímos os estudos sobre o desenvolvimento de sistemas 
automatizados de avaliação de atividades de programação [Ihantola, 2010] partindo do 
ano de 2010 até os dias atuais. A seção 4 procurou responder a primeira pergunta de 
pesquisa apresentada na metodologia deste trabalho: “Quais são as características dos 
sistemas de avaliação automatizados relatados na literatura após 2010?”.  

Já a segunda pergunta de pesquisa questiona: “Para quais direções estes sistemas 
impulsionam os trabalhos futuros?”. A tendência da integração dos AA com ambientes 
virtuais de aprendizagem promete sistemas mais abrangentes. Isto permite a 
centralização de esforços do professor em um só conjunto de software, do qual o AA 
faz parte, para a criação e gerência de seus cursos. Além disso, a personalização do 
aprendizado é outra área de pesquisa para a qual os sistemas de AA podem ser de 
grande relevância. Atualmente, os dados produzidos e mantidos por estes sistemas são 
foco de bastante interesse nas pesquisas que utilizam as técnicas de Learning Analytics 
(LA). Percebemos que a integração dos AA com os ambientes de ensino, a 
personalização do ensino e LA é o que impulsiona, agora, os trabalhos nesta área. 

Como limitações deste trabalho, apontamos os possíveis erros de execução no 
processo de revisão descrito na metodologia. Principalmente, devido ao fato de usarmos 
na, mesma pesquisa, bases de dados nacionais e internacionais. Além disso, a restrição 
imposta pela sentença de pesquisa adotada e pelos veículos de publicação escolhidos, 
que são assunções do trabalho, podem não cobrir todos os sistemas que seriam de nosso 
interesse.  



  

Como trabalhos futuros, vislumbramos ampliar o espectro de pesquisa para 
outros jornais, conferências e workshops, como o Frontiers in Education e o workshop 
de Informática na Escola – WIE, não contemplados neste primeiro estudo. Além disso, 
pretendemos incluir sistemas existentes, que são referência na área, e que ainda passam 
por ativo desenvolvimento e pesquisa: como o Web-CAT [Edwards, 2004] e Marmoset 
[Spacco, 2006]. Tais sistemas ficaram de fora de nosso estudo por haverem sido criados 
antes de 2010, muito embora figurem em publicações recentes, mostrando novos 
avanços nos sistemas.   
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Abstract — Proper feedback can leverage students to better 
understand their difficulties and shorten the characteristic 
program-submit-refactor cycle of programming exercises. The ideal 
feedback is the result of a human inspection and analysis 
considering both functional and qualitative aspects of programs 
produced by students. On the other hand, automated assessment 
systems can provide rapid, cheap and standardized feedback. In this 
paper, we focus on measuring aspects of code that instructors 
usually assess in programming assignments which are deemed 
unmeasurable: qualitative aspects that go beyond functional 
correctness. The aim of this work is to produce richer feedback 
messages that go beyond functional correctness as it involves code 
quality issues. We found that if an instructor is required to produce 
a reference solution for a programming assignment, then most of 
the expectations the instructor has about a student’s code quality 
are concretely present in the reference solution. Based on this idea, 
we proposed and evaluated a set of candidate quality measures 
using the assignment’s reference solution as a baseline. The results 
showed that they seem to capture what is usually considered to be 
the subjective and qualitative aspects of an instructors’ assessment. 
We used these findings to generate feedback and conducted an 
experiment to evaluate it effectiveness. The results enforce that this 
kind of feedback stimulates students to improve their quality code in 
a higher degree than purely functional feedback, yet it still can be 
fully automated. 

Keywords— human factors; experimentation; automated 
assessment; programming; coding standards; software quality  

I.  INTRODUCTION  
A fundamental aspect of the programming learning process 

is providing feedback to the students about their assignments. 
Further than showing that learning outcomes are being met; it 
can boost the student self-confidence or help her modify a 
recurrent behavior. Richer feedback can leverage students to 
better understand their difficulties and shorten the 
characteristic program-submit-refactor cycle of programming 
exercises. Currently, the richest possible feedback on students’ 
programs is the result of human inspection and analysis of 
both functional and qualitative aspects of the code. In 
programming courses, automated tools play an important role 
as they allow for rapid, frequent, cheap and standardized 
feedback. They free instructors to direct their efforts to higher 
levels of analysis. For the last two decades, different strategies 
have been proposed to develop these tools. Several approaches 
for automatically assess programs were adopted [1]. Most of 

the systems, however, are based on functional analysis of the 
programs. 

We focus on whether we can measure what is usually 
seemed unmeasurable: the so-called qualitative and subjective 
factors considered by instructors when they assess a program 
as a solution for a programming assignment. Studies discussed 
that functional correctness is the most important component 
when assessing a program [2]. Our experimental results also 
corroborate with this idea, since automatic grades, obtained 
from tests’ results, are strongly correlated with manual grading 
(Spearman’s rho of 0.85). While it explains at large extent the 
assignment score, tests results are insufficient to give students 
personalized rich feedback. Dedicated instructors enrich their 
feedback with advices on the code quality and help students to 
reason on their solution. We claim that while many subjective 
aspects are indeed unmeasurable, certain objective and 
measurable factors of the code can reflect most qualitative 
aspects reported on the feedback provided by instructors in 
their manual assessments. 

In this paper, we intend to generate automated code quality 
feedback so that we can stimulate students to reflect on their 
code, besides functional correctness. As a baseline for such 
quality, we used the reference solution provided by the 
instructors for the assignment. This solution must convey the 
learning outcomes students have to master, as well as, the 
expected code quality. We propose a set of software measures 
to express qualitative aspects. They are based on software 
quality metrics, largely used by the industry and referred in 
other academic initiatives towards novice programming 
[1][3][4]. First, these measures are extracted from the 
reference solution code and from the student code. In 
sequence, we calculate the relation between them. Using this 
data, the system will generate and provide a feedback message 
to the student, i.e. a hint of what it could be improved in order 
to obtain better quality code. It is noteworthy to observe that 
this feedback must be delivered only to functionally correct 
submissions.  

This proposal was evaluated following a two-pronged 
approach: a case study and an experiment. The case study 
aimed to investigate the validity of the suggested measures as 
surrogates of the quality expected by the instructors on the 
student code. Our dataset was composed by 403 functionally 
correct submissions, from 102 students, referring to 12 
different programming assignments. Our results showed that 



students whose programs have measurements close to or better 
than the measurements of instructor’s reference solution 
program tend to obtain higher grades. In consequence, we 
could say that the proposed approach do capture most of the 
quality rationale behind the program's assessment performed 
by instructors. At the cost of providing a reference solution for 
each programming assignment, the measures can be fast, 
automatically produced and used to deliver feedback through 
automated assessment systems.  

The experiment evaluated the impact of generating quality 
feedback in students’ final code. As results, we perceived that 
the quality feedback promote reflection about the 
implementation and directs the student to refactor the code, as 
the solution is already functionally correct. We observed and 
also confirmed in hypothesis tests that students who receive 
such enriched feedback (correctness + quality) tend to make 
more submissions than those who do not. Also, 66.67% of the 
students that received quality feedback managed to deliver a 
better code. 

This paper is organized as follows: Section II discusses 
how instructors consider qualitative aspects of programs when 
they assess students’ code. It also describes a set of measures 
proposed to capture some of these aspects. Section III 
describes the case study conducted to evaluate the proposal, 
including a discussion about our findings. Section IV presents 
the experiment on generation and delivering of quality 
feedback. A discussion about the obtained result and its 
findings is presented on section V. We considered and argue 
about validity threats on section VI. Section VII reports some 
related works related. Finally, we address the conclusions of 
the study along with directions to further works in Section 
VIII. 

II. ASSESSMENT OF QUALITATIVE ASPECTS OF STUDENT’S 
CODE  

Assessment is a central activity in higher education and is 
considered a core component for effective learning [5]. An 
essential part of assessment is the feedback it produces: to the 
instructor, to the student and to the educational institution. In 
educational research, assessments can be characterized 
according to its purpose as: (a) formative, to support and 
improve students learning skills and (b) summative, to make a 
judgment and verify if the learning objectives have been 
reached by the student [6]. Our study focuses on code quality 
and aims to rapidly deliver valuable formative feedback in 
order to motivate students to produce a better code. In the 
context of our work, formative feedback includes all the 
information and communication exchanged by students and 
instructors that contribute to modify an erroneous behavior 
and to demonstrate that expected abilities have been mastered.  

We are especially interested in approaches to produce 
automated assessment feedback for programming 
assignments. In programming courses, enough practical 
activities are paramount to students effectively achieve 
learning goals. Automated assessment systems (AAS) are 
essential to support such a great number of programming 
assignments and also provide student feedback. It produces 
objective and consistent feedback to students, while it 

mitigates the heavy workload of the instructors when they 
perform manual assessment [1][7].  

There are many automated assessment systems focusing on 
introductory programming assignments. Some of them provide 
grading support [8][9] and are classified as grader systems. 
They normally take into account factors such as: deadline 
penalty, resubmission policy, type of errors, test coverage, etc. 
In general, AASs employ comparable approaches when 
assessing students programs and provide common features [6]. 
A typical system executes a set of test cases, provided by 
instructors, and compares the expected output to the observed 
output from students’ programs. The most common feature 
assessed by automated systems is functional correctness.  

However, as observed by Buffardi and Edwards in [10], 
while “automated grading systems help students identify bugs 
in their code, the systems may inadvertently discourage 
students from thinking critically and testing thoroughly and 
instead encourage dependence on the instructor's tests”. A 
similar behavior could be noticed in regards to code quality. 
Many students submit their programs until they pass the 
instructors’ tests or program in a trial-and-error mode, without 
critically thinking on their solution. Another typical behavior 
is to assume that the program is finished when it receives an 
"ok" or "green-bar" of a test-based automated assessment tool. 
A careful look exposes that some programs could have their 
quality improved in different ways, preserving their functional 
correctness. If students were not pushed to review and 
refactor, they will simply move forward to another assignment 
and, maybe, will repeat the same programming pitfalls. The 
purpose of this work is to promote formative feedback about 
qualitative aspects of code, which are usually neglected by 
many test-based automated assessment systems.  

Instructors approach the manual grading activity in 
different ways but usually agree whether a program is “very 
good” or “very bad” [11]. Besides correctness, there are other 
factors weighed by instructors in manual assessment in terms 
of code quality. For example, a program that is abnormally 
longer than the others and solves the same problem needs a 
closer look. Other common pitfalls of programming beginners 
are nesting multiple “if” statements and using unnecessary 
variables to compute temporary values. There are software 
metrics that could be statically extracted from the code at a 
low cost and serves as input to a quality analysis [1]. We 
evaluated in this work: logical lines of code (lloc), Halstead 
volume (h), cyclomatic complexity (cc) and adherence to 
coding standards. In short, these measures stand for:   

- lloc: The number of lines effectively used as programming 
language code statements. This measure does not consider 
blank lines, comments and headings.  

- h: Metrics proposed by Halstead aims to evaluate a 
program regarding on static analysis. The measurement 
consists on counting the number of operators and 
operands in a program [1]. In this study, we have 
measured the Halstead volume. 

- cc: It was conceived by McCabe [12] and refers to the 
number of linearly independent paths of a program. Each 
decision in a program can lead to a different path. So to 



compute cc, there are considered not only conditional 
structures but also iterative structures, such as for and 
while loops. 

Ala-Mutka study pointed that: to make software metrics 
relevant to students they need to be comparative [1]. She 
argued “there is no sense in requiring students to submit a 
program that has a complexity number X, or contains Y lines 
of code”. On the educational context, there is a benefit, which 
could not be experienced in real world software: the instructor 
referential solution approximates to the best possible solution 
to the problem. The measurements extracted from the student 
source code will be compared with those extracted from 
reference solution code. The rationale is that the measures 
extracted from the reference solution are an idealized target 
expected by instructor for all students’ submissions.  

We have also measured adherence to coding standards in a 
metric named: RPEP8. As Python is the programming 
language adopted by the course we have collected our data, we 
relied on the coding standards defined by Python community 
in PEP8 [13]. The number of pep8 violations indicates how 
distant a given code is from the defined coding standard. This 
measure is calculated differently from the others, as we cannot 
compare the violations happened in the student code with the 
violations that happened in the reference solution overlooking 
their nature. Furthermore, ideally should not exist pep8 
violations in the reference code. In practice, a reduced number 
of violations indeed exists and are considered to be acceptable. 
In order to calculate this measure, we extract the number of 
pep8 violations for each submission for a given assignment. 
Then, we rank the number of violations of these submissions.  

The value of RPEP8 for each submission is its ranking 
position. The other measures are defined as the ratio of the 
measurement extracted from the student submission to the 
measurement extracted from the reference solution.  

TABLE ITable I presents the measurements we proposed to 
assess code quality along with its acronym. From this point 
forward, we are going to refer these measurements by the 
acronyms.  

For example, if the value of RLLOC for a particular code 
is 1.2, it means that: the code provided by the student to that 
programming assignment is 20% greater than the size of the 
reference solution code for that assignment. Conversely, if the 
value of RLLOC was 0.8, the code provided by the student is 
20% smaller than the reference solution code. RCC and RH 
calculation is done similarly. 

TABLE I. MEASUREMENTS PROPOSED TO ASSESS CODE QUALITY 

Acro. Description Formula 

RLLOC Ratio between reference solution’s lloc 
and student’s code lloc. 

lloc(student code) 
/ lloc(reference 
solution code) 

RCC Ratio between reference solution’s cc 
and student’s code cc 

cc(student code) / 
cc(reference 
solution code) 

RH Ratio between reference solution’s h 
and student’s code h. 

h(student code) / 
h(reference 
solution code) 

Acro. Description Formula 

RPEP8 Ranking position of the number of 
pep8 violations of the student’s code.  

III. CASE STUDY: MEASURING STUDENT CODE QUALITY  
Our initiative toward generating and delivering formative 

feedback about qualitative aspects of code started on 
performing an empirical study that aimed to evaluate the 
measures we proposed as surrogates of some extent for the 
human quality assessment of students’ programs. 

A. Research Context and Data Collection 
In the case study, we conjectured that there is a set of 

measurements, automatically obtained, that can capture 
quality aspects weighed by instructors when they assess and 
manual grade a student program. In order to test it, we have 
formulated the following research question: 

RQ1: Can the measures RLLOC, RCC, RH and RPEP8 
explain the differences observed on the grades, manually 
assessed, of functionally correct submissions?  

In answering this research question, we investigated 
whether the student's code measurements were similar or 
better than the measurements of the reference solution, the 
instructor would perceive a better code quality. In 
consequence, it would deserve a better grade. Thus, if code 
quality impacts on grades, they could be captured by the 
proposed metrics.  

We collected students’ submissions of programming 
assignments from an introductory programming course of our 
university. The data was collected using an automated 
assessment system developed in-house and tailored for our 
introductory programming course. The dataset was composed 
by 403 functionally correct submissions, from 102 students, 
referring to 12 different programming assignments that 
appeared in midterm exams. Experienced instructors manually 
graded them in a scale from 0-10. In our study design, these 
values correspond to the dependent variable ig. The measures 
RLLOC, RCC, RH and RPEP8 are independent variables. We 
used radon [14], a free Python tool, to compute raw metrics: 
lloc, h and cc. The number of pep8 violations was extracted 
using a script produced by Python developers’ community 
[13]. It is worth to note that we used the reference solution 
version provided by the instructor who graded the assignment 
when extracting the measures RLLOC, RCC, RH and RPEP8 
of the students’ submissions. 

B. Data Distribution and Analysis 
Fig. 1 shows the distribution of instructor’s grades of 

functionally correct submissions. These submissions obtained 
“green-bar” as passed all automatic tests provided by 
instructor. If they were automatic graded, all of them would 
obtain the highest score: 10. However, the figure shows a left 
skewed distribution and only 29.5% of the evaluated 
submissions got the highest score. If the assessment were 
relied solely on automatic tests, more than 70% of the 
submissions would obtain a grade greater than a human 
instructor thinks it deserves.  



 
 

The grades produced manually by the instructors take into 
consideration a set of criteria that goes beyond functional 
correctness, as it could be apprehended by the grades’ 
variance. A qualitative evaluation of those submissions 
revealed structural code problems (such as incorrect use of 
conditional structures) that were not captured by traditional 
functional test. Fig. 1 exposes that functional correctness, 
alone, does not reflect the instructor manual assessment.  

C. Results and Discussion 
This subsection reports the results of the studies to answer 

our research question: Whether the proposed quality 
measurements can explain the differences observed on the 
scores of functionally correct submissions.  

In order to answer this question, we investigated the 
contrast between the student's code measurements and the 
reference solution measurements’. We used Wilcoxon rank 
sum test to compare submissions’ grades. This non-parametric 
statistical test assesses if two independent distributions are the 
same. The null hypothesis is that the population is the same 
against the alternative hypothesis that the population differs in 
a location measure, in this case the median of the grades. 
Since this test is based on rank observations, it makes no 
assumptions about the normality distribution of the assessed 
variables.  

We divided the distribution in two groups according to its 
measurements: (1) equal-lower than 1; meaning that the 
measures of student’s code are equal or better than the 
reference solution code or (2) greater than 1; it means that 
measures of the student code are greater than the measures of 
the reference solution code. For example, in a given student 
submission for a programming assignment it was accounted 3 
pep8 violations. The reference solution code, for that same 
assignment, accounted 1 pep8 violation. This submission is 
part of the group 2. In this sense, each metric was analyzed 
individually.  

Tests results confirmed that RLLOC, RCC, RH and 
RPEP8 do capture the notion of quality, as the distributions 
differ in their medians. Instructor’s grades for equal-lower 
group are higher, on average, than the grades of the other 
group with adequate statistic significance (p-value < 2.20E-16, 
0.05 significance level). Hence, it rejects the null hypothesis in 
favour of the alternative. The results reveals, at least for these 
data, the better the measurements the better the grade. As 
practical significance of this result, we can state that 

stimulating students to consider not only program correctness 
but also its quality is indeed beneficial.  

Figure 2 shows boxplots of ig (instructor’s grades) 
distribution. In the first boxplot, it can be noticed a wider 
variation on ig on the first group of submissions (RLLOC(x) > 
1). Apart from some outliers, the second group of submissions 
(RLLOC(x) <= 1) presents a narrower variation and a higher 
median value. A similar behavior could be observed on the 
other plots. Besides the hypothesis test, we performed a 
correlational analysis to investigate the association of each 
measure (RLLOC, RCC, RH and RPEP8) with ig using data 
collected from all 12 programming assignments. At this point, 
we must recall that RLLOC, RCC and RH are ratio metrics. It 
means, for example, that we are not observing the correlation 
between the size, in lloc, of a student’s submission and its 
grade. We are measuring the relation between the size of a 
student’s submission and the size of the instructor’s reference 
solution. Then, whether this value correlates with the 
programming assignment grade.  

 

 

We used Spearman’s rank correlation coefficient to 
measure the extent of the correlation and found that 91.67% of 
Spearman’s rho values are negative. What means that as one 
variable increases, the other decreases. This behavior 
corroborates our hypothesis: the smaller the measure the 
greater the value of ig. The strongest correlation found, in 
absolute value, is between RCC and ig (-0.94 Spearman’s 
rho). In general, the strongest correlation values were 
observed between RLLOC and RCC measurement. There 
were also rho values near zero, meaning that the correlation is 
negligible or inexistent in some cases.  

IV. EXPERIMENT: EVALUATING QUALITY FEEDBACK 
GENERATION 

In the previous sections, we have investigated and 
proposed a set of measures that can give us indicators of code 
quality in student’s programs. In this section, we will describe 
the experience of using these measures to generate and deliver 
feedback messages to students. We wanted to investigate the 
effectiveness of the quality feedback generation approach. If 
students, in fact, care about the feedback received and actuate 

 
Fig. 1. Distribution of manual grades assigned to functionally correct 
submissions 

Figure 2. Boxplot of instructor's grades and the values of each RLLOC, 
RCC, RH and RPEP8 



in their code so that it improves. We performed an experiment 
animated by two research questions: 

RQ2: Students who receive quality feedback about their 
submission tend to make more submissions, after the first 
correct one? 

RQ3: When students receive quality feedback about their 
submission they tend to deliver a better quality code? 

A. Experiment Setting and Data Collection 
We performed an experiment in the same introductory 

programming course of the case study reported previously. We 
proposed a programming exercise to 48 students, divided into 
experimental and control group. Students’ submissions have 
their functional correctness automatically tested. We 
considered that a student failed to solve a problem if his or her 
submission fails in at least one test case. Only 20.8% (13 
students) failed the assignment. The quality feedback was 
generated and delivered only to students of the experimental 
group who succeeded.  

We instrumented the automated assessment system already 
used in the course to perform quality checking and feedback 
generation. The warning messages are presented in a 
command-line interface, just after the student submits her code 
to automatic testing and receives the results. We empirically 
established a threshold for each quality measure (RLLOC, 
RCC, RH and RPEP8) in order to show the warnings: when it 
reaches 1.2, i.e. a value 20% greater than the same 
measurement in the reference solution, a message is produced 
and delivered to the student. Table II presents the warning 
messages generated for the other measurements. They 
represent advices, rather than prescriptions, in what could be 
done to improve the code. We have also added an extra 
warning message regarding to the number of lines of the 
heading the student are supposed to add in their code. This is 
an "easy-to-solve" warning aimed to make students learn by 
themselves how the cycle submit/receive feedback/refactor 
works. This was useful, because no directions were given 
about how to proceed after the feedback message during the 
experiment. RPEP8 warnings messages were translated from 
English and slightly modified from the original style checker 
implementation [13]. 

TABLE II. MAPPING OF WARNING MESSAGES DELIVERED TO STUDENTS. 
MESSAGES PRESENT HINTS ON HOW TO IMPROVE CODE QUALITY 

Measur. Message 

RLLOC 
“It appears that your program has too many lines of 

code.” 

RCC 
“It appears that your program has too many conditionals 

structures or loops.” 

RH “It appears that your program has too many operations.” 

Header 

issues 
“It appears that your program has few header lines.” 

B. Programming Assignment 
The problem chosen is a typical programming assignment 

the students are able to solve after been exposed to conditional 
and repetition control structures lectures. It is the well-known 
3x+1 problem, or Collatz problem. Fig. 3 presents the 
reference solution provided by the instructor who proposed the 
assignment “Collatz Life”. It prompts the student to inform the 
number of iterations (lifes) does it take to a given number to 
converge to 1, repeating the process:  

 
 

 

C. Results and Discussion 
This subsection reports on the results of the studies 

performed to answer the second and third research questions 
of this work.  

The second research question posed the investigation: 
Whether the students who receive quality feedback about their 
submission tend to make more submissions, after the first 
correct one. The data collected in the experiment indeed 
revealed that students of the experimental group (who 
received quality feedback) make more subsequent submissions 
than the students of the control group. The median of 
submissions performed by the subjects on the experimental 
group was 2.5 greater than the median of submissions 
performed by control group subjects. We studied this 
behaviour, performing Mann-Whitney nonparametric 
hypothesis test. As a result, we rejected the null hypothesis in 
favour of the alternative (p-value = 0.009, with 0.05 
significance level). This means that, at least for our data, 
students who received warning messages as feedback about 
their code quality tend to make more submissions of that same 
assignment. As practical significance, we can state that: 
apparently, quality feedback messages are took into 
consideration by students and not ignored by them. It 
encourages students to reflect on their code besides it 
correctness.  

In the third research questions we examined: Whether 
students that receive quality feedback about their submission 
tend to deliver a better quality code. It evaluated if quality 

1 # Collatz life 
2 # Reference solution 
3 
4 N = int(raw_input()) 
5 life = 1 
6 while N != 1: 
7     if N % 2 == 0: 
8         N = N / 2 
9    else: 
10        N = 3 * N + 1 
11    life += 1 
12 
13 print life 

Fig. 3. Python reference solution provided by a teacher to Collatz 
programming assignment 



measurements of the last submissions of the students of each 
group differs depending on the their exposition to feedback 
quality warnings. We have performed the same hypothesis test 
and verified that it is possible to reject the null-hypothesis in 
favor of the alternative (p-value = 0.0267, with 0.05 
significance level). This means that, at least for our data, the 
number of quality warnings of the last submission from the 
students of experimental group is lower than number of 
quality warnings of the last submission from the students of 
the control group. 

We have evaluated each student’s submission from the 
experimental group in order to verify if, provided they have 
access to the quality feedback, they managed to produce a 
better code. This qualitative analysis uncovers details that 
could not be captured by statistical tests. We have observed 
that 66.67% of the students which received at least one quality 
feedback warning about their first submission, presents a 
positive derivative: they succeed on solving the feedback 
warning and reduced the number of warnings obtained in 
relation to the previous submission. Our results indicates that 
students are able to actuate on their code based the quality 
warning feedback messages. It suggests that this type of 
feedback is useful and adequate to promote the improvement 
of student’s code. Fig. 4 shows the first and the last 
submissions of a given student along with the quality feedback 
messages it received. 

Data collected from control group, reveals a typical 
behavior of our students: they assume their submission is done 
when it receives an "ok" or "green-bar" from a test-based 
automated assessment tool. A careful look exposes that some 
programs could have their quality improved in different ways, 

preserving their functional correctness. If students were not 
pushed to review and refactor, they will simply move forward 
to another assignment and, maybe, will repeat the same 
mistakes in the next assignment. 

V. DISCUSSION 
Functional correctness is the most important aspect of 

assessment in manual grading. However, there are other 
features took into account by the instructors when they are 
grading. We claim that subjective and quality factors impact 
on instructors’ assessment, besides functional correctness. 
Subjective factors, in this context, are those inherent from 
human beings: such as affective/emotional (willingness to give 
good grades or the opposite, fatigue, etc.) and errors/mistakes 
that may occur and are difficult to identify and to explain. 

Whilst subjective factors would remain unmeasurable, this 
study revealed that there are some quality factors that 
influence instructors’ assessment of programming assignments 
and can be automatically measured. The novel approach of 
this work is not the use of software metrics to assess student’s 
code quality, but to compare student’s submissions 
measurements with the measurements of the reference code, 
provided by the instructor. This indirect method reveals the 
target of quality aspects expected by the instructor for a given 
programming assignment. We claim that instructors idealize a 
reference solution when they assess students’ code. They 
grade the assignment by comparing and assessing how similar 
the students’ code is to its own reference solution code.  

 

 
(a) 
1 # coding: utf-8 
2 # xxxx.xxxxxxxx / xxxx / 2014.2 
3 # Collatz life 

 
4 number = int(raw_input()) 
5 cont = 0 

 
6 while True: 
7    if number == 1: 
8        cont += 1 
9        break 
 
10    if number % 2 == 0: 
11        number = number/2.0 
12        cont += 1 
13    else: 
14        number = 3 * number + 1 
15        cont += 1 
16 print cont 

(b) 
It appears that your 
program has too many 
operations. 

(c) 
1 # coding: utf-8 
2 # xxxx.xxxxxxxx / xxxx / 2014.2 
3 # Collatz life 
 
4 number = int(raw_input()) 
5 cont = 0 
 
6 while True: 
7    cont += 1 
8    if number == 1: 
9        break 
10    elif number % 2 == 0: 
11        number = number/2.0 
12    else: 
13        number = 3 * number + 1 
14 print cont 

Fig. 4. Code (a), is the first correct submission of the student. It caused the quality warning (b) "It appears that your program has too many operations." regarding 
to the lines 8,12 and 15. Code (c) is the last submission made by the same student. It caused no warning messages. The student “solved the warning” making a 
better use of conditional structures and reducing the number of lines with duplicated code.



In fact, analogous or, even better solutions could appear when 
assessing students’ submissions. This circumstance does not 
invalidate our results, rather is accommodated by the proposed 
metrics. 

It is important to observe that this approach does not 
intend to provide an exhaustive analysis of the code quality of 
the programming assignment, including aspects such as: 
problem solving strategy, algorithm and solution design. It 
focuses on readability as a relevant indicative of code quality, 
mainly in introductory programming. In fact, we planned to 
deliver quality feedback only to functionally correct 
submissions. We believe that the problems the submissions we 
focused presents are, in great part, on readability nature and 
could be captured by the metrics we proposed. However, it is 
only an anecdotal suspicion, as our empirical studies were not 
intended to prove this assumption.  

In a different perspective, from the observed in this study, 
the quality information could be delivered to students whose 
submissions are functionally incorrect. The measure RLLOC, 
for example, would help students to realize that the code is 
very far from the correct solution and there is a need to start 
over. Another possible approach is to evaluate the semantic of 
each measurement individually. For example, if one’s 
submissions consistently present high RCC values, it possible 
suggests difficulties in mastering the concepts related to 
conditional or iterative structures. This type of information 
would be useful to instructors when monitoring the students’ 
learning process.  

VI. THREATS TO VALIDITY 

A. Internal Validity 
Human assessment: As expected in a study that involves 

human assessment, human factors threaten its validity. We 
collected instructor’s grades of a set composed by 12 
programming assignments as baseline for our analysis. The 
grades were provided by four instructors in different moments 
along the course, as a result of a manual inspection. We 
believe that this threat is diminished in the course we collected 
our data, since instructors share the same marking criteria as 
defined in a document of assignment rubrics [15].  

B. Construct Validity 
Reference solution: We used the programming assignment 

reference solution as the target of expected code quality 
measurements. However, different instructors may vary the 
way they produce their reference solutions for the same 
assignment. In order to mitigate this threat, we qualitatively 
evaluated the reference solutions provided by the instructors 
of the course to each programming assignment of the dataset. 
We analyzed their solutions and assured that they were very 
similar. We also found out that the metrics values extracted 
from their solutions code presents little variance and high 
degree of concordance. To perform this quantitative 
evaluation, we used Jaccard distance approach to measure the 
dissimilarity between the original reference solution and the 
other solutions. In this approach, we performed a pairwise 
comparison between each value of the vector of measurements 

extracted form the solutions’ code. In theory, the value of 
Jaccard distance may vary from zero (no distance) to one. In 
this study, we found distance values ranging from 0 to 0.293. 
This means that the instructors have a strong agreement about 
the expected assignment solution code and about the level of 
quality that could be apprehended by the metrics. It shows 
that, even though the instructors have different background, 
they have a consistent thinking about the problems’ solutions. 
Finally, we chose the reference solution code proposed by the 
same instructor who created the assignment. 

Set of software quality metrics: We have chosen a set of 
software quality metrics that are known to be representative of 
good quality code [4][16] and are obtained through static 
analysis. We left out of the scope of this study efficiency 
metrics, which are obtained dynamically. Those metrics might 
improve students' program quality assessment [2]. However, 
we believe this is only a minor threat, since introductory 
programming assignments are usually specifications to solve a 
limited problem that produces relatively small programs (in 
our database student’s programs are composed by ~30 lines of 
code). In this case, efficiency measurements are not as 
relevant in a pedagogical context. 

C. External Validity 
Application of the results to other introductory 

programming courses: Caution must be taken when applying 
the results of this study to other introductory programming 
courses with different assessment methodology and different 
programming languages. We rely on the quality of instructor’s 
tests to assess functional correctness through an automated 
assessment system. Furthermore, we took advantage of Python 
well-defined coding standard that focus fundamentally on 
code readability. Although the findings could not be 
generalized to every course, the ideas and research 
methodology applied in this work can be adapted to be used in 
other contexts. 

VII. RELATED WORKS 
Lister, Hanks and Murphy researched about the grading 

process [11]. They discussed about methods used by 
instructors to manually grade students’ programs. They show 
that graders have different motivations to judge and also apply 
different approaches in their assessments. They conclude that 
the teaching community must discuss grading, to learn with 
each other in order to benefit their students. Our work also 
discusses the grading process. Differently from Lister, Hanks 
and Murphy study objectives’, the purpose is not the grade at 
all, but is to reveal the quality features considered by the 
instructors when they are grading. We propose that software 
metrics could capture common quality factors usually cited in 
grading rubrics.  

The use of software metrics, as a relevant aspect to be 
assessed in novice programming exercises, was referred in the 
study of Mengel and Ulans [3] and Cardell-Oliver [16]. They 
proposed that metrics could be used as an indicator of student 
performance. Cardell-Oliver proposes that software metrics 
can enhance the feedback delivered to students and to the 
instructors. Our proposed metrics, in some extent, are similar 



to those presented in Cardell-Oliver study but different in its 
purposes. Our work goes beyond, as it reveals, at least for our 
data, which metrics are really relevant to provide quality and 
useful formative feedback to novice programming students. In 
this context, the instructor played a central role as we 
examined their assessments and reference solutions provided 
to the students programming assignments.  

VIII. CONCLUSION AND FUTURE WORK 
This paper proposed a set of measures with the aim to 

capture code quality and generate useful feedback for novice 
programmers. These measures, based on traditional quality 
software metrics, can be automatically obtained provided we 
have a reference solution. This instructor’s provided solution 
encompasses the programming abilities and code quality 
expected for that assignment. 

 Firstly, we conducted a case study on a dataset composed 
by more than 400 functionally correct submissions, to 12 
programming assignments, from about 100 students to 
evaluate our proposal validity. We calculated the proposed 
measurements for all submissions in the dataset and assessed 
how they compare to instructors' grades. We tested our 
hypothesis with adequate statistic significance. The results 
confirmed that RLLOC, RCC, RH and RPEP8 indeed capture, 
at some extent, the notion of quality as it is reflected in the 
variation of the instructor’s grades. 

Then, we have performed an experiment on generating 
quality feedback using the proposed quality measurements 
aiming to assess its influence on students’ code. As results, we 
observed that students manage to work on their code and 
improve it, after receiving the quality feedback message. We 
confirmed using hypothesis tests that students who received 
such quality feedback are more likely to submit a larger 
number of revisions than those who do not. Furthermore, 
66.67% of the students that received quality feedback 
delivered a revision with better quality code. 

In this work, we used the solution code provided by the 
instructor who manually assessed the programming 
assignment as a reference. In future works, we will explore 
other alternatives of reference solutions such as: the median of 
the metrics between all instructors’ reference solutions, the 
most common solution submitted by students, etc. With regard 
to feedback messages, we intend to create a hierarchy of 
messages, for each measurement, to deliver to students. The 
idea is to deliver messages whose contents vary from more 
general to direct, as the student tries to fix the warning. So, the 
system does not repeat the same messages among 
unsuccessful fixing attempts. 

Finally, it is necessary to recall that the motivation of this 
study was to enrich the automated feedback provided to the 
students about their code submissions. We envision that using 
those quality measures, the students will obtain useful advise 
in how to improve their solutions. Also, it will leverage novice 
programmers to adhere to software quality premises since 
their early coding experiences. 

 

ACKNOWLEDGMENT		
The authors would like to thank Programming I 

instructors, at UFCG for their valuable collaboration in 
producing reference solutions for the studied programming 
assignments and providing feedback about our data analysis. 
We are also thankful for our Computer Science students who 
diligently submitted their programs. This research was 
partially sponsored by the agreement No 754664/2010 
between UFCG and ePol/DPF. 

REFERENCES 
 

[1] K. Ala-Mutka, “A Survey of Automated Assessment Approaches for 
Programming Assignments”. Computer science education, vol. 15, pp. 
83-102, 2005 

[2] B. Cheang, A. Kurnia, A. Lim and W.-C. Oon. “On Automatic Grading 
of Programming Assignments in an Academic Institution.” Computers & 
Education, 41, 121-131, 2003.  

[3] S.A., Mengel, and J.V., Ulans. “A case study of the analysis of the 
quality of novice students programs.” Proc. 12th Conference on 
Software Engineering Education and Training, pp. 40–49, 1999  

[4] R. Pettit , J. Homer , R. Gee, S. Mengel and A. Starbuck. “An Empirical 
Study of Iterative Improvement in Programming Assignments”. 
 Proceedings of the 46th ACM Technical Symposium on Computer 
Science Education (SIGCSE '15). ACM, pp. 410-415 

[5] J.W. Gikandi, D. Morrow, N.E. Davis, Online formative assessment in 
higher education: A review of the literature, Computers & Education, 
Volume 57, Issue 4, pp 2333-2351, 2011 

[6] C. Douce, “Automatic Test-based Assessment of Programming: A 
Review”, Journal on Educational Resources in Computing, Vol. 5, Issue 
3, 2006. 

[7] P. Ihantola, T. Ahoniemi, V. Karavirta and O. Seppälä. “Review of 
recent systems for automatic assessment of programming assignments”. 
Proc. 10th Koli Calling International Conference on Computing 
Education Research (Koli Calling '10). ACM, pp. 86-93. 2010. 

[8] J. Carter, J. English, K. Ala-Mutka, M. Dick, W. Fone, U. Fuller, and J. 
Sheard. ITICSE working group report: How shall we assess this? 
SIGCSE Bulletin, 35(4):107–123, 2003. 

[9] P. Nordquist. “Providing accurate and timely feedback by automatically 
grading student programming labs”. J. Comput. Small Coll., 23(2):16–
23, 2007.  

[10] K. Buffardi and S. H. Edwards “Reconsidering Automated Feedback: A 
Test-Driven Approach”. In Proceedings of the 46th ACM Technical 
Symposium on Computer Science Education(SIGCSE '15). ACM, New 
York, NY, USA, pp. 416-420, 2015. 

[11] S.Fitzgerald, B. Hanks, R. Lister, R. McCauley, and L. Murphy, "What 
are we thinking when we grade programs?", In Proc. of the 44th ACM 
technical symposium on Computer science education (SIGCSE '13), 
ACM, pp. 471-476, 2013. 

[12] T. J. McCabe “A complexity measure”. IEEE Transactions on Software 
Engineering, vol. SE-2, num. 4, pp. 308-320, 1976 

[13] PEP 8 – Style Guide for Python Code [Online. Accessed in March, 
2014] http://legacy.python.org/dev/peps/pep-0008/ 

[14] Radon – [Online. Acessed in March, 2014] 
https://radon.readthedocs.org/en/latest/index.html 

[15] Becker K. “Grading programming assignments using rubrics”. 
Proceedings of the 8th annual conference on Innovation and technology 
in computer science education (ITiCSE '03). ACM, New York, NY, 
USA, 253-253. 

[16] R. Cardell-Oliver. “How can software metrics help novice 
programmers?”. Proc. Thirteenth Australasian Computing Education 
Conference - Volume 114 (ACE '11) Australian Computer Society, Inc. 
pp. 55-62, 2011. 

 



Appendix C

Applying Spectrum-based Fault

Localization on Novice’s Programs

141



Applying Spectrum-based Fault Localization on 
Novice’s Programs 

Eliane Araujo, Matheus Gaudencio, Dalton Serey, Jorge Figueiredo 
Department of Computer Science 

Federal University of Campina Grande 
Campina Grande, Brasil 

{eliane, matheusgr, dalton, abrantes}@computacao.ufcg.edu.br 
 
 

Abstract—Most introductory programming courses count on 
automated assessment systems (AAS) to support practical 
programming assignments and give fast feedback. AAS usually 
rely on tests results to check the program's functional correctness 
to provide feedback to students. Novice programmers, however, 
may find it difficult to map such feedback to the root failures’ 
cause in their programs. It can be even more frustrating when 
the code is “almost right”. In this paper we investigated the use of 
a fault localization technique on programs produced by students 
of introductory programming. Our proposed approach is 
grounded on spectrum-based fault localization (SBFL). The 
results of our empirical study showed that this lightweight 
technique is promising. It can be easily adapted to different AAS 
to generate useful feedback not only to students but also to 
instructors. We also delineate the scope where SBFL use is 
jeopardized. The main contribution of this paper is to present the 
benefits and drawbacks of applying SBFL, in the context of 
programming learning, as a novel source of information about 
students' programming assignments faults.  

Keywords— programming, automated assessment; software 
fault diagnosis; novices, experimentation. 

I.  INTRODUCTION  
Nowadays, many programming courses are supported by 

automated assessment systems (AAS) that provide feedback to 
the students and also collect data about their interaction with 
the instructional material. However, the feedback provided by 
those systems about the students’ difficulties in programming 
assignments are distant from the instructors’ enriched 
feedback. The problem is that AAS may not provide adequate 
feedback in some phases of the programming process, so that 
students may feel frustrated and face difficulties to proceed 
autonomously on their learning pathway. 

AAS usually rely on tests results to check the program's 
functional correctness to provide feedback to students. Novice 
programmers, however, may find it difficult to map errors in 
their code with failing test cases [1]. It can be even more 
frustrating when the code is “almost right”. Sometimes, even if 
the student knows how to solve the proposed problem, she may 
fail in producing a functionally correct implementation. The 
failure revealed by tests can be caused by a wrong operator 
(“greater than” instead of  “greater than or equal to”), a wrong 
value on the “if” conditional statement or even a misplaced 
parenthesis. An adequate feedback in this situation would help 
and stimulate the student to solve the problem and move on. In 

fact, there are on the literature different strategies proposed to 
find bugs on student code [1][2]. However, they may not be 
easily adopted by whichever programming course, as they 
increase instructors’ duties requiring the production of new 
artifacts. 

This paper investigates the use of a lightweight fault 
localization technique on programs produced by students of 
introductory programming. Spectrum-based fault localization 
(SBFL) has been used successfully in different areas of 
software development [3][4][5]. This technique relies on 
program spectra: program traces that reveal which parts of the 
code are active during a failed or successful execution. SBFL 
predicts the likelihood of a software component, for example, 
to be responsible for faulty executions. This research focuses 
on programming assignments proposed along with a test cases 
suite that are automatically executed by an AAS. In this sense, 
those systems would compute SBFL measures at a low cost. It 
does not demand artifacts different from those instructors are 
used to provide.  

We conducted an empirical study to investigate the 
suitability of using SBFL on novice’s programs as a novel 
source of information aimed to AAS feedback generation. We 
collected data from an entire edition of an introductory 
programming course comprising more than 10,000 Python 
programs, referring to almost 300 programming assignments, 
from approximately 100 students. We analyzed the tests results 
of each program submission to characterize them. We observed 
that 25.9% of the submissions in the data set were considered 
incorrect, as they did not pass the complete set of tests. In order 
to be adequate to SBFL use, the submission has to pass at least 
one test. In this sense, 61.6% of incorrect submissions are 
initially adequate to SBFL application. A broader exploratory 
study was able to characterize these programs and provides a 
more comprehensive knowledge of the extent of situations 
where the technique could be relevant.  

Then, we performed a quantitative study with 5 
programming assignments to assess the quality of SBFL 
diagnostics. We used as baseline instructor's assessments and 
annotations on the programs. On average, using SBFL, it is 
necessary to look in only ~20% of the program's lines of code 
to find the flaw. This study also corroborated with the previous 
findings on literature. We discuss situations where SBFL was 
inappropriate to provide feedback about the programs' faults.  



The contributions of this work, addressed to instructors and 
AAS developers, are the following:  

• We present and adapt SBFL as lightweight alternative 
to find faults in students programs. It is a new source 
of information for feedback generation to instructors or 
students. Instructors or AAS developers must be 
responsible for modulate the information before deliver 
it to students, so it could make better sense in 
pedagogical context. 

• We discuss the use limitations of this technique 
towards introductory programming assignments, in 
particular Python procedural programs, as lessons 
learned from an exploratory study. 

• We report a case study evaluation, on real 
programming assignments, highlighting good results in 
terms of diagnostic accuracy.  

• We summarize strategies on how to maximize SBFL 
use in programming learning context and propose them 
as future works. 

II. RELATED WORKS 
Automated assessment systems are used for decades in 

programming learning context [6]. In general, AAS employ 
comparable approaches and provide similar features [7]. The 
most common feature assessed by them is code functional 
correctness. A typical system executes a set of test cases, 
provided by the instructors, and compares the expected output 
to the observed output produced by students’ programs. Some 
systems, characterized as grading systems [8], use those results 
to grade the programming assignment. Grading systems may 
weigh another factors, besides correctness, such as deadline 
penalty, resubmission times, type of errors, test coverage 
[9][10], etc. AAS may also provide features such as quality 
assessment, in terms of: efficiency [11], static software metrics 
[12] and programming style [13]. The work hereby described, 
focuses on fault localization [1][2] and code repair strategies 
[1], which are discussed in more details in the following 
subsection.  

A. Fault localization and repair 
The approach adopted in [2], to localize bugs in student 

code and provide feedback, is based on the automatic 
generation of program execution traces. An execution trace is a 
list of each program execution step, line by line, and the value 
of the variables at each time. By reading these traces, students 
can understand their program execution path and how it has 
evolved to reach the end. In order to generate feedback to 
students, the authors suggested comparing students’ trace to the 
one generated from the instructors’ reference solution. This 
works resembles the approach here presented, as it is also 
based on execution traces. However, SBFL can go further as it 
can map faults to software elements. The code is an artifact 
students are used to deal with, differently from an execution 
trace.  

In another way, Singh and colleagues’ work tries to identify 
the error in the students’ code and guides them to it correction 

[1]. The authors argue that most of students’ errors in 
programming assignments are predictable as students who are 
solving the problems were exposed to the same classes and 
learning materials. For these and other reasons, their errors tend 
to follow a typical pattern. They generate feedback based on 
possible fixes to error models that are typically found in 
particular programming assignments. Their approach could 
provide detailed information about the error localization and 
how to solve it. It also allows the message customization 
according to the level of feedback the teachers want students to 
see. 

However, to use this approach instructors must provide, in 
addition to the assignment’s reference solution, the model of 
typical mistakes that could be made by students in that 
assignment. Errors must be described in an Error Model 
Language - EML proposed by the authors. This approach has 
been successfully evaluated in MIT online and regular 
introductory programming courses. We argue that the overhead 
required to use Singh and colleagues’ proposal is higher than to 
use our approach. We speculate that having the instructors to 
foresee every error possibility and also learn a new language to 
model them is a big hurdle to impose. SBFL is simple and 
easily adaptable to existing AAS, as it does not require 
additional artifacts besides the test cases already provided by 
instructors. In contrast, the precision level of faults localization 
in our approach is lower than the observed with Singh’s 
approach.  

In a very recent work, Edmison and Edwards evaluated the 
use of SBFL on object-oriented programming learning context 
[14]. They recognized it as a “feasible strategy” to provide 
feedback on where to look for faults on programs. Differently 
from our work, addressed to novice programmers, the authors 
focus CS2 students, which are not complete beginners as they 
are taken their second or third programming course. 
Furthermore, the work deals with objected-oriented Java 
programs with the aim to locate and identify what methods are 
most likely to contain the fault. Our proposal has a finer 
granularity as it ranks the lines where the fault could be found 
in a procedural Python program. In addition, our research goes 
a step further as it discusses when not to apply SBFL. As a 
result of an exploratory study, performed in a dataset from over 
10,000 programs submissions, we characterized the students’ 
solutions and discussed the scope of the technique: when and 
why it is useful. The present work considers practical 
significance of the results as it gives insights into how to make 
better use of the SBFL in programming learning context.  

III. BACKGROUND 
In this section we describe the key concepts related to 

Spectrum-based Fault Localization (SBFL) technique and how 
we have adapted it to introductory programming learning 
context. Introductory programming assignments are usually 
well-formed specifications of problems to produce relatively 
small programs. These programs receive inputs and transform 
them in testable outputs. In this setting, faults can be seen as 
bugs in the programs and failures are evidenced by unexpected 
outputs for a given input [3].  



A. Spectrum-based Fault Localization  
SBFL is a technique that dynamically analyses a program 

in order to calculate the likelihood of a given component to be 
faulty. For diagnosis purpose, the concept component stands 
for an element of the system considered to be atomic. In 
multiple application of SBFL, components can be mapped to 
different targets: blocks of code when analyzing industry 
software systems [3]; cells in case of spreadsheets analysis [4]; 
agents when examining multi-agent systems [5] and methods in 
the study of object-oriented student programs [14].  

The idea is to observe multiple runs of the program, where 
components are exercised in failed and passed executions and 
calculate how a component is “suspicious” to be faulty. Failure 
detection is a precondition to fault localization: it is necessary 
to recognize that something is wrong before trying to locate the 
fault [3]. In this scenario, we use test cases provided by 
instructors to each programming assignment. However, seeking 
for failures through test cases are an elementary way of 
detecting faults. Some of them may not be disclosed if the set 
of test cases were not complete. Provided we cannot guarantee 
this completion, we assume, in this study, that all program’s 
faults are revealed by test cases. In this sense, a failed run 
occurs when an error is detected – the expected output is 
different from the observed. On the other hand, a passed run 
occurs when the output is equal to the expected.  

The data collected from failed/pass runs are used to 
compose a hit-spectra matrix, see Fig. 1. This is an NxM 
matrix; where N represents the number of components 
inspected in the program and M the number of runs (test 
executions, for example). Each aij element of the matrix 
corresponds to a binary value: (1) if it was hit in that particular 
run and (0) in the contrary [4]. In practice, this means that we 
aim to identify which component is “involved” in a failure. 
Another necessary element used to calculate components’ 
suspicious in SBFL is the error vector. This N-length binary 
vector holds the information about “fail” and “pass” to N runs, 
see Figure 1. 

 
 

After computing the hit-matrix and error vector, the next 
step is to identify which column in the matrix resembles most 
the error vector. Similarity coefficients, which are largely 
known in the literature, are used in this activity. Passos and 
colleagues cited in their work the use of more than 40 
heuristics to compute similarity between vectors [5]. The idea 
is simple: the more a spectrum of a given component is similar 
to the error vector, the more it is suspicious to be the cause of 
the detected error.  

In this work, we used Jaccard similarity coefficients in 
order to calculate the value of “suspiciousness index” for a 
given component. Refer to [3] in order to obtain more 
information about how to compute those coefficients in SBFL 
context.  

Finally, the coefficient values assigned for each component 
are ranked in descending order (most similar figures on top 
most positions). It means that, in order to find the fault in a 
given code, it is recommended to inspect the components 
following the SBFL ranking order. It can be noticed that the 
accuracy of this technique diagnosis is limited: it is a 
recommendation not a prescription. However, SBFL merit is to 
greatly reduce the range of code inspection. In the work 
reported by [3], it exonerated, on average, 80% of the blocks of 
code of being faulty. 

B. Students’ Programs Fault Localization with SBFL 
We argue that using SBFL to generate information to 

provide automatic feedback in the context of programming 
learning is relatively simple. AAS are increasingly been used in 
programming courses. They can be used to calculate SBFL 
coefficients and compose the rank, as they already count on a 
set of tests provided by instructors. 

In this paper, we applied SBFL to Python programming 
assignments of an introductory programming course. Each 
component of the technique is mapped to one line of the 
program, excluding comments or blank lines. We rely on the 
set of tests provided by the instructors in order to thoroughly 
test the code. In this sense, the diagnostic accuracy of the 
strategy also relies on instructors test quality. 

 Fig. 2 presents an example of real student code. This 
assignment specification asks students to write a program to 
calculate the body mass index of males and females. The value 
of suspiciousness index s, for each line, is showed on the left 
side. It can be observed that the last two lines (7, 8) obtained 
the highest values of s. The faulty line of code is indeed the last 
line (8), as the variable used should have been bmi_female 
instead of bmi_male.  

 
 

IV. RESEARCH METHODOLOGY 
In this section, we are going to present the research 

methodology applied in the empirical study of this work. In 
order to investigate the applicability of SBFL on novice 
programs, we followed a two-pronged approach: an 
exploratory study and a case study. The first aimed at having a 
broader look on students’ code production, qualitatively 
evaluating their errors and evaluating the soundness of SBFL 

0.5 1. genre = raw_input() 
0.5 2. height = float(raw_input()) 
0.5 3. bmi_male = 72.7 * height - 58 
0.5 4. bmi_female = 62.1 * height - 44.7 
0.5 5. if genre == "m" or genre == "M": 
0.0 6.  print "%.03f" % bmi_male 
1.0 7. elif genre == "f" or genre == "F": 
1.0 8.  print "%.03f" % bmi_male 

 
Fig. 2. Sample of student code is on the right. Values of suspiciousness 
index of each line are on the left. 

 
Fig. 1. MxN hit-spectra matrix and N-length error vector. Each 
column represents a component spectrum 



in the context of programming learning. The latter intended to 
quantitatively evaluate the approach, measuring its accuracy 
and other metrics, in a given set of real students’ programs 
sample.  

A. Data Collection  
This research was performed in an introductory 

programming course with undergraduate students of Computer 
Science. In this course students learn programing skills using 
Python language. Students learn how to use expressions, 
alternative statements, collections, strings, collection-controlled 
loops, conditional-controlled loops and functions. Their 
laboratory activities focus on solving problems by coding 
programs and submitting them to an AAS to be automatically 
tested. Each programming assignment presents a basic input 
and output test. Students are used to test their programs with 
this basic test before submitting their solution to the system. 
After the code submission to the AAS, additional hidden tests 
are executed. As a result, students receive the number of tests 
failed and passed for that code. They are not penalized for 
multiple submissions for the same question. 

In the exploratory study, we collected students’ 
submissions for programming assignments of a complete 
course edition. They were collected using an instrumented 
AAS, which was developed in-house and tailored for our 
course. The dataset of the exploratory study comprises 10,357 
programs, referring to 277 programming assignments, from 
115 students. On average, each student submitted 90 programs 
along the course.  Some of them were selected to a more in-
depth qualitative analysis.  

In the case study, we selected a set of 5 assignments 
focusing on different programming learning outcomes expected 
in the course, such as conditional structures (if), iterations (for 
and while), simple algorithms with data structures (lists). We 
seek for assignments that students faced difficulties to succeed. 
For this reason, of 181 submissions that composes this study 
dataset, 53.6% failed in at least one test case. It is worthy to 
note that each assignment has their own set of tests and they 
were also necessary to compute SBFL values.  

B. Exploratory Study  
In general, the purpose of an exploratory study is to answer 

research questions about the studied phenomena without 
formulating any previous hypothesis [15]. In this study we 
investigated the suitability of using SBFL in different 
configurations of defects observed on students’ programs. 
From this point on, we are going to refer this “configurations of 
defects” as scenarios. Our main purpose is to define the scope 
of action of SBFL in programming learning context. For this 
reason, we want to answer the research questions:  

RQ1) What are the preconditions to use SBFL in students’ 
programs, according to their tests’ results?  

RQ2) SBFL performance depends on the programs’ defects 
configuration?  

RQ3) Which are the scenarios of defects configuration in 
which SBFL performance is good or is jeopardized?  

SBFL is a technique that dynamically analysis a program in 
order to calculate the likelihood of a given component to be 
faulty. In this study, each logical line of the code (program 
lines excluding comments, headers and blank lines) is 
considered a component. It means that, the likelihood of being 
faulty is calculated for each line according to the technique 
algorithm. This value is referred as index s, for suspicious. It 
represents the similarity between the line spectrum and error 
vector (see Section III.A). We chose Jaccard heuristic to 
compute the similarity coefficient in this study because it is a 
simple strategy that yields good results on related work [5].  

Initially, we inspected the dataset and determined which 
program submissions could be used as subject of this 
investigation. Such definitions of criteria helped us to answer 
the first research question. In sequence, we executed SBFL 
strategy to calculate s indexes for each program line and to 
create the rank. These are the steps of the process: Firstly, for 
each test of the test suite associated with that programming 
assignment, we generate an execution trace of the program. 
Each trace has a set of lines that represents the lines exercised 
during the test execution. Secondly, we compute the hit-matrix 
and the error vector (Fig. 1) for those executions. Then, we 
calculate the s value of each line using the Jaccard similarity 
coefficient SJ described in (1) with the values from Table I [3]. 

In Table I, C11 represents the number of failed tests that 
executed that line. C10 is the number of passed tests that hit 
such line. C01 is the number of failed tests that do not exercise 
the line and C00 is the number of passed tests that do not hit the 
line. All those values are calculated from the hit-matrix and 
error vector. Finally, we create a rank with the values of s. In 
theory, the lines more likely to be faulty are on the initial 
ranking positions. 

 
(1) 

TABLE I. DICHOTOMY TABLE REPRESENTING THE STATES OF A LINE 

Test Result 
Line Hit 

Yes = 1 No = 0 

Failed = 1 C11 C01 

Passed = 0 C10 C00 

 

The index s, calculated using Jaccard similarity heuristic, 
can range from 0 to 1. With this in mind, we perceived four 
possible situations when we observed the SBFL rank and 
compared with the real localization of defects in students’ 
programs. Table II presents these scenarios. 

In order to answer posed research questions, we searched 
the dataset and found programs that match each one of these 
situations. We performed a qualitative evaluation in such 
programs to better understand SBFL performance on those 
cases. Furthermore, there were other programs that did not fit 
in those categories and presented notable characteristics such 
as: multiple lines of errors, dead code and runtime errors. They 
also helped on the definitions of SBFL applicability scope.  

 



TABLE II. SCENARIOS OF DEFECTS OBSERVATIONS IN REGARDS TO SBFL 
SUSPICIOUSNESS INDEX. 

s  
Real Defects Found 

Yes = 1 No = 0 

High (>=0.5) S1 S2 

Low (< 0.5 ) S3 S4 

C. Case Study  
In the case study, we conjectured if SBFL could really help 

us to identify which are the lines responsible for the faults 
observed in students’ programming assignments. So that, the 
values obtained through the technique could be used to 
generate feedback in the context of programming learning. In 
order to test it, we applied SBFL and used a set of evaluative 
metrics to analyze its results and practical significance. To 
conduct this study, we formulated the following research 
question: 

RQ4) Is the quality of diagnosis delivered by SBFL good 
enough to generate useful feedback about faults localization in 
novice programming assignments? 

In answering this research question, we applied SBFL 
technique to a set of programming assignments, as described 
on the previous section. This set of assignments was collected 
from mid-term exams of different course editions of 
Programming I. Experienced instructors manually assessed and 
annotated the programs highlighting its errors. We executed 
automatic tests and collected faulty program submissions. We 
also manually analyzed these submissions to make sure that the 
faulty lines were indeed identified. This inspection was work 
intensive, but it was fundamental to this study. Its results was 
used to compose the baseline of the study, an oracle of “true 
positives” faults, used to compute the evaluation metrics.  

We instrumented the AAS to calculate s indexes and 
generate SBFL rank. The order in this rank indicates the 
likelihood of a line to be faulty. After applying the technique 
for each submission, we evaluated the success of the fault 
localization in contrast to the baseline using different metrics. 
Precision and recall are traditional metrics of information 
retrieval. They are used in this study with the following 
meaning:  

- Precision: Measures the fraction of the “number of lines 
marked as faulty by SBFL, which are real faulty lines 
according to the baseline” by the “total number of lines 
indicated by SBFL”. 

- Recall: Measures the fraction of the “number of lines 
marked as faulty by SBFL, which are real faulty lines 
according to the baseline” by the “number of faulty lines 
according to the baseline”.  

In addition, we used another metrics proposed by Abreu 
and colleagues to evaluate SBFL diagnosis quality in terms of 
accuracy (qd) and quality of the error detection (qe) [3]. We 
are going to briefly describe the equations and the meaning of 
its compound values. Finer details about the underlying 
motivation can be found in [3].  

Accuracy represents the quality of diagnosis of the 
technique in locating a faulty line along the program. It means 
the percentage of the program lines that does not need to be 
inspected when searching for a fault by traversing the ranking.  

Let d ∈{1, …, N}be the index of the faulty line. For all j 
∈{1, …, N}, sj is the similarity coefficient calculated for the 
line j. The ranking amplitude  also considers that when two 
lines have the same similarity coefficient, we use the average 
ranking position for them. The first term |{j|sj  > sd}| counts the 
number of lines ranked before the faulty line. The term |{j|sj   
sd}| calculates the number of lines with the same or higher 
similarity coefficient compared to the faulty line [5]. 

 
(2) 

The value of accuracy is calculated considering the rank 
amplitude  and the total number of lines of code N, according 
to (3). 

 

(3) 

The metric error quality detection aims to quantify a 
problem of diagnosis based on the observation of tests results. 
An error only appears when the faulty line is exercised by a test 
case. In this sense, the purpose of this metric is to measure the 
“unambiguity of the passed/failed” data in relation to the fault 
being exercised [3]. Equation 4 computes the metric using the 
definitions of Table I: 

 

(4) 

V. RESULTS 

A. Exploratory Study  
The dataset of this study contains 10,357 students’ 

programs: 7,670 passed all tests and 2,687 failed at least one 
test. We are investigating what are the preconditions to use 
SBFL in students’ programs, according to their tests’ results. 
As SBFL is a technique to locate faults, clearly we are not 
interested on functionally correct submissions, i.e. when they 
pass all test cases. The requirements to use SBFL in students’ 
programs, is to have traces of failed and passed executions. In 
the subset of codes that failed at least one test 1,031 codes did 
not passed any test (38.37%). It means that we can apply SBFL 
in 1,656 of 2,687 codes with defects (61.63%).  

Although this result could be considered a large number, 
for the dataset we evaluated, it is important to understand what 
kind of submission is not “suitable” for using SBFL as a 
strategy for fault localization. Code submissions that did not 
pass in any test case may present failures on the algorithm or 
strategy to solve the problem. Possibly the student does not 
understood the problem specification or does not know how to 
program it correctly and need to start its code over. Depending 
on the test suite, it also may occur that a program passes “by 

 

 



chance” in few test cases. Overall, SBFL is not suitable for 
these cases, as its purpose is to help to pinpoint faults. Students 
whose code submissions are “almost right” can benefit better 
of the information obtained from SBFL results.  

In order to study the functioning of the technique in regards 
to the programs’ defects configuration, we sought the dataset in 
order to locate programs that fits on the scenarios S1, S2, S3 and 
S4, as defined on Table II. We present examples of real student 
code for each scenario and discuss how the suspiciousness 
index s can be interpreted. Then we highlight the lessons 
learned when looking for defects using SBFL, in programs 
with such defect configurations. For each example code, the 
values of s are on the left side and the real defects are 
underlined. 

S1) Defect found in line with high s value. In this scenario, 
the faulty line is on the top positions of SBFL rank. This could 
be considered the ideal case: as s index is high. One who is 
looking for defects in the code can find it almost directly. Fig. 
2 (of Section III) shows an example of program of this 
scenario. This program was tested against four test cases. It 
passes two and failed other two tests. Lines whose s value is 
0.5 were executed in all test cases. The value of s of line 6 is 
0.0, as this line was not executed in a failed test. The value of s 
of line 7 and 8 is 1.0, as they are executed in failed runs. In 
fact, line 8 is only executed when the test fails, as the real 
defect is found on it. Lines 7 and 8 are the top-ranked lines 
according to SBFL.  

S2) Defect not found in line with high s value. In this 
scenario, the faulty line is not on the top position of SBFL 
rank. The program example, showed in Fig. 3, was tested 
against 5 test cases and failed 2 tests. In this scenario, the faulty 
line (line 7) is not the top most line on SBFL rank. The highest 
value of s indexes is 1.0, corresponding to line 6. This happens 
because this line is executed in all the failed runs. Although the 
faulty line is not on the first rank position, it is one of the top 
most lines ranked. In this sense, one who is looking for defects 
in the code can find it in few lines attempts. So, this scenario 
also represents a successful case of SBFL use. This program 
can be fixed if we substitute the if statement on line 7 by an elif 
when checking if the sum is divisible by three.  

S3) Defect found in line with low s value. In this scenario, all 
lines have low values of index s. This indicates that all lines 
were executed in at least one successful test. However, some 
lines were not executed on failed runs. Although, no line in this 
example presented high values for the suspiciousness index s, 

when the rank is composed the faulty line (line 9) is in one of 
the highest positions of the rank, see Fig. 4. The problem of the 
faulty statement of this program is a truncate division 
operation. In Python version 2.7, the result of an integer 
division is truncated which may result in a failure for some 
inputs: when b is not a multiple of 2*a. To effectively correct 
this code, it is necessary to convert int values into floats. This 
could be done in line 9 or in lines 2 and 3. This ambiguity may 
make it harder to find a way to correct the fault but the 
technique still gives a good hint. For this reason, we argue that 
SBFL, in this scenario, also can help to produce useful 
information about the fault localization. 

 
 

 
S4) Defect not found in line with low s values. In this 

scenario, the faulty line does not appear on top most positions 
of SBFL rank. It means that SBFL failed in suggests the lines 
that contain the real defect. In this example, presented by Fig. 
5, the faulty line is line 7. To better understand this situation, 
we debugged this code and we found that the failure happened 
because we short-circuit (don't evaluate) the elif statement 
when the second input (dna_2) is lower than the first input 
(dna_1). Thus, in any situation in which "dna_3 < dna_2 < 
dna_1" we will observe the same problem. To correct this 
program, it is necessary to substitute elif to an if condition. 

 This scenario is not common to happen. In fact, it was hard 
to find a situation where a defect was not indicated correctly by 
the highest SBFL value. We identified that situations like this 
can happen when the defect is located in the conditional 
structure, such as if/elif/else. When the alternative condition is 
accepted the other conditional test is not executed, even in 
failed runs. This situation poses a great challenge to this 
strategy.  

Other perceptions about SBFL functioning and 
interpretation were observed on programs that does not fit on 
the characteristics of the scenarios previously described. 
However, SBFL can be applied and give us insights about the 
code execution or defect location. For example, when you have 
information about lines that were not executed (dead code) is 
possible to reason about a possible defect on the condition that 
make that code unreachable. 

 

Fig. 3. Student code with the suspicious value on the left side and the 
faulty statement underlined. Example of scenario 2. 

0.1 1. import math 
0.1 2. a = int(raw_input()) 
0.1 3. b = int(raw_input() 
0.1 4. c = int(raw_input()) 
0.1 5. delta = b**2 - 4*a*c 
0.1 6. if delta < 0: 
0.0 7.     print "no real roots" 
0.2 
0.3 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 

8. elif delta == 0: 
9.     x = -(b)/(2*a) 
10.    print "%s = %.2f" % ('x', x) 
11.else: 
12.    x1 = (-b+math.sqrt(delta))/(2*a) 
13.    x2 = (-b-math.sqrt(delta))/(2*a) 
14.    print "%s = %.2f" % ('x1', x1) 
15.    print "%s = %.2f" % ('x2', x2) 
  

0.4 1. num1 = int(raw_input()) 
0.4 2. num2 = int(raw_input()) 
0.4 3. num3 = int(raw_input()) 
0.4 4. sum= num1 + num2 + num3 
0.4 5. if sum % 3 == 0 and sum % 5 == 0: 
1.0 6.     print "fizzbuzz" 
0.6 7. if sum % 3 == 0: 
0.0 
0.0 
0.0 

8.     print "fizz" 
9. elif sum % 5 == 0: 
10.    print "buzz" 
 

Fig. 4. Student code and the value of suspicious index on the left side of 
each line and the faulty statement underlined. Example of scenario 3. 



 

B. Case Study  
In this subsection we report on the results of the study that 

helped us to answer the research question that drove our study: 
Is the quality of diagnosis delivered by SBFL good enough to 
generate useful feedback about faults localization in novice 
programming assignments?  

We studied five programming assignments (PA), 
emphasizing different learning outcomes of programming 
learning: (1) for loops, (2) sorting, (3) conditional structures, 
(4) lists and (5) while loops. These PA were chosen due to its 
high failure rate (53.59%). Table III shows each PA and the 
data about their total number of submissions and the number of 
failed submissions. Additionally, it shows the number of 
submissions suitable for SBFL use, failed submissions that 
pass at least one test.  

TABLE III. PROGRAMMING ASSIGNMENTS DATA ABOUT SUBMISSIONS AND 
TESTS FAILURES 

 Submissions Failed Passed at least 1 test 

PA_1 29 24 19 

PA_2 31 17 3 

PA_3 18 10 5 

PA_4 16 8 3 

PA_5 87 38 28 

TOTAL 181 53.59% 59.79% 

 
The quality of SBFL diagnosis was assessed using the 

metrics defined in Section IV: precision, recall, accuracy and 
quality of error diagnosis. PA_2 and PA_4 values were omitted 
from the results table. Each one has only 3 submissions. The 
manual evaluation of these programs revealed severe defects 
caused by multiple lines in 4/6 programs. As we learned in the 
exploratory study, programs with such characteristics are not 
suitable to SBFL strategy. Table IV shows the average of the 
evaluative metrics for the others programming assignments. 

TABLE IV. AVERAGE VALUES OF EVALUATION METRICS 

 Recall Precision qd qe 

PA_1 1 0.18 0.84 0.17 

PA_3 1 0.13 0.82 0.79 

PA_5 1 0.08 0.73 0.30 

 Recall Precision qd qe 

Avg 1 0.10 79.67% 42.00% 

 

The first two metrics (recall and precision) present 
contrasting values. Recall value is perfect for each 
programming assignment presented on Table 4. It means in 
practice, that all real faulty lines are successfully detected by 
SBFL technique. However, the precision value is low, meaning 
that many lines are detected, but some of them are false 
positives. This behavior was expected since SBFL strategy 
includes creating a rank of possible faulty lines to be inspected 
in a given order, so that a great part of the code could be 
exonerated of being inspected. It is likely that the top-ranked 
lines present the defect.  

The quality of defect diagnosis is measured on metric qd. 
This measure shows the accuracy of SBFL in terms of the 
percentage of lines of code that do not need to be considered 
when searching for a defect on the code. The values obtained 
for each PA are considerable high. The metric quality of the 
error detection qe measures, in practice, how good is the test 
suite used to apply SBFL to a given programming assignment. 
It seems that the values obtained for this metric does not follow 
any trend. They can be considered low values, meaning that the 
quality of error detection for our dataset is not good. However, 
in a deeper analysis, we could not observe correlation between 
the measurements of: accuracy (qd) and the quality of error 
detection (qe). This result corroborates Abreu and colleagues’ 
findings [3]. It means that even if the test suite used to apply 
SBFL technique results in low error detection quality, the 
diagnosis accuracy is still high.  

VI. DISCUSSION 
There is a set of necessary preconditions, regarding tests’ 

results, to use SBFL to locate faults in a given programming 
assignment. Besides failing in at least one test case, what is 
obvious as our aim is to locate failures, it is also necessary to 
pass at least on test case. Though, the test suite must have at 
least 2 test cases. In dataset we evaluated on the exploratory 
study, 61.63% of code with failures met these requirements and 
could be used to assess SBFL. 

The performance of SBFL technique depends on the 
programs’ defect configuration. In the exploratory study, we 
identified four error scenarios and characterized other errors 
configurations. It helped us to better understand the meaning of 
SBFL suspiciousness indexes and devise hints on how to look 
for the fault. For example: If there is dead code in the program, 
it is important to understand why the test suite did not exercise 
such lines. Possibly, the defect is on the statement that 
precludes that code to be executed. Another lesson learned on 
using SBFL strategy is that if the defect were not found on the 
lines top-ranked consider analyze the neighborhood. It is 
worthy to verify conditional expressions near those lines to see 
if there is some defect there, especially if the defect were not 
find on top ranked lines. 

There are indeed some scenarios in which SBFL 
performance is jeopardized. This technique is useful to 
highlight obvious and punctual defects. Programs containing 

Fig. 5. Student code with the suspiciousness index value on the left side 
and the faulty statement underlined. Example of scenario 4. 

0.1 1. dna_1 = raw_input() 
0.1 2. dna_2 = raw_input() 
0.1 3. dna_3 = raw_input() 
0.1 4. small = dna_1 
0.1 5. if len(dna_2) < len(smal): 
0.5 6.     smallest = dna_2 
0.0 7. elif len(dna_3) < len(smal): 
0.0 8.     smallest = dna_3 
0.1 9.print "%s %d" % (smal,len(smal)) 
 



multiple lines of errors, structural problems or error on its 
problem solving strategy is not suitable for applying SBFL. 
Even when manually evaluating punctual defects, there existed 
few situations where SBFL was not able to locate the fault. The 
type of feedback generated with SBFL information, in 
programming learning context, is useful and ideal for situations 
in which the program is “almost right”. 

Overall, we considered the quality of diagnosis delivered 
by SBFL good enough to generate useful feedback about fault 
localization in novice programming assignments. At least for 
the dataset on the performed case study, SBFL accuracy was 
on average 80%. It means that guided by SBFL rank, one just 
need to scan 20% of the program to find it defect. This result 
approximates to the values obtained by other studies that 
applied SBFL in contexts such as spreadsheets [4], multi-agent 
systems [5] and software products [3].  

VII. CONCLUSIONS AND FUTURE WORK 
This paper investigated the use of SBFL, a fault localization 

technique, on programs produced by students of introductory 
programming. This technique relies on program spectra, 
defined as a set of program’ statements that were active during 
an execution. It predicts the likelihood of each program 
statement to be responsible for faulty executions. In order to 
make better use of this information, regarding to pedagogical 
context, instructors or AAS developers must fine-tune it before 
delivering to students. 

We discussed how to interpret the values of SBFL 
suspiciousness index and the limitations of use of this 
technique. Our exploratory study characterized programs 
according to their errors configurations in scenarios. We claim, 
as lessons learned from this study, that SBFL is useful to 
pinpoint punctual defects. It is worthy to note that this 
technique is not fail-proof and there exist scenarios where 
looking only for the top most positions in SBFL rank may not 
be enough to find the fault. We report a case study evaluation, 
using real programming assignments, highlighting good results 
in terms of diagnostic accuracy: using SBFL we just need to 
look at 20% of the code in order to find the fault. This result 
corroborates with other studies found on the literature and 
obtained an approximate result when applying SBFL to other 
software engineering contexts. 

The main contribution of this work, to instructors and AAS 
developers, is the investigation of SBFL benefits and 
limitations, as promising lightweight alternative to find faults 
in students programs and, as a new source of information, for 
student feedback generation. As future work we address the 
need of further investigation in the scenario in which the 
technique performance was jeopardized: when the fault is 
found on the conditional statement. Furthermore, it would be 
worthwhile to use item response item theory in order to 
validate the test suite provided to the programming assignment, 
since its quality is fundamental to this approach. 
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Minha experiência usando o Qcheck
Queremos melhorar a experiência de uso do Qcheck ­ uma ferramenta que dá dicas de como melhorar a 
qualidade dos códigos dos exercícios de programação 1. Para isso contamos com o seu valioso feedback. 
Estas perguntas objetivam descobrir como foi a sua experiência usando o Qcheck. 

1. Endereço de e­mail *

2. Em que momento (ou como) você está usando o qcheck na resolução de suas atividades de
programação?
 

 

 

 

 

3. Como você processa (ou interpreta) a mensagem fornecida pelo teste?
 

 

 

 

 

4. Quais são os pontos positivos e negativos da ferramenta?
 

 

 

 

 

5. O que impede ou o motiva/motivou a utilizar o qcheck?
 

 

 

 

 

6. Após uso a resolução dos warnings do qcheck, seu código se apresenta:
Marcar apenas uma oval.

1 2 3 4 5

Pior que a primeira versão Melhor que a primeira versão

 Envie para mim uma cópia das minhas respostas.



Powered by
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Abstract. In this paper, we report on a study that was carried out, in the 
context of an introductory programming course, to investigate how code 
readability correlates with the students’ achievements. We suggest a simple 
metric to automatically assess beginners code readability. The study revealed 
a correlation between code readability and students’ course performance. In 
parallel, we brought to light other factors which, taken together with the 
readability metric, can better explain students performance in the course. 
Resumo. Neste artigo, apresentamos um estudo realizado, no contexto de um 
curso de introdução à programação, em que investigamos a relação entre a 
legibilidade dos programas produzidos pelos alunos e o seu desempenho na 
disciplina. Propusemos e avaliamos uma métrica simples de legibilidade de 
código Python para programas produzidos por estudantes de programação 
introdutória. Nossos resultados confirmam que há uma correlação entre a 
métrica de legibilidade dos programas e o desempenho dos alunos, indicando 
que a métrica captura um aspecto considerado pelos professores na avaliação 
dos programas.  

1. Introdução  
O desenvolvimento de programas por estudantes em cursos introdutórios de 
programação é uma das atividades que mais pode contribuir na aprendizagem desta 
disciplina. Entretanto a avaliação destes programas e o consequente feedback dado ao 
aluno, demanda muito trabalho do professor. Por essa razão, professores têm optado por 
diminuir a quantidade de programas/exercícios propostos para os alunos (Cheang et al 
2003).  
Os sistemas de verificação e testes automáticos de programas podem reduzir a carga dos 
professores e viabilizar o estímulo à produção de muitos programas pelos estudantes. 
Nesse modelo, os programas são verificados automaticamente e se produz um feedback 
imediato para o estudantes sobre o programa-solução produzido (Campos et al, 2004). 
Os verificadores, por se nortearem pelos testes automáticos, consideram para avaliação 
apenas a resposta produzida pelos programas para um conjunto pré-definido de casos de 
teste, desconsiderando as qualidades internas do código submetido pelo estudante.  
Neste trabalho, apresentamos os resultados de um estudo cujo objetivo foi analisar 
como a legibilidade dos códigos dos alunos pode ser avaliada de forma automática e 
como ela se relaciona com o desempenho dos estudantes no curso. Para isso, 
propusemos uma métrica para avaliar a legibilidade do código produzido por 



  

programadores iniciantes e que pode ser obtida de forma automática. Neste estudo 
procuramos verificar em que medida a capacidade de escrever programas mais legíveis 
pode estar correlacionada com o desempenho do aluno no curso. 
O trabalho está organizado da seguinte forma: a Seção 2 apresenta o referencial teórico 
e alguns trabalhos relacionados à legibilidade de códigos. A seção 3 explica a 
metodologia adotada para realizar o estudo e descreve o contexto de produção dos 
dados relatando a forma como foram coletados e tratados. A Seção 4 apresenta os 
resultados alcançados pelo estudo, que são analisados e discutidos na seção 5. Os 
comentários finais, bem como as idéias para refinar e melhorar o trabalho, são tratados 
na seção 6. 

2. Referencial Teórico e Trabalhos Relacionados 
Estudos apresentam diferentes definições sobre a noção de legibilidade. Posnett et al. 
(2011) consideram que a legibilidade é a impressão subjetiva que os programadores têm 
sobre o quão difícil de entender é determinado código. Para estes autores, um trecho de 
código é dito legível se for fácil de ler, compreender e manter. No entanto, esta noção 
de legibilidade está fortemente relacionada a fatores humanos cognitivos, o que a torna 
difícil de quantificar e medir. Buse et al. (2010) propuseram uma métrica para medir a 
legibilidade do código com base em uma pesquisa experimental envolvendo anotadores 
humanos. Posnett apresentou uma outra proposta, seguindo a mesma linha. 
Os modelos para legibilidade de código tanto de Buse quanto de Posnett, foram obtidos 
experimentalmente observando códigos produzidos sob condições diferentes dos 
programas de alunos iniciantes. Em geral, os programas de iniciantes são respostas para 
exercícios de programação propostos pelos professores, podendo ser abertos ou não 
(Blinkstein, 2011). Estes programas são compostos geralmente por poucas linhas de 
código. Além disso, cursos introdutórios de programação tendem a não optar pelo 
paradigma de orientação a objetos, mesmo utilizando linguagens que dêem este suporte. 
Os programas avaliados pelos autores citados na obtenção de  suas métricas são escritos 
em linguagens orientadas a objetos. Só este fator já é motivo de impedimento para a 
utilização das métricas por eles propostas.  
Neste trabalho, propusemos uma métrica para avaliar a legibilidade dos programas dos 
estudantes considerando a adesão ao padrão de codificação estabelecido pela 
comunidade Python que é a linguagem de programação adotada para a escrita de 
programas no curso. Esta simplificação da análise da legibilidade é amparada pela 
experiência da comunidade de prática da linguagem através dos objetivos do Guia de 
Estilo para Código Python, conhecido como PEP08 (Python, 2013) “(...) as regras aqui 
descritas objetivam melhorar a legibilidade dos códigos Python e torná-los consistentes 
com o amplo espectro de códigos Python desenvolvidos mundialmente.”.  
Com uma ferramenta de verificação de conformidade ao padrão PEP08, medimos a 
quantidade de itens do código que estão em desacordo com este guia de estilo. Neste 
estudo, a métrica legibilidade foi reduzida em sua complexidade e quantificada de 
forma inversa: medindo o número de PEP08-defeitos (ao que chamaremos apenas de 
defeitos). Por exemplo: o programa 1 será mais legível que o programa 2 se ele 
apresentar menos defeitos de legibilidade que o outro. 



  

3. Metodologia 
A pesquisa foi realizada no contexto da disciplina Programação I do curso de 
Bacharelado em Ciência da Computação da UFCG. É dado um grande enfoque à 
resolução de problemas e ao desenvolvimento de muitos programas. Essa abordagem é 
suportada por um ferramental técnico de apoio ao ensino desenvolvido pela própria 
equipe pedagógica. Em síntese, do ponto de vista do estudante, o ferramental permite 
que ele: tenha acesso ao enunciado dos exercícios propostos cuja resposta é um pequeno 
programa ou função e envie sua resposta ao professor. Estes sistemas ampliaram a 
possibilidade de interação com o aluno fora de sala de aula através da Web. Desta forma 
foi possível, atendendo às necessidades da disciplina, aumentar a quantidade de 
exercícios propostos sem prejuízo para o feedback dado ao aluno. O sistema viabiliza a 
correção mais rápida e padronizada dos exercícios.  
Neste contexto, realizamos um estudo de caso utilizando dados do curso ministrado no 
período de 2011.2. Para a realização do estudo verificamos os programas dos alunos 
coletados após submissão ao sistema de correção e armazenados no banco de respostas. 
A submissão do programa indica, em sua maioria, que o aluno considera que aquela é 
uma implementação válida para especificação do programa dada no exercício. 
Assumimos que cada exercício proposto ao aluno é a especificação de um programa. Os 
exercícios que são propostos ao longo do curso são corrigidos automaticamente através 
do testador automático. Os exercícios propostos nas provas são testados 
automaticamente e também corrigidos por um professor, ou seja, há uma avaliador 
humano para checar além da corretude outros atributos como: desempenho, eficiência, 
estilo, complexidade, legibilidade, etc.  

3.1. Medidas, variáveis e conjunto de dados 
A questão de pesquisa que norteou o estudo foi: Como a qualidade – corretude e 
legibilidade – e a quantidade de código produzido pelo estudante ao longo do curso 
podem influenciar seu desempenho?  
A corretude dos programas foi medida em função da nota emitida pelo testador 
automático, que é uma ponderação entre os casos de testes em que o programa é bem 
sucedido, a relevância e a quantidade de casos de testes totais formuladas pelo 
professor. A quantidade de código produzida pelo aluno no período de estudo foi 
medida em termos de questões para as quais foi submetida pelo menos uma solução e 
também em número de linhas de código destes programas (LoC, tradicional métrica da 
engenharia de software). O desempenho do estudante no curso foi medido em função de 
sua nota na segunda prova da disciplina. Optou-se por analisar as notas da segunda 
prova por ser uma avaliação central no curso, cobrindo aproximadamente 70% do 
conteúdo. A legibilidade dos programas foi medida considerando o padrão de 
codificação estabelecido pelo PEP08. Como já ressaltado, medimos o número de não-
conformidades ao padrão encontradas no código, ou seja o número de defeitos. A 
densidade de defeitos é a medida que procura quantificar a habilidade que o aluno tem 
em escrever programas com menos defeitos, ou seja mais legíveis. Para tanto, medimos 
a quantidade de defeitos de um conjunto de programas e dividimos pelo seu número de 
linhas de código (LoC). 
Os dados que utilizamos no estudo referem-se aos programas desenvolvidos pelos 
estudantes e as notas atribuídas pelo testador automático, com base nos testes propostos 



  

pelos professores. Foram coletados 170 programas de 76 alunos. Consideramos os 
programas submetidos pelos estudantes no período compreendido entre duas provas da 
disciplina (intervalo de aproximadamente de 30 dias). Apenas a última versão 
submetida de cada questão enviada ao sistema por cada aluno, foi considerada para a 
análise. Os dados coletados neste período correspondem a 64 exercícios diferentes. No 
total, para esta fase, coletamos 3080 programas de 76 alunos. 

4. Resultados 
Observamos uma série de programas escritos pelo aluno e calculamos o índice 
densidade defeitos. Procuramos estabelecer a correlação entre este valor e a nota do 
aluno na segunda prova da disciplina, mostrado na Tabela 1. Além disso, aprofundamos 
a análise dos mesmos fatores através do agrupamento dos indivíduos de acordo com a 
nota. Usamos o método de Spearman para o cálculo da correlação, já que não 
verificamos normalidade no conjunto de dados.  
 

  Questões LoC Defeitos Densidade 

 Nota do aluno 0,550 0,530 0,365 0,056 

Tabela 1 – Valores dos coeficientes de correlação 

A Tabela 1 mostra os coeficientes de correlação entre a nota da prova e as variáveis: 
número de exercícios resolvidos, número de linhas de códigos produzidas - LoC, 
número de defeitos de legibilidade e densidade de defeitos de legibilidade. Há uma 
correlação moderada/forte (0,550) entre o número de questões resolvidas por cada aluno 
com sua nota na segunda prova. A mesma força, também é observada na correlação 
entre o número de linhas de código produzidas pelo aluno e a nota da prova (0,530). 
Chama à atenção o valor positivo encontrado para o coeficiente de correlação entre a 
nota na prova e a densidade de defeitos de legibilidade (0,056), embora em valor 
absoluto, seja inexpressivo. Este valor parece contrariar resultados obtidos em um 
estudo correlacional anterior quando avaliamos os programas individualmente, 
mostrando que para programas corretos, quanto menos legível o programa menor será 
sua nota por um avaliador humano. Tal diferença nos motivou a refinar o estudo, 
agrupando estudantes em função de seu desempenho geral na disciplina, cujo resultado 
pode ser visto na Figura 1. 

 
Figura 1 - Coeficientes de correlação entre a nota atribuída pelo professor e os 

fatores número de linhas de código produzidas, número de questões 
resolvidas e densidade de defeitos de legibilidade em cada grupo de 

estudantes. Grupo 1 = regular ou fraco. Grupo 2 = bom. Grupo 3 = excelente. 



  

Os alunos foram agrupados em três grupos. No grupo 1 estão os estudantes com notas 
inferiores a 7.5, com desempenho considerado de regular a fraco. No grupo 2, estão os 
estudantes com notas entre 7.5 e 8.7, com desempenho considerado bom. E, finalmente, 
no grupo 3, os estudantes com notas acima de 8.7, com desempenho considerado 
excelente pelos professores. Novamente produzimos os coeficientes de correlação entre 
as notas na segunda prova e os fatores LoC, número de questões e densidade de defeitos 
de legibilidade. 
O gráfico da Figura 1 mostra que para o Grupo 1, os alunos com desempenho regular ou 
fraco, o volume de programação realizado até a data da prova está mais correlacionado 
com nota do aluno do que a densidade de defeitos de legibilidade. Em contraste, para os 
alunos do Grupo 3, o valor absoluto da densidade de defeitos de legibilidade é bem 
superior aos outros fatores neste grupo. Isto indica que na análise das notas dos alunos 
do Grupo 3, as maiores notas são dos alunos com menor densidade de defeitos de 
legibilidade em seus códigos. Os resultados encontrados para o Grupo 2, mostram uma 
correlação negativa moderada entre densidade de defeitos e a nota dos alunos. Contudo, 
o valor absoluto da força desta correlação é menor que a dos outros dois fatores, 
consideradas correlações moderadas.  

5. Análise e Discussão 
A correlação moderada entre a quantidade de código produzida e a nota do aluno na 
prova corrobora com a noção intuitiva de que quanto mais o aluno pratica, produzindo 
código, melhor será a sua nota. Entretanto, a análise da qualidade do código, no quesito 
legibilidade deve ser ponderada mais cuidadosamente. A correlação observada entre o 
total de defeitos de legibilidade acumulados nos programas do aluno até a data da prova 
e nota nesta prova é de 0,365. O que parece indicar que, mesmo de forma moderada, 
quanto maior a quantidade de defeitos maior a nota do aluno. Temos que considerar, 
contudo, que a quantidade de defeitos é função das variáveis número de questões 
resolvidas e total de linhas de código produzidas. Uma forma melhor de interpretar essa 
correlação seria: quanto mais o aluno pratica e, portanto, quanto mais se dispõe a errar, 
mais chances tem de ter um bom desempenho. 
A medida de densidade de defeitos procura eliminar a influência dos fatores ligados ao 
volume de prática de cada estudante, dividindo a quantidade de defeitos pelo número de 
linhas de código do aluno. Neste caso, contudo, a correlação observada foi praticamente 
inexistente (0,056). Agrupamos os estudantes de acordo com sua nota, a fim de obter 
resultados mais esclarecedores. Observa-se que a correlação entre a nota do aluno e a 
densidade de defeitos de legibilidade dos seus programas aumenta à medida que 
aumenta a nota do estudante (em valores absolutas, temos para o grupo 1: 0,05; para o 
grupo 2: 0,27; e para o grupo 3: 0,33). Esse fenômeno parece indicar que há uma lógica 
na forma de avaliação dos programas que é dominada pela componente corretude. Isto 
é, o professor só parece levar em conta a questão da legibilidade dos programas, depois 
que o programa é considerado minimamente correto, em termos do número de casos de 
teste a que satisfaz. Ainda assim, é necessário observar que ou a densidade de defeitos 
de legibilidade não é o único fator envolvido ou a métrica não captura adequadamente o 
conceito de legibilidade adotado pelo professor. 



  

6. Conclusões e Trabalhos Futuros 
Neste trabalho realizamos um estudo para investigar como a legibilidade dos códigos 
dos alunos relaciona-se com o desempenho dos estudantes no curso. Para isso, 
propusemos uma métrica simples e automática para o cálculo da legibilidade dos 
códigos produzidos por programadores iniciantes. 
Como resultado deste trabalho, verificamos que o desempenho do estudante é 
fortemente correlacionado com a quantidade de código por ele produzida ao longo do 
curso. No geral, o estudo mostra que produzir programas legíveis é menos relevante 
para o desempenho do que produzir muitos programas. Na análise por grupos de acordo 
com o desempenho, no entanto, a legibilidade dos códigos é um fator relevante quanto 
melhor for o desempenho do aluno.   
O estudo mostra que, além da corretude, a legibilidade é um fator analisado pelo 
professor na composição da nota. É importante questionar, como um caminho natural 
para uma futura pesquisa, quais são os outros fatores? Também interessaria repetir o 
estudo com outros conjuntos de dados, a fim de dar maior sustentação aos resultados. 
Incluir legibilidade de código e outros aspectos de qualidade interna em uma suíte de 
testes automáticos enriquece o feedback dado aos estudantes. Isto pode ser útil não só 
para os cursos regulares/presenciais de programação que são fortemente baseados em 
resolução de problemas como também nos MOOCs – Massive Open Online Courses 
onde a escala é uma questão relevante.  
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