
Federal University of Campina Grande

Center for Electrical Engineering and Informatics

Graduate Program in Electrical Engineering

Feedback control of an aeropendulum based on a

data-driven dynamic model

Arthur Dimitri Brito Oliveira

Campina Grande, Paraíba, Brazil

©Arthur Dimitri Brito Oliveira, 26th October 2023

Arthur Dimitri Brito Oliveira

Feedback control of an aeropendulum based on a

data-driven dynamic model

Master’s Thesis submitted to the Coordination

of the Electrical Engineering Graduate Program

of the Federal University of Campina Grande -

Campina Grande Campus - relative to the Inform-

ation Processing specialization, as part of the ne-

cessary requirements to obtain the degree of Master

of Science in Electrical Engineering.

Antonio Marcus Nogueira Lima, Dr. - UFCG:

Advisor

Rafael Bezerra Correia Lima, D.Sc. - UFCG:

Advisor

Campina Grande, Paraíba, Brazil, 26th October 2023

–

24/10/2023, 10:00 SEI/UFCG - 3817180 - Ata de Defesa

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=4238468&infra_sist… 1/2

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

POS-GRADUACAO EM ENGENHARIA ELETRICA
Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP 58429-900

REGISTRO DE PRESENÇA E ASSINATURAS

ATA DA DEFESA PARA CONCESSÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA, REALIZADA EM
20 DE SETEMBRO DE 2023 (Nº756)

CANDIDATO: ARTHUR DIMITRI BRITO OLIVEIRA. COMISSÃO EXAMINADORA: ALEXANDRE CUNHA
OLIVEIRA, D.Sc., UFCG, Presidente da Comissão e Examinador interno, ANTONIO MARCUS NOGUEIRA
LIMA, Dr., UFCG, RAFAEL BEZERRA CORREIA LIMA, D.Sc., UFCG, Orientadores, SAULO OLIVEIRA
DORNELLAS LUIZ, Dr, UFPE, Examinador externo. TÍTULO DA DISSERTAÇÃO: Feedback control of an
aeropendulum based on a data-driven dynamic model. HORA DE INÍCIO: 08h00 – LOCAL: Sala Virtual,
conforme Art. 5º da PORTARIA SEI Nº 01/PRPG/UFCG/GPR, DE 09 DE MAIO DE 2022. Em sessão pública,
após exposição de cerca de 45 minutos, o candidato foi arguido oralmente pelos membros da Comissão
Examinadora, tendo demonstrado suficiência de conhecimento e capacidade de sistema�zação, no tema
de sua dissertação, obtendo conceito APROVADO. Face à aprovação, declara o presidente da Comissão,
achar-se o examinando, legalmente habilitado a receber o Grau de Mestre em Engenharia Elétrica,
cabendo a Universidade Federal de Campina Grande, como de direito, providenciar a expedição do
Diploma, a que o mesmo faz jus. Na forma regulamentar, foi lavrada a presente ata, que é assinada por
mim, Filipe Emmanuel Por�rio Correia, e os membros da Comissão Examinadora presentes. Campina
Grande, 20 de Setembro de 2023

Filipe Emmanuel Por�rio Correia
Secretário

ALEXANDRE CUNHA OLIVEIRA, D.Sc., UFCG
Presidente da Comissão e Examinador interno

ANTONIO MARCUS NOGUEIRA LIMA, Dr., UFCG
Orientador

RAFAEL BEZERRA CORREIA LIMA, D.Sc., UFCG
Orientador

24/10/2023, 10:00 SEI/UFCG - 3817180 - Ata de Defesa

https://sei.ufcg.edu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=4238468&infra_sist… 2/2

SAULO OLIVEIRA DORNELLAS LUIZ, Dr, UFPE
Examinador externo

ARTHUR DIMITRI BRITO OLIVEIRA
Candidato

 2 - APROVAÇÃO

2.1. Segue a presente Ata de Defesa de Dissertação de Mestrado do candidato ARTHUR DIMITRI BRITO
OLIVEIRA, assinada eletronicamente pela Comissão Examinadora acima identificada.

2.2. No caso de examinadores externos que não possuam credenciamento de usuário externo ativo no SEI,
para igual assinatura eletrônica, os examinadores internos signatários certificam que os examinadores
externos acima identificados participaram da defesa da dissertação e tomaram conhecimento do teor deste
documento.

Documento assinado eletronicamente por FILIPE EMMANUEL PORFIRIO CORREIA, ASSISTENTE EM
ADMINISTRACAO, em 22/09/2023, às 09:58, conforme horário oficial de Brasília, com fundamento
no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por ANTONIO MARCUS NOGUEIRA LIMA, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 22/09/2023, às 10:05, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por RAFAEL BEZERRA CORREIA LIMA, PROFESSOR(A) DO
MAGISTERIO SUPERIOR, em 22/09/2023, às 10:11, conforme horário oficial de Brasília, com
fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por ALEXANDRE CUNHA OLIVEIRA, PROFESSOR 3 GRAU, em
22/09/2023, às 16:39, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

A auten�cidade deste documento pode ser conferida no site h�ps://sei.ufcg.edu.br/auten�cidade,
informando o código verificador 3817180 e o código CRC 65DE3C9A.

Referência: Processo nº 23096.072684/2023-20 SEI nº 3817180

To my family. My safe haven even when everything around me falls apart.

ii

Thanks

I thank God for the health and grace to face these days. I thank my family for their

unconditional support, incorruptible values instilled in me, and encouragement to prioritize

my studies and finish this stage. To my advisors, Antonio Marcus and Rafael Lima, my

gratitude for their continuous presence and advice and for motivating me even when I was

discouraged. To my friends, thank you for making my days lighter and understanding my

absences. I would also like to thank CAPES for the financial support and COPELE-DEE-

UFCG for their administrative support during my master’s degree.

iii

Abstract

This work aims to refine the aeropendulum model by improving the thrust force descrip-

tion and data acquisition, looking for a better closed-loop response. We propose a low-level

acquisition scheme that captures previously neglected electrical quantities using an Arduino

Mega. Using the parameters estimated, we develop a simulation model and apply state-

of-the-art data-driven identification algorithms to refine the aerodynamic behavior of the

plant. We also assess different control approaches with gradual levels of refinement regard-

ing the actuator. Concerning the model refinement, the predicted dynamics for simulated

data using the sparse identification algorithm exhibited an MSE (Mean Squared Error) on

the order of 10 × 10
−10 regarding the dynamics compared to the test set in simulated ex-

amples. The system performance in closed-loop indicates that the feedback linearization

strategy is the most suitable approach due to the almost constant thrust generation and

linear behavior.

Keywords: model refinement, data acquisition, parameter estimation, sparse identification,

feedback control, feedback linearization, cascade control.

iv

Resumo

Este trabalho tem como objetivo aperfeiçoar o modelo do aeropêndulo, melhorando a

descrição da força de propulsão e a aquisição de dados e o desempenho em malha-fechada.

Foi proposto um esquema de aquisição de baixo nível usando um Arduino Mega que captura

dados relativos ao atuador previamente negligenciadas. Usando os parâmetros estimados,

desenvolveu-se um modelo de simulação e aplicou-se algoritmos de identificação estado-da-

arte para refinar o comportamento aerodinâmico da planta. Também avaliou-se diferentes

abordagens de controle por realimentação com níveis graduais de refinamento. No que diz

respeito ao refinamento do modelo, a dinâmica prevista para os dados simulados utilizando

o algoritmo de identificação esparsa apresentou um MSE (Mean Squared Error) da ordem

de 1 × 10
−10 comparado ao conjunto de teste em exemplos simulados. O desempenho do

sistema em malha fechada indica que a estratégia de linearização por realimentação é a

abordagem mais adequada devido à quase constante força de propulsão e comportamento

linear da planta.

Palavras-chave: refinamento de modelos, aquisição de dados, estimação de parâmetros,

identificação esparsa, controle por realimentação, linearização por realimentação, controle

em cascata.

v

Summary

1 Introduction 1

1.1 Contextualization . 1

1.2 Objectives . 3

1.2.1 Specific objectives . 3

1.3 Structure . 4

2 Literature Review 5

2.1 Background on previous works with the aeropendulum experimental platform 5

2.2 Background on system identification . 6

2.3 Background on data-driven nonlinear dynamical representations 7

2.3.1 Parsimonious data-driven modelling 8

2.4 Final considerations . 9

3 Theoretical background 10

3.1 The plant . 10

3.1.1 The experimental platform . 12

3.2 Sparse Identification Algorithms . 14

3.2.1 SINDy . 14

3.2.2 Weak SINDy . 17

3.2.3 Discrepancy SINDy . 20

3.3 Study case . 21

3.3.1 Solution using SINDy . 21

3.3.2 System identification using Discrepancy SINDy 22

3.3.3 System identification using Discrepancy WSINDy 24

3.4 Derivatives computation . 26

3.4.1 Total Variation Regularized Differentiation - TVRegDiff 26

3.5 Final considerations . 27

4 Estimation and Instrumentation Improvements 28

4.1 Angular position data - acquisition interfaces 28

4.2 Armature Current - Ia . 31

4.2.1 Measurement of the armature voltage 31

4.3 Acquisition schemes . 32

4.3.1 First strategy - SSI interface . 34

4.3.2 Second strategy - PWM interface . 35

4.3.3 SSI and PWM data acquired . 36

4.3.4 Propeller speed acquisition . 38

4.4 Estimation improvements . 40

4.4.1 Armature resistance - Ra . 40

4.4.2 Estimation of the armature inductance La 41

4.4.3 Back Electromagnetic force constant 43

4.4.4 Armature voltage estimation . 43

4.4.5 Thrust force interpolation . 46

4.5 Simulation model . 47

4.6 Final considerations . 49

5 Parameter Estimation Using the SINDy-based Frameworks 50

5.1 Input signal design . 50

5.2 Sparse system identification using noise-free measurements 51

5.2.1 Identifying the state variables’ derivatives of the Aeropendulum -

SINDy and WSINDy . 52

5.2.2 Prediction on the test set . 54

5.3 Sparse system identification under noisy measurements 55

5.3.1 Data pre-processing and derivatives computation 56

vii

5.3.2 Identifying and predicting the state variable’s derivatives of the Aeropen-

dulum - SINDy . 58

5.3.3 Identifying and predicting the state variables’ derivatives of the Aeropen-

dulum - WSINDy . 58

5.4 Discrepancy SINDy and WSINDy - finding mismatches in the model 61

5.5 Experimental platform identification . 64

5.5.1 Data collection and preprocessing . 65

5.5.2 Identification using WSINDy and prediction on the test set 66

5.6 General discussion about the results and possibility of using the WsINDy

algorithm. 67

5.7 Final considerations . 71

6 Control System Design 73

6.1 Motivation for the improvements . 73

6.2 Time domain requirements specification . 73

6.3 Gain adjustment . 75

6.4 PID controller implementation on the microcontroller 75

6.5 Small-signal linearization . 75

6.5.1 Block diagram representation . 76

6.5.2 Type of controller . 76

6.5.3 Simulation results . 76

6.5.4 Experimental platform results . 77

6.6 Input-output feedback linearization . 78

6.6.1 Block diagram representation . 79

6.6.2 Choice of the type of the controller 80

6.6.3 Simulation results . 80

6.6.4 Experimental results . 81

6.7 Cascade controller . 82

6.8 Input-ouput feedback linearization and cascade control 83

6.8.1 Simulation results . 84

6.9 Final considerations . 85

viii

7 Final Considerations 87

7.1 Future work . 88

Bibliography 89

ix

List of Abbreviations, Symbols,

Abbreviation, and Acronyms

Abbreviations

MPC: Model Predictive Control 8

PSO: Particle Swarm Optimization 5

TOV1: Timer/Counter1 Overflow Flag 35–37

Initialisms

NARMAX: Nonlinear Autoregressive Models with Moving Avg. and Exog. Input 7

SINDy: Sparse Identification of Nonlinear Dynamics 8

SINDyC: Sparse Identification of Nonlinear Dynamics with Control 8

WSINDy: Weak Sparse Identification of Nonlinear Dynamics with Control 9

List of Tables

4.1 Armature voltage va and armature current ia values collected, and the estim-

ated Ra. 42

4.2 Experimental results for determining the back-EMF constant using the elec-

trical quantities collected in steady state and the rotor’s speed, converted

using the gear ratio information. 44

4.3 The parameters used in the simulation model 48

5.1 Example of the sparse matrix that represents the derivatives of the state

variables ẋ1, ẋ2, ẋ3, and ẋ4. 53

6.1 Time domain requirements for the closed-loop response. 74

List of Figures

3.1 Free body diagram of the aeropendulum system and its components. The y

and x axis denote the coordinate reference system. The bearing is fixed to

the vertical support. 11

3.2 Pictures of the experimental platform used in this work. In (a), there is a

front photograph of the plant and its main mechanical parts. The picture (b)

shows the back side of the setup and its hardware components. 13

3.3 Aeropendulum system diagram: electrical, mechanical, and aerodynamic

components. 14

3.4 Schematic of the SINDy algorithm applied to the Lorenz Equations. The first

section represents the data generated from the analytical equations. The

second one represents the library function and the sparse matrix that ac-

tivates the necessary candidate functions. The last corresponds to Θ(X)Ξ,

related to the state variables’ derivatives. 22

3.5 Schematic of the Discrepancy SINDy algorithm applied to the Lorenz Equa-

tions. The first step is to generate the training and test sets. After that, the

approximate model output data is generated, and the regression problem is

solved. With the terms that need to be added to the approximate model, the

test set dynamics are predicted. 23

3.6 Schematic of the WSINDy algorithm applied to the Lorenz Equations. The

first step is to generate the training and test sets. After that, the approximate

model output data is generated, and the discrepancy between the dynamics

is computed. By formulating and solving the regression problem. 25

4.1 AS5040 sensor block diagram. 29

4.2 AS5040 sensor SSI interface timing diagram. 30

4.3 AS5040 sensor PWM interface output illustration. 30

4.4 Low-pass filter for the PWM output signal. R1, R2 g 4K7. C1, C2 g 1µF/6V 31

4.5 Schematic of the motor shield Rev3. 32

4.6 Differential voltage measurements. The first plot shows the voltage steps ap-

plied to the H-bridge, and the second one shows the voltage values measured

both with the voltmeter and the ADC. 33

4.7 PWM phase corrected mode timing diagram. 34

4.8 Timing diagram proposed. The curve in blue represents the Arduino’s Timer1

counter. In red is the phase-correct PWM signal. The chip selection and

clock signals are in green and orange, respectively. The TOV1 overflow flag

generates an interruption each time the counter reaches zero. After the first

positive edge of the clock signal, the 10-bit data stream begins, and it takes

45.056ms to complete the data acquisition cycle. 35

4.9 The proposed acquisition timing diagram. The curve in red represents the

Arduino’s Timer1 counter. The blue, yellow, and purple curves represent

the armature current Ia, the armature voltage Va, and the low-pass filtered

angular position ¹. The TOV1 interruption flag is enabled each time the

counter reaches the bottom value. Those interruptions occur each 2,048 ms. 36

4.10 Data collected using the SSI interface and the acquisition timing diagram

proposed in subsection 4.3.1 for seventy seconds of collection. 37

4.11 Data collected using the PWM interface and the acquisition timing diagram

proposed in subsection 4.3.2 for an interval of seventy seconds of collection. 37

4.12 IR module circuit diagram. 38

4.13 IR sensor module coupled to the propeller-gear set. The black foam is at-

tached to one of the propeller blades, and it is used to determine when a

revolution is complete. 39

4.14 Input-capture unit block diagram. Using one of the IPCn pins and enabling

edge detection, the value of the TCNTn register is transferred and delivered

to the data bus. 40

xiii

4.15 The duty cycle Ä(%) steps applied to the motor, and the corresponding pro-

peller angular speed É2 in RPM collected. 41

4.16 Illustration of the equivalent armature circuit. 42

4.17 Armature current (Ia) time response for a step of Ä = 50% in the armature

voltage (Va). 43

4.18 The armature voltage Va as a function of the duty cycle Ä ; acquired and

estimated data through (4.3). 45

4.19 The adapted thrust bench and the load cell to estimate the thrust force. . . 46

4.20 The multiple voltage values va and the estimated thrust force points F col-

lected. The curve in orange represents the mathematical interpolation from

the data. 47

4.21 Simulation model composed of the motor, gearbox, aerodynamic conversion,

and mechanical blocks. The generated data from the simulation is sent to

the workspace. 48

4.22 Data collected and sent from the simulation to the workspace. 49

5.1 The excitation signal. Each point represents a step signal with amplitude Ä

and a duration time. 51

5.2 Simulation results from the simulated model. In the left column, the de-

rivatives of the state variables. On the right side are the state variables of

interest. 52

5.3 The sparse matrix Ξ estimated using the SINDy algorithm. Each column

represents the approximation of the state variables’ derivatives, and each

non-zero term activates a nonlinear dynamic that models the behavior. The

reference analytical equations are ¹̇ = ¹̇, ¹̈ = 213.82¹̇+1.73É2
2, i̇a = 28.7ia2

1.02É2 + 4.35va. 54

5.4 The sparse matrix Ξ estimated using the integral formulation WSINDy. Each

column represents the approximation of the state variables’ derivatives, and

each non-zero term activates a nonlinear dynamic that models the behavior.

The reference analytical equations are ¹̇ = ¹̇, ¹̈ = 213.82¹̇ + 1.73É2
2, i̇a =

28.7ia 2 1.02É2 + 4.35va. 55

xiv

5.5 The time derivatives ¹̇, ¹̈, i̇a, and É̇1 as predicted by using the sparse matrix

Ξ from the SINDy and WSINDy algorithms on the test set and the noise-free

ground truth derivatives. 56

5.6 On the right side, the noise-contaminated variables ¹, ia, É1, and va and

the corresponding filtered variables. The computed derivatives using the

TVRegDiff algorithm are compared to the noise-free ground truth on the left

side. 57

5.7 The sparse matrix Ξ estimated using the SINDy algorithm and the ap-

proximate derivatives from filtered noisy data. Each column represents the

approximation of the state variables’ derivatives, and the coefficients are

the weights that activate each candidate nonlinear function from the lib-

rary. The reference analytical equations are ¹̇ = ¹̇, ¹̈ = 213.82¹̇ + 1.73É2
2,

i̇a = 28.7ia 2 1.02É2 + 4.35va. 59

5.8 The time derivatives ¹̇, ¹̈, i̇a, and É̇1 as predicted by using the sparse matrix

Ξ from the SINDy algorithm on the test set and the noise-free ground truth

derivatives. 60

5.9 The sparse matrix Ξ estimated using the WSINDy algorithm and the ap-

proximate derivatives from filtered noisy data. Each column represents the

approximation of the state variables’ derivatives, and the non-zero coefficients

represent the weighing factors that activate the candidate nonlinear dynam-

ics. The reference analytical equations are ¹̇ = ¹̇, ¹̈ = 213.82¹̇ + 1.73É2
2,

i̇a = 28.7ia 2 1.02É2 + 4.35va. 61

5.10 The state variables’ derivatives ¹̇, ¹̈, i̇a, and É̇1 predicted by the sparse matrix

Ξ from the WSINDy algorithm on the test set and the noise-free ground truth

derivatives. 62

5.11 The phase diagram of both the approximate and correct model. 63

5.12 The difference between the derivatives of the correct model and the approx-

imate one. The discrepancy is not null for the angular acceleration ¹̈ since

the model inaccuracy is only present in it. 64

xv

5.13 The discrepancy sparse matrix Ξ estimated using the SINDy algorithm. Each

column represents the approximation of the state variables’ derivatives, and

the non-zero coefficients represent the weighing factors that should be added

to the approximate model and activate the candidate nonlinear functions. . . 65

5.14 The discrepancy sparse matrix Ξ estimated using the WSINDy algorithm.

Each column represents the approximation of the state variables’ derivatives,

and the non-zero coefficients represent the weighing factors that should be

added to the approximate model and activate the candidate nonlinear func-

tions. Some non-zero spurious terms are identified. 66

5.15 Derivative ¹̈ predicted using both the SINDy and WSINDy Ξ matrices to

correct the approximate models compared to the ground truth signal. 67

5.16 On the right side, the filtered noise-contaminated variables ¹, ia, É1, and Va.

The computed derivatives using the TVRegDiff algorithm are compared to

the noise-free ground truth on the left side. 68

5.17 The sparse matrix Ξ estimated using the WSINDy algorithm and the approx-

imate derivatives from the experimental platform data. 69

5.18 The derivatives ¹̇, ¹̈, i̇a, and É̇1 for the experimental platform test set pre-

dicted by the sparse matrix Ξ from the WSINDy algorithm. The ground

truth signals are the derivatives taken from the input test signals. 70

6.1 Step response of the system to a duty cycle of 43.14%. 74

6.2 Small-signal linearization closed loop diagram. 76

6.3 Closed-loop performance for the small signal linearized simulated model at

¹ = 0.4 rad. ¹ represents the angular displacement, and Ä the control action

in terms of the duty cycle. 77

6.4 Source: prepared by the author. 77

6.5 Closed loop performance for the system linearized using small signal lineariz-

ation at ¹ = 0.4 rad. ¹ represents the angular displacement, and Ä the control

action in terms of the duty cycle. 78

6.6 Source: prepared by the author. 78

xvi

6.7 Diagram for the feedback linearization applied to the aeropendulum platform.

The position controller G(s) outputs the control action, and the linearization

block calculates the value to cancel the nonlinearity. The pseudo-control

action v is converted to the required Va, and the generated thrust is input to

the aeropendulum. 79

6.8 Closed loop performance of the simulated model linearized using the feedback

linearization technique. 81

6.9 Closed loop response of the feedback linearization version of the system . . . 82

6.10 Cascade Control. 82

6.11 Reference speed and the output of the cascade controller for the angular speed. 83

6.12 The block diagram of the feedback linearization strategy combined with a

cascade control strategy. 84

6.13 Cascade Control. 85

xvii

Chapter 1

Introduction

This chapter focuses on the problem contextualization, the necessary control design

process revision of the aeropendulum experimental platform, the need for complete data

acquisition of the system under study, and the model refinement.

1.1 Contextualization

Modeling is a vital aspect of science and engineering. By building a model, one focuses

on explaining the relationship between variables. Regarding model-based control design

processes, one focuses on building a model of a system, simulating the plant and controller,

validating the model, and then deploying the controller. The fundamental step in this

process is obtaining a controlled plant’s mathematical model.

Amongst the various existing modelings, the mathematical ones can describe dynamic

systems, for instance, through differential equations. The objective is to obtain a suit-

able description of the system’s dynamics. The discovery of analytical models is possible

through physical or data-driven modeling. Physical modeling uses first principles to model

components and requires a good understanding of the system behavior. When there are

limitations in determining models from first principles due to complexity or lack of accuracy

in describing the plant’s behavior, data-driven modeling can provide an appropriate system

representation.

The system identification theory comprises a collection of data-driven methods to es-

Chapter 1. Introduction 2

timate a given model’s parameters through input stimulation and output response. The

system identification paradigm shifted from exact to approximate modeling throughout the

years. The classical system identification theory assumes that the system’s dynamics are

previously established. From the approximate modeling standpoint, identifying a system

would not necessarily mean finding its exact mathematical model but rather determining

what parameters are indispensable from a control-design perspective. Although commonly

used for linear dynamics, nonlinear systems represent a challenge for traditional system

identification.

An aeropendulum is a nonlinear system commonly used in a didactic context as an

example process for other propelling systems, such as drones. Electrical, mechanical, and

aerodynamic parts comprise the plant. The actuator of the system is a DC motor, which

produces the electromagnetic torque for the propulsion system. Due to the absence of sensors

for the electrical quantities, the dynamics between the electrical input and the thrust force

are treated as a black box. This lack of modeling might lead to mismatches between the

dynamic behavior of the plant and simulated systems. Consequently, there may be closed-

loop and open-loop steady-state and transient errors due to the incomplete modeling of the

system.

In the literature, most works model the aeropendulum’s mechanical dynamics but have

deficiencies regarding the actuator’s representation, which severely impacts the control

strategies. By studying the problem formulation and identifying the possible drawbacks,

we can model input-output relationships for the actuator that improve the system’s rep-

resentation. The project’s revision includes taming the black box modeling using different

refinement levels and improving the collection of electrical quantities concerning the actu-

ator.

The electrodynamic conversion and hidden dynamics during the experimental platform

operation could benefit from additional improvements in the data acquisition scheme. The

hidden dynamics are ascribed to the unexplicit relationship between the electrical excitation

and the thrust force produced but a chain of transductions. Holistic monitoring of the plant

leaves space to apply the Sparse Identification of Nonlinear Dynamics (SINDy) to refine the

model and obtain physically explainable governing equations from measured data. Given

that it explores the connection between input and output variables, we can use the SINDy

Chapter 1. Introduction 3

algorithms to leverage the aerodynamic effects modeling where the traditional modeling

cannot improve its description.

1.2 Objectives

This work aims to control an aeropendulum plant using refined data-driven models ob-

tained through the SINDy algorithm and traditional modeling. We run through previous

works’ projects, aiming to diagnose and fix the discrepancy between the time-domain re-

quirements used in the controller design phase and the closed-loop performance. Pursuing

a better description of the system, we want to reconsider some of the hypotheses assumed

for the electrical subsystem and its coupling to the mechanical subsystem. The objective

is to gradually refine the actuator’s description and evaluate different control approaches,

exploring data-driven system identification procedures.

1.2.1 Specific objectives

In order to accomplish the general objectives, this work enumerates the following specific

objectives:

" Study the SINDy and Weak SINDy mathematical formulations.

" Replicate the frameworks and apply the identification to a forced system.

" Develop signal acquisition schemes for the plant, document and master its hardware

and software aspects.

" Propose different levels of refinement in modeling the electrical-aerodynamic behavior

using the SINDy algorithm and traditional estimation approaches.

" Improve the electrical characterization of the actuator and develop a simulation model

to gain confidence in future design steps.

" Explore noise mitigation strategies and pre-processing steps that could help improve

the data quality.

Chapter 1. Introduction 4

" Establish time-domain requirements, refine the thrust force description in simulation

and the experimental platform, and compare the performance in closed-loop with the

temporal requirements.

1.3 Structure

This work follows this structure: Chapter 2 has a bibliographical revision of the most rel-

evant works. Chapter 3 contains a mathematical description of the plant and the principal

methods used in this work. In Chapter 4, the acquisition schemes and the instrumenta-

tion improvements are made. Chapter 5 documents the advances in using the SINDy and

WSINDy algorithms in the context of the aeropendulum. In Chapters 5 and 6, respectively,

the control strategies’ results and final considerations are outlined.

Chapter 2

Literature Review

This chapter focuses on the literature review. First, there is an outline of the classical

system identification theory and its limitations regarding nonlinear dynamics. Then, there

is a discussion about the state-of-the-art sparse identification methods. Later, in the end,

we detail the limitations of previous works using the aeropendulum plant, and the intent of

this work is examined after the discussion.

2.1 Background on previous works with the aeropendu-

lum experimental platform

An aeropendulum is a nonlinear dynamic model commonly used in graduate and under-

graduate electrical engineering courses. It has a practical appeal, useful in studying control

systems-related topics. Previous works have focused on the construction [1] and validation [2]

of the proposed plant, taking as the starting point a project from the University of Arizona
[3].

Two recent works have already focused on the control and parameter estimation of the

model. [4] used the physical modeling of the plant and determined the parameters using

the PSO (Particle Swarm Optimization) algorithm applied to step response data of the

aeropendulum. Lucena, Luiz and Lima[5] also used first-principles modeling and applied a

nonlinear optimization algorithm for estimating the parameters. Nevertheless, they assume

some hypotheses and make some simplifications that might considerably affect the desired

Chapter 2. Literature Review 6

closed-loop performance.

What is common to all works is that they consider steady-state simplifications about

the thrust force produced by the propeller-motor set. Enikov and Campa[3] and Barros

and Lima[4] do not model the actuator, thus neglecting the electrical and aerodynamic

interactions. Lucena, Luiz and Lima[5] attempts to describe a direct relationship between the

input duty cycle and the thrust but lacks a better description of the electrical-aerodynamic

information of the motor propeller set. Additionally, they consider that one can infer the

thrust force from the steady state angular position. Consequently, these abstractions result

in unmodeled dynamics between PWM actuation and the thrust force. Therefore, it is

necessary to consider the chain of events that involves the actuator feed to the generated

propulsion force.

The previously mentioned works have refined and contributed to the feedback control

strategies but made abstractions regarding the actuator dynamics due to instrumentation

limitations. If one cannot measure the armature current, the back-EMF (electromotive

force) effects are not modeled, impacting the rotor’s speed estimation. This work aims

to describe the system’s hidden dynamics better, contributing to measuring the electrical

quantities, describing the thrust force, and discovering electrical and aerodynamic paramet-

ers. We want to explore different control strategies and evaluate the results regarding the

designed temporal requirements. The expectation is that the ensemble of the neglected mod-

eling parts might describe the system more appropriately and result in better performance

of feedback controllers.

2.2 Background on system identification

Model-based control approaches rely on appropriate modeling of the system in such a

way that the closed-loop performance meets performance criteria [6]. Likewise, obtaining

a plant model that sufficiently generalizes its behavior is necessary. In light of this, the

system identification theory is essential in modeling. It comprises mathematical tools and

algorithms for obtaining dynamic models from measurement data.

The classical system identification approach assumes that the system’s dynamics are

already established through a set of poles and zeros [7]. The modeling effort focuses on

Chapter 2. Literature Review 7

representing the noise that additively contaminates the measurements. The objective of

prefixing input and output terms is to find the most suitable parametric vector by minimizing

or maximizing an objective function.

Most system identification techniques, such as subspace identification [8] and prediction-

error method [7], are suitable for representing linear systems. Nevertheless, nonlinear dy-

namics characterize the vast majority of real-world systems. If the dynamical equations are

nonlinear, linearization techniques can be used to apply linear state-space control theory [9].

However, it implies challenges when moving the system through different operating points

and representing unknown dynamics.

2.3 Background on data-driven nonlinear dynamical rep-

resentations

Moving from linear identification tools to nonlinear identification methods also implies

adaptations in the experiment design, model selection, and determining appropriate cost

functions. In this context, NARMAX (Nonlinear Autoregressive Models with Moving Av-

erage and Exogenous Input) models were introduced [10] as transparent models that give

insights into the system. Compared to linear models, nonlinear ones are represented in a

complex high dimensional space and are harder to characterize [11].

By admitting that a NARMAX model can explain the data, any model that belongs to

the NARMAX class might be suitable to represent the dynamical behavior. Nonetheless, the

main challenge encountered is selecting the appropriate model structure since it is necessary

to determine which regressors best represent the system.

With neural networks and deep learning, black-box nonlinear data-driven mapping for

complex systems became simpler. Regarding time-series data, it is possible to use different

architectures to exploit the relationship between inputs and outputs [12] [13]. While there is no

need to make previous assumptions about the system’s structure, which might be sufficient

for the required type of characterization, the resulting deep learning models lack physical

explainability and require extensive data sets [14]. One of the major drawbacks of black box

modeling is that the focus relies only on the input-output relationship, extinguishing the

Chapter 2. Literature Review 8

possibility of describing better specific parts of the system.

From a model-based control perspective, the model should be accurate and capable of

generalizing and parsimonious. In model predictive control (MPC) strategies, a plant rep-

resentation predicts the system’s future behavior and computes the optimal control signal.

At each sampling time, an optimization problem is solved. Consequently, there is a need for

faster simulations and minimal forms to describe the dynamics [15], which are also known as

reduced-order models.

2.3.1 Parsimonious data-driven modelling

The Sparse Identification of Nonlinear Dynamics (SINDy) method is an alternative to

not neglect the physical interpretation of the dynamics obtained from measurement data
[16]. It bypasses the troublesome combinatorial search for all possible structures, extracting

a few relevant terms from the library of candidate functions [17]. Initially proposed for

non-forced systems, it benefits from symbolic regression to form a linear combination of

candidate functions to represent the data [18].

The comparison between the SINDy method and the parametric system identification

theory is inevitable since they are classified as data-driven approaches and lead to a least-

squares problem. Nonetheless, they yield to this problem with different premises and models.

The regressor vector used to describe the classical system identification theory plant is fully

parametric. The library function in the SINDy method is not parametric and acts as a

weighting factor to the set of candidate functions. The SINDy method tries to find a sparse

model, described in terms of ODEs, with few prior hypotheses.

External forcing can be included in the SINDy algorithm, resulting in the SINDyC

(SINDy with Control) formulation [19]. With this inclusion, one of its significant applica-

tions is incorporating the SINDyC framework to model predictive control (MPC) schemes.

Most MPC applications require accurate model updating to determine the optimal real-time

control inputs. In this matter, some works have shown superior performance of SINDYc

against other deep learning approaches [20] regarding execution time.

Noise sensitivity is a problematic feature of the SINDy algorithm. Presently, changes

in the sparsity-promoting algorithms have been made by focusing on improving noise ro-

Chapter 2. Literature Review 9

bustness. The reweighted l1-regularized least-squares solver leverages the accuracy and

robustness of the algorithm in tandem with noise mitigation [21]. The weak formulation

of differential equations, called Weak SINDy (WSINDy), is also an alternative to replace

pointwise derivative approximations and to cope with noisy measurements [22].

The original SINDy algorithm and its variations have been applied to various systems.

From reduced-order models in aerospace engineering [23] to robotic applications [24]. In

most of them, problems such as noisy measurements, derivatives computation, and design

of experiments should be addressed. Regarding noise mitigation, Chartrand[25] proposed

some enlightenment in approximating pointwise derivatives using total variation regularized

differentiation. Nevertheless, using the SINDy algorithm in these real applications leads

to unmodeled dynamics and a lack of physical explainability. The absence of retrieved

explainable models is mainly due to the necessity of computing approximate derivatives

and the distortion of the original signal, which naturally leads to the use of the WSINDy.

Minor parameter differences between models and real systems can cause deviations in

the exact dynamics. Identifying the model mismatch is often challenging, especially when

physical explainability is required. The Discrepancy SINDy [26] framework takes advantage

of the previous SINDy formulation, leveraging the previous knowledge about the system

and aiming for a more accurate system modeling. Nonetheless, it assumes that all state

derivatives can be measured, which can lead to dynamic inaccuracies when numerically

computed due to the bias-variance trade-off. Therefore, addressing the discussion of an

integral version of the algorithm is essential, particularly when considering the application

of the algorithm to determine parameter refinement for the aeropendulum system.

2.4 Final considerations

This chapter revisited the contributions and advancements in the sparse identification

of nonlinear dynamics and control strategies concerning the aeropendulum platform. It

described the limitations of the SINDy algorithm and the challenges regarding modeling the

aeropendulum system’s hidden dynamics. The next chapter will detail the mathematical

formulation of the models and algorithms.

Chapter 3

Theoretical background

This chapter describes the dynamical system used in this work and the mathematical

formulation of sparse identification of nonlinear dynamics algorithms. Furthermore, the

challenges of computing derivatives on noisy data are outlined and addressed.

3.1 The plant

The Figure 3.1 illustrates the free-body diagram of the system used in this work. The

rotating rod with length L connects the bearing axis to the DC motor. The motor is

connected to the drive gear, while the driven gear is attached to a propeller. A thrust force

f opposes the force weight component mg sin(È). This thrust is proportional to the square

of the speed of the propeller. The torque fL leads to the angular displacement concerning

the vertical axis.

By employing Newton’s second law of motion, one can arrive at the differential equation

that describes the pendulum’s rotational dynamics. By defining Ω as the aeropendulum

angular speed, the state-space representation is expressed as

dÈ

dt
= Ω, (3.1)

dΩ

dt
= 2

mgd

J
sin(È)2

C

J
Ω +

L

J
f, (3.2)

where J is the inertia moment of the bar, c is the viscous friction related to the rotating

Chapter 3. Theoretical background 11

Figure 3.1: Free body diagram of the aeropendulum system and its components. The y and
x axis denote the coordinate reference system. The bearing is fixed to the vertical support.

Source: Lucena, Luiz and Lima[5].

axis, and d is the distance from the pivot point to the center of mass of the set.

The thrust force is given by

f = KqÉ
2
2, (3.3)

where É2 is the speed of the propeller, and Kq is the thrust coefficient [27]. The relationship

of É1 and É2 is expressed by

É2 =
N2

N1

É1, (3.4)

where N2 : N1 is the gearbox ratio.

In order to give a better description of the thrust force, one should take into account

the electrical aspects of the plant. The equivalent circuit of the DC motor’s armature is

composed of a series association of its voltage source Va, the armature resistance Ra and

inductance La and the armature excitation ea = KωÉ1. Kω stands for the back-EMF

constant, and the angular speed on the rotor axis is É1. The differential equation for the

armature current ia is given by

dia
dt

= 2
Ra

La

ia 2
Kω

La

É1 +
1

La

va. (3.5)

Considering that the armature inductance has a negligible value, the angular speed É1

Chapter 3. Theoretical background 12

can be rewritten in terms of the armature current and the input voltage as

É1 =
1

Kω

va 2
Ra

Kω

ia. (3.6)

Because there was no sensor to measure the armature current in the experimental set-up,

Lucena, Luiz and Lima[5] uses (3.5) to omit ia from the expression of the thrust force. The

estimated thrust in steady-state can be written as a function of the duty cycle of the input

voltage by

fT (uss) = K0

(

2b20 + 4a0
Ki

Ra

Kfuss 2 2b0

√

b0
2 + 4a0

Ki

Ra

Kfuss

)

. (3.7)

Considering that the armature current can be measured, the objective is to include

it in the expression of the thrust force. The propeller’s transient response is assumed to

be faster than the pendulum rod’s speed, and the propeller’s moment of inertia is also

neglected. Hence, by knowing the expression given by (3.4), the thrust force is modeled as

a proportional relationship between É2 and KT by

f = KqÉ
2
2 = Kq

(

N1

N2

É1

)2

. (3.8)

In this work, we rewrite (3.9) in terms of (3.5), the equivalence is given by

f = Kq

(

N1

N2Kω

)2

v2a 2 2RaKq

(

N1

N2Kω

)2

vaia +Kq

(

N1

N2

Ra

Kω

)2

i2a, (3.9)

and then (3.2) can be rewritten as

dΩ

dt
= 2

mgd

J
sin(È)2

C

J
Ω +

L

J
Kq

[

(

N1

N2Kω

)2

v2a 2 2Ra

(

N1

N2Kω

)2

vaia +

(

N1

N2

Ra

Kω

)2

i2a

]

.

(3.10)

3.1.1 The experimental platform

Figure 3.2 depicts the experimental setup. The supports for the pendulum (the base,

support, and mast) are made of polystyrene. The propulsion system comprises a DC motor,

Chapter 3. Theoretical background 13

a motor shield (dual full-bridge driver), a gearbox, and a propeller. An AS5040 magnetic

rotary sensor measures the angular displacement caused by the excitation of the propulsion

system. The Arduino Mega 2560 generates both the actuation and the clock and chip se-

lection signals and delivers the angular position through USB communication to the central

PC station.

Figure 3.2: Pictures of the experimental platform used in this work. In (a), there is a front
photograph of the plant and its main mechanical parts. The picture (b) shows the back side
of the setup and its hardware components.

(a) (b)

Source: Lucena, Luiz and Lima[5].

The aeropendulum consists of four parts as depicted in Figure 3.3. A PWM signal

commands the motor shield’s H-bridge and delivers voltage to the motor armature. There

is a nonlinear voltage drop across the H-bridge, so the effective armature voltage should

be measured. The acquisition routine is written in the C language, and due to hardware

limitations of the controller board, the code implemented must use low-level programming.

The microcomputer compiles the code and writes it to the Arduino Mega board. The board

then acquires the data and sends it through serial communication, dumping it into a text

file.

In the next section, we will fundament the basis for the sparse identification algorithms.

These algorithms will be useful for determining aerodynamic parameters, especially consid-

ering the physical explainability required from the simulation model.

Chapter 3. Theoretical background 14

Figure 3.3: Aeropendulum system diagram: electrical, mechanical, and aerodynamic com-
ponents.

Source: prepared by the author.

3.2 Sparse Identification Algorithms

This section describes the main sparse identification algorithms for nonlinear dynamics:

the SINDy, WSINDy, and Discrepancy SINDy frameworks. First, the mathematical for-

mulations are described, followed by the pseudo algorithms for each algorithm and a case

study to demonstrate their effectiveness.

3.2.1 SINDy

SINDy, which stands for Sparse Identification of Nonlinear Dynamics, is an algorithm

used to identify nonlinear dynamics. With a wide range of applications, from biology

to engineering, it assumes that the underlying dynamics can be discovered from input-

output data. Hence, it considers that the analytical expressions that describe the system

are expressed as a combination of candidate functions.

Chapter 3. Theoretical background 15

Mathematical formulation - SINDy

Suppose that a nonlinear system is represented by

dx(t)

dt
= F(x(t)), x(0) = x0, (3.11)

where x(t) * R
m×n represents the system state variables measured at time different time

samples from t1 to tm. F(x(t)) maps the state variables to the derivatives of the state

variables. Assuming that this mapping is unknown, in order to approximate it numerically,

a set of measurements of each state variable is given by

X =

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

xT (t1)

xT (t2)
...

xT (tm)

ù

ú

ú

ú

ú

ú

ú

û

=

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

...
. . .

...

x1(tm) x2(tm) . . . xn(tm)

ù

ú

ú

ú

ú

ú

ú

û

. (3.12)

One can compose a set of candidate functions to represent F(x) by

Θ(X) =
[

¹1(X) ¹2(X) . . . ¹p(X)
]

. (3.13)

Supposing ¹1(X) is the second power of the state variables. We construct ¹1(X) as the

multiplication between the state variables, including the variables themselves, in such a way

that

Θ(X) =

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

x1
2(t1) x1(t1)x2(t1) . . . x3

2(t1) . . . xn
2(t1)

x1
2(t2) x1(t2)x2(t2) . . . x3

2(t2) . . . xn
2(t2)

...
...

. . .
...

...

x1
2(tn) x1(tn)x2(tn) . . . x3

2(tn) . . . xn
2(tn)

ù

ú

ú

ú

ú

ú

ú

û

. (3.14)

The matrix columns expressed in (3.13) represent candidate functions applied to each

measured state variable. We can express the nonlinear mapping F(x(t)) as a linear combin-

ation of the library of candidate functions evaluated in the sampling intervals. By defining

the sparse vectors of coefficients as Ξ, the symbolic regression formulation is then given by

Chapter 3. Theoretical background 16

Ẋ = Θ(X)ΞT , (3.15)

where Ξ = [ξ1 ξ2 . . . ξn]. Each of the ξk terms is a sparse array of coefficients, and

determine which of the nonlinear terms are necessary to describe the corresponding dynam-

ics. The matrix of state derivatives Ẋ can be numerically computed or measured. The

matrix of unknown coefficients is sparse on the assumption that the system dynamics can

be expressed in terms of a small subset of the library of candidate functions Θ(X). The

goal is to minimize the loss between the true and approximate dynamics, penalizing large

terms of the Ξ̂. This minimization can be achieved through LASSO regression by

Ξ̂ = argmin
Ξ̂

||Ẋ2Θ(X)ΞT ||2 + ³||Ξ||1. (3.16)

With the computation of the sparse matrix Ξ, each row of the governing equations can

be written in terms of ẋk = fk(x) = Θ(xT)ξk. The original SINDy paper [16] uses the

sequential thresholded least squares (STLS), making terms below a certain threshold null.

The threshold parameter ¼ is the hyperparameter that controls the learning process by

zeroing the terms at each iteration that are below the defined value.

SINDy with control

One can generalize the SINDy approach to support control inputs, here represented as

u(t) by

ẋ = F(x(t),u(t)). (3.17)

The new formulation requires generating more candidate functions for the control signal

Θ(X,U), where X represents the matrix containing all the state variables, and U represents

the matrix of control signals. (3.18) shows how to represent the derivatives of the state

variables using the candidate library function Θ and the sparse matrix Ξ̂. In the case of the

aeropendulum, considering that both the armature current and voltage can be measured,

the library function would include the angular position, velocity, and external forcing terms.

Chapter 3. Theoretical background 17

Ẋ = Θ(X,U)Ξ̂T (3.18)

Pseudo algorithm - SINDy

The pseudo algorithm for the SINDy formulation can be seen on Algorithm 1. The

preprocessing step includes the derivatives’ computation and the library function’s con-

struction. Initially, an estimate Ξ̂ is computed. While there are terms above a certain

value ¼, the higher matrix coefficients are then zero, which is applied for each state vari-

able. An improved estimation of the sparse matrix is computed for each of these state

variables. When the algorithm has converged, that is, when there are no more terms above

the threshold value, the output is a sparse matrix of coefficients that better describe the

derivatives of the state variables.

Algorithm 1 The STLs routine to determine the exact state variables’ derivatives. It
receives as inputs the derivatives Ẋ, the library function Θ(X,U), and a threshold parameter
¼. The output is a sparse matrix Ξ.

1: function STLS((Ẋ, Θ(X,U), ¼, N))
2: Ξ̂± Θ Ẋ

3: while not converged do
4: k ± k + 1
5: Ismal = (abs(Ξ < ¼)
6: Ξ(Ismall) = 0
7: for i = 1:N do
8: Ibig ± Ismall(:, i)

9: Ξ(Ibig, i)± Θ(:, Ibig)
 Ẋ(:, i)

10: end for
11: end while
12: return Ξ
13: end function

3.2.2 Weak SINDy

The WSINDy algorithm (Messenger and Bortz[22]) proposes using the weak form of

differential equations towards the noise sensitivity problem. The weak formulation turns a

differential equation into an integral equation. It makes the method more robust and less

susceptible to errors due to the need for computing derivatives.

Chapter 3. Theoretical background 18

Consider that the measurement data is contaminated with noise. Given that the states

are y * R
m×n, with m sampling instants t from t1 to tm, the noisy measurements can be

expressed by

y(t) = x(t) + ÷(t), (3.19)

where y(t), x(t) * R
m×n, and ÷(t) * R

m×n.

For any smooth test function × : R³ R supported on the interval (a, b) ¢ [0, tm], (3.11)

admits the weak formulation, when 0 f a f b f tm, given by

×(b)x(b)2 ×(a)x(a)2

∫ b

a

×2(Ã)x(Ã)dÃ =

∫ b

a

F(x(Ã))dÃ, (3.20)

consisting of the data-driven version of the Galerkin method for solving F.

The function mapping F̂ : Rn ³ R
n extracted from the noisy measurements is given by

F̂(y(t)) =
J
∑

j=1

ÀJ¹j(y(t)), (3.21)

where the library function {¹l(·), l = 1, · · · , J} is a set of candidate basis functions used to

represent F̂, an estimate for F, and it is expressed by

Θ(y(t)) =
[

¹1(y(t)) ¹2(y(t)) . . . ¹J(y(t))
]

. (3.22)

where each of the library function terms represents a trigonometric, polynomial function,

or a product between each of the terms.

One can include the excitation input when composing the library of candidate functions

Θ. With that, the WSINDy formulation supports control inputs and hence can be called

WSINDy with control (WSINDyC). In (3.20), when × is non-constant and supported in the

interval (a, b), that is ×(a) = ×(b) = 0, one might define the generalized residual R(Ξ, ×)

in respect to a specific test function by substituting F̂ with a candidate function, and by

replacing x with the noise-contaminated y as

R(Ξ, ×) =

∫ b

a

×2(Ã)y(Ã)dÃ +

∫ b

a

×(Ã)
J
∑

j=1

Àj¹j(y(Ã))dÃ. (3.23)

Chapter 3. Theoretical background 19

The proposed method is a data-driven version of the Galerkin method for solving F̂. The

discrete-time version of (3.23) can be determined by

R(Ξ, ×k) := (GΞ2 b)k * R
1×n. (3.24)

The Gram matrix G and the approximate dynamics b are determined through the use of

the integration matrices V and V’. They can be determined by

Vkm = ∆t×k(tm), (3.25)

V’km = ∆t×2
k(tm). (3.26)

Hence, (3.24) can be rewritten as

R(Ξ, ×k) := VΘ(y)Ξ2V’y. (3.27)

Defining the covariance matrix as Σ = V 2(V 2)T and using it as a weighting factor, the

solution to the generalized least-squares problem can be given by

Ξ =
(

(GΞ2 b)TΣ21(GΞ2 b) + µ2||Ξ||22
)

. (3.28)

Different hyperparameters must be tuned, and they control the learning process. K is

the number of test functions, p controls the normalization of the polynomials, s is the shift

parameter, rwhm corresponds to the width-at-half-max parameter. More details about using

these parameters in the formulation can be found on [22].

Defining the test function basis

In order to minimize integration errors, a test function space S with Φk sufficiently

localized is proposed. The space S, which consists of piece-wise polynomials, is given by:

×(t) =

ù

ü

ú

ü

û

C(t2 a)p(b2 t)q, t * (a, b)

0, otherwise

(3.29)

Chapter 3. Theoretical background 20

The conditions a < b and p, q g 1 are satisfied here. The normalization factor C is

determined by

C =
1

ppqq

(

p+ q

b2 a

)p+1

. (3.30)

The location of the test functions proposed in (3.29) depends on the strategy adopted

toward the problem. It might be a uniform or adaptive grid.

3.2.3 Discrepancy SINDy

The Discrepancy SINDy framework (Kaheman et al.[26]) assumes that the model mis-

match can be described in terms of a library of candidate functions. The compensation

makes it possible to fix the model mismatch directly from data measurements, providing a

better description of the system state variables’ derivatives.

Consider that the measurements of a dynamical system are expressed as

Υ0(t) = F(X(t);µ) = Ẋ, (3.31)

where F(x(t)) represents the nonlinear mapping between the input and output variables,

and µ represents the model’s parameters. Suppose that an approximate model is given by

Υm(t) = Fm(X(t);µ1), (3.32)

where µ1 is the approximate set of parameters. µ ;= µ1 and F(X(t;µ) ;= Fm(X(t);µ1).

By constructing a discrepancy model ¶Υ(t), expressed in terms of the measurement data

X(t) and the parameters µ2, the mismatch is given by

¶Υ(t) = G(X(t);µ2) == Υ0(t)2Υm(t). (3.33)

The discrepancy of the dynamics is collected and expressed in terms of a matrix

¶Υ = [¶υ1(t) ¶υ2(t) . . . ¶υn(t)]
T , (3.34)

where ¶Υ * R
m×n.

We use the SINDy formulation to represent G(X(t);µ1) as a combination of different

Chapter 3. Theoretical background 21

candidate functions Θ(X). Hence, the regression problem is expressed by

¶Υ = Θ(X)Ξ. (3.35)

We solve the least squares problem for Ξ. The computation of the derivatives for the

difference in the derivatives might lead to inaccuracies. If one desires not to compute the

derivatives, the problem can be adapted to the integral formulation. By integrating both

sides of (3.35), we have

∫

Υdx =

∫

(Υ0 2 Fm(X(t);µ1)) dt = X(t)2 µ(t), (3.36)

where µ(t) corresponds to the data obtained from the approximate model. The residual for

the discrepancy problem is expressed by

R(w, ×) =

∫ b

a

(

×2(Ã)[x(Ã)2 µ(Ã)]] + ×(Ã)

(

J
∑

j=1

Àj¹j(x(Ã))

))

dÃ. (3.37)

This way, the minimization problem could be determined through least squares, which

is the best modification to match the discrepant model with the reference one.

3.3 Study case

As illustrated in the Figure 3.4, the identification scheme firstly involves data collection

of state measurements and derivatives. Subsequently, there is a construction of a library of

candidate functions. Finally, a sparse regression identifies the fewest terms on the dynamics

that describe the data. For the Lorenz system, we will detail the use of all the sparse

promoting algorithms to find the best representation for the system.

3.3.1 Solution using SINDy

As Figure 3.4 illustrates, firstly, the data is generated by the analytical equations that

describe the Lorenz attractor. Secondly, the data is used to formulate the regression prob-

lem, where the library function consists of the candidate terms based on the data input.

Active terms in the dynamics are few and activated by the sparse matrix of coefficients Ξ.

Chapter 3. Theoretical background 22

As depicted in the bottom part of the figure, the number of active terms to describe the

governing equations is less than three. Lastly, regarding the candidate library function and

the sparse matrix, the identified system is used to predict the state variables’ derivatives

for the test data.

Figure 3.4: Schematic of the SINDy algorithm applied to the Lorenz Equations. The
first section represents the data generated from the analytical equations. The second one
represents the library function and the sparse matrix that activates the necessary candidate
functions. The last corresponds to Θ(X)Ξ, related to the state variables’ derivatives.

Source: Brunton, Proctor and Kutz[16].

3.3.2 System identification using Discrepancy SINDy

As Figure 3.5 depicts, firstly, the train and test datasets are generated by the reference

governing equations using different initial conditions. The mismatching model’s output is

computed using the same initial conditions of the training set. The discrepancy terms affect

the derivatives ẋ and ẏ. Following the data generation, the difference between the dynamics

is evaluated, namely ¶Ẋ. The regression problem is formulated and solved for Ξ using the

discrepancy data as input. Lastly, the dynamics are predicted for the test set using the

approximate model Fm(X;µ1) and the correction terms ¶Ẋ.

Chapter 3. Theoretical background 23

Figure 3.5: Schematic of the Discrepancy SINDy algorithm applied to the Lorenz Equations.
The first step is to generate the training and test sets. After that, the approximate model
output data is generated, and the regression problem is solved. With the terms that need
to be added to the approximate model, the test set dynamics are predicted.

Chapter 3. Theoretical background 24

3.3.3 System identification using Discrepancy WSINDy

As Figure 3.6 depicts, firstly, the inputs to the problem are computed using the analytical

equations that describe the Lorenz attractor and different initial conditions. The mismatch

model that incorrectly describes the derivatives ẋ and ẏ is used to generate the approximate

model output. The model discrepancy is then computed, integrating the difference between

the derivatives and generating the approximate difference in the state variables. The min-

imization problem is solved for Ξ using the approximate difference in the trajectories. One

Ξ is computed and is used to predict the dynamics of the test set.

Chapter 3. Theoretical background 25

Figure 3.6: Schematic of the WSINDy algorithm applied to the Lorenz Equations. The first
step is to generate the training and test sets. After that, the approximate model output
data is generated, and the discrepancy between the dynamics is computed. By formulating
and solving the regression problem.

Chapter 3. Theoretical background 26

3.4 Derivatives computation

The state variables’ derivatives computation is necessary to formulate the SINDy al-

gorithm, and it is a problematic feature for at least two reasons. First, as previously

detailed in subsection 3.1.1, there is only an angular position sensor. Placing an angular

velocity sensor would be problematic in the context of the aeropendulum due to the way the

rod is coupled to the mast. Even so, the state space formulation requires angular velocity

data.

Computing derivatives from measurement data is a common problem in determining

dynamical models. Similarly, on the SINDy algorithm, the numerical differentiation is

crucial since it composes the left-hand side of (3.15). Regarding the aeropendulum plant,

differentiation techniques should be applied to determine the angular velocity even if the

integral formulation of differential equations is adopted.

3.4.1 Total Variation Regularized Differentiation - TVRegDiff

Approximating derivatives from noise-contaminated data is troublesome. Due to the

noise variance, traditional smoothing techniques are prone to noise amplification [28]. In-

stead, total variation regularization proposes regularizing the differentiation process itself
[25].

The Tikhonov regularization is one of the possible solutions to approximate derivatives

from noisy sensor data. Given a function H in [0, L], its derivative is determined as the

minimizer derivative of a function h on the same interval by

H(u) = ³R(u) +DF (Au2 h). (3.38)

The data fidelity term is DF (Au 2 f), associated with the discrepancy between the

integral of the derivative and the original function f . The first term ³R(u) penalizes the

irregularity in the derivative of u and controls the balance with the data fidelity term.

Rewriting then (3.38), we have:

H(u) = ³

∫ L

0

|u2|+
1

2

∫ L

0

|Au2 h|2. (3.39)

Chapter 3. Theoretical background 27

More noise implies a higher total variation. Hence, controlling the total variation of

the derivative allows the approximate signal to capture more features of the data and con-

trol its scale of fluctuations. With this formulation of the derivative problem, the main

accomplishment is noise suppression.

It is worth mentioning that the choice of the regularization parameter is not straightfor-

ward, especially when there is no ground truth in the derivatives. One of the possible ways

of determining ³ is trial and error (Chartrand[25]) through visual inspection of the noise

level on the derivatives. Another option is to use a multi-objective optimization framework

for automatically choosing the regularization parameter [29]. This approach considers the

trade-off between faithfulness and smoothness of the estimated derivatives.

3.5 Final considerations

This chapter described the mathematical model of the experimental platform and de-

tailed the formulations of the SINDy, WSINDy, and Discrepancy SINDy algorithms. Schem-

atics were used to describe the extraction of analytical equations from measurement data

and the missing terms for approximate models. The derivative approximation problem was

addressed using the Total Variation Regularized Differentiation (TVRegDiff) algorithm.

The next chapter will describe the proposed acquisition schemes, the instrumentation im-

provements, and the refinement of the thrust force description.

Chapter 4

Estimation and Instrumentation

Improvements

This chapter details the enhancements made in the instrumentation and data acquisition

of the aeropendulum system. Previous studies have primarily concentrated on applying

control strategies yet needed a comprehensive depiction of the electrical and aerodynamic

aspects. Consequently, they treated the interactions between the actuator’s input and the

mechanical behavior of the plant as a black box.

Oliveira, Lima and Lima[30] discusses and addresses the improvements detailed here.

Initially, we detail the need for refining the data acquisition methodologies and explore

the possible interfaces for capturing angular position data and electrical quantities. Sub-

sequently, we present a comparison and rationale concerning the sensor’s interface choice.

Following this, we describe the advancements achieved in parameter estimation. In the end,

we detail the development of the simulation model.

4.1 Angular position data - acquisition interfaces

For the angular position information, we use the AS5040 magnetic rotary encoder for the

angular displacement concerning the vertical axis. As depicted in Figure 4.1, the orientation

of the magnetic field is sensed, processed, and results in a 10-bit binary code proportional

to the angular displacement. This value can be accessed via a Synchronous Serial Interface

Chapter 4. Estimation and Instrumentation Improvements 29

(SSI), the Pulse Width Modulated signal at the PWM output, or the Incremental interface.

The focus here is on both the SSI and PWM interfaces.

Figure 4.1: AS5040 sensor block diagram.

Source: AS5040 sensor datasheet [31].

Absolute Interface (SSI)

As shown in Figure 4.2, a sequence of signals must be followed. After the first positive

edge of the Clock signal, the data stream begins with the least significant byte. For the 10-

bit position data, 22 clock signal pulses are necessary. To generate these signals in hardware,

one can rely on the PWM frequency of the microcontroller board. One of the drawbacks is

the necessity of 22 pulses to complete the acquisition cycle, which might significantly impact

the sampling rate.

PWM Interface

The magnetic sensor also provides a PWM signal, with its duty cycle proportional to the

measured angle. The signal frequency is 975,6 Hz, with 10-bit resolution and a minimum

Chapter 4. Estimation and Instrumentation Improvements 30

Figure 4.2: AS5040 sensor SSI interface timing diagram.

Source: AS5040 sensor datasheet [31].

pulse width of 1 µs as shown in Figure 4.3.

Figure 4.3: AS5040 sensor PWM interface output illustration.

Source: AS5040 sensor datasheet [31].

An averaged signal can be acquired through low-pass filtering detailed in Figure 4.4. In

this case, the minimum angle would be 0ç, corresponding to 0 V, while the maximum angle

would be 360ç, and the voltage 5 V. Once the PWM signal is filtered, the microcontroller

A/D converter could sample this signal.

The main advantage of using this PWM interface is that the sampling time would be

restricted only by the interruption time, not the number of pulses. Hence, the sampling rate

is 22 times faster than the other approach and could positively impact the implementation

of the future control loop.

Chapter 4. Estimation and Instrumentation Improvements 31

Figure 4.4: Low-pass filter for the PWM output signal. R1, R2 g 4K7. C1, C2 g 1µF/6V

Source: AS5040 sensor datasheet [31].

4.2 Armature Current - Ia

The system is equipped with a Rev3 motor shield for the DC motor control using the

L298 IC. Nevertheless, the motor shield has a built-in feature to measure the current going

through the motor reading the SNSx pins. On each pin, a voltage will be proportional to

the circulating current. The maximum possible current is 2 A, and the calibrated voltage

is 3,3V.

As Figure 4.5 shows, the sensing pins SENA and SENB are connected to 0, 15 Ω

resistors. Then, there is an amplifier to process those voltage signals. The purpose is to

deliver at the analog pins A0 and A1 of the Arduino board a signal with the desired level

of amplification without affecting the input signal’s impedance.

4.2.1 Measurement of the armature voltage

There is a voltage drop between the H-bridge that controls the DC motor and the

effective delivered armature voltage, and it varies non-linearly with the circulating current.

Hence, it is necessary to measure this differential voltage in real-time. For this, the Arduino

Mega board has built-in differential measurements, enabled by selecting the proper bits in

the ADMUX register. Since the voltage limits applied to the DC motor do not trespass the

2,5 V, selecting the REFS0 and REFS1 bits, we select the 2,56 V as the voltage reference

for conversion. For selecting the input channels for the differential operation, the MUX

bits are selected as 0b010011, which designates the analog pins A3, A1 as the inputs.

Figure 4.6 shows the sequence of duty cycle Ä(%) steps applied to the motor and the

Chapter 4. Estimation and Instrumentation Improvements 32

Figure 4.5: Schematic of the motor shield Rev3.

Source: Adapted from the Arduino Rev3 Motor shield datasheet [32].

corresponding voltages measured. The format of the voltage curves is compatible. However,

there is a discrepancy between the values measured by the voltmeter and those acquired by

the differential measurement mode in the microcontroller board. We could not characterize

the voltage offset between the curves in orange and blue, which has led to a curve fitting

that relates the voltage input delivered to the H-bridge and the voltage delivered to the

armature current circuit.

4.3 Acquisition schemes

Developing an acquisition scheme running solely on the Arduino board would yield two

significant benefits. First, it would grant greater control over the sampling rate, enabling

the utilization of different acquisition modes, such as the PWM built-in interface in the

position sensor. Second, it would ease low-level hardware configuration, empowering the

triggering of events based on Arduino Timers, thereby ensuring regular sampling intervals.

Moreover, interrupt-based events would allow for sampling diverse signals due to hardware

Chapter 4. Estimation and Instrumentation Improvements 33

Figure 4.6: Differential voltage measurements. The first plot shows the voltage steps applied
to the H-bridge, and the second one shows the voltage values measured both with the
voltmeter and the ADC.

Source: Prepared by the author.

phase correction.

As previously detailed, variables, such as the electrical ones, could not be correctly

measured mainly due to the high-level acquisition scheme proposed. The armature current

and voltage values must be collected to properly characterize the dynamics between the

actuator and the mechanical parts. Figure 4.7 shows that a hardware-generated PWM signal

controls the H-bridge and delivers power to the armature current circuit. The onboard PWM

signal bases the acquisition logic by triggering all the sampling events. For the aeropendulum

application data collection, it is necessary to generate symmetrical output waveforms. This

symmetry is required to guarantee that interruptions occur when the sampled signals are

Chapter 4. Estimation and Instrumentation Improvements 34

at a high level. In this case, a phase correction on the PWM signal is necessary.

Figure 4.7: PWM phase corrected mode timing diagram.

Source: ATmega 640 Microcontroller Datasheet [33].

The phase-correct PWM mode provides a dual-slope waveform generation, and the

Timer/Counter Control Register WGMx bits as 0b001 configures this setting. The counter

counts from a bottom to a top value, defined as OxFF. Each time the counter reaches the

BOTTOM value, it enables the Timer/Counter Overflow Flag. In the case of the acquisition

scheme proposed here, this interrupt flag bases the signal generation and data collection.

4.3.1 First strategy - SSI interface

Figure 4.8 depicts the proposed timing diagram. By phase-correcting the PWM signal

of the microcontroller, there is a guarantee that the PWM-dependent signals, such as the

armature current and voltage, will be sampled at their high levels. During the TOV1 over-

flow interruption, the armature current, voltage data, and filtered position information are

gathered. The sampling rate is influenced by the PWM frequency of the Arduino board

and the number of necessary pulses to complete the data-acquisition procedure, resulting in

a sampling time of Ts = 1
490
× 22 = 45, 056 ms. The system’s natural oscillating frequency

is 5,46 rad/s, and the default sampling frequency of 490 Hz meets and exceeds the recom-

mended data acquisition frequency. A set of voltage values is applied to carry out the data

acquisition process.

Chapter 4. Estimation and Instrumentation Improvements 35

Figure 4.8: Timing diagram proposed. The curve in blue represents the Arduino’s Timer1
counter. In red is the phase-correct PWM signal. The chip selection and clock signals are
in green and orange, respectively. The TOV1 overflow flag generates an interruption each
time the counter reaches zero. After the first positive edge of the clock signal, the 10-bit
data stream begins, and it takes 45.056ms to complete the data acquisition cycle.

Source: Prepared by the author.

Each time the counter from Arduino’s Timer One reaches zero, it corresponds to one

pulse completed. Twenty-two pulses are necessary to read the 10-bit resolution angular

position, which is this approach’s main drawback. Given that the sampling time depends

on the number of pulses to acquire the angular position, which cannot be changed, if it

is necessary to increase the sampling rate, it would be necessary to increase the PWM

frequency of the board.

4.3.2 Second strategy - PWM interface

As detailed in section 4.1, the PWM interface outputs a signal with a duty cycle pro-

portional to the angular position of the magnetic rotary encoder. A low-pass filter with the

specifications previously defined should filter the angular position signal. Then, an analog

input from the microcontroller should read the filtered angular position. With that, we can

design an acquisition scheme that does not rely on chip selection and clock signals.

As Figure 4.9 depicts, Whenever the counter of Arduino’s timer one reaches zero, an

overflow interruption called TOV1OVF is triggered. During this interruption, the armature

Chapter 4. Estimation and Instrumentation Improvements 36

current, voltage data, and filtered position information are gathered. The sampling rate

is directly influenced only by the PWM frequency of the Arduino board, resulting in a

sampling time of Ts = 1
490

= 2, 04 ms for the default operation frequency of 490 Hz.

Figure 4.9: The proposed acquisition timing diagram. The curve in red represents the
Arduino’s Timer1 counter. The blue, yellow, and purple curves represent the armature
current Ia, the armature voltage Va, and the low-pass filtered angular position ¹. The
TOV1 interruption flag is enabled each time the counter reaches the bottom value. Those
interruptions occur each 2,048 ms.

Source: Prepared by the author.

4.3.3 SSI and PWM data acquired

Figure 4.10 and Figure 4.11 depict the data collected from the system. More specifically,

the duty cycle Ä(%), the angular displacement ¹(rad), the armature current Ia(t), and the

armature voltage Va(t) using both acquisition schemes. They are equivalent in data collected

but differ regarding the sampling rate. While the SSI acquisition scheme requires 46,056

ms and yields multiple voltages and current values discarded, the PWM averaging scheme

can collect system information every 2,048 ms. The control loop might benefit from a faster

sampling rate and more informative data collection. The chosen acquisition for the plant is

the PWM one for simplicity in the implementation and the faster sampling rate.

Chapter 4. Estimation and Instrumentation Improvements 37

Figure 4.10: Data collected using the SSI interface and the acquisition timing diagram
proposed in subsection 4.3.1 for seventy seconds of collection.

Source: Prepared by the author.

Figure 4.11: Data collected using the PWM interface and the acquisition timing diagram
proposed in subsection 4.3.2 for an interval of seventy seconds of collection.

Source: Prepared by the author.

Chapter 4. Estimation and Instrumentation Improvements 38

4.3.4 Propeller speed acquisition

The rotor speed is vital to the estimation algorithms and control strategies. Nonetheless,

due to size limitations and mechanical restrictions, it is necessary to have a measuring

module that does not affect the pendulum’s weight. Given this background, we use an IR

sensor module based on the LM358 IC. Since it captures the speed of the propeller, we can

use the gearbox’s gear ratio to infer the rotor’s speed.

Figure 4.12 shows the electrical diagram of the sensor. The comparator’s output is low

when no IR radiation is on the photodiode. Once a reflecting object is in front of the IR set,

the light reflected by the object results in a voltage drop across the photodiode, increases

the voltage across the R2 resistor, and increases the output of the comparator is high.

Figure 4.12: IR module circuit diagram.

Source: LM358 IC datasheet [34].

The idea is to use the IR module coupled to the motor-gear set and measure the rotor

speed indirectly from the propeller speed using the gear ratio. Figure 4.13 shows the meas-

urement setup. A black piece of foam in the back of the propeller blade blocks the light

reflection. The foam was scraped so it was close to the propeller and would not affect its

aerodynamics. This way, each completed revolution generates a voltage pulse.

Different strategies are commonly used to measure the speed of propellers using IR

sensors. Most lack accuracy due to high-level programming and fixed-size observation win-

Chapter 4. Estimation and Instrumentation Improvements 39

Figure 4.13: IR sensor module coupled to the propeller-gear set. The black foam is attached
to one of the propeller blades, and it is used to determine when a revolution is complete.

Source: Prepared by the author.

dows, that is, counting the number of pulses over the same time interval. This approach

is significantly inaccurate at lower speeds. Hence, the strategy used here is based on the

input capture mode using the Timer 4 in the Arduino Microcontroller. Figure 4.14 depicts

the input capture unit scheme.

The ICP4 pin receives the voltage pulses coming from the IR sensor. The value of

the timer counter control register is initially set to one, which enables positive edge pulse

detection. The current time tick goes to the IRC4 register each time the event occurs.

The value of the ICE4 bit is inverted each time a transition occurs, and the pulse width is

then measured as a difference of the correspondent time ticks between a rising and a falling

edge. Based on the microcontroller’s pre-scaler settings, it is possible to determine the time

related to the number of time ticks.

The DC motor was excited with a sequence of voltage steps, and the corresponding

speed was collected, as depicted in Figure 4.15. The measured propeller speed presents

various spikes greater than 500 RPM, compromising the speed measurement’s accuracy for

future applications. This measurement noise can be linked to hardware problems since the

value of the ICR4 register presented counter overflows. As an alternative, the code uses the

micros() counter to determine the time between rising and falling edges, limiting the pulse

width’s precision to 4 µs. These results indicate that another approach must aim for a more

accurate propeller speed estimation.

Chapter 4. Estimation and Instrumentation Improvements 40

Figure 4.14: Input-capture unit block diagram. Using one of the IPCn pins and enabling
edge detection, the value of the TCNTn register is transferred and delivered to the data
bus.

Source: ATmega 640 Microcontroller Datasheet [33].

4.4 Estimation improvements

This section details the improvements made concerning estimating the electrical para-

meters, specifically the armature equivalent ones, and the nonlinear relationship between

the PWM action and the armature voltage. In addition, there is an improvement in the

description of the thrust force.

4.4.1 Armature resistance - Ra

The Figure 4.16 depicts the electrical equivalent of a DC motor’s armature.

The back-electromotive force is expressed by:

ea = va 2Raia 2 L
dil
dt

(4.1)

where, va is the armature voltage, Ra and La the armature resistance and inductance,

respectively. By blocking the rotor, since ea = KωÉ
2, the angular speed in the motor axis

Chapter 4. Estimation and Instrumentation Improvements 41

Figure 4.15: The duty cycle Ä(%) steps applied to the motor, and the corresponding propeller
angular speed É2 in RPM collected.

Source: Prepared by the author.

will be zero, and so will be the back EMF. Considering that the inductance is negligible,

one can find the armature resistance by

Ra =
va
ia
, (4.2)

where by varying the armature voltage, va, applied to the motor, and monitoring the values

of ia, one can determine the mean Ra. The experimental results are presented in Table 4.1,

along with the mean R̂a(Ω) and its standard deviation ÃRa
.

4.4.2 Estimation of the armature inductance La

To estimate the value of La, we induced a voltage step (Va) and monitored the resulting

Ia, as Figure 4.17 shows. By analyzing the time interval it took for Ia to achieve 63% of

its steady-state value, we determined the electrical time constant as Äe = L
R
, resulting in a

Chapter 4. Estimation and Instrumentation Improvements 42

Figure 4.16: Illustration of the equivalent armature circuit.

Source: Prepared by the author.

Table 4.1: Armature voltage va and armature current ia values collected, and the estimated
Ra.

va (V) ia(A) Ra(Ω)
0,48 0,44 1,08
0,60 0,55 1,08
0,29 0,25 1,17
1,42 1,30 1,09
1,47 1,33 1,11
0,35 0,30 1,17
0,89 0,85 1,05
0,74 0,69 1,07
1,31 1,17 1,12
1,54 1,40 1,10
0,78 0,74 1,05
1,58 1,57 1,00
0,79 0,73 1,09
0,99 0,96 1,03
1,76 1,67 1,05
0,57 0,52 1,09
0,37 0,35 1,07
1,93 1,89 1,02
1,37 1,32 1,04
2,44 2,28 1,07
1,09 0,99 1,10

R̂a

1,08
ÃRa

0,04

Chapter 4. Estimation and Instrumentation Improvements 43

calculated Ä̂e of 0, 002 s. Using the given R̂a value, we approximated L̂a to be 2, 2 mH.

Figure 4.17: Armature current (Ia) time response for a step of Ä = 50% in the armature
voltage (Va).

Source: prepared by the author

4.4.3 Back Electromagnetic force constant

Considering that the armature inductance value La is negligible, hence that there is a

minimal voltage drop across the inductor, we can estimate the back-EMF constant, Kω. As

Table 4.2 details, we monitor the values of va and ia. Once the propeller is at its steady-

state speed, we measure its speed using a strobe meter and employ the gear ratio to infer

the rotor’s speed. After that, we use the measured velocity and compute the approximate

K̂ω = va2Raia
ω

. We found the mean value for K̂ω and the standard deviation ÃKω
of the

approximations.

4.4.4 Armature voltage estimation

As subsection 4.2.1 details, it was not possible to diagnose the instrumentation prob-

lems and perform differential voltage measurements. Since the voltage’s operating region

is restricted, the idea would be to obtain a relationship between the voltage applied to the

H-bridge and the armature voltage after the voltage drop.

Chapter 4. Estimation and Instrumentation Improvements 44

Table 4.2: Experimental results for determining the back-EMF constant using the electrical
quantities collected in steady state and the rotor’s speed, converted using the gear ratio
information.

va (V) ia (A) É1 - RPM (strobe) Kω

1,08 0,29 1.158 0,0006619934856
1,182 0,33 1.235 0,0006684402018
1,272 0,35 1.306 0,0006847902019
1,377 0,4 1.402 0,0006742762768
1,483 0,45 1.485 0,0006715175383
1,561 0,5 1.561 0,0006538620054
1,666 0,55 1.638 0,0006543423154
1,781 0,61 1.734 0,0006470698432
1,864 0,65 1.805 0,0006438833666
1,974 0,7 1.885 0,0006462672905

K̂ω

0,0006606442526
ÃKω

0,00001377310893

Different voltage values were collected by applying different duty cycle levels, as shown

in Figure 4.18.

Chapter 4. Estimation and Instrumentation Improvements 45

Figure 4.18: The armature voltage Va as a function of the duty cycle Ä ; acquired and
estimated data through (4.3).

Using the polynomial curve fitting method, which led to an MSE of 2, 6 × 1025, the

relationship between duty cycle and armature voltage is described by 4.3. This interpolation

should be helpful since it enables the knowledge of the armature voltage inside a limited

range of applied duty cycle values. It is given by:

Va = k0 + k1
√

k2Ä + k3 (4.3)

where, k0 = 20, 2914, k1 = 6, 8× 1024, k2 = 1, 469× 107, k3 = 4, 3629× 104. This equation

makes it feasible to determine the voltage applied to the DC motor based on the Ä applied

to the H-bridge.

Chapter 4. Estimation and Instrumentation Improvements 46

4.4.5 Thrust force interpolation

The expression f = KqÉ
2
2 describes the thrust force as a function of the speed of the

propeller. Thus, it is necessary to determine the thrust coefficient. For that, it is necessary to

perform tests using wind tunnels (Czyż et al.[35]), which are expensive and often inaccessible.

Another way to characterize the thrust of a propeller is by using a DC motor, a test stand,

and a load cell (Prasetiyo[36],KÓSA et al.[37]). The propeller’s thrust force is transmitted to

the load cell using a structure that connects the rotating rod to the propeller.

In this work, we try an approach based on this idea. We perform a curve fitting to

determine the relationship between the armature voltage and the force produced by the

propeller. The fitting should be further used to convert the signal from the controller to an

actuation value applied to the DC motor. As Figure 4.19 depicts, the load cell is calibrated

when the DC motor is off. We gradually increase the armature voltage from 0 V to the

maximum value to which the angular displacement is maximal, and the load cell measures

the corresponding weights. Finally, we perform a curve-fitting on the collected values, as

Figure 4.20 shows.

Figure 4.19: The adapted thrust bench and the load cell to estimate the thrust force.

Source: Prepared by the author.

The fitting curve is expressed by Equation 4.4.

Chapter 4. Estimation and Instrumentation Improvements 47

Figure 4.20: The multiple voltage values va and the estimated thrust force points F collected.
The curve in orange represents the mathematical interpolation from the data.

Source: Prepared by the author.

f = 0, 054v2a + 0, 0435va + 0, 0029 (4.4)

In order to convert the thrust signal from the controller, the inverse function is expressed

through Equation 4.5.

va = 0, 4028 + 9, 2593
√

0, 0013 + 0, 2160f (4.5)

4.5 Simulation model

We can develop a simulation model that mimics the plant’s behavior based on the

estimated electrical and mechanical parameters previously determined [5]. It reduces the

risk of operating the plant in inadequate conditions, enhances the prototyping process,

and yields the rapid implementation of multiple control approaches. Applying simulation

methods gives a deeper understanding of the system’s behavior and dynamics, thus providing

confidence to deal with the real system.

Concerning the possible control techniques, the simulated models facilitate the rapid

Chapter 4. Estimation and Instrumentation Improvements 48

Table 4.3: The parameters used in the simulation model

Model Parameters
Electrical Ra = 1, 08 Ω La = 2, 2 mH

Mechanical
and

Aerodynamic

Kω = 6, 6× 1024 Vs/rad, Kt = 0, 235 Nm/A
Jm = 5, 2× 1025 Kgm2, Bm = 0, 01 Ns/m2

c
J
2 13, 82, mgd

J
2 131, 75, L

J
2 462, 83

N1

N2

= 55/9, Kq = 1× 1024

implementation and evaluation of different approaches, such as small-signal linearization,

input-output linearization, and pole allocation. This fast implementation accelerates com-

paring control strategies, optimizing parameters, and identifying the most effective approach

to enhance closed-loop performance.

Figure 4.21 depicts the aeropendulum model represented as a block diagram. The ODEs

that describe the motor dynamics are included on the electric motor block, which outputs

the rotor’s angular speed, armature current, derivatives, and input voltage. The gearbox

and the propeller dynamics are used to describe the aerodynamic effects that produce the

thrust force. The aeropendulum block receives the corresponding thrust force as input and

outputs the angular displacement. The mechanical parameters of the plant were obtained

from Lucena, Luiz and Lima[5], where a nonlinear optimization method was used. The

parameters used for the simulation model are detailed in Table 4.3.

Figure 4.21: Simulation model composed of the motor, gearbox, aerodynamic conversion,
and mechanical blocks. The generated data from the simulation is sent to the workspace.

Source: Prepared by the author.

As Figure 4.22 depicts, for a sequence of duty cycle steps applied to the armature equival-

ent circuit, the angular displacement of the aeropendulum ¹, the angular speed concerning

Chapter 4. Estimation and Instrumentation Improvements 49

the vertical axis, ¹̇, and the rotor’s angular speed, É1, as well as the armature current

information Ia are collected.

Figure 4.22: Data collected and sent from the simulation to the workspace.

Source: Prepared by the author.

4.6 Final considerations

This chapter described the improvements regarding the instrumentation of the exper-

imental platform and the refinements on the estimation of electrical and aerodynamic as-

pects. It also discussed the proposed acquisition schemes, the reason for using one at the

expense of the other, and the implementation of a simulated model to experiment and gain

confidence in the problem solution. The next chapter will address the use of the SINDy

algorithm variants to characterize the dynamic behavior of the experimental plant.

Chapter 5

Parameter Estimation Using the

SINDy-based Frameworks

This chapter describes the results regarding using SINDy-related algorithms to determ-

ine the electrical and aerodynamic parameters of the aeropendulum plant. The objective

is to evaluate the capability of the sparse identification algorithms to determine an im-

proved data-driven model, specifically in terms of electrical-aerodynamic characterization.

Furthermore, we want to evaluate the impact of pre-processing steps on the accuracy of the

discovered model.

5.1 Input signal design

A vital element of the parameter estimation procedure entails shaping the experiment’s

framework, commonly called the Design of Experiment (DoE). When addressing the iden-

tification of nonlinear systems, a critical stride involves crafting an excitation signal with

informative qualities and the ability to manifest the hidden dynamics [38]. Although extens-

ively debated in the domain of system identification theory, this subject has garnered limited

attention in the context of the SINDy algorithm, as underscored by prior investigations ([39]),

thus warranting further exploration.

To extract valuable insights via DoE, one can adopt either of two distinct approaches:

the model-based or the model-free route. In the present context, an apt model-free DoE

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 51

technique involves leveraging the Latin Hypercube distribution to engender the excitation

signal. Delimiting the input space to Ä * [Ämax, Ämin] and Ts * [Tsmin
, Tsmax

], it is partitioned

into ten discrete intervals, and divided into ten intervals, which correspond to the prior

information related to the actuation limits and operating characteristics. The visualization

presented in Figure 5.1 shows the configuration of the input space design points and the

excitation signal on the right.

Figure 5.1: The excitation signal. Each point represents a step signal with amplitude Ä and
a duration time.

Source: prepared by the author.

5.2 Sparse system identification using noise-free meas-

urements

Using the simulation model previously described, we utilize the Latin Hypercube (LHC)

input space design to excite the system. The simulation data is used because it provides

knowledge of dealing with data of different qualities and which approaches are most effective.

For this first case, we consider that all state derivatives can be measured, and no noise is

added to the measurements.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 52

5.2.1 Identifying the state variables’ derivatives of the Aeropendu-

lum - SINDy and WSINDy

Figure 5.2 depicts the state variable’s derivatives collected from the simulation and the

measurement variables, corresponding to 75% of the simulation results. 25% was left to the

test set. A library function Θ(¹, ¹̇, É1, va) containing polynomial terms of second order and

trigonometric terms was constructed, with products between the measurement variables.

The dynamics, that is, the derivatives of the state variables, were not approximated, and

dX
dt

=
[

¹̇ ¹̈ É̇1 i̇a

]

was composed directly from the simulation data output.

Figure 5.2: Simulation results from the simulated model. In the left column, the derivatives
of the state variables. On the right side are the state variables of interest.

Source: prepared by the author.

Using the SINDy algorithm, the threshold parameter ¼ = 0.9, and the library function

Θ, the sparse matrix Ξ. The library function comprises the state variables, the input signal,

and the cross-products of these variables and their powers and trigonometric composites.

Table 5.1 exemplifies the representation of a dynamic system. The column labels ẋ1, ẋ2, ẋ3,

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 53

and ẋ4 refer to the state variables’ derivatives, and the non-zero terms in each correspondent

row represent which terms accompany the library function candidates. This way, from the

table, we interpret that ẋ1 = x1, ẋ2 = x1+2x2+u1, x3 = 2x3+x4+u1, and ẋ4 = 3x3+x1x2+1.

Table 5.1: Example of the sparse matrix that represents the derivatives of the state variables
ẋ1, ẋ2, ẋ3, and ẋ4.

ẋ1 ẋ2 ẋ3 ẋ4
1 0 0 0 1
x1 1 1 0 0
x2 0 2 0 0
x3 0 0 2 3
x4 0 0 1 0
u1 0 1 1 0
x1x2 0 0 0 1
x1x3 0 0 0 0
x1x4 0 0 0 0
x1u1 0 0 0 0

The sparse matrix was estimated and illustrated in Figure 5.3. Each column represents

the sparse vector for the respective state variables’ derivatives such that ‘dtheta’ refers to

¹̇, ‘ddtheta’ represents ¹̇, ‘dIa’ denotes i̇a, and ‘dw1’ is É̇1. For example, to describe the

angular acceleration ¹̈ = 2mgd

J
sin(È)2 C

J
Ω+ L

J
f , the angular velocity column in the figure,

the candidate terms related to the square of the speed of the propeller, and the sine of the

angular position are active. All the coefficients that could correctly describe the derivatives

of the state variables were discovered with no spurious terms.

When it comes to using the WSINDy algorithm, the only difference is that it is unne-

cessary to compute the approximate derivatives to solve the least-squares problem. We use

the hyperparameters, which are a set of values that control the learning process, K = 120,

p = 2, s = 16, rwhm = 30 recommended in the original paper (Messenger and Bortz[22]).

Getting information from the problem domain, we chose the threshold as ¼ = 0.9 and the

regularization factor µ = 0.000001. As Figure 5.4 depicts, the sparse representation for the

system was retrieved.

Talking specifically about the aerodynamic terms, we want to analyze the use of the

SINDy algorithm to model the propeller’s thrust coefficient. Since the term that accom-

panies É2
1 is present in the dynamic equation of ¹̈, using the corresponding value of the

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 54

sparse matrix, Kq = 1.729
L

J
(
N1

N2
)2

= 0.0001. Hence, the SINDy and WSINDy algorithms could

correctly identify the propeller behavior and determine the parameters that describe the

other derivatives.

Figure 5.3: The sparse matrix Ξ estimated using the SINDy algorithm. Each column
represents the approximation of the state variables’ derivatives, and each non-zero term
activates a nonlinear dynamic that models the behavior. The reference analytical equations
are ¹̇ = ¹̇, ¹̈ = 213.82¹̇ + 1.73É2

2, i̇a = 28.7ia 2 1.02É2 + 4.35va.

Source: prepared by the author.

5.2.2 Prediction on the test set

We use the test set data to evaluate the generalization capabilities of the models identified

using SINDy and WSINDy. Since the derivatives of the state variables can be represented

as Ẋ = Θ(X)ΞT , we construct the library function using the test set and multiply it by

the sparse matrix simulation results estimated. Figure 5.5 depicts the predicted derivatives

of the state variables by the SINDy and WSINDy sparse representations and the expected

ground truth. One can notice that the derivatives were correctly predicted, with an MSE

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 55

Figure 5.4: The sparse matrix Ξ estimated using the integral formulation WSINDy. Each
column represents the approximation of the state variables’ derivatives, and each non-zero
term activates a nonlinear dynamic that models the behavior. The reference analytical
equations are ¹̇ = ¹̇, ¹̈ = 213.82¹̇ + 1.73É2

2, i̇a = 28.7ia 2 1.02É2 + 4.35va.

Source: prepared by the author.

of 10e-25 for the SINDy and 6e-10 for the WSINDy.

5.3 Sparse system identification under noisy measure-

ments

Most of the time, the derivatives of the system must be computed since they cannot

be measured, and the major problem of measurement data is the presence of noise. We

add noise to the measurement data so that the SNR (Signal-to-noise-ratio) is 50 dB, thus

making the scenario closer to reality.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 56

Figure 5.5: The time derivatives ¹̇, ¹̈, i̇a, and É̇1 as predicted by using the sparse matrix Ξ
from the SINDy and WSINDy algorithms on the test set and the noise-free ground truth
derivatives.

Source: prepared by the author.

5.3.1 Data pre-processing and derivatives computation

As Figure 5.6 depicts, the original state variables from simulation data were noise-

contaminated. The noisy variables obtained from the simulation were filtered using a moving

average filter with a window length of 40 samples. On the right side of the figure, we see

the comparison between the noisy signals and the filtered ones. We can see that the input

signals were properly filtered.

The derivatives were computed using the TVRegDiff algorithm. According to the

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 57

Figure 5.6: On the right side, the noise-contaminated variables ¹, ia, É1, and va and the
corresponding filtered variables. The computed derivatives using the TVRegDiff algorithm
are compared to the noise-free ground truth on the left side.

Source: prepared by the author.

variance-bias tradeoff, we chose the regularization factor empirically, with the regulariz-

ation parameter varying from ³ = 0.001 to ³ = 0.00005. We compare the approximate

derivatives and the analytical ground truth on the left side of Figure 5.6. Due to the bias-

variance tradeoff, it is noticeable that the approximate angular acceleration ¹̈ had some

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 58

of its peak values attenuated, and it is also visible when it comes to the derivative of the

armature current Ia. Nonetheless, the other approximate derivatives present adherence to

their respective ground truths.

5.3.2 Identifying and predicting the state variable’s derivatives of

the Aeropendulum - SINDy

Figure 5.7 depicts the matrix simulation results estimated by solving the STLS problem.

The matrix is not sparse, and the terms of interest do not correspond to the expected

values. Even though noise mitigation strategies were applied, they might have led to a

mischaracterization of the derivatives. Since the SINDy algorithm is extremely dependent

on the data quality, it is probably the source of the non-sparse identified derivatives.

Once the representation of the dynamics Ξ is simulation results estimated, we can use

it to predict the behavior on the test set. The 25% of the simulation results is used to

compose the dXtest

dt
=

[

¹̇ ¹̈ É̇1 i̇a

]

, and the library function Θ(Xtest). Figure 5.8 depicts

the expected and predicted derivatives. It is noticeable that the representation poorly

describes the angular acceleration ¹̈, with MSE(¹̈, ˆ̈¹) = 3.7. The prediction of the rotor’s

speed and armature current derivatives is also deficient, with É̇1. MSE(É̇1, É̂1) = 3.7 and

MSE(i̇a,
ˆ̇
ai) = 3.7.

5.3.3 Identifying and predicting the state variables’ derivatives of

the Aeropendulum - WSINDy

When using the WSINDy algorithm to determine the hidden dynamics, the difference

is that only the ¹̇ must be approximated due to the integral formulation. It is worth

mentioning that, to our knowledge, until the present moment, previous works did not apply

the combination of these methods. We use the same filtered data for the angular position

to compose the library function Θ(X). Defining ¼ = 0.9, and µ = 0.0014, we find the sparse

matrix depicted in Figure 5.9. We notice that it is not as sparse as it should be. However,

the terms that describe the derivatives are close to what they should be, especially looking at

the angular acceleration representation and the armature current derivative. The hypothesis

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 59

Figure 5.7: The sparse matrix Ξ estimated using the SINDy algorithm and the approximate
derivatives from filtered noisy data. Each column represents the approximation of the
state variables’ derivatives, and the coefficients are the weights that activate each candidate
nonlinear function from the library. The reference analytical equations are ¹̇ = ¹̇, ¹̈ =
213.82¹̇ + 1.73É2

2, i̇a = 28.7ia 2 1.02É2 + 4.35va.

Source: prepared by the author.

is that the filtering should be improved not to include unmodeled dynamics. When talking

specifically of the propeller’s thrust coefficient, using the term that accompanies É2
1, Kq =

2.8
L

J
(
N1

N2
)2

= 0.00017, which is 70% higher than the expected coefficient.

Figure 5.10 shows the predicted derivatives using the sparse matrix determined by

the WSINDy algorithm. Compared to the SINDy algorithm predictions, it is perceptible

that it improved the angular acceleration predictions and the armature current derivative.

MSE(¹̈, ˆ̈¹) = 0.18. The prediction of the armature current derivative improved, having

MSE(i̇a,
ˆ̇
ai) = 0.03. From the performance on the test set, we can say that even though the

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 60

Figure 5.8: The time derivatives ¹̇, ¹̈, i̇a, and É̇1 as predicted by using the sparse matrix Ξ
from the SINDy algorithm on the test set and the noise-free ground truth derivatives.

Source: prepared by the author.

discovered dynamics lacked physical explainability, the generalization capabilities for the

angular acceleration and electrical dynamics indicate that it is a homolog representation

of the system data. Further hyperparameter adjustments should be made to deal with the

noisy measurements and their effect on the identification procedures.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 61

Figure 5.9: The sparse matrix Ξ estimated using the WSINDy algorithm and the approxim-
ate derivatives from filtered noisy data. Each column represents the approximation of the
state variables’ derivatives, and the non-zero coefficients represent the weighing factors that
activate the candidate nonlinear dynamics. The reference analytical equations are ¹̇ = ¹̇,
¹̈ = 213.82¹̇ + 1.73É2

2, i̇a = 28.7ia 2 1.02É2 + 4.35va.

Source: prepared by the author.

5.4 Discrepancy SINDy and WSINDy - finding mismatches

in the model

We now consider a model mismatch in the angular acceleration, specifically on the

propeller’s thrust coefficient and the pendulum’s mass. Hence, the approximate model is ˆ̈¹ =

2131.5 sin(È)213.82¹̇+1.65É2
1, instead of ¹̈ = 2131.75 sin(È)213.82¹̇+1.73É2

1. Figure 5.11

displays the phase diagram that evidences the difference between the approximate and

reference derivatives.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 62

Figure 5.10: The state variables’ derivatives ¹̇, ¹̈, i̇a, and É̇1 predicted by the sparse matrix
Ξ from the WSINDy algorithm on the test set and the noise-free ground truth derivatives.

Source: prepared by the author.

The same previous variables are collected from the simulation, and we construct the

library function and the difference between the approximate and exact dynamics ¶Ẋ using

the SINDy algorithm. For the WSINDy algorithm, we integrate the approximate derivatives

and compute the difference between the trajectories ¶X. Figure 5.12 depicts the difference

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 63

between the behavior of each derivative. The rest of the terms are null since there is only

a discrepancy in the angular acceleration modeling.

Figure 5.11: The phase diagram of both the approximate and correct model.

Source: prepared by the author.

Figure 5.13 shows the sparse matrix representing the parameter difference between the

two models simulation results estimated by solving the STLS problem using the SINDy

algorithm. The solution is sparse and only points out differences in the modeling of the

angular acceleration, as expected. The rest of the dynamics do not need any change. On

the other hand, Figure 5.14 depicts the sparse matrix simulation results estimated using the

WSINDy algorithm. The reason for using the integral version of the algorithm is to evaluate

the feasibility of the integral formulation for the discrepancy SINDy. The same correction

terms were simulation results estimated for the angular acceleration. Nonetheless, smaller

coefficients were incorrectly identified in the other dynamics, such as in the angular velocity

and the derivative of the armature current. They should have a small impact in correcting

the approximate derivatives.

We can correct the approximate model and predict the test set using the sparse matrix

representing the discrepancy. Figure 5.15 shows the discrepant model and the corrected pre-

dictions using the SINDy and WSINDy formulations. Both corrected models using SINDy

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 64

Figure 5.12: The difference between the derivatives of the correct model and the approximate
one. The discrepancy is not null for the angular acceleration ¹̈ since the model inaccuracy
is only present in it.

Source: prepared by the author.

and WSINDy could correctly predict the derivatives. The SINDy and WSINDy resulted in

MSEs of 2.55× 10229 and 1.7410× 10212, respectively.

5.5 Experimental platform identification

Now, we want to collect the data from the experimental platform and try to character-

ize the behavior of the aerodynamic part using the WSINDy algorithm. As detailed in the

previous sections, the approximate derivatives taken from noisy data are prone to mischar-

acterization, and the SINDy algorithm needs to perform satisfactorily in this case, which

naturally leads to the integral formulation.

More specifically, we want to evaluate the capabilities of the WSINDy to deal with

the noise sources associated with the experimental platform and describe the propeller’s

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 65

Figure 5.13: The discrepancy sparse matrix Ξ estimated using the SINDy algorithm. Each
column represents the approximation of the state variables’ derivatives, and the non-zero
coefficients represent the weighing factors that should be added to the approximate model
and activate the candidate nonlinear functions.

Source: prepared by the author.

characteristics. In addition, we want to explore different candidate functions and see if they

can better describe the thrust force as a function of the propeller’s speed.

5.5.1 Data collection and preprocessing

We obtained the raw signals Va, ¹, Ia, and É1 using the PWM-based acquisition scheme.

As Figure 5.16 depicts on its right side, the state variables were collected and filtered.

The approximate derivatives are posteriorly computed on the left side using the TVRegDiff

algorithm. It is noticeable that most of the spikes in the collected data are related to

measurement noise. Due to the open loop operation, the rotor’s speed varies, and the

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 66

Figure 5.14: The discrepancy sparse matrix Ξ estimated using the WSINDy algorithm.
Each column represents the approximation of the state variables’ derivatives, and the non-
zero coefficients represent the weighing factors that should be added to the approximate
model and activate the candidate nonlinear functions. Some non-zero spurious terms are
identified.

Source: prepared by the author.

system suffers environmental influences, leading to undesired angular displacements and

smaller spikes in the armature current and angular speed.

5.5.2 Identification using WSINDy and prediction on the test set

We conducted a hyperparameter tuning to find the sparsification and regularization

terms for the integral formulation of the sparsification algorithm. Figure 5.17 depicts the

sparse matrix that represents the dynamics for the test set using the WSINDy algorithm.

The solution is not sparse for the angular acceleration, the armature current derivative,

and the rotor’s speed derivative. Most terms expected to be null, especially on the angular

acceleration description, are spurious. Considering this representation, we can say that

the model lacks physical explainability and cannot describe the real dynamics. Hence, we

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 67

Figure 5.15: Derivative ¹̈ predicted using both the SINDy and WSINDy Ξ matrices to
correct the approximate models compared to the ground truth signal.

Source: prepared by the author.

could not find satisfactory results to describe the thrust effects regarding the propeller’s

characterization.

We used the sparse matrix estimated to know if the model could still sufficiently gen-

eralize on the test set. Figure 5.18 depicts the derivatives predicted. We notice, especially

regarding the prediction of ¹̈, that the predicted behavior draws apart the ground truth

behavior. It also happens with i̇a and É̇1.

5.6 General discussion about the results and possibility

of using the WsINDy algorithm.

From the bibliographical review and motivating examples, we inferred that the WSINDy

algorithm was more noise-robust when compared to the traditional SINDy. By addressing

the problem using signal processing and regularized differentiation, we expected to leverage

the identification capabilities of the algorithm by providing higher-quality data. Nonethe-

less, this did not happen. A closer look at the results for the WSINDy algorithm in the

simulated example contaminated with noise and using the experimental data shows that it

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 68

Figure 5.16: On the right side, the filtered noise-contaminated variables ¹, ia, É1, and Va.
The computed derivatives using the TVRegDiff algorithm are compared to the noise-free
ground truth on the left side.

Source: prepared by the author.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 69

Figure 5.17: The sparse matrix Ξ estimated using the WSINDy algorithm and the approx-
imate derivatives from the experimental platform data.

Source: prepared by the author.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 70

Figure 5.18: The derivatives ¹̇, ¹̈, i̇a, and É̇1 for the experimental platform test set predicted
by the sparse matrix Ξ from the WSINDy algorithm. The ground truth signals are the
derivatives taken from the input test signals.

Source: prepared by the author.

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 71

could not correctly identify the hidden dynamics. The inaccuracy is more noticeable in the

practical case, where not even the terms of interest in some dynamics could be identified.

Some considerations might been drawn. The first is regarding the preprocessing step.

Even though a regularization parameter is used to control the bias-variance tradeoff, the

signal has oscillations that might mischaracterize the dynamics when the approximate de-

rivatives are computed, which requires a more careful optimization approach. The second

one is related to the hyperparameter tuning. A vast combination of parameters could be

set to tame the low-quality data, but it requires additional study time. The last one is

regarding the actuator and plant themselves. The identification algorithm considers meas-

urement noise due to sensor imprecision. However, in addition to the measurement noise

originating from the sensors, steady-state oscillations occur on the experimental platform

when a constant duty cycle is applied to the actuator input. These oscillations result in

spikes on the derivatives that insert other nonlinear dynamics that might obscure the real

ones.

From the results obtained using the experimental platform and the WSINDy algorithm,

we can tell that the algorithm cannot correctly characterize the propeller’s thrust coefficient.

Many signal preprocessing strategies should be made before affirming that the algorithm

is inappropriate to identify the dynamics. Moreover, the angular position data has low

quality, which might have led to a cascade of mischaracterizations of the dynamics. These

challenges regarding the identification of the aerodynamic behavior of the plant indicate

that another strategy to model the thrust force should be carried out posteriorly.

5.7 Final considerations

This chapter detailed the input-signal design procedure, evaluating the SINDy and

WSINDy algorithms in different scenarios and gaining confidence in operating the iden-

tification framework. The first was noise-free simulated data; the expected derivatives were

correctly predicted. In the second one, when performing under noisy measurements, pre-

processing steps were performed to mitigate the undesired identified terms and resulted in

satisfactory results using the integral formulation. When we used experimental data, the

results did not match the expectations. The WSINDy algorithm could not identify the

Chapter 5. Parameter Estimation Using the SINDy-based Frameworks 72

hidden dynamics nor generalize on the test set. These results indicate that further investig-

ations should be followed to evaluate the actuation and other strategies to model the thrust

force. The next chapter will detail the control strategies and the data-driven model used to

perform the feedback control of the platform.

Chapter 6

Control System Design

In this chapter, we define the time-domain requirements for the solution and evaluate dif-

ferent control approaches, improving the description of the previously electrical-aerodynamic

unmodeled dynamics through simulated and experimental platforms.

6.1 Motivation for the improvements

Lucena, Luiz and Lima[5] reports a mismatch in the closed-loop performance. Through

the revision of the design workflow, it was evident that there was no error in the controller’s

project but in the system representation. Previous works have tackled the control problem

using different strategies but either neglected the electrical-aerodynamic conversion and

unmodeled dynamics or made suppositions that compromised the closed-loop performance.

By improving the actuator’s description, we evaluate the most appropriate way to control

the plant using different strategies, first in simulation and then in the experimental platform.

The simulated experiments and those using the experimental platform are in a public

GitHub repository 1.

6.2 Time domain requirements specification

In the initial control design stages, knowing the physical constraints and limitations

within the aeropendulum’s mechanical system is essential. We can extract time domain

1https://github.com/dimitriarthur/aeropendulum_project

Chapter 6. Control System Design 74

parameters and define the control specifications through the system’s response information.

These temporal aspects hold significant implications for control efficacy, providing insights

into the mechanical system’s inherent temporal capabilities.

Figure 6.1 depicts the system response. Through this initial test, we acknowledge reas-

onable specifications for the rise, settling, and peak times. We evaluate the time constants

regarding the step response using a duty cycle of Ä = 43.14%. The rise, peak, and settling

time were tr = 0.43 s, tp = 0.84 s, ts = 3.53 s respectively. One can see that the steady-state

angular position is ¹ = 0.54 rad. Hence, we can define the temporal requirements for the

closed-loop response as in Table 6.1. These values were chosen so that the physical limits

related to the step response data.

Figure 6.1: Step response of the system to a duty cycle of 43.14%.

Source: prepared by the author.

Table 6.1: Time domain requirements for the closed-loop response.

Description Value
tr - Rise Time 0.5 s
tp - Peak Time 0.9 s
ts - Settling Time 3.6 s
Mp - Overshoot 20 %

Chapter 6. Control System Design 75

6.3 Gain adjustment

MATLAB’s Control System Toolbox provides apps and methods to project and optimize

a linearized version of control systems [40]. Here, we use the PID controller adjustment

using two degrees of freedom to control the trade-off between robustness and time response.

More specifically, we set the optimization to focus on the reference tracking. The gains

are automatically computed as long as the PID controller blocks are used in the Simulink

diagram.

6.4 PID controller implementation on the microcontrol-

ler

We use the PID Library, publicly available on the Arduino’s library manager [41]. It

consists of a solid PID implementation that tames most common problems, such as the

derivative kick, windup-induced lags, and actuation limits. The discrete-time version of the

controller is implemented in the library using the Forward Euler method.

6.5 Small-signal linearization

Since the aeropendulum is a nonlinear system, one can benefit from the linear control

theory by linearizing the system around an operating point. Under the scope of small signal

linearization, it is possible to treat the system as linear.

By linearizing the model for a specific angular position y0, the linearized version of the

system is described by

d∆y

dt
= ∆Ω, (6.1)

d∆Ω

dt
= 2

mgd

J
cos(y0)∆y 2

C

J
∆Ω+

L

J
∆f. (6.2)

Therefore, the transfer function that relates the angular position and the thrust force

applied is given by

Chapter 6. Control System Design 76

H(s) =
L
J

s2 + C
J
s+ mgd

J
cos(y0)

. (6.3)

6.5.1 Block diagram representation

The linearization is only applied to the mechanical description of the problem. The

design decision is based on the fact that we ideally consider that there is a source of mech-

anical conjugate.

Using the linearized version of the system expressed in Equation 6.3, we created a block

diagram that represents the system as depicted in Figure 6.2. The control allocation con-

siders the inverse relationship between the desired thrust force from the controller output

and the armature voltage to excite the actuator. A thrust force is then produced by the

motor and propeller set, leading to the desired angular displacement.

Figure 6.2: Small-signal linearization closed loop diagram.

Source: prepared by the author.

6.5.2 Type of controller

Since the transfer function has two poles, we infer that the system’s dynamic has a

potential for an oscillatory behavior. We can mitigate or control this behavior using a

derivative term. Therefore, a PD or PID controller would be more suitable for this system

than a simple PI controller. However, a PID controller would be more appropriate to address

steady-state errors or improve steady-state accuracy.

6.5.3 Simulation results

Using the Control Toolbox, the controller gains were computed kp = 0.04, ki = 0.993,

and kd = 20.0086. The closed-loop response in simulation is shown in Figure 6.3. The

Chapter 6. Control System Design 77

settling time was ts = 1.16 s, the rise-time tr = 0.26 s, peak-time 0.58s, and the overshoot

Mp = 9.98 %. Comparing these values with the temporal requirements from Table 6.1, we

can say that the simulation results satisfied the closed-loop specifications.

Figure 6.3: Closed-loop performance for the small signal linearized simulated model at
¹ = 0.4 rad. ¹ represents the angular displacement, and Ä the control action in terms of the
duty cycle.

Figure 6.4: Source: prepared by the author.

6.5.4 Experimental platform results

Figure 6.5 depicts the closed-loop performance of the experimental platform. The tem-

poral requirements were satisfied given that ts = 0.4 s, tr = 0.25 s. It is worth emphasizing

that before reaching the steady-state value, there are oscillations that can be related to

vibrations of the aeropendulum mast. Another source of oscillations might be that there is

no back-EMF control but an inverse of the desired thrust to the necessary armature voltage.

It does not guarantee that the speed of the propeller will be constant, nor the thrust force

produced.

The model’s small-signal linearized version should accurately approximate the nonlinear

Chapter 6. Control System Design 78

system in the equilibrium point ¹ = 0.4 rad. It should present nonlinear effects until the

system reaches the equilibrium point. Nevertheless, these nonlinearities do not affect the

system’s closed-loop performance until it reaches the desired position. The fact that the

nonlinearity is not that severe might positively impact this since it is just comprised of a

trigonometric term.

Figure 6.5: Closed loop performance for the system linearized using small signal linearization
at ¹ = 0.4 rad. ¹ represents the angular displacement, and Ä the control action in terms of
the duty cycle.

Figure 6.6: Source: prepared by the author.

6.6 Input-output feedback linearization

The feedback linearization strategy would be suitable to move the system through dif-

ferent operating points and cancel the nonlinearities. By recalling (6.2), we know that

dΩ
dt

= 2mgd

J
sin(y) 2 C

J
É + L

J
f . As detailed in [42], considering the system’s input as the

thrust f , it will be chosen as a function of v to cancel the nonlinearity of the plant, and it

is given by

Chapter 6. Control System Design 79

f =
J

L

[

mgd

J
sin(y) + v

]

. (6.4)

By substituting (6.4) in (6.2), the equivalent linear version of the system is described

by:

dΩ

dt
= 2

mgd

J
sin(y)2

C

J
É +

J

L

L

J

[

mgd

J
sin(y) + v

]

, (6.5)

dΩ

dt
= 2

C

J
É + v. (6.6)

Therefore, the transfer function for the linearized version of the system is:

H(s) =
Y (s)

V (s)
=

1

s(s+ C
J
)

(6.7)

6.6.1 Block diagram representation

We treat the system’s input as Va, performing the inverse computation h21(f) to perform

the control allocation. Using this feedback linearization scheme, the plant becomes linear

throughout all the angular displacements of interest.

Figure 6.7: Diagram for the feedback linearization applied to the aeropendulum platform.
The position controller G(s) outputs the control action, and the linearization block calcu-
lates the value to cancel the nonlinearity. The pseudo-control action v is converted to the
required Va, and the generated thrust is input to the aeropendulum.

Source: prepared by the author.

Chapter 6. Control System Design 80

6.6.2 Choice of the type of the controller

Since the linearized version of the plant detailed in Equation 6.7 has a double integrator,

we can specify a PD controller for the plant not to insert any additional pole. [43] analyzes the

stabilization and command following performance of a double integrator plant, comparing

different types of controllers, from classical PID to Continuous Sliding Mode controllers.

In terms of stabilization, the PD controller performs as well as the other controllers for all

prescribed criteria. Regarding the analysis of the command following, the PD controller

presents a fair performance compared to the alternatives and improves performance when

an integrator is added. Nonetheless, adding an integrator improves the command following

performance [?]. Hence, to tackle the position control problem of the linearized plant, we

chose a PID controller for the application.

6.6.3 Simulation results

We used the simulated model and a PID controller with gains kp = 291, kd = 436, and

ki = 15 to gain confidence and evaluate the approach’s effectiveness. Figure 6.8 depicts the

closed loop performance for the reference tracking of ¹ = 0.4 rad, and the control action

in terms of Ä(%). The temporal requirements specified in Table 6.1 were satisfied, with

ts = 1.56 s , tr = 0.11 s, tp = 0.33 s, Mp(%) = 16.34.

Chapter 6. Control System Design 81

Figure 6.8: Closed loop performance of the simulated model linearized using the feedback
linearization technique.

Source: prepared by the author.

6.6.4 Experimental results

Figure 6.9 depicts the closed-loop performance of the experimental platform. We applied

different step reference values, and the result is satisfactory regarding reference tracking.

Regarding temporal requirements, all specifications were satisfied for the different reference

steps with zero steady-state error. Nonetheless, it is worth emphasizing that there is a more

intense overshoot or unexpected oscillation in some of them, as in the first reference step

with Mp = 12%. These oscillations might come from two different sources. The first one is

mechanical, where the vibrations are more intense than the weight of the mast can handle.

The other is related to the fact that this strategy has no back-EMF control, which means

that the actuator is prone to vary its speed, thus oscillating the thrust force produced.

Chapter 6. Control System Design 82

Figure 6.9: Closed loop response of the feedback linearization version of the system .

Source: prepared by the author.

6.7 Cascade controller

The velocity of a DC motor can be indirectly controlled by managing the armature

current, and this strategy is named cascade control. As depicted in Figure 6.10, the inner

loop determines the setpoint of the armature current based on the comparison between the

current value and the reference one. The outer loop acts to match the reference speed and

the current one. In both loops, a PI controller is employed within a closed-loop system,

with kpω = 0.1, kiω = 1.5, kpI = 1.2, kiI = 0.5. The gains were computed using Simulink’s

Control Toolbox. There are saturation mechanisms to restrict the delivered current and the

voltage supplied to the motor.

Figure 6.10: Cascade Control.

Source: prepared by the author.

Chapter 6. Control System Design 83

To demonstrate the effectiveness of the control strategy using the simulated model, we set

a step reference speed of 950 RPM and monitored the speed of the rotor. Figure 6.13 depicts

that the rotor’s speed followed the reference value, respecting the temporal requirements

(ts f 0.8 s, tr f 0.2 s, Mp(%) f 10%).

Figure 6.11: Reference speed and the output of the cascade controller for the angular speed.

Source: prepared by the author.

6.8 Input-ouput feedback linearization and cascade con-

trol

As previously described, the feedback linearization technique is beneficial to transform

the nonlinear system into a fully linear one. At the same time, the cascade control strategy

makes it possible to control the rotor’s speed. Combining these two strategies makes it

possible to move the system throughout different operating regions and guarantee that

there will be fewer oscillations in the thrust force produced by the propeller. Figure 6.12

depicts the block diagram of the proposed strategy. First, the control action for the position

error is computed. The pseudo control action v is then converted to the reference speed É1,

which serves as the reference speed for the cascade controller. The output of the inner loop

is the desired rotor speed, which is converted to the desired thrust force.

Chapter 6. Control System Design 84

Figure 6.12: The block diagram of the feedback linearization strategy combined with a
cascade control strategy.

Source: prepared by the author.

6.8.1 Simulation results

The diagram illustrated by Figure 6.12 was implemented in a simulated environment.

Figure 6.13 depicts the closed-loop response using the position controller with the same

gains used in the feedback linearization without the cascade controller. The system tracked

the reference values for three different operating points, ¹1 = 0.2 rad, ¹2 = 0.4 rad, and

¹3 = 0.7 rad, with zero steady-state error. The temporal requirements were satisfied, with

ts f 3.6 s for all step reference values, tr f 0.5, and Mp(%) f 20%. Given that saturation

limits were applied to the reference rotor’s speed and the armature current values, we see

that the duty cycle did not exceed the maximum actuation value.

Chapter 6. Control System Design 85

Figure 6.13: Cascade Control.

Source: prepared by the author.

6.9 Final considerations

This chapter discussed different control approaches using the simulated model and the

experimental platform. The simulation environment made it possible to gain trust and test

different controllers, while the experimental platform assured the effectiveness of the control

design procedures.

The position control using the small-signal linearization was successfully implemented

using a PID controller, with the simulated and experimental platforms meeting the time-

domain requirements specification. In the aeropendulum platform, some oscillations could

be attributed to vibrations on the mast and variations in the propeller’s speed. The limit-

ation of this approach is that each desired angular position must be taken into the linear-

Chapter 6. Control System Design 86

ization procedure, altering the gains and requiring a gain scheduling strategy.

The input-output feedback linearization strategy was also successfully implemented. A

PID controller was chosen as a design decision, and the closed-loop performance, both in the

simulated model and the experimental platform met the desired time-domain specifications.

Oscillations were already expected since there is no back-EMF control.

A cascade control was proposed to tame the oscillations due to the variation in the

rotor’s speed. Both PI controllers were tuned to meet the desired performance criteria. The

time-domain specifications were satisfied in the simulation environment, with no exceeding

the actuation limits. Future work would be valuable to deal with the practical aspects of

this strategy regarding the experimental platform.

In the next chapter, we make the final considerations and recommend directions for

future work.

Chapter 7

Final Considerations

In this work, we have addressed the aeropendulum problem, which earlier works over-

looked by making assumptions and not modeling the actuator’s electrical dynamics. We

proposed and implemented a low-level data collection to acquire the electrical information.

We improved the system’s overall modeling by estimating the electrical parameters and the

nonlinear relationship between the PWM input and the armature voltage. Concerning the

simulation model, we have included electrical and aerodynamic effects.

Searching for a better way to describe the aerodynamic behavior of the propeller, we

employed the SINDy-based algorithms to help in this process. We explored noise mitigation

strategies and derivatives approximation methods to improve the identification results, and

it was evident that further effort must be employed to filter and assure high data quality.

The WSINDy algorithm was shown to be the best option due to the absence of derivatives

approximation. In simulation, the thrust coefficient was correctly estimated, and the model

correctly predicted the dynamics on the test set. A sparse model could not be retrieved

using data from the experimental platform.

The development of an acquisition scheme that runs solely on the Arduino made it

possible to assess different control approaches with gradual levels of improvement. All the

proposed strategies satisfy the specified temporal requirements, and there was a notable

improvement regarding the system’s performance. The feedback linearization technique is

the most suitable since it enables the system to move smoothly throughout different oper-

ating regions. Nonetheless, the experimental platform claims a back-EMF control strategy,

Chapter 7. Final Considerations 88

such as the cascade control, given that undesired oscillations are mainly due to motor speed

variations.

7.1 Future work

For future work, we suggest:

" Diagnose and fix the measurements of the armature voltage values. This improvement

will help to describe the electrical behavior of the actuator better.

" Improve the speed measurement of the propeller using the IR sensor and deal with

measurement spikes.

" Enhance the DC motor parameter estimation, especially the mechanical ones, and

update the simulated model.

" Revise the data preprocessing steps of the sparse identification algorithms and propose

model selection criteria; use the real propeller speed instead of the estimated one.

" Evaluate other polynomial candidate functions to describe the thrust force, including

non-integer exponents.

" Apply the feedback linearization with the cascade control approach to the experi-

mental platform and assess the closed-loop performance.

Bibliography

1 SILVA, Yago Luiz Monteiro. Projeto, Construção e Controle de um Aeropêndulo. 2018.
Monography, UFCG.

2 JúNIOR, Alexsandro Ferreira de Barros. Construção e Projeto de Controle de um
Aeropêndulo utilizando Model-Based Design. 2019. Monography, UFCG.

3 ENIKOV, E.T.; CAMPA, Giampiero. Mechatronic aeropendulum: Demonstration of
linear and nonlinear feedback control principles with matlab/simulink real-time windows
target. Education, IEEE Transactions on, v. 55, p. 538–545, 11 2012.

4 BARROS, Stayner; LIMA, Rafael. Controlador pid Ótimo baseado em pso aplicado a
um aeropêndulo. In: . [S.l.]: SBA Sociedade Brasileira de Automática, 2020.

5 LUCENA, Ellen R.; LUIZ, Saulo O. D.; LIMA, Antonio M. N. Modeling, parameter
estimation, and control of an aero-pendulum. Procedings do XV Simpósio Brasileiro de
Automação Inteligente, SBA Sociedade Brasileira de Automática, 2021.

6 GRIESEBNER, Klaus. Model-based Controller Development. 2017. MSc Dissertation ,
Halmstad University.

7 LJUNG, L.; SÖDERSTRÖM, T. Theory and practice of recursive identification. MIT
press Cambridge, MA, 1983.

8 OVERSCHEE, Peter Van; MOOR, Bart De. Subspace identification for linear systems.
theory, implementation, applications. Springer Science & Business Media, xiv, 01 1996.

9 HOF, Paul M.J. Van den. Lecture notes in system identification: Data-driven mod-
eling of dynamic systems. Department of Electrical Engineering Eindhoven University of
Technology, February 2020.

10 CHEN, S.; BILLINGS, S. A. Representations of non-linear systems: the narmax model.
International Journal of Control, Taylor & Francis, v. 49, n. 3, p. 1013–1032, 1989.

11 SCHOUKENS, Johan; LJUNG, Lennart. Nonlinear system identification: A user-
oriented road map. IEEE Control Systems Magazine, v. 39, n. 6, p. 28–99, 2019.

12 GUO, Yu; WANG, Fei; LO, James Ting-Ho. Nonlinear system identification based on
recurrent neural networks with shared and specialized memories. p. 2054–2059, 2017.

13 GONZALEZ, Jesus; YU, Wen. Non-linear system modeling using lstm neural networks.
IFAC-PapersOnLine, v. 51, p. 485–489, 06 2018.

Bibliography 90

14 YING, Xue. An overview of overfitting and its solutions. Journal of Physics: Confer-
ence Series, v. 1168, p. 022022, 02 2019.

15 LöHNING, Martin et al. Model predictive control using reduced order models: Guar-
anteed stability for constrained linear systems. Journal of Process Control, v. 24, n. 11, p.
1647–1659, 2014. ISSN 0959-1524.

16 BRUNTON, Steven; PROCTOR, Josh; KUTZ, J. Sparse identification of nonlinear
dynamics (sindy). 04 2016.

17 BRUNTON, Steven L.; KUTZ, J. Nathan. 7 data-driven methods for reduced-order
modeling. De Gruyter, p. 307–344, 2020.

18 STANKOVIć, Alex M.; SARIć, Aleksandar A.; SARIć, Andrija T.; TRANSTRUM,
Mark K. Data-driven symbolic regression for identification of nonlinear dynamics in power
systems. p. 1–5, 2020.

19 BRUNTON, Steven; PROCTOR, Josh; KUTZ, J. Sparse identification of nonlinear
dynamics (sindy). 04 2016.

20 KAISER, Eurika; KUTZ, J.; BRUNTON, Steven. Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science, v. 474, 11 2017.

21 CORTIELLA, Alexandre; PARK, K C; DOOSTAN, Alireza. Sparse Identification of
Nonlinear Dynamical Systems via Reweighted l1-regularized Least Squares. 2020.

22 MESSENGER, Daniel A.; BORTZ, David M. Weak sindy for partial differential equa-
tions. Journal of computational physics, v. 443, 2021.

23 SUN, Chong; TIAN, Tian; ZHU, Xiao cheng; DU, Zhaohui. Sparse identification
of nonlinear unsteady aerodynamics of the oscillating airfoil. Proceedings of the Insti-
tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, v. 235, p.
095441002095987, 09 2020.

24 BASTOS, VINICIUS BENITES. Virtual Environments Assisted by Machine Learning
for Modeling and Test of Robotic Platforms. 2021. PhD Thesis, UNICAMP.

25 CHARTRAND, Rick. Numerical differentiation of noisy, nonsmooth data. ISRN Ap-
plied Mathematics, 5 2011.

26 KAHEMAN, Kadierdan et al. Learning discrepancy models from experimental data.
arXiv.org perpetual, 2019.

27 CORKE, Peter. Robotics, Vision and Control - Fundamental Algorithms in MAT-
LAB®. [S.l.]: Springer, 2011. v. 73. 1-495 p. (Springer Tracts in Advanced Robotics,
v. 73). ISBN 978-3-642-20143-1.

28 SILVA, Brian de et al. Pysindy: A python package for the sparse identification of non-
linear dynamical systems from data. Journal of Open Source Software, The Open Journal,
v. 5, n. 49, p. 2104, 2020.

Bibliography 91

29 BREUGEL, Floris Van; KUTZ, J. Nathan; BRUNTON, Bingni W. Numerical differ-
entiation of noisy data: A unifying multi-objective optimization framework. IEEE Access,
v. 8, p. 196865–196877, 2020.

30 OLIVEIRA, Arthur D. B.; LIMA, Rafael B. C.; LIMA, Antonio M. N. Data-driven
system identification of an aeropendulum. Anais do Simpósio Brasileiro de Automação
Inteligente (SBAI 2023), oct. 2023.

31 GROUP, OSRAM. AS5040 Product Document. 2019.

32 ARDUINO. Arduino Rev3 Motorhsield. 2015.

33 CORPORATION, Atmel. ATmega 640 Microcontroller Product Document. 2014.

34 MOTOROLA. Motorola Analog IC Device Data. 2022.

35 CZYŻ, Zbigniew; KARPIŃSKI, Paweł; SKIBA, Krzysztof; WENDEKER, Mirosław.
Wind tunnel performance tests of the propellers with different pitch for the electric propul-
sion system. Sensors, MDPI AG, v. 22, n. 1, p. 2, dez. 2021.

36 PRASETIYO, Erwan Eko. A simple brushless motor and propeller test stand for ex-
periment from home. Journal of Physics: Conference Series, IOP Publishing, nov. 2021.

37 KÓSA, Patrik et al. Experimental measurement of a UAV propeller's thrust. Tehnicki
vjesnik - Technical Gazette, Mechanical Engineering Faculty in Slavonski Brod, v. 29, n. 1,
fev. 2022.

38 DEFLORIAN, Michael; ZAGLAUER, Susanne. Design of experiments for nonlinear
dynamic system identification. IFAC Proceedings Volumes, Elsevier BV, v. 44, n. 1, p.
13179–13184, jan. 2011.

39 FASEL, Urban et al. SINDy with control: A tutorial. 60th IEEE Conference on De-
cision and Control (CDC), IEEE, dez. 2021.

40 MATHWORKS. Tune 2-DOF PID Controller (PID Tuner). 2015. Available at:
<https://la.mathworks.com/help/control/ug/tune-2-dof-pid-controller-pid-tuner.html>.

41 BEAUREGARD, Brett. Arduino PID Library. 2017. Available at: <https://
playground.arduino.cc/Code/PIDLibrary/>.

42 LUCENA, Ellen Ribeiro. Modelagem e Projeto de Controladores para Aeropêndulo com
Desenvolvimento de Interface Gráfica Didática. 2021. Monography, UFCG.

43 RAO, Venkatesh G.; BERNSTEIN; S., Dennis. Naive control of the double integrator.
IEEE Control Systems, Institute of Electrical and Electronics Engineers (IEEE), v. 21,
n. 5, p. 86–97, oct. 2001.

