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ABSTRACT

A new technique for the decoding of cyclic codes , 
which is based on the finite field Fourier transform, is 
introduced. The method can be characterised in general 
as a transform domain based type of syndrome decoding 
which makes use of code preserving as well as of non- 
preserving permutations. Though only binary cyclic codes 
are considered, the ideas presented can be easily ex - 
tended to multilevel codes.

1 • i n t r o d u c t i o n

The analysis, sinthesis and implementation of er - 
ror control codes for digital communication Systems 
through the guise of the finite field Fourier transform 
(FFFT) is now an established subject and has put the 
field of coding theory in a digital signal processing 
framework _1,2_. In particular, a few frequency domain 
decoding procedures have been devised which represent in 
teresting options for the design of coded systems.
This paper introduces an improved version of the clas- 
sical syndrome decoding method, in the sense that short 
ened syndrome tables are used, thus allowing the de - 
coding of longer codes. The method represents a general 
ization of a recent work on the subject _3_ and intro - 
duces the use of non-preserving permutations in the de
coding process. It is based upon the partitioning , in 
the frequency domain, of the set of all correctable er
ror patterns of weight up to t, that are associated with 
an (n, k, d) binary cyclic code.

An outline of the paper is as follows. In secticnll 
we review a few Standard facts about the FFFT and some 
families of finite groups.

In section III we discuss the use of non-preserving 
permutations in the decoding process and a detailed ex- 
ample is shown to clarify the underlying concepts. The 
last section contains a summary of the main results pies 
ented.

carry over to finite fields, two are particularly im - 
portant, namely time-shift and scaling. The FFFT compo 
nents A_. satisfy also the so-called chord properties, 
e.i., the inverse FFFT (a^) is GF(q) valued if and on
ly if A1? = A. , where indexes are to be considered mo-_n_ uq
dulo n_4_. These properties together with some basic 
facts from the theory of finite groups, which include 
the Pólya-Burnside technique _5_ for counting equiva- 
lence classes, are the main elements in the work de - 
scribed here. To obtain a partition of the set of cor
rectable error patterns (or syndromes) , we consider the 
action of finite symmetry groups on that set. In par - 
ticular, transitivity is a very desirable feature of 
the groups to be applied, since in this case the set 
can be partitioned into the minimum number of orbits, 
which implies a maximum reduction in storage require - 
ments at the decoder. An important group for the pur- 
pose of syndrome classification is the group of proper 
rotations of a regular polygon with n sides _5_. This 
is a cyclic group of order n, denoted by Cn , generated 
by a planar rotation of 2n/n radians. A second group cf 
relevance is the group P(J£,s) of scalar permutations

P{.(s) : zn * zn

i SL i (mod n)

where Zn denotes the set of integers modulo n. P(£,s) 
is a group of order m, where m is the multiplicative 
order of í modulo n. In any case the number of orbits 
induced by the action of the group G on the set -S of 
syndromes, can be evaluated via Burnside's theorem _5_ 
and is given by

N = — --- E | Fix (g) | (2)
| G | gr G

where Fix(g) is the set of elements of S that are fixed 
under the action of g. Alternatively, N can be obtained 
through the use of cycle index polynomials _6_.

III. DECODING VIA NON-PRESERVING PERMUTATIONS

H . PRELIMINARIES

Let a = (aQ,..., an_^) a vector with components 
in GF(q). Then its FFFT is the vector A = (AQ,... An_-̂ ) 
with components in GF(qm ), given by

where a is an element of order n of GF(qm ). VJithout loss 
of generality, we approach here the case q = 2 and 
n = qm - 1. The FFFT pair, which is denoted by 
(a^) »-(Aj) , is entirely analogous to adiscrete Fourier
transform (DFT) pair and, among the DFT properties which

Given a partition of the set S of syndromes into 
orbits we need, from the point of view of decoding, to 
be able to link every orbit leader with any member of 
its orbit. Since the received vector r(x) contains all 
the information about the channel error vector e(x), we 
need a relationship between r(x) and the orbit to which 
e(x) belongs. Thus, considering cyclic partitions, if 
Ej = ar  ̂ denotes the syndrome of e(x), then the syn
dromes of all its shifted versions e'(x) are _7_

E' = ccr3 + (3)

where wc assume jrC^, the cyclotomic coset modulo n 
over GF(q) whose representative is j, and Íq defines 
the shift between e(x) and e'(x). We call the integers
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r. and r ' . the syndrome identifiers and, 
3 3they are related by 

r

from ( 3 )

. = r . + iin: 3 J o
which implies the orbit identifying condition

(mod n) (4)

R(r1j , r ' 1) R(r j ,

where

R(rj, rk > = r. jk (mod n)

(5)

( 6 )

A similar line of thought can be developed for scalar 
permutations, which leads to the orbit identifying con
dition

r 'j = rj/£S (7)
where s is an integer in the interval _1, m-l_.

Let us examine in more detail the effect of the 
permutations p p(l) over the syndrome of a vector r(x) ;
P ç (1) acts on the set {0, 1, n-1} by changing i
into £i (mod n), which means that in r(x), a polynomial 
of degree less than n, x^ changes to x^i(mo<3 n) ^
In Standard permutation decoding one is always inter - 
ested in finding permutations that will move the errors 
out of the information section of the codeword , since 
this makes the syndrome of r(x) equal to a permuted ver 
sion of e(x) and by simply applying the inverse permuta 
tion the error vector can be estimated. The permutations 
used in such decoding methods must transform codewords 
into codewords, otherwise the syndrome of r ^  (x) (the 
permuted version o.f r(x)) cannot be calculated.

In the context of cyclic codes over GF(q) the permu 
tation that sends i into i + 1 (mod n) clearly preserves 
the code; also, if n and q are relatively prime , the 
permutation P (1) sends codewords into codewords. How 
ever, what can be said about other values of £ besides 
q? Assuming that £ and n are relatively prime we can 
guarantee that p^(l) leaves the weiqht of a vector un 
changed, thus modifying C into an equivalent code, but 
which of these values of £ preserves the code is a dif- 
ficult question to be ansWered beforehand. Nevertheless, 
the primeness condition is enough to assure that under 
p^(l) a cyclic code C is mapped into an equivalent cy
clic code C'_8_. This result is very important in the 
sense that it provides a way out of the problem of cal 
culating the syndrome of r ^  (x) as is shown by the fol- 
lowing lemma:

Lemma 1 Let , . n~l i-------  r(x) = .Z r.xi = 0 i
be a polynomial over GF(q) and denote by r ^  (x) the poly 
nomial obtained from r(x) by applying the permutation

p (1): xi -♦ x 5̂ ,  (£, n) = 1.

Then a is a root of r(x) if and only if b/£

root of r^(x), where exponents are to be considered 
modulo n .

Proof: By definition
Mn-l)

n-1

r£±(a ) = rQ+ria +. , bx n-1 , b.•+rn_1 (a ) = r(a ).
QED

We now assume that p^(l) is a non-preserving permu 
tation that is to be applied to r(x) and show how, with 
the help of lemma 1, we can calculate the syndrome of 
r£i ̂  * T*ie f°rm °f syndrome we are considering emp3oys 
the zeros of the code, which are the roots of its gen- 
erator polynomial g(x). Letting a-1 denote any such 
roots, we recall that

r (x) = c (x) + e (x)

from where, by applying p^(l), we obtain

ru U) “ CM (X) + eu (x)
But, as aJ is a root of c(x) then, from lemma 1, a 
is a root of c^(x), so that

r£l(“jA) “ C£i(ajA) + e £i(ajA)

3/1

E . . 
3

Therefore, all we have to do is to find the roots of 
the new generator polynomial via the lemma and these 
are the values to be used for calculating the syndrome 
of r£i(x) .

Let us now examirfe how a non-preserving permuta 
tion p^(l) may be used to decode a cyclic code. The 
process involves essentially the same ideas as with pre 
serving permutations, the only difference being every 
time P^d) is applied to r(x) we need to make use of 
lemma 1 to calculate the syndrome of r^dx) . In gen
eral, this means that the set of orbit identifier num 
bers r^ may change, which implies that a different set 
of R functions is to be used in relation to r^^(x). In 
the worst case it will be necessary to use m distinct 
sets of R functions, one for each time that p^(l) is 
applied, where m is the multiplicative order of £ módu 
lo n. However, this worst case condition very seldom 
arises and the successive sets of identifiers generated 
at every step usually have a very large intersection . 
With respect to the computational burden involved in 
the syndrome recalculations, they can be easily avoided 
if we remember that all the necessary information to 
find e(x) is contained in the syndrome of r(x) and the 
new syndromes will not add any new information to the 
problem. What they tell us, and this is of fundamental 
importance in the scheme, is to where in the orbit 
leaders we should look'now (after p^(l) has been used) 
to make a comparison; that is, a possibly different R 
function should be used in the orbit identification and 
its identity is given by the new syndrome. Tb calculate 
it we observe that when we change i to i£ (mod n), the
coset C. is mapped into the one that contains ( j /£ ) 

3 -í / £(mod n); if we use directly the value a to calcu -
late the syndrome of r . (x) then, by lemma 1, we should
get the same answer when evaluating r(x) at x = aJ . On
the other and, if we make the exponent of a be the rep
resentative of the coset that contains (j/£) ( mod n ),
then the syndrome of rpi (x) is going to be a power of
the syndrome of r(x). Both approaches may be adopted
and, since they basically trade Circuit hardware
against computational complexity, the choice between
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them should take into consideration the decoder design 
priorities. In either case, once the orbit of e(x) is 
found, Íq is computed through the values and after 
a cyclic shift of iQ places is applied to the orbit 
leader, an inverse permutation completes the decoding.

The main steps for decoding a cyclic code with the 
non-preserving permutation p (1 ) can be summarised as 
follows.

(i) We first calculate the syndrome of r(x)

E ' j = r(a-̂ ) = ar j

and set s = 0

(ii) We then compare, for all orbit leaders, the R func 
tions Rir1 *., r ' ) and R(r, , r ) , where b and a 
designate the representatives of the cyclotomic co
sets associated with the roots of r (x). If ans£ i
equality is found then we have made an orbit iden- 
tification. This means that we need to cyclically 
shift its leader by Íq positions, where

Íq = a ^(r'a - r& ) (mod n) 
and the error locations are •

i'j = (ij + i0)£m S (mod n)

for 1 < i 4  w, with w <_ t. However, if no equality 
is found, we increase the value of s by one and 
return to the beginning of (ii), etc.

The second step of the above algorithm can be exe- 
cuted in an alternative way as follows. Instead of using 
a set of identifiers cr.iven by the coset representa
tives, we consider the set r ./0. This is eauivalent to

' i/£scomputing the syndrome of r (x) via the roots aJ/
£Si

which, by lemma 1 , is equal to the syndrome of r(x) . 
Thus we may store all the m values of the R functions 
associated with the set r_.^s, 0 < s < m- 1 , for every 
orbit leader, comparing them with the value assumed by 
the set of R functions associated with r(x), since now 
only its syndrome is being calculated. One of these 
comparisons will produce a positive answer, and after 
that the procedure to identify Íq and the error posi - 
tions is the same as before.

To illustrate the above explanations, let us exam
ine a simple example.

Example: We consider the (15, 7, 5) binary BCH code
generated by

, . 2 4 8g(x) = 1  + x + x + x + x

We choose the value 7 for £ since p^(l)isa permutation
that does not preserve this code; in fact it changes

3 7 3the zeros of the code ( a  and a ) into a and a . The
semi-partition of S results in four equivalence classes;
using the first approach described in (ii) the decoder
needs to have the following information

ORBIT LEADERS IDENTIFIERS R FUNCTION R FUNCTION-

(il' i 2) (rl • r3 ' r7) R(r3, r±) R (r 3, r 7)
0 0, Oo 0 0

o, 1 4,, 1 4 , 9 2 8
0, 3 14, 7 ,13 10 10

o, 5 10,, -® ,10 _oo -a»

By lemma 1 we can determine the effect of p7 (l) on the 
zeros of the code and the corresponding cosets. The 
resulting changes are:

Roots, Cg Roots, Cg Roots, Cg Roots, Cg

a3  *, C3------ a9 , C3-------  a12, C 3------  a6  *, C3
P7 (l) P7 (l) P7 d)

7 1 13 4a , C-j----- a , ------a , Cj------- a ,

and we see that only two distinct pairs of cosets are 
involved; hence, just two R functions are needed ( see 
table ). The decoding of

2 4r(x) = 1 + x + x

is completed for s = 3 and (syndrome computation)
2E 1 , = r (a) = a 1 3

7 i

E ' , = r (a3) = a3 3 3
7 i

R(r'3, r 1 -̂) = 2 (mod 15)

Therefore, we find

íq = r'^ - r-̂  = 2 - 4 e 13 (mod 15) ;

the error positions are.

i V  = (ij + i0)£m S (mod n)

i 13 = (0 + 13)74-3 (mod 15) = 1

and

1'2 = (1 + 13)74-3 (mod 15) = 8

The estimated error vector is then
. , x 8 e (x) = x + x

and r(x) is decoded as
2 4 8c(x) = r(x) - e(x) = 1 + x + x + x + x .

iv. c o n c l u s i o n s

Decoding methods for error control codes which use 
syndrome look-up tables can be applied to any linear 
(n, k, d) code, resulting in minimum error probability. 
However, they become impractical to implement for large 
values of (n-k) due to memory constraints in the de 
coder.

By applying FFFT based techniques, a partitioning
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of the set of all syndromes into equivalence classes is 
obtained, which implies a reduction in the required 
storage, thus allowing the decoding of longer codes 
A raodified syndrome look-up table decoding algorithm 
for cyclic codes is introduced, which is based upon 
the use of permutations, but has the interesting aspect 
that permutations which are not code preserving are 
also allowed. The properties of the FFFT are used to 
relate the syndrome of the permuted orbit leadets to 
the syndrome of the received, possibly erroneous code 
word. These ideas establish a family of syndrome look- 
up table type decoders whose complexity varies as a 
function of the type and number of permutations ap 
plied.
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