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Resumo
Sistemas de Recomendação (RSs, Recommender Systems) consistuem um campo de

pesquisa e aplicação cujo objetivo é recuperar itens relevantes dado o histórico de inter-

esses anteriores de um usuário. Desde o desafio aberto proposto pela Netflix para melhoria

de performance em recomendação de filmes (Netflix Prize), RSs utilizam fatores latentes,

ou embeddings, inicializados aleatoriamente e atualizados durante as etapas de treinamento,

como representação para ambos usuários e itens. Observando o grande campo da Aprendiza-

gem de Máquina (ML, Machine Learning), diferentes áreas de aplicação obtiveram melhoria

de performance através da transferência de aprendizagem (Transfer Learning), à exemplo

da grande evolução obtida nas tarefas relacionadas à Visão Computacional (CV, Computer

Vision) após a introdução de modelos como VGG e AlexNet, mas também muito presente em

tarefas do campo de Processamento de Linguagem Natural (NLP, Natural Language Pro-

cessing), especialmente com a popularização dos Grandes Modelos de Linguagem (LLMs,

Large Language Models) como as famílias de modelos BERT e, mais popular recentemente,

GPT. Diferente das outras áreas de aplicação, entretanto, Transfer Learning em RSs não é

trivial, visto que as entidades geralmente se restringem à usuários e itens, enquanto em CV,

as entidades são imagens e, em NLP, são palavras. O objetivo desta pesquisa é, portanto,

estudar possíveis aplicações de Transfer Learning em modelos de recomendação, avaliando

como diferentes inicializações impactam a performance preditiva de um modelo, através de

técnicas de não-supervisionadas, auto-supervisionadas, e supervisionadas.
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Abstract
Recommender Systems (RSs) consist of a field of research and application with the goal of

retrieving relevant items for a user. Since the open Netflix Prize challenge for performance

improvement in RSs, they have constantly been built by representing users and items as latent

factors, more commonly known as embeddings, which are often randomly initialized and

updated during the training stages. When looking at the greater Machine Learning (ML) area,

different areas of application obtained performance improvement through Transfer Learning,

such as the boost obtained in the Computer Vision (CV) tasks after the proposal of models

like VGG or AlexNet, or the one achieved in Natural Language Processing (NLP) tasks,

especially after the popularization of Large Language Models (LLMs) such as the BERT and,

more recently, the GPT model families. Unlike other application areas, however, Transfer

Learning for RSs is not trivial since users and items are the entities, while in CV and NLP, the

entities are images and words, respectively. This research aims to study possible applications

of Transfer Learning for RSs, evaluating how unsupervised, self-supervised, and supervised

embedding initialization impact the predictive performance of the models.

ii



Agradecimentos
Agradeço inicialmente aos meus pais, Edilson e Tamar, por todo o apoio que me deram até

aqui, mas especialmente por incentivar e possibilitar, no máximo dos seus esforços, para que

eu tivesse acesso à educação de qualidade. Agradeço também as minhas irmãs, Thaís, Elloá

e Laura, que sempre me foram exemplos de pessoas e profissionais.

Gostaria também de agradecer ao meu orientador, Leandro, por me guiar como

pesquisador e profissional. O tempo que trabalhamos juntos certamente será fundamental

para a construção do resto da minha carreira. Agradeço também aos professores Rodrygo

Santos e Denis Parra, cujas contribuições na produção de artigos ajudaram a direcionar e

ampliar minha perspectiva sobre a pesquisa. Nos momentos de maior dificultade no decorrer

dessa pesquisa, sempre pude contar com o apoio de Elloá e de Iann, sem eles eu não teria

conseguido tanto.

Ao Laboratório de Mineração de Dados (LMD) e ao Laboratório de Sistemas Dis-

tribuídos (LSD), que me possibilitaram conhecer e trabalhar com diversos profissionais e

pesquisadores, por proverem parte da infraestrutura necessária para execução dos experi-

mentos, e por serem, em conjunto, a minha casa dentro da UFCG. Um dos projetos de

pesquisa também me possibilitou iniciar a vida profissional, e sou muito grato ao time do

Indaband, em especial à Helielson Santos e Andrews Medina, que acreditaram em mim e me

convidaram para fazer parte dessa equipe sensacional com um objetivo brilhante.

Além do âmbito profissional, durante esses anos também melhorei bastante como pessoa.

Ainda na Paraíba, agradeço à Newton, Gustavo e, novamente, Iann, meus amigos que tam-

bém são irmãos, por todas as risadas e momentos compartilhados durante todos esses anos

de amizade. São Paulo me permitiu aproximar de muitas novas pessoas, então gostaria de

agradecer à Thales e Fernando, e, mais recentemente, Ernane, Chen e Leo, que se tornaram

minha “casa fora de casa”.

Por fim, mas não menos importante, gostaria de agradecer à Kunumi, pelo suporte finan-

ceiro para que esta pesquisa fosse executada durante um período em que a educação pública

brasileira estava sob ataque. Zelar por um ensino público de qualidade e manutenção das

instituições de pesquisa é nosso dever como cientistas brasileiros.

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 7

2.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Recommendation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Matrix Factorization (MF) . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Weighted Matrix Factorization (WMF) . . . . . . . . . . . . . . . 10

2.2.3 Bayesian Personalized Ranking (BPR) . . . . . . . . . . . . . . . . 11

2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Pre-training and Transfer Learning . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Latent Factor Generation . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Method 20

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Pre-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Non-task-specific . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



CONTENTS v

3.2.2 Task-specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Item Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Evaluation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 29

4.1 Explicit Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Implicit Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Cross-Task Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions and Future Work 51

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Algorithms 54

B Explicit Feedback Supplementary Material 55

C Implicit Feedback Supplementary Material 63

D Cross-task Supplementary Material 80



List of Symbols

CV - Computer Vision

CF - Collaborative Filtering

DL - Deep Learning

DNN - Deep Neural Network

MF - Matrix Factorization

ML - MovieLens

NLP - Natural Language Processing

NN - Neural Network

OOV - Out of Vocabulary

PCA - Principal Component Analysis

RS - Recommender System

SG - SkipGram

vi



List of Figures

2.1 Interaction matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Implicit feedback matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 VGG Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 CBOW and Skip-Gram model architectures. . . . . . . . . . . . . . . . . . 17

3.1 Target2Target scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Source2Target scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Evaluation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Rating2Ranking case in the Source2Target scenario . . . . . . . . . . . . . 28

4.1 Target2Target RMSE performance. . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Source2Target RMSE performance. . . . . . . . . . . . . . . . . . . . . . 31

4.3 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 32

4.4 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 33

4.5 Target2Target loss landscape analysis. . . . . . . . . . . . . . . . . . . . . 34

4.6 Source2Target loss landscape analysis. . . . . . . . . . . . . . . . . . . . . 35

4.7 Source2Target pre-training using the Netflix Prize dataset as source. . . . . 36

4.8 Target2Target pre-training using MovieLens samples for Ranking prediction. 39

4.9 Target2Target pre-training using the MovieLens datasets for Ranking pre-

diction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.10 Source2Target pre-training using samples of the MovieLens 25M for Rank-

ing prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 Final loss of the Source2Target models pre-training using samples of the

MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . . . 42

4.12 Pre-trained model loss over the baseline’s loss. . . . . . . . . . . . . . . . 43

vii



LIST OF FIGURES viii

4.13 Source2Target pre-training between the Netflix and MovieLens datasets for

Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.14 Pre-trained model loss over the baseline’s loss using the Netflix dataset as

the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.15 Source2Target pre-training for item consumption between on the MovieLens

25M samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.16 Ranking2Rating pre-training using samples of the MovieLens 25M. . . . . 48

4.17 Rating2Ranking pre-training using samples of the MovieLens 25M. . . . . 48

4.18 Rating2Ranking pre-trained model loss over the baseline’s loss. . . . . . . . 49

B.1 Recall@50 performance on Source2Target RMSE performance on samples

of MovieLens 10M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.2 Recall@50 performance on Source2Target RMSE performance on samples

of MovieLens 20M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.3 Recall@50 performance on Source2Target RMSE performance on samples

of MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.4 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 57

B.5 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 57

B.6 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 58

B.7 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 58

B.8 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 59

B.9 OOV performance evaluation in the Source2Target scenario. . . . . . . . . 59

B.10 Recall@50 performance on Source2Target loss landscape analysis using

MovieLens 9.9M as source. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.11 Recall@50 performance on Source2Target loss landscape analysis using

MovieLens 19.9M as source. . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.12 Recall@50 performance on Source2Target loss landscape analysis using

MovieLens 24.9M as source. . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.13 Recall@50 performance on Source2Target loss landscape analysis using

MovieLens 9M as source. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES ix

B.14 Recall@50 performance on Source2Target loss landscape analysis using

MovieLens 19M as source. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.15 Recall@50 performance on Source2Target loss landscape analysis using

MovieLens 24M as source. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C.1 NDCG@20 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 63

C.2 NDCG@50 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 64

C.3 Precision@10 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 64

C.4 Precision@20 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 65

C.5 Precision@50 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 65

C.6 Recall@10 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 66

C.7 Recall@20 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 66

C.8 Recall@50 performance on Target2Target pre-training using MovieLens

samples for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 67

C.9 NDCG@20 performance on Target2Target pre-training using the MovieLens

datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 67

C.10 NDCG@50 performance on Target2Target pre-training using the MovieLens

datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 68

C.11 Precision@10 performance on Target2Target pre-training using the Movie-

Lens datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . 68

C.12 Precision@20 performance on Target2Target pre-training using the Movie-

Lens datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . 69

C.13 Precision@50 performance on Target2Target pre-training using the Movie-

Lens datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES x

C.14 Recall@10 performance on Target2Target pre-training using the MovieLens

datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 70

C.15 Recall@20 performance on Target2Target pre-training using the MovieLens

datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 70

C.16 Recall@50 performance on Target2Target pre-training using the MovieLens

datasets for Ranking prediction. . . . . . . . . . . . . . . . . . . . . . . . 71

C.17 NDCG@20 performance on Source2Target pre-training using samples of the

MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . . . 71

C.18 NDCG@50 performance on Source2Target pre-training using samples of the

MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . . . 72

C.19 Precision@10 performance on Source2Target pre-training using samples of

the MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . 72

C.20 Precision@20 performance on Source2Target pre-training using samples of

the MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . 73

C.21 Precision@50 performance on Source2Target pre-training using samples of

the MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . 73

C.22 Recall@10 performance on Source2Target pre-training using samples of the

MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . . . 74

C.23 Recall@20 performance on Source2Target pre-training using samples of the

MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . . . 74

C.24 Recall@50 performance on Source2Target pre-training using samples of the

MovieLens 25M for Ranking prediction. . . . . . . . . . . . . . . . . . . . 75

C.25 NDCG@20 performance on Source2Target pre-training between the Netflix

and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . . . 75

C.26 NDCG@50 performance on Source2Target pre-training between the Netflix

and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . . . 76

C.27 Precision@10 performance on Source2Target pre-training between the Net-

flix and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . 76

C.28 Precision@20 performance on Source2Target pre-training between the Net-

flix and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . 77



LIST OF FIGURES xi

C.29 Precision@50 performance on Source2Target pre-training between the Net-

flix and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . 77

C.30 Recall@10 performance on Source2Target pre-training between the Netflix

and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . . . 78

C.31 Recall@20 performance on Source2Target pre-training between the Netflix

and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . . . 78

C.32 Recall@50 performance on Source2Target pre-training between the Netflix

and MovieLens datasets for Ranking prediction. . . . . . . . . . . . . . . . 79

D.1 NDCG@20 performance on Rating2Ranking pre-training using samples of

the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.2 NDCG@50 performance on Rating2Ranking pre-training using samples of

the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.3 Precision@10 performance on Rating2Ranking pre-training using samples

of the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D.4 Precision@20 performance on Rating2Ranking pre-training using samples

of the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D.5 Precision@50 performance on Rating2Ranking pre-training using samples

of the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D.6 Recall@10 performance on Rating2Ranking pre-training using samples of

the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

D.7 Recall@20 performance on Rating2Ranking pre-training using samples of

the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

D.8 Recall@50 performance on Rating2Ranking pre-training using samples of

the MovieLens 25M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



List of Tables

3.1 Statistical description of the datasets. . . . . . . . . . . . . . . . . . . . . . 21

3.2 Application of Skip-Gram for NLP and pre-training . . . . . . . . . . . . . 23

4.1 Basic statistics of the datasets generated to evaluate the Source2Target strategy. 32

4.2 Papers with Code recommendation benchmarks for MovieLens 100k, adding

our experiment best results. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Papers with Code recommendation benchmarks for MovieLens 1M , adding

the baseline and our best-performing model. . . . . . . . . . . . . . . . . . 45

4.4 Papers with Code recommendation benchmarks for MovieLens 20M, adding

the baseline and our best-performing model. . . . . . . . . . . . . . . . . . 46

xii



List of Algorithms

1 MovieLens Data splitting algorithm . . . . . . . . . . . . . . . . . . . . . . 54

xiii



Chapter 1

Introduction

1.1 Motivation

Recommender Systems (RSs) are systems or models with the goal of filtering items by iden-

tifying those with greater relevance to the user or client in an automatic and personalized

manner. Considering how they work, they can generate fidelity, making the users spend

more time on the platforms or increasing sales of a given service. Because of these effects,

they are a crucial component in the daily routine of a significant part of the population, being

present from streaming services and e-commerce platforms to social networks, thus mak-

ing their use and presence indispensable. Due to this regular use, the RSs are constantly

evolving, attracting new users and consequently generating more data, which allows further

improvements to their functioning and creates a cycle of evolution.

Despite the first RSs being based on characteristics of the products, the so-called

“Content-based Filtering”, their performance has been surpassed by RSs based on the con-

suming profile, identifying users similar to the one currently using the system, a process

called “Collaborative Filtering” (CF). Other research has also proposed methods that use

the products’ characteristics and the consuming history, generating the often called “Hybrid

RSs”, but also referred to as RSs with side information.

Several authors (e.g., [44; 27; 68; 16]) proposed to investigate the possibility of perfor-

mance improvement by using side information:

1. User metadata. Information regarding the user, such as a demographic profile. Com-

1
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monly, this metadata contains the user’s age group, occupation, average compensation,

location, etc, and can be used to make the models learn similar consumer profiles.

2. Item metadata. Differently from the user metadata, the metadata of an item varies

according to the domain of the application: music streaming platforms might have

attributes such as genre, length, language, and others, while an e-commerce platform

would use the category of the product, price range, and product brand as attributes.

3. Context metadata. More recently, researchers realized that the context in which a

user consumes an item also impacts the recommendation that might be of interest.

Therefore, platforms may recommend different items considering the time of the day,

the user’s current location, and the device used to access, among other attributes, to

make a more specific recommendation [16].

Despite the research claiming performance improvement when side information is used,

it is not always available, or the cost to obtain or use it is prohibitive. New strategies are

necessary when only the user-item interactions are known.

The increase in available data combined with the algorithmic and hardware advances

made the use of Neural Network- (NN-) based models feasible, especially those with a deep

architecture, usually known as Deep Neural Networks (DNN), which constitute the sub-

field of Deep Learning (DL) [13] under the Machine Learning (ML) field. In CV tasks, for

example, the proposal of models such as VGG [54] and AlexNet [30], initially trained to

perform a dummy task, such as image object classification, having a large image dataset as

input, allowed the field to increase performance in a broad set of specific CV tasks since

these models use the initial training to learn low-level, thus generic, image features, such as

contours and shapes, which can be later used to improve the performance in a downstream

task, which commonly has less available information. Similarly to CV, NLP models such as

ELMo [40] and the ones that belong to the BERT [8] or GPT [43] families follow a similar

strategy by pre-training the models for one or more generic task, such as text generation

(i.e., next word prediction), and fine-tuning them for the desired task, for example, sentiment

classification.

However, Transfer Learning cannot be easily applied to RSs; unlike CV and NLP, each

application of RSs consists of a specific set of entities. For example, while any large image
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dataset can be used to learn contours and shapes, it is not possible, for example, to learn

the representations of the users from a Netflix dataset and use them to improve performance

in a Disney Plus dataset, since the users are not the same or, even if someone has accounts

in both platforms, it may not possible to share their information due to privacy and data

protection legislation. Recent research showed that when a company has multiple platforms

for different services and can identify the user among them, a model can leverage information

learned from a user regarding a service and use it to initialize the user representation when

training a model for a different service, a process called by the authors as cross-domain

pre-training [59].

Another barrier exists when thinking about item representation: it may not be reasonable

to transfer item representation across different domains because there might not be any log-

ical benefit from initializing a movie representation with the learned embedding of a song,

for example. Despite this restriction, transferring item representations within the same do-

main is possible. However, it is not trivial and relies on the accuracy of text-matching (e.g.,

matching movie titles) algorithms.

The RSs branched through different paths, apart from pre-training and transfer learning.

Some of these paths are:

1. Model Robustness. While many traditional recommender models relied on the user-

item matrix (a.k.a. rating matrix or interaction matrix) or the interactions between

users and items, possibly also using metadata, the popularization of NN made it easy to

use them for recommendation. Examples of these models are the Neural Collaborative

Filtering (NCF) [20], models built with autoencoders [34; 36], and transformer-based

models [7; 56; 41].

2. Semantic-Aware and Content-based models. Considering that the CV and NLP ar-

eas were evolving faster, the RSs took advantage of these improvements to evolve

the content-based recommenders through semantic awareness: the use of open data,

textual, visual, and multimedia to create a component that better understands the avail-

able side-information [6]. Examples of this would be using an embedding-based NLP

model to semantically understand the synopsis of a movie [55], or extracting visual

features with a DNN to understand art preferences [66].
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3. Sequence- and Session-based recommendation. Unlike the previous branches, these

models structure the interaction data temporally to perform better in cases where the

recent data has more impact than the general user history. The session-based scenario

is a limitation on the Sequence-based where the system cannot identify the logged

user but still benefits from promoting personalization based only on the current session

information [56; 22; 23].

However, despite the reported advances, in 2019, two studies [10; 47] reviewed the re-

producibility of papers in the RSs area, claiming that only a few methods were reproducible,

and the ones that were frequently reported results in discrepancy with reality, outperform-

ing baselines which were not trained and fine-tuned properly. These statements intensified

the scrutiny upon new research, demanding better verification of results and conducting and

executing reproducible experiments with open code and/or data.

1.2 Dissertation Statement

Challenged by the possibility and reported improvement of pre-training recommendation

models with previously learned user representations [59], we hypothesize that overcoming

the barriers of transferring item representations within the same domain may also benefit

performance.

Furthermore, impacted by the recent studies regarding the performance improvement of

having more robust models, especially in terms of the number of parameters [10; 47], we

intend to evaluate our hypothesis over well-established models and datasets, which are often

used as baselines, to understand the impact of the pre-training strategies for RSs.

This dissertation states that initializing item representation with the learned representa-

tions of the same items in different datasets or platforms may improve performance even

when the models are as simple as they can be without using any side information.

The proposed statement leads us to pursue the following research questions, which

guided the development of this work and are addressed in the next chapters:

RQ1. Does pre-training improve a model’s performance? For this question, we evaluate

the impact of using unsupervised and self-supervised techniques to generate embed-
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dings, what we call non-task-specific pre-training, and the impact of supervised tech-

niques, i.e., trained recommendation models to generate the embeddings, what we call

task-specific pre-training.

RQ2. How do out-of-vocabulary items impact a pre-trained model’s predictive perfor-

mance? In this case, we investigate the task-specific pre-training further, understand-

ing the impact of unknown items in the target dataset.

RQ3. Does pre-training act as a model regularizer? Previous research showed that using

a more effective initialization strategy can lead to a regularization effect. In our case,

we study if pre-training also acts as a regularizer.

RQ4. How do the best results achieved with pre-training compare to the best-known

results on the corresponding datasets? Lastly, we intend to compare our best-

performing models to the ones in the literature, understanding the different impacts

depending on the addressed task.

1.3 Dissertation Contributions

The main contributions of this study are listed below:

1. Explore the idea of using same-domain public datasets to improve the performance

of the models through pre-training and transfer learning without employing any side

information;

2. Perform ablation experiments to understand the impact of the items not represented in

the source dataset, often referred to as out-of-vocabulary (OOV) items;

1.3.1 Publications

Some of the results presented in this dissertation were earlier published as papers in confer-

ence proceedings as follows:

UMAP’23 Júlio B. G. Costa, Leandro B. Marinho, Rodrygo L. T. Santos, and Denis Parra.

2023. Evaluating Pre-training Strategies for Collaborative Filtering. In Proceed-

ings of the 31st ACM Conference on User Modeling, Adaptation and Personalization
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(UMAP ’23). Association for Computing Machinery, New York, NY, USA, 175–182.

https://doi.org/10.1145/3565472.3592949

IUI’22 Leandro Balby Marinho, Júlio Barreto Guedes da Costa, Denis Parra, and Rodrygo

L. T. Santos. 2022. Similarity-based explanations meet Matrix Factorization via

Structure-Preserving Embeddings. In 27th International Conference on Intelligent

User Interfaces (IUI ’22). Association for Computing Machinery, New York, NY,

USA, 782–793. https://doi.org/10.1145/3490099.3511104

1.4 Outline

The subsequent chapters are organized as follows:

• Chapter 2 provides the background to understand the RSs and our study, also pro-

viding an overview of how the data is organized and represented, and portrays earlier

research with similar methods to those used in our research, highlighting their differ-

ences.

• Chapter 3 defines the experimental setup and dataset choices, elaborates on the chosen

pre-training approaches, and describes our evaluation scenarios.

• Chapter 4 further discusses the results and findings of our experiments over explicit

and implicit feedback and cross-task transfer learning.

• Finally, we summarise our discoveries and contributions and indicate the following

research in Chapter 5.



Chapter 2

Background and Related Work

In this chapter, we first review how data is represented for RSs and the principles of rating and

ranking prediction. Second, we introduce the models we will use to evaluate our hypothesis.

Third, we present the metrics used to assess performance. Next, transfer learning and pre-

training will be discussed as well as the methods used in this research. Lastly, we discuss the

related work.

2.1 Data Representation

The most simple RSs are applied over three different entities: (1) the users that interact with

the system, denoted by U = {u1, u2, . . . , uN}; (2) the items available in the system, denoted

by I = {i1, i2, . . . , iM}; and (3) the interaction of a user to an item, i.e. ru,i, →u ↑ U, →i ↑ I .

This interaction ru,i is more frequently represented in two different ways: (1) explicit

feedback, consisting in a discrete value that represents the rating given by the user to the

item, usually in the [1, 5] range; and (2) implicit feedback, when the user does not explicitly

provide feedback, but the system can capture the interaction (e.g. the user bought an item or

watched a video), usually represented with a binary value. Although less frequent, one might

model an RS differently, such as capturing the implicit feedback and counting the times the

user has interacted with that item.

In most RSs scenarios, the goal is the matrix-completion problem: the data is represented

using a sparse RN→M matrix such that each cell rn,m represents the interaction between the

user n with the item m. Figures 2.1a and 2.1b show an example of such representation for

7
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explicit and implicit feedback.

i1 i2 . . . i|I|

u1

u2

...

u|U |

. . .

. . .

. . .

. . .

...
...

...

1 3 4

↓ 4 5

2 ↓ 3

(a) Explicit feedback matrix.

i1 i2 . . . i|I|

u1

u2

...

u|U |

. . .

. . .

. . .

. . .

...
...

...

1 1 1

0 1 1

1 0 1

(b) Implicit feedback matrix.

Figure 2.1: Interaction matrices. In the explicit feedback matrix, ↓ denotes the missing

values.

The item prediction task, which uses implicit feedback, has gained popularity over the

rating prediction task, which uses explicit feedback. This happened for several reasons, some

of them are: (1) capturing interactions automatically allows the system to collect more data

since it does not require an explicit user action to rate the interaction; (2) understanding

user preferences more efficiently, considering that consumption is an indicator of preference

by itself, and the interest might be increasing it; (3) each user has their line of thought for

rating, and while one of them might rate something they disliked with 1 star, others might

rate it with two stars; (4) explicit feedback can lead to bias since users might rate items they

strongly liked or disliked and not do anything with all the others.

i1 i2 . . . i|I|

u1

u2

...

u|U |

. . .

. . .

. . .

. . .

...
...

...

0 0 1

0 1 1

0 0 0

Figure 2.2: Implicit feedback matrix with t ↔ 4.

However, good rating prediction datasets are available, and researchers often binarize the
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rating matrix, transforming it into an interaction matrix. The most common transformation

is to compare the given rating to a threshold t, such as r↑
u,i

= ru,i ↔ t, such that r↑ is the

resulting value of the cell in the implicit feedback matrix. Examples of this transformation

can be seen from Figure 2.1a to Figure 2.1b when t = 0, and from Figure 2.1a to Figure 2.2

when t = 4.

Nevertheless, it is possible to question the efficacy of the user-item matrices as the data

representation, considering the high number of missing values, making it usually called a

“sparse matrix”. Therefore, it is standard for authors to use and explore the sparsity measure,

evaluated using Eq. 2.1, to justify performances and results obtained in their experiments.

Also, with the increase in the number of users and items of a system, the interaction matrices

tend to become even sparser with time, leading to the need for more memory, which may be

a prohibitive factor when training recommendation models.

S(U, I, R) = 1↓ |R|
|U | · |I| (2.1)

2.2 Recommendation Models

Since the proposal of factorization models [29] during the Netflix Challenge [2], it has be-

come common to represent users and items using latent factors, i.e., continuous-valued vec-

tors with a fixed d number of dimensions, frequently referred to as embeddings. Using these

embeddings, the matrices represent the users and items PN→d and QM→d, respectively, where

pu is the embedding that represents user u and qi represents item i.

2.2.1 Matrix Factorization (MF)

The goal of the MF model is to approximate the interactions between users and items R by

R̂ = PQT , such as the ratings can be calculated by r̂u,i = puqTi for a given pair user-item [29;

47]. In this research, we will use a more recent version of MF, called Biased MF, that

proposes the addition of biases, where bu is the bias of user u, bi is the bias of item i, and µ

is a fixed global bias, defined by the average of all ratings in the training data. The ratings

are predicted by Eq. 2.2.
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r̂u,i = pu · qTi + bu + bi + µ (2.2)

The Biased MF aims to minimize the difference between the predicted and observed

ratings. To do so, the squared error with L2 regularization, described in Eq. 2.3, is used as a

loss function.

∑

u,i

(ru,i ↓ r̂u,i)
2 + ω

(
b2
u
+ b2

i
+ ↗pu↗2 + ↗qi↗2

)
(2.3)

After evaluating the error, the representations and biases of users and items are updated

iteratively through Stochastic Gradient Descent (SGD) according to Eq. 2.4, where e is the

prediction error and ω and ε are hyper-parameters that represent the learning rate and the

regularization strength, respectively.

e = r̂u,i ↓ ru,i

pu = pu + ω(e↓ ε · pu)

qi = qi + ω(e↓ ε · qi)

bu = bu + ω(e↓ ε · bu)

bi = bi + ω(e↓ ε · bi)

(2.4)

2.2.2 Weighted Matrix Factorization (WMF)

Similarly to MF, the WMF [24; 38] model factorizes the user and item vectors to learn how

to predict the preference ϑu,i = {0, 1} from user u to item i, indicating if they liked (1) or

disliked (0) that item, or whether they interacted with it (1) or not (0), for example. In this

case, since there is no difference between users regarding how biased their ratings are, these

terms are not present, and the preference is evaluated according to Eq. 2.5

ϑ̂u,i = pu · qTi (2.5)

As for MF, the goal of WMF is to minimize the error between the predicted preference

ϑ̂u,i and the real preference ϑu,i and follows a very similar loss function, described in Eq. 2.6.
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N,M∑

u=1,i=1

cu,i(ϑu,i ↓ ϑ̂u,i)
2 + ω

(
N∑

u

↗pu↗2 +
M∑

i

↗qi↗2
)

(2.6)

However, instead of only using the user and item embeddings, it also proposes a con-

fidence level cu,i of observing ϑu,i, further described in Eq. 2.7, due to the possibility of

unintended or misdirected consumption — for example, when a person buys something as a

gift, or automatically plays the next song in a music platform.

cu,i = 1 + ϖ · ru,i (2.7)

In Eq. 2.7, ϖ is a hyper-parameter, and ru,i is the explicit rating given by the user.

Despite the model being well described through these equations, many mathematical opti-

mizations are often implemented to improve training performance since, differently from

MF, WMF needs to iterate through both the existing and non-existing interactions (i.e.,

→u ↑ {0, 1, . . . , N}, →i ↑ {0, 1, . . . ,M}). These mathematical improvements are described

in detail in the original paper [24].

2.2.3 Bayesian Personalized Ranking (BPR)

Similarly to the previous methods, BPR also works with embedding representations for both

users and items. However, its key difference is that, instead of predicting a rating or the

consumption of an item by a user, it works with pairwise comparisons between items [45;

11]. For example, given a user uk, it will learn if their preference is for the item ia compared

to ib. As its name says, this model is based on the Bayesian assumption defined by the

likelihood function in Eq. 2.8, where ϱ is the sigmoid (i.e. the logistic) function ϱ(x) =

1
1+e→x .

p(i > j|u) = ϱ(x̂u,i,j) = ϱ(pu · qTi ↓ pu · qTj ) (2.8)

The objective function of BPR is to maximize the likelihood of the observed preferences

in the training data. Taking the negative log-likelihood, the objective function expressed

by Eq. 2.9, where I+
u

are the positive items for user u, ! is the regularization term, and ω

controls the regularization strength.
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BPROPT = ↓
U∑

u

I
+
u∑

(i,j)

lnϱ(x̂u,i,j)↓ ω! (2.9)

When structuring the data as input for this model, its performance will differ based on the

definition of what the user has liked. Suppose only the consumption history is available (i.e.

a binary matrix). In that case, it will learn to predict item consumption, which is interesting

when applied to particular applications of RSs, such as e-commerce. A second possibility

is predicting likeness, but this depends on the definition of what is liked: for example, if

the user listens to a song A 10 times and a song B 5 times, we might understand that they

prefer A over B. However, setting a likeness threshold is a common practice, as mentioned

in Section 2.1, and causes the side effect of no distinction between consumed but not liked

and not consumed items.

Considering these limitations of BPR, it may not perform well on some datasets due to

the distribution of popularity of different items. Gantner et al. [11] proposed a modified

version of BPR called WBPR, where its optimization criterion considers different weights

for the negative items, as shown by Eq. 2.10,

BPROPT = ↓
U∑

u

I
+
u∑

(i,j)

wuwiwjlnϱ(x̂u,i,j)↓ ω! (2.10)

where wu = 1
|I+u | , which balances the contribution of each user, and wi = 1, uniformly

weighting positive items.

BPR and WBPR use custom implementations of the stochastic gradient descent for opti-

mization [45; 11].

2.3 Metrics

This section introduces the metrics used to measure performance in rating and ranking pre-

diction tasks.

Our goal for the rating prediction task is to minimize the error between the prediction

and the given rating. Therefore, although the users can only assign a discrete rating (e.g.,

from 1 to 5 stars), the problem can be seen as a regression since the ratings are a value to

be predicted. Thus, we use the Root Mean Squared Error (RMSE), presented in Eq. 2.11
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as the primary performance metric, where ru,i is the rating given from user u to item i and

r̂u,i is the predicted rating between the same pair, and D is the dataset composed of (u, i, r)

triplets.

RMSE =

√√√√ 1

|D|

|D|∑

u,i,r

(ru,i ↓ r̂u,i)2 (2.11)

Regarding the ranking prediction tasks, it is necessary to evaluate whether the item is

recommended and the ranking of the item among the recommended items. For this reason,

it is expected to present the metrics with the suffix @K, where K represents the number of

recommended items. We use the following set of metrics:

1. Precision@K measures the number of items relevant to the user concerning the num-

ber of items predicted. It is defined by Eq. 2.12, where Relu is the set of relevant items

for user u and Rec(u, k) is the set of k recommended items for user u.

Precision(u, k) =
Relu ↘Rec(u, k)

k
(2.12)

2. Recall@K measures the number of items predicted that are relevant to the user in

relation to the number of relevant items for that user. It is defined by Eq. 2.13, where

Relu is the set of relevant items for user u, |Relu| is the number of items relevant to u,

and Rec(u, k) is the set of k recommended items for user u.

Recall(u, k) =
Relu ↘Rec(u, k)

|Relu|
(2.13)

3. NDCG@K is an acronym for Normalized Discounted Cumulative Gain, a ranking

measure that considers both the prediction’s relevance and its ranking. It is defined

by Eq. 2.15, where Relu are the relevant items for user u, and rel(u, i) is the function

defined by Eq. 2.14

rel(u, i) =






1 if i ↑ Relu

0 otherwise
(2.14)
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DCG(u, k) =
k∑

i

2rel(u,i) ↓ 1

log2(i+ 1)

IDCG(u, k) =
|Relu|∑

i

2Relui ↓ 1

log2(i+ 1)

NDCG(u, k) =
DCG(u, k)

IDCG(u, k)

(2.15)

2.4 Pre-training and Transfer Learning

In this section, we explore the concepts of pre-training, transfer learning, and methods that

generate latent factors.

2.4.1 Transfer Learning

Traditional machine learning is characterized by training models with a dataset and evaluat-

ing it with a separate testing dataset. However, more complex problems often require more

training data, which is not usually available. A second requirement is that the training and

testing data should have the same input feature space and distribution since different data

distributions may lead to degradation in the learning process [60].

Transfer learning is used to improve the performance of a target model by leveraging the

knowledge of a source model trained with information from a related domain. An interesting

analogy is thinking about learning how to play piano: someone who already plays guitar will

likely learn faster than someone with no musical background [39].

VGG [54], a DNN proposed for CV tasks, is one of the best examples of transfer learning:

after training the model using the large ImageNet dataset, one can freeze the weights of

the convolutional and pooling layers, which have already learned to extract visual features

from images and learn or fine-tune the weights of the fully connected layers to perform

a related task, e.g., animal species classification. Figure 2.3 shows the architecture of the

VGG model. The convolutional and pooling layers are shown in yellow and orange, while

the fully connected layers are pink and purple.

Despite the performance improvements, transfer learning may also lead the model to

mistakes depending on the data used to train and evaluate the model, and practitioners and
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Figure 2.3: VGG Network

researchers must evaluate the results thoroughly [48].

2.4.2 Pre-training

As in transfer learning, pre-training aims to improve a model’s performance by leveraging

knowledge from a large dataset. However, while transfer learning uses the features learned

as byproducts of a trained model, pre-training often uses unsupervised or self-supervised

learning methods, capturing general patterns of features present in the data [37].

One of the best examples of pre-training is the BERT [8] model, which performs self-

supervised training for the Masked Language Modelling (MLM) and Next Sentence Pre-

diction (NSP) tasks before fine-tuning the learned representations for the desired task (e.g.,

question answering).

The critical differences between transfer learning and pre-training are their objectives

and training data. Transfer learning prioritizes enhancing performance in a singular task,

while pre-training aims to acquire generic representations beneficial across numerous tasks.

Regarding training data, transfer learning requires a substantial dataset relevant to the source

task for training the initial model. Contrastively, pre-training can directly use the dataset to

learn good initial representations, later adjusted to the downstream task in the fine-tuning

stage.

In summary, pre-training is a step before transfer learning, where the model learns

generic features or representations before being adapted to a specific task through trans-
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fer learning. Both techniques are essential in leveraging large datasets and improving model

performance, especially in scenarios with limited labeled data.

2.4.3 Latent Factor Generation

Here, we present two methods used in this research to generate latent factors.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [1] is a technique that analyzes a dataset described by

several dependent variables which are, in general, inter-correlated. The main goals of PCA

are (1) extracting the most essential information from the data and (2) compressing the size

of the data by keeping only the most relevant information. To do so, it performs a sequence of

mathematical operations to understand which features better represent the variance contained

in the data:

1. Centering the data. Initially, PCA computes the mean vector x and centers each

feature vector based on the mean: x↑
i
= xi ↓ x.

2. Computing the covariance matrix. Having the X≃ matrix of centered data, calculate

its covariance matrix: E = 1
n

∑
n

i=1 x
↑
i
x↑T
i

.

3. Eigenvalue Decomposition. This is the most important step of PCA. From the co-

variance matrix, we retrieve the eigenvalues ω1,ω2, . . . ,ωn from the equation det(E ↓

ωI) = 0, where I is the identity matrix. With the eigenvalues at hand, the next step

is to solve the equation (E ↓ ωI)V = 0 to find the eigenvectors v1, v2, . . . , vn, called

principal components.

4. Selecting the principal components. Now that the principal components are found,

we sort them by their corresponding eigenvalues in decreasing order since they repre-

sent the variance contained in each vector, creating a matrix V = {vi, vj, . . . , vn} by

stacking the d most important components, where d is the desired number of compo-

nents given as input.

5. Projection. Lastly, multiply the centered data matrix X ↑ by the selected V eigenvec-

tors: Y = X ↑V .
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Considering how it works, PCA can only be applied to continuous-valued numerical data

as a dimensionality reduction technique.

Word Embeddings

Proposed for NLP, Word Embeddings are techniques to generate numerical representations

for words, including semantic features. One of the first works by Mikolov et al. [37] proposed

the Skip-Gram (SG) and the Continuous Bag Of Words (CBOW) models, which extract the

semantics of the words based on a w-sized window of tokens or words. Figure 2.4 shows the

architecture of both models.

Figure 2.4: CBOW and Skip-Gram model architectures.

Consider a size window w = 5 and the corpus C of known tokens. SG and CBOW

randomly initialize each token’s d-sized embedding representations. The SG model is trained

by having the word w(t) as input and trained to predict the two tokens before (w(t↓ 2) and

w(t↓ 1)), and the two tokens after it (w(t+1) and w(t+2)). CBOW performs the opposite

operation: given the two tokens before (w(t ↓ 2) and w(t ↓ 1)) and the two tokens after

(w(t + 1) and w(t + 2)), predict the current token w(t). Although both models can capture

the semantics of tokens, they are limited in cases where the same word can have multiple
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meanings. For example, the word bat can be used to represent the mammal and the sports

equipment used in baseball, and the word ring can mean a piece of jewelry or be used as a

verb indicating a sound (e.g., “Your phone is ringing”).

2.5 Related Work

In the last decade, the advances achieved with AlexNet [30], VGG [54], and other models

trained with the ImageNet dataset [49] made transfer learning the standard practice for CV

tasks [52]. The same goes for the usage of embeddings in NLP tasks, which started with

self-supervised strategies such as SkipGram and CBOW [37] and evolved into the complex

training strategies used in the BERT [8] and GPT [43] models. These advances allowed

the research and industry communities to have model libraries, such as HuggingFace [63],

which will enable models to be used off-the-shelf or further adjusted with additional training

using a specific dataset to perform a similar task, a process often called fine tuning [13;

42].

Considering the challenges associated with applying transfer learning in the context of

RSs, researchers noticed that an effective (i.e., non-random) initialization strategy could ex-

pedite the learning process, enhance accuracy, and yield more transferable representations

for the model [12; 19]. To illustrate, Seuret et al. [51] demonstrated that networks initialized

with Principal Component Analysis (PCA) resulted in accelerated and more stable train-

ing. Additionally, these networks outperform their counterparts with random initialization,

particularly in tasks related to document processing. However, despite its connection with

learning user and item embeddings in the context of MF for CF, research in this domain

remains scarce.

With this empirical support that PCA initialization leads to better performance, SimFac-

tor [21] is likely one of the first works that applies it to MF, using the user/item metadata

matrices as input and employing the resulting vectors as the initial MF weights. Our goal,

however, is to evaluate performance improvements when no side information is available.

Another approach is the initialization of the user/item embeddings with a self-supervised

method such as the early Word Embedding models, in particular, the SkipGram (SG) and

CBOW strategies [37] for the item embeddings and Doc2Vec for user embeddings [31].
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The usage of these techniques for RSs was already explored: Grbovic et al. [14] introduce

prod2vec, a method that consists of applying SG to the sequence of bought products, and

bagged prod2vec, when users buy more than one item in a single purchase; Barkan and

Koenigstein [5] proposed item2vec, which uses a Skip-Gram (SG) with Negative sampling

for generating item embeddings when the user cannot be identified — a scenario similar to

Session-based recommendation — due to its nature of preserving item similarities. Liang

et al. [35] introduced CoFactor, a model with an MF component that is regularized by an

Item Embedding co-occurrence component. Although these studies use Word Embedding

models — or parts of them —, none evaluated initializing the MF item embeddings with the

retrieved representations applying further training.

When delving into applications of non-random initialization for MF, Ar [3] applies a

custom initialization to a Probabilistic MF based on the distribution statistics of the datasets;

Han et al. [15] introduce GLocal-K, a kernel-based matrix completion method by pre-training

and fine-tuning the data with local and global kernelized representations of the ratings matrix.

Lastly, Wang et al. [59] addressed the cross-domain recommendation problem by learning

the user representations in an initial domain and using them to initialize the embeddings on

the target domain nodes through a contrastive self-supervised graph NN.



Chapter 3

Method

In this chapter, we define our methodology, elaborate on our dataset choices, detail the cho-

sen pre-training approaches, and explain how the transfer learning was performed and how

the data was processed.

3.1 Datasets

In other application areas of ML, pre-training and transfer learning for recommendation can

be performed for different contexts without major concerns: for example, in NLP, a model

can be pre-trained using text from Wikipedia and fine-tuned to classify the emotion (e.g.,

anger, disgust, fear) of a tweet, since the data is not associated with any entities other than

words.

The entities present in RSs are usually users and items. The same entities must be present

in both datasets to transfer their learned representations fully. Since this is a significantly re-

stricted scenario, researchers proposed transferring the user’s representations, the Cross Do-

main scenario [59] despite the difficulties of identifying the same user’s presence in datasets

of different sources and, even when they have the same source, there might be difficulties

due to regulations on using personal information [9].

Considering these constraints in transferring user representations, we propose only trans-

ferring the items’ representations with the restriction of doing so within the same domain.

Due to the high availability of public datasets, we chose to perform our experiments within

the context of movie recommendations, using the MovieLens and Netflix Prize datasets.

20
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The MovieLens [17] is a dataset collected by GroupLens Research1, publicly available.

Since its first version, which had 943 users, 1682 movies, and a total of 100k ratings, Grou-

pLens released other 4 other versions of the dataset, containing 1M, 10M, 20M, and 25M

ratings, this latter with 162,541 users and 62,423 movies, with interactions between January

09, 1995, and November 21, 2019. The statistical description of the datasets is shown in

Table 3.1.

On the other hand, the Netflix Prize [2] dataset was first released on October 2, 2006, with

25M ratings. However, the competition lasted until 2009, and each year, Netflix released an

extension of the dataset with approximately another 25M ratings, totaling roughly 100M

ratings, with 480,189 users and 17,770 movies. Although Netflix no longer has a page for

the challenge, the dataset is publicly available at Kaggle2. The statistical description is also

shown in Table 3.1.

Table 3.1: Statistical description of the datasets.

Dataset |U | |I| Interactions Sparsity

ML100k 943 1682 100,000 94.85%

ML1M 6040 3706 1,000,209 95.53%

ML10M 69,878 10,677 10,000,054 98.65%

ML20M 138,493 26,744 20,000,263 99.46%

ML25M 162,541 59,047 25,000,095 99.73%

Netflix 480,189 17,770 100,480,507 98.82%

3.2 Pre-Training

This section describes and justifies the pre-training approaches applied in this research.
1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
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3.2.1 Non-task-specific

Principal Component Analysis (PCA) [1] is an unsupervised method frequently used for

dimensionality reduction. It takes a matrix as input and performs a series of mathematical

operations to reduce it to a second matrix with the same number of rows and a given d

number of columns (dimensions) while conserving the most relevant information.

Earlier applied in related research [51; 21], one of our studies showed that initializing

user or item embeddings with PCA not only improves the predictive performance of the

models but also presents a tradeoff between the performance and the explainability of the

recommendations, since it preserves the original neighborhoods of users or items.

In this work, we use PCA as a non-task-specific pre-training, due to its unsupervised

nature, to initialize the item embeddings using the original sparse rating matrix R ↑ R|U |→|I|

as input, such that the item embeddings are defined by Q = PCA(RT , d).

A second strategy for non-task-specific pre-training is using self-supervised methods.

Although there are many self-supervised techniques able to generate embedding represen-

tations, Word2Vec [37] revolutionized NLP by providing a method that produces general-

purpose embeddings by considering the context of the words. Although more complex

methods exist to generate word embeddings, such as transformer-based ones, Word2vec is

still widely used due to its simplicity and efficiency.

In this work, we adopt the Skip-Gram (SG) algorithm, one of the Word2Vec implemen-

tations, which is a shallow NN trained by receiving a word as input and trying to predict a

w-sized window of its surrounding words (i.e., its context), as described in Section 2.4.3. In

NLP, Skip-Gram would structure a sentence as a sequence of tokens, so that it can identify

the surrounding tokens as its context. For example, the token representing the word is can be

used to predict the tokens {The, sky, the, limit} in the sentence “The sky is the limit”.

We use SG to generate the item representation based on the user’s consumption history

and use them to initialize the Q matrix of item embeddings in MF. This embedding gen-

eration process is similar to the one executed by Barkan and Koenigstein [5]. However,

they only used the learned representations to predict, similar to the Next Sentence Predic-

tion (NSP) task in NLP, while we use them as initial item-embedding representations in a

recommendation model. Table 3.2 shows applications of Skip-Gram for NLP and recom-

mendation.
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Table 3.2: Application of Skip-Gram for NLP and pre-training item representations, using a

w = 5 sized window, showing the token and movies, and their respective IDs

Input Output

NLP
“curly” {“She”, “has”, “brown”, “hair”}

w3 {w1, w2, w4, w5}

Recommendation
Monsters, Inc {Jumanji, Tarzan, Toy Story, Tangled}

i127 {i50, i82, i174, i4}

Although we are grouping PCA and Word2Vec as non-task-specific pre-training, a criti-

cal difference between them worth mentioning is that, while PCA considers the value of the

rating given by the user to the item when evaluating similarity, Word2Vec only considers the

co-occurrence of items in the context window, even if the ratings are contrasting.

3.2.2 Task-specific

The previous approaches provide item embeddings as byproducts of tasks related to discover-

ing or preserving hidden local structures. Still, we can also generate embeddings as byprod-

ucts of a recommendation model itself. This approach is more similar to transfer learning,

where a model is trained using a larger dataset, also called source model and dataset, and

used to initialize the weights of a second model trained on a smaller dataset with a more

specific goal, also called target model and dataset. In our case, we can train an MF model

using a large dataset and use the learned item representations as initialization for a second

MF model, which will be trained with the dataset we want to recommend. It is also important

to realize that the source model can also use an unsupervised or self-supervised initialization,

which allows a broader number of pre-training possibilities.

3.3 Experimental Setup

This section details how we prepared the datasets and performed the transfer learning.
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3.3.1 Data Processing

The transfer learning process is frequently applied to disjoint datasets for two main reasons:

(1) the data available for the desired task is limited and not sufficient to train a robust model,

and (2) if the source and target datasets have common data, the data used to train the source

model might be present in the data used to evaluate the performance of the target model,

which characterizes a data leakage problem. Therefore, to properly evaluate the impact of

these techniques for recommendation, we need disjoint datasets.

Finding the same item in different datasets is not trivial. To perform our studies, we

conducted two sets of experiments: the first consisted of using the largest MovieLens dataset

to create two disjoint datasets, one larger dataset acting as source and one smaller acting as

target; the second consisted of using the Netflix dataset as source, and the MovieLens dataset

as target. Although both datasets are in the movies domain, it is essential to mention that they

are different systems: Netflix was, initially, a movie-renting platform, while MovieLens is a

movie rating and recommendation website.

This first experiment allowed us to match items across the source and target datasets by

their ID. However, when generating the disjoint datasets from the MovieLens 25M dataset,

the largest and most recent version, we had to respect some definitions of datasets during the

transfer learning process:

1. The MovieLens datasets are frequently called in the literature as dense or core datasets,

which are datasets where each user has at least a c number of interactions, usually being

c = 10, often also extended to the items.

2. Since we cannot identify the same person as a user of different platforms, we should

assume they are different users.

The first definition is essential to avoid the problem known as cold-start of recommend-

ing unknown or poorly known items to a user or known items to a new or recently created

user. This problem exists in real recommendations but is addressed differently, often combin-

ing collaborative and content-based models or using different strategies, such as the session-

based recommendation, where the models are trained using only item representations and

can handle unknown users.
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Considering these definitions, the source and target datasets should remain core datasets,

and no user should be present in both. To do so, we created a simple script described by

Algorithm 1 in Appendix A.

3.3.2 Item Matching

The second set of experiments is more tricky since we need to match items across different

datasets with no common ID. To perform this operation, we first needed to match items

across datasets. However, the only information we can access is the movie’s title and year of

release since we are not using metadata.

To perform the matching between the items, we followed a 3-stage procedure:

1. We first pre-process the movies’ titles to lowercase and the same encoding. This is

important because there are movies in different languages, and the casing is just a

detail. Next, we try to match using the processed title and year of release;

2. With the still unmatched items from the previous stage, we try to match using only the

title. This stage allows matching movies where the year of release might be incorrect

in one of the datasets;

3. Lastly, for the remaining unmatched items, we apply a weighted set of string matching

algorithms, matching an item of the source dataset with the higher-scored item in the

target dataset when the score reaches an acceptance threshold.

For the third stage, we used the available implementation of Indel [65] and Leven-

shtein [33] similarities in the Python Levenshtein library3 [4] and the cosine similarity

to score pairs of item titles. We also evaluated the Jaro [18; 26] and Jaro-Winkler [61;

62] matching algorithms, but the results were inferior. While the cosine is a token-based sim-

ilarity measure, the Indel and Levenshtein are character-based, and setting a higher weight

to the cosine similarity resulted in better matches. Finally, we normalized the similarities to

the [0, 1] scale. We retrieved the item with the higher similarity, only considering it a good

match if the average weighted similarity surpassed the 75% acceptance threshold.
3https://github.com/maxbachmann/Levenshtein



3.3 Experimental Setup 26

The first stage should find most matches correctly, while the second and third are fall-

backs that may grant additional matches. Still, there are no guarantees that these matches

are accurate. For example, “A Star is Born (2018)” is a remake of “A Star is Born (1954)”,

and ignoring the year of release might cause a mismatch. However, it is not guaranteed that

all items in the target dataset will be matched with one in the source dataset. This scenario is

similar to the Out of Vocabulary (OOV) one in NLP, and the embeddings of the unmatched

items should be initialized randomly or following a different strategy.

3.3.3 Evaluation Scenarios

Using the chosen pre-training strategies, we define two scenarios: Target2Target and

Source2Target.

Figure 3.1 shows the Target2Target scenario. We use the non-task-specific approaches

to generate the item embeddings, followed by model training (or fine-tuning) on the same

dataset. It is crucial to mention that since the same dataset is used for pre-training, fine-

tuning, and performance evaluation, only the train split is used as input for the pre-training

strategy and fine-tuning, while a separate unseen partition is used for testing.

Target Model

Dataset

PCA
Word2Vec

Item
Embeddings

Training Data

Fine-tuning
and Evaluation

Figure 3.1: Target2Target scenario

On the other hand, the Source2Target uses a source dataset to train a recommendation

model. After learning the item representations, embeddings corresponding to items shared

between the source and target datasets are transferred to a second model, which will use
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the target dataset for training (or fine-tuning) and evaluation. This scenario is shown in

Figure 3.2.

Target Model

Source Dataset

Source Model

Item
Embeddings

Training Data

Fine-tuning
and Evaluation

Target Dataset

Figure 3.2: Source2Target scenario

We summarise both scenarios in Fig. 3.3, where the yellow arrow indicates a step unique

to the Target2Target scenario, the blue arrow shows a step unique to the Source2Target sce-

nario, and the red arrows indicate common steps for both. It is worth mentioning that the

embedding generator can perform unsupervised or self-supervised (from either the source or

target datasets) and supervised pre-training (from the source dataset only).

Pre-trained MF

Source

Target

Embedding 
Generator

Training Data

Item
Embeddings

Training Data

Fine-Tuning 
and Evaluation

Figure 3.3: Evaluation Scenarios

Inspired by how transfer learning works, by leveraging information trained in a related

task, and considering that our experiments iterate in both Rating and Ranking prediction,
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we also propose studying the transfer learning between tasks: Ranking2Rating and Rat-

ing2Ranking. Still, both cases follow the Source2Target pipeline: item embeddings from

a source model trained on a large dataset for ranking prediction will be used to pre-train a

rating prediction model, and vice-versa. Figure 3.4 depicts the Rating2Ranking case as an

example.

Ranking Prediction
Target Model

Source Dataset

Source Rating
Prediction Model

Item
Embeddings

Training Data

Fine-tuning
and Evaluation

Target Dataset

Figure 3.4: Rating2Ranking case in the Source2Target scenario



Chapter 4

Evaluation

This chapter elaborates on our discoveries, addresses the proposed research questions, and

analyzes the outcomes of our experimental investigations over explicit feedback, implicit

feedback, and cross-task transfer learning, respectively.

4.1 Explicit Feedback

In this section, we elucidate the particulars and outcomes of our investigation of the rating

prediction task utilizing the biased version of the Matrix Factorization model. The chosen

hyperparameters include d = 128 and the number of epochs e = 100, with P and Q fol-

lowing a normal distribution N (0, 0.1), a learning rate ϖ set at 0.001, and a regularization

parameter ω established at 0.04. This configuration, documented in [47], has been reported

as optimal for Biased Matrix Factorization in MovieLens 10M. Considering that we adopted

similar datasets, using the same hyperparameter values makes sense. They worked well

across our experiments, considering pre-trained and randomly initialized models.

We adapted the Biased MF Cython implementation publicly available in the Surprise [25]

v1.1.1 Python library1 to perform the rating prediction experiments.
1http://surpriselib.com/

29
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RQ1. Does pre-training (task- or non-task-specific) improve a model’s predictive per-

formance?

To answer this question, we first analyze the Target2Target scenario, which includes un-

supervised and self-supervised pre-training. In this case, we are evaluating the impact of

pre-training on all the MovieLens datasets. We perform a 5-fold cross-validation, generating

random training (80%) and testing (20%) splits, and report the average Root Mean Squared

Error (RMSE) over the test folds in all evaluation scenarios.

0.75

0.80

0.85

0.90

0.95

ML100k ML1M ML10M ML20M ML25M

Pretraining random pca word2vec

Figure 4.1: Predictive performance on the Target2Target pre-training scenario. Error bars

denote the standard deviation from 5-fold cross-validation.

Table 4.1 depicts the basic statistics of the source and target datasets used to evaluate

the Source2Target scenario. Figure 4.1 illustrates the outcomes expressed regarding RMSE,

with lower values being preferable. Except for MovieLens 100k, where Matrix Factorization

(MF) pre-trained with Word2Vec fails to surpass the baseline initialized randomly, both PCA

and Word2Vec pre-training consistently demonstrate superior performance across all other

datasets, particularly in the cases of MovieLens 100k and 1M. Noticeably, pre-training’s

efficacy diminishes as dataset sizes increase, as expected.

Figure 4.2 illustrates the outcomes of the Source2Target scenario, employing Movie-

Lens 24.9M and MovieLens 24M as source datasets, along with their respective 100k and

1M counterpart sampled target datasets in the supervised pre-training setting. Results for
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Figure 4.2: Predictive performance on the Source2Target pre-training scenario. Error bars

denote the standard deviation from 5-fold cross-validation.

various pre-training strategies are presented next. For example, the Word2Vec approach ini-

tiated the source MF model with Word2Vec, followed by fine-tuning in the target dataset.

We noticed that all strategies yielded a significant benefit compared to the baseline, espe-

cially Word2Vec. Hence, we answer RQ1 positively, especially regarding the Source2Target

scenario. Appendix B comprises the results of further experiments in the Source2Target sce-

nario, where we performed the same experiments sampling source and target datasets from

the MovieLens 10M and 20M versions.

However, one thing to notice is that even these results may also present OOV items,

meaning the embeddings not found in the source model were randomly initialized. We raised

the following research question to understand better these cases, which are closer to pre-

training in real-world datasets.

RQ2. How do out-of-vocabulary items impact a pre-trained model’s predictive perfor-

mance?

To answer this question, we restricted the number of embeddings transferred by ran-

domly sampling a proportion of the embeddings considering the proportion levels

[0, 0.1, 0.2, . . . , 0.9, 1], 0 meaning no transfer, and 1 meaning complete transfer. We also
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considered three variants for initializing the item representations not found in the source

model and the source models: random initialization, PCA, and Word2Vec. This results in a

total of nine settings evaluated.

Table 4.1: Basic statistics of the datasets generated to evaluate the Source2Target strategy.

Dataset
Source Target

|U | |I| |R| Sparsity |U | |I| |R| Sparsity

MovieLens 10M
69,209 10,648 ⇐ 9.9M 98.92% 669 6530 ⇐ 100K 98.16%

62,773 10,626 ⇐ 9M 98.92% 7105 9800 ⇐ 1M 98.85%

MovieLens 20M
137,783 25,838 ⇐ 19.9M 99.55% 710 7644 ⇐ 100K 98.52%

131,773 25,605 ⇐ 19M 99.54% 6720 14,467 ⇐ 1M 99.17%

MovieLens 25M
161,938 56,608 ⇐ 24.9M 99.78% 603 9053 ⇐ 100K 98.52%

156,100 56,302 ⇐ 24M 99.78% 6441 22,877 ⇐ 1M 99.45%

Netflix
455,525 1591 ⇐ 22.3M 97.53% 943 1682 ML100K 93.69%

467,479 3295 ⇐ 43.1M 97.75% 6040 3683 ML 1M 96.40%
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Figure 4.3: Predictive performance on MovieLens 100k using the Source2Target strategy

considering MovieLens 24.9M as the source.

Figure 4.3 shows the results of these settings on the MovieLens 24.9M/MovieLens 100k

source/target pair. The colors indicate the OOV initialization in the target dataset, while

each facet indicates the initialization in the source dataset. In all cases, we can see that the

RMSE decreases monotonically as more embeddings are transferred from source to target.

In the best case, the RMSE decreases from 0.87 from the randomly initialized model with
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no transfer (baseline) to ⇐ 0.78 from a model pre-trained with embeddings generated from

a source model initialized with Word2Vec.

We also evaluated the impact of pre-training considering a larger source dataset, with

⇐ 1M ratings. Figure 4.4 shows the MovieLens 24M/1M source/target pair results. We can

see that the impact of pre-training is similar to the previous example, and it is noticeable that

both PCA and Word2Vec still appear to be good alternatives for OOV items.
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Figure 4.4: Predictive performance on MovieLens 100k using the Source2Target strategy

considering MovieLens 24.9M as the source.

By summarising these results, we understand that the performance dramatically improves

when even a few item representations are transferred from source to target, while the pres-

ence of OOV items prevents the model from achieving its best performance.

The same experiments were performed by extracting source and target samples from the

other MovieLens datasets and are presented in Appendix B.

RQ3. Does pre-training act as a model regularizer?

To answer this question, we investigate whether pre-training leads to better local minima by

employing the method proposed by Goodfellow et al. [13] for analyzing loss functions. The

technique consists of a linear interpolation between two model states, which, in our case,

are the randomly initialized MF and the various pre-trained MF models. Formally, the loss

is evaluated by ! = (1 ↓ ς)!0 + ς!1, where !0 and !1 are the learned parameters of the

baseline and the pre-trained model, respectively, and ς is the weight given to the pre-trained

model.
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We generated a set of 50 evenly spaced values over the [0, 1] interval to represent varying

values of ς. The outcomes for the Target2Target scenario are illustrated in Fig. 4.5. It is

noticeable that, in all cases, there is an elevation in the cost barrier between both solutions

in training (blue curve) and testing (green curve). This observation implies that the pre-

trained methodologies converge to distinct local minima compared to the baseline, except

for MovieLens 100k pre-trained with Word2Vec, which showed signs of overfitting.
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Figure 4.5: Loss landscape analysis of the Target2Target pre-training strategies. The x-

axis contains the values of ς, and the y-axis the RMSE. The concave shape of the curves

indicates that models initialized randomly and initialized with pre-training reach different

local minima. The observation is that pre-trained models have a higher training error than

the randomly initialized ones, but a lower test error indicates the regularization effect.

Despite the pre-training strategies yielding worse train errors, particularly evident in the

smaller datasets, they achieve better test errors. This observation suggests that pre-training

not only facilitates convergence to more favorable local minima but also acts as a regulariza-
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tion mechanism, enhancing the generalization capability of the underlying model.

Fig. 4.6 illustrates the outcomes for the Source2Target scenario, focusing on the Movie-

Lens 24.9M/100k source/target pair. We evaluate the scenarios where the source model is

initialized with random, PCA, or Word2Vec embeddings, with subsequent transfer of the

resulting representations to the target model for fine-tuning.
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Figure 4.6: Loss landscape analysis for each initialization of MovieLens 24.9M in the

Source2Target strategy. The plots show the cost barrier in the training curve and that

achieving a smaller training error leads to a much smaller testing error, different from Tar-

get2Target, where pre-training leads to a higher training error with a smaller testing error.

In summarizing the findings for this question, it is evident that RQ3 can be answered

positively; pre-training leads MF toward more favorable local minima. Nevertheless, caution

is advised to identify and prevent overfitting.

RQ4. How do the best results achieved with pre-training compare to the best-known

results on the corresponding datasets?

To answer this last question, we used the Netflix Prize Dataset as the source and the Movie-

Lens 100k and 1M as target datasets. First, we identified similar items across datasets using

the procedure described in Sec. 3.3.2. After this process, we have two source Netflix datasets,

one for each target dataset due to the different number of matched items. The statistics of

these datasets were also reported in Table4.1.

Fig. 4.7 recalls the same experiment performed in the MovieLens datasets, where we

increase the proportion of transferred embeddings until reaching 100%, now having the orig-
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inal MovieLens 100k dataset as the target. We notice an analogous behavior to the previous

one, but Word2Vec does not perform as well as expected.
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Figure 4.7: Predictive performance on MovieLens 100k using the Source2Target strategy,

the source model being trained with ⇐ 22M ratings from the Netflix Prize dataset.

To contextualize our findings with the state-of-the-art rating prediction, we now compare

our best model employing the Netflix dataset as the source for MovieLens 100k2 on the

native u1-u5 splits as outlined in the leaderboard available on Papers with Code 3. Our best

setup was a source model pre-trained with Word2Vec, scoring in the top-4 position, around

1% behind the best-performing method. Table 4.2 shows a version of the leaderboard that

includes our best-performing setting and the Biased MF baseline.

For MovieLens 1M, this comparison is less direct since the leaderboard does not specify

the size of the training and testing splits. However, considering the 80/20% splits used in

our experiment, our best model yielded an RMSE of 0.846 against 0.868 of the baseline.

Recalling RQ4, these observations confirm that pre-training alone may provide a good

boost in placing a model as simple as vanilla MF without using side information on par with

state-of-the-art models for this task.
2https://paperswithcode.com/sota/collaborative-filtering-on-movielens-100k
3https://paperswithcode.com/
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Table 4.2: Papers with Code recommendation benchmarks for MovieLens 100k, adding our

experiment best results.

Rank Model
Source Target

RMSE
Initialization Dataset

1 GHRS [67] - - - 0.887

2 GLocal-K [15] - - - 0.888

3 MG-GAT [32] - - - 0.890

4(+) Source2Target MF Word2Vec Netflix PCA 0.895
...

...
...

...
...

...

14(+) Baseline - - Random 0.935

4.2 Implicit Feedback

This section presents our findings to the same research questions, now considering Implicit

Feedback and its models. In this case, we use the same number of embedding dimensions

d = 128 and the number of epochs e = 100 while using the learning rate ω = 0.0001 for

BPR and WBPR, as reported by Zhao et al. [69], and ω = 0.003 and ϖ0 = 0.01 for WMF,

as reported by Rendle et al. [46] as one of the best configurations for these models. While

these works also search for the best number of dimensions and epochs, we used the same as

in previous experiments to allow cross-task transferring.

We used explicit feedback datasets to perform the following experiments, converting

them to binary matrices using the t ↔ 4 threshold [29; 38], whereas recent studies use t ↔ 1,

predicting consumption, instead of likeness [20; 46]. While this makes sense, considering

that implicit feedback datasets only capture the user interactions (positive), we chose to

predict likeness since it better captures innate rating characteristics.

This section only reports the performance in terms of NDCG@10. However, we also

report the values of other performance metrics in Appendix C.

There are a few differences between Rating Prediction and Item prediction when prepar-

ing the data to perform these experiments:

1. The most significant difference is that cross-validation is not standard in this case since
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researchers often favor one of the following strategies: a hold-out, a split considering

a period, or a split considering the number of interactions [58].

2. A second difference is that we cannot use PCA as a Target2Target initialization strat-

egy since it performs poorly in binary matrices. Therefore, we reduce our problem by

comparing random, self-supervised, and supervised pre-training.

3. Another difference is that most methods behave differently, considering how the rating

is transformed into a binary value, as pointed out in subsection 2.2.3.

4. Lastly, the evaluation metrics are different: we only had RMSE for Rating prediction,

and now we use a set of metrics to measure how good the predictions are and how well

the model ranks them: Precision@k, Recall@k, and NDCG@k.

Concerning the first question, we opted for using hold-out since it is the most frequent and

easy data-splitting method, assigning the same 80%/20% train/test proportions as in rating

prediction. We also explore the third difference in assessing the Target2Target scenario.

To avoid having issues and poor implementations of the models and metrics, we took

advantage of the publicly available Cornac [50] library4, which includes all the models and

metrics of interest.

RQ1. Does pre-training (task- or non-task-specific) improve a model’s predictive per-

formance?

We answer this question in two ways: the first is inspired by one of the suggestions made by

Verachtert et al. [58], where only the most recent N interactions of a dataset are used. Since

MovieLens 25M is the most recent dataset we have been working with, we’ll use it as the

data source for this experiment. To be concise with the rating prediction experiments, we

define {100k, 1M} as the sample sizes.

Figure 4.8 shows the results of this experiment in terms of NDCG@10. Although WBPR

does not benefit from pre-training, we see performance improvement for both BPR and

WMF. However, for NLP, it is known that the quality of latent representations generated

by Word2Vec increases along the input size, which, in this case, is very limited.
4Cornac library GitHub repository
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Figure 4.8: Predictive performance on samples extracted from the MovieLens 25M dataset

using the Target2Target strategy
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Figure 4.9: Predictive performance on the MovieLens datasets using the Target2Target strat-

egy
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The second method is the one performed for rating prediction, evaluating the perfor-

mance of the models in all the MovieLens datasets. Figure 4.9 shows the results for the

original MovieLens datasets. Pre-training with Word2Vec improves BPR performance sig-

nificantly, while WBPR and WMF only benefit from it on larger datasets, which is expected,

considering that increasing data can result in a regularization effect [13]. As in rating predic-

tion, the impact of Target2Target pre-training also diminishes as the dataset size increases,

which is noticeable, especially for BPR.

RQ2. How do out-of-vocabulary items impact a pre-trained model’s predictive perfor-

mance?
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Figure 4.10: Predictive performance on the 100k and 1M samples of the MovieLens 25M

dataset using the Source2Target strategy

For the Source2Target scenario, supported by our findings in the rating prediction task,

we chose not to iterate through all the MovieLens datasets. Instead, we only evaluated the

transfer performance between the MovieLens 24.9M/100k and 24M/1M source/target pairs.

We also simplified this procedure by randomly initializing the OOV item representations

since the complete transfer in rating prediction showed no statistical difference between the

fallback initialization. Figure 4.10 depicts our findings, already exploring restricting the

transferred items. The lack of improvement for the 100k sample is unusual and conflicts

with our expectations. However, for the 1M sample, WMF and WBPR improve as more

item embeddings are transferred, while BPR remains almost unchanged in all cases.
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However, we do not have enough evidence to conclude that supervised pre-training guar-

antees performance improvement since not all cases had a positive outcome. Recalling RQ2.,

we can affirm that OOV items prevent the models from achieving their best performance.

RQ3. Does pre-training act as a model regularizer?

The methodology for executing our experiments has changed between rating prediction and

item prediction, as well as the packages we use. The most significant differences are (1)

the library used to train and score the models and (2) the train/test loss evaluation. Due

to these differences, we cannot retrieve and interpolate the losses of the two models using

the method proposed by Goodfellow, mainly because evaluating the performance metrics

during the training stage highly increases the execution time. A second reason is that the

performance metric differs from the models’ loss function.

The premise of pre-training is that the models should achieve a lower loss without over-

fitting, which leads to metric improvement. Figure 4.11 depicts the final loss of each model

as the percentage of transferred embeddings increases. It is noticeable that BPR’s loss re-

mains unchanged while WBPR (bigger is better) and WMF (lower is better) improve. This

finding corroborates the hypothesis that supervised pre-training also results in performance

improvement.

Figure 4.12 helps us understand the difference between the losses of a randomly ini-

tialized model and a pre-trained one by plotting the loss of the pre-trained model over the

randomly initialized model loss. We only notice a significant improvement in the WBPR

loss for both samples. However, as aforementioned, the WMF performance improves while

keeping a similar loss, which indicates better local minima.

Recalling RQ3., we conclude that pre-training leads to better local minima since both

WBPR and WMF have performance improvement while maintaining or improving the loss.

RQ4. How do the best results achieved with pre-training compare to the best-known

results on the corresponding datasets?

To answer RQ4., we again recall the Papers with Code benchmark. However, since the

MovieLens 100k dataset was released over 20 years ago, it is more commonly used for the

rating prediction task. We have a weak comparison base for the other datasets since most
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Figure 4.11: Final loss for each model on the 100k and 1M samples of the MovieLens 25M

dataset using the Source2Target strategy. Since the WMF loss differs from the BPR and

WBPR, we separated them into different rows.
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Figure 4.12: Pre-trained model loss over the baseline’s loss on the 100k and 1M MovieLens

25M dataset samples. For BPR, both baseline and pre-trained losses completely overlap.
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perform a hold-out, and the test size is also varied. Still, we executed the transfer again using

the Netflix Prize dataset as the source to the MovieLens 100k and 1M datasets.

Figure 4.13 illustrates this experiment. We find that the performance of WBPR improves

with pre-training, although the WMF performance doesn’t, which is unexpected considering

the previous Source2Target experiments. Again, BPR oddly remains unchanged.
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Figure 4.13: Predictive performance of models pre-trained with Netflix embeddings and

evaluated in the MovieLens 100k and 1M datasets using the Source2Target strategy

Again, we compare the loss of the pre-trained model with the baseline loss to further

understand the impact of pre-training. This comparison is illustrated in Figure 4.14. We

can see that WBPR achieves a significantly lower loss while WMF almost does not present

differences between them. It is fair to assume that the local minimum achieved by WMF is

worse than that obtained by random initialization, but the overfitting hypothesis is also valid.

The losses from the baseline and pre-trained versions of BPR overlap again.

Table 4.3 shows the Papers with Code leaderboard, including the baseline and our best-

performing model. Unlike rating prediction, we do not achieve relevant results in this case,

and the baseline also performs better than our best pre-trained model. We notice that all

models in the leaderboard were proposed after 2016, and the top-performing methods use

more complex strategies, such as Sequential Recommendation.

Since newer MovieLens datasets are mainly used for ranking prediction, we can also

compare the performance achieved by our best-performing Target2Target model on more re-

cent versions. Table 4.4 shows the Papers with Code leaderboard for MovieLens 20M since
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Figure 4.14: Netflix pre-trained model loss over the baseline’s loss on the ML100k and

ML1M datasets. Again, both baseline and pre-trained losses completely overlap for BPR.

Table 4.3: Papers with Code recommendation benchmarks for MovieLens 1M , adding the

baseline and our best-performing model.

Rank Model NDCG@10 Year

1 SSE-PT [64] 0.6292 2019

2 SASRec [28] 0.5905 2018
...

...
...

...

8(+) Baseline 0.2654 2024

9(+) Target2Target WMF 0.2574 2024

10(+) Source2Target WMF 0.2144 2024
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there still isn’t a leaderboard for the newer MovieLens 25M. Unlike the previous leader-

board, more entries report Recall@50 instead of NDCG@10, so we compare the results of

this metric. In this leaderboard, all the models were also proposed after 2016, and most

of them use complex models, especially Autoencoders, and some others report using side

information.

Table 4.4: Papers with Code recommendation benchmarks for MovieLens 20M, adding the

baseline and our best-performing model.

Rank Model NDCG@10 Year

1 RecVAE [53] 0.553 2019

2 VASP [57] 0.552 2021
...

...
...

...

10(+) Baseline 0.4488 2024

11(+) Target2Target WMF 0.4476 2024

When looking at the entire pipeline and its results, we can raise a few hypotheses to

understand why Source2Target hasn’t performed as well as in rating prediction.

First, some models do not differ between missing and negative interactions and discard

the negative ones. This is the case of BPR, and we can imagine the impact by measuring the

number of interactions where t ↔ 4 in the samples extracted from the MovieLens datasets:

for the MovieLens 24.9M/100k source/target pair, ⇐ 40% of the interactions are removed,

whereas the MovieLens 24M/1M source/target pair has ⇐ 36% of the data removed. This can

also lead to removing the core property of the dataset kept when sampling the source/target

pairs from the original MovieLens 25M, leading to weaker user/item representations.

Second, we are converting an explicit feedback dataset into an implicit feedback one.

While this binarization process captures the overall intention of rating, i.e., the user liked or

not that item, it may also lose information. To validate this hypothesis, we again performed

the Source2Target experiment for item consumption with the t ↔ 1 threshold instead of

likeness prediction. As shown in Figure 4.15, WBPR presents the same behavior as BPR for

likeness prediction since distinguishing negative items and missing interactions is their most

significant difference, and, in this case, it doesn’t exist. Unlike the previous scenarios, WMF
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has deteriorated performance instead of improving, especially for the 100k sample. One

possible cause for this outcome is that binarizing for item consumption degrades WMF’s

loss function, given its similarity to the one employed by MF for rating prediction.
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Figure 4.15: Predictive performance of models pre-trained and evaluated using the Movie-

Lens 24.9M/100k and 24M/1M source/target pairs with the Source2Target strategy for item

consumption

4.3 Cross-Task Transfer Learning

In this section, we report our brief findings for cross-task transfer learning, where we either

train the source models for rating prediction and transfer the learned representations for

ranking prediction models or train for ranking prediction and transfer to rating prediction

models. It is worth pointing out that this is only possible for the Source2Target scenario

since it is supervised pre-training. We include supplementary figures reporting performance

in other metrics in Appendix D

Figure 4.16 shows the results for the Ranking2Rating case. We notice that, except for

BPR, all models lead to a significative performance improvement regarding RMSE. This

is especially interesting since WBPR uses different optimization criteria, while WMF uses

optimization criteria similar to MF (i.e., quadratic loss).

Figure 4.17 illustrates the results for Rating2Ranking. Noticeably, for both sample

datasets, the WBPR slightly increases its performance. WMF, however, only benefits from
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Figure 4.16: Predictive performance on the 100k and 1M samples of the MovieLens 25M

dataset using the Ranking2Rating strategy

it for the 1M sample, while the slight decrease in performance for the 100k sample may

indicate overfitting.
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Figure 4.17: Predictive performance on the 100k and 1M samples of the MovieLens 25M

dataset using the Rating2Ranking strategy

Figure 4.18 shows the pre-trained model loss against the baseline’s loss to verify this

hypothesis. We can see that, for both datasets, WMF has a slightly lower loss, while WBPR

significantly benefits from pre-training. However, since WMF didn’t improve performance

for the 100k sample, it is fair to say that the model achieved a worse local minima compared

to the baseline, but the overfitting hypothesis is also valid.

Comparing the results of both cross-task scenarios, Ranking2Rating led to performance
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Figure 4.18: Pre-trained model loss over the baseline’s loss on the 100k and 1M MovieLens

25M dataset samples. For BPR, both baseline and pre-trained losses completely overlap.
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improvement for both datasets, except for BPR. However, for Rating2Ranking, the impact

of pre-training is much smaller. We hypothesize that this happens due to the binarization

process with the t ↔ 4 threshold, which captures the essence of the dataset beforehand and

does not benefit from the rating signal. Since binarization captures the most innate rating

characteristics, the same hypothesis makes sense for Ranking2Rating. At the same time,

training in the target dataset fine-tunes the latent representations for the rating prediction

task.



Chapter 5

Conclusions and Future Work

In light of the continuous increase of pre-training and transfer learning usage for machine

learning, we proposed the Target2Target and Source2Target pre-training strategies to ex-

plore these techniques for RSs in a wide variety of MovieLens datasets and the Netflix Prize

dataset. We also performed ablation studies to understand the impact of OOV items and ap-

plied these techniques to real transfer learning scenarios. To the best of our knowledge, this

work and the

The following sections summarise our contributions and findings, present our conclu-

sions, and discuss ideas for future research.

5.1 Summary of Contributions

In this section, we summarize the main contributions of this work.

1. In Chapter 3, we define a set of possible pre-training methods, considering unsuper-

vised, self-supervised, and supervised strategies. Evaluating these different techniques

allows us to explore which may lead to better results, depending on the problem and

available data.

2. Also in Chapter 3, we present an experimental setup to solve the problem of matching

items across datasets, allowing pre-training and transfer learning to be executed. In

doing so, we enable researchers to perform similar techniques and achieve superior

performance when facing a lack of problem-specific data.
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3. Chapter 4 presents our findings for the Target2Target scenario, which leads to perfor-

mance improvement in all cases for rating prediction except Word2Vec for MovieLens

100k and also increases performance for ranking prediction on larger datasets.

4. In Chapter 4, we also evaluate the Source2Target scenario, considering both same-

and cross-task transfers, which leads to performance improvement in all cases of rat-

ing prediction but doesn’t guarantee performance improvement for ranking prediction.

The cross-task transfers are compelling since they allow explicit feedback datasets to

improve performance on an implicit feedback task and vice-versa.

5. Lastly, we thoroughly evaluate the impact of OOV items for rating and ranking pre-

diction in the Source2Target scenario. In doing so, we can better understand when to

prioritize unsupervised and self-supervised pre-training over the supervised strategy.

5.2 Conclusions

In this work, we presented three and two pre-training strategies for rating and ranking pre-

diction, respectively, summarized in the Target2Target and Source2Target scenarios. Our

approaches are based on the premise that unsupervised and self-supervised maintain innate

data characteristics, such as similarity. At the same time, the supervised approach takes ad-

vantage of the learned characteristics of the data that are also present in other datasets. While

the use of these techniques was proposed in the context of this work, we encourage further

experimentation with other existing unsupervised and self-supervised techniques and ver-

ify if the supervised technique leads to improvement with more complex methods, such as

Autoencoders and DNN-based models. Since we prioritized using the best hyperparameter

values reported in the literature, we also encourage searching for the best setting for each

problem and model.

5.3 Future Work

We plan to investigate the impact of pre-training in other domains, such as music, where we

find a wide variety of datasets publicly available, with a special interest in native implicit
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feedback datasets, avoiding eventual side-effects of binarization. We also aim to research

and verify if the supervised technique improves other types of RSs, especially Sequential-

and Graph-based recommenders. This is particularly interesting considering information-

restricted environments, such as the Session-based recommendation scenario, where the user

cannot be identified. Lastly, part of our initial findings, published in IUI’2022, showed

that pre-training MF models with PCA creates a trade-off between model performance and

explainability. Considering the other pre-training strategies used in this research, this is also

an interesting path to explore further.



Appendix A

Algorithms

Algorithm 1: MovieLens Data splitting algorithm

Input: D: MovieLens 25M ratings; U : Unique user IDs; t: Target Size;

Result: S: Source ratings; T : Target ratings

S, T, Tu ⇒ [], [], {}; Ru ⇒ randomize(U); c = 0;

for u ↑ Ru do

if c ↔ t then break;

Tu ⇒ Tu ⇑ u;

for uid, iid, r, ts ↑ D do

if uid = u then T ⇒ T ⇑ (uid, iid, r, ts); c = c+ 1;

end

end

Su = U ↓ Tu;

for u ↑ Su do

for uid, iid, r, ts ↑ D do

if u = uid then S ⇒ S ⇑ (uid, iid, r, ts);

end

end
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Appendix B

Explicit Feedback Supplementary

Material

Figure B.1: Predictive performance on samples of MovieLens 10M in the Source2Target

pre-training scenario. Error bars denote the standard deviation from 5-fold cross-validation.
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Figure B.2: Predictive performance on samples of MovieLens 20M in the Source2Target

pre-training scenario. Error bars denote the standard deviation from 5-fold cross-validation.

Figure B.3: Predictive performance on samples of MovieLens 25M in the Source2Target

pre-training scenario. Error bars denote the standard deviation from 5-fold cross-validation.
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Figure B.4: Predictive performance on MovieLens 100k using the Source2Target strategy

considering MovieLens 9.9M as the source.

Figure B.5: Predictive performance on MovieLens 100k using the Source2Target strategy

considering MovieLens 19.9M as the source.
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Figure B.6: Predictive performance on MovieLens 100k using the Source2Target strategy

considering MovieLens 24.9M as the source.

Figure B.7: Predictive performance on MovieLens 1M using the Source2Target strategy

considering MovieLens 9M as the source.
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Figure B.8: Predictive performance on MovieLens 1M using the Source2Target strategy

considering MovieLens 19M as the source.

Figure B.9: Predictive performance on MovieLens 1M using the Source2Target strategy

considering MovieLens 24M as the source.
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Figure B.10: Loss landscape analysis on a 100k sample for each initialization from Movie-

Lens 9.9M in the Source2Target strategy.

Figure B.11: Loss landscape analysis on a 100k sample for each initialization from Movie-

Lens 19.9M in the Source2Target strategy.
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Figure B.12: Loss landscape analysis on a 100k sample for each initialization from Movie-

Lens 24.9M in the Source2Target strategy.

Figure B.13: Loss landscape analysis on a 1M sample for each initialization from MovieLens

9M in the Source2Target strategy.
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Figure B.14: Loss landscape analysis on a 1M sample for each initialization from MovieLens

19M in the Source2Target strategy.

Figure B.15: Loss landscape analysis on a 1M sample for each initialization from MovieLens

24M in the Source2Target strategy.



Appendix C

Implicit Feedback Supplementary

Material
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Figure C.1: Predictive performance regarding NDCG@20 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.2: Predictive performance regarding NDCG@50 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.3: Predictive performance regarding Precision@10 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.4: Predictive performance regarding Precision@20 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.5: Predictive performance regarding Precision@50 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.6: Predictive performance regarding Recall@10 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.7: Predictive performance regarding Recall@20 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.8: Predictive performance regarding Recall@50 on samples extracted from the

MovieLens 25M dataset using the Target2Target strategy
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Figure C.9: Predictive performance in terms of NDCG@20 on the MovieLens datasets using

the Target2Target strategy
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Figure C.10: Predictive performance in terms of NDCG@50 on the MovieLens datasets

using the Target2Target strategy
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Figure C.11: Predictive performance in terms of Precision@10 on the MovieLens datasets

using the Target2Target strategy
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Figure C.12: Predictive performance in terms of Precision@20 on the MovieLens datasets

using the Target2Target strategy
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Figure C.13: Predictive performance in terms of Precision@50 on the MovieLens datasets

using the Target2Target strategy
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Figure C.14: Predictive performance in terms of Recall@10 on the MovieLens datasets using

the Target2Target strategy
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Figure C.15: Predictive performance in terms of Recall@20 on the MovieLens datasets using

the Target2Target strategy
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Figure C.16: Predictive performance in terms of Recall@50 on the MovieLens datasets using

the Target2Target strategy
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Figure C.17: Predictive performance regarding NDCG@20 on the 100k and 1M samples of

the MovieLens 25M dataset using the Source2Target strategy
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Figure C.18: Predictive performance regarding NDCG@50 on the 100k and 1M samples of

the MovieLens 25M dataset using the Source2Target strategy
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Figure C.19: Predictive performance regarding Precision@10 on the 100k and 1M samples

of the MovieLens 25M dataset using the Source2Target strategy
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Figure C.20: Predictive performance regarding Precision@20 on the 100k and 1M samples

of the MovieLens 25M dataset using the Source2Target strategy
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Figure C.21: Predictive performance regarding Precision@50 on the 100k and 1M samples

of the MovieLens 25M dataset using the Source2Target strategy
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Figure C.22: Predictive performance regarding Recall@10 on the 100k and 1M samples of

the MovieLens 25M dataset using the Source2Target strategy
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Figure C.23: Predictive performance regarding Recall@20 on the 100k and 1M samples of

the MovieLens 25M dataset using the Source2Target strategy
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Figure C.24: Predictive performance regarding Recall@50 on the 100k and 1M samples of

the MovieLens 25M dataset using the Source2Target strategy
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Figure C.25: Predictive performance in terms of NDCG@20 of models pre-trained with

Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.26: Predictive performance in terms of NDCG@50 of models pre-trained with

Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.27: Predictive performance in terms of Precision@10 of models pre-trained

with Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.28: Predictive performance in terms of Precision@20 of models pre-trained

with Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.29: Predictive performance in terms of Precision@50 of models pre-trained

with Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.30: Predictive performance in terms of Recall@10 of models pre-trained with

Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.31: Predictive performance in terms of Recall@20 of models pre-trained with

Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Figure C.32: Predictive performance in terms of Recall@50 of models pre-trained with

Netflix embeddings and evaluated in the MovieLens 100k and 1M datasets using the

Source2Target strategy
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Cross-task Supplementary Material
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Figure D.1: Predictive performance in terms of NDCG@20 on the 100k and 1M samples of

the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.2: Predictive performance in terms of NDCG@50 on the 100k and 1M samples of

the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.3: Predictive performance in terms of Precision@10 on the 100k and 1M samples

of the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.4: Predictive performance in terms of Precision@20 on the 100k and 1M samples

of the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.5: Predictive performance in terms of Precision@50 on the 100k and 1M samples

of the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.6: Predictive performance in terms of Recall@10 on the 100k and 1M samples of

the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.7: Predictive performance in terms of Recall@20 on the 100k and 1M samples of

the MovieLens 25M dataset using the Rating2Ranking strategy
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Figure D.8: Predictive performance in terms of Recall@50 on the 100k and 1M samples of

the MovieLens 25M dataset using the Rating2Ranking strategy
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