
 UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

 CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

 UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

 PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

 SALATIEL DANTAS SILVA

 GERAÇÃO DE EMBEDDINGS DE TIPOS DE POI COM BASE
 EM FEIÇÕES GEOGRÁFICAS

 CAMPINA GRANDE – PB

 2024

CARLOS VINICIUS ALVES MINERVINO PONTES

SPATIAL PATTERN MATCHING WITH QUANTITATIVE AND
QUALITATIVE CONSTRAINTS

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Spatial Pattern Matching with Quantitative and

Qualitative Constraints

Carlos Vinicius Alves Minervino Pontes

Dissertação submetida à Coordenação do Programa de Pós-Graduação

em Ciência da Computação da Universidade Federal de Campina Grande

- Campus I - como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Sistemas de Informação Geográfica

Cláudio E. C. Campelo

(Orientador)

Campina Grande, Paraíba, Brasil

©Carlos Vinicius Alves Minervino Pontes, 09/07/2024

P814s

Pontes, Carlos Vinicius Alves Minervino.

 Spatial Pattern Matching with Quantitative and Qualitative Constraints
/ Carlos Vinicius Alves Minervino Pontes. – Campina Grande, 2024.

114 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade
Federal de Campina Grande, Centro de Engenharia Elétrica e Informática,
2024.

 "Orientação: Prof. Dr. Claúdio Elízio Calazans Campelo".
Referências.

1. Geographic Information Retrieval. 2. Geo-Textual Retrieval. 3.
Spatial Keyword Search. 4. Spatial Pattern Matching. 5. POI Search. 6.
Qualitative Spatial Reasoning. 7. Topological Relations. I. Campelo,
Cláudio Elízio Calazans. II. Título.

 CDU 004.78:025.4.036:911(043)

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA MEIRE EMANUELA DA SILVA MELO CRB-15/568

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Rua Aprígio Veloso, 882, Edifício Telmo Silva de Araújo, Bloco CG1, - Bairro Universitário, Campina
Grande/PB, CEP 58429-900

Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124
Site: http://computacao.ufcg.edu.br - E-mail: secretaria-copin@computacao.ufcg.edu.br /

copin@copin.ufcg.edu.br

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES
CARLOS VINICIUS ALVES MINERVINO

SPATIAL PATTERN MATCHING WITH QUANTITATIVE AND QUALITATIVE CONSTRAINTS

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação como pré-
requisito para obtenção do título de Mestre em
Ciência da Computação.
Aprovada em: 31/07/2024

Prof. Dr. CLÁUDIO ELÍZIO CALAZANS CAMPELO, Orientador, UFCG

Prof. Dr. DIMAS CASSIMIRO DO NASCIMENTO FILHO, Examinador Interno, UFAPE

Prof. Dr. DANIEL DOS SANTOS KASTER, Examinador Externo, UEL

Documento assinado eletronicamente por CLAUDIO ELIZIO CALAZANS CAMPELO,
PROFESSOR(A) DO MAGISTERIO SUPERIOR, em 01/08/2024, às 10:58, conforme horário oficial de
Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por Daniel dos Santos Kaster, Usuário Externo, em 01/08/2024, às
18:59, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI nº 002, de 25 de
outubro de 2018.

Documento assinado eletronicamente por Dimas Cassimiro do Nascimento Filho, Usuário Externo, em
01/08/2024, às 19:59, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da Portaria SEI
nº 002, de 25 de outubro de 2018.

A autenticidade deste documento pode ser conferida no site https://sei.ufcg.edu.br/autenticidade, informando o
código verificador 4651153 e o código CRC C78B374B.

Resumo

Buscas geo-textuais envolvem palavras-chave e restrições de localização espacial. Um

exemplo é a busca por Pontos de Interesse (POIs), como escolas e supermercados, em

aplicativos como Google Maps. Notavelmente, a maioria dos sistemas existentes realiza

buscas separadas para cada tipo de POI. Estudos recentes propuseram mecanismos para

recuperar grupos de objetos geo-textuais heterogêneos, espacialmente próximos e relevantes

a um conjunto de palavras-chave. Por exemplo, um tipo de busca chamado Correspondência

de Padrão Espacial, do inglês Spatial Pattern Matching (SPM), recupera grupos de POIs ou

outros objetos geo-textuais com base em padrões espaciais com palavras-chaves e limites de

distância, porém não considera requisitos qualitativos, como a conectividade entre objetos.

Assim sendo, algoritmos SPM não podem resolver de forma eficiente consultas tais como

“encontrar shoppings que contenham uma academia de musculação em seu interior”.

Nesse sentido, esta dissertação investiga a “Correspondência de Padrão Espacial

Quantitativo e Qualitativo” (CPEQQ), um tipo mais flexível de busca geo-textual com

palavras-chave, restrições de distância, relação topológica e exclusão entre objetos geo-

textuais buscados. Propõe-se uma formalização matemática e uma abordagem com três

estratégias eficientes de solução para consultas CPEQQ.

A primeira solução proposta, QQESPM-Quadtree, é independente de bancos de dados

espaciais e usa a indexação IL-Quadtree em disco. A segunda, QQESPM-Elastic, converte

o padrão espacial da busca em consultas espaciais nativas do Elasticsearch. A terceira,

QQESPM-SQL, transforma os requisitos espaço-textuais da busca CPEQQ em uma única

consulta SQL eficiente, utilizando funções e indexação espaciais no PostgreSQL.

Experimentos com dados de POIs de Londres compararam a eficácia e eficiência

das três soluções propostas para o tipo de busca QQ-SPM. Os resultados mostraram a

eficácia da formalização e abordagem propostas. A solução QQESPM-SQL destacou-se

em escalabilidade por apresentar tempos de execução robustos com conjuntos de dados

maiores. Entretanto, QQESPM-Quadtree e QQESPM-Elastic mostraram vantagens em

alguns cenários específicos.

iii

Abstract

Geo-textual searches involve keywords and spatial location restrictions. One example is the

search for Points of Interest (POIs), such as schools and supermarkets, in applications such as

Google Maps. Notably, most systems perform separate searches for each type of POI. Recent

studies have proposed mechanisms to retrieve groups of geo-textual heterogeneous objects,

closely located and relevant to a set of keywords. The Spatial Pattern Matching (SPM)

query retrieves groups of POIs or other geo-textual objects based on spatial patterns with

keywords and distance thresholds, although it does not consider qualitative requirements

such as connectivity between objects. Consequently, SPM algorithms cannot efficiently

solve queries such as “finding shopping malls that contain a training gym inside”.

In this sense, this dissertation investigates “Quantitative and Qualitative Spatial Pattern

Matching” (QQ-SPM), a more flexible type of geo-textual search with keywords, distance,

topological and exclusion constraints between the searched geo-textual objects. A

mathematical formalization and an efficient approach composed of three solution strategies

for QQ-SPM searches are proposed in this research.

The first proposed solution, QQESPM-Quadtree, is independent of spatial databases and

uses on-disk IL-Quadtree indexing. The second, QQESPM-Elastic, converts the spatial

pattern of the search into native spatial Elasticsearch queries. The third, QQESPM-SQL,

transforms the spatio-textual search requirements into a single and efficient SQL query,

employing spatial functions and indexing in PostgreSQL.

Experiments using a dataset of POIs from London compared the effectiveness and

efficiency of the three proposed solutions for QQ-SPM queries. The results confirmed the

effectiveness of the proposed formalization and approach. The QQESPM-SQL solution

excelled in scalability by presenting robust execution times for larger datasets. However

QQESPM-Quadtree and QQESPM-Elastic presented advantages for some specific search

scenarios.

iv

Agradecimentos

Agradeço primeiramente à Deus, por iluminar meu caminho, e por sempre estar abrindo

portas.

À minha amada esposa Julyanne pelo companheirismo e apoio, e por ser uma leiga porém

excelente ouvinte.

Ao meu pai, eterno professor de Matemática e exemplo de vida. À minha mãe, por todo

carinho. Aos meus irmãos por todo amor.

Aos meus orientadores, professores Dr. Cláudio Campelo e Dr. Maxwell Guimarães de

Oliveira, pela paciência, compreensão, e excelente orientação.

À todos os meus colegas de laboratório do LACINA, em especial Dr. Salatiel, pelo

companheirismo e compartilhamento de conhecimentos.

Aos membros da banca, professores Dr. Daniel Kaster e Dr. Dimas Cassimiro, pelos

valiosos elogios, sugestões e críticas construtivas.

À coordenação de aos demais integrantes do PPGCC, pelo excelente apoio a mim e a

todos os demais estudantes.

Finalmente, à todos os que, direta ou indiretamente, me apoiaram durante o mestrado

ou durante etapas anteriores da minha vida, por terem contribuído com o meu crescimento

acadêmico e pessoal.

v

Contents

1 Introduction 1

1.1 The Problem . 3

1.2 Research Objective and Questions . 5

1.3 Relevance . 6

1.4 Contributions . 7

1.4.1 Bibliographic Contributions . 8

1.5 Document Structure . 8

2 Background 9

2.1 Spatial Indexing . 9

2.1.1 Data-driven vs Space-driven Decomposition 10

2.1.2 Quadtrees . 10

2.2 Spatio-Textual Indexing . 12

2.2.1 IL-Quadtree . 13

2.3 Qualitative Spatial Reasoning . 14

2.3.1 Topological Relations . 15

2.4 Final Considerations . 20

3 Related Work 22

3.1 Item-wise Queries . 23

3.2 Group Queries . 24

3.2.1 Collective Spatial Keyword Queries 25

3.2.2 Neighborhood-Preference Queries 26

3.2.3 Spatial Pattern Matching . 27

vi

CONTENTS vii

3.3 Queries with Quantitative and Qualitative Constraints 28

3.4 Comparison of the Types of Spatio-Textual Queries 30

3.5 Final Considerations . 31

4 QQESPM 34

4.1 Problem Formalization . 35

4.1.1 Problem Definition . 35

4.1.2 Pruning Space with Mathematical Theorems 38

4.1.3 Example of Search Pattern . 40

4.2 QQESPM-Quadtree . 42

4.2.1 The Algorithm . 42

4.2.2 Example of QQESPM-Quadtree execution 50

4.2.3 QQESPM-Quadtree Solution . 55

4.2.4 Choosing an Order for Joining Edges 55

4.3 QQESPM-Elastic . 57

4.3.1 Elementary Operations . 58

4.3.2 QQESPM-Elastic Search Procedure 59

4.3.3 Implementation Decisions for QQESPM-Elastic 62

4.4 QQESPM-SQL . 63

4.4.1 PostGIS Spatial Queries . 63

4.4.2 QQESPM-SQL Approach . 64

4.4.3 Implementation Decisions for QQESPM-SQL 69

4.5 Generalizing the QQ-SPM Query . 70

4.6 Final Considerations . 70

5 Performance Experiments 72

5.1 Datasets . 72

5.2 Solution Approaches Used in the Experiments 75

5.3 Search Patterns . 76

5.4 Experimental Setup . 77

5.5 Results . 79

5.5.1 Memory Consumption . 86

CONTENTS viii

5.6 Practical Implications and Considerations 88

5.7 Final Considerations . 90

6 Conclusion and Future Directions 91

6.1 Limitations . 93

6.2 Future Directions . 94

A QQ-SPM Application Prototype 111

List of Acronyms

POI - Point of Interest

SPM - Spatial Pattern Matching

QQ-SPM - Quantitative and Qualitative Spatial Pattern Matching

QQESPM - Quantitative and Qualitative Efficient Spatial Pattern Matching

QSR - Qualitative Spatial Reasoning

IR - Information Retrieval

CoSKQ - Collective Spatial Keyword Query

NPQ - Neighborhood Preference Query

ix

List of Figures

1.1 Example of a distance-based spatial pattern (A) and a qualitative and

quantitative spatial pattern (B) . 3

1.2 Finding matches for a spatial pattern quantitative and qualitative search . . 4

2.1 Example of a quadtree space subdivision (A) and its corresponding tree

structure (B) . 11

2.2 Example of Topological Relations . 15

2.3 Example of the 9-intersections matrix for two overlapping geometries A and B 18

4.1 Map Visualization of Fictitious POIs dataset for Search Example 41

4.2 Quadtrees for the keywords in the fictitious POIs dataset 42

5.1 Example of an original geometry (A), its convex hull (B) and its

simplification (C) . 74

5.2 POIs geometries before (orange) and after (pink) buffering pipeline 74

5.3 Top-25 keywords with highest frequencies in the dataset 77

5.4 Graph architectures of the search patterns 78

5.5 Example of generated search pattern . 78

5.6 Statistics of execution time by dataset size for QQESPM-Quadtree and

ESPM+TV approaches on subsets of Dataset 1 (averages as yellow star points) 80

5.7 Statistics of execution time by dataset size for the three libraries on subsets

of Dataset 2 (averages as yellow star points) 82

5.8 Statistics of execution time by number of vertices in the search graph for

each library . 83

x

LIST OF FIGURES xi

5.9 Statistics of execution time by number of edges in the search graph for each

library . 83

5.10 Statistics of execution time by qualitative probability in the search graph for

each library . 84

5.11 Statistics of execution time by total exclusion constraints in the search graph

for each library . 85

5.12 Correlation between the numbers of search constraints, dataset size and

total solutions with the query execution time for QQESPM-Quadtree (A),

QQESPM-Elastic (B) and QQESPM-SQL (C) query executions 87

5.13 Allocated Memory for each solution during queries (averages as white

triangle points) . 88

A.1 Overview of the QQ-SPM search tool . 112

A.2 Input data for searching spatial pattern . 113

List of Tables

2.1 Formal definitions of the most common topological predicates in RCC . . . 16

2.2 Pattern Matrices for the most common topological predicates in DE-9IM . . 19

2.3 Equivalences between some RCC and DE-9IM relations 21

3.1 Related work . 32

4.1 Fictitious dataset of POIs in 2-D Euclidian space 50

4.2 Bounding boxes of the nodes in the quadtrees “commercial building”, “gym”

and “school” . 52

5.1 Datasets Statistics . 72

5.2 Extract of the Datasets . 75

5.3 Sizes of the fractional datasets . 79

xii

List of Source Codes

4.1 Function that generates the elementary operation EO3 for Elasticsearch . . 58

4.2 A spatial pattern in JSON . 65

4.3 SQL query with implicit join . 66

4.4 SQL query with explicit join . 67

xiii

Chapter 1

Introduction

With the emergence and popularization of technologies such as GPS, mobile Internet,

Artificial Intelligence, and location-based services, a significant amount of geo-textual data

is being generated and consumed daily[24, 27, 28, 38, 50, 52, 81, 120]. The smartphone era

has led to a growing demand for keyword search systems, and the need for efficient indexing

systems and algorithms capable of processing this large volume of data properly[24, 61].

Geo-tagged microblog posts and web pages related to entities with physical locations are

examples of geo-textual content, encompassing both textual and geographical information,

constantly being generated[28, 38]. Additionally, the inclusion of new Points of Interest

(POIs), which are places of social function such as hospitals, schools, and banks, in the

maps’ life cycle is a continuous geo-textual data generation process[80]. As outlined in[13,

28, 37, 116], a geo-textual object has an associated geographical location attribute and a

textual attribute, and it may have additional attributes. Examples include geo-tagged tweets,

POI data, check-in data, or any geo-referenced web content.

Searching for POIs on applications like Google Maps1 is an important example of geo-

textual search, using keywords and location restrictions[81]. Users often have personal

preferences and specific requirements when looking for POIs that match their needs and

geographic location. In certain situations, there is a need to find not just one, but a group

of POIs that are closely located and collectively satisfy the needs of a specific person or

enterprise. A specific arrangement of POIs (or other types of spatio-textual objects) based

on a set of constraints about their relative positions is generally called a spatial pattern,

1https://www.google.com/maps

1

2

spatial configuration, or spatial scene[11, 50, 61]. In this work, the term spatial pattern is

used, following Fang et al.[50] and Chen et al.[24].

There are numerous situations where people could benefit from a spatial pattern

searching system. The following scenarios illustrate some examples:

• Finding residential areas: A user might be moving to a new city and want to find a

house within 1km of a good primary school for their children. The person might also

want a shopping mall nearby, for example, within 2km.

• Trip planning: A tourist visiting a foreign country may want to stay in a hotel close to

major tourist attractions or specific types of attractions, such as a hotel near a museum

and a beach.

Users typically find POIs through recommendation systems or keyword-based search

systems[50, 52]. In keyword-based searches, two fundamental types of spatio-textual queries

have been extensively studied: range queries and k-Nearest Neighbors (kNN) queries[28,

108]. Range queries retrieve spatio-textual objects within a specified distance from a central

point while matching the query keywords (e.g., locating all restaurants within a 5-kilometer

radius from a user’s current location). In turn, kNN queries identify the top-k nearest objects

to a given central point that satisfy specific keywords (e.g., finding the three closest gas

stations to a particular address)[28, 108].

Numerous algorithms and indexes have been developed to address these classical spatial

queries efficiently. However, more complex spatial queries, such as those requiring the

retrieval of a group of POIs of different types that collectively meet a set of requirements,

have received limited attention in the literature. Few researches have focused on optimizing

the performance of spatio-textual queries with more elaborate parameters and complex

search constraints[27, 44, 50, 65].

The Spatial Pattern Matching (SPM) query, formally proposed by Fang et al.[50] and

investigated in various works[24, 51, 52, 81], aims to identify groups of POIs that conform

to a user-defined spatial pattern established by keywords and distance requirements. For

example, suppose a user seeks an apartment next to a primary school for their children and

wants a hospital nearby due to a chronic disease. However, the person wants to avoid living

too close to the hospital for hygiene reasons. An apartment between 200m and 1km away

1.1 The Problem 3

from a hospital and at most 2km away from a school would be reasonable. Such requirement

can be modeled as a spatial pattern graph using keywords and distance requirements. The

spatial pattern for this search can be represented as a graph as outlined in Figure 1.1 (A).

Figure 1.1: Example of a distance-based spatial pattern (A) and a qualitative and quantitative

spatial pattern (B)

1.1 The Problem

While the traditional SPM query proposed by Fang. et al[50] is highly effective for

scenarios with only distance constraints among queried POIs, it cannot address qualitative

topological (connectivity) requirements between these entities. Consequently, traditional

SPM algorithms are limited to searching spatial patterns with only distance constraints. In

certain situations, users need more versatile solutions[90] to search for diverse spatial pattern

configurations with both quantitative and qualitative requirements. For example, in a query

such as “find a school adjacent to a wooded area”.

To illustrate a more complex search scenario, consider an individual seeking a rental

space within a commercial building for installing a small business. This user wants an onsite

gym and a park with a green area touching the building, in way that the person does not

need to cross any streets to reach the park. Preferably, the commercial building should be

located within 1km of an elementary school for their child’s convenience. This scenario can

be modeled using a spatial pattern graph that incorporates both quantitative (distance) and

qualitative (connectivity) constraints, as shown in Figure 1.1 (B).

Suppose the region for the scope of the described search is as depicted in Figure 1.2,

1.1 The Problem 4

comprising three commercial buildings (CB1, CB2, CB3), a residential building (RB1), and

two schools (S1, S2). The search for the spatial pattern illustrated in Figure 1.1 (B) would

yield only two possible solutions (matches), formed by the POIs circled in red, namely (CB1,

S1) and (CB1, S2). Note that the POI CB2 cannot constitute a search solution as it lacks a

training gym, while CB3 also cannot be a solution candidate as it is not adjacent to any green

area. Thus, (CB1, S1) and (CB1, S2) are the only two solutions for the user’s search pattern

in this region.

The situation outlined in the previous example cannot be efficiently addressed by using

the traditional SPM algorithms (e.g., MSJ[50] and ESPM[24]), as it requires a more generic

approach to represent spatial patterns with both quantitative and qualitative requirements,

offering users a more diverse and flexible search parameter format[90]. There are several

geospatial search platforms with appropriate tools for handling such searches, although they

lack a specific or standard way of representing spatial pattern searches. Consequently, the

task of formulating optimized SQL queries, or another query syntax, to address diverse

spatial pattern search scenarios becomes a continuous difficulty and responsibility for

technology specialists. Such difficulties could be overcome by the rise of specific guidelines

for composing and representing spatial pattern searches in different geospatial technologies,

as well as by the availability of software libraries designed specifically for efficiently

addressing spatial pattern searches.

In addition to the absence of technologies designed to address more complex spatial

pattern search scenarios, there is the challenge of computational cost and query execution

Figure 1.2: Finding matches for a spatial pattern quantitative and qualitative search

1.2 Research Objective and Questions 5

time. Numerous geospatial and spatio-textual indexing methods have been developed in the

literature[38, 113, 120], along with studies focused on efficient solutions for basic spatial

queries, such as range queries and top-k nearest neighbor queries. However, the literature

review has revealed a limited number of works concerned with proposing solutions to more

flexible and generic spatial pattern search settings, and directly addressing the performance

issues of its solution approaches.

In this context, this master’s thesis proposes and systematically investigates the

Quantitative and Qualitative Spatial Pattern Matching (QQ-SPM) query as a versatile search

approach for POIs and other types of spatio-textual objects. This search approach allows the

representation of queries with multiple keywords, distance, and topological constraints. This

work proposes guidelines on how to address such a complex type of spatio-textual search

efficiently and details the design of efficient and effective algorithmic solutions.

1.2 Research Objective and Questions

In response to the outlined problem scenarios, the objective of this work is to propose a

solution for the problem of retrieving groups of geo-textual objects (e.g., POIs) conforming

to a set of keywords, distance and topological constraints, minimizing query execution time.

To address such an objective, this master’s thesis envisions answering the following

research questions (RQ):

• RQ1: How to adapt the formalization of the SPM search problem from the literature

to formalize the more generic QQ-SPM query, encompassing qualitative topological

constraints?

• RQ2: Can Inverted Linear Quadtree index be employed to efficiently solve QQ-SPM

queries?

• RQ3: Can Elasticsearch and PostGIS geospatial capabilities be employed to efficiently

solve QQ-SPM queries?

• RQ4: Does the number of search results, dataset size, query keywords and query

spatial constraints impact the execution time of QQ-SPM queries?

1.3 Relevance 6

These research questions are treated throughout the document. The question RQ1 is

treated in Section 4.1. QuestionRQ2 is handled in Section 4.2. QuestionRQ3 is investigated

in Sections 4.3 and 4.4. Finally, Question RQ4 is answered in Chapter 5.

1.3 Relevance

There are numerous scenarios in which society can benefit from spatial pattern search

systems[24]. In the field of Human Settlement Analysis, geographers or urban planners

may wish to analyze the occurrence of similar spatial patterns in different locations. They

may employ a spatial pattern search system to identify areas where certain spatial patterns

co-occur, or to pinpoint the presence of unique functions in specific regions, aiding in the

classification of distinct types of human settlements.

Another significant application is Scene Recognition, which aims to identify locations

based on incomplete information regarding attributes of various objects and their

approximate relative positions, without explicit addresses[27]. For instance, individuals may

seek to recall the name of a place they visited based on remembered POIs, such as a coffee

shop, a nearby Chinese restaurant, and a visible car park located approximately 300 meters to

the right of the restaurant. A spatial pattern search for this configuration could yield relevant

places containing this pattern.

Spatial pattern search systems can also play a crucial role in decision-making processes

aimed at preventing natural and urban disasters and addressing urban planning challenges[39,

128]. For example, government entities may utilize these systems to identify areas with

specific spatial patterns that have historically posed risks for natural or urban disasters.

This information can inform resource allocation and strategic decision-making to mitigate

potential hazards. Additionally, certain urban spatial layouts may contribute to traffic

accidents or facilitate criminal activities such as drug dealing[27]. When planning new

districts, governments can verify existing areas with proposed layouts using spatial pattern

search systems. If areas with similar layouts exhibit significant issues related to natural or

urban disasters, governments may reconsider their plans and propose alternative layouts to

enhance safety and security.

Other practical application scenarios benefiting from spatial pattern search systems can

1.4 Contributions 7

arise in business place selection[12]. When a company considers opening a new branch,

validating the appropriate location can involve checking existing regions with the proposed

spatial configuration. This assessment helps determine if the spatial configurations align with

the company’s business objectives. Additionally, as discussed previously, spatial pattern

search systems can assist in finding residential areas and in trip planning based on user

preferences. These are common situations where such systems can provide valuable aid. In

conclusion, there are numerous practical scenarios where decision-making processes can be

directly optimized through the use of spatial pattern search systems.

1.4 Contributions

This master’s thesis presents the following key contributions:

• A formal representation of QQ-SPM search, accompanied by mathematical proofs

demonstrating effective pruning methods for finding QQ-SPM query solutions.

• The QQESPM-Quadtree algorithm, which offers a comprehensive solution for the

investigated search scenarios.

• An open-source Python library implementing QQESPM-Quadtree search procedure

which functions independently of spatial databases. It utilizes its own implementation

of the IL-Quadtree indexing structure on disk, allowing the reading of data slices as

needed in a scalable manner to prevent memory crashes.

• The open-source QQESPM-Elastic Python library which automatically converts QQ-

SPM search requests from spatial pattern representation to Elasticsearch geo-queries.

An algorithm controls the invocation of Elasticsearch geo-queries, which sequentially

combine to find the solutions for the entire search pattern.

• The open-source QQESPM-SQL Python library which automatically converts QQ-

SPM search requests represented in a spatial pattern format into a complete and

efficient SQL query, by employing PostgreSQL.

• Extensive performance experimentation involving the execution of thousands of

spatial queries using the proposed libraries.

1.5 Document Structure 8

• A QQ-SPM application prototype, including a backend API and a frontend layer for

the Web environment, demonstrating the investigated query type in a practical POI

search scenario (shown in Appendix A).

1.4.1 Bibliographic Contributions

This research has thus far produced the following bibliographic contributions.

• The research paper titled “QQESPM: A Quantitative and Qualitative Spatial Pattern

Matching Algorithm” presented and published at Geoinfo 2023.

• The research paper titled “QQESPM: Spatial Keyword Search Based on Qualitative

and Quantitative Spatial Patterns” passing through revisions for publication in the

Journal of Information and Data Management (JIDM).

1.5 Document Structure

The document is structured as follows: Chapter 2 provides a concise review of key concepts

pertinent to this research. In Chapter 3, a discussion on related works is presented. In

Chapter 4, a formalization for the QQ-SPM search is proposed along with the introduction

of an effective approach for solving QQ-SPM queries efficiently. This approach is subdivided

into three solutions: QQESPM-Quadtree approach, QQESPM-Elastic and QQESPM-SQL.

Chapter 5 outlines the setup for performance experiments, compares the proposed solutions,

and discusses the results. Finally, Chapter 6 offers concluding remarks, summarizing key

achievements and suggesting future research directions.

Chapter 2

Background

To efficiently address common spatial queries, such as range queries and kNN queries,

researchers have proposed various spatial and spatio-textual indexing structures. This

chapter briefly reviews some of these indexing techniques. Additionally, it discusses

concepts related to qualitative spatial reasoning and topological relations. This discussion

will provide background for the design of efficient QQ-SPM solutions in Chapter 4, which

demonstrates how to effectively use existing spatio-textual indexes to solve the QQ-SPM

query, simultaneously involving distance and topological constraints.

2.1 Spatial Indexing

A spatial index contains summarized information designed to support efficient spatial data

access methods. These methods enable the selection of objects that satisfy specific spatial

requirements, such as proximity to a given point[7]. Spatial indexes typically rely on

hierarchical tree structures. These structures expedite the removal of irrelevant data during

query execution by partitioning either the space or the data into clusters based on spatial

proximity. Essentially, spatial indexes organize spatial data according to their spatial

attributes, facilitating efficient data retrieval for common spatial queries.

9

2.1 Spatial Indexing 10

2.1.1 Data-driven vs Space-driven Decomposition

In the existing literature, researchers have explored two primary approaches for

hierarchically decomposing data based on spatial attributes to create tree-based spatial

indexing structures [3, 4, 48, 93]. These approaches play a crucial role in optimizing

spatial data retrieval. The first approach is data-driven decomposition, which centers around

data-driven trees, commonly referred to as balanced trees. In this method, the space

decomposition rule relies entirely on the spatial distribution of the input data. An illustrative

example of data-driven decomposition is the R-tree index, proposed by Guttman[68]. In

the R-tree, the bounding rectangles of the nodes are determined solely based on the spatial

coordinates of the data objects. The R-tree effectively groups nearby objects into nodes,

creating a hierarchical structure that facilitates efficient spatial queries.

In contrast, the second approach is known as space-driven decomposition. This method

of spatial data indexing gives rise to what are commonly referred to as space-partitioning

trees. In this case, the rule for dividing data relies solely on spatial considerations. Quadtree

indexes, initially proposed by Finkel et al.[56], serve as prime examples of space-driven

decomposition. They consistently divide the space hierarchically by bisecting it into smaller

rectangles, which are nodes in the Quadtree. Chapter 4 demonstrates how to efficiently use a

quadtree-based spatio-textual indexing to enhance the performance of the investigated QQ-

SPM queries.

2.1.2 Quadtrees

A two-dimensional Quadtree[56] divides a bidimensional Euclidean space into four

quadrants. During index construction, a universal bounding rectangle is assumed for all

spatial data points. This rectangle serves as the root node of the quadtree. When the number

of data points within this node exceeds a certain limit, it is subdivided into four child nodes

using horizontal and vertical lines passing through the center of the space. These child

nodes correspond to the southwest, southeast, northwest, and northeast quadrants, encoded

as 00, 01, 10, and 11, respectively. Figure 2.1 (A) illustrates the space subdivision process

in a quadtree, while Figure 2.1 (B) depicts the resulting hierarchical tree structure. Each

rectangular subdivision of the space corresponds to a node in the tree. If any of these four

2.1 Spatial Indexing 11

nodes at the first depth level contains more data points than the specified limit, it is further

divided into four new nodes, each with the same size of bounding rectangle. This hierarchical

and recursive node subdivision continues until all leaf nodes contain fewer objects than the

threshold.

Figure 2.1: Example of a quadtree space subdivision (A) and its corresponding tree structure

(B)

The delimitation of bounding rectangles for nodes in a two-dimensional quadtree is not

determined by enclosing data objects. Instead, it follows a space-driven rule: the nodes

bounding rectangle is always divided through its center, resulting in four equally-sized

children nodes. Each of these nodes represents a specific bounding box within the space.

Consequently, quadtrees fall into the category of space-partitioning trees.

To uniquely identify each node, a strategy following its path up to the root level is used.

Although there is no universal standard, a common convention assigns an empty identifier

to the root node. For other nodes, the identifier is formed by concatenating the parent node’s

identifier with a binary string:

• If a node is the southwest child of its parent, the identifier receives the suffix “00”

• If it is the southeast child, the suffix is “01”

• For the northwest child, the suffix is “10”

• And for the northeast child, the suffix is “11”

These binary numbers (00, 01, 10, 11) encode the hierarchical relationships. As an

example, the node that is the northeast child of the northwest child of the root receives the

identifier “1011”.

2.2 Spatio-Textual Indexing 12

Distinctly, the bounding rectangles for nodes in an R-tree are directly defined by the

spatial data points. Specifically, the node’s bounding rectangle should be the smallest

rectangle that encloses the set of its inner objects. For this reason, R-trees are known

for utilizing a data-driven space decomposition. Both R-tree indexes and Quadtrees share

similarities and can be used interchangeably to index the spatial attributes of a dataset of

objects.

The choice between R-trees and Quadtrees for spatial queries depends on several factors.

Here are some observations: R-trees tend to outperform Quadtrees in nearest-neighbor

queries. However, when dealing with range queries involving a radius greater than 10

miles (approximately 16.09 kilometers), Quadtrees may exhibit better performance, as

demonstrated by Kothuri et al.[77]. Considering the query environment, frequent data

updates may also favor Quadtrees. The PostgreSQL documentation recommends creating

a spatial GiST index (R-Tree) for general purposes, but to consider the addition of spatial

SP-GiST indexes (Quadtree and other space-partitioning indexes), when the dataset exceeds

a few thousand rows. Such an approach can yield performance benefits for queries involving

long datasets. In this work, a series of implementation decisions for the design of efficient

QQ-SPM solutions is based in such recommendations, employing both Quadtrees and R-

trees, as will be discussed in Chapter 4.

2.2 Spatio-Textual Indexing

Spatio-textual indexing structures organize spatio-textual data based on both textual

and spatial attributes simultaneously. Spatio-textual objects consist of data entities

simultaneously containing textual and spatial attributes[13, 28, 37, 116]. In this sense,

for queries involving keywords in addition to spatial requirements, spatio-textual indexes

are generally most suitable. Their combined indexing strategy, considering both text and

location, optimizes query efficiency for both types of requirements. Two common spatio-

textual index structures are the Inverted File R-Tree (IR-Tree), proposed by Wu et al.[113]

and Cong et al.[38], and the Inverted Linear Quadtree (IL-Quadtree) index, proposed by

Zhang et al.[120].

As highlighted in previous research[41, 111, 120, 129], the performance of spatial

2.2 Spatio-Textual Indexing 13

keyword queries tends to suffer when objects are independently organized by separate textual

and spatial indexes. To address this limitation, spatio-textual indexes have been developed.

These hybrid indexing structures aim to enhance the efficiency of queries that involve both

types of data attributes. In Chapter 4, it will be demonstrated how to effectively employ a

spatio-textual indexing to solve QQ-SPM queries efficiently, specifically, the IL-Quadtree

index.

2.2.1 IL-Quadtree

The Inverted Linear Quadtree (IL-Quadtree) index[120] was proposed as a spatio-textual

indexing solution in comparison with other existing indexes, specifically designed to

optimize the processing of top-k spatial keyword search problem. This structure is

particularly well-suited for scenarios where data objects have both a spatial attribute

(location) and a set of keywords. It is most suitable for datasets containing a relatively small

number of distinct keywords. The IL-Quadtree approach involves creating and maintaining

a separate and independent Quadtree index structure for each distinct keyword in the dataset.

Thus, the Quadtree of each keyword indexes all the objects associated with that particular

keyword. If an object has multiple keywords, it will be present in more than one Quadtree,

specifically, one for each of its associated keywords.

The IL-Quadtree index, as outlined in its research article by Zhang et al.[120], is

specifically designed to enhance the performance of the top-k spatial keyword search

problem, which is similarly investigated by De Felipe et al.[41] and Zhou et al.[129]. In

this scenario, a set of spatio-textual objects, a query location q, and a set of keywords are

involved. The goal is to retrieve the k closest objects to the query location q, with each

object containing all the specified keywords. Beyond this, other research has demonstrated

the effective utilization of the IL-Quadtree indexing for more generic search problems. For

instance, Chen et al.[24] proposed the employment of the IL-Quadtree indexing to efficiently

addresses a spatial pattern matching (SPM) search that considers a set of keywords and pair-

wise distance restrictions between the searched objects. This master’s thesis proposes an

efficient way of employing IL-Quadtrees for solving QQ-SPM queries. The detailed steps

will be described in Sections 4.1 through 4.2.2.

2.3 Qualitative Spatial Reasoning 14

2.3 Qualitative Spatial Reasoning

Understanding and reasoning about spatial aspects of the world is crucial. However, mapping

human spatial reasoning into computational representation remains challenging due to its

context-dependent interpretation, as investigated in[1, 36, 53, 58, 61, 62, 71, 97, 104] .

Existing studies[8, 57, 60, 71, 103] have proposed geometrical approaches to formally

interpret the meaning of natural-language spatial predicates. Although the ambiguity

intrinsic in such definitions is inevitably persistent.

Qualitative spatial reasoning (QSR) involves developing calculi that allow machines to

represent and reason with spatial entities while abstracting away metrical details[36, 62,

85, 91]. The term “Qualitative Spatial Calculi” (QSC) refers to formal theories aimed at

emulating human spatial representation and reasoning abilities[59]. As outlined by Moratz

and Ragni[91], in QSR, two primary investigative scenarios emerge: topological relation

reasoning (involving concepts like “touches”, “contains” and “traverses”) and orientation

reasoning (which considers cardinal directions and other orientation-related aspects).

In this work, the primary focus lies in the topological reasoning aspect. For instance, a

user might seek a training gym WITHIN a shopping mall (topological reasoning), while the

significance of searching for a training gym located to the LEFT (orientation reasoning) of

a specific place may be less pronounced. Although modeling topological spatial reasoning

from natural language to computational representation, such as in[5, 61, 104], is essential,

this research does not delve into this direction.

The proposed approach for solving QQ-SPM queries assumes that each qualitative

spatial predicate expression has an established formal definition without ambiguities. While

prepositions like “near”, “between” and “connected” are challenging to formally define, they

can still be assigned distance thresholds and geometrical conventions as implementation

decisions for computational representations, as investigated by Aflaki et al.[1] and Fogliaroni

et al.[59]. However, in this current research, the use of such complex predicates was avoided.

Instead, this research is restricted to formally defined named spatial predicates such as

“contains”, “intersects” and “within”. These predicates can be precisely represented within

a formal topological model, enabling their computational utilization in spatial pattern search

systems. For instance, users can select from a fixed set of topological relations as qualitative

2.3 Qualitative Spatial Reasoning 15

connectivity requirements between two searched entities.

2.3.1 Topological Relations

Topological relations, also known as connectivity relations, exhibit special properties: they

are rotation-invariant, translation-invariant, and scaling-invariant. These relations involve

qualitative spatial predicates that specifically represent information related to the topological

aspects of two spatial regions (or geometries, shapes)[6, 32]. In this context, the scope of this

master’s thesis lies in binary topological relations within a 2-dimensional Euclidean space.

Figure 2.2 illustrates examples of the core binary topological relations between two spatial

regions.

Figure 2.2: Example of Topological Relations

The solutions proposed in this work assume that the qualitative query constraints have

a formal and unambiguous computational representation. This requires the use of a formal

topological model to represent the query constraints computationally. The next subsections

review the two most widely-adopted formal topological models. These models can be used

interchangeably for designing and implementing a QQ-SPM solution approach.

Region Connection Calculus

Several models have been proposed in the literature to formally define and represent

topological relationships, aiming to provide a non-ambiguous and computational

representation for them[18]. One important such model is the Region Connection Calculus

(RCC) proposed by Randell et al.[98] and Cohn et al.[35], which serves as a formal method

for defining the possible topological relations between two spatial objects. RCC relies on

axiomatic first-order logic to define the topological relations. The domain of discourse for

this logic is the universe U of all existing spatial regions with a same given dimension. The

2.3 Qualitative Spatial Reasoning 16

foundational binary topological relation, denoted by the Connected predicate (referred to as

relation C), forms the basis upon which all other topological predicates are defined. RCC

operates based on two fundamental axioms related to the C predicate. The first establishes

that every spatial region is connected to itself. The second establishes that if a spatial region

X is connected to another spatial region Y, the reciprocal also holds, i.e., Y is connected

to X. Table 2.1 provides the boolean expressions that define the most common topological

relations within RCC.

Topological Predicate Meaning Boolean Expression Definition

DC(x, y) x is DISCONNECT from y ¬C(x, y)

P (x, y) x is a PART of y ∀z[C(z, x)→ C(z, y)]

PP (x, y) x is a PROPER PART of y P (x, y) ∧ ¬P (y, x)

EQ(x, y) x is EQUAL to y P (x, y) ∧ P (y, x)

O(x, y) x OVERLAPS y ∃z[P (z, x) ∧ P (z, y)]

PO(x, y) x PARTIALLY OVERLAPS y O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)

DR(x, y) x is DISCRETE from y ¬O(x, y)

EC(x, y) x is EXTERNALLY CONNECTED to y C(x, y) ∧ ¬O(x, y)

TPP (x, y) x is a TANGENTIAL PROPER PART of y PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)]

NTPP (x, y) x is a NON-TANGENTIAL PROPER PART of y PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)]

P−1(x, y) x has y as a PART P (y, x)

PP−1(x, y) x has y as a PROPER PART PP (y, x)

TPP−1(x, y) x has y as a TANGENTIAL PROPER PART TPP (y, x)

NTPP−1(x, y) x has y as a NON-TANGENTIAL PROPER PART NTPP (y, x)

Table 2.1: Formal definitions of the most common topological predicates in RCC

In Table 2.1, it can be observed that the relation “Overlaps” differs from the foundational

relation “Connected”. The latter only requires a point in common, whereas the former

necessitates the existence of a spatial region (with the same dimensionality as the two

regions) that is a common part of both regions. Additionally, the relation “Part” (P (x, y))

is sometimes referred to as “Within”, or simply “In”. Similarly, the relation “Part Inverse”

(P−1(x, y)) is also known as “Contains”. Furthermore, the relation “Externally Connected”

is also known as “Touches” or “Meets”. The RCC8 standard[100] considers only eight

relations: EQ,DC,EC, TPP,NTPP, PO, TPP−1 and NTPP−1. Notably, the logical

inclusive disjunction of the specialized relations TPP and NTPP is logically equivalent

to the more general relation PP . Similarly, the logical conjunction of the relations

2.3 Qualitative Spatial Reasoning 17

TPP,NTPP and EQ is equivalent to the more general relation P .

Dimensionally Extended 9-Intersection Model

Another equally important topological formalization model is the Dimensionally-Extended

9 Intersections Model (DE-9IM), proposed in previous research[33, 34, 46, 47]. This model

allows for more granular definitions of possible topological relations, including relations

specific to regions with different dimensions (e.g., the relation “Cross”). In DE-9IM, each

possible spatial region divides the entire space into three parts: its interior, its boundary, and

its exterior. Unlike using first-order boolean logic expressions to define binary topological

relations, DE-9IM employs a 3x3 matrix that captures the dimensions of intersections

between the interior, boundary, and exterior of two spatial regions.

Each possible matrix represents a specific topological relation, and the computation of

these intersections for a pair of spatial regions A and B inherently defines the topological

relation between them. Figure 2.3 1 exemplifies the computation of the DE-9IM matrix for

two partially overlapping spatial regions A and B. The resulting matrix yields the topological

relation defined by the numbers 2, 1, 2, 1, 0, 1, 2, 1, 2. Notably, this represents a highly refined

and specific topological relation. Only more general topological relations receive named

spatial predicates. For example, the relation “Covers”, is not determined by a single matrix

but rather by a set of several matrices collectively fulfilling its configuration.

Each named spatial predicates is assigned a DE-9IM matrix pattern governing its

definition. There is a standard[94, 95] for representing specific matrix patterns. Within

this standard, matrix entries can be a number (representing the dimension size of an existing

intersection), or a mask representing a more generic case, as follows:

• F is used to denote the nonexistence of an intersection.

• T represents the existence of an intersection, regardless of its dimension.

• An asterisk (∗) signifies either the existence or nonexistence of the intersection, or

simply indicates missing information about the intersection.

Consider Figure 2.3, where the DE-9IM matrix for two geometries is shown. The matrix

entries are 2, 1, 2, 1, 0, 1, 2, 1, 2. These entries satisfy the matrix pattern T ∗ T ∗ ∗ ∗ T ∗ ∗
1Image credit: By Krauss, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20825354

2.3 Qualitative Spatial Reasoning 18

Figure 2.3: Example of the 9-intersections matrix for two overlapping geometries A and B

but do not meet the pattern F0TTTT ∗ ∗T . The pattern T ∗ T ∗ ∗ ∗ T ∗ ∗ actually defines

the topological relation “Overlaps”. Thus, the two geometries depicted in Figure 2.3 are

overlapping. Matrix patterns allows the representation of various spatial predicates. For

instance, the named spatial predicate “Disjoint” consists of all DE-9IM matrices that fulfill

the pattern FF ∗FF ∗ ∗ ∗ ∗. Table 2.3 shows the matrix patterns defining the most common

binary topological predicates in DE-9IM. The relation “Intersects” can be understood as

the logical inclusive disjunction of the following DE-9IM relations: “Equals”, “Covers”,

“CoveredBy”, “Overlaps”, and “Touches” (as in Figure 2.2)

In the context of the DE-9IM model, matrix patterns for opposite spatial relations

exhibit an interesting symmetry: they are the transpose matrix of each other. For instance,

this behavior occurs with the matrices patterns of the relations “Contains” and “Within”,

since Contains(A, B) is equivalent to Within(B, A). Also, In DE-9IM there are subtle

distinctions between certain relations. Specifically, the relation “Contains” differs slightly

from “Covers”. When we say “A contains B”, it implies that every point of B lies within A

and the interiors of these geometries have a non-empty intersection. In contrast, “Covers”

is less restrictive, only requiring that every point of B is a point of A. Similarly, the relation

2.3 Qualitative Spatial Reasoning 19

Topological Predicate Meaning DE-9IM matrix patterns Equivalent To

Equals(A, B) the geometries A and B are

topologically equal

T*F**FFF* Equals(B, A)

Disjoint(A, B) the geometries A and B have no

point in common

FF*FF**** Not Intersects

Intersects(A, B) the geometries A and B have at least

one point in common

T******** or *T******* or

T** or ****T****

Not Disjoint

Touches/Meets(A, B) the geometries A and B intersect

but their interiors do not

FT******* or F**T***** or

F***T****

Touches(B, A)

Crosses(A, B) geometry A crosses/traverses

geometry B

T*T****** (if dim(A) < dim(B)) or

0******** (if 1=dim(A)=dim(B))

CoveredBy(A, B) Every point of A is a point of B T*F**F*** or *TF**F*** or

FT*F* or **F*TF***

Covers(B, A)

Within(A, B) A is covered by B and the interiors

intersect

T*F**F*** Contains(B, A)

Overlaps(A, B) the intersection of the interiors of A

and B has the same dimension as

the geometries, and none is covered

by the other

T*T***T** (if dim = 0 or 2) or

1*T***T** (if dim = 1)

Covers(A, B) Every point of B is a point of A T*****FF* or *T****FF* or

T**FF* or *T*FF*

CoveredBy(B, A)

Contains(A, B) A covers B and the interiors

intersect

T*****FF* Within(B, A)

Table 2.2: Pattern Matrices for the most common topological predicates in DE-9IM

2.4 Final Considerations 20

“A within B” is more stringent than “CoveredBy(A, B)”. For “A within B”, the interiors of

both geometries must intersect. As a distinguishing example, if geometry A is equal to the

boundary of geometry B, CoveredBy(A, B) evaluates to True, while Within(A, B) is False.

In the RCC (Region Connection Calculus) model, the PART/WITHIN relation doesn’t

explicitly require interior intersections. However, this condition occurs implicitly because

both geometries must share the same dimension. DE-9IM’s predicates “Within” and

“CoveredBy” correspond to the RCC predicate “Part”. Similarly, DE-9IM’s predicates

“Contains” and “Covers” align with the RCC predicate “Part Inverse”. Although their

definitions are more refined in DE-9IM, making these relations subtly distinct. Table 2.3

shows the equivalences between predicates in RCC and DE-9IM.

The topological relations “Equals” and “Touches” were not employed in this research,

due to their infrequent occurrence in the analyzed datasets. Additionally, these relations

are special cases of “Intersects” which is readily available for representation in QQ-SPM

queries. However, the relation “Covers” is still retained, even though it is a special case

of “Intersects”. The reason for this choice is the intuition that “Intersects” may frequently

output neighboring geometries, in cases where a user may rather specifically want a direct

containment relation (e.g., a restaurant within a shopping mall).

In summary, this research encompasses a set of four core topological relations is used.

In RCC, they are the relations Connected, Disconnected, Part, and Part Inverse. These

correspond to the DE-9IM relations “Intersects”, “Disjoint”, “CoveredBy”, and “Covers”.

This proposed search pattern is therefore restricted to these four qualitative spatial predicates.

Such a choice is only intended to simplify the formalization of QQ-SPM queries presented

here, and should not be considered a restrictive flexibility for future studies on QQ-SPM

spatial queries.

2.4 Final Considerations

This chapter reviewed spatial and spatio-textual indexing, emphasizing that these structures

are designed for efficiently answering specific spatial queries, particularly range and kNN

queries. The chapter also explored the concepts of Qualitative Spatial Reasoning and

Qualitative Spatial Relations, including a discussion of two formal methods for representing

2.4 Final Considerations 21

RCC relation DE-9IM relation

Connected Intersects

Disconnected Disjoint

Part/Within CoveredBy/Within

Part Inverse/Contains Covers/Contains

Externally Connected Touches

Table 2.3: Equivalences between some RCC and DE-9IM relations

topological reasoning. These concepts are applied in Chapter 4 to describe the design of

efficient solutions for QQ-SPM queries, which represent a more complex and flexible spatio-

textual search format. The next chapter discusses various related works, outlining their

strengths and weaknesses concerning different spatio-textual search requirements.

Chapter 3

Related Work

Spatial Keyword Queries, also known as Spatio-Textual Queries, typically involve a central

point or region location and a set of keywords as input. The goal is to identify a set of

geo-textual data objects from a dataset that are most closely related spatially and textually

to the query input. According to the taxonomy of spatio-textual queries proposed by Chen

et al.[26, 28], this research falls into the category of geo-textual queries over static data in

Euclidean space, specifically related to group queries.

Carniel[22] proposes a taxonomy for spatial queries with quantitative and qualitative

constraints, focusing on purely spatial queries (i.e., without keywords). The study highlights

that the most significant spatial relations in the existing literature on spatial queries are metric

relations (e.g., distance), directional relations (e.g., north, east, left, right), and topological

relations (e.g., contains, intersects). The latter two are qualitative constraints, while the

former is a quantitative constraint.

An extended SQL spatial language capable of representing a diverse set of spatio-

textual queries is proposed by Mahmood et al.[87]. However, the research only outlines

the guidelines for such a language, without providing implementation and performance

analysis. Long et al[85] and Kothuri et al.[76] propose alternative methods to enable

faster computation of distance and topological relations between two spatial geometries.

Although these methods accelerate the verification of spatial predicates between geometrical

shapes, they do not provide efficient ways to prune irrelevant regions during spatial queries.

Therefore, designing efficient algorithms and indexing techniques for rapid space pruning

and early discarding of numerous irrelevant spatial objects remains a critical research

22

3.1 Item-wise Queries 23

objective.

In the following sections, a set of existing studies on spatio-textual queries is discussed,

focusing on works that explore performance and efficient solutions for specific types of

spatio-textual queries. Typically, these studies formalize a specific spatio-textual query,

demonstrate its importance through application scenarios, and illustrate efficient methods

to address such a query. These researches often propose appropriate indexing, design

specialized algorithms, or compare various approaches for solving specific types of spatial

queries efficiently.

3.1 Item-wise Queries

Item-wise queries, also known as standard queries, are designed to produce a set of

results where each result consists of a single spatio-textual object, with each result being

independent of the others. Numerous studies focus on enhancing the performance of item-

wise queries. Below, a few significant categories of item-wise queries are highlighted:

• Range/Window queries[25, 31, 54, 56, 68, 69, 78]: aim to find all objects within a

circular or rectangular region centered on a given location. For geo-textual queries,

each result must satisfy the boolean condition of the keywords specified in the query.

These queries are also known as Boolean-Boolean queries.

• Point/Region queries[17, 54]: aim to find all objects whose spatial attributes intersect

with the input point or region of the query. For geo-textual queries, each result must

satisfy the boolean condition of the keywords specified in the query.

• Boolean k Nearest Neighbors queries[19, 25, 54, 86, 109, 118, 120]: aim to find the

k closest objects to a given central point, satisfying the query’s input keywords. These

queries are also known as Boolean-Ranking queries.

• Top-k Spatial Keyword queries[25, 38, 42, 74, 75, 82, 88, 96, 101, 106, 107, 116,

123]: aim to find the k objects most relevant to the query location and keywords, and

potentially other query attributes, based on a specific cost function combining spatial

and textual relevance to the query parameters. These queries are also known as Full-

Ranking queries.

3.2 Group Queries 24

Despite the importance of these standard spatio-textual queries, the item-wise search

configuration cannot account for scenarios where a group of spatially close geo-textual

objects collectively satisfy specific user needs. Such situations highlight the need for the

design of group queries, specialized in finding optimal groups of objects based on specific

geo-textual search parameters, serving distinct user purposes.

Existing research explores the parallel processing of multiple standard queries. Fevgas

and Bozanis[54] investigate the parallelization of point and region queries, while other

studies[102, 115, 118] delve into the parallel batch processing of range, kNN or top-k

queries. While this configuration enables efficient item-wise query processing, it does not

fully address the challenge of identifying groups of diverse objects that collectively meet

specific search criteria and are spatially close.

3.2 Group Queries

Spatial joins involve pair-wise spatial queries, typically focusing solely on spatial aspects

without incorporating textual keywords. They entail identifying pairs of objects from two

sets that meet a specified spatial relation, which can be quantitative (e.g., distance limit) or

qualitative (e.g., topological relation). Various studies explore the performance of different

spatial join algorithms and techniques[10, 63, 73]. Although spatial joins can be combined to

search for more than two objects, this concatenation approach is not always the most efficient

for locating groups of spatial objects. Different search scenarios and configurations require

particular attention, leading to the development of specialized algorithms tailored to specific

search tasks. Consequently, the literature contains several works dedicated to queries aiming

to find groups of objects of arbitrary sizes, known as group queries.

In contrast to item-wise queries, group queries focus on identifying groups of closely

associated spatio-textual objects that collectively meet the keyword preferences specified

in the query. Consequently, each result of a group query comprises a cluster of objects

characterized by proximity in spatial locations and high relevance to the query keywords.

Wallgrün et al.[112] propose a type of purely spatial group query, devoid of keywords,

which involves solving qualitative queries depicted in sketchmaps by interpreting the

directions between objects. The spatial pattern in a map comprises a sketchmap that

3.2 Group Queries 25

illustrates the relative positions of spatial objects and the directions (e.g., north, east) between

pairs of objects. Their investigated search task is termed Qualitative Spatial Constraint

Networks (QSCN). The term “network” refers to the graph-based structure of the input

sketchmap, where nodes represent spatial objects and edges connecting nodes denote the

annotated directional orientations between the locations of pairs of spatial objects in the

pattern.

While the QSCN task enables the matching of spatial information among different map

sources, it does not address spatial pattern scenarios involving keywords. Thus, it cannot

accommodate search requirements such as locating a grocery store within 1 kilometer of a

specified house and within 10 kilometers of a beach. QSCN does not cater to these scenarios

as it deals with spatial objects that lack geo-textual attributes.

The following sections introduce other types of group queries, encompassing spatio-

textual query settings. These queries filter results based not only on spatial constraints but

also on keywords provided as search parameters.

3.2.1 Collective Spatial Keyword Queries

The Collective Spatial Keyword queries (CoSKQ) involve receiving a query location and a

set of keywords, aiming to identify optimal groups of objects that collectively meet the query

keywords and are closely situated. Studies such as[65, 121, 122] employ a cost function

geared towards minimizing the diameter of the resulting group of objects. The objective of

this CoSKQ-specific search is termed the m-Closest Spatial Keyword Cover (mCK) search

task.

Various works[14, 16, 84] employ a cost function designed to minimize both the inter-

object distance and the distance to the query central location simultaneously. In addition,

studies such as[29, 30] utilize a cost function aiming to minimize the total number of

objects in the resulting group, thereby simplifying the set of objects that fulfill the search

requirements. Moreover, other research[20, 21, 43, 70, 105, 125, 126] explores more

comprehensive cost functions for optimizing results in a CoSKQ search, incorporating

a diverse array of factors to compose a unique metric that considers spatial and textual

relevance.

While CoSKQs effectively incorporate query keywords and retrieve spatially proximate

3.2 Group Queries 26

objects, they do not exploit pairwise spatial constraints between two objects, be they

quantitative or qualitative. For instance, CoSKQs do not accommodate binary spatial

relations such as locating a gym within a shopping mall. CoSQKq primarily rely on a unified

metric determined by a cost function for the entire retrieved group of objects. Moreover,

such queries do not address proximity avoidance constraints. For instance, if a user prefers

to find an apartment that is not in close proximity to a nightclub, traditional CoSKQ queries

would not ensure such requirements and would not factor in such exclusion preferences in

the cost function for result optimization.

3.2.2 Neighborhood-Preference Queries

The term “Neighborhood-Preference Query” (NPQ) is employed in this study to denote

spatio-textual queries focused on identifying optimal data objects based on their proximity

to other objects relevant to user preferences. In essence, an NPQ entails a primary

keyword indicating the content or type of the primary searched object (referred to as the

data object), along with a set of keywords representing user preferences for objects in

proximity to the searched data object (referred to as feature objects). Several existing

works[40, 44, 64, 80, 110, 119] address such specific search scenarios. The NPQ task

involves identifying the top-k optimal data objects, which are those having the most favorable

neighborhood according to the user’s specified preferences, delineated by the keywords

for the feature objects. The score of a data object takes into account its proximity to the

user-expected feature objects and the quality of these surrounding feature objects, based on

specific quality metrics.

For instance, if a tourist is seeking a hotel close to a renowned Chinese restaurant, the

optimal hotels would be those nearest to highly-rated Chinese eateries. In such scenarios,

a scoring metric could be defined by a cost function that considers the proximity of the

searched data object to the nearest feature objects and their associated quality.

However, NPQs yield results limited to the central searched data object and do not

provide the precise locations of the feature objects, which are also relevant to the user.

Each result presents an optimal data object for the search, ensuring the presence of relevant

feature objects in the surrounding proximity neighborhood of the central object. However,

users must independently locate the relevant neighborhood themselves. Additionally, NPQs

3.2 Group Queries 27

do not consider proximity avoidance constraints (exclusion constraints), similar to CoSKQ

queries, as mentioned.

3.2.3 Spatial Pattern Matching

The Spatial Pattern Matching (SPM) query was initially proposed by Fang et al.[50] and

further investigated in other studies[24, 51, 52, 81]. SPM takes a spatial pattern as input,

represented as a graph where vertices contain keywords for the searched objects, and each

edge linking two vertices specifies a quantitative spatial condition with lower and upper

bound distances between the paired objects corresponding to the vertices. Additionally, the

SPM query introduces exclusion constraints, which involve proximity avoidance conditions.

These constraints allow for the formulation of search scenarios where users can specify the

preference for the non-existence of specific types of facilities in proximity to the query

results. This enhances the richness and flexibility of search scenarios, catering to specific

user requirements within such a search framework.

Guo et al.[67] suggests incorporating social factors to refine the results of SPM searches.

For instance, by leveraging a social network that links users and POIs, the outcomes of an

SPM search could be filtered based on their relevance to a user’s circle of friends. However,

the author does not offer a methodology for constructing such queries, as it necessitates

quantifying complex social factors, and the proposed processing algorithms assume the

availability of these metrics in the query parameters.

Chen et al.[27] delves into a variant of the SPM search known as Example-based Spatial

Pattern Matching (EPM). The EPM search task entails identifying all occurrences of a given

spatial pattern within a geo-textual dataset, where the spatial pattern is defined by a set of

points, each linked to a keyword and spatial coordinates. Unlike traditional SPM, which

relies on pair-wise distance constraints between objects, EPM focuses on specific example

locations to configure the search pattern. A group of objects is considered a match if they

can be derived from the search pattern through translations and rotations, with allowances

for relative positioning tolerance. For instance, in a POI search with EPM, if a POI with

keyword A is located between two others with keywords B and C in the search pattern, a

match must replicate this relative spatial arrangement. On the other hand, traditional SPM

queries define a match based solely on satisfying distance constraints between corresponding

3.3 Queries with Quantitative and Qualitative Constraints 28

pairs, irrespective of relative positions and orientations.

While the traditional SPM query and its mentioned variations offer flexibility and

robustness in various search scenarios, they exclusively address quantitative distance

constraints, thereby overlooking specific qualitative preferences expressed by users. For

instance, a user might wish to locate a gymnasium situated within the premises of a shopping

mall or a commercial building directly adjacent to a public park with a verdant expanse,

ensuring seamless access without crossing streets. However, such nuanced qualitative

and topological preferences remain unaddressed by SPM queries, requiring manual sifting

through query results to identify those meeting these criteria.

3.3 Queries with Quantitative and Qualitative Constraints

Several studies address search scenarios encompassing both quantitative and qualitative

criteria. For instance, Guo et al.[66] and Li et al.[79] introduce and explore the concept

of Direction-Aware Nearest Neighbor Queries, which seek direction-diverse spatio-textual

objects. For instance, consider a scenario where a person is driving and seeks nearby coffee

shops. Ideally, the most suitable options would be establishments situated directly along the

highway the person is traveling on.

Guo et al.[66] introduced a method to retrieve recommendations distributed across all

possible directions from the central query location, aiming to encompass results from all

directions in cases where the optimal direction is uncertain. On the other hand, Li et

al.[79] offers algorithmic approaches to address the retrieval of the top-k objects confined

within a defined angular direction range from the initial search location. While these

studies incorporate directional spatial reasoning, they do not accommodate topological

requirements.

The point and region queries examined by Fevgas et al.[54] and Carniel et al.[17]

consider qualitative topological constraints, focusing on identifying all spatial objects

holding specific topological relations with a designated fixed point or region of interest.

However, these queries are purely spatial and do not incorporate keyword search capabilities.

Additionally, they are not tailored to retrieve pairs of spatial objects with varying geometries,

as one geometry is fixed (either the point or region of interest). Moreover, these queries yield

3.3 Queries with Quantitative and Qualitative Constraints 29

individual data objects as results, lacking the capability to retrieve groups of objects.

Spatial joins, based on topological relations between the geometries of two spatial

datasets[10, 63, 73], represent another form of qualitative and topological spatial query.

However, while many studies focus on the performance of spatial joins, they typically do

not incorporate keyword search conditions.

The existing spatio-textual join literature predominantly focuses on spatio-textual

similarity joins[9, 28, 49, 72, 83, 99, 127]. This type of join involves pairs of spatio-

textual objects that are both spatially proximate and textually similar. Such an approach

finds utility in various applications, such as social network friend recommendations, where

close spatial references and overlapping textual content between two profiles may indicate

a strong friendship. Additionally, this type of join facilitates the integration and matching

of corresponding spatio-textual data from multiple sources, as the joined pairs exhibit high

relevance in terms of keywords and spatial attributes.

However, this join operation is not intended for query scenarios like “finding a coffee

shop within 1 kilometer of a theater and adjacent to a wooded area”. Such example requires

spatial proximity conditions with unrelated keywords, making it unsuitable for spatio-textual

similarity joins.

As discussed in Section 3.2, the study by Wallgrün et al.[112] enables qualitative

requirements, specifically cardinal directions, in the spatial pattern search using sketchmaps.

However, it focuses solely on spatial aspects and does not address searches based on

keywords.

Deng et al.[44] explored a Neighborhood-Preference query termed Clue-based Spatio-

textual Query, which integrates quantitative and qualitative aspects. It aims to identify

locations conforming to a specific spatial arrangement centered around a focal object

with preferred surrounding objects. These surrounding objects must adhere to predefined

directional relations relative to the central object outlined in the search pattern. However,

this query does not accommodate qualitative topological constraints.

Rafael[97] introduced the concept of Qualitative Spatial Pattern Matching (QSPM),

which adapts the definition of the SPM query to compose spatial search patterns with

keywords and topological requirements between the searched objects. However, this study

focuses solely on qualitative queries and does not explore or address search patterns

3.4 Comparison of the Types of Spatio-Textual Queries 30

with both distance and topological pair-wise constraints between the searched objects.

Additionally, exclusion constraints, such as scenarios where the user aims to avoid close

proximity with unwanted facilities, cannot be represented in the QSPM query. These

limitations highlight the need for solutions tailored to addressing more versatile and

comprehensive spatial search patterns.

3.4 Comparison of the Types of Spatio-Textual Queries

Table 3.1 provides a summarized comparison of related works, highlighting the features

present and absent in each type of spatio-textual query studied in the literature. The examined

features include:

• Whether the queries are spatio-textual or purely spatial.

• Whether the queries represent quantitative constraints (e.g., distance range limits).

• Whether the queries represent qualitative constraints (e.g., directional or topological

restrictions).

• Whether the queries specifically allow topological constraints (e.g., contains,

intersects).

• Whether the queries retrieve individual items or groups of items.

• Whether the queries allow the representation of pair-wise constraints (e.g., specifying

a spatial restriction between only two specific objects in the search).

• Whether the queries can represent exclusion constraints (e.g., “retrieve only POIs not

located next to cemeteries”).

The SPM query type is closely related to the proposed QQ-SPM search task, although

it cannot address qualitative topological requirements. Therefore, SPM algorithms do not

optimize query processing for qualitative scenarios (e.g., “find a shopping mall containing

a gym”). Similarly, the QSPM query covers five of the compared features but fails to

represent distance and exclusion constraints. Notably, among the identified studies, this

3.5 Final Considerations 31

research uniquely and comprehensively encompasses all seven search features outlined as

the columns in Table 3.1.

Notably, simply answering multi-constrained spatio-textual queries is not a primary

research focus, as it is feasible to develop applications that process various spatio-textual

user requirements and generate straightforward queries against spatial databases based on

specific search filters. Nonetheless, the research discussed in the realm of geo-textual queries

focuses on efficiently and effectively answering specific spatio-textual queries. This involves

addressing diverse search scenarios either by introducing novel approaches or utilizing

existing indexing techniques and algorithms optimized for each specific query type. To

our knowledge, this research represents the first systematic effort to define, propose, and

investigate efficient solutions for QQ-SPM queries.

In summary, the proposed QQ-SPM query is designed to encompass both quantitative

and qualitative requirements, including topological constraints. It aims to retrieve groups

of closely located spatial objects that collectively meet the user’s criteria. This type of

query also allows for pair-wise restrictions between the searched objects and facilitates the

use of exclusion constraints, which can be exemplified by scenarios where users need to

find POIs that should not be near an unwanted type of facility. This generic, flexible, and

comprehensive group query configuration is referred to as the QQ-SPM query. Such a query

configuration is the central subject of investigation in this master’s thesis. This research

evaluates the performance of various search strategies tailored for efficiently addressing such

a query.

3.5 Final Considerations

This chapter provided a discussion on the features present in various studies aimed at

investigating different geo-textual queries. Each query is tailored to a specific search

scenario, often necessitating specific indexing and algorithms for optimal processing. The

discussion highlighted the effectiveness of the QQ-SPM query in accommodating both

quantitative (distance) and qualitative (topological) user requirements, as well as exclusion

constraints. Furthermore, this master’s thesis has been compared and differentiated from

existing research by identifying seven key features central to the QQ-SPM query task that

3.5 Final Considerations 32

Query type Works Spatio-

Textual

Quantitative Qualitative Topological

constraints

Group

search

Pair-wise

constraints

Exclusion

constraints

Range/Window,

kNN and top-k

queries

[2, 15, 19, 23, 25, 31,

38, 42, 54, 56, 64,

68, 69, 74, 75, 78,

82, 86, 88, 89, 92,

96, 101, 106, 107,

109, 114, 116, 117,

119, 120, 123, 124]

X X

Range/Window,

kNN and top-k

queries + Direction

[66, 79] X X X

Batch of

Range/Window,

kNN or top-k

queries

[102, 115, 118] X X

Point/Region

queries

[17, 54] X X

Batch of

Point/Region

queries

[54] X X

Spatial Join [10, 63, 73] X X X X

QSCN [112] X X X

CoSKQ [14, 16, 20, 21, 29,

30, 43, 65, 70, 84,

105, 121, 122, 125,

126]

X X X

NPQ [80] X X X

NPQ with distance

limits

[40, 64, 110, 119] X X X X

NPQ with distance

limits + Direction

[44] X X X X X

EPM [27] X X X X

SPM [24, 50, 51, 52, 67,

81]

X X X X X

QSPM [97] X X X X X

QQ-SPM This research X X X X X X X

Table 3.1: Related work

3.5 Final Considerations 33

are not fully addressed by other studies. The next chapter provides a formal definition for

the QQ-SPM query and delve into the design of solutions to address the proposed search

problem efficiently.

Chapter 4

QQESPM

This chapter introduces QQESPM (Quantitative and Qualitative Efficient Spatial Pattern

Matching), a solution approach for the QQ-SPM search problem. This approach is composed

of three solutions. The chapter begins by formally defining the essential terms pertinent to

QQ-SPM queries in Section 4.1. Two crucial mathematical theorems are established, to

aid in designing an efficient algorithmic solution for the QQ-SPM query. Subsequently,

Sections 4.2, 4.3 and 4.4 present in detail the three proposed solutions: QQESPM-Quadtree,

QQESPM-Elastic and QQESPM-SQL. Several implementation decisions, that aimed at

improving the performance of such solutions, are discussed in this chapter.

The first solution, QQESPM-Quadtree operates independently of geospatial storage

technologies, by performing searches within its own implementation of the IL-Quadtree

index structure stored on disk. The second solution, QQESPM-Elastic, leverages

Elasticsearch’s geospatial features. It converts spatial requirements from the query into a

set of requests using Elasticsearch’s native geospatial functions. The third, QQESPM-SQL,

automatically translates search pattern requirements into an efficient SQL query, utilizing the

PostGIS geospatial capabilities. The proposed solutions enhance the efficiency and accuracy

of QQ-SPM queries across different geospatial technologies.

34

4.1 Problem Formalization 35

4.1 Problem Formalization

4.1.1 Problem Definition

In this section, the key concepts related to the QQ-SPM search problem are formally defined.

This formalization is built upon the SPM search formalization proposed by Chen et al.[24],

by incrementing minimum aspects related to the topological constraints. The design of such

a formalization answers Research Question RQ1.

It is assumed that a spatio-textual or geo-textual object is a multimodal data entity

denoted by o = (o.loc, o.doc). Here, o.loc represents the spatial attribute of o, which can

take the form of a point with coordinates or a more intricate shape format like a polygon.

Additionally, o.doc comprises a set of keywords associated with o.

Definition 1 (spatial pattern). A Spatial Pattern is a graph G(V,E) with a set of n vertices

V = v1, ..., vn and a set E of m edges eij = e(vi, vj), satisfying the following constraints:

1. each vertex vi ∈ V has an associated keyword wi

2. each edge eij ∈ E stores the spatial constraints for a pair of objects matching the

keywords of its endpoint vertices vi and vj . The possible constraints consist of:

- a topological spatial predicate ℜij , among the following:

{contains,within, intersects, disjoint}

- a distance lower bound lij , and a distance upper bound uij

- an exclusion sign τ ∈ {←,→,↔,−}

Each possible spatial pattern graph represents a parameter for a QQ-SPM query. In a POI

group search, the vertices specify the POIs’ desired keywords, the connectivity predicates

indicate the desired connectivity relationships between the POIs. The spatial pattern graph,

as outlined in Definition 1, requires that for each vertex vi, an object oi from a dataset of geo-

textual objects must be identified. The keyword associated with vertex vi must match one of

the keywords in oi.loc. Furthermore, the distances and topological relationships between the

objects must adhere to the spatial constraints specified by the edges of the search pattern. The

4.1 Problem Formalization 36

distances between the POIs are restricted by the lower (lij) and upper (uij) bounds associated

with the edge. This query representation can be generalized to any other geo-textual objects

search scenarios. The meanings of the possible exclusion signs for an edge are described

below:

- vi → vj [vi excludes vj]: There must not exist any geo-textual object with keyword

wj within a distance less than lij from a matching object corresponding to vi.

- vi ← vj [vj excludes vi]: There must not exist any geo-textual object with keyword wi

in the dataset within a distance less than lij from a matching object corresponding to

vj .

- vi ↔ vj [mutual exclusion]: The two-way restriction, i.e., vi excludes vj and vj

excludes vi.

- vi vj [mutual inclusion]: The presence of geo-textual objects with keywords wi and

wj in the dataset with distance shorter than lij from the objects corresponding to vi, vj

is allowed for the search results.

The key distinction between the SPM’s spatial pattern representation and the QQ-SPM’s

representation lies in the latter’s ability to represent qualitative topological constraints, as

specified in condition 2(a) of Definition 1. The QQ-SPM query examined in this master’s

thesis is also more generic than the QSPM query analyzed by Rafael[97]. Unlike QSPM

searches, it allows for the representation of exclusion constraints (through exclusion signs on

the edges in the search pattern) and the specification of customized distance ranges between

pairs of searched objects.

Edges with distance interval restrictions for the searched objects are called quantitative

edges, and those with topological restrictions are called qualitative edges. Edges can be both

quantitative and qualitative simultaneously. A quantitative edge that has one of the exclusion

signs “←”, “→” or “↔” is called an exclusive edge, and the search constraint specified by

such an edge is called an exclusion constraint. Edges with the mutual inclusion sign (“−”)

are termed inclusive edges. For example, if an edge of the search pattern connects vertices

with the keywords “apartment” and “school”, and has lij = 100m, uij = 1000m, and a

mutual inclusion sign of τ = “ − ”, then an apartment A1 located 105m far from a school

4.1 Problem Formalization 37

S1 will appear among the search results, regardless of whether there are other schools closer

than 100m to A1. Conversely, if the edge has the sign τ = “ → ” between “apartment” and

“school”, then for the pair of objects (A1, S1) to meet the edge requirements, there must be

an additional condition that no other school S exists closer than lij = 100m from A1. In one

such school exists, the pair (A1, S1) will not figure among the search results, since the search

pattern specifies that the apartment must be located sufficiently far from schools (exclusion

constraint).

Notably, the relation “within” is the opposite of “contains”. Although this redundancy

could be discarded, the proposed model retain both relations because edges are directional

in the search patterh graph, having specific starting and ending vertices, allowing multiple

ways to generate the search pattern. The exclusion sign of an edge is also called a proximity

avoidance constraint.

Definition 2 (matching pair of objects). A pair of geo-textual objects (oi, oj) is called a

matching pair of objects for the edge e(vi, vj) if oi, oj have the keywords of the vertices vi, vj

respectively, and their spatial locations satisfy the constraints of the edge e.

Definition 3 (match). A tuple of n geo-textual objects S = (o1, o2, ..., on) is called a match

for a spatial pattern G(V,E) if |V | = n, and for each i, oi has the keyword of the vertex vi,

and for each edge e(vi, vj) of G, the pair of objecs (oi, oj) is a matching pair of objects for

the edge eij .

Note that the order of geo-textual objects in the tuple corresponds to the order of vertices

in the pattern G, so the ith object oi in the matching tuple corresponds to the ith vertex

(vi) in the pattern G. Notably, the QQ-SPM query format generalizes the SPM query by

incorporating both SPM search criteria and topological requirements for specifying spatial

pattern searches.

Problem 1 (QQ-SPM search problem). The QQ-SPM search problem or QQ-SPM query

consists of finding all the matches of a spatial pattern G(V,E) in a dataset D of geo-

textual objects, i.e., finding all combinations of objects from D that match the requirements

represented in the given spatial pattern graph.

4.1 Problem Formalization 38

4.1.2 Pruning Space with Mathematical Theorems

This section presents two theorems that aid in designing an efficient pruning method for an

algorithm solving a QQ-SPM query. The next section uses these theorems to design such

an algorithm. To apply these theorems, the dataset of geo-textual objects must be indexed

in a IL-Quadtree indexing structure. This section and the following aims at proposing

an efficient employment of the IL-Quadtree index in the resolution of QQ-SPM queries,

answering Research Question RQ2. To efficiently find matching pairs of objects, a search

procedure may prune unpromising regions using the concept of promising pairs of nodes,

formally defined below.

Definition 4 (promising pair of nodes). Let ILQ be an IL-Quadtree of geo-textual objects,

G(V,E) a spatial pattern graph, e(vi, vj) an edge of G, let ILQi and ILQj be the quadtrees

for the keywords of vertices vi and vj , respectively, ni, nj be two nodes from ILQi and

ILQj , respectively, and bi, bj their bounding boxes. We say that the node pair (ni, nj) is a

promising pair of nodes for the edge e(vi, vj) if dmin(bi, bj) ≤ uij and dmax(bi, bj) ≥ lij , and

additionally, the following conditions hold:

1. In case vi → vj: there is no object xj in ILQj such that dmax(bi, xj) < lij

2. In case vi ← vj: there is no object xi in ILQi such that dmax(xi, bj) < lij

3. In case vi ↔ vj: (1) and (2) hold

4. In case e is qualitative with ℜij ̸= “disjoint”: bi ∩ bj ̸= ∅

The functions dmin and dmax represent the minimum and maximum distance between the

bounding boxes of two nodes. The following intuition underlies the definition of a promising

pair of nodes. Intuitively, a pair of nodes ni, nj is considered promising for the edge e if the

bounding boxes of its nodes potentially contain matching pairs of objects for the edge e.

Specifically, if the minimum and maximum distances between the nodes’ bounding boxes

bi, bj do not rule out the possibility of geo-textual objects oi, oj inside these nodes forming

a matching pair for the edge e, then the children nodes or inner objects of ni, nj must be

further examined. These are candidates for finding matching pairs of objects for the edge e

in context.

4.1 Problem Formalization 39

Theorem 1. Let e(vi, vj) be an edge from a spatial pattern graph G(V,E), and let

ILQi, ILQj be the quadtrees for the keywords of the vertices vi, vj , respectively. Consider

a pair oi, oj of geo-textual objects in the dataset D. If (oi, oj) is a matching pair of objects

for the edge e, then for any nodes ni, nj from the quadtrees ILQi, ILQj , respectively, if oi is

inside ni and oj is inside nj , then the node pair (ni, nj) is a promising pair of nodes of e.

Proof. Since oi, oj is a matching pair of objects, then this pair satisfies the constraints of the

edge e, in particular, we have dmax(bi, bj) ≥ d(oi, oj) ≥ lij , and dmin(bi, bj) ≤ d(oi, oj) ≤

uij . Also, if e is qualitative with ℜij ̸= “disjoint”, then oi, oj are intersecting, and ni, nj

will be intersecting too. Now let us analyse the possible signs of the edge e. In case vi → vj ,

suppose there is an object xj ILQj such that dmax(bi, xj) < lij , but since oi is inside the

bounding box bi of the node ni, then lij > dmax(bi, xj) ≥ d(oi, xj) which is contradictory to

(oi, oj) being a matching pair of objects. So such xj does not exist. The proof for the other

possible signs are analogous, and thus, all the conditions for ni, nj to be a promising pair of

nodes are satisfied.

Using Theorem 1 in a QQ-SPM search procedure, only the promising pairs of nodes

require interior verification, in order to identify all the matching objects. A pair of objects

oi, oj outside all promising pairs of nodes for an edge e will never be a matching pair of

objects for e. In other words, no solutions for an edge e exist outside its promising pairs of

nodes. Thus, by focusing only on these promising pairs, an algorithm can find all matches of

a spatial pattern without analyzing the entire dataset. The following Theorem provides the

final piece for designing an efficient search for promising pairs of nodes.

Theorem 2. If (ni, nj) is not a promising pair of nodes for the edge e(vi, vj), then, any pair

(nc
i , n

c
j), where nc

i is children of ni and nc
j is children of nj , cannot be a promising pair of

nodes for the edge e(vi, vj).

Proof. The proof for the quantitative restrictions of the edges is provided in a study by Chen

et al.[24]. Regarding the additional proposed constraint to qualify as a promising pair of

nodes, which is related to the connectivity requirement of the edge, we verify through the

contrapositive version of the statement. It is important to note that if the node pair (ni, nj)

constitutes a promising pair of nodes for an edge with a qualitative constraint other than

“disjoint", the nodes will possess intersecting bounding boxes. Since their parent nodes cover

4.1 Problem Formalization 40

them, they will be intersecting as well, thus ensuring that if a pair of nodes is promising for

an edge e, so is the pair of their parent nodes.

By employing Theorem 2 in a QQ-SPM search procedure, the promising pairs of nodes

for the next level can be determined without the need to compare the bounding boxes of

every node at the current depth level of the quadtrees. Instead, a search procedure only need

to examine the children node pairs of the promising pairs of nodes from the previous level.

This is because for a node pair to be promising at the current level, its parent node pair must

be promising at the preceding level. By leveraging Theorems 1 and 2, a search procedure can

efficiently identify promising node pairs for edges level by level. Finally, such procedure can

verify the inner objects of the promising node pairs at the leaf level to identify the matching

objects. This process is detailed in Section 4.2.

4.1.3 Example of Search Pattern

The graph structure in Figure 4.1 (A) specifies a spatial pattern (Def. 1) which composes

a query to find groups of commercial building, gym and school, such that the commercial

building contains the gym inside, and is located between 2.5 and 5.5 distance units from

the school. The edge “commercial building - school” is exclusive with sign “→”, indicating

that the output commercial buildings must not be located closer than 2.5 distance units from

any other school. This requires finding a commercial building sufficiently far from schools

(exclusion constraint). Let’s denote the vertices of the search pattern (commercial building,

gym and school) as V1, V2, V3 respectively, and the edges “commercial building - gym”,

“commercial building - school” as eCG and eCS respectively.

The area os POIs displayed in Figure 4.1 (B) denotes the target dataset of POIs for

the query within a simple 2-D euclidean space. The POIs CB1, CB2, CB3 have the

keyword “commercial building”, the POIs G1, G2, G3 contain the keyword “gym”, and

S1, S2 contain the keyword “school”. In this case, the pair of POIs (CB1, S1) constitutes a

matching pair of objects (Def. 2) for the edge eCS (“commercial building - school”) since this

pair satisfy the distance and exclusion constraints of this edge. The object pair (CB2, S1)

does not constitute a matching pair of objects for the edge eCS since the commercial building

CB2 is too close to the school S2, thereby violating the exclusion constraint of the edge

4.1 Problem Formalization 41

Figure 4.1: Map Visualization of Fictitious POIs dataset for Search Example

eCS . In turn, the object pair (CB1, G1) is a matching pair of objects for the edge eCG.

Furthermore, the tuple of objects (CB1, G1, S1) constitutes a match (Def. 3) for the spatial

pattern of the query (Figure 4.1 (A)), since it contains one object for each vertex of the search

pattern, and satisfy the keywords, distance and topological constraints of the search pattern.

Figure 4.2 displays the constructed quadtrees for the geo-textual objects with the

keywords “commercial building” (A), “gym” (B) and “school” (C). In this example, the node

pair (NC:30, NG:3) is identified as a promising pair of nodes for the edge eCG (commercial

building - gym), since these nodes’ bounding boxes are intersecting, allowing them to

potentially contain inner objects that satisfy the spatial constraints of the edge eCG. Likewise,

the node pair (NC:0, NS:3) is a promising pair of nodes for the edge eCS , since the minimum

distance between these nodes’ bounding boxes is 0 which is less than the edge’s constraint

uij = 5.5, and the maximum distances between these nodes’ bounding boxes is 14.142

4.2 QQESPM-Quadtree 42

which is greater than lij = 2.5, thereby meeting the criteria for a promising pair of nodes

from Def. 4.

Figure 4.2: Quadtrees for the keywords in the fictitious POIs dataset

4.2 QQESPM-Quadtree

This section introduces the QQESPM-Quadtree solution. First, the design of its efficient

QQ-SPM search algorithm is presented. To aid in understanding the algorithm procedure,

a search example is provided. Further details of the QQESPM-Quadtree solution are

subsequently explained.

4.2.1 The Algorithm

This section presents the QQESPM-Quadtree algorithm, designed specifically to address

QQ-SPM queries, which involve four distinct topological relations between geo-textual

objects: “contains”, “within”, “intersects” and “disjoint”. Algorithm 1 (QQESPM-Quadtree)

outlines the search procedure, detailing the high-level sequential steps for query execution,

with an emphasis on achieving efficiency through the concept of promising pairs of nodes.

QQESPM-Quadtree takes as input a spatial pattern represented as a graph G(V,E) and a

dataset of geo-textual objects indexed in an IL-Quadtree ILQ, comprising quadtrees ILQi

corresponding to each keywordwi in the dataset. It then finds all matches of the spatial graph

G within the dataset of geo-textual objects.

4.2 QQESPM-Quadtree 43

The maximum depth level of the quadtree at which QQESPM-Quadtree operates

corresponds to the deepest quadtree associated with the keywords in the search pattern

(Line 1 of Algorithm 1). For each edge, the initial promising pair of nodes consists

of root nodes of the quadtrees for the keywords of the edge’s endpoint vertices (Lines

2 through 3 of Algorithm 1). The search procedure of QQESPM-Quadtree then

computes promising node pairs at each depth level of the quadtrees by leveraging the

promising pairs from previous levels (Lines 4 through 6 of Algorithm 1). The subroutine

Compute_Promising_Node_Pairs_Level invoked in Line 6 of Algorithm 1 is

detailed in Algorithm 2. This procedure receives the current depth level l and the promising

node pairs from the previous level for each edge e which is kept in the variable Ψe(l−1). It

then computes the promising node pairs for each edge at the next depth level of the quadtrees.

QQESPM-Quadtree prioritizes processing edges with sign “←”, “→” or “↔” (exclusive

edges) over those with sign “−” (inclusive edges) by reordering the list of edges (Lines 2

through 6 of Algorithm 2). This order optimizes the algorithm by initially addressing the

most restrictive spatial requirements, thereby reducing the number of candidate solutions

accumulated during execution.

During the computation of promising node pairs for edges at a specific depth level,

QQESPM-Quadtree maintains temporary sets of candidate nodes for each vertex in the

search pattern (Lines 7 through 8 of Algorithm 2). At each iteration for a given level l,

the algorithm identifies promising node pairs for the next level of each edge by analyzing the

children of the promising node pairs from the same edge in the previous level, as outlined in

Theorem 2. However, these promising node pairs can be restricted to those whose nodes

are among the candidate nodes associated with adjacent edges (Lines 11 through 12 of

Algorithm 2). For example, considering edges e12 and e13, which share vertex v1, the

node for keyword w1 in the promising node pairs of e13 must be among the nodes for w1

in the promising pairs of e12. This ensures that candidate solutions for subsequent edges

are constrained by those processed earlier, underscoring the importance of prioritizing more

restrictive edges. After identifying the promising node pairs for an edge, the candidate nodes

for their endpoint vertices are updated (Lines 17 through 20 of Algorithm 2). Following

this logic, after computing promising node pairs for each edge at a specific quadtree level,

QQESPM-Quadtree reorders the edge list for the next level, giving priority to edges with

4.2 QQESPM-Quadtree 44

fewer promising node pairs in the previous level.

Definition 5 (skip-edge). Give an ordered sequence of edges Π = (e1, e2, ..., em) from a

spatial pattern graph G. An edge ek from Π is said to be a skip-edge in the sequence Π

if ek is an inclusive edge and their endpoint vertices vi, vj lie in edges of the sub-sequence

(e1, e2, ..., ek−1) of the edges preceding ek.

After computing the promising node pairs for all edges at the leaf level, the edges are

reordered into a new sequence e1, e2, ..., em using a connected greedy strategy (Line 7 of

Algorithm 1). The search procedure guiding this reordering is delegated to the subroutine

Generate_Connected_Edges_Ordering, which is detailed in Algorithm 3. The

ordering is considered connected because the first edge in the sequence, e1, must be

adjacent to the second edge, e2, which in turn must be adjacent to the third, and

so forth. The strategy is described as greedy because the first edge, e1, is selected

based on the minimum number of promising node pairs (Line 2 of Algorithm 3). The

next edge is then chosen from among the adjacent edges of the previously added edge

(Line 10 of Algorithm 3), prioritizing the edge with either the minimum or maximum

number of promising node pairs (Lines 11 through 19 of Algorithm 3). At this stage,

since the subroutine Generate_Connected_Edges_Ordering was invoked with the

parameter alt set to false, the greedy strategy does not alternate between minimum and

maximum values. Consequently, the next edge to be chosen is always the adjacent edge

with the minimum number of promising node pairs. The greedy alternating strategy for

edge ordering (with the parameter alt set to true) is employed during the joining phase in a

subsequent step of the algorithm.

If no adjacent edges are available at a given point, the next edge in the sequence is chosen

from those that are connected to any of the previously added edges (Lines 20 through 28 of

Algorithm 3). The variable B (Line 4 of Algorithm 3) maintains a set of vertices from

already added edges that still have remaining adjacent edges. This set is used to select the

next edge when no adjacent edges are available to the most recently added edge.

At this stage, the algorithm identifies a subset of edges known as skip edges, where

computing matching pairs of objects is unnecessary (Line 8 of Algorithm 1). This exception

applies to inclusive edges that share identical endpoints with other edges for which matching

pairs of objects have already been computed. Definition 5 formally defines the concept of a

4.2 QQESPM-Quadtree 45

skip edge. For these edges, the promising pairs of objects can be inferred by filtering through

candidate solutions from adjacent edges and retaining only those that satisfy the skip edge’s

constraints. For non-skip edges, QQESPM-Quadtree calculates candidate pairs of objects by

evaluating the proximity and connectivity relationships of all objects within the promising

pairs of nodes at the leaf level (Lines 9 through 10 of Algorithm 1). For topological relations

other than “disjoint”, it is advantageous to test only bounding box intersections, which is

computationally less intensive than exact connectivity checks. Since many candidate pairs

of objects will be discarded during the joining phase, this approach avoids unnecessary

connectivity computations for objects that will ultimately be excluded, thereby optimizing

efficiency.

During the computation of promising pairs of nodes and objects for the edges, the

algorithm often needs to verify whether a pair of nodes or objects A and B constitutes a

promising pair for an exclusive edge. To check the exclusion constraint, it performs a range

query centered on A to determine if an object too close to A shares the same keyword as B.

In such cases, QQESPM-Quadtree utilizes previous computations by storing the results of

these range queries in temporary memory, thus avoiding redundant tests throughout a QQ-

SPM query. Specifically, this pruning based on exclusion constraints may occur during the

nodes’ filtering phase (Line 14 of Algorithm 2) or the objects’ filtering phase (Line 10 of

Algorithm 1).

For instance, consider an edge ewith endpoints labeled “apartment” and “school”, where

lij = 100m, uij = 1000m, and the exclusion sign τ = “ → ”. To determine if a pair of

objects (A1, S1) qualifies as a matching pair for the edge e, the exclusion constraint must

be checked. Specifically, it needs to be verified whether a school S exists within a distance

less than lij from A1. This requires performing a radius search centered on A1 with a radius

r = lij = 100m to find objects with the keyword “school” in this vicinity. If such an object is

located within this radius, the pair (A1, S1) is disqualified as a matching pair for the edge e.

Additionally, through computation reuse, A1 is excluded from consideration with any other

schools. The results of the radius search are stored in memory throughout the query, thereby

avoiding the need to test A1 against other schools.

After computing candidate pairs of objects for each non-skip edge, QQESPM-Quadtree

reorders the edges for the joining phase (Line 11 of Algorithm 1). This reordering utilizes the

4.2 QQESPM-Quadtree 46

same function, Generate_Connected_Edges_Ordering (Algorithm 3), previously

invoked in Line 7. At this stage, the alt parameter for this subroutine is set to true. This

indicates that the greedy ordering of the edges will alternate between those with the minimum

and those with the maximum number of promising node pairs. This alternating greedy

strategy helps to avoid costly nested loop operations in the joining of the matching object

pairs of all edges.

After reordering, QQESPM-Quadtree proceeds to the joining routine, which merges

promising pairs of objects for adjacent edges and eliminates mismatches (Lines 12 through

14 of Algorithm 1). Notably, edges sharing a common vertex must match the same geo-

textual object for that vertex to form a valid join. Once all non-skip edges are joined, the

algorithm evaluates the resulting partial solutions, discarding those that do not satisfy the

constraints of the skip edges (Lines 15 through 16 of Algorithm 1). Finally, it verifies

the actual topological relationships among objects within the final candidate solutions to

determine the ultimate solutions (Lines 17 to 18 of Algorithm 1). This final verification

is essential because, in Line 10, all topological constraints except “disjoint” were only

superficially assessed through bounding box intersection checks.

The QQESPM-Quadtree framework builds upon the structural design of ESPM but

introduces distinct criteria for promising node pairs and matching pairs of objects,

incorporating qualitative topological requirements. At each level, QQESPM-Quadtree

performs targeted computations, progressively identifying promising pairs of nodes from

the root to the leaf level of the keyword’s quadtrees. By integrating early filtering based on

connectivity constraints through bounding boxes intersection checks, QQESPM-Quadtree

effectively eliminates unpromising regions or objects, thereby reducing the cost of the joining

phase. Additionally, the reordering of edges helps avoid costly computations in later stages

of the search procedure. Ultimately, reusing computations for radius searches concerning

exclusion constraints accelerates query performance by preventing redundant evaluations of

nodes or objects unlikely to meet the exclusive edge requirements.

4.2 QQESPM-Quadtree 47

Algorithm 1: QQESPM-QUADTREE

Input: IL-Quadtree ILQ, spatial pattern G(V,E)

Output: ψ: all the matches of G

1 L = max(depth(ILQi), 1 ≤ i ≤ n)

2 for edge e(vi, vj) ∈ E do

3 Ψe(0) ← {ILQi.root, ILQj .root}

4 for each level l = 1 to L do

5 for each edge e do

6 Ψe(l) ← RUN Compute_Promising_Node_Pairs_Level(l, Ψe(l−1), G(V,E))

7 E ←RUN Generate_Connected_Edges_Ordering(Ψ, G(V,E), false) // reorder the edges

using a greedy minimizer strategy

8 SE ←the skip-edges in sequence E according to Def. 5

9 for each non-skip edge e ∈ E\SE do

10 Φe← the promising object pairs for e within the promising node pairs Ψe(l) // filter

based on distances or bounding box intersection

11 E ← RUN Generate_Connected_Edges_Ordering(Φ, G(V,E), true)// reorder the edges

using a greedy alternating strategy

12 ψ ← ∅ // keep the partially constructed matches of the search pattern

13 for each non-skip edge e ∈ E do

14 ψ ← ψ.join(Φe)

15 for each skip-edge e ∈ SE do

16 filter out partial solutions in ψ not satisfying constraints of e

17 for each edge e ∈ E with topological constraint do

18 filter out partial solutions in ψ not satisfying the exact topological constraint of e

19 return ψ

4.2 QQESPM-Quadtree 48

Algorithm 2: COMPUTE_PROMISING_NODE_PAIRS_LEVEL

Input: l: current quadtree depth level, Ψ: promising node pairs for edges from previous

depth level, G(V,E): spatial pattern

Output: Ψ: the promising node pairs up to depth level l of the quadtrees for each edge

1 L = max(depth(ILQi), 1 ≤ i ≤ n)

2 EE ← {e ∈ E: e is exclusive}

3 IE ← {e ∈ E: e is inclusive}

4 Reorder EE in form {e1, ..., ek} s.t. #Ψe1(l−1) ≤ ... ≤ #Ψek(l−1)

5 Reorder IE in form {ek+1, ..., em} s.t. #Ψek+1(l−1)
≤ ... ≤ #Ψem(l−1)

6 E ← the concatenation of the arrays EE and IE

7 for vi ∈ V do

8 Ci(l) ← all nodes of ILQi at level l

9 for e ∈ E do

10 Ψe(l) ← ∅

11 for (ni, nj) ∈ Ψe(l−1) do

12 if ni ∈ Ci(l) ∧ nj ∈ Cj(l) then

13 for (n′i, n
′

j) ∈ ni.children × nj .children do

14 if (n′i, n
′

j) is promising for edge e according to Def. 4 then

15 Ψe(l).add((n
′

i, n
′

j))

16 vi, vj ← the endpoint vertices of e

17 Ni ← all nodes of ILQi at level l figuring at some promising pair of Ψe(l)

18 Nj ← all nodes of ILQj at level l figuring at some promising pair of Ψe(l)

19 Ci(l) ← Ci(l) ∩Ni

20 Cj(l) ← Cj(l) ∩Nj

21 return Ψ

4.2 QQESPM-Quadtree 49

Algorithm 3: GENERATE_CONNECTED_EDGES_ORDERING

Input: Ψ: promising node or object pairs for the edges, G(V,E): spatial pattern, alt: a

boolean parameter (false specifies a greedy-minimum reordering, true specifies a

greedy-alternating reordering

Output: Π: the edges from E in a greedy and connected reordering

1 Π← ∅ // keep the edges already added to the reordering

2 e← the edge from E that minimizes #Ψe

3 Π.add(e)

4 B ← ∅ //keep visited vertices with remaining edges

5 vi, vj ← the endpoint vertices of e

6 if vi is incident to an edge besides e then

7 B.add(vi)

8 v ← vj //keep the current vertex

9 while E\Π ̸= ∅ (there are edges left) do

10 N ← {v′ ∈ v.neighbors: e(v, v′) /∈ Π}

11 if N ̸= ∅ then

12 B.add(v)

13 if alt is true ∧ #Π is an odd integer then

14 v′ ← the vertex from N s.t. the edge e(v, v′) maximizes #Ψe

15 else

16 v′ ← the vertex from N s.t. the edge e(v, v′) minimizes #Ψe

17 e← the edge linking v to v′

18 Π.add(e)

19 v ← v′

20 else

21 B ← B\{v}

22 ℵ ← the set of vertices v′ s.t. ∃e(v, v′) ∈ E\Π with v ∈ B

23 if alt is true ∧ #Π is an odd integer then

24 e← the edge e(v, v′) s.t. v ∈ B ∧ v′ ∈ ℵ ∧ e(v, v′) that maximizes #Ψe

25 else

26 e← the edge e(v, v′) s.t. v ∈ B ∧ v′ ∈ ℵ ∧ e(v, v′) that minimizes #Ψe

27 Π.add(e)

28 v ← the endpoint vertex from e that is not in B

29 return Π

4.2 QQESPM-Quadtree 50

4.2.2 Example of QQESPM-Quadtree execution

Consider an illustrative scenario where the algorithm is tasked with identifying matches for

the spatial pattern shown in Figure 4.1 (A) within a search area containing POIs, as depicted

in Figure 4.1 (B). The dataset includes 3 commercial buildings (CB1, CB2, CB3), 2 schools

(S1, S2), and 3 gyms (G1, G2, G3). Details of the keywords, polygonal boundaries, and

centroids of the POIs are provided in Table 4.1. The algorithm requires a pre-built IL-

Quadtree index based on the keywords and positions of the POIs, which consists of separate

quadtrees for each keyword, constructed from all POIs associated with that keyword. The

quadtrees for the keywords in the search pattern are illustrated in Figure 4.2. The QQESPM-

Quadtree algorithm begins its search for promising nodes within these quadtrees. The

vertices of the search pattern (commercial building, gym, and school) are V1, V2, and V3,

respectively, and the edges “commercial building - gym” and “commercial building - school”

are denoted as eCG and eCS , respectively.

ID Name Keywords Centroid Geometry

S1 School 1 school POINT (7 3) -

S2 School 2 school POINT (8 7) -

G1 Gym 1 gym POINT (1.9 3.5) POLYGON ((1.4 3, 2.4 3, 2.4 4, 1.4 4, 1.4 3))

G2 Gym 2 gym POINT (6 7) POLYGON ((5.5 6.5, 6.5 6.5, 6.5 7.5, 5.5 7.5, 5.5 6.5))

G3 Gym 3 gym POINT (1 2) POLYGON ((0 1.5, 2 1.5, 2 2.5, 0 2.5, 0 1.5))

CB1 Commercial Building 1 commercial_building POINT (1.7 4) POLYGON ((1 3, 2.4 3, 2.4 5, 1 5, 1 3))

CB2 Commercial Building 2 commercial_building POINT (6.5 6.8) POLYGON ((5.5 6.1, 7.5 6.1, 7.5 7.5, 5.5 7.5, 5.5 6.1))

CB3 Commercial Building 3 commercial_building POINT (9 8.5) POLYGON ((8.5 7.5, 9.5 7.5, 9.5 9.5, 8.5 9.5, 8.5 7.5))

Table 4.1: Fictitious dataset of POIs in 2-D Euclidian space

For each edge in the search pattern, the algorithm identifies promising pairs of nodes

at every depth level within the quadtrees. For the edge eCG, a pair of nodes (Ni, Nj) from

the “commercial building” and “gym” quadtrees, respectively, is considered promising if

their bounding boxes intersect. Similarly, a pair of nodes from the “commercial building”

and “school” quadtrees is deemed promising for eCS if the minimum distance between their

bounding boxes is less than 5.5 and the maximum distance is at least 2.5, in accordance with

Definition 4.

For this example, the root nodes of the quadtrees for the objects “commercial building”,

“gym”, and “school” are denoted as NC , NG, and NS , respectively. Nodes descending from

these root nodes are assigned subscripts indicating their path from the root. Specifically, the

4.2 QQESPM-Quadtree 51

southwest child of a node is labeled as child 0, the southeast as child 1, the northwest as child

2, and the northeast as child 3. For example, the southwest child of the northeast child of the

root node for the “commercial building” would be denoted as NC:30.

At the beginning of the processing of each depth level of the quadtrees, the edges

of the search pattern are reordered to prioritize the processing of exclusive edges first.

Consequently, the promising pairs of nodes for the edge eCS are computed first. At the

root depth level, the pair of root nodes (NC , NS) is the only promising pair for the edge

eCS . These nodes have identical bounding boxes, resulting in a minimum distance of 0 and

a maximum distance of 14.14. Therefore, at the root level, the edges eCS and eCG each have

only one promising pair of nodes.

At the first non-root depth level, the subdivisions of the quadtrees remain equivalent.

All pairs of nodes at this level continue to be promising for edge eCG as their bounding

boxes intersect, and the minimum and maximum distances between the bounding boxes are

promising for the distance thresholds of the edge eCS . With four nodes at this level for each

quadtree, both edges eCG and eCS will each have 4 · 4 = 16 promising pairs of nodes at the

first level.

At the second depth level, the subdivisions of the quadtrees diverge, and not all pairs of

nodes from the “commercial building” and “gym” quadtrees continue to intersect. Table 4.2

illustrates the bounding rectangles for each node in the “commercial building”, “gym”, and

“school” quadtrees. Nodes that are not subdivided at this level are also represented in their

entirety at the second depth level. Consequently, the quadtree for “commercial building”

contains seven nodes at the second level, whereas the quadtree for “school” has four nodes.

This results in 7 · 4 = 28 potential node pairs for the edge eCS (“commercial building -

school”) at this level. Since all these node pairs are descendants of the promising pairs from

the first level, each must be evaluated. After verifying the distances between the bounding

boxes of these nodes, all 28 node pairs are considered promising for identifying solutions for

the edge “commercial building - school”.

4.2 QQESPM-Quadtree 52

Node Bounding Box (x_min, y_min, x_max, y_max)

NC [0.0, 0.0, 10.0, 10.0]

NC:0 [0.0, 0.0, 5.0, 5.0]

NC:1 [5.0, 0.0, 10.0, 5.0]

NC:2 [0.0, 5.0, 5.0, 10.0]

NC:3 [5.0, 5.0, 10.0, 10.0]

NC:30 [5.0, 5.0, 7.5, 7.5]

NC:31 [7.5, 5.0, 10.0, 7.5]

NC:32 [5.0, 7.5, 7.5, 10.0]

NC:33 [7.5, 7.5, 10.0, 10.0]

NG [0.0, 0.0, 10.0, 10.0]

NG:0 [0.0, 0.0, 5.0, 5.0]

NG:00 [0.0, 0.0, 2.5, 2.5]

NG:01 [2.5, 0.0, 5.0, 2.5]

NG:02 [0.0, 2.5, 2.5, 5.0]

NG:03 [2.5, 2.5, 5.0, 5.0]

NG:1 [5.0, 0.0, 10.0, 5.0]

NG:2 [0.0, 5.0, 5.0, 10.0]

NG:3 [5.0, 5.0, 10.0, 10.0]

NS [0.0, 0.0, 10.0, 10.0]

NS:0 [0.0, 0.0, 5.0, 5.0]

NS:1 [5.0, 0.0, 10.0, 5.0]

NS:2 [0.0, 5.0, 5.0, 10.0]

NS:3 [5.0, 5.0, 10.0, 10.0]

Table 4.2: Bounding boxes of the nodes in the quadtrees “commercial building”, “gym” and

“school”

4.2 QQESPM-Quadtree 53

For the edge eCG (“commercial building - gym”), there are 7 · 7 = 49 potential

node pairs at the second level. However, after verifying the intersections between the

nodes’ bounding boxes, only 26 pairs are considered promising for containing inner objects

that satisfy the edge eCG. Specifically, the algorithm identifies the following promising

node pairs: (NC:30, NG:03), (NC:31, NG:1), (NC:30, NG:1), (NC:32, NG:2), (NC:30, NG:2),

(NC:31, NG:3), (NC:33, NG:3), (NC:32, NG:3), (NC:30, NG:3), (NC:1, NG:01), (NC:1, NG:03),

(NC:1, NG:1), (NC:1, NG:2), (NC:1, NG:3), (NC:0, NG:00), (NC:0, NG:01), (NC:0, NG:02),

(NC:0, NG:03), (NC:0, NG:1), (NC:0, NG:2), (NC:0, NG:3), (NC:2, NG:02), (NC:2, NG:03),

(NC:2, NG:1), (NC:2, NG:2) and (NC:2, NG:3).

Given that the second depth level constitutes the leaf level, the algorithm shifts its focus

to processing objects within these promising leaf nodes to identify promising object pairs for

each edge. The subsequent step in the search process involves examining the objects within

the promising node pairs corresponding to the search pattern’s edges. A pair of objects is

considered promising for edge e13 if their locations meet the edge’s distance constraints. In

turn, a pair of objects is promising for edge e12 if they reside within the promising node

pairs of this edge and the bounding boxes of their polygonal boundaries intersect. Since

edge e12 involves a qualitative topological constraint defined by the “contains” relationship,

the bounding boxes of objects satisfying this constraint necessarily intersect. Consequently,

this stage eliminates unpromising object pairs concerning the topological constraint. At this

phase, the algorithm identifies (CB1, S1) as the only promising object pair for edge eCS and

the object pair (CB1, G1) for edge eCG. Notably, the commercial building CB2 contains a

gym, but it fails to meet the exclusion constraint of edge eCS due to its proximity to school

S2, rendering this POI unable to satisfy the edge’s exclusion requirements.

In some instances, a subset of edges within the search pattern involves all vertices. When

this occurs, confirming promising object pairs for these edges results in a set of candidate

objects for all vertices. In such cases, it becomes unnecessary to verify the objects within

promising nodes for certain edges that share common endpoints with adjacent edges already

examined. These edges, termed skip-edges, allow the algorithm to derive promising object

pairs by evaluating the already gathered candidate objects for the vertices of these edges.

These candidates are obtained from the object pairs that satisfy the adjacent edges previously

processed. In this example, the search pattern does not contain skip-edges. However, if

4.2 QQESPM-Quadtree 54

a third edge were to establish a spatial constraint between the searched “school” and the

“gym”, it could be classified as a skip-edge since the promising objects for their vertices

would already have been identified after computing the promising object pairs for the first

two edges. Consequently, verifying the inner objects of its promising node pairs would be

redundant.

The final step involves combining the solutions of adjacent edges to form tuples that

represent the ultimate solutions for the entire search graph. By examining shared objects

between adjacent edges, only the solutions that persist through the joins between the

promising object pairs of adjacent edge are retained. The algorithm then performs a final

verification to eliminate the solutions not meeting the spatial constraints of skip-edges or the

exact topological relationship requirements, before outputting the final results.

In this example, the joining of object pairs for the “commercial building - gym” and

“commercial building - school” edges yields a single complete solution: (CB1, G1, S1).

This outcome represents the sole solution for the spatial search pattern shown in

Figure 4.1 (A) within the POI dataset depicted in Figure 4.1 (B).

4.2 QQESPM-Quadtree 55

4.2.3 QQESPM-Quadtree Solution

The QQESPM-Quadtree solution is designed as a module that employs the Algorithm 1 to

run QQ-SPM queries. It also manages large datasets with an ad hoc scalable implementation

of the IL-Quadtree indexing stored on disk as binary files, for faster data access. The

proposed QQESPM-Quadtree solution is an ad hoc solution for QQ-SPM searching, not

requiring any geospatial storage technology, since it processes datasets of spatial objects

(e.g., POIs) using its proper IL-Quadtree implemented on disk.

The proposed QQESPM-Quadtre allows a sliced data reading strategy, ensuring that only

the necessary IL-Quadtree nodes and objects are read from disk into memory during queries.

This allows for querying large databases without overwhelming RAM. This process provides

scalability and enables the processing of queries against large datasets.

4.2.4 Choosing an Order for Joining Edges

After computing the matching pairs of objects for each edge, the algorithm must join these

candidate solutions edge by edge to find the solutions for the entire search graph. The order in

which edges are processed during this joining step can significantly affect the computational

cost.

Consider a search graph with three edges (e1,2, e2,3, e3,4), where each edge ei,j connects

vertices vi and vj . Suppose edge e1,2 has 1,000 candidate object pairs, edge e2,3 has 10,000

candidate object pairs, and edge e3,4 has 40 candidate object pairs. If the edges are joined

in the order (e1,2, e2,3, e3,4), the first step will join the solutions of e1,2 and e2,3, requiring

1, 000 × 10, 000 = 10, 000, 000 pair-wise tests, which may cause a significant overhead.

If this join yields 20,000 solutions, these partial solutions must then be joined with the 40

solutions of edge e3,4, requiring 20, 000× 40 = 800, 000 additional computations. Thus, the

total operations performed would be 10, 000, 000 + 800, 000 = 10, 800, 000.

Alternatively, if the edge solutions are joined in the order (e3,4, e2,3, e1,2), the first step

will join the 40 solutions of edge e3,4 with the 10,000 solutions of edge e2,3, requiring

400,000 operations. If this step yields 500 partial solutions, the next step will join these

500 partial solutions with the 1,000 solutions of edge e1,2, costing 500,000 operations. For

this strategy, the total operations performed would be 400, 000+500, 000 = 900, 000, which

4.2 QQESPM-Quadtree 56

is significantly fewer than the 10,800,000 required by the previous strategy.

This example demonstrates that the choice of edge order in the join phase significantly

impacts the computational cost of solving the problem. In practice, it is impossible to predict

the exact number of operations for a specific edge order before the joining process, as the

total number of partial solutions after each join step is unknown until the join is performed.

Based on these intuitions, the QQESPM-Quadtree algorithm applies a greedy alternating

strategy, which ultimately provides a median performance in terms of operation cost. This

strategy reduces the computational cost of joins by controlling the magnitude of the total

partially constructed solutions during the join phase.

The strategy for ordering edges in the join phase follows this rule: the first edge is the

one with the fewest solutions. Once the n-th edge is chosen, the (n+1)-th edge is preferably

adjacent to the n-th edge. If there are adjacent edges that have not yet been chosen, and if

the last chosen edge minimized the number of solutions, the next edge will be the one with

the most solutions among the adjacent edges. Conversely, if the last chosen edge maximized

the number of solutions, the next edge will be the one with the fewest solutions among the

adjacent edges. If no adjacent edges remain, select the next edge from those that share at

least one vertex with an already chosen edge. This alternation between selecting the edge

with the fewest solutions and the edge with the most solutions, among the available adjacent

edges at each step, is the reason why this ordering method is called alternated greedy edge

ordering. This ordering is described in Algorithm 3.

The ordering of edges for the join phase is a connected ordering, where each next edge is

adjacent to some of the already processed edges. This allows using promising pairs of objects

of processed edges to eliminate many unpromising pairs of objects for subsequent edges, as

the next edge always shares a vertex with an already processed edge, and the matched spatial

object associated with the common vertex of two adjacent edges must be the same object for

the matching pairs of objects of both edges.

4.3 QQESPM-Elastic 57

4.3 QQESPM-Elastic

This section presents a second, independent approach for solving the QQ-SPM problem,

based solely on queries executed against an Elasticsearch1 node. The details on the design

of such solution, presented in this section, provide a positive answer for the first half of the

Research Question RQ3.

Elasticsearch is a search engine software that provides a distributed data storage system

with reverse indexing methods focused on textual search efficiency. It features an HTTP

web interface and stores documents in JSON format. Elasticsearch offers many capabilities

for spatial data processing2, including native spatial indexing, spatial data types, and

functions for searching by distance and connectivity. These features enable Elasticsearch

to efficiently handle QQ-SPM queries. Therefore, the QQESPM-Elastic module is proposed

as a pipeline that automatically converts QQ-SPM searches into a series of Elasticsearch

requests, ultimately yielding the final solutions to the spatial search pattern.

By consulting the official documentation, the following valuable resources for designing

the QQESPM-Elastic module were identified:

• Two spatial data types:

– geopoint: Stores latitude and longitude values.

– geoshape: Stores polygons and various shapes using textual encoding methods.

• geo_distance query: Matches documents containing a geo_point or geo_shape within

a specified distance from a specific geopoint.

• geo_shape query: Matches documents containing a geo_point or geo_shape that has

a specified connectivity relation with a given geo_shape. Possible relations include

intersects, contains, within, and disjoint.

Utilizing these inherent functionalities of Elasticsearch, we design three fundamental

spatial query operations to form the foundation of a novel QQ-SPM solution approach. These

elementary operations of the QQESPM-Elastic module are following outlined.

1https://www.elastic.co/
2https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

4.3 QQESPM-Elastic 58

4.3.1 Elementary Operations

The data objects stored on Elasticsearch are referred to as documents. The proposed

QQESPM-Elastic module executes QQ-SPM queries through repeated calls to only three

elementary operations. These operations are outlined below.

• EO1 (search_by_keyword): Retrieves all documents containing a specified keyword.

• EO2 (search_by_distance_and_keyword): Retrieves all documents containing a

specified keyword and whose associated spatial shape’s centroid is within a specified

distance from a given latitude and longitude.

• EO3 (search_by_relation_and_keyword): Retrieves all documents containing a

specified keyword and whose spatial shape has a specific connectivity relation with

the shape of a particular document.

The function depicted in Source Code 4.1 constructs the Elasticsearch query for the

elementary query EO3. Subsequently, an explanation is described on how to employ

these three basic operations to devise a comprehensive solution for addressing the QQ-SPM

problem leveraging Elasticsearch.

Source Code 4.1: Function that generates the elementary operation EO3 for Elasticsearch

d e f s e a r c h _ b y _ k e y w o r d _ a n d _ r e l a t i o n _ e l a s t i c (es , index_name , kw : s t r , h i t :

d i c t , r e l a t i o n , s i z e = 100000 , c o u n t = F a l s e) :

que ry = {

" que ry " : {

" boo l " : {

" f i l t e r " : [

{" match " : {" p r o p e r t i e s . keywords . keyword " : kw}} ,

{

" geo_shape " : {

" geomet ry " : {

" i n d e x e d _ s h a p e " : {

" i n d e x " : index_name ,

" i d " : h i t [’ _ id ’] ,

" p a t h " : " geomet ry "

} ,

4.3 QQESPM-Elastic 59

" r e l a t i o n " : r e l a t i o n # i n t e r s e c t s , c o n t a i n s ,

w i t h i n

}

}

}

]

}

}

}

i f c o u n t :

r e t u r n es . c o u n t (i n d e x = index_name , body = query) [’ count ’]

e l s e :

que ry [" f i e l d s "] = [" geomet ry " , " p r o p e r t i e s . osm_id "]

que ry [" _ s o u r c e "] = F a l s e

que ry [" s i z e "] = s i z e

r e t u r n que ry

4.3.2 QQESPM-Elastic Search Procedure

The search procedure of QQESPM-Elastic is detailed in Algorithm 4 (QQESPM-EO), which

leverages the elementary operations EO1, EO2 and EO3. The algorithm accepts a dataset

D of geo-textual objects and a spatial pattern graph G(V,E) as input, and outputs ψ,

representing all matches of G within D. The procedure begins by calculating the frequency

of each keyword within the search pattern (Lines 2 and 3 of Algorithm 4). If any keyword is

absent from the dataset, the search pattern has no solutions (Lines 4 and 5 of Algorithm 4).

The algorithm then selects the initial vertex v based on the lowest keyword frequency in

the dataset to start the search (Line 6 of Algorithm 4). Using EO1, it identifies all objects

containing this keyword (Line 7). The variable Θ tracks the edges already processed, while

the variable B stores the visited vertices with remaining edges.

The algorithm employs a While loop to iterate through the edges of the search pattern

as long as there are remaining edges (Line 10 of Algorithm 4). The next vertex in the path

is preferably selected from the neighboring vertices of the current one. If there are any

neighboring vertices with remaining edges, the next vertex v′ is chosen from among the

neighbors of the current vertex v, prioritizing the vertex with the minimum frequency in

4.3 QQESPM-Elastic 60

the dataset. The promising object pairs for the edge e(v, v′) are then computed using the

Get_Object_Pairs_EO subroutine described in Algorithm 5. For each candidate object

oi corresponding to vertex v, the related objects oj for vertex v′ are identified as those pairs

(oi, oj) that satisfy the spatial constraints of edge e. If the edge is qualitative, the algorithm

uses the elementary operation EO3 (filter by topological relation with oi). If the edge is

quantitative, it utilizes operation EO2 (filter by distance from oi). This procedure is outlined

in Lines 1 through 8 of Algorithm 5. The promising object pairs for edge e are then returned

to Algorithm 4 in the variable Se (Line 16 of Algorithm 4).

The edge e is then marked as solved (Line 17), and the candidate objects for the endpoint

vertices of e are updated by filtering to include only those present in Se. Likewise, the

frequencies of the keywords associated with the vertices of e are updated to reflect the

total counts of candidate objects for these endpoint vertices. If the current vertex v has

no neighboring vertices with remaining edges, the next vertex is selected from the visited

vertices with remaining edges, stored in variable B, based on the one with the minimum

keyword frequency (Lines 21 through 24 of Algorithm 4).

The edges are then reordered in a new sequence to reduce the cost of the upcoming

joining phase, which consolidates the promising object pairs for all edges into joined

solutions for the full search pattern graph. This edge reordering is identical to the reordering

process in QQESPM-Quadtree for the joining phase (Line 25 of Algorithm 4). It employs

a connected greedy alternating strategy, generating an edge order that minimizes heavy

computations during the joining step. The joining of edge solutions follows a process

similar to that in QQESPM-Quadtree, filtering out promising object pairs that do not

share a common object at the common vertex of adjacent edges (Lines 26 through 28 of

Algorithm 4). The fully joined solutions are then returned in the variable ψ (Line 29).

4.3 QQESPM-Elastic 61

Algorithm 4: QQESPM-EO
Input: D: dataset of geo-textual objects in a Elasticsearch index, G(V,E): spatial pattern

Output: ψ: the matches of the spatial pattern G

1 K ← // the set of keywords of all vertices in V

2 for each keyword w ∈ K do

3 fw ← the frequency of keyword w in the dataset D

4 if ∃w ∈ K : fw = 0 then

5 return ∅

6 v ← the vertex v ∈ V that minimizes fv.keyword

7 Cv ← RUN EO1 for v.keyword in dataset D // the candidate objects for the vertex v

8 Θ← ∅ // processed edges

9 B ← {v} //keep visited vertices with remaining edges

10 while E\Θ ̸= ∅ ∧B ̸= ∅ (there are edges left) do

11 N ← {v′ ∈ v.neighbors: e(v, v′) /∈ Θ}

12 if N ̸= ∅ then

13 B.add(v)

14 v′ ← the vertex vi ∈ N that minimizes fvi.keyword

15 e← the edge linking v to v′

16 Se ← RUN Get_Object_Pairs_EO(e(v, v′), Cv) // the promising object pairs for

edge e

17 Θ.add(e)

18 Filter Cv and Cv′ to only the objects appearing at Se

19 Update the frequencies of keywords fv.keyword and fv′.keyword using Se

20 v ← v′

21 else

22 B ← B\{v}

23 if B ̸= ∅ then

24 v ← the vertex v ∈ B that minimizes fv.keyword

25 E ← RUN Generate_Connected_Edges_Ordering(S, G(V,E), true)// reorder the edges for

the join phase

26 ψ ← ∅ // keep the partially constructed matches of the search pattern

27 for each edge e ∈ E do

28 ψ ← ψ.join(Se)

29 return ψ

4.3 QQESPM-Elastic 62

Algorithm 5: GET_OBJECT_PAIRS_EO
Input: e(v, v′): an edge of a spatial pattern, Cv: the candidate objects for the vertex v

Output: Se: the promising object pairs for edge e

1 Se ← ∅

2 for oi ∈ Cv do

3 if edge e is qualitative with relation ℜ ̸=“disjoint” then

4 Oj ← RUN EO3 for (oi, v′.keyword,ℜ) in D // the set of objects oj s.t. the pair

(oi, oj) is promising for edge e

5 else

6 Oj ← RUN EO2 for (oi, v′.keyword, e.lij , e.uij) in D // the set of objects oj s.t.

the pair (oi, oj) is promising for edge e

7 S′

e ← the set of pairs (oi, oj) with oj ∈ Oj

8 Se ← Se ∪ S
′

e

9 return Se

4.3.3 Implementation Decisions for QQESPM-Elastic

Several implementation decisions were applied to enhance the execution time of the

QQESPM-Elastic module. Firstly, the design of the QQESPM-Elastic opts for “filter”

queries over “must” queries. While both types of search queries are available in Elasticsearch

and are based on boolean conditions, “must” queries sort the results based on computed

scores, whereas “filter” queries solely select documents that meet the boolean conditions

without computing scores. Given that the QQ-SPM search objective is to retrieve all matches

of the search pattern without prioritizing or ranking the relevance, “filter” queries prove more

efficient and aligned with this purpose.

4.4 QQESPM-SQL 63

To enhance the performance of the proposed QQESPM-Elastic module, the MultiSearch

API is employed. This feature of Elasticsearch enables the parallel processing of multiple

independent queries. For example, when dealing with a vertex vi containing 10, 000

candidate objects, and processing the subsequent vertex, its neighbor vj , the QQESPM-

Elastic procedure needs to execute an elementary query operation for each of these 10, 000

candidate objects of vi, is based on the keyword of vj and the constraints of the edge linking

vi and vj . By leveraging the MultiSearch feature of Elasticsearch, these 10, 000 are executed

in parallel. Ultimately, this approach eliminates the need to submit Elasticsearch requests

within code repetition loops, resulting in a significant performance improvement.

The third feature for enhancing performance was the implementation of the same

connected greedy alternating edges ordering strategy utilized in QQESPM-Quadtree within

the joining process of QQESPM-Elastic. This approach can reduce computational overhead

during the composition of partial solutions for the search pattern, by controling the

magnitude of the total number of partial solutions after each join of two edges. This strategy

avoids excessively large Cartesian products of edges solutions in the join phase.

4.4 QQESPM-SQL

This section describes the third approach for solving the QQ-SPM search problem. Such

approach relies exclusively on SQL queries executed on a PostgreSQL3 database server

with the PostGIS4 spatial extension enabled. This section provides detailed insights into the

design of this approach, presenting a positive response for the second half of the Research

Question RQ3.

4.4.1 PostGIS Spatial Queries

The PostGIS extension extends the functionality of the PostgreSQL relational database by

incorporating support for storing, indexing, and querying geospatial data, along with offering

a wide range of spatial functions and operations5. Consequently, databases with PostGIS

3https://www.postgresql.org/
4https://postgis.net/
5https://postgis.net/docs/using_postgis_query.html

4.4 QQESPM-SQL 64

capabilities serve as an appropriate platform for executing QQ-SPM queries. To leverage

this environment effectively, the QQESPM-SQL solution is developed. This solution

automatically converts QQ-SPM query requirements into a single SQL query, leveraging

the PostGIS spatial functions. The generated SQL query efficiently retrieves all groups of

objects that meet the criteria specified in the spatial pattern graph.

The QQESPM-SQL solution’s efficient design draws from recommendations found in the

official documentation and insights gained from experimental executions. This investigation

yielded valuable information that guided a set of informed implementation decisions, leading

to performance improvements.

Upon reviewing the official documentation, the following valuable resources for

designing the QQESPM-SQL solution were identified:

• Two important spatial data types: ST_Point and ST_Polygon which are generally stored

as Well-known binary (WKB) format in a database table.

• Two important distance functions ST_DistanceSphere and ST_DWithin, which return

the distance in meters between two geometries.

• Topological relation functions such as ST_Intersects, ST_Covers and ST_Disjoint

which enable the verification of whether two geometries satisfy a given named spatial

predicates, based on the DE-9IM model formalized in[33, 34, 47].

4.4.2 QQESPM-SQL Approach

The proposed QQESPM-SQL solution accepts a spatial pattern graph as input, which can

be provided in either JSON format or as a binary variable format. This module adequately

translates the spatial pattern requirements into a comprehensive SQL query, encompassing

all the criteria of the spatial search pattern and capable of retrieving all of its matches.

In composing this SQL query from the spatial pattern, two primary strategies can be

employed. The first strategy utilizes an implicit join, while the second entails designing

an efficient greedy and explicit join order. Remarkably, both approaches yielded similar

query performance in experimental executions.

4.4 QQESPM-SQL 65

QQESPM-SQL implicit join approach

In this approach, the query is constructed using the following strategy: First, a temporary

table for each keyword of the search pattern is declared using the WITH clause. The

SELECT clause specifies the return of the IDs column of the objects, maintaining the same

order as the vertices listed in the search pattern. The FROM clause employs an implicit JOIN

linking all the temporary tables of the keywords declared in the WITH clause. The WHERE

clause then consolidates all the quantitative and qualitative requirements of all edges in the

spatial pattern graph. The order of the requirements follows the order of the edges list in the

search pattern. Source Code 4.2 provides an example of a spatial pattern JSON, and Source

Code 4.3 illustrates its corresponding SQL query generated by this approach.

Source Code 4.2: A spatial pattern in JSON

{

" v e r t i c e s " : [

{

" i d " : 0 , " keyword " : " w a s t e _ b a s k e t "

} ,

{

" i d " : 1 , " keyword " : " b i c y c l e "

} ,

{

" i d " : 2 , " keyword " : " t r a v e l _ a g e n c y "

}

] ,

" edges " : [

{

" i d " : 0 ,

" v i " : 0 ,

" v j " : 1 ,

" l i j " : 0 ,

" u i j " : I n f i n i t y ,

" s i g n " : " −" ,

" r e l a t i o n " : " w i t h i n "

} ,

{

4.4 QQESPM-SQL 66

" i d " : 1 ,

" v i " : 1 ,

" v j " : 2 ,

" l i j " : 81 .36447702059968 ,

" u i j " : 367 .12676197537536 ,

" s i g n " : " <" ,

" r e l a t i o n " : n u l l

}

]

}

Source Code 4.3: SQL query with implicit join

WITH

t b _ w a s t e _ b a s k e t AS

(SELECT * FROM p o i s WHERE amen i ty = ’ w a s t e _ b a s k e t ’ OR b u i l d i n g = ’

w a s t e _ b a s k e t ’ OR l a n d u s e = ’ w a s t e _ b a s k e t ’ OR l e i s u r e = ’

w a s t e _ b a s k e t ’ OR shop = ’ w a s t e _ b a s k e t ’ OR t o u r i s m = ’ w a s t e _ b a s k e t ’

) ,

t b _ b i c y c l e AS

(SELECT * FROM p o i s WHERE amen i ty = ’ b i c y c l e ’ OR b u i l d i n g = ’ b i c y c l e ’

OR l a n d u s e = ’ b i c y c l e ’ OR l e i s u r e = ’ b i c y c l e ’ OR shop = ’ b i c y c l e ’

OR t o u r i s m = ’ b i c y c l e ’) ,

t b _ t r a v e l _ a g e n c y AS

(SELECT * FROM p o i s WHERE amen i ty = ’ t r a v e l _ a g e n c y ’ OR b u i l d i n g = ’

t r a v e l _ a g e n c y ’ OR l a n d u s e = ’ t r a v e l _ a g e n c y ’ OR l e i s u r e = ’

t r a v e l _ a g e n c y ’ OR shop = ’ t r a v e l _ a g e n c y ’ OR t o u r i s m = ’

t r a v e l _ a g e n c y ’)

SELECT t b _ w a s t e _ b a s k e t . osm_id AS t b _ w a s t e _ b a s k e t _ i d , t b _ b i c y c l e . osm_id AS

t b _ b i c y c l e _ i d , t b _ t r a v e l _ a g e n c y . osm_id AS t b _ t r a v e l _ a g e n c y _ i d

FROM t b _ w a s t e _ b a s k e t , t b _ b i c y c l e , t b _ t r a v e l _ a g e n c y

WHERE

ST_CoveredBy (t b _ w a s t e _ b a s k e t . geometry , t b _ b i c y c l e . geomet ry) AND

ST_ Di s t a nc e Sp he re (t b _ b i c y c l e . c e n t r o i d , t b _ t r a v e l _ a g e n c y . c e n t r o i d)

BETWEEN 81.36447702059968 AND 367.12676197537536 AND

NOT EXISTS (SELECT 1 FROM t b _ b i c y c l e aux WHERE ST_DWithin (

t b _ t r a v e l _ a g e n c y . c e n t r o i d : : geography , aux . c e n t r o i d : : geography ,

81 .36447702059968 , f a l s e))

4.4 QQESPM-SQL 67

QQESPM-SQL explicit greedy join approach

In this approach, the query is structured as follows: Similar to the first method, temporary

tables for the keywords in the search pattern are declared using the WITH clause. The

SELECT clause retrieves the IDs of matching objects based on the vertex order in the search

pattern. However, there is a difference in the FROM clause. Instead of the FROM+WHERE

strategy, an explicit INNER JOIN operation is used.

To determine the order of temporary tables in the JOINs, this explicit greedy join

approach employs a greedy strategy to order the vertices. This order alternates based on the

frequency in dataset of each keyword of the search, similar to the greedy alternated edges

ordering utilized in QQESPM-Quadtree. The initial temporary table for the JOIN is the one

associated with the least frequent keyword of the search pattern. Subsequently, the keyword

for the JOIN is chosen among the neighboring vertices, either minimizing or maximizing the

frequency of the keyword, following the alternated strategy utilized in QQESPM-Quadtree

and QQESPM-Elastic. After the inclusion of a specific vertex in the JOIN clause, the boolean

condition for the next ON clause is composed with the requirements of all edges linking the

currently included vertex with all the previously included vertices.

Consider a spatial pattern with vertices v1, v2, v3, associated with keywords having the

frequencies of 100, 1000, 300, respectively. Suppose this search pattern includes edges

e1,2, e1,3, e2,3. The order of vertices for the INNER JOIN will be v1, v3, v2. Let’s denote

the temporary tables for the keywords of v1, v2, v3 as tb_1, tb_2, and tb_3, respectively. The

condition for the tb_1 INNER JOIN tb_3 will encompass all the constraints of the edge

e1,3. Subsequently, the condition for the subsequent INNER JOIN tb_2 will include all the

constraints of the edges e1,2 and e2,3. These edges link the current vertex v2 with all the

vertices previously included in the JOIN, namely v1 and v3. In the example provided in

Source Code 4.2, let’s assume the frequencies of the keywords “waste_basket”, “bicycle”,

and “travel_agency” are 1280, 120 and 118, respectively. The resulting SQL query produced

by this approach is shown in Source Code 4.4 and follow the order of temporary tables:

tb_travel_agency, tb_bicycle, tb_waste_basket.

Source Code 4.4: SQL query with explicit join

WITH

t b _ t r a v e l _ a g e n c y AS

4.4 QQESPM-SQL 68

(SELECT * FROM p o i s WHERE amen i ty = ’ t r a v e l _ a g e n c y ’ OR b u i l d i n g = ’

t r a v e l _ a g e n c y ’ OR l a n d u s e = ’ t r a v e l _ a g e n c y ’ OR l e i s u r e = ’

t r a v e l _ a g e n c y ’ OR shop = ’ t r a v e l _ a g e n c y ’ OR t o u r i s m = ’

t r a v e l _ a g e n c y ’) ,

t b _ b i c y c l e AS

(SELECT * FROM p o i s WHERE amen i ty = ’ b i c y c l e ’ OR b u i l d i n g = ’ b i c y c l e ’

OR l a n d u s e = ’ b i c y c l e ’ OR l e i s u r e = ’ b i c y c l e ’ OR shop = ’ b i c y c l e ’

OR t o u r i s m = ’ b i c y c l e ’) ,

t b _ w a s t e _ b a s k e t AS

(SELECT * FROM p o i s WHERE amen i ty = ’ w a s t e _ b a s k e t ’ OR b u i l d i n g = ’

w a s t e _ b a s k e t ’ OR l a n d u s e = ’ w a s t e _ b a s k e t ’ OR l e i s u r e = ’

w a s t e _ b a s k e t ’ OR shop = ’ w a s t e _ b a s k e t ’ OR t o u r i s m = ’ w a s t e _ b a s k e t ’

)

SELECT t b _ w a s t e _ b a s k e t . osm_id AS t b _ w a s t e _ b a s k e t _ i d , t b _ b i c y c l e . osm_id AS

t b _ b i c y c l e _ i d , t b _ t r a v e l _ a g e n c y . osm_id AS t b _ t r a v e l _ a g e n c y _ i d

FROM t b _ t r a v e l _ a g e n c y

INNER JOIN t b _ b i c y c l e

ON

ST_ Di s t a nc e Sp he re (t b _ b i c y c l e . c e n t r o i d , t b _ t r a v e l _ a g e n c y . c e n t r o i d)

BETWEEN 81.36447702059968 AND 367.12676197537536 AND

NOT EXISTS (SELECT 1 FROM t b _ b i c y c l e aux WHERE ST_DWithin (

t b _ t r a v e l _ a g e n c y . c e n t r o i d : : geography , aux . c e n t r o i d : : geography ,

81 .36447702059968 , f a l s e))

INNER JOIN t b _ w a s t e _ b a s k e t

ON

ST_Within (t b _ w a s t e _ b a s k e t . geometry , t b _ b i c y c l e . geomet ry)

The explicit greedy join approach achieved performance comparable to the implicit

join in various query execution tests. Notably, the queries constructed in Source Codes

4.3 and 4.4 generated identical query plans when analyzed with the EXPLAIN command.

Consequently, the implicit join method was retained as the default JOIN approach for

QQESPM-SQL due to its simpler query syntax.

4.4 QQESPM-SQL 69

4.4.3 Implementation Decisions for QQESPM-SQL

Several decisions were chosen to enhance the performance of the spatial SQL queries.

Firstly, QQESPM-SQL uses two spatial indexes for the objects’ geometries: a GiST-based

index and an SP-GiST-based index. The GiST index is widely used and versatile, offering

excellent query performance. However, when a GIS data table exceeds a few thousand rows,

an SP-GiST index becomes more efficient for speeding up spatial searches, as suggested in

the PostgreSQL documentation.

The second implementation decision involves using the EXISTS operator in PostgreSQL

to model proximity avoidance constraints. This approach significantly improves query

performance compared to using the COUNT function, which has shown poor performance

in handling such constraints.

Additionally, an appropriate use of the ST_DistanceSphere and ST_DWithin functions is

employed. Query executions indicate that when the query involves two varying geometries,

the ST_DistanceSphere function performs faster in condition clauses. Conversely, when

searching for a pair of geometries where one is fixed and only the other varies, the

ST_DWithin function is the most efficient choice. This observation aligns with PostgreSQL’s

official documentation.

The QQESPM-SQL module leverages all the above mentioned implementation

decisions. When dealing with proximity avoidance constraints, where the central object

remains fixed, the library generates a query with the EXISTS filter in combination with the

ST_DWithin function. In contrast, for distance interval constraints where both objects vary,

the optimal function to use is ST_DistanceSphere.

The last performance enhancement involves optimizing the database parameter settings.

Specifically, in PostgreSQL various parameters govern machine resource usage, which can

be configured in the postgresql.conf file. According to official documentation, setting

the shared_buffers parameter to 25% of the existing physical RAM is optimal. While

other parameters also exist, the documentation lacks clear recommendations for those. To

address this, a widely-used developer tool called PGTune6 was utilized. By inputting

machine configuration details, PGTune provides optimal settings for over ten internal

PostgreSQL parameters. In this context, the query environment is optimally setup using

6https://pgtune.leopard.in.ua/#/

4.5 Generalizing the QQ-SPM Query 70

the recommendations of this tool.

4.5 Generalizing the QQ-SPM Query

This master’s thesis introduces the QQ-SPM search as a solution specifically motivated by

POI search scenarios. Appendix A demonstrates a POI search application prototype using

the QQ-SPM search format. Nevertheless, this search concept can be extended to encompass

various geo-textual searches beyond POI search. Essentially, it can be applied to any dataset

containing geo-textual objects with spatial shape geometries defining the objects’ spatial

scopes or boundaries, along with associated textual content. For instance, the QQ-SPM

query could be employed to explore entire cities, web documents, or any other form of geo-

textual data.

Moreover, this research incorporated as default the geodesic distance to fulfill the

distance criteria of the search patterns. However, the proposed solution is agnostic to

implementation details, allowing for the interchangeability of distance metrics between

objects. For instance, alternatives like road network distance, which calculates the shortest

path along existing thoroughfares such as streets and avenues, and Euclidean distance can be

seamlessly chosen. Additionally, the indexing approach adopted by the QQESPM algorithm

was the IL-quadtree. Nevertheless, various other geo-textual indexing strategies can be

applied to the dataset, only requiring adjustments on the QQ-SPM search algorithms to

enable the handling of different indexes and distance metrics while executing QQ-SPM

queries.

4.6 Final Considerations

This chapter introduced the formal definition of the QQ-SPM search problem and presented

two theorems foundational to an algorithmic solution. It also described the design of

three libraries to efficiently address the search problem. The first solution, QQESPM-

Quadtree, leverages these theorems to exploit the IL-Quadtree geo-textual index. The

second, QQESPM-Elastic, converts spatial requirements into native Elasticsearch geo-

queries. Lastly, QQESPM-SQL translates spatial search requirements into efficient SQL

4.6 Final Considerations 71

queries employing PostGIS. The upcoming chapter presents the methodology and results of

performance experiments comparing these three solutions, highlighting their strengths and

weaknesses.

Chapter 5

Performance Experiments

This chapter presents a performance comparison for the consolidated versions of the three

QQ-SPM solutions presented in Chapter 4. Each solution was implemented as a Python

library. This chapter outlines the experimental methodology used for the comparison and

discusses the obtained results.

5.1 Datasets

The experiments utilized two datasets of POIs extracted from OpenStreetMap1. Table 5.1

presents the POI statistics for each dataset. These POIs are situated within a bounding box

centered around London, UK. The datasets include various POI types, such as the OSM tags

amenity, shop, tourism, landuse, leisure, and building. Dataset 1 is a subset of Dataset 2

and is used to compare QQESPM-Quadtree with a baseline search method that has proven

inefficient for QQ-SPM queries. In turn, Dataset 2 is a bigger dataset, employed for more

intensive searches, comparing the three proposed QQ-SPM solutions: QQESPM-Quadtree,

QQESPM-Elastic, and QQESPM-SQL.

Dataset #POIs Extension Total keywords Distinct keywords

Dataset 1 38, 000 5.5km × 5.5km 39, 378 514

Dataset 2 127, 975 12km × 12km 131, 041 760

Table 5.1: Datasets Statistics
1https://www.openstreetmap.org/

72

5.1 Datasets 73

The design of spatial pattern search systems necessitates clean and comprehensive data

sources in practical applications. While some researches address these challenges[45, 55],

this master’s thesis does not delve into this direction, as the primary focus is to evaluate the

performance of efficient solutions for the QQ-SPM query. Thus, this master’s thesis serves

as foundational research for investigating the performance of QQ-SPM queries and precedes

practical considerations.

The proposed solution leverages polygonal boundaries for target objects, employing a

buffering pipeline to increase the likelihood of finding intersecting geometries within the

datasets. This process ultimately allows more results for qualitative topological-constrained

queries. Initially, the original POI geometries are replaced with their respective convex hulls

and undergo a polygon simplification process. This pipeline utilizes the Shapely2 Python

library. The use of convex hulls and polygon simplifications aims to correct invalid polygons

with corrupted data and create simpler boundaries for the POIs. This approach generates

boundaries that tolerate inaccuracies in the annotated geometry data, ultimately facilitating

faster retrieval of intersecting geometries due to the simplification process. Moreover, it

enhances the frequency of such retrievals, as the boundaries of the POIs are represented by

simpler and expanded areas, increasing the potential for intersections between neighboring

POIs.

Figure 5.1 illustrates the execution of this buffering pipeline. Initially, the polygon

geometries typically consist of shapes with numerous sides. However, such complex

shapes are often unnecessary for determining whether two neighboring geometries should be

considered intersecting in a query. Figure 5.1 (C) shows the geometry after the convex hull

and simplification procedures. This form is further expanded by the subsequent buffering

process, which increases the areas associated with the POIs. The simplification tolerance

parameter for the shapely.simplify function was experimentally set to 0.05. Higher tolerances

produce more simplified polygons, resulting in fewer vertices.

The buffer size for the geometries is computed as follows. The average side length

for each polygon geometry in the datasets is calculated. The median value of the average

lengths of all polygons is then set as the default buffer size for geometries with point shape.

Each polygon shape, in turn, receives a buffer with a size equal to 10% of its respective

2https://shapely.readthedocs.io/

5.1 Datasets 74

average length. As a result of this pipeline, the total area occupied by geometries in the

datasets increased by 54%. Figure 5.2 examplifies how this buffering pipeline increased the

chance of intersecting neighboring geometries. The polygons in orange represent the original

geometries of POIs, and the polygons in pink represent the post-processed geometries

of POIs. Noticeably the number of intersecting geometries increased with the buffering

pipeline. The smaller pink squares without orange subregions represent buffers of point

geometries.

Figure 5.1: Example of an original geometry (A), its convex hull (B) and its simplification

(C)

Figure 5.2: POIs geometries before (orange) and after (pink) buffering pipeline

An extract of the Dataset 2 is shown in Table 5.2. During a search, the proposed

5.2 Solution Approaches Used in the Experiments 75

QQESPM solutions scan objects in the dataset, looking for keywords from the search pattern.

These keywords should appear in the keyword columns (e.g., “amenity”, “shop”, “tourism”,

etc.). For instance, if a query includes the keyword “cafe”, the POI with osm_id 249217389

in the Table 5.2 (line 5) would be a candidate matching object.

osm_id name amenity shop tourism landuse leisure building geometry centroid

991607788 Kensington West apartments POLYGON ((-0.21319 51.49516, ... POINT (-0.21296 51.49553)

154951930 residential POLYGON ((-0.18174 51.52468, ... POINT (-0.18177 51.52474)

669557409 residential POLYGON ((-0.14745 51.52154, ... POINT (-0.14742 51.52158)

249217389 Moscos Cafe cafe POLYGON ((-0.15393 51.51315, ... POINT (-0.15378 51.51322)

149065743 No 74 Hair Beauty hairdresser POLYGON ((-0.10270 51.52439, ... POINT (-0.10277 51.52443)

Table 5.2: Extract of the Datasets

5.2 Solution Approaches Used in the Experiments

The experiments involve conducting spatial pattern searches using four distinct solution

approaches for QQ-SPM queries. Specifically, a baseline approach called ESPM+TV is

utilized for solving QQ-SPM queries, alongside the three proposed approaches: QQESPM-

Quadtree, QQESPM-Elastic, and QQESPM-SQL.

The baseline approach, ESPM+TV, involves using the ESPM algorithm[24] to address

the distance constraints of the search pattern, followed by a final topological verification.

This verification filters out the results from ESPM that do not meet the topological

requirements of the QQ-SPM search graph. Thus, ESPM+TV can be considered a

straightforward or basic solution for QQ-SPM queries, without any optimization for

query performance. For edges with topological constraints but without specific distance

requirements, the ESPM+TV approach assumes a default distance threshold of 1km, as the

ESPM algorithm is designed to handle only distance constraints.

Two sets of query executions were conducted to evaluate the different solution

approaches for QQ-SPM queries:

• Experiment 1: A small dataset (Dataset 1) and simple search patterns were used to

compare the performance of one of the proposed solutions, specifically QQESPM-

Quadtree, against the baseline approach for QQ-SPM queries (ESPM+TV).

5.3 Search Patterns 76

• Experiment 2: A larger dataset (Dataset 2) and more complex search patterns were

employed to compare the performance of the three proposed solutions for QQ-SPM

queries: QQESPM-Quadtree, QQESPM-Elastic, and QQESPM-SQL.

5.3 Search Patterns

The search patterns for Experiment 1 (comparing QQESPM-Quadtree with the baseline

approach ESPM+TV) consist of 64 randomly generated spatial patterns for the queries.

For Experiment 2 (comparing the three proposed approaches), 128 search patterns were

generated. These patterns include the most frequent keywords in the dataset, prioritizing

queries that yield a higher number of results to simulate real-world search scenarios.

Specifically, the keywords in the search patterns were selected from those with a frequency

greater than 30 in the datasets. A total of 100 frequent keywords were used to create the

search patterns for Experiment 1, while 186 keywords were employed for Experiment 2.

Figure 5.3 displays the top 25 most frequent keywords in Dataset 2 along with their respective

frequencies. Notably, the three most frequent keywords in the larger dataset are “residential”,

“bicycle_parking”, and “apartments”, reflecting common characteristics of a residential area

in London, UK.

Eight distinct graph architectures were used to generate the spatial patterns, as illustrated

in Figure 5.4. Four different qualitative probabilities were considered, representing the

likelihood of an edge having a qualitative topological requirement: 1, 1/2, 1/3, and 1/4. An

equal number of spatial patterns were generated for each of these qualitative probabilities and

for each search graph architecture. The search patterns were created by varying the keywords

for the vertices, as well as the distance, topological relations, and exclusion constraints for

the edges of the spatial pattern graph.

To define the distance constraints, the minimum distances lij were randomly selected

between 0 and 1000 meters using a uniform distribution. Additionally, the maximum

distance constraints were set between lij + 200 and lij + 2000 meters, ensuring a maximum

search radius of 3km between the queried POIs. These values were chosen to represent

typical POI search scenarios within a single city, where the user seeks to find nearby POIs,

ideally within the same neighborhood or district.

5.4 Experimental Setup 77

Figure 5.3: Top-25 keywords with highest frequencies in the dataset

For qualitative edges, the topological constraints were randomly selected from

“contains”, “within”, “intersects” and “disjoint” using a uniform distribution. Figure 5.5

illustrates an example of a spatial search pattern generated for the third graph architecture

shown in Figure 5.4. This specific search pattern includes the keywords “books”, “dentist”,

and “clinic,” the topological constraint “within” and additional distance constraints.

5.4 Experimental Setup

Spatial searches were performed on the London POI datasets using the baseline approach

ESPM+TV and the three proposed methods for solving QQ-SPM queries: QQESPM-

Quadtree, QQESPM-Elastic, and QQESPM-SQL, detailed in Chapter 4. The primary

objectives of these experiments are to evaluate and compare the performance of each method

in terms of execution time and memory efficiency. The queries varied in dataset size and

search parameters.

To evaluate the performance and scalability of the search approaches (ESPM+TV,

QQESPM-Quadtree, QQESPM-Elastic, and QQESPM-SQL), smaller subsets were extracted

5.4 Experimental Setup 78

Figure 5.4: Graph architectures of the search patterns

Figure 5.5: Example of generated search pattern

5.5 Results 79

from the full datasets. The analysis focuses on how each method performs as the dataset

size increases. Five subsets of varying sizes were created, each representing a different

percentage of the total POIs: 20%, 40%, 60%, 80%, and 100%. The largest subset includes

the entire dataset, randomly reordered. The sizes of these subsets are detailed in Table 5.3.

Fractional Dataset # POIs in subsets of Dataset 1 # POIs in subsets of Dataset 2

20% 7, 600 25, 595

40% 15, 200 51, 190

60% 22, 800 76, 785

80% 30, 400 102, 380

100% 38, 000 127, 975

Table 5.3: Sizes of the fractional datasets

Experiment 1 involved 640 query executions, utilizing the 64 search patterns across each

of the five fractions of Dataset 1 for both the QQESPM-Quadtree and ESPM+TV approaches.

In Experiment 2, a total of 5, 760 query executions were performed, applying 128 search

patterns for three repetitions of each QQESPM solution approach across the five fractions of

Dataset 2. For each search configuration, query execution time and memory usage were

averaged over the three identical executions. These experiments were conducted on an

Ubuntu OS machine with an Intel Core i7-12700F CPU operating at 4.90 GHz and 64 GB of

RAM.

5.5 Results

In Experiment 1, the average execution times were 0.09s for QQESPM-Quadtree and 6.14s

for ESPM+TV. The maximum execution times recorded were 5.24s for QQESPM-Quadtree

and 717.89s for ESPM+TV. Figure 5.6 illustrates the performance of QQESPM-Quadtree

and ESPM+TV across various dataset sizes. Notably, ESPM+TV exhibits exponentially

worse performance than QQESPM-Quadtree, both in terms of average and maximum

execution times.

The limited scalability of ESPM+TV rendered it unsuitable for larger datasets.

Consequently, Experiment 2 excludes the ESPM+TV approach, as it involves larger dataset

sizes and more complex search patterns. Instead, Experiment 2 evaluates and compares the

5.5 Results 80

Figure 5.6: Statistics of execution time by dataset size for QQESPM-Quadtree and

ESPM+TV approaches on subsets of Dataset 1 (averages as yellow star points)

performance of the three proposed approachesQQESPM-Quadtree, QQESPM-Elastic, and

QQESPM-SQL. This experiment utilizes 128 spatial patterns applied to Dataset 2 and its

subsets, which contain up to 127, 975 geo-textual objects. This dataset size is over three

times larger than the maximum size manageable by ESPM+TV, which barely handled up to

38, 000 POIs.

In Experiment 2, the average execution times for all queries were 2.71 seconds for

QQESPM-Quadtree, 2.09 seconds for QQESPM-Elastic, and 0.39 seconds for QQESPM-

SQL. The maximum execution times recorded were 505.84 seconds for QQESPM-

Quadtree, 444.34 seconds for QQESPM-Elastic, and 9.19 seconds for QQESPM-SQL.

QQESPM-Quadtree and QQESPM-Elastic exhibited suboptimal performance on a minority

queries, which significantly influenced both their average and maximum execution times.

Interestingly, the median execution times were 0.01 seconds for QQESPM-Quadtree, 0.13

seconds for QQESPM-Elastic, and 0.32 seconds for QQESPM-SQL. This indicates that

while QQESPM-Quadtree and QQESPM-Elastic generally performed faster, a few costly

queries disproportionately affected their average performance.

The equivalence of the three QQ-SPM solution approaches were primarily verified by

5.5 Results 81

the total number of solutions (results) each QQESPM library returned for identical queries,

across all 5, 760 query executions. Notably, the maximum percentage divergence in total

results between different libraries for identical search patterns was only 0.67%. This finding

underscores that all three libraries perform the same search task equivalently and yield

nearly identical results. The slight divergence observed may be attributed to distinct numeric

approximations employed by each QQESPM library during query processing.

The scalability analysis measured query execution times for various dataset sizes to

evaluate how the performance of each proposed solution is affected as the dataset size

increases. The collected data from query executions were categorized by the size of the

dataset against which the queries were performed.

Figure 5.7 summarizes the statistics of query elapsed times for each library as the dataset

size increases. Notably, QQESPM-Quadtree consistently outperforms the other libraries in

terms of median execution time, with this advantage growing as dataset sizes increase. A

deeper analysis reveals that the 90th percentile of execution times also favors QQESPM-

Quadtree, indicating that the majority of queries are more efficiently processed by the

QQESPM-Quadtree solution.

The yellow stars in Figure 5.7 indicate the average execution times. Notably, the

QQESPM-Quadtree and QQESPM-Elastic solutions experienced a significant decline in

performance regarding average execution times as the dataset size increased. A similar

trend is observed for the maximum query execution time. This behavior occurs because,

although these libraries solve most queries in a fraction of a second, a minority of executions

incur substantial costs, leading to poor performance in both average and maximum

execution times. In summary, the QQESPM-SQL solution demonstrates better scalability

for maximum and average execution times as the dataset size increases, as indicated by the

plots.

The following analysis aims to evaluate the impact of the number of constraints in the

search patterns on query execution time across different libraries. Figure 5.8 displays the

statistics of query execution time by the number of vertices (keywords) in the search graph,

separated by library. Conversely, Figure 5.9 shows the query execution time by number of

edges in the search graph. Each edge defines a pair-wise relation between two searched

objects and can contain both distance and topological constraints. It is observable that the

5.5 Results 82

Figure 5.7: Statistics of execution time by dataset size for the three libraries on subsets of

Dataset 2 (averages as yellow star points)

number of vertices is strongly related to the number of edges.

Notably, QQESPM-Quadtree performed better for patterns with up to 3 vertices and

2 edges and maintained a better median and 75th percentile execution time across all

different numbers of vertices and edges. However, QQESPM-SQL achieved better maximum

execution times for search patterns with 4 or more vertices. Interestingly, QQESPM-Elastic

demonstrated slightly faster execution times compared to QQESPM-SQL for searches with 5

vertices and 5 edges. This discrepancy may be attributed to suboptimal query plans taken by

the implicit JOIN approach in PostgreSQL. Since it is challenging to design a specific JOIN

order optimal for all scenarios, the implicit JOIN was employed by default. Nevertheless,

these results encourage further exploration of alternative explicit JOIN ordering algorithms

to improve the performance of QQESPM-SQL in queries with many keywords.

Several search patterns with 4 vertices and 3 or more edges resulted in significant

execution times for the libraries QQESPM-Quadtree and QQESPM-Elastic, notably

affecting their average query performance. These prolonged query times stemmed from

a costly and non-parallel joining process inherent to these libraries. Certain search

patterns accumulated numerous partially constructed solutions during joining loops, thereby

5.5 Results 83

Figure 5.8: Statistics of execution time by number of vertices in the search graph for each

library

Figure 5.9: Statistics of execution time by number of edges in the search graph for each

library

5.5 Results 84

impacting query performance for these two libraries. Such costly queries primarily occurred

with patterns yielding a high number of results. However, there are scenarios where both

QQESPM-Quadtree and QQESPM-Elastic outperform QQESPM-SQL. This difference may

be attributed to their underlying search strategies. QQESPM-Quadtree and QQESPM-Elastic

employ imperative search strategies that incorporate various conditions for early query

termination. In contrast, QQESPM-SQL utilizes a complete SQL spatial query, representing

a more declarative search approach.

Figure 5.10 displays query execution times categorized by the qualitative probability

of the search patterns. Patterns with lower qualitative probabilities predominantly feature

distance constraints, whereas those with higher qualitative probabilities include more

topological constraints. Interestingly, qualitative probability does not show a direct

correlation with query execution time. QQESPM-Quadtree exhibits the best average

execution time specifically for search patterns with a qualitative probability of 1.0 (fully

qualitative patterns), highlighting its efficient handling of purely topological queries. In

contrast, QQESPM-SQL consistently achieves relatively fast execution times compared to

the occasional spikes observed in other solutions.

Figure 5.10: Statistics of execution time by qualitative probability in the search graph for

each library

Figure 5.11 illustrates the variations in execution times across libraries based on the

5.5 Results 85

number of exclusion constraints in the search patterns. In the context of the search graph,

an edge marked with the exclusion signs “→” or “←” indicates a unidirectional exclusion

constraint between two objects. Conversely, the sign “↔” denotes a bidirectional exclusion

constraint, equivalent to two separate exclusion constraints. The total count of exclusion

constraints within a search graph is determined by summing the occurrences across all

its edges, ranging from none (0 exclusion constraints) to a maximum of 6 used in the

experiments.

Figure 5.11: Statistics of execution time by total exclusion constraints in the search graph

for each library

Figure 5.11 highlights that QQESPM-Quadtree demonstrates superior performance

compared to other libraries when handling queries with more than 3 exclusion constraints.

Its efficient computation and reuse of computations during the filtering of promising node

pairs and object matches contribute significantly to its effectiveness in managing patterns

with multiple exclusion constraints. However, there is a notable increase in execution time

observed specifically for patterns containing exactly 2 exclusion constraints. This increase

in executime time can be explained by the fact that in the sample of search patterns used,

there was a high occurrence of queries with 2 exclusions, and also such patterns yielded

more results. This caused costly searches for QQESPM-Quadtree and QQESPM-Elastic,

stemming from their non-parallel joining process for queries that yield a substantial number

5.5 Results 86

of search results.

In summary, the plots depicting execution time based on different numbers of search

constraints indicate that parameters such as “Number of Vertices”, “Number of Edges”,

“Qualitative Probability”, and “Number of Exclusion Constraints” do not show a direct

correlation with query execution time. Figure 5.12 (A) illustrates the correlations among

totals of search constraints, total query solutions (results), dataset size, and query execution

time for QQESPM-Quadtree queries. Similarly, Figure 5.12 (B) presents these relationships

for QQESPM-Elastic, and Figure 5.12 (C) for QQESPM-SQL query executions.

It is evident that only the variable “Number of Solutions” exhibited a notable correlation

with query execution time, although “Dataset Size” presented a weak correlation with

the execution time mainly for QQESPM-SQL. This analysis answers Research Question

RQ4. Specifically, the total number of query results demonstrates the strongest correlation

with query execution time. This outcome clarifies the absence of a consistent upward or

downward trend in execution time across different numbers of search constraints.

5.5.1 Memory Consumption

Memory allocation measurements were conducted for the three libraries under investigation.

Figure 5.13 depicts the variation of total allocated memory across all experiments for each

library. The white triangles indicate the averages. QQESPM-Elastic and QQESPM-SQL

consistently maintain stable memory usage, which suggests that these solutions allocate all

the necessary memory from application startup. In contrast, QQESPM-Quadtree shows more

variability in memory allocation during queries, yet consistently consumes significantly less

memory compared to the other libraries throughout the experiments.

As a Java application, Elasticsearch allocates logical memory (heap) from the system’s

physical memory. This allocation should ideally be limited by half of the physical RAM, and

limited to 32 GB. Consequently, on a 64 GB RAM machine, the QQESPM-Elastic module

consistently consumes around 32 GB of memory. For PostgreSQL, the recomendation for

the shared_buffers parameter setting, which is 25% of the RAM, was adhered. As a result,

the QQESPM-SQL module consistently utilizes approximately 16 GB of memory.

In contrast, the QQESPM-Quadtree module employs a lazy loading strategy, fetching

data slices from disk to RAM as needed. Unlike the other approaches, QQESPM-Quadtree

5.5 Results 87

Figure 5.12: Correlation between the numbers of search constraints, dataset size and total

solutions with the query execution time for QQESPM-Quadtree (A), QQESPM-Elastic (B)

and QQESPM-SQL (C) query executions

5.6 Practical Implications and Considerations 88

Figure 5.13: Allocated Memory for each solution during queries (averages as white triangle

points)

does not maintain any persistent cache or rely on operating system data caching. When the

application ends, all cached data is discarded, and subsequent runs of the library start caching

anew. While this initial caching may slightly slow down the first queries after QQESPM-

Quadtree initialization, it offers a memory usage advantage, consistently using significantly

less memory compared to the other approaches.

Although, this observation cannot definitively distinguish QQESPM-Quadtree from the

other approaches, since the other libraries can also be configured to use less memory by

manually adjusting parameters. The maximum measured memory allocated by QQESPM-

Quadtree was approximately 1.6 GB. As queries are submitted, QQESPM-Quadtree

progressively loads more objects from disk to RAM, resulting in an almost continuous

increase in allocated memory during its usage. However, this growth is constrained by

a maximum memory usage prevention mechanism, which is similar to the circuit breaker

mechanism from Elasticsearch.

5.6 Practical Implications and Considerations

This study utilized purely algorithmic implementations for conducting experiments.

However, in real-world applications, practical strategies based on heuristics can be

employed. One effective approach involves caching results from frequent queries and

5.6 Practical Implications and Considerations 89

dynamically updating the index structure. Moreover, to enhance query performance, a

initial distance threshold heuristic, such as 500 meters, can be implemented to discard early

POIs unlikely to have intersecting geometries (for topological queries). Nevertheless, it is

crucial to consider the actual possible range of distances between the centroids of intersecting

objects within the dataset. While 500 meters may seem a reasonable distance limit for the

central location of neighbor POIs, it may become meaningless for queries to retrieve other

types of geo-textual objects. In this sense, such heuristics would heavily depend on the

application scenario.

For these reasons the solutions proposed in this master’s thesis does not involve any such

heuristic. The primary focus of this research was not to integrate heuristics and practical

strategies for optimizing everyday queries for specific practical application scenarios.

Instead, the emphasis was on providing a pure implementation of the algorithms, avoiding

application-specific heuristics. The research aimed to assess the algorithmic solutions

themselves, comparing the efficiency of different exact solutions for the QQ-SPM search

problem.

Moreover, practical search applications inherently involve query time constraints and

maximum limits on the number of search results. These aspects were overlooked in

the experiments, as the searches could potentially retrieve exceedingly large result sets,

equivalent to the total matches of the search pattern within the dataset. Consequently, this can

lead to excessively long response times, rendering it non-optimized for practical real-world

scenarios.

Accurate and relevant ranking of results is also a crucial practical aspect in IR systems.

Furthermore, effective search systems are expected to return a set of results even if the

exact search pattern does not yield any matches. This is achieved through query expansion

mechanisms, which allow partial matching to provide users with relevant results, even

when an exact match is not found for the search pattern. Such aspects are disregarded in

the current implementation, which primarily focuses on the performance comparison of

different solution approaches and environment technologies for processing the QQ-SPM

queries. Hence, these implementations would necessitate minimal adaptation to meet the

requirements of real search scenarios.

Another crucial implementation decision for a practical search system of QQ-SPM

5.7 Final Considerations 90

queries is the choice of buffer size applied to the polygonal boundaries of the POIs. In this

work, a standard buffer of 10% of the average side length was applied to the boundary of each

POI in the dataset. However, this estimation was not thoroughly informed and was chosen as

a default without extensive consideration. In practice, measurements of false positives and

false negatives for real intersecting geometries should be conducted to determine the most

appropriate buffer size for a specific search application scenario. Larger buffers may increase

false positives of intersecting geometries, while smaller buffers may lead to false negatives,

failing to retrieve important intersecting geometries in the queries.

Furthermore, search procedures that allow the retrieval of semantically similar keywords,

rather than requiring exact matches, and slight acceptance thresholds for satisfying the

distance and topological constraints, are important to avoid missing relevant results. In this

context, partial matches of the search pattern are as important as exact matches in real IR

systems.

5.7 Final Considerations

This chapter presented the methodology and results for a series of performance experiments

conducted to compare the three proposed solutions for the QQ-SPM search problem.

The findings highlight the robustness of the QQESPM-SQL solution, which effectively

manages resource-intensive queries while demonstrating scalability and consistency. For

large datasets, QQESPM-SQL remained the most suitable option. Conversely, QQESPM-

Quadtree and QQESPM-Elastic outperformed in terms of execution time for over 90% of

the queries, although exhibiting suboptimal performance in a minority of cases, resulting in

higher average execution times. Conversely, search patterns with large numbers of exclusion

or topological constraints presented few performances advantages for QQESPM-Quadtree

and QQESPM-Elastic.

Chapter 6

Conclusion and Future Directions

The literature extensively explores querying geo-textual data using keywords and spatial

proximity, with various studies proposing algorithms and indexing methods to handle spatio-

textual queries efficiently. While most research focuses on basic item-wise queries, recent

advancements have introduced methods for group queries that retrieve multiple spatio-

textual objects with specific keyword and spatial restrictions. However, most research does

not address complex spatial searches, particularly those involving qualitative topological

constraints. This master’s thesis fills this gap by investigating the QQ-SPM query, a flexible

and generic type of spatial pattern search that generalizes the SPM query. The QQ-SPM

query efficiently processes distance and topological constraints and is particularly useful for

searches requirements like finding residential buildings in central London within 3 km of a

gym-equipped shopping mall, while avoiding proximity to cemeteries.

The conducted investigation formalized the QQ-SPM and established two theorems that

led to the development of the QQESPM-Quadtree algorithm that uses the IL-Quadtree index.

Additionally, the QQESPM-Elastic solution was designed to efficiently leverage native

spatial operations from Elasticsearch for QQ-SPM queries. The third achieved solution

involved creating a pipeline to convert QQ-SPM search requirements into spatial SQL

queries for use in relational databases. The research contributed the complete design of a

framework for handling QQ-SPM queries across various geospatial technologies, including

an ad hoc solution independent of GIS backends (QQESPM-Quadtree). The inclusion of

these strategies within spatial databases incur optimized query plans for QQ-SPM queries.

The proposed solutions may be embedded in backend APIs for query technologies like

91

92

PostgreSQL and Elasticsearch, and facilitate customized spatial pattern searches in web-

based POI search applications like Google Maps.

A series of performance experiments were conducted to measure the execution time of

three proposed solutions, along with a baseline approach, for solving QQ-SPM queries. The

baseline approach, termed ESPM+TV, involves using the ESPM algorithm from previous

research to retrieve groups of objects that satisfy the distance constraints of a QQ-SPM

search pattern. The results are then filtered based on topological constraints through an

exhaustive search. The investigation primarily focused on the scalability of these approaches

as the target dataset for the search grew. Additionally, the research examined various factors

contributing to the computational cost of the search, such as the impact of the number of

exclusion constraints on query execution time.

The analysis revealed that the baseline approach, ESPM+TV, experienced a sharp

exponential increase in execution time with linear increases in dataset size. Consequently,

this approach proved infeasible for datasets exceeding 38,000 geo-textual objects, as

execution times surpassed 700 seconds. In contrast, the three proposed solutions

demonstrated near-linear behavior in execution time relative to dataset size. The three

proposed solutions were further evaluated by executing QQ-SPM queries on datasets

containing up to 128,000 geo-textual objects.

The scalability assessment results indicate that, for queries on datasets with fewer

than 51,000 objects, the average performance of QQESPM-Quadtree and QQESPM-Elastic

surpassed that of QQESPM-SQL. The ad hoc solution, QQESPM-Quadtree, also executed

queries remarkably quickly, within thousandths of a second, and exhibited better median

and 75th percentile execution times compared to the other solutions. However, overall,

the QQESPM-SQL solution proved to be much more scalable, demonstrating superior

performance in terms of both average and maximum query execution times. Additionally,

QQESPM-SQL showed smaller increases in query time when handling larger datasets.

The categorization of queries based on the number of vertices or edges in the search

pattern graph revealed that QQESPM-SQL is generally faster for queries with more than 3

vertices and 2 edges. A costly joining procedure in the QQESPM-Quadtree and QQESPM-

Elastic solutions incurred significant overhead in queries that returned large numbers of

results. This directly impacted the average performance of these solutions, particularly for

6.1 Limitations 93

queries with more than 3 vertices or 2 edges, as such queries require more join operations.

The experiments also evaluated the execution time of the QQ-SPM search solutions

relative to the number of exclusion constraints in the search pattern. The analysis revealed

that the performance of QQESPM-SQL is directly impacted by the number of exclusion

constraints in the query. In contrast, QQESPM-Quadtree and QQESPM-Elastic handled

queries with a large number of exclusion constraints more effectively. Notably, QQESPM-

Quadtree excelled in performance for queries with more than 4 exclusion constraints,

delivering query execution times up to 10 times faster than the other solutions.

In summary, QQESPM-SQL has proven more efficient for handling QQ-SPM queries

on large datasets. In contrast, QQESPM-Quadtree and QQESPM-Elastic performed better

for queries on smaller datasets, queries with fewer keywords, or those involving more

topological or exclusion constraints. QQESPM-SQL achieved an overall average query

execution time approximately six times faster than the other two solutions, and its maximum

execution time was up to 50 times faster. Additionally, the QQESPM-SQL library

remained stable and robust even for resource-intensive queries that returned millions of

results. These outcomes are largely attributable to a non-parallel and costly joining routine

in QQESPM-Quadtree and QQESPM-Elastic. Future implementations could potentially

enhance performance by introducing parallelization for this phase, thereby improving the

efficiency of costly queries in these two solutions.

6.1 Limitations

One limitation of the proposed approach is its inability to semantically interpret query

keywords, resulting in filtering to exact matches only. However, this limitation was intended

to assess exact solutions for the QQ-SPM query, efficiently returning all exact matches

of the search pattern. In this context, a few adjustments can be made to the open-

source implementation to include partial matches, allowing non-exact search results with

approximate keywords and distances.

Moreover, the sample of spatial patterns investigated may not adequately represent

typical real-world search scenarios. Further investigations are necessary to assess the

performance of the search approaches in practical settings. Additionally, additional

6.2 Future Directions 94

requirements could be incorporated to tailor current implementations to practical scenarios.

These may include result ranking, setting a theoretical time limit for query execution, and

retrieving a subset of matches when the full result set is excessively large and costly.

Another limitation is the gap between the types of constraints supported by QQ-SPM

queries and real-world natural language search requirements, which often involve complex

qualitative spatial predicates like “Near”, “Between” and “Connected”. Previous research

has explored experimental methods based on geometric conventions and volunteered

geographic information to interpret these expressions. However, there has been no

integration of these approaches with the QQ-SPM query framework. Therefore, the

proposed query type assumes that each qualitative spatial requirement can be formally

and unambiguously represented computationally. Additionally, this analysis considered

only four fundamental topological relationships (Contains, Within, Intersects, and Disjoint)

between the queried objects. Despite these limitations, the direct employment of QQ-SPM

queries into end-to-end applications is possible, as shown in Appendix A, by restricting the

possible qualitative topological requirements to a predefined set.

6.2 Future Directions

In advancing this research, several avenues for future development can be explored. The

following examples outline potential areas for further investigation.

• Experimenting different spatial indexing: Exploring alternative spatial indexes

beyond the IL-Quadtree, such as IR-Trees, S2, and H3, along with the development of

distinct algorithms tailored to leverage these indexes effectively. Evaluating multiple

indexes and their corresponding algorithms could provide insights into optimal

strategies for addressing QQ-SPM queries, considering their diverse constraints.

Comparisons among these approaches can offer guidelines on their respective

strengths and optimal contexts of applicability.

• Designing highly-scalable solutions for big data: The proposed search approaches

do not explore distributed computing or big data principles and lack optimized

designs for parallel and distributed processing. Future research could adapt the

6.2 Future Directions 95

proposed algorithms and implementations to leverage such capabilities for queries.

Additionally, there is a need for guidelines on transforming these solutions into

efficient and scalable distributed computing solutions. For instance, when dealing

with large datasets distributed across multiple cluster machines, a central procedure

could coordinate the distributed and parallel processing of complex QQ-SPM queries.

This would involve aggregating search results from different clusters in subsequent

stages of the search process.

• Enriching search with semantics, partial matching and results ranking: Another

future direction involves integrating NLP and LLMs to improve the relevance of

search results, enabling partial matching with semantically equivalent keywords and

approximate spatial configurations among the retrieved search results. Moreover,

incorporating ranking mechanisms, for example, prioritizing highly-rated POIs, is

crucial for meeting real-world search needs in IR systems. Experimental validation of

several tolerance search parameters to enhance results relevance could be conducted

by volunteers to assess the accuracy and relevance of query results. Additionally,

there is a growing interest in spatial searches based on natural language spatio-textual

descriptions and qualitative requirements. Future research could explore automated

methods for translating natural language specifications into appropriate QQ-SPM

queries, leveraging a versatile spatial pattern search approach that accommodates both

quantitative and qualitative constraints expressed in natural language requirements.

Finally, the retrieval of heterogeneous types of geo-textual objects can be investigated,

for example, for enabling the efficient processing of search scenarios such as finding

POIs located along the same street (POIs and streets) or POIs closely located to a city’s

commercial district (POIs and administrative areas).

Bibliography

[1] Niloofar Aflaki, Kristin Stock, Christopher B Jones, Hans Guesgen, Jeremy Morley,

and Yukio Fukuzawa. What do you mean you’re in trafalgar square? comparing

distance thresholds for geospatial prepositions. In 15th International Conference

on Spatial Information Theory (COSIT 2022). Schloss-Dagstuhl-Leibniz Zentrum für

Informatik, 2022.

[2] Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias, and George J Fakas. Geo-

social keyword search. In Advances in Spatial and Temporal Databases: 14th

International Symposium, SSTD 2015, Hong Kong, China, August 26-28, 2015.

Proceedings 14, pages 431–450. Springer, 2015.

[3] Walid G Aref and Ihab F Ilyas. Sp-gist: An extensible database index for supporting

space partitioning trees. Journal of Intelligent Information Systems, 17:215–240,

2001.

[4] W.G. Aref and I.F. Ilyas. An extensible index for spatial databases. In

Proceedings Thirteenth International Conference on Scientific and Statistical

Database Management. SSDBM 2001, pages 49–58, 2001.

[5] Pasquale Balsebre, Weiming Huang, and Gao Cong. Lamp: A language model on the

map. arXiv preprint arXiv:2403.09059, 2024.

[6] Felice L Bedford. Perceptual and cognitive spatial learning. Journal of experimental

psychology: Human perception and performance, 19(3):517, 1993.

[7] Shaik Abdul Nusrath Begum and KP Supreethi. A survey on spatial indexing. Journal

of Web Development and Web Designing, 3(1), 2018.

96

BIBLIOGRAPHY 97

[8] Isabelle Bloch, Olivier Colliot, and Roberto M Cesar. On the ternary spatial

relation"" between"". IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics), 36(2):312–327, 2006.

[9] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual similarity joins.

Proceedings of the VLDB Endowment, 6(1):1–12, 2012.

[10] Panagiotis Bouros and Nikos Mamoulis. Spatial joins: what’s next? SIGSPATIAL

Special, 11(1):1321, aug 2019.

[11] Tom Bruns and Max Egenhofer. Similarity of spatial scenes. In Seventh international

symposium on spatial data handling, pages 31–42. Delft, The Netherlands, 1996.

[12] Sabina Buczkowska and Matthieu de Lapparent. Location choices of newly created

establishments: Spatial patterns at the aggregate level. Regional Science and Urban

Economics, 48:68–81, 2014.

[13] Xin Cao, Gao Cong, Tao Guo, Christian S Jensen, and Beng Chin Ooi. Efficient

processing of spatial group keyword queries. ACM Transactions on Database Systems

(TODS), 40(2):1–48, 2015.

[14] Xin Cao, Gao Cong, Tao Guo, Christian S. Jensen, and Beng Chin Ooi. Efficient

processing of spatial group keyword queries. ACM Trans. Database Syst., 40(2), jun

2015.

[15] Xin Cao, Gao Cong, and Christian S. Jensen. Retrieving top-k prestige-based relevant

spatial web objects. Proc. VLDB Endow., 3(12):373384, sep 2010.

[16] Xin Cao, Gao Cong, Christian S Jensen, and Beng Chin Ooi. Collective spatial

keyword querying. In Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, pages 373–384, 2011.

[17] Anderson C. Carniel, Ricardo R. Ciferri, and Cristina D.A. Ciferri. Festival:

A versatile framework for conducting experimental evaluations of spatial indices.

MethodsX, 7:100695, 2020.

BIBLIOGRAPHY 98

[18] Anderson Chaves Carniel. Defining and designing spatial queries: the role of spatial

relationships. Geo-spatial Information Science, 0(0):1–25, 2023.

[19] Ariel Cary, Ouri Wolfson, and Naphtali Rishe. Efficient and scalable method for

processing top-k spatial boolean queries. In International Conference on Scientific

and Statistical Database Management, pages 87–95. Springer, 2010.

[20] Harry Kai-Ho Chan, Cheng Long, and Raymond Chi-Wing Wong. Inherent-cost

aware collective spatial keyword queries. In International Symposium on Spatial and

Temporal Databases, pages 357–375. Springer, 2017.

[21] Harry Kai-Ho Chan, Cheng Long, and Raymond Chi-Wing Wong. On generalizing

collective spatial keyword queries. IEEE Transactions on Knowledge and Data

Engineering, 30(9):1712–1726, 2018.

[22] Anderson Chaves Carniel. Defining and designing spatial queries: the role of spatial

relationships. Geo-spatial Information Science, pages 1–25, 2023.

[23] Gang Chen, Jingwen Zhao, Yunjun Gao, Lei Chen, and Rui Chen. Time-aware

boolean spatial keyword queries. IEEE Transactions on Knowledge and Data

Engineering, 29(11):2601–2614, 2017.

[24] Hongmei Chen, Yixiang Fang, Ying Zhang, Wenjie Zhang, and Lizhen Wang. Espm:

Efficient spatial pattern matching. IEEE Transactions on Knowledge and Data

Engineering, 32(6):1227–1233, 2019.

[25] Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. Spatial keyword query

processing: An experimental evaluation. Proceedings of the VLDB Endowment,

6(3):217–228, 2013.

[26] Lisi Chen, Shuo Shang, Chengcheng Yang, and Jing Li. Spatial keyword search: a

survey. GeoInformatica, 24:85–106, 2020.

[27] Yue Chen, Kaiyu Feng, Gao Cong, and Han Mao Kiah. Example-based spatial pattern

matching. Proceedings of the VLDB Endowment, 15(11):2572–2584, 2022.

BIBLIOGRAPHY 99

[28] Zhida Chen, Lisi Chen, Gao Cong, and Christian S Jensen. Location-and keyword-

based querying of geo-textual data: a survey. The VLDB Journal, 30:603–640, 2021.

[29] Dong-Wan Choi, Jian Pei, and Xuemin Lin. Finding the minimum spatial keyword

cover. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE),

pages 685–696, 2016.

[30] Dong-Wan Choi, Jian Pei, and Xuemin Lin. On spatial keyword covering. Knowledge

and Information Systems, 62(7):2577–2612, 2020.

[31] Maria Christoforaki, Jinru He, Constantinos Dimopoulos, Alexander Markowetz, and

Torsten Suel. Text vs. space: efficient geo-search query processing. In Proceedings of

the 20th ACM international conference on Information and knowledge management,

pages 423–432, 2011.

[32] Eliseo Clementini and Paolino Di Felice. A comparison of methods for representing

topological relationships. Information sciences-applications, 3(3):149–178, 1995.

[33] Eliseo Clementini, Paolino Di Felice, and Peter Van Oosterom. A small set of formal

topological relationships suitable for end-user interaction. In International symposium

on spatial databases, pages 277–295. Springer, 1993.

[34] Eliseo Clementini, Jayant Sharma, and Max J Egenhofer. Modelling topological

spatial relations: Strategies for query processing. Computers & graphics, 18(6):815–

822, 1994.

[35] Anthony G Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts.

Qualitative spatial representation and reasoning with the region connection calculus.

geoinformatica, 1:275–316, 1997.

[36] Anthony G Cohn and Jochen Renz. Qualitative spatial representation and reasoning.

Foundations of Artificial Intelligence, 3:551–596, 2008.

[37] Gao Cong and Christian S. Jensen. Spatio-textual Data, pages 1580–1587. Springer

International Publishing, Cham, 2019.

BIBLIOGRAPHY 100

[38] Gao Cong, Christian S Jensen, and Dingming Wu. Efficient retrieval of the top-k

most relevant spatial web objects. Proceedings of the VLDB Endowment, 2(1):337–

348, 2009.

[39] Rone Ilídio Da Silva, Daniel Fernandes Macedo, and José Marcos S Nogueira. Spatial

query processing in wireless sensor networks–a survey. Information Fusion, 15:32–

43, 2014.

[40] João Paulo Dias de Almeida and João B Rocha-Junior. Top-k spatial keyword

preference query. Journal of Information and Data Management, 6(3):162–162, 2015.

[41] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial

databases. In 2008 IEEE 24th International conference on data engineering, pages

656–665. IEEE, 2008.

[42] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial

databases. In 2008 IEEE 24th International Conference on Data Engineering, pages

656–665, 2008.

[43] Ke Deng, Xin Li, Jiaheng Lu, and Xiaofang Zhou. Best keyword cover search. IEEE

Transactions on Knowledge and Data Engineering, 27(1):61–73, 2015.

[44] Ke Deng, Huanliang Sun, Yu Ge, Xiaofang Zhou, Christian Søndergaard Jensen, et al.

Clue-based spatio-textual query. Proceedings of the VLDB Endowment, 10(5):529–

540, 2017.

[45] Germano B dos Santos, Leonardo JAS Figueiredo, Fabrício A Silva, and Antonio AF

Loureiro. Moredata: Enriquecimento semântico para grandes volumes de dados

geolocalizados. In Anais Estendidos do XXXVIII Simpósio Brasileiro de Bancos de

Dados, pages 126–131. SBC, 2023.

[46] Max Egenhofer. A mathematical framework for the definition of topological relations.

In Proc. the fourth international symposium on spatial data handing, pages 803–813,

1990.

[47] Max J Egenhofer and John Herring. Categorizing binary topological relations between

regions, lines, and points in geographic databases. The, 9(94-1):76, 1990.

BIBLIOGRAPHY 101

[48] M.Y. Eltabakh, R. Eltarras, and W.G. Aref. Space-partitioning trees in postgresql:

Realization and performance. In 22nd International Conference on Data Engineering

(ICDE’06), pages 100–100, 2006.

[49] Ju Fan, Guoliang Li, Lizhu Zhou, Shanshan Chen, and Jun Hu. Seal: Spatio-textual

similarity search. arXiv preprint arXiv:1205.6694, 2012.

[50] Yixiang Fang, Reynold Cheng, Gao Cong, Nikos Mamoulis, and Yun Li. On spatial

pattern matching. In 2018 IEEE 34th International Conference on Data Engineering

(ICDE), pages 293–304. IEEE, 2018.

[51] Yixiang Fang, Reynold Cheng, Jikun Wang, Lukito Budiman, Gao Cong, and Nikos

Mamoulis. Spacekey: Exploring patterns in spatial databases. In 2018 IEEE 34th

International Conference on Data Engineering (ICDE), pages 1577–1580, 2018.

[52] Yixiang Fang, Yun Li, Reynold Cheng, Nikos Mamoulis, and Gao Cong. Evaluating

pattern matching queries for spatial databases. The VLDB Journal, 28:649–673, 2019.

[53] Maria Engracinda dos Santos Ferreira and Luciene Stamato Delazari. The use of

spatial terms near,very near,next to,side by side and nearby in the descriptions of

spatial configurations. Boletim de Ciências Geodésicas, 25:e2019008, 2019.

[54] Athanasios Fevgas and Panayiotis Bozanis. Lb-grid: An ssd efficient grid file. Data

& Knowledge Engineering, 121:18–41, 2019.

[55] Leonardo JAS Figueiredo, Germano B dos Santos, Raissa PPM Souza, Fabrício A

Silva, and Thais RM Braga Silva. Moredata: A geospatial data enrichment framework.

In Proceedings of the 29th International Conference on Advances in Geographic

Information Systems, pages 419–422, 2021.

[56] Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on

composite keys. Acta informatica, 4:1–9, 1974.

[57] Peter F Fisher, Roland Billen, and Eliseo Clementini. Introducing a reasoning system

based on ternary projective relations. In Developments in Spatial Data Handling:

11 th International Symposium on Spatial Data Handling, pages 381–394. Springer,

2005.

BIBLIOGRAPHY 102

[58] Paolo Fogliaroni. Qualitative Spatial Configuration Queries Towards Next Generation

Access Methods for GIS. PhD thesis, Universität Bremen, 2012.

[59] Paolo Fogliaroni and Eliseo Clementini. Modeling visibility in 3d space: a qualitative

frame of reference. In 3D Geoinformation Science: The Selected Papers of the 3D

GeoInfo 2014, pages 243–258. Springer, 2014.

[60] Paolo Fogliaroni, Jan Oliver Wallgrün, Eliseo Clementini, Francesco Tarquini, and

Diedrich Wolter. A qualitative approach to localization and navigation based on

visibility information. In Spatial Information Theory: 9th International Conference,

COSIT 2009 Aber Wrach, France, September 21-25, 2009 Proceedings 9, pages 312–

329. Springer, 2009.

[61] Paolo Fogliaroni, Paul Weiser, and Heidelinde Hobel. Qualitative spatial configuration

search. Spatial Cognition & Computation, 16(4):272–300, 2016.

[62] Christian Freksa. Qualitative spatial reasoning. In Cognitive and linguistic aspects of

geographic space, pages 361–372. Springer, 1991.

[63] Volker Gaede and Oliver G"̈unther. Multidimensional access methods. ACM Comput.

Surv., 30(2):170231, jun 1998.

[64] Yunpeng Gao, Yao Wang, and Shengwei Yi. Preference-aware top-k spatio-

textual queries. In Shaoxu Song and Yongxin Tong, editors, Web-Age Information

Management, pages 186–197, Cham, 2016. Springer International Publishing.

[65] Tao Guo, Xin Cao, and Gao Cong. Efficient algorithms for answering the m-closest

keywords query. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’15, page 405418, New York, NY, USA, 2015.

Association for Computing Machinery.

[66] Xi Guo and Xiaochun Yang. Direction-aware nearest neighbor query. IEEE Access,

7:30285–30301, 2019.

[67] Ying Guo, Lianzhen Zheng, Yuhan Zhang, and Guanfeng Liu. Mcops-spm:

Multi-constrained optimized path selection based spatial pattern matching in

BIBLIOGRAPHY 103

social networks. In Cloud Computing, Smart Grid and Innovative Frontiers in

Telecommunications: 9th EAI International Conference, CloudComp 2019, and 4th

EAI International Conference, SmartGIFT 2019, Beijing, China, December 4-5, 2019,

and December 21-22, 2019 9, pages 3–19. Springer, 2020.

[68] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In

Proceedings of the 1984 ACM SIGMOD international conference on Management

of data, pages 47–57, 1984.

[69] Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehrotra. Processing

spatial-keyword (sk) queries in geographic information retrieval (gir) systems. In 19th

International Conference on Scientific and Statistical Database Management (SSDBM

2007), pages 16–16, 2007.

[70] Ramón Hermoso, Sergio Ilarri, and Raquel Trillo Lado. Re-coskq: Towards pois

recommendation using collective spatial keyword queries. In RecTour@RecSys, 2019.

[71] Daniel Hernández, Eliseo Clementini, and Paolino Di Felice. Qualitative distances.

In Spatial Information Theory A Theoretical Basis for GIS: International Conference

COSIT’95 Semmering, Austria, September 21–23, 1995 Proceedings 2, pages 45–57.

Springer, 1995.

[72] Huiqi Hu, Guoliang Li, Zhifeng Bao, Jianhua Feng, Yongwei Wu, Zhiguo Gong, and

Yaoqiang Xu. Top-k spatio-textual similarity join. IEEE Transactions on Knowledge

and Data Engineering, 28(2):551–565, 2015.

[73] Edwin H. Jacox and Hanan Samet. Spatial join techniques. ACM Trans. Database

Syst., 32(1):7es, mar 2007.

[74] Georgios Kalamatianos, Georgios J Fakas, and Nikos Mamoulis. Proportionality in

spatial keyword search. In Proceedings of the 2021 International Conference on

Management of Data, pages 885–897, 2021.

[75] Ali Khodaei, Cyrus Shahabi, and Chen Li. Hybrid indexing and seamless ranking

of spatial and textual features of web documents. In Database and Expert Systems

BIBLIOGRAPHY 104

Applications: 21st International Conference, DEXA 2010, Bilbao, Spain, August 30-

September 3, 2010, Proceedings, Part I 21, pages 450–466. Springer, 2010.

[76] Ravi K Kothuri and Siva Ravada. Efficient processing of large spatial queries

using interior approximations. In International Symposium on Spatial and Temporal

Databases, pages 404–421. Springer, 2001.

[77] Ravi Kanth V Kothuri, Siva Ravada, and Daniel Abugov. Quadtree and r-tree indexes

in oracle spatial: a comparison using gis data. In Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pages 546–557, 2002.

[78] Taesung Lee, Jin-woo Park, Sanghoon Lee, Seung-won Hwang, Sameh Elnikety,

and Yuxiong He. Processing and optimizing main memory spatial-keyword queries.

Proceedings of the VLDB Endowment, 9(3):132–143, 2015.

[79] Guoliang Li, Jianhua Feng, and Jing Xu. Desks: Direction-aware spatial keyword

search. In 2012 IEEE 28th International Conference on Data Engineering, pages

474–485, 2012.

[80] Miao Li, Lisi Chen, Gao Cong, Yu Gu, and Ge Yu. Efficient processing of location-

aware group preference queries. In Proceedings of the 25th ACM International on

Conference on Information and Knowledge Management, CIKM ’16, page 559568,

New York, NY, USA, 2016. Association for Computing Machinery.

[81] Yun Li, Yixiang Fang, Reynold Cheng, and Wenjie Zhang. Spatial pattern matching:

A new direction for finding spatial objects. SIGSPATIAL Special, 11(1):312, aug 2019.

[82] Zhisheng Li, Ken C.K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lee, and Xufa

Wang. Ir-tree: An efficient index for geographic document search. IEEE Transactions

on Knowledge and Data Engineering, 23(4):585–599, 2011.

[83] Sitong Liu, Guoliang Li, and Jianhua Feng. A prefix-filter based method for spatio-

textual similarity join. IEEE Transactions on Knowledge and Data Engineering,

26(10):2354–2367, 2013.

BIBLIOGRAPHY 105

[84] Cheng Long, Raymond Chi-Wing Wong, Ke Wang, and Ada Wai-Chee Fu. Collective

spatial keyword queries: a distance owner-driven approach. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data, SIGMOD

’13, page 689700, New York, NY, USA, 2013. Association for Computing Machinery.

[85] Zhiguo Long, Matt Duckham, Sanjiang Li, and Steven Schockaert. Indexing large

geographic datasets with compact qualitative representation. International Journal of

Geographical Information Science, 30(6):1072–1094, 2016.

[86] Yun Lu, Mingjin Zhang, Shonda Witherspoon, Yelena Yesha, Yaacov Yesha, and

Naphtali Rishe. Sksopen: Efficient indexing, querying, and visualization of geo-

spatial big data. In 2013 12th International Conference on Machine Learning and

Applications, volume 2, pages 495–500, 2013.

[87] Ahmed R Mahmood, Walid G Aref, Ahmed M Aly, and Mingjie Tang. Atlas: on the

expression of spatial-keyword group queries using extended relational constructs. In

Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, pages 1–10, 2016.

[88] Paras Mehta, Dimitrios Skoutas, Dimitris Sacharidis, and Agnès Voisard. Coverage

and diversity aware top-k query for spatio-temporal posts. In Proceedings of the 24th

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems, SIGSPACIAL ’16, New York, NY, USA, 2016. Association for Computing

Machinery.

[89] Paras Mehta, Dimitrios Skoutas, and Agnès Voisard. Spatio-temporal keyword queries

for moving objects. In Proceedings of the 23rd SIGSPATIAL International Conference

on Advances in Geographic Information Systems, SIGSPATIAL ’15, New York, NY,

USA, 2015. Association for Computing Machinery.

[90] Carlos Minervino, Claudio Campelo, Maxwell Oliveira, and Salatiel Silva.

Qqespm: A quantitative and qualitative spatial pattern matching algorithm. ArXiv,

abs/2312.08992, 2023.

BIBLIOGRAPHY 106

[91] Reinhard Moratz and Marco Ragni. Qualitative spatial reasoning about relative point

position. Journal of Visual Languages & Computing, 19(1):75–98, 2008. Spatial and

Image-based Information Systems.

[92] Sergey Nepomnyachiy, Bluma Gelley, Wei Jiang, and Tehila Minkus. What, where,

and when: keyword search with spatio-temporal ranges. In Proceedings of the 8th

Workshop on Geographic Information Retrieval, GIR ’14, New York, NY, USA, 2014.

Association for Computing Machinery.

[93] Jürg Nievergelt and Peter Widmayer. Spatial data structures: Concepts and design

choices. In Handbook of Computational Geometry, pages 725–764. Elsevier, 2000.

[94] Open GIS Consortium, Inc. OpenGIS Simple Features Specification for SQL, 3 1998.

Revision 1.0.

[95] Open GIS Consortium, Inc. OpenGIS Simple Features Specification for SQL, 5 1999.

Revision 1.1.

[96] Zhihu Qian, Jiajie Xu, Kai Zheng, Pengpeng Zhao, and Xiaofang Zhou. Semantic-

aware top-k spatial keyword queries. World Wide Web, 21:573–594, 2018.

[97] Gabriel Joseph Ramos Rafael. Busca por grupos de pontos de interesse usando

processamento qualitativo de regiões espaciais. Master’s thesis, Universidade Federal

de Campina Grande, Centro de Engenharia Elétrica e Informática, Programa de Pós-

Graduação em Ciência da Computação, Campina Grande, Paraíba, Brasil, 2021.

[98] David A Randell, Zhan Cui, and Anthony G Cohn. A spatial logic based on regions

and connection. KR, 92:165–176, 1992.

[99] Jinfeng Rao, Jimmy Lin, and Hanan Samet. Partitioning strategies for spatio-textual

similarity join. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop

on Analytics for Big Geospatial Data, pages 40–49, 2014.

[100] Jochen Renz, editor. The Region Connection Calculus, pages 41–50. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2002.

BIBLIOGRAPHY 107

[101] Joao B Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørvåg. Efficient

processing of top-k spatial keyword queries. In Advances in Spatial and Temporal

Databases: 12th International Symposium, SSTD 2011, Minneapolis, MN, USA,

August 24-26, 2011, Proceedings 12, pages 205–222. Springer, 2011.

[102] George Roumelis, Polychronis Velentzas, Michael Vassilakopoulos, Antonio Corral,

Athanasios Fevgas, and Yannis Manolopoulos. Parallel processing of spatial batch-

queries using xbr+-trees in solid-state drives. Cluster Computing, 23(3):1555–1575,

2020.

[103] Steven Schockaert, Chris Cornelis, Martine De Cock, and Etienne E. Kerre. Fuzzy

spatial relations between vague regions. In 2006 3rd International IEEE Conference

Intelligent Systems, pages 221–226, 2006.

[104] Du Shihong, Wang Qiao, and Qin Qiming. Definitions of natural-language spatial

relations: Combining topology and directions. Geo-Spatial Information Science,

9(1):55–64, 2006.

[105] Anders Skovsgaard and Christian S Jensen. Finding top-k relevant groups of spatial

web objects. The VLDB Journal, 24:537–555, 2015.

[106] Jiabao Sun, Jiajie Xu, Kai Zheng, and Chengfei Liu. Interactive spatial keyword

querying with semantics. CIKM ’17, page 17271736, New York, NY, USA, 2017.

Association for Computing Machinery.

[107] Panagiotis Tampakis, Dimitris Spyrellis, Christos Doulkeridis, Nikos Pelekis,

Christos Kalyvas, and Akrivi Vlachou. A novel indexing method for spatial-keyword

range queries. In Proceedings of the 17th International Symposium on Spatial and

Temporal Databases, pages 54–63, 2021.

[108] David Taniar and Wenny Rahayu. A taxonomy for region queries in spatial databases.

Journal of Computer and System Sciences, 81(8):1508–1531, 2015.

[109] Yufei Tao and Cheng Sheng. Fast nearest neighbor search with keywords. IEEE

Transactions on Knowledge and Data Engineering, 26(4):878–888, 2014.

BIBLIOGRAPHY 108

[110] George Tsatsanifos and Akrivi Vlachou. On processing top-k spatio-textual

preference queries. In EDBT, pages 433–444, 2015.

[111] Subodh Vaid, Christopher B Jones, Hideo Joho, and Mark Sanderson. Spatio-textual

indexing for geographical search on the web. In Advances in Spatial and Temporal

Databases: 9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, August

22-24, 2005. Proceedings 9, pages 218–235. Springer, 2005.

[112] Jan Oliver Wallgr"̈un, Diedrich Wolter, and Kai-Florian Richter. Qualitative matching

of spatial information. In Proceedings of the 18th SIGSPATIAL International

Conference on Advances in Geographic Information Systems, GIS ’10, page 300309,

New York, NY, USA, 2010. Association for Computing Machinery.

[113] Dingming Wu, Gao Cong, and Christian S Jensen. A framework for efficient spatial

web object retrieval. The VLDB Journal, 21:797–822, 2012.

[114] Dingming Wu, Yafei Li, Byron Choi, and Jianliang Xu. Social-aware top-k spatial

keyword search. In 2014 IEEE 15th International Conference on Mobile Data

Management, volume 1, pages 235–244, 2014.

[115] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S Jensen. Joint top-k spatial

keyword query processing. IEEE Transactions on Knowledge and Data Engineering,

24(10):1889–1903, 2011.

[116] Tao Xu, Aopeng Xu, Joseph Mango, Pengfei Liu, Xiaqing Ma, and Lei Zhang.

Efficient processing of top-k frequent spatial keyword queries. Scientific Reports,

12(1):7352, 2022.

[117] Junye Yang, Yong Zhang, Xiaofang Zhou, Jin Wang, Huiqi Hu, and Chunxiao Xing.

A hierarchical framework for top-k location-aware error-tolerant keyword search. In

2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 986–

997, 2019.

[118] Mingyang Yang, Long Zheng, Yanchao Lu, Minyi Guo, and Jie Li. Cloud-assisted

spatio-textual k nearest neighbor joins in sensor networks. In 2015 1st International

BIBLIOGRAPHY 109

Conference on Industrial Networks and Intelligent Systems (INISCom), pages 12–17,

2015.

[119] Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis. Top-k

spatial preference queries. In 2007 IEEE 23rd International Conference on Data

Engineering, pages 1076–1085, 2007.

[120] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Inverted linear

quadtree: Efficient top k spatial keyword search. IEEE Transactions on Knowledge

and Data Engineering, 28(7):1706–1721, 2016.

[121] Dongxiang Zhang, Yeow Meng Chee, Anirban Mondal, Anthony KH Tung, and

Masaru Kitsuregawa. Keyword search in spatial databases: Towards searching by

document. In 2009 IEEE 25th international conference on data engineering, pages

688–699. IEEE, 2009.

[122] Dongxiang Zhang, Beng Chin Ooi, and Anthony K. H. Tung. Locating mapped

resources in web 2.0. In 2010 IEEE 26th International Conference on Data

Engineering (ICDE 2010), pages 521–532, 2010.

[123] Dongxiang Zhang, Kian-Lee Tan, and Anthony K. H. Tung. Scalable top-k spatial

keyword search. EDBT ’13, page 359370, New York, NY, USA, 2013. Association

for Computing Machinery.

[124] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee. Location-

based spatial queries. SIGMOD ’03, page 443454, New York, NY, USA, 2003.

Association for Computing Machinery.

[125] Li Zhang, Xiaoping Sun, and Hai Zhuge. Density-based spatial keyword querying.

Future Generation Computer Systems, 32:211–221, 2014.

[126] Pengfei Zhang, Huaizhong Lin, Bin Yao, and Dongming Lu. Level-aware collective

spatial keyword queries. Information Sciences, 378:194–214, 2017.

[127] Yu Zhang, Youzhong Ma, and Xiaofeng Meng. Efficient spatio-textual similarity join

using mapreduce. In 2014 IEEE/WIC/ACM International Joint Conferences on Web

BIBLIOGRAPHY 110

Intelligence (WI) and Intelligent Agent Technologies (IAT), volume 1, pages 52–59.

IEEE, 2014.

[128] Li Zhigang, Liangtian, and Yang Wunian. Research of gis-based urban disaster

emergency management information system. In 2010 International Conference on

Computer and Communication Technologies in Agriculture Engineering, volume 2,

pages 484–487, 2010.

[129] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying Ma. Hybrid

index structures for location-based web search. In Proceedings of the 14th ACM

international conference on Information and knowledge management, pages 155–162,

2005.

Appendix A

QQ-SPM Application Prototype

This appendix presents a prototype application designed to showcase the main features of a

QQ-SPM search through a POI search example. We developed a basic web application using

the Flask Python framework to demonstrate a possible implementation of a QQ-SPM query

focused on POI searches. The application consists of a single screen, depicted in Figure A.1

via a screenshot.

The search example involves a user searching for a residential building to rent an

apartment. The user has specific preferences: the building should be located within 1000

meters of a shopping mall. Additionally, the mall should have an on-site fitness center. The

user also prefers not to live near any cemeteries.

We marked colored rectangles in Figure A.1 to indicate the five important regions of the

search screen. Region A (in red) is where the user specifies query requirements by selecting

keywords, distances, connectivity, and exclusion constraints to construct a specific spatial

pattern to be searched. Region B (in blue) provides a real-time graphical representation of the

spatial pattern being created by the user. Each time a new rule is added in the requirements

panel, the drawing in this region is updated, reflecting the current spatial pattern that will

be submitted to the search backend when the “Search Pattern” button is pressed. Proximity

distance constraints are shown with black edges, exclusion constraints with red edges, and

qualitative topological constraints with blue edges in the spatial pattern drawing.

After pressing the “Search Pattern” button, the first result, i.e., the initial group of POIs

matching the search pattern, is displayed below in the same screen. Region C (in orange)

within Figure A.1 lists the names associated with the POIs in the first group shown as a

111

112

result. Their locations on the map appear to the right, in Region D (green rectangle), where

the user can manipulate the map to view details of the output results’ locations. The user can

click the buttons in Region E (pink rectangle) to view other query results. Each time the user

clicks on a different page number, Regions C and D update with the names of the POIs in

the next group and their corresponding map locations.

Figure A.1: Overview of the QQ-SPM search tool

Figure A.2 provides a detailed explanation of how to input requirements in such an

application. These steps are divided into four screenshots, each showing different stages

of inserting pattern requirements. Figure A.2 (A) illustrates how the user begins the search,

either by typing or selecting two POIs keywords for creating a specific relationship (pair-wise

constraint)

Figure A.2 (B) shows a stage where the user has already inserted the POIs keywords for

the relationship requirement and can now choose the distance requirements. We exemplified

this with the creation of an exclusion constraint. In this case, the user is looking for a

113

Figure A.2: Input data for searching spatial pattern

114

residential building that must be at least 500 meters far from cemeteries. After creating the

constraint between two POIs, the user clicks the “Add Relationship” button. Subsequently,

an update will be visible in the drawing region of the spatial pattern (Region B of Figure

A.1).

After creating one relationship, which generates an edge in the search pattern graph,

the user can submit additional constrained relationships to compose the search pattern.

Figure A.2 (C) demonstrates how the user can select a specific topological constraint, such

as choosing a shopping mall that must have a fitness center within its facilities. Once

all necessary relationships have been added and the spatial pattern graph meets the user’s

expectations, the user clicks on the “Search Pattern” button, as shown in Figure A.2 (D). The

query is then processed, and the user can find locations with POIs matching their criteria and

enjoy their choices.

Such an application could be utilized in scenarios beyond finding suitable residential

areas. As discussed in Chapter 1, a spatial pattern search tool could be invaluable for

trip planning, urban planning, scene recognition, and many other applications. These

applications can include POI searches, geo-tagged document retrieval, and any other geo-

textual searches compatible with the QQ-SPM query format.

