AVALIAÇÃO ENERGÉTICA E EXERGÉTICA DO PROCESSO PSICROMÉTRICO: RESFRIAMENTO EVAPORATIVO¹

Paulo Martins LEAL², Luís Augusto Barbosa CORTEZ³, José Tadeu JORGE⁴

RESUMO: Através de um Sistema Gerador de Processos Psicrométricos (SIGEP) realizou-se a avaliação energética e exergética do processo de resfriamento evaporativo do ar através da comparação das eficiências termodinâmicas de 1ª Lei e da combinação de 1ª e 2ª Lei. Observou-se ainda que a eficiência psicrométrica, muito usada no meio agrícola, não é um parâmetro adequado para se avaliar tal processo.

PALAVRAS-CHAVE: Resfriamento evaporativo, avaliação termodinâmica, eficiências

ABSTRACT: Through a Psychrometric Processes System Generator (SIGEP); it was realized the energetic and exergetic evaluations of the evaporative air cooling psychrometric process by using the comparison between the 1st Law, and the 1st and 2st Law combined thermodynamic efficiencies. It was also observed that the psychrometric efficiency, very common among agricultural engineers, it is not an appropriate parameter to evaluate this psychrometric process.

KEYWORDS: Evaporative cooling, thermodynamic evaluation, efficiencies

INTRODUÇÃO: O sistema de resfriamento evaporativo do ar é muito usado, no meio rural, para condicionamento do ar em instalações de produção intensiva de animais e plantas. Portanto, uma avaliação termodinâmica correta é necessária a fim de dar subsídios aos produtores e consumidores do referido sistema.

MATERIAL E MÉTODOS: Com a construção de um sistema capaz de gerar diversos processos psicrométricos (Figura 1), inclusive o processo de resfriamento evaporativo do ar utilizando um sistema de micro-aspersão, variou-se a vazão do ar, através da variação da velocidade do ventilador centrífugo de pás retas e determinou-se, com instrumental adequado, os parâmetros necessários para a avaliação do desempenho do sistema através dos conceitos da 1ª Lei da Termodinâmica e dos conceitos combinados da 1ª e 2ª Lei da Termodinâmica. Determinou-se, com isso, as eficiências de 1ª Lei e de 2ª Lei, além da eficiência psicrométrica do sistema.

¹ Parte da tese de doutorado do primeiro autor apresentada à FEAGRI/UNICAMP.

² Professor Doutor, Departamento de Construções Rurais - FEAGRI/UNICAMP - CP: 6011 - E-mail: pamleal@agr.unicamp.br - F: 788-2037 - Fax: 239-4717.

³ Professor Livre Docente, Departamento de Construções Rurais - FEAGRI/UNICAMP - CP: 6011 - F: 788-2033 - Fax: 239-4717.

⁴ Professor Titular, Departamento de Pré-Processamento de Produtos Agropecuários - FEAGRI/UNICAMP - CP: 6011 - F: 788-2072 - Fax: 239-4717.

RESULTADOS E DISCUSSÃO: Através da variação da velocidade do ar de 0,25 m/s a 1,50 m/s, com incrementos de 0,25 m/s e potência elétrica constante consumida pelo conjunto moto-bomba-aspersores de 1025 W; obteve-se uma eficiência energética mínima de 0,10%, enquanto que a eficiência exergética mínima obtida foi de 0,37%, ambas obtidas com a velocidade do ar de 0,25 m/s. Com a velocidade do ar de 1,50 m/s obteve-se a maior eficiência energética e exergética para o referido processo sendo 0,53% e 2,10%, respectivamente. Tanto para o patamar inferior quanto para o patamar superior das eficiências de 1ª e 2ª Lei da Termodinâmica obtidas; a eficiência psicrométrica foi sempre de 100%.

CONCLUSÕES: Observou-se que o referido processo psicrométrico apresentou valores muito baixos de eficiência termodinâmica quer pelo 1° princípio quer pelo uso do 2° princípio, em contraste com a eficiência psicrométrica que em todos os casos analisados atingiu o valor máximo (= 100%). Concluiu-se, portanto, que a eficiência psicrométrica, não deve ser usada como parâmetro para avaliar o rendimento deste processo, pois indica somente a capacidade que o sistema possui de atingir o grau de saturação de um ar.

REFERÊNCIAS BIBLIOGRÁFICAS:

- ASAE. Psychrometric Data. **STANDARDS OF THE ASAE D-271.2**. AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS. ASAE, p. 32-34. St. Joseph, MI, 1986.
- ASHRAE. **HANDBOOK OF FUNDAMENTALS**. AMERICAN SOCIETY OF HEATING, VENTILATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS ASHRAE, 967 p. Atlanta, GA, 1981.
- BEJAN, A. **ADVANCED ENGINEERGING THERMODYNAMICS**. John Wiley & Sons, 758 p. New York, N.Y., 1988.
- WEPFER, W.J.; GAGGIOLI, R.A. & OBERT, E.F. Proper Evaluation of Available Energy for HVAC. **TRANSACTIONS OF THE ASHRAE 85 (1):** p. 214-230. Atlanta, GA. 1979.

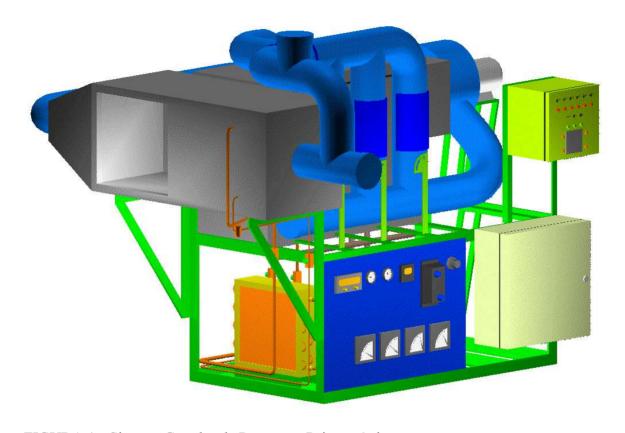


FIGURA 1 - Sistema Gerador de Processos Psicrométricos