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RESUMO

Revisão de código é uma das atividades mais importantes da engenharia de software, visto que visa

garantir a qualidade e confiabilidade do código, mas esse processo é feito majoritariamente de

maneira manual, o que pode demandar tempo e tornar o processo oneroso e suscetível a falhas. O

processo de revisão de código é um forte candidato para automação com objetivo de torná-lo mais

eficiente e menos suscetível a falhas devido ao componente humano do processo. Neste trabalho,

nós desejamos explorar a automação do processo de revisão de código através da aplicação de

Grandes Modelos de Linguagem e uma técnica de otimização no contexto de revisão de código

Clojure, que é uma linguagem de programação emergente. O Grande Modelo de Linguagem

escolhido foi o Mistral-7B-Instruct-v0.2 e a técnica de otimização foi a Retrieval Augmented

Generation (RAG), ambos os tópicos são discutidos nas seções seguintes deste trabalho. Nossos

resultados mostram que o Mistral com e sem o uso da otimização com RAG pode revisar código como

humanos, mas RAG não melhorou a revisão do modelo.
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ABSTRACT

Code review is one of the most important activities in software

engineering, since it intends to guarantee code’s quality and relia-

bility, but this process is done mostly manually, which can make

it an onerous, time-consuming and a failure-susceptible task. The

code review process is a strong candidate for automation in or-

der to make it more eicient and less susceptible to failures due

to its human component. In this work, we intend to explore the

automation of the code review process by applying a LLM and

an optimization technique in the context of Clojure’s code review,

which is an emergent programming language. The LLM chosen

was Mistral-7B-Instruct-v0.2 and the optimization technique was

Retrieval Augmented Generation (RAG), both topics are discussed

in the following sections of this work. Our results show that Mis-

tral with and without the RAG optimization can review code like

humans, but RAG didn’t improve the model’s review.
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1 INTRODUCTION

Large Language Models (LLMs) are Deep Learning models based

on the Transformer architecture released by Google in 2017 with

the paper łAttention Is All You Needž[26], which represents a major

turning point in the Deep Learning study ield. Since Transformer’s

release, the LLMs’ studies have signiicantly evolved with the re-

leases of GPT-3[3] by OpenAI, Llama2[24] by Meta, Gemini[23] by

Google andMistral[13] by MistralAI, models that have been getting

popular. These models are pre-trained with a massive amount of

data, acquiring general knowledge due to their ability of learning

underlying patterns of the language, which makes them capable of

learning and performing Natural Language Processing (NLP) tasks,

such as text summarization, text generation, translation, etc.

Once the pre-trained models are generalists, sometimes they

need to be ine-tuned, which is the process of further training the

model on a smaller and task-speciic dataset to specialize the model

for the speciic task that it’s intended to solve. Training and ine-

tuning LLMs for a number of tasks might be a challenge regarding

the computing resources required, once they usually require GPUs

and sometimes even TPUs, as it’s discussed in the study łEnergy

and Policy Considerations for Deep Learning in NLPž[22]. With this

challenge in mind, researchers and practitioners have been propos-

ing approaches to improve these models’ performance without the

need to perform training or ine-tuning, like Prompt Engineering

and Retrieval Augmented Generation (RAG)[14], that has been ex-

plored due to its potential to generate correct and credible responses,

as it’s discussed in the study łRetrieval Augmented Generation for

Large Language Models: A Surveyž[9]. There are several studies

like "Retrieval-Generation Synergy Augmented Large Language Mod-

els"[8] that explore the application of RAG with LLMs and even

studies that improved RAG like RAG-Fusion[19]. RAG was pro-

posed by Meta’s researchers, and consists of using non-parametric

memory (an external knowledge source) along with the parametric

memory (knowledge stored in the model’s parameters) to help the

model to generate more accurate responses. One of the greatest

advantages of RAG is that its knowledge can be easily altered or

supplemented on the ly without the need of ine-tuning.

The application of LLMs in several ields has grown in the past

years. One of these ields is Software Engineering (SE) as it’s dis-

cussed in łApplications of LLMs to Software Engineering Tasks: Op-

portunities, Risks, and Implicationsž[18]. LLMs have been used for

a number of SE tasks, such as the generation of unit tests, lan-

guage translation to modernize legacy software with new program-

ming languages, code review and build code generation tools like

Codex[4], which was the base model for GitHub Copilot1. One of the

most important activities in Software Engineering is Code Review

as it’s discussed in łDesign and code inspections to reduce errors in

program developmentž[7], since it intends to guarantee the code’s

quality, consequently preventing bugs and troubles with code’s

maintainability. However, the code review process is still more of a

manual process, and that makes it onerous and susceptible to fail-

ures, which is the reason to seek its automation as it’s discussed in

łAutomating Code Review Activities by Large-Scale Pre-Trainingž[15]

that proposed the CodeReviewer model and łUsing Pre-Trained

Models to Boost Code Review Automationž[25] that explored the T5

model, both studies in the context of applying LLMs in the task of

code review.

As mentioned, there are studies that have explored the applica-

tion of LLMs to review code[15, 25], but these aforementioned stud-

ies focus on popular programming languages, such as Java, Python,

C, etc. However, as emergent as the LLMs is the programming lan-

guage Clojure[12], a dialect of Lisp designed in 2005 and released

in 2007, that has been getting popular and being adopted by great

startups (e.g. Nubank, MercadoLibre, etc.), due to its pure functional

characteristics like immutability and its tools to concurrency-safe

state management. Since both, LLMs and Clojure are emergent,

there is a lack of knowledge related to the application of LLMs to

review Clojure code, and the goal of this work is to bridge this gap

by analyzing the performance of theMistral-7B-Instruct-v0.22 while

reviewing 1636 dif hunk from Clojure pull requests extracted from

100 diferent open source projects. We conducted experiments with

1https://github.com/features/copilot
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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and without the use of RAG to also shed light on the improvement

of such technique when applied in this context. As code artifacts3,

we generate the code that runs our experiment and analyze its

results and this paper.

This paper is organized as follows. In the next section, we provide

the background to better understand this work. Then, in Section

3, we detail the experiment’s methodology; in Section 4 discusses

the results; Section 5 concludes our indings and proposes future

works.

2 BACKGROUND AND RELATED WORKS

In this section, we present the key concepts for conducting this

research. We explain the importance of code review, the pull based

software development and the fundamentals behind RAG.

2.1 Large Language Models

Large Language Models (LLMs) are Deep Learning models based on

the Transformer architecture released by Google in 2017 with the

paper łAttention Is All You Needž[26]. These models have shown

the ability to learn the underlying patterns of the language used in

their pre-training. They are pre-trained in a huge amount of data

and become able to generate human-like content, which makes

them capable of performing human-like tasks such as read, write,

code, etc.

2.2 Code Review

As discussed in łDesign and Code Inspections to Reduce Errors in

Program Developmentž[10] the process of code’s inspection or code

review is an important activity in the software development process,

since it provides a way to ind errors in design and code, resulting

in more reliable and maintainable systems. The process of code

review has been modernized through the years as it’s discussed

in łAn Exploratory Study of the Pull-Based Software Development

Modelž[17], mostly because of version control tools like Git4 and

the GitHub5 system, that makes it easier the collaboration between

several developers through its Pull Request system, that provides a

way to performmodern code reviews, allowing discussions between

developers, code conlict veriication and demanding the approval

of the submitted change by the reviewers before being integrated

with the code.

Thework łWhatmakes a Code Review Trustworthy?ž[16] presents

that the code review process depends on the reviewers’ expertise

and experience, and that even with several code standards being

deined, not everything can be checked and validated. Since the

process depends on the reviewers’ expertise, it is performed mostly

manually, which means that its workload can grow exponentially

as the size of the project increases, which can easily make the

process onerous and susceptible to failures. So the automation of

this process is an urgent demand, as it’s discussed in foremen-

tioned works that applied LLMs to automate this process[15, 25].

Another work that has done the same thing, but using Llama as

3https://drive.google.com/drive/folders/135piPPDe0jHowMVvipAbLWTtkC1zNfpP?
usp=drive_link
4https://git-scm.com/
5https://github.com/

model, was łLLaMA-Reviewer: Advancing Code Review Automa-

tion with Large Language Models through Parameter-Eicient Fine-

Tuningž[11] where the researches ine-tune the Llama model in

three following tasks: Review Necessity Prediction, Review Com-

ment Generation and Code Reinement to produce the LLaMA-

Reviewer.

2.3 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is a technique that en-

hances the accuracy and reliability of LLMs responses by adding an

external data source to help the model to generate more accurate

responses. The idea consists of combining parametric memory of

the generator component, which is the knowledge stored in the

model’s parameters after pre-train in a large dataset, with non-

parametric memory, which is represented by an index of relevant

documents accessed by a retriever component. In RAG systems,

instead of passing the prompt right through the generator compo-

nent, the prompt is irst passed to the retriever component, which

searches for the most relevant documents related to the received

prompt and then concatenates the retrieved documents to the origi-

nal prompt as context to help the generator component. The RAG’s

retriever component usually implements semantic search, which is

a kind of information retrieval that interprets the meaning of the

sentences and tries to retrieve the most relevant documents using

the document’s semantic and context.

Since the document index used by the retriever is a dynamic

source, it can be easily updated with new information as the world’s

knowledge evolves and change, which makes it an easier approach

to update the model’s knowledge when compared with ine-tuning

the model, a task that usually requires large computational re-

sources and can even make the base model forgets some knowledge

acquired during its pre-train, as it’s discussed in łAnalyzing the

Forgetting Problem in Pretrain-Finetuning of Open-domain Dialogue

Response Modelsž[21].

2.4 Prompt Engineering

Prompt Engineering as it is discussed in łA Systematic Survey of

Prompt Engineeringž[1] has emerged as an approach to extend the

capabilities of LLMs. The approach consists of giving themodel task-

speciic instructions, also known as prompt, to enhance the model’s

responsewithoutmodifying themodel’s parameters. This technique

has shown signiicant potential when it comes to enhancing the

adaptability and applicability of themodel, without the need for ine-

tuning the model to the speciic task, which was already mentioned

in the previous section to be expensive in terms of computing

resources.

In cases where the model does not have knowledge to perform

the required task, it tries to use its parametric memory to answer,

which can lead to hallucinations. But it is possible to give the model

input-output examples as a workaround, so it tries to answer based

on the examples. RAG, as mentioned before, takes advantage of

that, but tries to retrieve the best examples based on the input, so

the model gets the best information.
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Figure 1: Dataset collection worklow

3 METHODOLOGY

In this section, we present how our code review dataset was built

and how we design our experiment, which has as main goal, evalu-

ating how the use of RAG improves the Mistral-7B-Instruct-v0.2

code review of Clojure code. For further reference, we named the

model that ran without RAG as Mistral and the model that ran with

RAG as Mistral-RAG.

3.1 Research Questions

Our research is guided by the following research questions:

RQ1: Is the model’s review similar to the human’s review?

RQ2: Considering the similarity between the model’s review and the

human’s review, did RAG improve the model’s review when compared

to the results of Mistral?

3.2 Dataset Collection

Initially, we selected the Top 100 Clojure open-source projects

in GitHub, which is a ranking that uses as a quality metric the

number of stars that a project has. We decided to select the most

popular projects, because they were most likely to have developer’s

comments and discussions in its pull requests. By doing so, we got

the dif hunks from the pull request, which represent the submitted

modiications and also the reviewer’s comments written by a human

reviewer about the submitted change, information that we can use

later to evaluate the model’s review.

As it was done in the study łAutomating Code Review Activities

by Large-Scale Pre-Trainingž[15], we choose to use dif hunk in our

work. So, it was written, a Golang script, that was responsible for

performing the requests to extract pull request data using GitHub’s

API. After the execution of the script, we retrieve over 12 thousands

pull requests from the Top 100 Clojure projects to build our dataset6.

After the retrieval stage, we performed some preprocessing over the

extracted data to remove noise and unnecessary information, like

the annotations about the number of the changed lines, lines of code

that were removed in the dif hunk, code comments and iltering

the data to have only examples where the number of lines were

greater or equal than 3, because we wanted to remove examples

6https://github.com/raiaiaia/llm-code-review-clj/blob/main/Dataset/data_iltered.
csv

with few lines of code and that consequently had less information

to review, like imports. We ended with 6771 examples in our dataset

and Figure 1 presents how the extraction process was done.

3.3 Tools

The Mistral-7B model released by MistralAI has shown high perfor-

mance while maintaining an eicient inference. As it is discussed in

the model’s paper[13], Mistral-7B leverages GQA[5], which accel-

erates the inference speed and reduces the memory requirements

during the inference, and SWA[2, 20], which was designed to han-

dle longer sequences more efectively at a reduced computational

cost. As a result, it outperformed the Llama2 13B across all tested

benchmarks, and surpassed the Llama 34B in mathematics and code

generation. Mistral-7B also approaches the coding performance of

Code-Llama 7B. To perform this paper’s experiment, we choose the

Mistral-7B-Instruct-v0.2, which is a version of the base model that

was ine-tuned in instruction datasets.

To apply RAG, we choose Sentence-BERT7[6] as the embedding

model used to create the vector representations of the dif hunks,

that were stored in the Chromadb8 vector database, which was

conigured to use the cosine similarity in its embeddings search

and used as the model’s external source of knowledge when we ran

Mistral along with RAG.

3.4 Prompt

3.4.1 Mistral Prompt.

As the prompt for the model, we used the following structure,

where we start by telling the model that it is an experienced pro-

grammer, and ask it to review a given dif hunk. We decided to

ask the review to be itemized instructions so it would be easier to

compare with the human review, once the review is expected to

contain the instructions for the developer that wrote the code. The

<s> and [INST] are special tokens recommended9 in order to get

optimal outputs.

<s >[ INST ] Given t h a t you a re an expe r i e n c ed

7https://huggingface.co/google-bert/bert-base-uncased
8https://www.trychroma.com/
9https://community.aws/content/2dFNOnLVQRhyrOrMsloofnW0ckZ/how-to-
prompt-mistral-ai-models-and-why
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Figure 2: RAG’s prompt building process

programmer , rev iew the code s n i p p e t below :

{ d i f f _hunk }

Format your rev iew as t e x t with i t em i z e d

c on c r e t e i n s t r u c t i o n s to the au thor o f

the code and do not add t h i s prompt to

the answer . [ / INST ]

3.4.2 Mistral-RAG Prompt.

When running Mistral along with RAG, as it was discussed in

RAG’s section, where we explained how it works, we just concate-

nate the retrieved documents to the prompt to work as code review

examples for the model to use as the base of its review. We format-

ted each of the retrieved documents as follows, presenting the dif

hunk and the review comment for it.

<s >[ INST ] Given t h a t you a re an expe r i e n c ed

programmer , rev iew the code s n i p p e t below :

{ d i f f _hunk }

Review based on the f o l l ow i n g rev iew examples :

The f o l l ow i n g code

{ examp le_d i f f _hunk_1 }

g en e r a t e the f o l l ow i n g rev iew comment

{ example_review_comment_1 }

. . .

Format your rev iew as t e x t with i t em i z e d

c on c r e t e i n s t r u c t i o n s to the au thor o f

the code and do not add t h i s prompt to

the answer . [ / INST ]

3.5 Experiment

As discussed before, our experiment was divided in two phases, in

the irst phase we run the model Mistral-7B-Instruct-v0.2 in the

code review task over our Clojure dif hunk dataset and collect the

model’s responses. In the second phase, we ran themodel using RAG

to pass some of our reviewed dif hunks as context for the model,

in order to improve its review quality. We irst have populated the

Chromadb with the embedding representations generated using

Sentence-BERT [6] and used the search system of Chromadb, which

was conigured to use cosine distance between the embedding

representations of the dif hunks to retrieve the most similar hunks

according to the one that is being searched, and then we pass as

context the dif hunk followed by its human review comment, so

the model has examples of similar code reviews. Figure 2 represents

the two phases of our experiment, and Figure 3 represents how we

created RAG’s prompt.

Our independent variable is, whether we use RAG, and our de-

pendent variable is the similarity between model’s review and

human’s review that was collected. Then we formulate the two

following hypotheses, based on our research questions:

For the Research Question 1 we have:

• The null hypothesis is łThe model does not review code

like a human reviewerž and its corresponding alternative

hypothesis is łThe model can review code like a human

reviewerž.

For the Research Question 2 we have:

• The null hypothesis is łThere is no diference between

the similarities found with Mistral and Mistral-RAGž and

its corresponding alternative hypothesis is łUsing Mistral-

RAG, the model’s reviews are more similar with the human

reviewsž.

The environment where the experiment was executed was the

Google Colab10 platform, using the Colab Pro+ which gives us 500

computing units per month and has an NVIDIA A100 40 GB PCIe

GPUAccelerator11, 84 GB of RAM and 200 GB of disk space available.

Figure 5 represents the overview of our experiment. Once we have

10https://colab.google/
11https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/
A100-PCIE-Prduct-Brief.pdf
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Figure 3: Experiment worklow

limited resources, we could only run our experiment over a limited

subset of our dataset, which was 1636 examples from our 6771

examples.

4 RESULTS

Figure 4: Density of Similarities

To evaluate the performance of our model we used the Sentence-

BERT [6] to generate embeddings of the Mistral’s review comment

and the human review comment, and then we used the Cosine

Similarity between the embeddings in order to verify if the model

review code like a human reviewer. Table 1 shows the results of

Mistral and Mistral-RAG executions over our dataset with 1636

examples.

As it’s shown in Table 1, we can see that we have found high

values of cosine similarity, once that the 50% percentile or median

is over 75% in both cases, which means that 50% of our dataset is

over 75% of cosine similarity, so we can conclude that the model’s

review is close to human reviews, which answers our Research

Question 1. Figure 4 shows a density plot divided between Mistral

Mistral Mistral-RAG

Count 1636 1636

Min 25% 25%

Max 96% 96%

Mean 74% 73%

Standard Deviation 12% 12%

25 percentile 68% 67%

50 percentile 77% 76%

75 percentile 83% 82%

Table 1: Similarity between Mistral and Human Review sum-

mary

and Mistral-RAG. We can see that both executions, with and with-

out RAG generated similar results, with the RAG execution being

slightly worse than when we ran without it, which contradicts

our hypothesis of RAG improving the model’s responses, that was

formulated based on our Research Question 2.

By the Figure 6 we can see that our dataset concentrate around

80% of cosine similarity, which is reinforced by the standard de-

viation being 12%, what tells us that our data is clustered tightly

around the mean that was 74% for Mistral and 73% for Mistral-RAG.

5 CONCLUSION AND FUTUREWORKS

As discussed in the results section, the hypothesis formulated based

on our Research Question 1 was reinforced by our results, once that

we can see the model’s reviews had high similarity with the hu-

man reviews. However, we contradicted our hypothesis formulated

based on the Research Question 2, but as result of that we could

also formulate a hypothesis on why that happened. Among the

possible reasons for that, we believe that the strongest one is the

fact that we weren’t able to run our experiment with our complete

dataset, due to our resources’ limitation. When working with LLMs,

one of the most important factors is the amount of data available
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to run the experiment, and we had an already limited dataset with

6771 examples that became smaller because we were able to run

only 1636 examples. Due to our resources’ limitations, we couldn’t

test diferent prompt settings, which we think is one of the most

important settings of our experiment.

We think that the quality and the amount of reviews passed as

examples within the prompt probably had a negative impact on

the results. Our hypothesis over this outcome is that dif hunks

probably confuse the model, once it didn’t have the full context of

the code. The main diference between our work and the previous

works that found good results is the amount of data available, once

the previous works were done with languages like Java and Python,

which have a bigger amount of data available to use than Clojure,

which is an emergent language.

For future work, we want to run our experiment with our com-

plete dataset, and evaluate if the amount of data really has an efect

when compared to our primary result that we showed in this paper.

We also would like to test diferent prompt settings and other vector

databases, diferent from Chromadb, to evaluate if it can generate

better results when used with Mistral-RAG.
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