
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

MARCOS GUILLERMO DE SÁ CATÃO COSSON

PERFORMANCE EVALUATION OF OPENSTACK SWIFT

CAMPINA GRANDE - PB

2024

MARCOS GUILLERMO DE SÁ CATÃO COSSON

PERFORMANCE EVALUATION OF OPENSTACK SWIFT

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador : Thiago Emmanuel Pereira

CAMPINA GRANDE - PB

2024

MARCOS GUILLERMO DE SÁ CATÃO COSSON

PERFORMANCE EVALUATION OF OPENSTACK SWIFT

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Thiago Emmanuel Pereira

Orientador – UASC/CEEI/UFCG

Andrey Elísio Monteiro Brito

Examinador – UASC/CEEI/UFCG

Francisco Vilar Brasileiro

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 17/05/2024

CAMPINA GRANDE - PB

PERFORMANCE EVALUATION OF OPENSTACK SWIFT

ABSTRACT

This study addresses the need for a comprehensive evaluation of Swift's performance in OpenStack

environments. Despite its widespread adoption, there is a lack of in-depth analysis in this area.

Through testing, including load and stress tests, we examined Swift's behavior across varying levels of

demand. Our findings highlight key trends: as user load increased, response times showed a

corresponding rise, reaching a maximum observed increase. Moreover, the variability in response

times also expanded with higher user loads, emphasizing the importance of scalability and

performance optimization for Swift in practical deployment scenarios.

Performance Evaluation of Openstack Swift

Marcos Guillermo Cosson
marcos.cosson@ccc.ufcg.edu.br

Thiago Emmanuel Pereira
temmanuel@computacao.ufcg.edu.br

ABSTRACT
This study addresses the need for a comprehensive evaluation of
Swift's performance in OpenStack environments. Despite its
widespread adoption, there is a lack of in-depth analysis in this
area. Through testing, including load and stress tests, we
examined Swift's behavior across varying levels of demand. Our
findings highlight key trends: as user load increased, response
times showed a corresponding rise, reaching a maximum observed
increase. Moreover, the variability in response times also
expanded with higher user loads, emphasizing the importance of
scalability and performance optimization for Swift in practical
deployment scenarios.
Keywords
Swift, OpenStack, object store, performance evaluation, system
bottlenecks, cloud infrastructure, workload.

1. INTRODUCTION

Swift, an OpenStack service for object storage, operates within a
model where each unit is treated as a distinct object, identified by
a unique key. Its architecture comprises three main components:
the Proxy Server, the Storage Cluster, and the Swift Rings. The
Proxy Server manages client requests, directing them to the
appropriate storage nodes, while the Storage Cluster stores and
serves data objects, with the Swift Rings ensuring their scalable
and resilient distribution[1].
Despite its significance, there remains a gap in the literature
concerning Swift's performance metrics, impeding
decision-making for OpenStack platform users. This study
addresses this gap, beginning with a detailed overview of Swift's
architecture and operational dynamics in the Background section.
Here, we explore the roles of its components.
Following this, the Methodology section discusses the steps
adopted and tools utilized to create a stress testing environment.
The results yielded insights into Swift's behavior under varying
demand levels. We observed an increase in median response time
as demand increased. Additionally, wider quartile ranges in
high-load scenarios suggested increased variability in response
times, necessitating performance management strategies. The
identification of outliers indicated potential system instabilities or
bottlenecks, underscoring the need for actions to ensure consistent
service delivery. Finally, in Section 5, we summarize the findings
and discuss their implications for the practical deployment of
Swift in production environments.

2. BACKGROUND

This section introduces Swift, an essential part of OpenStack,
offering scalable object storage. It outlines Swift's architecture,
including rings, partitions, proxy servers, and storage nodes. The
section also covers key functionalities like data replication,
consistency, and controlled distribution. Practical examples
illustrate Swift's usage, such as retrieving and adding objects,
showcasing its structure and versatility within cloud
environments.

Swift is an object storage system, designed to store and retrieve
large volumes of unstructured data across a variety of scenarios. It
is one of the core components of the OpenStack cloud computing
platform, providing a scalable and redundant storage solution.
This capability is accessed through a Representational State
Transfer (RESTful) API, enabling clients to interact
programmatically with Swift.
Below, we provide a practical example of how to use the Swift
API to create and retrieve an object:

Step 1: Authentication and Token Retrieval

TOKEN=$(curl -X POST -d '{"username": "your username",

"password": "your-password"}'

htttp://your-end-point-of-authentication/auth | jq -r

'.token')

Step 2: Creating a new Object

curl - X PUT -H "X-Auth-Token: $TOKEN" - T path/to/file.txt

http://your-swift-endpoint.com/v1/your-container/file.txt

#Step 3: Retrieving the Created Object

curl - X GET -H "X-Auth-Token: $TOKEN"

http://http://your-swift-endpoint.com/v1/your-container/my_

file.txt > my_retrieved_file.txt

Example of Swift API usage [2]

In this example, Swift is accessed through the RESTful API,
enabling developers to seamlessly integrate Swift into their
applications and data management systems.
The token is essential for authenticating and authorizing clients to
access the Swift cluster. It acts as a unique authentication
credential. After providing their user credentials, the
authentication service generates and returns a unique token.

2.1. Rings and Partitions

In the context of Swift, a 'ring' functions as an organizational data
structure that coordinates the distribution of data among storage
nodes within a cluster. A ring contains details regarding the
precise locations of each node and defines the 'partitions' of data
that each node oversees, as illustrated in Figure 3.

Figure 3: Partition and Ring Operation in the context of Swift[3]

In its turn, 'partitions,' are discrete data units with predetermined
sizes, each one is designated to a particular storage node within

the cluster. The efficacy of this approach resides in its capacity to
streamline data distribution and enhance data management
efficiency across the entirety of the cluster.

2.2 Proxy Server

The Proxy server acts as the gateway for clients to interface with
the Swift cluster. It manages incoming requests, including read
and write operations, and directs them to the relevant storage
nodes. Moreover, the proxy server undertakes load balancing,
authentication, and authorization validations, guaranteeing that
clients engage with the appropriate nodes and possess requisite
permissions.

2.3 Storage Nodes

Building upon the previous discussion of Swift's architecture, let's
now shift our focus to the storage nodes. These nodes are
responsible for storing and serving data objects, while
simultaneously managing their assigned partitions. To ensure data
resilience and persistence, they implement replication
mechanisms. Each storage node utilizes a file system to house
data objects. A key characteristic of Swift is its straightforward
approach to object naming. Rather than employing complex
hierarchical directories, Swift adopts a flat naming convention,
resulting in simplified data organization. For a visual
representation of storage node operations, please refer to Figure 4.

Figure 4: Object Storage Swift architecture[3]

2.4 Data Replication and Distribution

Data durability is a crucial aspect of Swift's architecture. The data
in each partition is replicated across multiple storage nodes to
ensure redundancy. Swift utilizes a distributed hash algorithm to
determine which nodes should host replicas of a particular
partition. Replication ensures that if a node becomes unavailable

or a disk fails, the data remains accessible from other nodes.
Figure 5 illustrates the behavior described above.

Figure 5: Swift replication scheme[3]

2.5 Data Consistency

Swift operates under an eventual consistency model, which
implies that updates made to the system may not be instantly
reflected in all replicas. Eventual consistency, in the context of
Swift, means that when data updates occur, the replicas will, over
time, adjust to achieve a coherent state. However, it is important
to note that this gradual synchronization may take some time to
materialize. Although this approach offers advantages in terms of
high availability and scalability, it is crucial for applications using
Swift to be designed considering this eventual consistency nature.

2.6 Controlled Replication and Distribution

In Swift, administrators can utilize Data Placement Groups
(DPGs) to configure how data is replicated and placed in the
cluster. These policies allow adjustments such as replica count and
distribution based on hardware and performance considerations,
optimizing storage efficiency and cluster performance.

3. METHODOLOGY

This section explains the methodology employed to perform a
Load Test on Swift 4. The primary objective of this test was to
assess Swift's responsiveness to diverse demands, encompassing
scalability, stability, and response time. The testing environment
was configured within a dedicated OpenStack infrastructure.

3.1 Objective

The primary objective of the test is to determine the behavior of
the Swift service under varying workload, focusing on response
time, for evaluating the time the service takes to respond to object
download requests, and quantifying system latency.

3.2 Experiment Design

The experiment conducted was a load test, where the workload
was synthetically generated, creating and storing 5MB files.

● Independent Variable: Generated workload, varying
the number of virtual users (VUs) and test execution
time to analyze the impact in different scenarios.

● Dependent Variable: Service response time for object
download requests.

The testing process relied on a suite of tools and instruments. We
used Locust to generate workload on the Swift service.
3.3 Test Environment

The test environment used was configured on a dedicated
OpenStack infrastructure with the following characteristics:
Internet Bandwidth:

● 10Gbps network connection for Ceph
● Maximum observed bandwidth over the past two

months: 800MB/s
Software:

● Operating System: Ubuntu 22.04.2 LTS (VM)
● Swift: python-swiftclient 3.13.1 stable version of the

service to be tested.
● Locust: v. 2.24.1, load testing tool for simulating virtual

users.
Hardware(VM):
CPU:

● Model: Intel Core Processor (Haswell, no TSX, IBRS)
● Cores: 4 (1 thread por core)
● Speed: 2297.340 MHz
● Cache: L1d: 128 KiB, L1i: 128 KiB, L2: 16 MiB, L3:

64 MiB
Storage:

● Total: 20 GB
● Partitions:

○ vda1: 19.9 GB (mounted on /)
○ vda14: 4 MB
○ vda15: 106 MB (mounted on /boot/efi)

RAM:
● Total: 7.8 GiB
● Used: 210 MiB
● Free: 5.5 GiB
● Available: 7.2 GiB

3.4. Test Procedures
3.4.1 Authentication and Configuration

The authentication process for the Swift service was conducted,
leveraging a .rc configuration file provided by OpenStack to
ensure secure access. Subsequently, the authentication token was
exported for integration into the tests, thereby enabling
communication with the service. Moreover, configuration of a
CSV file was undertaken to record test results, thereby facilitating
data collection and subsequent analysis.

3.4.2 Test Execution

1. Simulating VUs with Locust to perform downloads of
objects from the Swift service, replicating the behavior
of users.

2. Each VU executes a task that consists of downloading a
random object from the list of objects, ensuring a test
scenario.

3. Waiting time between tasks set between 1 and 2
seconds, simulating behavior between requests.

4. Each test is executed at a time (--run-time) and with a
number of VUs (-u), allowing the analysis of the
workload impact on different configurations.

3.4.3. Test Strategy

An approach was employed, commencing with a workload and
augmenting the number of virtual users (VUs) and execution time
to pinpoint service breakpoints. This method entailed an
increment of VUs while sustaining a generation rate (-r 1),
ensuring an increment in the workload. Furthermore, the
extension of execution time in each iteration facilitated system
stabilization and assessment of service behavior over periods,
affording an understanding of performance under load. The
objective was to subject the service to a range of load scenarios to
discern performance constraints and bottlenecks, thereby ensuring
the service's resilience.

3.4.4 Test Scenario Table

It is important to highlight that the tests followed a load
progression in accordance with the processing, reading, and
storage capacity of the VM used to run the experiments. The
endeavor sought to stress Swift within the defined test time frame
while avoiding potential interruptions due to CPU, RAM, and
storage overload on the VM executing the tests. Furthermore, the
tests were conducted at a scheduled time agreed upon with the
responsible cloud engineer to enable monitoring of the
infrastructure and prompt response to any incidents. Subsequently,
we will present in detail a table containing the test scenarios, the
number of simultaneous virtual users, and the corresponding
execution times.

Tests Scenarios

Scenario Number of VUs Execution Time

1 10 70

2 50 130

3 100 150

4 150 170

Figure 6: A scenario test, number of virtual users and execution
time

4. RESULTS

In this section, the results obtained from the analysis of the tests
conducted with the Swift service are presented.

4.1. Analysis of Response Time

Figure 7: Response time for the Load Test scenarios

Figure 7, illustrates the response time of the Swift service in
different load scenarios, ranging from 10 to 150 virtual users
(VUs). Each entry in the table represents a specific metric,
including the mean, standard deviation, minimum and maximum
values, as well as the 25th, 50th (median), and 75th quartiles. The
summary of findings indicates that the performance of the Swift
service gradually declines as the workload escalates, particularly
noticeable in scenarios 3 and 4, suggesting limitations in handling
higher demands. Furthermore, the presence of outliers in these
scenarios signifies potential instabilities in the system under heavy
load, potentially compromising user experience and service
reliability.

Next, we will proceed with an exploration of the patterns and
conclusions revealed by these data, emphasizing the relevance of
each metric in evaluating the performance of the Swift service, as
depicted in the table in Figure 8.

Load Test Results Summary Table

Users
(VU’s)

Mean
(ms)

STD
(ms)

Min
(ms)

25%
(ms)

50%
(ms)

75%
(ms)

Max
(ms)

10 0.37 0.21 0.05 0.23 0.34 0.46 2.01

50 1.63 1.01 0.04 0.83 1.55 2.29 5.81

100 2.64 1.87 0.06 1.08 2.43 3.76 11.16

150 3.26 2.33 0.05 1.16 3.12 4.86 20.15

Figure 8: Summary of Test Results(in milliseconds)

Firstly, a gradual increase in median response time is evident as
the number of virtual users (VUs) escalates from 10 to 150. This
consistent upward trend underscores the growing demand placed
on the Swift service, resulting in an increase in the average time

taken to process requests. Such observations emphasize the
critical importance of understanding system responsiveness and
scalability across diverse workloads. Secondly, alongside the rise
in median response time, there is a widening range of quartiles
observed in scenarios with higher load levels. This widening
quartile range indicates a greater dispersion of data points,
reflecting increased variability in response times. The broader
quartile range accentuates the necessity for performance
monitoring and management strategies to address potential
fluctuations in service performance effectively. Furthermore, the
identification of outliers in scenarios with 100 and 150 VUs.
These outliers represent instances where the Swift service
experienced unusually high response times, potentially indicative
of system instabilities or bottlenecks under heavier loads.
Addressing these outliers is imperative to ensure consistent and
reliable service delivery to users, underscoring the importance of
proactive performance optimization measures.

4.2 Validity threats to experiments

Our experiments face some validity threats that may affect the
reliability and generalizability of the results. These threats include
internal validity, external validity, construct validity, and
conclusion validity.

Internal validity threats include confounding variables, selection
bias, and instrumentation. Confounding variables, such as other
processes running on the same virtual machine (VM) or network,
can interfere with performance measurements. A dedicated testing
environment can mitigate this. Selection bias can occur if the VM
configurations and workload patterns are not representative.
While we believe our microbenchmark was a good choice for a
load test, experimenting with different system configurations
would improve our work (we considered only the configuration
used in production in our testbed).

External validity threats include environmental differences,
population validity, and temporal validity. Environmental
differences, such as specific hardware and network conditions in
our test environment, may not match other environments where

Swift is used. Conducting experiments in varied environments can
enhance external validity.

By addressing these threats through careful experimental design,
execution, and analysis, we aim to ensure that our findings on
OpenStack Swift's performance are reliable and applicable to
various scenarios.

5. CONCLUSION AND FUTURE
WORK

Challenges and implications encompass the complexity
introduced by integrating authentication during tests, potentially
impacting other services besides Swift. Additionally, the tests
were designed to simulate stress scenarios, with results indicating
satisfactory performance in scenarios 1 and 2. However, the
significant increase in outliers in scenarios 3 and 4 underscores
potential scalability limitations under more intense loads.
Further considerations include the necessity for detailed outlier
analysis to discern underlying causes of response time spikes and
the importance of benchmarking comparison to evaluate
competitiveness and identify improvement areas. Scalability
assessment through tests on different infrastructures and
configurations is also recommended.
In conclusion, the performance tests underscore a gradual decline
in average response time with escalating workloads, signaling
potential scalability challenges. It is essential to explore
underlying issues, implement corrective measures, and establish
monitoring mechanisms to uphold optimal Swift service
performance.
Another aspect that needs attention is scalability testing across
infrastructures and configurations. By scrutinizing its scalability
across environments, ranging from cloud platforms to on-premises
hardware, organizations can ascertain the service's adaptability
and resilience in meeting demands.

6. ACKNOWLEDGMENTS

I would like to express my sincere gratitude to all who have
contributed to the completion of this work. Firstly, I thank myself
for persevering through various challenges and successfully
concluding this journey alongside my undergraduate studies in
computer science. Next, I am immensely grateful to my advisor,
Thiago Emmanuel Pereira, for his guidance, collaboration in this
work, and sharing of knowledge and experience. I deeply thank
God and my grandmother, Maria Marlene de Sá, for providing
exceptional familial upbringing and unwavering support. I also
acknowledge the positive influence of my grandfather, Anésio
Figueira Catão, and my mother, Maria das Neves de Sá Catão,
whose resilience and guidance have been invaluable throughout
my academic journey.
To my friends Hiarly Souto, Jonatas Ferreira, Kleber Reudo, João
Vitor, and Luiz Gustavo, I am deeply grateful for their constant
support. Without them, this graduation journey wouldn't have
been as enriching. I also extend my gratitude to Victor, Samuel,
Paola, and Eduarda — friends I made during this period who were
also indispensable on this journey — among others. Additionally,
I am thankful to the LSD support team for their patience and
assistance in imparting crucial knowledge for the completion of
this work.
Finally, I would like to pay a special tribute to my dear friend
Adriano dos Santos Lira, whose memory will be forever

cherished. Although he is no longer with us, his remarkable
friendship and the moments we shared will remain etched in my
heart.

7. REFERENCES

[1] https://avcourt.github.io/tiny-cluster/2019/04/20/openstack_s
wift.html

[2] Cosson, Marcos Guillermo de Sá Catão. (2023). Tutorial:
How to Integrate with Swift Component - OpenStack
Documentation. [Online]. Available at:
https://github.com/MarcosDaNight/automated_load_transfer.
Accessed on: February 20, 2024.

[3] https://docs.openstack.org/swift/latest/admin/objectstorage-c
omponents.html

[4] GREGG, Brendan. Systems Performance: Enterprise and the
Cloud. 3. ed. Upper Saddle River, Nj: Prentice Hall, 2014. 15
- 82 p.

8. APPENDIX

APPENDIX 1 - Payload Generation

import os

import random

def generate_payload_file(file_name, size_mb):

with open(file_name, 'wb') as file:

file.write(os.urandom(size_mb * 1024 * 1024))

def generate_simulated_payloads(output_dir, num_files,

min_size_mb, max_size_mb):

for i in range(num_files):

size_mb = random.randint(min_size_mb, max_size_mb)

file_name = os.path.join(output_dir,

f'payload_{i}.txt')

generate_payload_file(file_name, size_mb)

Example usage:

generate_simulated_payloads('simulated_loads', 10, 1, 10)

APPENDIX 2 - Swift Object Upload Script

#!/bin/bash

SWIFT_CONTAINER_IP=”<your container ip>”

SWIFT_CONTAINER_NAME="<your container name>"

SWIFT_URL="http://${SWIFT_CONTAINER_IP}:<Port>/v1//${SWIFT_

AUTH_TOKEN}/${SWIFT_CONTAINER_NAME}"

for file in simulated_loads/*; do

if [-f "$file"]; then

echo "Sending $file"

curl -X PUT -H "X-Auth-Token: $(openstack token

issue -f value -c id)" \

-T "$file" \

"${SWIFT_URL}$(basename "$file")"

fi

done

APPENDIX 3 - Swift Download Stress Test Script

from locust import HttpUser, task, between

import requests

import time

import os

https://avcourt.github.io/tiny-cluster/2019/04/20/openstack_swift.html
https://avcourt.github.io/tiny-cluster/2019/04/20/openstack_swift.html
https://docs.openstack.org/swift/latest/admin/objectstorage-components.html
https://github.com/MarcosDaNight/automated_load_transfer
https://docs.openstack.org/swift/latest/admin/objectstorage-components.html
https://docs.openstack.org/swift/latest/admin/objectstorage-components.html

import atexit

Creation of the downloads folder

downloads_dir = os.path.join(os.path.dirname(__file__),

"downloads")

if not os.path.exists(downloads_dir):

os.makedirs(downloads_dir)

class SwiftDownloader(HttpUser):

wait_time = between(1, 2)

host = 'your swift url'

@task

def download_payload(self):

with open('list_swift.txt', 'r') as file:

objects = [line.strip() for line in file]

for object_name in objects:

url = f'{self.host}/{object_name}'

headers = {'X-Auth-Token':

os.getenv('OS_AUTH_TOKEN')}

try:

start_time = time.time()

response = self.client.get(url,

headers=headers)

end_time = time.time()

download_time = end_time - start_time

if response.status_code == 200:

timestamp = int(time.time() * 1000) #

Milliseconds timestamp

filename =

f"{object_name}_{timestamp}.txt" # Filename with timestamp

with open(os.path.join(downloads_dir,

filename), 'wb') as f:

f.write(response.content)

else:

print(f"Error downloading object:

{object_name} - {response.status_code}")

Error logging to file

with open('errors.log', 'a') as f:

f.write(f"{object_name},{response.status_code}\n")

Statistics logging to file

with open('statistics.csv', 'a') as f:

f.write(f"{object_name},{download_time},{response.status_co

de}\n")

except requests.exceptions.RequestException as e:

print(f"Error downloading object:

{object_name} - {e}")

Error logging to file

with open('errors.log', 'a') as f:

f.write(f"{object_name},{e}\n")

Cleanup function

def cleanup():

for filename in os.listdir(downloads_dir):

os.remove(os.path.join(downloads_dir, filename))

atexit.register(cleanup) # Register function to be

executed when exiting the script

