
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

HENRIQUE LOPES NÓBREGA

USO DE CACHE SEMÂNTICO PARA ECONOMIZAR RECURSOS

EM FUNCIONALIDADES PROVIDAS POR LLMS

CAMPINA GRANDE - PB

2024



HENRIQUE LOPES NÓBREGA

USO DE CACHE SEMÂNTICO PARA ECONOMIZAR RECURSOS

EM FUNCIONALIDADES PROVIDAS POR LLMS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientador : João Arthur Brunet Monteiro

CAMPINA GRANDE - PB

2024

HENRIQUE LOPES NÓBREGA



USO DE CACHE SEMÂNTICO PARA ECONOMIZAR RECURSOS

EM FUNCIONALIDADES PROVIDAS POR LLMS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

João Arthur Brunet Monteiro

Orientador – UASC/CEEI/UFCG

Hyggo Oliveira de Almeida

Examinador – UASC/CEEI/UFCG

Francisco Vilar Brasileiro

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 15 de Maio de 2024.

CAMPINA GRANDE - PB



RESUMO

Modelos de Linguagem de Grande Escala (LLMs), como o ChatGPT, Claude e Llama 2, revolucionaram

o processamento de linguagem natural, criando novos casos de uso para aplicações que utilizam

esses modelos em seus fluxos de trabalho. No entanto, os altos custos computacionais desses

modelos acarretam problemas de custo e latência, impedindo a escalabilidade de funcionalidades

baseadas em LLM para muitos serviços e produtos, especialmente quando dependem de modelos

com melhores capacidades de raciocínio, como o GPT-4 ou o Claude 3 Opus. Além disso, muitas

consultas a esses modelos são duplicadas. O cache tradicional é uma solução natural para esse

problema, mas sua incapacidade de determinar se duas consultas são semanticamente equivalentes

leva a baixas taxas de cache hit.

Neste trabalho, propomos explorar o uso de cache semântico, que considera o significado das

consultas em vez de sua formulação exata, para melhorar a eficiência de aplicações baseadas em

LLM. Realizamos um experimento usando um conjunto de dados real da Alura, uma empresa

brasileira de educação, em um cenário onde um aluno responde a uma pergunta e o GPT-4 corrige a

resposta. Os resultados mostraram que 45,1% das solicitações feitas ao LLM poderiam ter sido

atendidas a partir do cache usando um limiar de similaridade de 0.98, com uma melhoria de 4-10

vezes na latência. Esses resultados demonstram o potencial do cache semântico para melhorar a

eficiência de funcionalidades baseadas em LLM, reduzindo custos e latência enquanto mantém os

benefícios de modelos avançados de linguagem como o GPT-4. Essa abordagem poderia possibilitar a

escalabilidade de funcionalidades baseadas em LLM para uma gama mais ampla de aplicações,

avançando na adoção desses modelos poderosos em diversos domínios.
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ABSTRACT

Large Language Models (LLMs) such as ChatGPT, Claude and Llama 2 have revolutionized natural

language processing, creating many new use cases for applications that use these models in their

workflows. However, the high computational costs of these models lead to issues with cost and

latency, preventing the scalability of LLM-based features to many services and products especially

when they depend on models with better reasoning capabilities, such as GPT-4 or Claude 3 Opus.

Additionally, many queries to these models are duplicated. Traditional caching is a natural solution to

this problem, but its inability to determine if two queries are semantically equivalent leads to low

cache hit rates.

In this work, we propose exploring the use of semantic caching, which considers the meaning of

queries rather than their exact wording, to improve the efficiency of LLM-based applications. We

conducted an experiment using a real dataset from Alura, a Brazilian EdTech company, in a scenario

where a student answers a question and GPT-4 corrects the answer. The results showed that 45.1% of

the requests made to the LLM could have been served from the cache using a similarity threshold of

0.98, with a 4-10x improvement in latency. These results demonstrate the potential of semantic

caching to improve the efficiency of LLM-based features, reducing costs and latency while

maintaining the benefits of advanced language models like GPT-4. This approach could enable the

scalability of LLM-based features to a wider range of applications, advancing the adoption of these

powerful models in various domains.
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ABSTRACT
Large Language Models (LLMs) such as ChatGPT, Claude and
Llama 2 have revolutionized natural language processing, creating
many new use cases for applications that use these models in their
workflows. However, the high computational costs of these
models lead to issues with cost and latency, preventing the
scalability of LLM-based features to many services and products
especially when they depend on models with better reasoning
capabilities, such as GPT-4 or Claude 3 Opus. Additionally, many
queries to these models are duplicated. Traditional caching is a
natural solution to this problem, but its inability to determine if
two queries are semantically equivalent leads to low cache hit
rates.
In this work, we propose exploring the use of semantic caching,
which considers the meaning of queries rather than their exact
wording, to improve the efficiency of LLM-based applications.
We conducted an experiment using a real dataset from Alura, a
Brazilian EdTech company, in a scenario where a student answers
a question and GPT-4 corrects the answer. The results showed that
45.1% of the requests made to the LLM could have been served
from the cache using a similarity threshold of 0.98, with a 4-10x
improvement in latency. These results demonstrate the potential of
semantic caching to improve the efficiency of LLM-based
features, reducing costs and latency while maintaining the benefits
of advanced language models like GPT-4. This approach could
enable the scalability of LLM-based features to a wider range of
applications, advancing the adoption of these powerful models in
various domains.

Keywords
Semantic Caching, Large Language Models

1. INTRODUCTION
Large Language Models (LLMs) such as Mixtral [10], Claude [8],
Llama [24] and ChatGPT [1] represent the forefront of
advancements in natural language processing, especially in
language understanding and generation. These models have been
pivotal in transforming a wide array of applications across diverse
sectors, enhancing applications from education [11,9] to health
care [23, 4, 21].
Motivation. Despite their transformative potential, the use of
LLMs is charged with challenges primarily due to the substantial
computational resources they require. GPT-3, for example, has
175 billion parameters [2], requiring 326 GB of memory
(considering that every parameter is a float16) to perform
inference, which makes operational costs expensive. Advances
have been made in making inference more efficient, such as
employing Mixture of Experts (MoE) architectures that
dynamically allocate computation across different 'expert' models

based on the input [26] and improvements in the quantization of
model parameters to reduce memory usage without compromising
accuracy [12, 25], yet the use of these LLMs is still restricted due
to their problems with cost and latency, especially at scale.
Alura, a Brazilian edtech company, faces a significant scale
problem dealing with open-ended questions. These questions are a
critical component of the learning process, allowing for a
demonstration of a student's understanding in their own words.
However, each student's unique phrasing of their answers to the
same question necessitates individual assessment. Alura's current
system, relying on GPT-4's advanced reasoning capabilities,
demands high computational resources, as each distinct answer is
evaluated for correctness, leading to considerable costs and
latency. Over time, Alura observed that many answers are
semantically similar to previously evaluated ones, suggesting a
significant opportunity to reduce operational demands through
caching.
Problem. Using cache to reduce resource consumption is a
well-studied strategy [14]. However, traditional caching
mechanisms predominantly rely on keyword matching, which
often fails to capture the semantic relationships between similar,
resulting in a low hit-rate. For example, similar queries such as
"The answer is 4" and "answer is four" would typically result in a
cache miss in traditional caches, leading to an unnecessary usage
of the LLM even if they could be answered by the same LLM
inference.
Key insights and contributions. In this paper, we propose the
use of semantic cache to reduce the resources usage of
LLM-powered features by leveraging the semantic understanding
capabilities of LLMs to encode queries into vectors of floating
numbers. By comparing these semantic vectors, our system can
effectively recognize semantically similar queries, enhancing
cache hit rates. Our collaboration with Alura demonstrated that
implementing a semantic cache could prevent up to 45.1% of their
LLM usage, reducing both cost and latency in the end-user.
Our research delineates the development and implementation of
this semantic caching system, evaluates its performance against
traditional caching mechanisms, and discusses its broader
implications for the use of LLMs in various use cases. This
approach not only mitigates the noted challenges but also
enhances the scalability and efficiency of LLM applications,
potentially transforming their economic and operational viability.
The remainder of this paper is organized as follows: Section 2
reviews related work, discussing various techniques for
conserving resources in LLM-powered features and distinguishing
our approach from existing methodologies. Section 3 describes
our applied solution to the specific challenges faced by Alura. In
Section 4, we detail the experimental setup used to test the
efficacy of our semantic caching system. Section 5 presents the



results of these experiments, analyzing the impact of our solution
in terms of resource efficiency and response latency. Section 6
outlines potential future research directions to further enhance and
expand the scope of semantic caching. Finally, we conclude the
paper in Section 7 with a summary of our findings and their
implications for the broader use of LLMs in educational and other
sectors.

2. RELATED WORK
Ramírez et al. [19] and Stogiannidis et al. [22] saved LLM's
resources by training smaller models on the output of powerful
models using a teacher-student architecture. These small models
progressively handle a larger share of requests, thus conserving
computational resources. However, these studies focus primarily
on classification tasks and do not address the semantic
equivalences of queries as a mechanism to save resources.
Chen et al. [3] introduces the LLM Cascade technique, where
queries pass through a sequence of LLMs (from smaller to larger)
until a satisfactory answer is achieved. The verdict of whether an
answer is satisfactory is made by a classification model trained on
a labeled dataset. Despite its potential, our approach use case
required us to directly use a powerful model like GPT-4 from the
beginning, limiting our explorations of this method. Moreover,
our approach does not require pre-labeled datasets, presenting a
simpler yet effective solution to reduce usage resources from
LLMs in real-world scenarios.
Zhu et al. [27] discusses a combined approach of caching and
model multiplexing as a path to reduce costs on LLM usages by
always picking the cheapest model that can answer the query (if
the query was not previously cached). However, it assumes
semantic caching as a solved problem, not exploring its
complexities. In contrast, our work directly tackles the challenges
of semantic caching, demonstrating its feasibility and
effectiveness through an experiment with a real-world dataset.
Fu [6] introduces an open-source semantic cache framework,
CacheGPT, that helps to use semantic cache in production-ready
features. Similarly, Gill et al. [7] demonstrates how semantic
cache can be used to reduce usages in a scenario privacy-oriented
through the use of federated learning. Our work carves out a
distinct niche within this landscape by applying semantic caching
specifically within an educational setting, demonstrating that
semantic caching can not only significantly reduce latency and
operational costs but also improve the scalability and efficiency of
educational applications powered by LLMs.

3. APPLIED SOLUTION

Figure 1. The traditional workflow at Alura where a student
submits an answer and receives a correction, with the Answer

Judge (GPT-4) being the sole component for evaluation.
We developed a semantic caching system to address the
inefficiencies of traditional caching methods inside LLM-powered
applications. This system, implemented in collaboration with
Alura, takes advantage of the deep semantic understanding of
LLMs to enhance caching efficiency, thus optimizing
computational resources and reducing response times.

Figure 1 illustrates Alura's initial system, which primarily
employs the Answer Judge component, utilizing GPT-4 - in
particular the gpt-4-1106-preview [16] - to evaluate and correct

student responses. While this method effectively assesses the
accuracy and relevance of answers, it demands significant
computational resources and introduces considerable latency, as
each student's unique response necessitates individual processing.

Figure 2. Enhanced workflow with semantic caching usage.

Our proposed enhancement, portrayed in Figure 2, introduces a
semantic caching solution to optimize resource utilization and
reduce response times. The solution contains the following
components:

● Embedding Generator. This component generates a
vector embedding of a student's answer using OpenAI
text-3-small model [15]. The 1536-dimensional vector
that it creates represents the semantic content of the
answer.

● Vector Store. A storage for all the vector embeddings.
It utilizes Postgres with PgVector [17] for its simplicity
and HNSW indexes [13] to ensure fast searches within
all embeddings. For each embedding, our vector store
also keeps associated metadata, such as the original
answer that originated the embedding and the correction
for that answer. We employ cosine similarity [18] to
calculate the similarity between vectors. This similarity
goes from -1 to 1, with 1 indicating the most similarity
possible between two vectors.

When it receives a new answer, our system proceeds as follows:
● The system generates an embedding for the incoming

answer.
● This embedding is then matched against the Vector

Store to locate the most similar existing answer to the
same question.

● If a cached answer's similarity score meets or exceeds a
predefined threshold, we consider it a cache hit. The
Answer Judge's correction for the cached answer is then
relayed back to the student.

● Should the similarity score fall short of the threshold,
the Answer Judge is solicited to provide a fresh
correction.

● Every answer, alongside its correction — whether
retrieved from cache or newly generated — is recorded
in the Vector Store for potential future use.

4. EXPERIMENT
4.1 Research Questions
In our experiment, we aimed to answer the following questions:

● Reduction in LLM usage: How many API calls to the
LLM (Answer Judge) could be avoided by
implementing our semantic caching system?



● Latency improvement: How does the introduction of a
semantic cache impact the latency of corrections for
students?

4.2 Experiment With Semantic Caching
To address the research questions posed, we implemented our
applied solution as a prototype using JavaScript. We conducted a
detailed evaluation of our semantic caching system using a
production dataset consisting of 94,913 anonymized responses to
33 distinct questions. Each dataset entry included the question
asked, the student’s answer, and the correction provided by the
Answer Judge. To simulate the operational conditions as
accurately as possible, we processed the data sequentially to
ensure the most realistic assessment. For each data point, we
collected metrics on the operation’s latency, whether a cache hit
occurred, and the details of the most similar cached response
along with its similarity score. For the semantic cache, we chose a
similarity threshold of 0.98, indicating that if a response reached
this level of similarity with a prior answer, it was considered a
cache hit.
This threshold was selected to strike a balance between increasing
the cache hit rate while ensuring the accuracy of the corrections
applied from the cached responses. To validate this threshold, we
manually analyzed 256 pairs of responses and their most similar
matches, confirming that 87.5% of pairs with a similarity above
this threshold were semantically equivalent.
To assess the baseline performance of traditional caching, we
utilized a Redis instance hosted locally on our machine. In this
experiment, we replayed the dataset sequentially once more,
recording only the latency of each operation, the occurrence of
cache hits, and the details of the cached answer if a hit occurred.
To find out the inherent latency of the LLM without the influence
of any caching mechanism, we conducted an additional
experiment. We randomly selected 50 entries from our dataset and
processed each one without prior corrections, requiring a new
invocation of the Answer Judge for each response. We chose to
evaluate 50 entries as a sample size to balance a good
representation of our system behavior with costs consideration, as
each invocation of GPT-4 incurs financial costs. We established a
baseline latency which serves as a benchmark against which the
performance improvements provided by our semantic caching
system can be measured.

5. RESULTS
5.1 Traditional Caching
Using the traditional caching as our baseline metrics, we observed
a significant reduction in the number of necessary LLM
invocations. Specifically, 30.38% of the requests could be
avoided. This outcome indicates that even basic caching can
reduce the load on computational resources considerably on
LLM-powered features, depending on the specific use case.
To show the impact of the traditional caching in the feature, we
plot the average latency to each percentile as follows:

90th percentile 95th percentile 99th percentile

0.067 ms 0.082 ms 0.121 ms

Table 1. Latency distribution per percentile in the traditional
cache setting.

These results demonstrate that traditional caching can
significantly reduce response times, with most cached requests
being served in under a tenth of a millisecond. It yields a big

impact because the average latency of our Answer Judge is 6.82
seconds, so using traditional caching can decrease our latency up
to 6820x. Even if we consider a pessimistic scenario where our
average latency to perform a cache search is 100 ms, it still marks
an improvement of 68 times in the latency for the end-user.

5.2 Semantic Caching
Implementing our semantic caching system and varying the
similarity threshold provided further insights into the balance
between cache hit rate and the accuracy of the responses. The
following table summarizes the percentage of cache hit at
different thresholds:

Threshold Cache Hit (%)

0.99 39.88%

0.98 45.1%

0.95 53.76%

Table 2. Cache hit percentage by threshold in the semantic
cache system.

As the threshold for similarity increases, the cache hit decreases
because we increase the strictness of the semantic matching
criteria. However, even if we use a high threshold, like 0.99, it
still yields better results than the traditional cache. For example, a
threshold at 0.99 has a cache hit of 39.88%, while the traditional
cache has a cache hit of 30.38%.
Concerning latency, the recorded latencies at various percentiles
represent the typical response times occurring with each cache
access, irrespective of a hit or miss:

90th percentile 95th percentile 99th percentile

672.11 ms 784.55 ms 1635.1 ms

Table 3. Latency distribution per percentile in the semantic
cache system.

Even while semantic cache latency is greater than the traditional
cache latency, it still shows improvement from 4x to 10x in
comparison with a system without cache at all.
Comparing the baseline results achieved with traditional caching
to those obtained with semantic caching highlights a marked
improvement in efficiency using our semantic approach. With a
carefully chosen threshold of 0.98, the semantic caching system
significantly outperformed the traditional model, demonstrating a
higher percentage of cache hit. Specifically, the semantic cache
saved up to 45.10% of requests, compared to 30.38% with
traditional Redis caching. This substantial increase in cache hit
highlights the effectiveness of semantic caching in understanding
and leveraging similarities that extend beyond mere textual
matches.
However, it is important to note that while semantic caching
offers considerable advantages in terms of reducing the number of
LLM invocations, it does come with higher latencies. The typical
response times for semantic cache operations are considerably
longer, with latencies reaching up to several seconds at higher
percentiles. Despite these increased latencies, the trade-off is
beneficial. The semantic cache's ability to drastically reduce the
necessity for invoking the costly Answer Judge makes it a



preferable solution. This trade-off highlights the strategic
advantage of accepting higher cache operational latencies to
significantly decrease the more substantial latencies and costs
associated with LLM operations, enhancing overall system
efficiency and user experience.

6. FUTURE WORKS
While our experiments employed a fixed threshold of 0.98 to
balance cache hit rate and accuracy, future research could explore
the impact of varying this threshold more dynamically. Testing a
range of thresholds could provide deeper insights into the
trade-offs between increasing cache hit rates and maintaining the
accuracy of cached responses. This exploration might involve
implementing an adaptive threshold mechanism that could adjust
based on real-time feedback from the system's performance
metrics, potentially leading to optimized resource usage tailored
to the specific characteristics of the workload and user demands.
Another route for future work could involve experimenting with
different embedding algorithms. Our current system uses the
OpenAI text-3-small model to generate vector embeddings of text
responses. However, different models may offer improvements in
terms of the richness of the embeddings, the speed of
computation, or even the granularity of semantic understanding.
Future studies could evaluate the performance of alternative
models such as closed models like Cohere Embed [5] and
open-source ones like Sentence-BERT [20]. Comparing these
models in the context of semantic caching could yield valuable
insights into which models provide the best balance between
performance and computational overhead.

7. CONCLUSION
In this paper, we demonstrated the implementation and
effectiveness of semantic caching within Alura's educational
platform, significantly reducing the frequency of LLM usage. Our
approach achieved up to a 45.10% reduction in LLM usage with a
semantic threshold of 0.98, markedly surpassing the 30.38%
reduction offered by traditional caching methods.
This substantial decrease directly contributes to reduce costs and
improved response times, enhancing the scalability and
practicality of employing LLMs in educational settings. The
reduction in the need for frequent LLM interactions not only
mitigates the computational burden but also facilitates a more
efficient and cost-effective usage of advanced LLMs. Although
the approach introduces increased latency, the trade-off is
validated by the significant decrease in LLM usage and the
resultant improvement in overall system performance.
This study highlights the potential of semantic caching to
significantly reduce reliance on intensive LLM usage, presenting
a viable approach for enhancing the efficiency of LLM-powered
applications. The outcomes of this research emphasize the
practical benefits of semantic caching, demonstrating its ability to
transform the operational dynamics of LLM applications across
various domains.
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