
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

José Amândio Ferreira dos Santos

MUTUALISTICALLY INTEGRATING SERVICE MESH WITH EXTERNAL CONFIDENTIAL

APPLICATIONS

CAMPINA GRANDE - PB

2022

José Amândio Ferreira dos Santos

MUTUALISTICALLY INTEGRATING SERVICE MESH WITH EXTERNAL CONFIDENTIAL

APPLICATIONS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

Orientadora: Andrey Elísio Monteiro Brito.

CAMPINA GRANDE - PB

2022

José Amândio Ferreira dos Santos

MUTUALISTICALLY INTEGRATING SERVICE MESH WITH EXTERNAL CONFIDENTIAL

APPLICATIONS

Trabalho de Conclusão Curso
apresentado ao Curso Bacharelado em
Ciência da Computação do Centro de
Engenharia Elétrica e Informática da
Universidade Federal de Campina
Grande, como requisito parcial para
obtenção do título de Bacharel em
Ciência da Computação.

BANCA EXAMINADORA:

Professor Andrey Elísio Monteiro Brito

Orientador – UASC/CEEI/UFCG

Professora Reinaldo Gomes

Examinador – UASC/CEEI/UFCG

Professor Tiago Lima Massoni

Professor da Disciplina TCC – UASC/CEEI/UFCG

Trabalho aprovado em: 06 de abril de 2022.

CAMPINA GRANDE - PB

RESUMO

As malhas de serviço se tornaram populares, pois ajudam a monitorar e gerenciar aplicações

baseadas em microserviços: armazenando e processando aplicações que frequentemente incluem

conteúdo sensível em seus dados, e permitindo a adição transparente de funcionalidades através de

um proxy, sem incluí-las no próprio código. Em paralelo, houve um crescimento na demanda por

aplicações sensíveis que isolam dados sensíveis em um enclave de CPU protegido durante o

processamento. O uso de aplicações confidenciais em malhas de serviço é uma união incompatível

em seu estado atual. Um simples proxy acaba expondo dados que, até então, eram protegidos pela

aplicação confidencial. Embora as malhas de serviços atuais não suportem bem, as malhas de

serviços e as aplicações confidenciais podem ser combinadas de fato. Testamos vários proxy’s que

poderiam atender a esta demanda e avaliamos duas opções que podem ajudar a atingir este objetivo:

um GHOSTUNNEL confidencial e o SCONE Network Shield.

.

Mutualistically integrating service mesh with external

confidential applications

José Amândio Ferreira dos Santos1*, Andrey Elı́sio Monteiro Brito2

Abstract
Service Meshes became popular as they help monitor and manage microservice-based applications: storing and

processing applications that often include sensitive content in their data, and enabling the transparent addition of

functionalities through a proxy, without including them in the code itself. In parallel, there has been a growth

in demand for sensitive applications that isolate sensitive data in a protected CPU enclave during processing.

The use of confidential applications in service meshes is an incompatible union in its current state. A simple

proxy ends up exposing data that, until then, were protected by the confidential application. Although current

services meshes do not support it well, service meshes and confidential applications can be indeed combined.

We tested several proxies that could meet this demand and evaluated two options that can help achieving this

goal: a confidential GHOSTUNNEL and SCONE’s network shield.

Keywords

ISTIO — GHOSTUNNEL PROXY — SPIRE — SCONE – ENVOY — CONFIDENTIAL APPLICATION

1Universidade Federal de Campina Grande, Campina Grande, Paraı́ba
2Universidade Federal de Campina Grande, Campina Grande, Paraı́ba

*Corresponding author: jose.amandio.santos@ccc.ufcg.edu.br

Introduction

A Service Mesh is a tool that helps in sharing data between

different components of an application. It enable the trans-

parent addition of features, such as the ability to observe how

the environment communication works and traffic and secu-

rity management, without immediate changes to the source

code [1]. In addition, it assists in monitoring and managing

microservices-based applications. The emergence and popu-

larization of the service mesh resulted in the removal of the

logic that governs communication between services, which

was previously present in the application itself, transferring it

to an infrastructure layer that, as the complexity of communi-

cation increased, made its use increasingly necessary.

In parallel with the service meshes popularity, there was

the growth in the usage of Intel SGX [2], which enabled op-

erating system and user processes, or applications, to define

remote regions of memory, called enclaves, in which code and

data can be protected, thus making access difficult for poten-

tial intruders. These enclaves gave rise to a new application

paradigm known as confidential applications.

The integration of sensitive applications into service meshes

would enable their use with microservices along with a com-

puting model that has become popular in recent years. How-

ever, using a proxy to stay ahead of applications, when they

are in the service mesh, makes it difficult to use, since another

non-confidential element begins to exist in the environment.

When trying to introduce a confidential application into the

mesh, during all requests the data, hitherto protected, would

be exposed to potential intruders whenever it arrives at the

proxy next to the application. As, by nature, the application

handles sensitive data and the distribution of certificates made

by such services issues weak identities, the environment be-

comes unsuitable for applications that need an environment

(and threat model) that may include someone with access to

the infrastructure.

Current service meshes are either a completely confiden-

tial environment or a completely non-confidential environ-

ment, in which the attestations of your applications are made

by the mesh’s own control plane.

In this state, applications that are already running and

applications that make an attestation of their environment in

another entity will not be able to use any of the current types

of mesh, as they need a safe environment that does not require

so many rules for its execution. in the mesh.

Thus, a possible solution to these problems starts with

introducing a new identity provider to the service mesh that

establishes a previous verification of the application to issue a

certificate with a strong identity. It is still necessary to look

for techniques that make it feasible to provide the issuance of

identities for external applications. Finally, there is also the

need to make sure the proxy runs within a trusted environment

(i.e., an SGX enclave).

While building a trustworthy proxy. There are two basic

approach. First, we can transfer the communication logic to

communicate securely through headers and certificates using

a proxy. We did it from the interception of the communication

Mutualistically integrating service mesh with external confidential applications — 2/10

made by other applications, adding the necessary information

for the request to be carried out successfully and safely with

other applications present on the mesh. We prove this secure

communication through the issuance of certificates by the

fabric controller.

Alternatively, the proxy can be integrated into the applica-

tion itself with the help of a runtime environment. It receives

an identity from the sender, established by the mesh, thus

achieving communication in the same way as the applications

present in the mesh. Such modifications should make the

service fabric capable of securely communicating with exter-

nal sensitive applications and maintaining the main benefits

offered by both techniques.

With this proxy working properly, it is possible that ap-

plications already running, such as a confidential server, can

communicate with a fabric after both receive a certificate. In

addition, confidential applications that are attested by a spe-

cific attestation service can be attested and if you receive a

certificate with the service mesh applications, you can com-

municate in a simple and practical way.

1. Background

To begin the explanation of confidential proxies it is necessary

to explain some basic concepts and technologies:

• ISTIO, a popular service mesh;

• The SPIFFE standard and one implementation, SPIRE;

• The process of attesting a confidential application with

SCONE.

1.1 ISTIO

ISTIO is an open-source service mesh that layers transparently

onto existing distributed applications providing a uniform and

more efficient way to secure, connect, and monitor services.

It is designed for extensibility and can handle diverse

deployment needs. ISTIO’s control plane runs on Kubernetes.

We can add applications deployed in that cluster to the mesh,

extend the mesh to other clusters, or even connect VMs or

other endpoints running outside of Kubernetes.

A large ecosystem of contributors, partners, integrations,

and distributors extends and leverages ISTIO for various sce-

narios. Several vendors have products that integrate ISTIO

and manage it. [3]

ISTIO’s architecture is divided into the data plane and the

control plane. In the data plane, ISTIO support is added to a

service by deploying a sidecar proxy within your environment.

This sidecar proxy sits alongside a microservice and routes

requests to and from other proxies. Together, these proxies

form a mesh network that intercepts network communica-

tion between microservices. The control plane manages and

configures proxies to route traffic. The control plane also con-

figures components to enforce policies and collect telemetry.

[4]

As one of the most popular service meshes, ISTIO is an

appropriated choice for this process to effectively commu-

nicate a confidential application outside the mesh with the

applications present in it.

1.2 SPIRE

SPIRE [5] works as a trusted certificate issuer for our appli-

cations, which will generate certificates with IDs following

the SPIFFE standard [6]. A SPIFFE ID is a structured string

(represented as a URI) that serves as the “name” of an entity

that is defined in the SPIFFE Identity and Verifiable Identity

Document (SVID) specification.

A SPIFFE Verifiable Identity Document (SVID) is a doc-

ument that carries the SPIFFE ID itself. It is the functional

equivalent of a passport – a presented document that carries

the presenter’s identity. Of course, similar to passports, they

must be resistant to forgery, and it must be evident that the

document belongs to the presenter. An SVID includes crypto-

graphic properties that enable it to be (i) proven as authentic,

and (ii) proven to belong to the presenter. In addition, it has

an attestation process to provide identities for our application.

[7]

Attestation in the context of SPIRE is asserting the iden-

tity of a workload. This procedure is done in two phases:

first, node attestation (the node’s identity, which the work-

load is running on, is verified) and then workload attestation

(the workload on the node is verified). In both cases, this is

achieved by comparing attributes gathered from the workload

process itself and from the SPIRE Agent’s node to a set of

selectors defined when the workload was registered. These

trusted third parties are platform-specific.

SPIRE has a flexible architecture that enable it to use mul-

tiple trusted third parties for node and workload attestations,

depending on the workload environment. Thus, the attestation

needs to know which trusted third parties and which types of

information to use. It obtains the first from entries in agent

and server configuration files and the second from selector

values specified when workloads were registered.

This form of attestation enable the creation of third-party

plugins that check the integrity of nodes and workloads from

information obtained with the TPM and SGX drivers, thus

verifying confidential applications and environments. [8]

1.3 SCONE

SCONE is a Secure CONtainer Environment for Docker that

uses SGX to run Linux applications in secure containers. [9]

SCONE (Secure CONtainer Environment) supports the

execution of confidential applications inside containers run-

ning inside a Kubernetes cluster. SCONE also supports the

execution of confidential applications inside VMs with empha-

sis on containers. SCONE supports all common programming

languages. [10]

Our intention is to use SCONE applications so that it is

possible to perform their communication with applications in

the mesh.

Mutualistically integrating service mesh with external confidential applications — 3/10

1.3.1 Attestation

The attestation of SCONE applications requires the use of

a CAS (Configuration and Attestation Service), which can

be public or executed locally, and a LAS (Local Attestation

Service) previously deployed on each machine. With these

services active, we must create a session for our application

to store policies that describe how the service is executed amd

how it gets and share access to secrets and data.

1.3.2 Network Shield

The network shield works as a proxy coupled to the SCONE

environment, helping to encrypt non-TLS requests without

changing the code, transforming a previously HTTP request

into an HTTPS request.

The network shield, upon establishing a new connection

checking, performs a TLS handshake and encrypts/decrypts

any data transmitted through the socket. This approach does

not require client- or service-side changes. The private key

and certificate are read from the container’s file system. Thus,

they are protected by the file system shield. [9]

Analyzing the use of the network shield, we can see its

usefulness as a potential confidential sidecar for our commu-

nication. Since it is present in the same environment as the

client applications.

2. Methods

This section describes how we used the previously presented

tools to create a enabler for security application development,

by providing a way to apply as security applications, includ-

ing a trusted way to apply to an issuer of security identities,

including a trusted application to the service fabric. The start-

ing point was to modify a service mesh by adding an identity

issuer that enable issuing and attesting identities to external

applications.

We used ISTIO as our service mesh provider and SPIRE as

the identity issuer. Subsequent to that, the creation of sidecar

proxies will be started that help applications – running in a

SCONE environment – to communicate with the mesh.

2.1 ISTIO with SPIRE

In ISTIO, the proxy sidecars receive their identities through

a UNIX Domain Socket (UDS) that they share with an IS-

TIO agent running in the same container. To make ISTIO

use SPIRE to provide identity it is necessary to make some

modifications. When replacing the ISTIO identity-issuing

mechanism with that of SPIRE, the sidecars can communi-

cate with the UDS of the SPIRE node agent instead of the

ISTIO agent UDS,this was done changing the proxy configu-

ration. Once we achieved the objective, all left was to change

the SPIRE code to support the proxy sidecar configuration

generated by ISTIO.

For the sidecar testing process, it was necessary to up-

load an ISTIO that had the certificate rotation done by SPIRE.

Because of this ISTIO was automatically generated, it was im-

possible to share certificates for non-mesh applications. For

Figure 1. ISTIO SPIRE workflow [11]

this modification, we need to modify the ISTIO configura-

tion file, mapping the previous certificate rotation socket, the

Citadel (default of ISTIO), to be SPIRE.

The subsequent step is developing a helper application

that facilitates communication between the confidential appli-

cation and the mesh. The way in which the communication

process works and how ISTIO and SPIRE work underneath is

illustrated in the Figure 1.

2.2 Testing ISTIO-SPIRE execution
With the development of ISTIO-SPIRE (ISTIO with SPIRE

as the identity issuer), the use of node’s identity to perform

requests using test requests is viable by running a simple

server using httpbin, inside the mesh. It will receive the

support of the ISTIO proxy with the certificates provided

by SPIRE. Then, with the server up, it is only necessary to

register its identity in SPIRE to enable certificate rotation for

the application’s sidecar.

It is still necessary to run an application that serves as a

client and sends requests to our server to perform this com-

munication. This client application is deployed outside the

mesh.

When both applications are up, we send a request from

the client to the server, which will return a STATUS 200.

After this test, to guarantee that applications can only

communicate with TLS, the STRICT mode was activated as

follows:

k u b e c t l a p p l y − f − <<EOF

a p i V e r s i o n : s e c u r i t y . i s t i o . i o / v 1 b e t a 1

k ind : P e e r A u t h e n t i c a t i o n

m e t a d a t a :

name : ” d e f a u l t ”

namespace : ” i s t i o − sys tem ”

spe c :

m t l s :

mode : STRICT

EOF

In order to maintain the security of the mesh environment,

since we want SCONE applications to share their data to it,

we enabled ISTIO’s STRICT mode so that external applica-

tions can only communicate with the presence of a certificate.

With these certificates, only applications that we trust can

Mutualistically integrating service mesh with external confidential applications — 4/10

Figure 2. Sequencial simple ISTIO-SPIRE communication

have access to data received or created in the mesh environ-

ment. However, with SPIRE in this mesh, the application

only needs to be certified. It will receive a certificate that

will communicate with everyone inside the ISTIO since ev-

eryone in the mesh trusts who receives credentials from the

SPIRE-SERVER provider.

With straightforward communication explained, we can

move on to adding SCONE applications and ways to make it

easier for these applications to communicate with the mesh

automatically and without changing the initial code.

Initially, the viable sidecars were mapped and then re-

duced to just three, because they can communicate with

SPIFFE ID:

• GHOSTUNNEL PROXY

• ENVOY PROXY

• Network shield

Thus, the subsequent steps are to make the sidecar con-

fidential (if necessary), performing communication from a

sensitive application to an application present in a popular

mesh. With one of these sidecars performing the execution

that helps communication with the mesh, we will already have

the expected result.The process can be observed by observing

the Figure 2.

2.3 Confidential GHOSTUNNEL

GHOSTUNNEL is a simple TLS proxy with mutual authen-

tication support for securing non-TLS backend applications.

GHOSTUNNEL supports two modes, client mode and server

mode. When in the server mode, it runs in front of a back-end

server, accepts TLS-secured connections, and then proxies to

the (insecure) backend. A backend can be a TCP domain/port

or a UNIX domain socket. And when in the client mode, it ac-

cepts (insecure) connections through a TCP or UNIX domain

Mutualistically integrating service mesh with external confidential applications — 5/10

Figure 3. Illustrate communication with confidential GHOSTUNNEL

socket and proxies them to a TLS-secured service.

The confidential GHOSTUNNEL build process is per-

formed using a SCONE image that presents the build config-

uration tools in the GO language. Then was used the source

code in the latest version of SCONE image,which runs in Go

1.15. Finally, we use the application build command to make

it confidential and add the necessary environment variables

for the execution and The entire process is described at a

higher level in Figure 3. For this execution, it was necessary

to follow these steps:

• Using a Dockerfile, we perform the build of GHOS-

TUNNEL in an alpine image to make it confidential

and solve errors that may occur in this version and thus

minimize errors in a build on the SCONE image.

• As a next step, was started a build on the SCONE image.

Finally, was added information about the environment

variables needed to run SCONE.

• After the build and with the image present locally, was

inserted a session into an existent CAS and had a LAS

present on the machine so that it is possible perform the

execution of the confidential GHOSTUNNEL, for, in

the end, use GHOSTUNNEL command to communi-

cate with the application present in the mesh:

/ u s r / b i n / g h o s t u n n e l c l i e n t −− unsa fe −

l i s t e n −−use −workload − api − a dd r {
SOCKET−ADDR} −− l i s t e n ={GHOSTUNNEL−

ADDR}−− t a r g e t ={ ISTIO −APP} −− v e r i f y −

u r i {SPIFFE −VERIFY}

With this, the workflow is illustrated in more detail using

a sequence diagram referenced to Figure 4.

Even reaching our goal of communicating with the mesh,

confidential GHOSTUNNEL still has limitations. It is unable

to read certificates that do not come from SPIRE – which

is possible in the original GHOSTUNNEL – and it cannot

securely get certificates to use in the application.

2.4 Confidential ENVOY

ENVOY is a self-contained process signed to run alongside

every application server. All of the ENVOYs form a transpar-

ent communication mesh in which each application sends and

receives messages to and from localhost and is unaware of the

network topology. [12]

For these sidecars, it was necessary to transform the appli-

cation into a confidential application. Because the ENVOY

proxy builds are based on BAZEL, a free software tool for

the automation of building and testing of software, it adds a

greater complexity than CMAKE and makes it challenging to

use sconify. The general workflow to generate a confidential

image is described below.

An extra stage that sconifies, i.e., converts a native im-

age into a confidential container image to an existing CI/CD

pipeline for a node-based application/service. The transfor-

mation is controlled via the command line arguments of the

sconify image. Typically, the appropriate arguments would

be selected when configuring the CI/CD pipeline. The image

sconification should, in most cases, be wholly automated and

executed as part of the CI/CD pipeline. One might run the test

stage after the sconification of the image. We develop a script

that uses an image provided by ENVOY and uses it in the

sconify process. The script uses the latest version of SCONE

image and ubuntu 18.04 as the base image of the application.

See below:

! / b i n / bash

s e t −x

Mutualistically integrating service mesh with external confidential applications — 6/10

Figure 4. Sequencial GHOSTUNNEL PROXY workflow

echo ” S c o n i f y : envoy ”

Base Image

BASE IMAGE=” ubun tu : 1 8 . 0 4 ”

Image o f t a r g e t a p p l i c a t i o n .

SOURCE IMAGE=” envoyproxy / envoy −debug : v1

.21 − l a t e s t ”

B in ar y pa th

BINARY=” / u s r / l o c a l / b i n / envoy ”

Docker image name

TARGET IMAGE=${TARGET IMAGE:= ” envoy :

s c o n i f y ”}

S c o n i f y n a t i v e image .

SCONIFY IMAGE=${SCONIFY IMAGE GLIBC := ”

r e g i s t r y . s c o n t a i n . com : 5 0 5 0 / c l e n i m a r /

s c o n i f y −image −dev :5 .6 .0 −18012022 −5

ea f8d6d ”}
SCONE CAS ADDR=${SCONE CAS ADDR:= ” 5 −6 −0.

scone − c a s . c f ”}
CAS NAMESPACE=${CAS NAMESPACE:= ” envoy −

$RANDOM−$RANDOM−$RANDOM”}

SESSION NAME=” envoy − s e s s i o n ”

SERVICE NAME=” s e r v i c e ”

ENV VAR=” envoy −− v e r s i o n ”

Docker run p e r f o r m i n g image

s c o n i f i c a t i o n w i t h a l l v a r i a b l e s

c r e a t e d p r e v i o u s l y

. . .

• In the sconification process, firstly, indicate the base

image of the code and the image with the application

present, along with the path to the application’s binary.

• As subsequent steps, the name of the image that the

script should create with the sconified application and

the image in which the sconification process will occur.

• The conclusion adds variables to fill the session to be

created for the application, which occurs automatically

Mutualistically integrating service mesh with external confidential applications — 7/10

Figure 5. Illustrate communication with network shield

in sconify.

• With all the variables ready, just execute a ”Docker

run” and analyze the automatic build process done by

sconify.

When running the script, we create an image with the

confidential application of ENVOY as a result. However,

when running, the application loops, and no commands are

executed, preventing ENVOY as a confidential sidecar.

2.5 Network Shield

Some container services, such as Apache and NGINX, always

encrypt network traffic; others, such as Redis and Memcached,

assume that the traffic is protected by orthogonal means, such

as TLS proxies, which terminate the encrypted connection

and forward the traffic to the service in plaintext. Such a

setup is appropriate only for data centers. The proxy and

service communication is assumed to be trusted, which is

incompatible with our threat model: an attacker could control

the unprotected channel between the proxy and the service

and modify the data. Therefore, a TLS network connection

must be terminated inside the enclave for secure containers.

SCONE permits clients to establish secure tunnels to container

services using TLS. It wraps all socket operations and redi-

rects them to a network shield. The network shield performs

a TLS handshake and encrypts/decrypts any data transmitted

through the socket. This approach does not require the client

or service-side changes. The private key and certificate are

read from the container’s file system. Thus, they are protected

by the file system shield. [9]

Using Network Shield, we intend to use it as a proxy

sidecar and execute the entire process that is described at a

higher level in the figure 5.

One of the positive points of the network shield is that

it is a feature present in SCONE, so we do not create the

need to make it a confidential application. Based on this, it

is necessary to configure the network shield with the SPIRE

server to receive updated certificates.

Unlike the other applications presented, this functionality

does not support sockets, so to achieve certificate rotation, it

is necessary to use the SVIDStore plugin present in SPIRE.

The plugin posts sessions with the constraints specified

in the selectors to ensure that only attested workloads will

get access to the right SVIDs. The plugin depends on the

CA Trusted Anchor certificate for this CAS instance plugin

to work normally. This certificate is extracted from the file

/cas/config.json created by the SCONE CLI after executing

the SCONE cas attest command. The trust anchor is the

first certificate of the certificate chain written in the file. The

plugin uses session templates to give operators more flexibility.

Each template has placeholders used by the plugin to inject

information and constraints for access control in the secret

store.

To use the network shield before the SCONE application,

it is needed to post a session in CAS. Based on this premise,

was prepared the following session for its activation:

name : ${MY NAMESPACE} / n e t s h i e l d − s e s s i o n

v e r s i o n : ” 0 . 3 ”

s e r v i c e s :

Mutualistically integrating service mesh with external confidential applications — 8/10

− name : s e c r e t − s e r v i c e

m r e n c l a v e s : [{ENCLAVE HASH}]

command : py thon3 / app / s e c r e t s e r v i c e

. py

pwd : / app

e n v i r o n m e n t :

SCONE MODE: hw

SCONE LOG: 7

ne twork s h i e l d v a r i a b l e s

SCONE NETWORK SHIELD : u n p r o t e c t e d

SCONE NETWORK SHIELD CLIENT 1 : ”

p r o t e c t e d ”

SCONE NETWORK SHIELD CLIENT 1

DESTINATION : ”TCP :DNS: PORT”

SCONE NETWORK SHIELD CLIENT 1

DESTINATION IP : ”*”

SCONE NETWORK SHIELD CLIENT 1

SERVER AUTH: d i s a b l e d

SCONE NETWORK SHIELD CLIENT 1

IDENTITY : |
$$SCONE : : s v i d : p r i v a t e k e y : pkcs8 :

pem$$

$$SCONE : : s v i d : c r t $ $

s e c r e t s :

− name : s v i d

i m p o r t :

s e s s i o n : ${MY NAMESPACE} / n e t s h i e l d

− s e s s i o n − i n j e c t o r

s e c r e t : s v i d

s e c u r i t y :

a t t e s t a t i o n :

t o l e r a t e : [debug −mode ,

h y p e r t h r e a d i n g , o u t d a t e d − tcb ,

i n s e c u r e − igpu]

i g n o r e a d v i s o r i e s : ”*”

This YAML will focus on the variables with the prefix

”SCONE NETWORK SHIELD”. The first variable present

is ”SCONE NETWORK SHIELD,” that have the options

”protected” and ”unprotected”. To perform it, we used the

unprotected option, because of using the opposite option the

network shield would inspect all requests leaving the appli-

cation, including DNS resolutions (Domain Name System)

made using UDP (User Datagram Protocol), which is not

supported by the network shield, as it will cause an error

when detecting the UDP request made by DNS. Based on this,

we can analyze and explain the YAML variables used in the

process of using the network shield:

SCONE NETWORK SHIELD CLIENT 1 determines

the mode of operation for an outbound connection (determined

by ‘SCONE NETWORK SHIELD CLIENT name DESTI-

NATION‘ and ‘SCONE NETWORK SHIELD CLIENT name

DESTINATION IP‘). using the variable as ‘unprotected‘, the

network traffic can pass through unfiltered.

SCONE NETWORK SHIELD CLIENT 1 DESTINA-

TION is presented in the format of ‘protocol DNS name

port‘, which is the application that will receive the request

from our application.

SCONE NETWORK SHIELD CLIENT 1 DESTINA-

TION IP is displayed in IPv4 or IPv6 address format. How

was it already determined the address by its DNS name, it is

not necessary to specify its address in this variable and put a

wild card.

SCONE NETWORK SHIELD CLIENT 1 SERVER

AUTH is Only applicable if the mode is ‘protected‘. We used

the ‘unprotected‘ mode to perform this request. where was it

placed the value ‘disable‘ in this variable.

SCONE NETWORK SHIELD CLIENT 1 IDENTITY

presents X.509 client identity (concatenated PEM-encoded

PKCS8 private key, X.509 end-entity certificate, and option-

ally chain CA certificates). Only applicable if the mode is

‘protected‘.

After creating the session and posting it to CAS, starting

the confidential SCONE application is viable. With this, the

application requests an application present in the mesh, and,

with the use of the network shield, it can perform a TLS

communication without knowing the certificate. With this, the

workflow can be seen in more detail using a sequence diagram

referenced to Figure 6.

3. Results and Discussion

At the end, it was viable to communicate confidential requests

with a service mesh. It was necessary to create a service mesh

that could securely share and rotate certificates to applications

outside the mesh to achieve this goal. Thus ISTIO SPIRE

was born, which mixed the most popular service mesh with

an application that can provide the certificates of the desired

shape.

For creating the confidential ISTIO SPIRE, we chose

proxy applications that could use SPIRE to generate the TLS

certificates, and thus we chose ENVOY, GHOSTUNNEL, and

Network Shield. Also, to stay ahead of SCONE applications,

it was needed confidential proxies, so it was necessary to turn

GHOSTUNNEL and ENVOY into confidential applications.

During this process, ENVOY presented several complications

that made its conversion a SGX-version not feasible. Mean-

while, we managed to achieve this goal with GHOSTUNNEL

and, consequently, the first proxy that can help our application

was built.

To conclude, the execution of the network shield, an appli-

cation coupled to SCONE, as a proxy for this communication

presented the expected results. We obtained two proxies that

work differently and performed the desired communication.

3.1 Comparison

When comparing the sidecars that were successful in their

execution, the network shield and the confidential GHOS-

Mutualistically integrating service mesh with external confidential applications — 9/10

Figure 6. Sequencial network shield workflow

TUNNEL, some tradeoffs are exposed.

3.1.1 Network Shield

The network shield can be presented as a simpler proxy since

its entire process, as referenced to Figure 6 is smaller than

that of GHOSTUNNEL. Therefore, we determine objective

applications for this proxy, which have fast executions and

simple code.

In addition, with the session posted once, there is no need

to repeat this process, making its execution faster and more

practical.

Still presenting its practicality, the session created with

a network shield can be in front of several requests for the

applications in the service mesh. In turn, the confidential

GHOSTUNNEL only supports requests for only one applica-

tion in the mesh.

3.1.2 Confidential GHOSTUNNEL

As an advantage for CONFIDENTIAL GHOSTUNNEL, we

have to application decoupled from SCONE, making SCONE

applications already running can opt for the use of a sidecar.

In addition, basic communication metrics exist that are

not present in the network shield, also in GHOSTUNNEL has

a built-in status feature that can be used to collect metrics and

monitor a running instance. Metrics can be fed into Graphite

(or other systems) to see number of open connections, rate of

new connections, connection lifetimes, timeouts, and other

info.

Another determining factor for using GHOSTUNNEL

is that the network shield needs to restart the application to

renew the application’s certificate since the session is only

loaded when the application is started. Thus, we can see that

the network shield approach is not ideal for a server, but it can

be something that does not worry in client applications. From

this negative factor of the network shield, the GHOSTUNNEL

stands out about the rival sidecar. As it is decoupled from

SCONE, its certificate updates do not affect the application.

Finally, we can observe from the points presented the

advantages and disadvantages of both proxies through the

table 1.

3.2 Results

In this way, is observed the usage scenarios of both sidecars.

Where we can use network shield in applications that are get-

ting ready to go up, and GHOSTUNNEL confidential is used

in applications that are already active to start communicating

with the mesh.

Mutualistically integrating service mesh with external confidential applications — 10/10

Table 1. Comparison table between GHOSTUNNEL PROXY

and Network Shield

Property Network Shield GHOSTUNNEL

Handle requests from

multiple applications
✓ X

Decoupled from

SCONE
X ✓

Rotate the certificate

without stopping the

application

X ✓

Metrics X ✓

Conclusion

In the end, we come to the conclusion of the 3 possible prox-

ies:

• GHOSTUNNEL: was converted to a confidentiality

process with SCONE; it helped SCONE applications to

communicate with a mesh in a secure way;

• ENVOY: even though it is the most complete sidecar

of the three, had problems during the process of confi-

dential compilation; with our current tools it was not

possible to proceed with its use as a confidential sidecar;

• SCONE’s Network Shield: after a configuration pro-

cess and using a SCONE plugin, was able to help the

communication of confidential applications to the mesh.

With the successful execution of the proxies with confiden-

tial GHOSTUNNEL and network shield, and creating a mesh

that supports the application of SPIRE, we can stablish com-

munications between SCONE applications and applications

present in a mesh. The application uses a secure certificate

issued that can provide certificates for applications outside

and inside the mesh. That way, confidential applications can

make requests with applications present in the mesh. It is also

viable to have basic communication metrics that go through

one of the proxies. In addition, we showed the advantages and

disadvantages of using each proxy, as well delimited the ideal

scenarios for their usage.

4. Future Work

We are currently planning modifications to the ENVOY in-

stallation method to ease the process of making timely, confi-

dential changes to your code so that it is feasible to make it

a confidential proxy. In addition, we intend to create a form

of attestation for the applications in the mesh and those in the

SCONE environment so that another layer of security is added

when performing the request with TLS. As another objective,

we have improved the confidential GHOSTUNNEL so that

it is possible to receive certificates from sources other than

SPIRE and make the process of reading certificates safer.

References
[1] What is a service mesh? ISTIO, 2022. Avali-

able in: https://istio.io/latest/about/

service-mesh/, visited on: 03-14-2022.

[2] Intel® software guard extensions programming reference

Intel SGX. Avaliable in: https://www.intel.

com/content/dam/develop/external/us/

en/documents/329298-002-629101.pdf,

year = 2014,visited on: 03-15-2022.

[3] What is istio ISTIO, 2022. Avaliable in:

https://istio.io/latest/about/

service-mesh/#what-is-istio, visited

on: 03-14-2022.

[4] What is istio REDHAT. Avaliable in:

https://www.redhat.com/en/topics/

microservices/what-is-istio, visited on:

03-15-2022.

[5] Spire concepts SPIFFE, 2014. Avaliable

in:https://spiffe.io/docs/latest/

spire-about/spire-concepts/, visited

on 03-15-2022.

[6] Spiffe-id SPIRE, 2022. Avaliable in: https:

//github.com/spiffe/spiffe/blob/main/

standards/SPIFFE.md#2-the-spiffe-id,

visited on:, 03-14-2022.

[7] The-spiffe-verifiable-identity-document SPIRE, 2022.

Avaliable in: https://github.com/spiffe/

spiffe/blob/main/standards/SPIFFE.md#

3-the-spiffe-verifiable-identity-document,

03-14-2022.

[8] Spire concepts - attestation SPIRE, 2022.

Avaliable in: https://spiffe.io/docs/

latest/spire-about/spire-concepts/

#attestation, visited on: 03-15-2022.

[9] Fetzer; et al SERGEI, Arnautov; Christof. SCONE: Se-

cure Linux Containers with Intel SGX. pages 694–695,

2009.

[10] News and overview - scone executive summary scontain,

2022. Avaliable in: https://sconedocs.github.

io, , visited on: 03-14-2022.

[11] Roee Shlomo Doron Chen and Tomer

Solomon. IBM attesting istio workload identi-

ties with spiffe and spire, 2020. Avaliable in:

https://developer.ibm.com/articles/

istio-identity-spiffe-spire/, visited on:

03-15-2022.

[12] What is envoy ENVOY PROXY, 2022. Avali-

able in: https://www.envoyproxy.io/docs/

envoy/latest/intro/what_is_envoy, visited

on: 03-14-2022.

