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Resumo

Refatoramento ¢ uma transformacio aplicada a um programa para melhorar suas qualidades
internas sem alterar seu comportamento observdvel. Apesar de trazer beneficios, como fa-
cilitar a manutengdo, refatorar também envolver riscos, como introduzir erros de compilag¢io
ou mudangas comportamentais. Para ajudar o desenvolvedor nesse processo, surgiram as fer-
ramentas de refatoramento. Elas checam condi¢Oes necessdrias para garantir a preservagio
do comportamento, e quando estas condi¢oes sdo satisfeitas, aplicam a transformagdo. No
entanto, ¢ dificil identificar o conjunto minimo e completo de condigdes para cada refatora-
mento. Se uma condi¢dio nio ¢ implementada, a ferramenta pode alterar o comportamento
do programa. Por outro lado, desenvolvedores podem implementar condi¢gdes que ndo sé
previnem mudancas comportamentais, mas também impedem a aplicacdo de transformacoes
que preservam comportamento, diminuindo a aplicabilidade da ferramenta. Estas condigdes
sdo conhecidas como condi¢des muito fortes. Nesse trabalho, propomos uma técnica para
testar ferramentas de refatoramento para Java com o objetivo de avaliar se o conjunto de
condi¢oes implementadas € minimo e completo. Primeiro, geramos automaticamente um
conjunto de programas para serem refatorados. Para isso, propomos um gerador de pro-
gramas Java, JDOLLY, que gera exaustivamente programas para um determinado escopo de
elementos. Para cada programa gerado, aplicamos o refatoramento utilizando a ferramenta
em teste. Para detectar falhas nas transformacdes, utilizamos o0 SAFEREFACTOR, uma fer-
ramenta que propomos para detectar mudancas comportamentais. Por outro lado, quando as
transformagdes siio rejeitadas pela ferramenta, propomos uma abordagem de teste diferen-
cial para detectar condi¢des fortes. A técnica compara o resultado da ferramenta em teste
com os resultados de outras ferramentas. Por fim, as falhas detectadas s@o classificadas em
tipos distintos de faltas. N&s avaliamos a eficiéncia da nossa técnica testando trés ferra-
mentas: Eclipse 3.7, NetBeans 7.0.1, e duas versoes do JastAdd Refactoring Tools (JRRTvI
e JRRTv2). Foram testados até 10 implementacdes de refatoramento em cada ferramenta.
No total, nossa técnica identificou 34 faltas relacionadas a condi¢des nido implementadas no
Eclipse, 51 faltas no NetBeans, 24 faltas no JRRTvI, e 11 faltas no JRRTv2. Além disso,

foram encontradas 17 e 7 condigdes muito fortes no Eclipse e JRRTVI, respectivamente.



Abstract

Refactoring is a transformation applied to the program to improve its internal structure with-
out changing its external behavior. Although it brings benefits, such as making it easier to
maintain the code, it also involves risks, such as introducing compilation errors or behavioral
changes. To help developers in this process, there are refactoring engines. They check con-
ditions needed to guarantee behavioral preservation, and when these conditions are satisfied,
they apply the desired transformation. However, identifying and implementing the complete
and minimal set of conditions for each refactoring are non-trivial tasks. In practice, tool de-
velopers may not be aware of all conditions. When some condition is not implemented, the
tool may change the program'’s behavior. On the other hand. they may also implement con-
ditions that not only prevent behavioral changes, but also prevent behavior-preserving trans-
formations, reducing the applicability of these tools. In this case, we say they implemented
an overly strong condition. In this work, we propose a technique for automated testing of
Java refactoring engines to identify problems related to missing conditions and overly strong
ones. First, we automatically generate programs to be refactored, as test inputs. To do so,
we propose a Java program generator, JDOLLY, that exhaustively generates programs for a
given scope of Java elements. Then, for each generated program, the desired refactoring is
applied by using the engine under tests. To detect failures in the applied transformations, we
use SAFEREFACTOR, a tool that we proposed for detecting behavioral changes. On the other
hand, when the transformations are rejected by the engine, we propose an differential testing
technique to identify overly strong conditions. It compares the results of the engine under
tests with results of other engines. The final step of the technique is to classify the detected
failures into distinct faults. We evaluated the effectiveness of the technique by testing up to
10 refactorings implemented by three tools: Eclipse 3.7, NetBeans 7.0.1, and two versions of
JastAdd Refactoring Tools (JRRTv1 and JRRTv2). Our technique identified 34 faults related
to missing conditions in Eclipse, 51 ones in NetBeans, 24 ones in JRRTvI, and 11 ones in
JRRTV2. In addition, it detected 17 and 7 overly strong conditions in Eclipse and JRRTvI,

respectively.
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Chapter 1

Introduction

During the life cycle of a software, its maintenance and evolution are inevitable. After its
release, clients demand new requirements and revealed faults need to be fixed. The more
the software is modified, the more complex its code become, making it more difficult to
be maintained. To avoid that, developers need to restructure the code, improving its inter-
nal structure, while preserving its external functionalities; a kind of maintenance known as
perfective [1]. The process of changing the internal structure of a program to improve its
internal qualities but preserving its external behavior is known as refactoring. This term was
coined by Opdyke and Johnson [54: 53], and latter, popularized in practice by Fowler [19].

Fowler [ 19] proposes to perform refactorings by applying small changes intercalated with
compilation checks and tests to guarantee successful compilation and behavioral preserva-
tion. While compilation checks guarantees the absence of compilation errors after the trans-
formation, tests evaluate whether the behavior of the program is preserved. In other words,
refactorings must not only produce well-formed programs, but also the versions of the pro-
grams before and after refactoring must have the same external behavior.

To help developers in this activity, Don Roberts proposed the first refactoring tool, Refac-
toring Browser, which automates a number of refactorings for Smalltalk [65]. A refactoring
tool automates the process of checking conditions that must be satisfied in order to apply
the transformation. For instance, to pull up a method m to a superclass, we must check
whether m conflicts with the signature of other methods in that superclass. Currently, most
Java Integrated Development Environments (IDEs), such as Eclipse [16], NetBeans [85].

JBuilder [ 18], IntelliJ [35], automate some refactorings.

[TIRCGIRIRLIOTRCAIRC]



1.1 Problem ¥ 2

1.1 Problem

Defining and implementing the minimal set of conditions needed for each refactoring are
non-trivial tasks. One can prove the correctness of this set for a language with a simple and
formal semantics. For instance, Proietti and Pettorossi [58] propose a formal semantics for
Prolog and prove some transformation rules. However, a number of popular languages, such
as Java, C, and C#, have a complex semantics without a complete formal definition consider-
ing all elements of the language, which makes it difficult to prove refactoring correctness. In
this work, we focus on problems for specifying and implementing refactorings for Java pro-
grams. Java is one of the most popular languages,' and was used by Fowler [ 19] to illustrate
all refactorings presented in his catalog. Moreover, modern IDEs for Java, such as Eclipse

and NetBeans, contain a number of automated refactorings.

1.1.1 Missing conditions

In practice, refactoring tool developers may not be aware of all refactoring conditions. If
some condition is missing, the refactoring engine may perform transformations that intro-
duce compilation errors or behavioral changes. For instance, consider the Java program
illustrated in Listing 1.1. The method B.test () yields 1. If we use Eclipse 3.7 to perform
the Pull Up Method refactoring on m (), the tool will move method m from class E to class
A, and update super to this. This transformation introduced a behavioral change: test
yields 2 instead of I. Since m is invoked on an instance of B, the call to k using this is

dispatched to the implementation of k in B.

Formal methods

Researches have tried to handle the problem of missing conditions by formally specifying
refactorings considering a subset of the language [8; 13; 86; 75; 71; 74; 68; 84; 51]. They
provide guidelines and techniques that can be useful for developing refactoring engines.
Previous approaches include analyses of some of the various aspects of a language, such as:
accessibility, types. name binding, data flow, and control flow. For instance, Borba et al. [8]

propose a set of refactorings for a subset of Java with copy semantics, a language called

'http://langpop
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Refinement Object-Oriented Language (ROOL). For each refactoring, they propose a set
of conditions that guarantee behavioral preservation. They prove the refactoring correctness
with respect to a formal semantics for a subset of Java. However, they have not considered all
Java constructs, such as overloading and field hiding. Considering the whole Java language,

the proposed conditions may not be enough.

Listing 1.1: Pulling up B. k () by using Eclipse 3.7 or JRRTvI changes program behavior.

public class A |
int k() {

return 1:

J
public class B extends A {
int k() |{
return 2;
J
int m() |
return super.k():
J
publie int test() |

return m() :

Recently, Schiifer and Moor [68] specified and implemented a number of refactorings
for Java, and proposed a tool called JastAdd Refactoring Tools (JRRT) [68]. For each refac-
toring, as correctness criteria, they proposed some invariants that should be preserved to
guarantee behavioral preservation. For instance, the Rename Method refactoring should pre-
serve name binding. However, the same problem illustrated in Listing 1.1 occurs when we
apply this transformation by using JRRTv1-. Proving refactoring correctness for the entire

language constitutes a challenge [70].

>The JRRT version from May 18th, 2010
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Testing

Although we cannot prove the absence of faults by using software tests, testing approaches
have been useful in detecting faults in refactoring engines related to missing conditions.
Daniel et al. [14] propose an approach of bounded-exhaustive testing [42] to automate this
process. While manual testing requires manually identifying and writing each test case,
bounded-exhaustive testing exhaustively tests all inputs for a given bound. They used a
program generator (ASTGen) to generate programs as test inputs. To evaluate the engines’
outputs, they implemented test oracles. These oracles check for compilation errors, and try
to detect behavioral changes by applying static analysis. For instance, they apply the inverse
refactoring to the output program and expect that the result be equal to the input program.

Although the approach proposed by Daniel et al. [14] identified a number of faults, we
can point out some limitations in their program generator and test oracles. First, most of
the faults that they identified are related to compilation errors in users’ code. They identi-
fied only one fault related to behavioral changes. Second, ASTGen allows users to directly
implement how the program will be generated. However, for some Java constructions, imple-
menting how they will be combined does require some effort. Therefore, it may be difficult
to generate a large variability of programs, potentially leaving many hidden faults. Later,
Gligoric et al. [22] proposed (UDITA), a Java-like language that extends ASTGen allowing
users to specify what is to be generated (instead of how to generate), and uses the Java Path
Finder (JPF) model checker as a basis for searching for all possible combinations. By using
UDITA, they found 4 new faults related to compilation errors in Eclipse.

In my Master’s thesis [82], we propose SAFEREFACTOR. It analyzes a transformation,
and generates tests for checking behavioral changes. We describe it along with the evaluation
of 24 specific transformations applied to small examples and real open source projects (such
as JHotDraw and JUnit). SAFEREFACTOR detected a number of behavioral changes. Ad-
ditionally, we proposed an approach and its implementation (JDOLLY) for generating Java
programs by using Alloy [32], a formal specification language, and ASTGen. It uses Alloy
for generating the structural parts of the programs and ASTGen to generate the methods’
bodies of the programs. We also proposed an approach for testing refactoring engines by
using JDOLLY and SAFEREFACTOR. As a result, SAFEREFACTOR was useful for finding

50 faults in Eclipse 3.4.2 that lead to compilation errors and behavioral changes in users’
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code.

By combining Alloy with ASTGen our technique increased the variability of generated
programs, which was useful for finding more faults. However, it also required users to learn
two technologies (Alloy and ASTGen) to specify the program generation. Users also need
to synchronize the generation of the structural parts of the programs with the generation of
the method bodies. Additionally. we lack evaluation to answer some questions about such
a testing approach. First, can we generate programs with more expressivity to test refactor-
ings? For example, the programs generated by JDOLLY do not contain packages, a common
construct in Java programs. Steimann and Thies [84] show some faults in refactoring en-
gines in the presence of packages. Second, is this testing approach good enough for finding
faults in other refactoring engines? For example, JRRT developers used ASTGen to test their
implementations but did not find any fault [71]. Finally, in spite of SAFEREFACTOR having
being useful for catching a number of behavioral changes, we still need further evaluation to
understand in which scenarios it can detect behavioral changes and in which ones it cannot.

These testing approaches may find @ number of transformations that intreduce compi-
lation errors and behavioral changes. Some of these transformations may be related to the
same fault in the refactoring engine. An important step is to analyze each one of these trans-
formations to report the distinct faults found. Jagannath et al. [34] propose an approach to
classify the faults related to compilation errors by the template of the compiler error message.

However, there is no approach for classifying faults related to behavioral changes.

1.1.2  Overly strong conditions

So far, we have discussed about how dilficult is to check whether the implemented conditions
guarantee behavioral preservation. But we should also check whether these conditions not
only avoid behavioral changes but prevent useful behavior preserving transformations. Due
to the complexity of a large language as Java, developers may not realize that some condition
will prevent some behavior-preserving transformation, reducing the applicability of the tool.
Additionally, some conditions may be too difficult to implement, which may lead developers
to implement less precise approximations. When a condition prevent behavior preserving
transformations, we call it as a overly strong condition.

For example, consider the Java program in Listing 1.2. The class A declares the method
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k (long) ., and the class B declares methods n and test. Suppose we would like to rename
n to k. If we apply this transformation by using Eclipse 3.7, the tool will not apply the
transformation showing a warning message. However, we can apply this transformation
by using JRRTv1. It performs an additional change to make the transformation behavior-

preserving by adding a super access to the method invocation k (2) inside test.

Listing 1.2: Eclipse 3.7 prevents renaming B.n to B.k but JRRTvI correctly applies the

transformation.

public class A |
public long k(long 1) |

return 1:

!
public class B extends A |
public long n(int i) |
return 2;
}
public long test() |

return k(2):

To the best of our knowledge, there is no automated testing approach to detect and clas-

sify overly strong conditions.

1.1.3 Research questions

Given the problems shown in Sections |.1.1 and 1.1.2, we focus on the following research

question:

e RQI1: How can we automate Java program generation for generating test inputs useful

for detecting faults in Java refactoring engines?

e RQ2: How can we automatically evaluate a refactoring engine output to detect faults

related to overly weak and overly strong conditions?

e RQ3: What is the effectiveness of SAFEREFACTOR?

TRCCIRIBLIOTECA
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e RQ4: How can we classify transformations that lead to behavioral changes and overly

strong conditions into distinct faults?

1.2  Solution

In this work, we propose a technique for automated testing of Java refactoring engines. Its
goal is to identify missing conditions that lead to compilation errors or behavioral changes
in sequential (non-concurrent) Java programs and overly strong conditions that prevent
behavior-preserving transformations in sequential Java programs.

First, we automatically generate programs to be refactored, as test inputs. To do so, we
propose a Java program generator called JDOLLY. It exhaustively generates programs for a
given scope of Java declarations (packages. classes, fields, and methods). It contains a subset
of the Java metamodel specified in Alloy [32]. It also employs the Alloy Analyzer [33],
a tool for the analysis of Alloy models. to generate solutions for this metamodel. Each
solution is translated into a Java program. Differently from our previous technique [82],
which combines the Alloy Analyzer with ASTGen for generating programs, JDOLLY can
generate entire programs using only the Alloy analyzer as enabling technology for finding
all possible programs for a given scope. This difference avoids the need for developers to
learn two different technologies to specify the program generation.

For each generated program, the desired refactoring is applied by using the refactoring
engine under test. Then, the technique uses the following oracles to evaluate the output.
To detect failures in the applied transformations, we use SAFEREFACTOR, a tool that we
proposed for checking behavioral changes. On the other hand, when the transformations are
rejected by the engine, we propose a differential testing technique based on SAFEREFACTOR
to identify overly strong conditions. For the same input program, it compares the result of
the engine under tests with results of other engines. Although, in my Master’s thesis [82], we
had already used SAFEREFACTOR for detecting faults related to missing conditions, here we
combine it with differential testing to also detect faults related to overly strong conditions.

Manually inspecting all failures detect by our technique may require a lot of effort. The
final step of the technique is to classify these failures into distinct faults. To classify failures

related to compilation errors, we use an approach [34] that classifies the failures by using
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the template of the compiler error message. We uses a similar approach to classify failures
related to overly strong conditions, splitting them by the template of the warning message.
On the other hand, to classify failures related to behavioral changes, we classify them based
on the structural characteristics of the transformations. In contrast, the technique proposed

in my Master’s thesis [82] does not classify the failures into distinct faults.

1.3 Evaluation

We have conducted experiments’ to evaluate our technique for testing of refactoring engines,
and its components, JDOLLY and SAFEREFACTOR, with respect to our research questions.

We evaluated our technique with respect to effectiveness on finding faults due to missing
conditions. We used it to test three refactoring engines: Eclipse JDT 3.7, NetBeans 7.0.1, and
two versions of the JastAdd Refactoring Tools (JRRTv1 and JRRTv2) [71; 74; 68]. We tested
up to 10 refactorings implemented by each engine. We assessed 153.444 transformations,
and identified 57 faults related to compilation errors, and 63 faults related to behavioral
changes. We reported all faults to the tools” developers, who have confirmed 90 out of 120
so far. Moreover, they have already fixed 35 faults reported by us.

We also conduct an experiment to evaluate the technique with respect to effectiveness
in identifying overly strong conditions. We used the technique to test three Java refactoring
engines (Eclipse JDT 3.7, NetBeans 7.0.1, and JRRTv ). For each engine, we tested up 10
refactoring implementations in a sample of 42,757 transformations. We found that 16% and
7% of transformations rejected by Eclipse and JRRT, respectively, are behavior-preserving.
The implementations have overly strong conditions avoiding correct transformations to be
applied. Our technique automatically categorized them in 17 and 7 kinds of overly strong
conditions of Eclipse and JRRT, respectively. We reported all faults to the tools™ developers.
So far, they have accepted 11 faults and fixed 3 of them.

With respect to JDOLLY, we perform an experiment to compare JDOLLY and
UDITA [22] with respect to effectiveness and efficiency in generating Java inheritance

graphs. Our results shows that JDOLLY exhaustively generates solutions for a given scope.

SAIl experimental data are available at http://www.dsc.ufcg.edu.br/~gsoares

thesis—experiments.html
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On the other hand. UDITA failed to generate some solutions. Additionally, JDOLLY was
faster than UDITA but generated more isomorphic (structurally equivalent) solutions, which
is not desired since two or more programs with the same structure do not increase the change
of finding new faults.

In regard to SAFEREFACTOR, we performed an empirical study to evaluate its effective-
ness in detecting behavioral changes on a sample of 60 transformations gathered from two
repositories of open source Java projects. We compared SAFEREFACTOR's results with the
results of a manual analysis and the results of an automated approach for detecting refactor-
ings by analyzing commit messages [61]. In this study, SAFEREFACTOR had 70% accuracy.

In Section 4.2, we its discuss advantages and limitations when testing real Java programs.

1.4 Summary of contributions
The main contributions of this thesis can be summarized as follows:

e We propose an automated technique for testing of Java refactoring engines with respect
to missing conditions and overly strong ones. We report on the results of experiments
to show the effectiveness of our technique reporting 120 missing conditions and 24

overly strong ones to refactoring engine developers [77; 81 79: 76; 83]:

e We propose and implement a technique (JDOLLY) for generating Java programs that
allows users to use Alloy constraints to guide the program generation. We show that
JDOLLY is useful for generating test inputs for testing of refactoring engines. Our
results also suggest that JDOLLY exhaustively generates programs for a given scope.
On the other hand, UDITA [22] failed to generate all programs for a given scope [77;

76; 831;

e We report on the results of an experiment to show that SAFEREFACTOR has 70% accu-
racy in detecting transformations that preserve programs behavior and transformations

that do not [78].
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1.5 Organization

This thesis is organized as follows. In Chapter 2. we provide some background on program
refactoring, testing, and Alloy. In Chapter 3, we present JDOLLY, our Java program gener-
ator, and its evaluation. In Chapter 4, we give an overview of SAFEREFACTOR, and present
an evaluation of SAFEREFACTOR on 60 transformations of real Java programs. Then, in
Section 35, we describe our technique for testing of Java refactoring engines. Moreover, we
show its evaluation by testing real Java refactoring engines. Chapter 6 presents the related
work, and Chapter 7 summarizes the contributions of the thesis and future work. Finally,

Appendix B shows some algorithms used in the experiment shown in Section 4.2.



Chapter 2

Background

In this chapter, we present the background needed for the understanding of this work. First,
we explain refactoring, and show an overview of the state-of-the-art in this area (Section 2.1).

Then, we present some important concepts related to testing, and introduce testing of refac-

]

toring engines (Section 2.2). Finally, in Section 2.3, we give an overview of Alloy [32], a

formal specification language, which we use to build JDOLLY. our program generator.

2.1 Program refactoring

The term refactoring was coined by Opdyke. in his PhD thesis [53]. Then, it was popularised

by Fowler [19]. He defines refactoring as follows:

“It is a change made to the internal structure of a software to make it easier to

understand and cheaper to modify without changing its observable behavior.”
Fowler also defines refactoring as a verb [19]:
“It is to restructure software by applying a series of refactorings without chang-

ing its observable behavior™

2.1.1 Example

In this section, we give a refactoring example. First, we show the process of identifying

which part of the code should be refactored, and then. we show the appropriated refac-

I
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toring to be applied. To this example, consider superclass Employee and its subclasses

Engineer and Analyst shown in Listing 2.1.

Listing 2.1: Program containing duplicated code.

public class Employee |

}

public class Engineer extends Employee (
private double salary;
public double getSalary () |

return salary:

J

public class Analyst extends Employee ({
private double salary;
public double getSalary () |

return salary;

Bad Smells

First, we should identify the code that should be refactored. To help the developer in this
process, Beck [19] categorized 21 cases where there are points in the code indicating that it
should be improved. Beck refer to these signs as bad Smells.

The first bad smell that he presents is the duplicated code. When the same code appears
in different parts of the program, the maintenance of it may become difficult, since it is
needed to apply the change to all duplications of the code. Therefore, it is better to find a
way to remove duplicated code. For instance, by looking at the code shown in Listing 2.1,
we notice that method getSalary and field salary are declared in the two subclasses.

We thus should refactor that code to avoid this duplication.
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Other examples of bad smells are: long methods, large classes, and long parameter

list[ 19; 88].

Choosing and applying refactorings

Fowler [19; 62] defined a refactoring catalog. For each refactoring, he shows the motivation
and the process to apply it. To remove the duplicated code of our example, we will apply
two refactorings presented in Fowler’s catalog.

First, we use the Pull Up Field refactoring to move the fields to the superclass.

Fowler [19] defines the following steps to apply this refactoring:

I. Inspect the declaration of the candidate ficlds to assert that they are initialized in the

same way;

2

If the fields do not have the same name, rename them so that they have the name you

want;
3. Compile and test;

4. Create a new field in the super class. 1f the fields are private, you should declare it as

protected so that the subclass can access it;
5. Remove the fields from the subclasses;

6. Compile and test.

We apply the refactorings by using small steps intercalated with compilation check and
tests to guarantee that the transformation preserves the external behavior of the program.

Listing 2.2 shows the program after the performed refactoring. Notice that it was needed,
as indicated in step 4 of Fowler’s catalog, to change the access modifier of the field from

privateto protected to allow its access from the subclasses.

Listing 2.2: Program after applying the Pull Up Field refactoring.

public class Employee {

protected double salary;



N + L8] ra

O oo 3 ™

2.1 Program refactoring 14

i
public class Engineer extends Employee |
public double getSalary () {

return salary

}
public c¢lass Analyst extends Employee |{
public double getSalary () {

return salary:

After removing the duplicated fields, we can apply the Pull Up Method refactoring [19]
to move the get Salary methods to the superclass. We can apply this refactoring since
both implementations of the method have the same behavior. Listing 2.3 shows the resulting

program after applying the two refactorings.

Listing 2.3: Program after applying the Pull Up Method refactoring.

public class Employee |
protected double salary:
public double getSalary () |

return salary

]
public class Engineer extends Employee { ... }

public class Analyst extends Employee { ... }

Manually applying refactoring is time consuming and error prone. Fowler [19] suggests
to use small steps intercalated with compilation checks and tests as a safer approach to apply
refactorings. Besides that, there are tools that automate this process. In the next section, we

show an overview of these tools.
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2.1.2 Refactoring engines

The first Refactoring engine, Refactoring Browser [65], was proposed by Roberts in his PhD
thesis. It implements a number of refactorings for the Smalltalk [23] language. Refactoring
has become more popular, and so most of the current IDEs have implemented refactorings to

support developers. Table 2.1 shows some IDEs that provide Java refactoring engines [88].

_

CodeGuide Omnicore www.omnicere.com
Eclipse IDE www.eclipse.org
Idea Intelli) IDE www.intellij.com
i ‘ i ?
Javaltefagtor Plugin for jEdit plugins.jedit.org/plugins/
JavaRefactor
JBuilder Barland IDE www.borland.com/jbuilder
- Instatiations Plugin for Jbuilder and www.instatiations.com/jfactor
JFactor
VisualAge
Plugin for Elixir, JBuilder jrefactory.sourceforge.net
JRefactory and NetBeans
Sun IDE www.netbeans.org
Metheans Microsystems
. Plugin for JBuilder and transmogrify.sourceforge.net
Transmogrify Eorted java
Xref-Tech Plugin for Emacs, jEdit www.xref-tech.com

XRefactory and XEmacs

Table 2.1: Industrial Java refactoring engines [88].

A refactoring engine allows developers to select the refactoring to be applied and the
parameters for configuration. The tool automatically checks the refactoring conditions to
guarantee behavioral preservation. For instance, when we apply the Rename Method, the
tool checks whether there are other methods with the same name of the refactored method.
If all conditions are satisfied, the tool performs the desired transformation. To exemplify the
process, we show the application of the Pull Up Field refactoring shown in Section 2.1.1 by
using Eclipse. The developer selects the field that will be refactored, and choose Pull Up
from the Refactor menu (Figure 2.1(a)). Eclipse shows a window where the developer can
choose additional parameters to apply the refactoring (Figure 2.1(b)).

In addition, Eclipse allows the developer to see the preview of the transformation by
pressing the next button (Figure 2.1(b)), which allows the developer to manually inspect
the correctness of the transformation. Figure 2.2 shows the Eclipse preview containing the

changes that will be applied.

e ——"
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. e
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Figure 2.1: Pull Up Field from Eclipse. (a) developer selects the desired refactoring; (b)
developer configures additional parameters, and confirms the refactoring by pressing the

Finish button.

™ Refactoring

Pull Up

Tre fellowirg changes &re recessary o pedform tie refactcning

v [mployee java
v Lrgrocrjava

Analyst java

Oginal Sourte Refactored Source
piblc cc Analysl extends Lwployee {
« Class &nglysl evtends Lmployee {
private double Salary) o D
publs ble gelSelary(} {
nie gelSa.aryly { salary:
elure salary; 3
i
< Back Carce Finish

Figure 2.2: Eclipse 3.7 preview of the desired refactoring.
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Eclipse was one of the first IDEs to implement refactorings. In its first version, re-
leased in the end of 2001, it included the following refactorings: Rename, Move, and Extract
Method |20]. The refactorings implemented by Eclipse 3.7 can be seen in Table 2.2. Murphy
etal. [48] conducted a survey on Java software development by using Eclipse. They analyzed
the use of the Eclipse refactorings by 41 developers. The five most used refactorings were:

Rename, Move, Extract Method, Pull Up Method, e Add Parameter.

Refactorings supported by Eclipse

REnaing T ¥ Mowve {class, method) Change Methad Extract Methad
rmethod, field) Signature
L tlecalVa 1 1 el Anany
IY. t
Convert Membe r Tyt Extract Supe 5 Extra terface U
Top Level
P [ 1 I [ P 1 F el € 1] P
B

Introduce Indirection Introduce Factory ntroduce Parameter Encapsulate Field

Generalize Declared Type nter Genenec Type

Arguments

Table 2.2: Refactorings supported by Eclipse.

2.1.3 Behavioral preservation

According 1o the refactoring definition shown in Section 2.1, two programs are equivalent
when they have the same external behavior. In his PhD thesis, Opdyke formally specified
23 primitive refactorings and other three complex refactorings. Each primitive refactoring
contains a set of conditions that guarantee behavioral preservation. For instance, Opdyke

defines the following conditions to the Pull Up Field refactoring shown in Section 2.1.1:

I. The field should be defined in the same way in all subclasses:

2. The field should not be defined in the superclass.

Notice that if the second condition is violated, it will produce a program with a compi-
lation error due to name conflicts. On the other hand, if the first condition is violated, the
program will still compile but it may have different behavior since the value of one of the

fields will be changed.
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The conditions proposed by Opdyke are based on seven properties defined by him. Ac-

cording to him, these properties assure the correctness of the transformations. They are:

Unique superclass. Each class in the resulting program must have at most one super-

class;

. Distinct class names. All classes in the resulting program must have distinct names;

. Distinct member names. Each class in the resulting program must have distinct vari-

ables and function names;

Inherited member variables nor redefined. A member variable inherited from a super-

class is not redefined in any of its subclasses:

. Compatible signatures in member function redefinition. Redefinitions of methods have

the same signatures as the redefined method;

Compatible signatures in member function redefinition. In the resulting program, every
expression that is assigned to a variable must have the same type or a subtype of the

variable’s type;

. Semantically equivalence references and operations. The resulting program must have

the same output set of the original program for a given set of inputs.

The first six properties are related to preservation of well-formedness of the programs.

We can check that by compiling the program after the transformation: if there is any compi-

lation error, it means that the transformation was not correctly applied.

On the other hand, the last property is related to semantics preservation of the program,

and thus, compiling the program is not enough to check it. The program can still compile

but with a different external behavior of the original one.

Opdyke [53] defines semantics equivalence between programs as follows: “let the exter-

nal interface of the program be the main function. If the main function is called twice (once

before and once after a refactoring) with the same set of inputs, the resulting set of output

values must be the same (p. 40)”. This definition of equivalence notion allows a refactoring

to change the internal structure of the program as long as the mapping between input and
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outputs of the main function be preserved. This definition can be seen as an application of
the notion of data refinement [28; 30].

Another way to deal with behavioral preservation is through testing. Roberts [65] defines
that a refactoring is correct if after the transformation, the program still is in conformance
with its specification. His equivalence notion is based on testing. According to him, a refac-
toring is correct if a program that passes the tests still passes them after the transformation.
Fowler [19] uses the same equivalence notion.

Additionally, in some application domain, guaranteeing that for a set of inputs, the pro-
gram has the same outputs after the transformation is not enough to state the transformation
preserved behavior [45]. For instance, in real-time systems, it should also be considered the
time to execute the program as part of its behavior. Also, in embedded systems, the memory

space and energy consumption may be used as part of the program’s behavior.

2.1.4 Refactoring verification

As shown in Section 1.1, even small transformations may be incorrectly applied by refactor-
ing engines. The ideal solution would be formally specify the conditions for each refactoring
and prove them with respect to a formal semantics.

Proving refactoring correctness with respect to a formal semantics is a challenge [70].
Some approaches have contributed in this direction. Borba et al. [8] propose a set of refactor-
ings for a subset of Java with copy semantics, a language called Refinement Object-Oriented
Language (ROOL). They prove the refactoring correctness based on a formal semantics. To
illustrate this process, next we show a refactoring proposed by them. The following rule
formalizes the Pull Up Field refactoring when applied from the left hand side to the right
hand side and Push Down Field when applied from the opposite direction (Figure 2.3). Each
refactoring consists of two remplates of ROOL programs. The refactoring can be applied
as long as the programs match the templates. that is, if all variables in the templates can be
assigned to the concrete values.

Each refactoring may also contain meta-variables. For instance, cds, ads, e ops are
meta-variables that define sets of classes, fields, and operations, respectively. Moreover,
the ¢ meta-variable represents the main function. Their equivalence notion are based on

comparing the main function with respect to the two versions of the program, in a similar
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way of the notion proposed by Opdyke [53]. The (—) arrow before the condition indicates
that it is required when applying the rule from the left to the right. The (+) arrow indicates a
condition when applying it from the opposite direction. Additionally, the arrow («+) indicates
a condition needed when applying from both directions. In this example, we can see that to
move a field to the superclass. there cannot be another ficld in the super class with the same

name.

Figure 2.3: Rule for applying a refactoring in ROOL [&].

ROOL Refactoring (Move a field 1o the superclass)

class B extends A class B extends A
ads pub a: T;ads
ops ops

end end

class (' extends B - class (' extends B
pub a: T:ads ads’
ops’ ops’

end end

restricoes

(—) The field with name a is not declared in the subclasses of B in cds;

(+) D.a,forany D < Band D £ C, does not appear in cds, ¢, ops, or ops’.

Silva et al. [75] extended these previous laws for a sequential object-oriented language
with reference semantics (rCOS). They prove the correctness of each one of the laws with
respect to rCOS semantics. Some of these laws can be used in the Java context. Yet, they
have not considered all Java constructs, such as overloading and field hiding.

Schiifer et al. [71] propose a Rename Class, Method and Field refactoring implementa-
tions. They state that a renaming must preserve name bindings, that is, each name should
refer to the same entity before and after the transformation. Furthermore, Schiifer et al. [74;
681 present a number of Java refactoring implementations. They translate a Java program
to an enriched language that is easier to specify and check conditions, and apply the trans-

formation. As correctness criteria, besides using name binding preservation, they used other
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invariants such as control flow and data flow preservation.

Steimann and Thies [84] show that by changing access modifiers (public,
protected, package, private) in Java one can introduce compilation errors and be-
havioral changes. They propose a constraint-based approach to specify Java accessibility,
which favors checking refactoring conditions and computing the changes of access modi-
fiers needed to preserve the program behavior,

Another approach for checking refactorings — generalization-related refactorings such as
Extract Interface and Pull Up Method - is proposed by Tip et al. [86]. Their work proposes
an approach that uses type constraints to verify conditions of those refactorings, determin-
ing which part of the code they may modify. Using type constraints, they also propose the
refactoring Infer Generic Type Arguments [21], which adapts a program to use the Generics
feature of Java 3, and a refactoring to migration of legacy library classes [3]. These refac-
torings are implemented in the Eclipse JDT. Their technique allows sound refactorings with
respect to type constraints. However, a refactoring may have conditions related to other con-
structs. Additionally. Schiifer et al. [69] propose refactorings for concurrent programs. They
have proved the correctness of them with respect to some concurrency properties based on
the Java memory model.

Dig and Johnson [15] analyzed refactorings in the context of software reuse. They anal-
ysed changes applied to three frameworks and one library largely used. As a result, they
found that more than 80% of the changes made to API that lead to incompatibilities with
clients are refactorings. Henkel e Diwan [29] proposed an approach and a tool for evolving
an API by using refactorings. Their tool allows recording the applied refactorings to the API
to automatically update the client code based on these refactorings.

Some studies have been contributing to popularize refactorings in aspect-oriented pro-
gramming. Monteiro and Fernandes [47] proposed a catalog of 27 aspect-oriented refactor-
ings. These refactorings aim at introducing aspects and improve the design of them. Cole
and Borba [ 10] formally specify aspect-oriented programming laws (each law defines a bidi-
rectional semantics-preserving transformation) for Aspect). By composing them. they derive
Aspect) refactorings. Each law formally states conditions. They proved one of them sound
with respect to a formal semantics for a subset of Java and Aspect) [11]. They can be very

useful for implementing aspect-aware refactoring tools. Wloka et al. [92] propose a tool sup-
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port for extending currently OO refactoring implementations for considering aspects. They
developed an impact analysis tool for detecting change effects on pointcuts to generate point-
cut updates. Binkley et al. [7] present a human guided automated approach to refactor OO
programs to the AO. Hannemann et al. [27] introduce a role-based refactoring approach to
help programmers modularize crosscutting concerns in aspects. These works contribute for

improving tool support for refactoring aspect-oriented programs.

2.2 Testing overview

Software testing is the primary method that industry uses to evaluate the software under
development [2]. Testing can be defined as an evaluation of the software by observing its
execution. There are three common concepts in software testing: failure, fault, and error.
According to Binder [6], a fault is a static defect in the software; a system error is an incorrect
internal state (the manifestation of some fault); and a failure is an external, incorrect behavior
with respect to the expected behavior.

To specify a test, we can use two different techniques: black box testing and white box
testing [2]. In the former, the goal is to evaluate whether the program satisfies some func-
tional or non-functional requirement. We thus do not need the program’s source code to
specify a black box test. On the other hand, white box testing requires the source code in
order to select parts of the code to be tested. This thesis focuses on black box testing in the
sense that we do not need to look inside the refactoring engines’ code to specify the tests.
We just need the engine’s APL. The remainder of this section presents other software testing

concepts that are important to the understanding of this thesis.

2.2.1 Test case

The main challenge on software testing is to determine a set of test cases (named test suite)
for the software to be tested. A test case is composed of a set of inputs, expected results, and
prefix and postfix values [2].

The inputs are values needed to complete some execution of the software under test.
On the other hand, the expected result specifies the result that is expected to be produced

after executing the test if the program satisfies the requirement. Prefix values are any inputs
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needed to set up the software into the appropriate state to receive the inputs. And, postfix
values are any inputs that needed to be sent to the software after the test.

For instance, test cases can be created by using JUnit [43], a framework for automating
unit tests. The framework provides the assertEquals method, which compares the value
returned by the method under test with the expected value. If the values are different, the
test fails, and a red bar is shown in JUnit’s GUL On the other hand, if the values are equal,
it shows a green bar. Listing 2.4 shows a unit test for the getSalary () method from
class Analyst. In this test, we instantiate an object of type Analyst, set a value for field

salary, and compare this value with the value returned by the get Salary method.

Listing 2.4: Unit test for method getSalary() from class Analyst.

public void testGeSalary () |
Analyst analyst = new Analyst();
analyst.setSalary (3000);
double expectedValue = 3000;
double value = analyst.getSalary ():

assertEquals (expectedValue . value):

2.2.2 Oracle

A test case passes when the software under test produces the expected result. The pass/no
pass evaluation is made by comparing the actual result with the expected one by a trusted
mechanism, known as test oracle or just oracle [5; 91].

In many cases this oracle consists of a manual observation of the test input and output,
which can be time consuming, tedious and error prone. However, it can also be automated,
or partially automated. For instance, the comparison can be manually done by using the
programmer’s knowledge or automatically done by checking a formal specification. In List-
ing 2.4, the oracle is partially automated. The developer manually specifies the expected

value, and it is automatically checked by using the JUnit framework.
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2.2.3 Test coverage criteria

Usually, the number of inputs for a software is so large as to effectively infinite. For instance,
potential inputs to a Java compiler are not just all Java programs, but all strings. The only
limitation is the size of the file that can be read by the parser. Since we cannot test a software
against all inputs, we use test coverage criteria to decide which inputs to use.

Test coverage criterion can be defined as a rule or a collection of rules that impose test
requirements on a test set. A test requirement is a specific element of a software artifact
that a test case must satisfy or cover [2]. To check how good a test suite is, we can measure
it against a criterion in terms of coverage. Coverage is important because sometimes it is
expensive or even infeasible to achieve some criteria, so we want at least achieve some test
coverage level. There are many test coverage criteria that can be used to evaluate a test suite.
For instance, for white box testing, we can measure: statement coverage. branch coverage,
all-defs and all-uses coverage.

Test coverage criteria can be viewed as defining ways of splitting the input space accord-
ing to test requirements, in the sense that any collection of value that satisfies the same test
requirement will be equally useful [2]. Therefore, the input space is partitioned into regions
that are assumed to contain equally useful inputs from a testing perspective.

We can use a syntactic description such as a grammar to model the input space, and define
some criteria based on this description. For instance, we can define Java BNF grammar to
describe the inputs for a Java compiler, and then generate valid (correct syntax) or invalid
(incorrect syntax) programs to test the compiler. Additionally, there are coverage criteria
with respect to syntactic descriptions that can be used to evaluate the test suite. For instance,
considering a BNF grammar, a terminal symbol coverage evaluates the terminal symbols
in the grammar that are covered by the test suite. Also, production coverage evaluates the

productions in the grammar that are covered by the test suite.

2.2.4 Testing refactoring engines

A test case for a refactoring engine consists of an input program, as test input, and an ex-
pected output, which can be an output program, or an expected transformation rejection

when some condition is violated.
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For instance, Figure 2.4 shows two test cases created by JRRT developers to evaluate their
Pull Up Method refactoring implementation. The first (test 1) contains an input program
with the classes Super and A, which extends Super and contains the m method. It also
contains an expected output program contains the same classes Super and A but with the
m method in the Super class. After performing this test, if the engine produces an output

different from the expected one, the test will fail.

A F Plug-in Development - Refactoring180510/tests/PullUpMethodTests java - Eclipse

il Fe g ae - - - - Y ==
.. *

*PullupMethodTests java £3 =8

public void tesll( {
testSuce( b
Program. from{lcsses(

155 A oxlends Su
Program. from{lasses(

public void test2(Q {
testfail(
Program. From{lasses(

o

s

Writakle Smar...sert

Figure 2.4: Test cases created by JRRT developers to evaluate the Pull Up Method refactoring

implementation.

On the other hand, the second test case (test2) shows a situation where the refactoring
engine should not apply the transformation. The input program has two subclasses, A and B.
They contain a method m, but with different signatures and bodies. Therefore, the refactoring
should not be applied.

Manually creating test cases for refactoring engines, besides time consuming, is diffi-
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cult since developers need to create complex inputs (programs) and reason about behavioral
preservation for creating expected outputs. This may lead to a test suite with a low level of
production coverage, potentially leaving many hidden faults.

Daniel et al. [14] proposed an approach for automated testing of refactoring engines.
They used a program generator (ASTGen) to generate programs as test inputs. ASTGen al-
lows users to directly implement how the programs will be generated. To illustrate it, next
we show how ASTGen generates Java fields. Suppose we want to generate field declara-
tions for integers or booleans with any access modifier. To do so, ASTGen provides the

FieldDeclarationGen generator (Listing 2.5).

Listing 2.5: Simplified version of the field generator of ASTGen.

class FieldDeclarationGen extends ASTNodeGenBase<FieldDeclaration >
{
IGenerator<Modifier> modifierGen:
IGenerator <Type> typeGen

IGenerator<ldentifier > idGen;

(constructors and other methods)

FieldDeclaration generateCurrent () {
FieldDeclaration generated = new FieldDeclaration():
generated . setModifier (modifierGen.current ());
generated .setType (typeGen.current ()):
generated . setldentifier (idGen.current());

return generated;

The class FieldDeclarationGen extends ASTNodeGenBase, base class to
create. AST nodes.  Each node is represented by using the Eclipse Core API'.

The FieldDeclaration node has three child nodes: Modifier (access modi-

Java Model Tutorial: http://help.eclipse.org/help32/index. jsp?topic=/orqg.

eclipse. jdt .doc.isv/guide/ jdt_int_model. htm
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fier), Type (type declared by the field), Identifier (name of the field). The
FieldDeclarationGen generator consists of three generators responsible for generat-
ing variations for these child nodes: modifierGen, typeGen, idGen. In each iteration,
the generateCurrent () creates a field declaration by combining these three generators.

To initialize the FieldDeclarationGen generator, we need first to instantiate gen-

erators modifierGen, typeGen, 1dGen, as shown in Listing 2.6.

Listing 2.6: Instantiating generators that compose the FieldDeclarationGen generator.

[Generator<Modifier> modifierGen = new Chain<Modifier >(public ,
private ,protected ,default);
[Generator<Type> typeGen = new Chain<Type>(int, boolean);

IGenerator<ldentifier > idGen = new Chain<Identifier >(x):

In this way, the declared field can have accessibility public, private, protected,
ordefault. It will have the type int or boolean, and the name x. We pass these genera-
tors as parameters to instantiate the FieldDeclarationGen generator (see Listing 2.7).

By using these parameters, the generator produces eight field declarations.

Listing 2.7: Instantiating the FieldDeclarationGen generator.

FieldDeclarationGen fieldDeclGen =

new FieldDeclarationGen(modifierGen . typeGen, idGen);

Besides using ASTGen, Daniel et al [14] implemented 6 test oracles to evaluate engine

outputs:

e DoesCrash. It checks if the refactoring engine throws an uncaught exception during

the test;
o DoesNotCompile. It checks if the program compiles after the transformation;

e WarningStatus. It checks if the refactoring engine throws a warning message as out-
put. This oracle is useful when the tester intentionally creates programs that do not
satisfies the refactoring conditions, and want to check if the engine correctly identifies

and avoids these transformations;
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» InverseOracle. In this oracle, they apply the refactoring under test, then they perform
the inverse refactoring, that is, the opposite transformation, to the output program, and
check if the resulting program is equal to the original one. For instance, to test if the
engine correctly renames class A to B, they perform this transformation, then perform
the inverse transformation, renaming B to A, and checks if the resulting program is
equal to the original one. To compare the programs, they have implemented an AST

comparator;

e CustomOracle. They have implemented some refactoring-specific oracles. These
oracles checks properties of some refactorings. For instance, when you rename a field,

the resulting program should not have the old field name anywhere in the AST;

e DifferentialOracle. This oracle performs the refactoring under testing by using two
or more refactoring engines and compares the results. If they are different, a human
inspect the two output programs to check whether the differences are related to some

fault in one of the engines.

Although they have identified a number of faults in Eclipse and NetBeans that introduce
compilation errors on the user’s code, they have found only one fault related to behavioral
change.

Additionally, writing ASTGen generators requires a considerable effort since the devel-
opers need to implement how the programs will be generated. Later, Gligoric et al. [22]
proposed UDITA, which follows a filtering approach, that is, the generator automatically
searches for all possible combinations of Java constructs to generate programs. Moreover,
the tester can specify constraints to filter the program generation. The more constraints the
tester specifies, the fewer programs it will generate. UDITA uses the Java Path Finder (JPF)
model checker as a basis for searching for all possible combinations.

Gligoric et al. [22] previously specified a Java inheritance graph generation in UDITA.

o

Figure 2.5 presents Java programs that illustrate different inheritance graphs that can be

generated for a scope of two elements. Each inheritance graph needs to satisfy two invariants:

I. Directed Acyclic Graph (DAG). We cannot have directed cycles in Java inheritances;
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2. A class has at most one supertype class, and all supertypes of an interface are inter-

faces.

Figure 2.5: Programs representing Java Inheritance Graphs.

1 class A {} |
class B extends A {} |
" interface A {} |
class B implements A {} |
3 interface A {}
interface B extends A {} I

UDITA allows users to specify the generation by using a Java language extended with

non-deterministic choices. Next, we describe the inheritance graph specification presented

by Gligoric et al. [22]. In Listing 2.8, we show the Java inheritance graph representation in

UDITA. The class IG represents the graph. and contains fields that represent a list of nodes

and the size of the graph. It also contains a class representing a node, which has an array

of nodes as supertypes and a boolean flag to mark the node as a class (otherwise it is

an interface). In Listings 2.9 and 2.10, we present invariants for the Java inheritance graph

specified in UDITA. It returns true when these properties hold.

Listing 2.8: Java inheritance graph representation in UDITA

class 1G |
Node |[] nodes;
int size;
static class Node
Node[] supertype

boolean isClass:

{

S

Listing 2.9: Java inheritance graph invariants in UDITA

boolean isDAG(IG ig)

Set<Node> visited

{

= new HashSet<Node>():
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3 Set<Node> path = new HashSet<Node>():

- if (ig.nodes == null || ig.size != ig.nodes.length)
5 return false

6 for (Node n : ig.nodes)

7 if (!visited.contains(n))

8 if (!isAcyclic(n, path, visited)) return false;
9 return true;

12 boolean isAcyclic(Node node, Set<Node> path, Set<Node> visited) |
13 if (path.contains(node)) return false;

14 path.add(node);

15 visited .add (node);

16 for (int i = 0; i < supertypes.length: i++) |{

17 Node s = supertypes/[i];

18 // two supertypes cannot be the same

19 for (int j = 0; j < i j++)

20 if (s == supertypes[j]) return false;

21 // check property on every supertype of this node
22 if (!isAcyclic(s, path, visited)) return false:
23 |

24 path.remove(node);

25 return true:

26}

Listing 2.10: Well-formedness rules for Java inheritance specified in UDITA

1 boolean isJavalnheritance(IG 1g) |

2 for (Node n : ig.nodes) {

3 boolean doesExtend = false:

4 for (Node s : n.supertypes)

5 if (s.isClass) {

6 // interface must not extend any class
7 if (!n.isClass)
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return false;
if (!doesExtend) |

doesExtend = true;
/7 class must not extend more than one class
] else |

return false:

To generate all graphs from predicates, we need to specify bounds on possible values for
each elements in the graph representation, which are the array sizes, and the field isClass.
UDITA uses non-deterministic choices based on JPF for this purpose. For example, when we
run the command k = getInt (1, N).JPF introduces N branches in a non-deterministic
execution, where in the branch i (for | <i < N) k has value i. JPF explores the combinations
of all possible choices for primitive types. UDITA extends JPF, introducing new algorithms
to explore combinations of choices for objects in a new object pool abstraction. Listing 2.1 |
presents the code to initialize the Java inheritance graph generation in UDITA. The method
initialize performs 3 steps. First, it sets the graph size (the number of nodes). Then
creates a pool of Node objects ol this size, and finally iterates over all objects in the pool
to initialize their supertypes pointing to other objects in the pool. The class ObjectPool
has two methods: getNew, which returns a new object from the pool, and get Any, which

returns an arbitrary object.

Listing 2.11: Initialization of Java inheritance graph generation in UDITA

IG initialize (int N) |
IG ig = new IG();
ig.size = N;
ObjectPool <Node> pool = new ObjectPool<Node>(N);
ig .nodes = new Node[N];
for (int i = 0; i < N; i++) ig.nodes[i] = pool.getNew():

for (Node n : nodes) |
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int num = getlnt (0, N - 1);
n.supertypes = new Node[num];
for (int j = 0: j < num; j++)

n.supertypes[j] = pool.getAny();
n.isClass = getBoolean();
!

return ig;

static void mainFilt(int N) {
IG ig = initialize (N);
assume (1sSDAG(ig));
assume (isJavalnheritance (ig)):

println(ig);

2.3 Alloy Overview

An Alloy model or specification is a sequence of paragraphs of two kinds: signatures and
constraints. Each signature denotes a set of objects associated to other objects by relations
declared in the signatures. Each signature paragraph represents a type, and may declare a set
of relations along with their types and other constraints on their included values.

We use as example part of the Java metamodel encoded in Alloy. A Java class is a type,
and may extend another class. Additionally, it may declare fields and methods, as specified
in the UML class diagram, as shown in Figure 2.6(a). Figure 2.6(b) presents its specifica-
tion in Alloy. All classes and associations in the UML class diagram are analogous to the
Alloy signatures and their relations, respectively. In Class, the set in relation fields
and relation methods imposes no constraint on multiplicity. There are other multiplicity
qualifiers, such as lone, denoting partial functions. If we omit the qualifier, the relation
becomes a total function. In Alloy, one signature can extend another, establishing that the

extended signature (subsignature) is a subset of the parent signature. For example, a Class
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sig Type {}
sig Class extends Type |

extend: lone Class,

methods: set Method,
fields: set Fiel
J

sig Method { )

sig Field {}

extend

(a)

(b)
Figure 2.6: A UML class diagram and its representation in Alloy.

is a subsignature of Type.
A number of well-formedness constraints can be specified for Java. For instance, a class
cannot extend itself. In Alloy, we can declare facts which package formulas that always hold.

The ClassCannotExtendItself fact specifies this constraint.

fact ClassCannotExtendltself {

all ¢: Class | ¢ !in c.Aextend

The all keyword represents the universal quantifier, and the in keyword denotes the
set membership operator in the previous fragment. The operators A and ! represent the
transitive closure and negation operators, respectively. The dot operator (. ) is a generalized
definition of the relational join operator. For example, the expression ¢ .extend yields the
superclass of c.

In Alloy, predicates are used to package reusable formulas and specify operations. The
following Alloy fragment declares the predicate someClassHasNoField, stating that
there is a class without fields. The some keyword represents the existential quantifier. The

no keyword, when applied to an expression, denotes that the expression is empty.

pred someClassHasNoField [] {
some ¢: Class | no c.ficld

J

[UFCGIBIBLIOTECAIBC |
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The Alloy Analyzer tool [33] allows us to perform analysis on an Alloy specification; for
example, in order to find a solution for a model in a pre-defined scope. A scope defines the
maximum number of objects allowed for each signature during analysis, assigning a bound
to the number of objects of each type. The simulations performed by the Alloy Analyzer tool
are sound and complete. up to a given scope.

Alloy commands are used for analysis purposes. Next, we declare a run command
that is applied to a predicate, specifying a scope for all declared signatures. For desired
solutions containing as many as three of each type, class, field and method, and at least one
of the classes with no fields, the Alloy Analyzer searches for all combinations that satisfy

the signature and fact constraints, in addition to the someClassHasNoField predicate.

run someClassHasNoField for 3

2.4 Concluding remarks

In this chapter, we presented the theoretical basis needed for the understanding of this the-
sis. First, we showed an overview on program refactoring, along with the state-of-the-art
approaches on refactoring verification.

Next, we introduced important concepts on software testing, such as test case. oracle,
and coverage criteria. We also present the approach proposed by Daniel et al [] for testing
of refactoring engines, and their program generator, ASTGen. We also presented UDITA an
extension of ASTGen. In Chapter 3 we present a comparison between our program generator,
JDoLLY. and UDITA. Finally, we presented an overview of Alloy and Alloy Analyzer, which

we used to propose our program generator, JDOLLY.
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JDOLLY: A Java program generator

In this chapter, we present JDOLLY', a Java program generator that exhaustively generates
programs, up to a given scope of Java constructs (e.g. packages, classes, methods, fields).
The Alloy specification language (Section 2.3) is employed as the formal infrastructure for
generating programs; a metamodel for Java is encoded in Alloy, and the Alloy Analyzer finds
instances of this model. which are translated into programs by JDOLLY, for user-specified
constraints.

Next we present an overview of the technique (Section 3.1). Then we show the encoding
of a subset of the Java metamodel in Alloy. We then describe how to translate each Alloy
solution to Java (Section 3.3), and explain how to use JDOLLY for generating more specific
Java programs in Section 3.4. In Section 3.5, we describe an experiment to compare JDOLLY
with another Java program generator, UDITA [22]. Finally, we present the concluding re-

marks (Section 3.6).

3.1 Overview

JDOLLY is a Java program generator. It contains a subset of the Java metamodel specified in
Alloy [32]. It employs the Alloy Analyzer, a tool for analysis of Alloy models, to generate
solutions (instances) for this metamodel. It then translates each solution into a Java program.

JDOLLY exhaustively generates all Java programs specified by its metamodel for a given

scope. The user defines this scope by specifying the maximum number of elements for each

't can be downloaded from: hitp://www.dsc.ufcg.edu.br/ spg/jdolly
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Java construct presented in the metamodel. For instance, the user can specify the maximum
number of classes to three. By doing so. JDOLLY will generate all programs with up to three
classes. Furthermore, the user can specify specific constraints for the program generation.
For example, when testing a refactoring that pulls up a method to a superclass, the input
programs must contain at least a subclass declaring a method that is subject to be pulled up.

The user can specify these constraints in Alloy.

3.2 Java metamodel

In this section, we describe the subset of the Java metamodel that we specified. If we consider
the entire Java language, we can create a large number of different programs even for a small
scope of elements, which may make it too expensive to exhaustive generate programs even
for a small scope. Additionally. some Java constructs and well-formedness rules may require
considerable effort to be specified in Alloy due to restrictions of the language. For instance,
Alloy does not allow recursive predicates. Our goal is to specify a subset of the Java language
that can be useful for finding real faults in refactoring engines. To do so, we studied faults
previously identified by researchers [84; 72; 14] in order to understand which constructs are

relevant to this context.

3.2.1 Abstract syntax

We illustrate a UML class diagram representing the subset of the Java metamodel encoded
in Alloy in Figure 3.1. From Java, we have considered two primitive types: int and long. By
using these primitive types. we can evaluate the refactoring engines in the presence of method
overloading and implicit cast. We believe that if we have included other primitive types.
such as floar, it would not make much difference with respect to method overloading and
implicit casting, but it would increase the number of programs, making it more expensive to
generate all programs. A class is the only non-primitive type — currently, we do not consider
interfaces. A Java class has an identifier, field and method declarations, and extends another
class. Moreover, each class is located in a package. If a class is not explicitly related to a
package, the default package is assumed.

Each field is associated with one identifier, one type, and at most one modifier, such as
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Figure 3.1: The Java metamodel specified in JDOLLY.

public, protected, or private. When it does not have a modifier, its accessibility is
package. Similarly, a method declaration contains a return type, an identifier, a number of
parameters, and a body. Moreover, it may contain an access modifier. We have considered
methods with at most one parameter, which is useful for generating programs containing
overloading. For instance, a method can have no parameter and another method with the
same name can have one parameter, or both methods can have one parameter but with dif-
ferent types. Moreover, by generating methods with parameter we can generale programs
to test refactorings that operate over parameters, such as the Remove Parameter refactor-
ing. Although adding more parameters can be useful for finding more faults, it also would
significantly increase the number of combinations for generating programs.

In Java, a method body contains a sequence of statements, whose last statement must
be a return for every non-void method. Currently, a method body contains just a sin-
gle return statement. So, the simplest return statement returns a literal value based on
the return type. Return statements can also contain field accesses or method invocations.
Field accesses include: £, A.f, this.f, super.f and new A () .f — the latter is a
ConstructorFieldAccess. LiteralValue represents the simplest kind of state-
ment, extending the signature Body. FieldAccess and MethodInvocation contain

the identifier of the accessed field and method with a single qualifier at most, respectively. If



(S

th

3.2 Java metamodel 38

a method with a single parameter is called JDOLLY always passes a constant value, such as

2, as argument to the call.

3.2.2 Well-formedness rules

The Java language contains a number of well-formedness rules to evaluate whether
a program is valid. We specified these rules within Alloy facts. For example a
Java class cannot have two fields with the same identifier, as declared in the fact

noClassTwoFieldsSameId.

fact noClassTwoFieldsSameld |
all ¢: Class [ all £1.£2: ¢.fields |

f1'=R2=rlid!=12.id

Similarly, a Java class cannot contain two methods with the same name and parameter

type, as presented in the fact noClassTwoMethodsSameSignature.

fact noClassTwoMethodsSameSignature |
all ¢: Class | all m1,m2: c.methods |
ml!=m2=

(ml.id ! = m2.id or ml.paramType ! = m2.paramType)

Some well-formedness may require a lot of effort to specify in Alloy. For example, we
cannot have a method invocation to an undefined method. To analyze the binding between a
method invocation and a method declaration, we may need to evaluate if the method declara-
tion is in the same class, hierarchy, and package of the method invocation, its access modifier
(public, protected, package, private), its parameters, and the kind of the method invocation
(e.g. using super, this, qualified this). We could try to specify these rules exactly how they
are, avoiding uncompilable programs, or specifying approximations that may result in un-
compilable programs. Although the first option guarantees that all generated programs will
compile, it requires more effort, and may lead to over constraining the model, leading the tool
to miss some compilable programs. On the other hand, the second option requires less effort

but produces uncompilable programs. We chose the second option because we can discard
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package Package;

2 public Classld |
3 int fieldld = 1;
4 protected int
o] jons] fe methodld () |
5 return 2:
71

(a)
(b)
Figure 3.2: Translation of an Alloy solution to a Java program. (a) A solution of the Java
metamodel generated by Alloy Analyzer: (b) the translation of the solution into a concrete

Java program.

the uncompilable input programs while testing a refactoring engine. Appendix A presents

the complete specification of the abstract syntax and well-formedness rules for JDOLLY.

3.3 Program generation

The previous Alloy model is then used to generate Java programs. We specify the run
command; specifically with the generate predicate. By default, the scope of at most three
objects is used for each signature. Then we use the Alloy Analyzer API to execute the run

command, generating all solutions for the given scope.

pred generate(] { |

run generate for 3

The Alloy Analyzer finds for solutions such as the instance depicted in Figure 3.2(a). The
graph contains the Class object, which is associated with objects Package, ClassId,
Method, and Field. Moreover, object Field is associated with FieldId and Int_,
and Method is associated with LiteralValue, MethodId, Protected, and Int_.
For simplicity, we distinguish class from field identifiers. For example, Figure 3.2(b) shows

the counterpart in Java of the Alloy solution.



6

3.4 Generating more specific programs 40

The Alloy Analyzer does not automatically convert an Alloy instance into a Java pro-
gram. In fact, we use its API to generate every possible solution’. To complete the gener-
ation step, we reused the syntax tree available in Eclipse JDT [17] for generating programs
from those solutions. For example, the Alloy objects Class and Package are mapped to a
TypeDeclaration and a PackageDeclaration, respectively. The imports are auto-

matically calculated from each Alloy instance generated; they are included in each program.

3.4 Generating more specific programs

With JDoLLY, we can specify different scopes to limit program generation. For instance,
if we are not interested in fields, we can specify the scope of zero. Besides, the generation
can be further constrained. In a context in which programs are needed with at least one
class (C2) extending another one (C1), and C2 declares at least a method (1), the following
Alloy fragment specifies generate. This particular specification is useful for testing the
Pull Up Method refactoring. considering M1. For each instance, we pass the value given to

M1 to the refactoring engine.

one sig C1, C2 extends Class { }
one sig M1 extends Method { }
pred generate|] {

Cl in C2-extend

M1 in C2-methods

3.5 Evaluation

In this section, we present an experiment comparing JDOLLY against UDITA [22].

3.5.1 Definition

In previous work. Gligoric et al. [22] uses an Java inheritance graph generation to show that

UDITA is more expressive and easier to use than ASTGen. In Section 2.2.4 we present an

*Accessing Alloy 4 using Java APIL: hitp://alloy.mit.edu/alloy4/api.huml
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UDITA specification to generate Java inheritance graphs.

We carried out a similar comparison on the differences between JDOLLY and UDITA.
The goal of this experiment is to analyze two tools (JDOLLY and UDITA) for the purpose
of evaluation with respect to test input generation from the point of view of researchers in
the context of Java inheritance graph generation. For instance, In particular, our experiment

addresses the following research questions:

e Q1. Do the tools exhaustively generate inheritance graphs for a given scope?
Since we do not know all inheritance graphs that can be generated, we compare all

graphs generated by JDOLLY against the ones generated by UDITA in order to detect

missing graphs in each one of the tools’ results.

e Q2. Do the tools generate isomorphic inheritance graphs?

A tool may generate more than one structurally equivalent (isomorphic) solution. In
the context of test input generation, generating isomorphic inputs does not increase the
chances of finding new faults, and makes the test input generation slower, Therefore,
the less isomorphic graphs generated by each approach, the better. We measure the

number of isomorphic and non-isomorphic graphs for each tool.

3.5.2 Planning

Next, we describe how we selected the subjects and how we instrument the experiment.

Selection of subjects

To compare JDOLLY against UDITA, we chose to generate a Java inheritance graph by using
both tools. We chose to use a Java inheritance graph because it has non-trivial invariants and
it is directly related to generating Java programs. Additionally, it was previously used to
describe UDITA and compare it with ASTGen [22]. Each inheritance graph needs to satisfy

two invariants:
I. Directed Acyclic Graph (DAG). We cannot have directed cycles in Java inheritances:

2. A class has at most one supertype class, and all supertypes of an interface are inter-

faces.
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Experiment Design

For each approach, we perform the Java inheritance graph generation by using scopes from |

to4. This scope is similar to the scope of previous programs that revealed faults in refactoring

engines [84; 72; 14].

Instrumentation

To perform the UDITA generation, we downloaded the Java inheritance graph specification
from UDITA website'. In Section 2.2.4, we present a simplified version of this specification.

We created a JDOLLY version containing the metamodel of the Java graph inheritance.
Next, we describe this metamodel. First, we specified the signatures IG and Node to repre-

sent the inheritance graph as shown in Listing A.1.

Listing 3.1: Java inheritance graph representation in JDolly

sig 1G |
nodes: set Node

}

abstract sig Node |
supertypes : set Node.,

isClass : one Bool

Then, we specified Alloy facts that represent the invariants of the Java inheritance graph

as shown Listing 3.5.

Listing 3.2: invariants for the Java inheritance graph in JDolly

fact DAG |
no n:Node | n in n.Asupertypes
!
fact Javalnheritance {
all n:Node | isTrue[n-isClass| =
lone nl:Node | nl in n-supertypes and isTrue[n]-isClass|

all n:Node | isFalse[n-isClass] =

http://mir.es.illincis.edu/uditay
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no nl:Node | nl in n-supertypes and isTrue[n]1-isClass]

Finally, we initialize the generation by running the Run command on the Show predicate
as illustrated in Listing 3.6. We specified a constraint in the Show predicate to specify that

all generated nodes must be in the inheritance graph.

Listing 3.3: Running Java graph generation by using the Alloy Analyzer.

pred show|] |
Node in 1G-nodes
}

run show for exactly 1 IG, exactly 4 Node

We implemented a graph comparator to compare the graphs generated by both tools. The
comparator abstracts the name of the nodes, so that if two graphs have the same structure but
different names, the comparator says that they are isomorphic.

To check whether the tools exhaustively generates solutions for a given scope, we check
if each graph generated by JDOLLY was also generated by UDITA, and the other way around.
by using our graph comparator. To check if the tools generate isomorphic graphs, we use our
graph comparator to compare each graph generated by the tool against all the other graphs
generated by it.

In JDOLLY, we specify the Java inheritance graph generation by using Alloy. First,
we specified the signatures IG and Node to represent the inheritance graph as shown in

Listing A.1.

Listing 3.4: Java inheritance graph representation in JDolly

sig 1G {
nodes: set Node

!

abstract sig Node/{
supertypes : set Node,

1sClass : one Bool
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Then, we specified Alloy facts that represent the invariants of the Java inheritance graph

as shown Listing 3.5,

Listing 3.5: Java inheritance graph representation in JDolly

fact DAG |
no n:Node | nin n.Asupertypes
!
fact Javalnheritance |
all n:Node | isTrue[n-isClass] =
lone nl:Node I nl in n-supertypes && isTrue[nl1-isClass]
all n:Node | isFalse[n-isClass] =

no nl:Node | nl in n-supertypes && isTrue[nl-isClass]

Finally, we initialize the generation by running the Run command on the Show predicate
as illustrated in Listing 3.6. We specified a constraint in the Show predicate to specify that

all generated nodes must be in the inheritance graph.

Listing 3.6: Running Java graph generation by using the Alloy Analyzer.

pred show(] {
Node in 1G-nodes

}

run show for exactly 1 IG, exactly 4 Node

3.5.3 Operation

We performed the Java inheritance graph generation on a MacBook Pro Intel Core i5 2.4GHz
with 8GB of RAM. Table 3.1 summarizes the results of the experiment. In contrast with
JDoLLy, UDITA did not generate 2, 7 and 37 non-isomorphic programs in scopes 2, 3
and 4, respectively. For example, Figure 3.3 shows the programs that represent the Java
inheritance graphs generated by JDoOLLY and UDITA for a scope of two elements. UDITA
did not generate the program 5, which contains two classes, and program 6. which has two

classes. one extending the other one. On the other hand, JDOLLY generated much more

isomorphic programs than UDITA.
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Table 3.1: Comparison of JDOLLY and UDITA; Prog.: Number of generated programs;
Comp.: number of compilable programs: Isomor: number of isomorphic programs; Unique:

number of unique programs; NG: number of unique programs that were not generated.

JDolly UDITA
Prog. | Isomor. Unique NG Prog. Isomor. Unique | NG

1 2 0 2 0 2 o 2 0
_2 o 6 ] 0 i & 7 0 [ 4 - 0 __: T 2
| 3 29 5 2 0 18 1 7 | o7
_tl o 230 . g1 [ 119 0 123 _ll- __1}.2 [ 37

3.5.4 Discussion

One of the reasons why UDITA did not generate all programs may be an incorrect specifica-
tion of the constraints for the Java inheritance. By looking at the code that we downloaded
from UDITA website, we noticed slightly differences with respect to the simplified code
presented in Listings 2.8, 2.9, 2,10, and 2.1 |. For instance, in the isJavalnheritance
predicate (Listing 2.10), before checking if the node is a class (line 5), there is another state-
ment 1f (isClass) ;. This statement would have no effect in Java because there is no
command to be executed in this 1 £ statement. However, when we remove this statement,
and run UDITA again, it generates all six programs for the scope of 2: in fact, it generates
seven programs (one isomorphic program). We also evaluated to replace this 1 £ statement
to System.out .println(isClass). When we added this statement to print this vari-
able, UDITA generated only four programs (the same ones that it generated in the original
version), missing two graphs. This may be a fault in the current implementation of UDITA.

In our experiment. both tools generated isomorphic inheritance graphs. JDOLLY uses the
Alloy Analyzer for generating programs, which uses SAT solvers for searching solutions for
the Alloy models. These solvers contain algorithms for avoiding generating several isomor-
phic solutions. UDITA also implements an algorithm for this purpose. On the other hand. in
ASTGen, the tester would be in charge of this task.

Figure 3.4 shows two programs representing isomorphic graphs generated by JDOLLY
for a scope of three elements. These programs have the same structure but different identi-
fiers. Although JDOLLY generated other four isomorphic programs for this scope, it avoided
a number of other isomorphic programs. Notice that it generated 24 distinct programs (see

Table 3.1). Each one of these programs has tree elements. By permuting the identifiers of
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1 interface A {} interface A {}
class B {3 class B {}
2 interface A {} interface A {}
class B implements A {} class B implements A {}
3 interface A {} interface A {}
interface B {} interface B {}
a interface A {} interface A {}
interface B extends Af} interface B extends Af}
g tlass AL
class Bl
. ciass A
' Crdns B oeniends A

Figure 3.3: Programs representing the generation of Java Inheritance Graphs by UDITA and

JDoLLY for the scope of two elements.

| interlface A {} |l interlface B {}
2 interface B extends A || 2 interface C extends B |}
3 interface C extends B |} 3 interface A extends C {}

Figure 3.4; Isomorphic programs generated by JDOLLY,

these elements, we can have 6 programs with the same structure. Considering all 24 pro-
grams. JDOLLY could have generated 144 programs (120 isemorphic ones). It 1s important
10 avord isomurphic programs because they do not increase the chances of linding faults in
refactoring engines and slow the program generation.

Alloy logic presented. as expected. a higher level of abstraction than Java-like code of
UDITA, For example, while we specified the DAG invariant in one ling by using Alloy.

Gligoric et al. [22] needed about 20 lines to specify it in UDITA.

3.5.5 Answers to the research questions

Next, we discuss these results with respect to our research questions.
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Do the tools exhaustively generate inheritance graphs for a given scope?

No. JDOLLY generated all inheritance graphs, but UDITA failed to generate some graphs
for the scope of two, three, and four. In bounded-exhaustive testing, failing to generate some

test input may lead to leave some fault uncaught, reducing the effectiveness of the approach.

Do the tools generate isomorphic inheritance graphs?

Yes. In our experiment, both tools generated isomorphic inheritance graphs. JDOLLY,
though, generated more than UDITA. For instance. with a scope of four, while 35% of the
graphs generated by JDOLLY were isomorphic, in UDITA, only 9% of the graphs were iso-

morphic. Our results suggest that UDITA handles isomorphism better than JDOLLY.

3.5.6 Threats to validity

With respect to construct validity, we compare the results of both tools to evaluate whether
they exhaustively generates inheritance graphs. Therefore. if none of the tools exhaustively
generates these graphs, our results will be incorrect. Finally, we compare both tools with re-
spect to Java inheritance graphs. Our results are not representative of all program generation

allowed on both tools.

3.6 Concluding remarks

In this chapter, we presented JDOLLY, a Java program generator that uses Alloy and the
Alloy Analyzer as basis for generating programs. It allows users to exhaustively generate
Java programs by specifying the scope of the program generation and constraints on what
programs should be generated. Our goal was to define a subset of the language expressive
enough for finding faults in refactoring engines, but not too large to make it too complex
and expensive. We studied previously faults in refactoring engines found in literature. We
used this knowledge to specify a Java metamodel that includes relevant constructs to test
refactoring engines.

We compared JDOLLY against a state-of-the-art program generator, UDITA. Our results

suggest that while JDOLLY exhaustively generates programs, UDITA may fail to generate
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some programs in a given scope. On the other hand, JDOLLY generates more isomorphic
programs than UDITA, which may slow down the program generation. In our experiment,

though, IDOLLY was faster than UDITA.



Chapter 4

SAFEREFACTOR

In this chapter, we present SAFEREFACTOR [80], a tool for checking behavioral changes in
program transformations. In Section 4.1, we show its overview. Next, we show an empirical
study to evaluate the effectiveness of SAFEREFACTOR 4.2. Finally, we show the concluding

remarks (Section 4.3).

4.1 Overview

SAFEREFACTOR [80] checks whether a transformation introduce behavioral changes. First,
the tool checks for compilation errors in the resulting program, and reports those errors; if no
errors are found, it analyzes the transformation and generates a number of tests suited for de-
tecting behavioral changes. SAFEREFACTOR identifies the methods with matching signature
(methods with exactly the same modifier, return type, qualified name, parameter types and
exceptions thrown) before and after the transformation. Next, it applies Randoop [56], a Java
unit test generator, to produce a test suite for those methods. Randoop randomly generates
tests for a set of methods given a time limit. Finally, it runs the tests before and after the
transformation, and evaluates the results. If results are different, the tool reports a behavioral
change, and displays the set of unsuccessful tests. Figure 4.1 illustrates this process.

To illustrate SAFEREFACTOR, take class A and its subclass B as illustrated in Listing 4.1,
A declares the k method, and B declares methods k, m, and target. The latter yields I.
Suppose we want to apply the Pull Up Method refactoring to move m from B to A. This

method contains a reference to 2. k using the super access. The use of either Eclipse JDT

49
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Figure 4.1: Safe Refactor’s technique: 1) The tool identifies the methods with same signature
before and after the transformation; 2) It generates a test suite for the identified methods
using Randoop; 3) It runs the tests on the source program; 4) It runs the tests on the target
program; 5) Finally, Safe Refactor evaluates the results: if they are different, the tool reports
a behavioral change. Otherwise, the developer can increase confidence that the programs

have the same behavior.

3.7or JRRTVI to perform this refactoring will produce the program presented in Listing 4.2'.
Method m is moved from B to A, and super is updated to this; a compilation error is
avoided with this change. Nevertheless, a behavioral change was introduced: target yields
2 instead of 1. Since m is invoked on an instance of B, the call to k using this is dispatched
on to the implementation of k in B.

Assuming the programs in Listings 4.1 and 4.2 as input, SAFEREFACTOR first identifies
the methods with matching signatures on both versions: A.k, B.k, and B.target. Next,
it generates 78 unit tests for these methods within a time limit of two seconds. Finally, it runs
the test suite on both versions and evaluates the results. A number of tests (64) passed in the
source program, but did not pass in the refactored program; so SAFEREFACTOR reports a
behavioral change. Next, we show one of the generated tests that reveal behavioral changes.
The test passes in the source program since the value returned by B. target is 1; however,

it fails in the target program since the value returned by B. target is 2.

"The same problem happens when we omit the keyword this



2

=

4.1 Overview

51

Listing 4.1: Before Refactoring

| public class A |
2 int k() {

3 return 1: 1
4 } 5
5 ) 3
6 public class B extends A | 4
7 int k() | 5
8 return 2; 6
9 } .
10 int m() | 8
I return super.k(): 9
12 } 10
13 public int target() | 11
14 return m(): 12
15 ! 13
16 ) 14

15

16

Listing 4.2 After  Refactor-
ing. Applying Pull Up Method in
Eclipse JDT 3.7 or JRRTvI leads to
a behavioral change due to incorrect

change of super to this.

public class A |
int k() |
return |
!
int m() {

return this . k()

}
public class B extends A |
int k() |
return 2;
}
public int target() |

return m()

public void test() |
B b = new B():
int x = b.target():

assertTrue(x == 1);




4.2 Evaluation 52

4.2 Evaluation

Previously, we evaluated SAFEREFACTOR in § transformations applied to real Java pro-
grams [79]. Although these transformations were classified as refactorings by the developers
that performed them, SAFEREFACTOR found that one of them changed program’s behavior.
These results suggest that SAFEREFACTOR can find behavioral changes in real software, but
do not give evidences on how effective the tool is.

In this section, we evaluate® SAFEREFACTOR in 60 transformations gathered from source
code repositories. We previously did not know whether these transformations are behavior
preserving. To evaluate the correctness of SAFEREFACTOR's results, we compare it against
other two approaches for identifying refactorings: a manual inspection proposed by Murphy-
Hill et al. [49; 50]; and an approach based on commit-message analysis [61; 60].

The remaining of this section is organized as follows: the following subsection describes
the approaches compared with SAFEREFACTOR(Section 4.2.1). Then, we present the exper-
iment definition (Section 4.2.2), and show the experiment planning (Section 4.2.3). Next,
we describe the experiment operation. and show the results (Section 4.2.4). Then, we inter-
pret and discuss them in Section 4.2.5. Finally, we describe some threats to validity (Sec-

tion 4.2.6).

4.2.1 Compared techniques
Manual Analyses Overview

The manual analysis is based on the methodology of Murphy-Hill et al. [49; 50], which
compares the code before each commit against its counterpart after the commit. For brevity,
we will simply call this approach *Murphy-Hill’. For each commit. two evaluators sit to-
gether and use the standard Eclipse diff tool to compare files before the commit to the files
after the commit. Reading through each file, the evaluators attempt to logically group fine-
grained code changes together, classifying each change as either a refactoring (such as “Ex-
tract Method™) or a non-refactoring (such as “Add null Check™). The evaluators also attempt

to group together logical changes across files by re-comparing files as necessary. For exam-

YAl experimental data are available at http://waw.dsec.ufeg.edu.br/~gsoaras/

thesis expesrimencs. o
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ple, if the evaluators noticed that a change to one file deleted a piece of code, they would
have initially classified that change as a non-refactoring, but if later the evaluators found that
the code had actually been moved to another file, the evaluators would re-classify the two
changes together as a single refactoring. If the two evaluators did not agree on whether a
change was a refactoring, to reach agreement they would discuss under what circumstances
it might possibly change the behavior of the program.

By assessing the transformations performed during a commit, this approach is able to
determine whether a commit contained only refactorings, no refactorings, or a mix of refac-

torings and non-refactorings.”

Commit Message Analyses Overview

Ratzinger et al. [60; 61] proposed an approach to detect whether a transformation is a refac-
toring by analyzing a commit message. If the message contains a number of words that are
related to refactoring activities, the transformation is considered a refactoring. We imple-
mented their approach in Algorithm .

The implemented analyzer is based on Ratzinger et. al.’s algorithm [60; 61], which we

will simply call *Ratzinger’.

4.2.2 Definition

The goal of this experiment is to analyze three approaches (SAFEREFACTOR, Ratzinger, and
Murphy-Hill) for the purpose of evaluation with respect to identifying bevahior-preserving
transformations from the point of view of researchers in the context of open-source Java

project repositories. In particular, our experiment addresses the following research questions:

e Q1. Do the approaches identify all behavior-preserving transformations?

For each approach, we measure the true positive rate (also called recall). tPos (true

positive) and [ Pos (false positive) represent the correctly and incorrectly behavior-

*One difference between the present study and the previous study [49] was that in the previous study they
included a “pure whitespace™ category: in the present study, we consider “pure whitespace™, “Java comments
changes”, and “non-Java files changes™ to be a refactoring. o maintain consistency with the definition of

refactoring used by SAFEREFACTOR.
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Algorithm 1 Ratzinger
Require: message <= commit message

Ensure: Indicates whether a transformation is a refactoring
keywords <= {refactor, restruct, clean, not used, unused, reformat, import, remove, re-
moved, replace, split, reorg, rename, move |
if “‘needs refactoring” € message then

return FALSE
end if
for k€ keywords do
if K € message then
return TRUE
end if
end for

return FALSE

preserving transformations, respectively. tNeg (true negative) and fNeg (false neg-
ative) represent correctly and incorrectly identified non-behavior-preserving transfor-

mations, respectively. Recall is defined as follows [52]:

#1Pos
#tPos + #fNeg

e Q2. Do the approaches correctly identify behavior-preserving transformations?

recall =

4.1

For each approach, we measure the false positive rate (precision). It is defined as

follows [521]:

#1Pos
precision = LiPos + 2] Pos (4.2)

e Q3. Are the overall results of the approaches correct?

We measure the accuracy of each approach by dividing the total correctly identified
behavior-preserving and non-behavior-preserving transformations by the total number

of samples. It is defined as follows [52]:
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#1Pos + #tNeg
accuracy = - — . (4.3)
#tPos + #fPos + #tNeg + #fNeg

4.2.3 Planning

In this section, we describe the subjects used in the experiment, the experiment design, and

its instrumentation.

Selection of subjects

We analyze two Java open-source projects. JHotDraw is a framework for development of
graphical editors. Its SVN repository contains 650 versions. The second SVN repository is
from the Apache Common Collections (we will simply call *Collections’). which is an API
build upon the JDK Collections Framework to provide new interfaces, implementations and
utilities.

We randomly select 40 out of 650 versions from the JHotDraw repository (four devel-
opers were responsible for these changes) and 20 out of 466 versions from the Collections
repository (six developers were responsible for these changes). For each randomly selected
version, we take its previous version to analyze whether they have the same behavior. For
instance, we evaluate Version 134 of JHotDraw and the previous one (133).

Tables 5.8 and 4.2 indicate the version analyzed, number of lines of code of the selected
version and its previous version, and characterize the scope and granularity of the transfor-
mation. We evaluate transformations with different granularities (low and high level) and

scope (local and global).

Experiment design

In our experiment, we evaluate one factor (approaches for detecting behavior-preserving
transformations) with three treatments (SAFEREFACTOR, Murphy-Hill, Ratzinger). We
choose a paired comparison design for the experiment, that is, the subjects are applied to
all treatments. Therefore, we perform the approaches under evaluation in the 60 pairs of
versions. The results can be “Yes” (behavior-preserving transformation) and “No™ (non-

behavior-preserving transformation).
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Instrumentation

We invited Murphy-Hill and one of his collaborators to perform his approach. We auto-
mate the experiment for checking SAFEREFACTOR and Ratzinger results’. The Ratzinger
approach was implemented in Algorithm 1.

We use SAFEREFACTOR 1.1.4 with default configuration but using a time limit of
120 seconds, and setting Randoop to avoid generating non-deterministic test cases. We
chose the time limit based on previous experiences of Randoop in real subjects [79; 56;
66]. Additionally, SAFEREFACTOR may have different results each time it is executed due
to the randomly generation of the test suite. So, we execute it up to three times in each
version. II none of the executions finds a behavioral change, we classify the version as
behavior-preserving transformation. Otherwise. we classify it as non-behavior-preserving
transformation. We use Emma 2.0.5312" to collect the statement coverage of the test suite
generated by SAFEREFACTOR in the resulting program. Additionally, we collect additional
metrics for the subjects: non-blank, non-comment lines of code. scope, and granularity. The
algorithms to collect refactoring scope and granularity are presented in B.

Since we previously do not know which versions contain behavior-preserving transfor-
mations, we the results of all approaches in all transformations to derive a Baseline. For
instance, if the Murphy-Hill approach yielded “Yes™ and SAFEREFACTOR returned “No”,
the first author would checked whether the test case showing the behavioral change reported
by SAFEREFACTOR was correct. If so, the correct result was *No”. So. we establish a Base-

line to check the results of each approach. and calculate their recall, precision, and accuracy.

4.2.4 Operation

Before performing the experiment, we implemented a script to download 60 pairs of versions
and log commit information: version_id, date, author, and commit message. We named each
pair of versions with suffix _BEFORE and _AFTER to indicate the program before and after
the change. The versions that were non-Eclipse projects were made Eclipse projects so that

the Murphy-Hill approach could use the Eclipse diff tool. Murphy-Hill and his collaborators

*The automated experiment containing SAFEREFACTOR and Ratzinger approaches, and additional infor-

mation are available at: hup:/www.dsc.ufeg.edu.br/ spe/jss_experiments.himl

Shutp:/femma.sourceforge.net/
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scheduled two meetings to analyze the subjects following the Murphy-Hill approach. The
automated analyses of SAFEREFACTOR and Ratzinger were performed on a MacBook Pro
Core 15 2.4GHz and 4 GB RAM, running Mac OS 10.7.4.

Additionally, for SAFEREFACTOR we also downloaded all dependencies of JHot-
Draw. SAFEREFACTOR compiles each version and than generates tests to detect behavioral
changes. We also manually create buildFiles to compile the JHotDraw subjects. As software
evolves, it may modify the original build file due to changes in the project structure, compiler
version or used libraries. For JHotDraw’s subjects, we needed 4 buildFiles, and used JDK
[.5 and 1.6. We do not have information which JDK they used. For each subject, we used
SAFEREFACTOR with a specific buildFile. The Apache Common Collections subjects were
compiled with JDK 1.6. Moreover, we performed the test generation of Randoop, and the
test execution using JDK 1.6 on both samples.

Tables 5.8 and 4.2 present the results of our evaluation for JHotDraw and Collections,
respectively. Column Version indicates the version analyzed, and Column Baseline shows
whether the pair is indeed a refactoring. This column was derived based on all results, as
explained in Section 4.2.3. The following columns represent the results of each approach. In
the bottom of the table, it is shown the precision, recall, and accuracy of each approach with
respect to Column Baseline.

We have identified 14 and 11 refactorings (Baseline) in JHotDraw and Collections, re-
spectively. In 17 out of 60 pairs, all approaches have the same result. While some versions
fixed bugs, such as Versions 134, 176, and 518, or introduced new features, for instance
Version 572952, others are refactorings (see Baseline of Tables 5.8 and 4.2). Some versions
did not change any Java file (Versions 251, 274, 275, 300, 304, 405, 697, 609497, 923339,
1095934) or changed just Java comments (Versions 156, 814123, 814128, 966327, 1023771,
1023897, 1299210, 1300075). In this study, we regard them as refactorings (behavior-
preserving transformations).

The Murphy-Hill approach detected all refactorings of JHotDraw and Collections, which
means a recall of | on both samples. However, it classifies four uncompilable versions
as refactoring: one in JHotDraw (Version 357) and three in Collections (Versions 814997,
815022, 815042). This is the main reason why the manual inspection performed by the

Murphy-Hill approach is not considered as the Baseline alone. So, 14 out of the 15 detected
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[ wc |  Baseling | matanger | wn | Sweeracron |

Before After Refact. Refact. Refact. Refact. #Tests Cov. (%)
134 20422 20422 Low Local No No No Yes 449 24
151 28103 28108 low Local No No No No 4778 48
156 28121 28121 Low Local Yes Yes Yes Yes 4778 48
173 28101 28052 Low Global No Yes No Yes 454 20
174 28052 28053 low  Global Yes No Yes Yes 599 23
176 28055 28055 Low Local No No No No 436 33
178 28065 28065 Llow Local Yes No Yes Yes 3195 41
193 28291 28298 Low Globa! Yes No Yes Yes 2108 35
251 28398 28398 Low Local Yes No Yes Yes 162 45
267 28398 28409 Low Local No No No Yes 5433 48
274 32408 32408 Low Local Yes No Yes Yes 418 4
275 32408 32408 low Local Yes No Yes Yes 476 3
294 39249 39081 High Local No No No Na Compilation Error
300 35161 391851 Low Local Yes No Yes Yes 314 14
302 38993 39161 High Local No No No No Compilation Errar
304 38161 39161 Llow Local Yes No Yes Yes 286 15
318 39160 39173 Low Local No No No Yes 2356 8
322 39377 39480 High Local No No No Yes 802 26
324 39472 39551 High  Global No No No No 490 10
344 51339 51596 High Global No No No Yes 1022 13
357 52991 52636 Low  Gilobal No No Yes No Compilation Error
384 52594 52601 Low Local No No No Yes 2167 24
405 53708 53708 Low Local Yes No Yes Yes 1816 10
409 53712 53721 High Global No No No Yes 1687 10
458 64939 64940 Low Local No No No No 1549 12
501 69300 69404 High  Giobal Yes No Yes Yes 2600 25
503 68570 69566 High  Global Yes No Yes No 2084 21
518 71578 71979 High Global No No No No 1114 9
526 72027 72053 High Gicbal No No No No 1942 7
549 72245 72286 Low Global No Ne No No 1940 12
590 74235 71943 High Local Yes No Yes Yes 255 7
596 72402 72553 High Global No No No No B23 25
603 72752 72754 High  Global No No No Yes 2417 31
649 75664 75664 Low Local No No No Yes 1752 27
650 75664 76220 High Global No No No Yes 1755 27
660 76469 79135 High  Global No No No No 266 27
637 79708 79708 Low Local Yes No Yes Yes 1418 21
700 79731 79741 Low Global No No No No 1282 23
704 79746 79746 Low Local No No Ne Yes 2334 28
743 80208 BO213 Low Local No No No Yes 1175 23
| Precision GEN 093 050
| Recant [T 100 093
| Accuracy OGS 098 085

Table 4.1: Results of analyzing 40 versions of JHotDraw; LOC = non-blank, non-comment
lines of code before and after the changes; Granu.: granularity of the transformation: Scope:
scope of the transformation: Refact. = Is it a refactoring?: #Tests = number of tests used to
evaluate the transformation: Cov. (%) = statement coverage on the target program: MH =

Murphy-Hill.
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Before  After Refact, Refact. Refact.  Refact. #7Tests Cov. (%)
572952 26350 26428 High  Globa No No No Yes 879 29
509497 26428 26428 Low Local Yes No Yes Yes 2259 42
537483 26428 26454 High Local Ng Ne No No 3158 44
656960 26501 26514 Low Local No No No Yes 3487 a7
711140 26536 26539 low  Local No No No Yes 1247 i6
B14123 26558 26558 Low Globa Yes No Yes Yes 2972 a4
B14128 26558 26558 Low Global Yes No Yes Yes 2741 44
814997 26558 26761 High Global No No Yes No Compilation Error
815022 20221 20222 Low Local No Yes Yes No Compilation Error
815042 20258 20255 Low Local No Yes Yes No Comgilation Errar
923339 20901 2090% Low Local Yes No Yes Yes 2712 49
956279 20901 20848 High Local No No No Nao 2705 45
966327 20926 21513  low  Global Yes No Yes Yes 2567 48
1023771 21551 21551 Low Glota Yes No Yes Yes 2201 44
1023897 21551 21551 Low Global Yes No Yes Yes 2033 44
1095934 21608 21608 Low Local Yes No Yes Yes 3180 51
1148801 21618 21628 High  Global Yes Yes Yes Yes 3237 50
1299210 21627 21627 Low Global Yes Yes Yes Yes 1886 49
1300075 21632 21632 Low Local Yes Yes Yes Yes 1813 ag
1311904 21636 21883 High Glabal No No No Yes 2072 48

m 0.60 0.79 0.73
m 0.27 100 1.00

m 0.50 085 0.80

Table 4.2: Results of analyzing 20 versions of Apache Common Collections; LOC = non-
blank, non-comment lines of code before and after the changes; Granu.: granularity of the
transformation; Scope: scope of the transformation; Refact. = Is it a refactoring?, #Tests =
number of tests used to evaluate the transformation; Cov. (%) = statement coverage on the

target program: MH = Murphy-Hill.
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[ Ratringer | Murphy-ii | Sarcheracton |

False Positive 3 4 17
False Negative 21 0 1
True Positive 4 25 24
True Negative 32 31 18
Total 60 60 60

0.16 1.00 096

0.57 0.86 0.59

0.60 0.93 0.70

Table 4.3: Summary of false positives, false negatives, true positives, and true negatives.

refactorings were correct in JHotDraw (precision of 0.93) and 11 out of the 14 detected refac-
torings in Collections were correct (precision of 0.79). The Murphy-Hill analysis correctly
classified 39 out of 40 versions in JHotDraw and 17 out of 20 versions in Collections, leading
to an accuracy of 0.98 and 0.85, respectively.

SAFEREFACTOR identified all refactorings but one (Version 503), leading to a recall
of 0.93 in JHotDraw sample. However, it also classified 13 non-refactoring as refactoring,
which gives it a precision of 0.5. SAFEREFACTOR correctly classified 26 out of the 40 pairs
of IJHotDraw (Accuracy of 0.65). On the other hand, it had an accuracy of 0.8 in Collections,
which means that it was correct in 16 out of the 20 versions. SAFEREFACTOR identified
I'l out of the 11 refactorings (recall of 1). However, it incorrectly classified 4 versions as
refactoring (precision of 0.73).

Finally, the Ratzinger approach correctly classified 26 out of the 40 versions of JHot-
Draw (accuracy of 0.65) and 10 out of 20 versions of Collections (accuracy of 0.5). The
approach detected 1 (Version 156) out of 14 refactorings in the JHotDraw sample, and 3 out
of 11 refactorings in Collections, having recall values of 0.07 and 0.27, respectively. The
approach also incorrectly classified three versions as refactoring: Version 173 of JHotDraw
(precision of 0.5) and Versions 815022 and 815042 of Collections (precision of 0.6). Ta-
ble 4.3 summarizes the approaches’ results with respect to false positives, false negatives,
true positives, and true negatives. It also shows the overall recall, precision, and accuracy of
each approach.

Performing the evaluated approaches involves different time costs. The Murphy-Hill
approach took around |5 minutes to evaluate each subject. However, in some subjects con-
taining larger changes, the approach took up to 30 minutes and was not able to check all

changed files. Ratzinger automatically evaluate the commit message in less than a second.
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SAFEREFACTOR took around 4 minutes to analyze each subject.

4.2.5 Discussion

In this section, we interpret and discuss the results. First, we present the main advantages and
disadvantages of each approach. Then, we summarize the answers of the research questions

(Section 4.2.5).

Murphy-Hill

The manual analysis presented the best results in terms of accuracy, recall, and precision, in
our evaluation. An evaluator can carefully review the code to understand the syntax and the
semantic changes to check whether they preserve behavior. Although a manual process can
be error-prone, the Murphy-Hill et al. approach [49; 50| double checked the results by using
two experienced evaluators. Moreover, they systematically decompose the transformation in
minor changes making it easier to understand them. They also used a diff tool to help them
analyze the transformation.

On the other hand, it is time consuming to analyze all changes in large transformations.
For instance, Collections Versions 1148801, 814997, 815042, and 966327 were so large
that the reviewers could not inspect all the changes. Furthermore, it is not trivial to iden-
tify whether the code compiles by manually inspecting the transformation. The approach
classified four versions that do not compile as refactoring.

In Version 357 of  JHotDraw, among other changes, the
AbstractDocumentOrientedApplication class was moved from folder
org/jhotdraw/app to folder org/jhotdraw/application. Although this
seems to be a move package refactoring, it fixes a compilation error because the class begins
with the statement package org. jhotdraw.application; in both versions. Also,
the commit message describes the transformation as fixing broken repository, which suggest
that the transformation is not a refactoring. SAFEREFACTOR detected compilation errors in
this version.

Finally, the manual analysis classified 15 versions as having a mix of refactorings and

non-refactorings. The SAFEREFACTOR and Ratzinger approaches are not able to identify



4.2 Evaluation 62

Testing of GUI code 318, 322, 344, 384, 409, 609, 650, 704, 743

2 Testsdo not cover Impacted methads 173, 267, 322, 344, 649, 650
3 Tests do not cover impacted branches 134, 322, 711140

4 Weak JUnit assertions 650

5 Cannot apply regression testing 572952, 656960, 1311504

Table 4.4: False positives of SAFEREFACTOR: Problem = description of the reason of the

false positive: Versions = ids of the versions related to the false positives.

which refactorings are applied.

SAFEREFACTOR

Although the manual analysis had the best results, it is a time-consuming activity to manually
analyze all versions. It also depends on experienced evaluators. SAFEREFACTOR has the
advantage of automating this process, making an entire repository analysis feasible. In this
study, the main problem of SAFEREFACTOR was the high number of false positives in the
JHotDraw sample, that is, non-refactorings that were classified as refactoring, which leaded
to the precision of only 0.5. In the Collections sample, its precision was close to manual
analysis (0.73 to 0.79), though. Next, we discuss about the false positives, false negatives,

and also the true negatives of SAFEREFACTOR.

False Positives

SAFEREFACTOR had 13 and 4 false positives in the JHotDraw and Collections samples,
respectively. We manually analyzed each one and classified them as shown in Table 4.4.
Most of the false positives were related to testing of GUI code. Application code may inter-
act with the user (such as creating a dialog box) in a variety of different situations. In JHot-
Draw, some generated tests needed manual intervention to cover the functionality under test.
SAFEREFACTOR ignored them during evaluation. Moreover, Randoop did not generate tests
for methods that require events from the Java AWT framework, for instance MouseEvent,
since Randoop could not generate this type of dependence.

Recently, a new feature was added to Randoop to allow specifying a map-

ping from current method calls to a replacement call [66]. For instance,
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the javax.swing.JOptionPane.showMessageDialog method, which usually
presents a dialog box, can be replaced with a call that simply prints out the message and
returns. In this way. it can be used to remove dialog boxes that require a response. We plan
to incorporate this feature into SAFEREFACTOR's approach in the near future.

SAFEREFACTOR also generated false positives because the tests generated by Randoop
within a time limit did not cover methods changed by the transformation. For instance, while
in Versions 173, 267, 649, one changed method was not covered by the tests, in Versions 322
and 650, two and three changed methods were not covered, respectively. SAFEREFACTOR
passes to Randoop the list of all methods in common for both versions of a pair. The time
limit passed to Randoop to generate the tests may have been insufficient to produce a test
for these methods. The average statement coverage of the tests was 22.68% and 45.12% in
JHotDraw and Collections, respectively. As future work, we intend to improve SAFEREFAC-
TOR by identifying the methods impacted by a transformation. In this way. we can focus on
generating tests for those methods.

Moreover, Randoop uses primitive, String and return values as input to the called meth-
ods. Still, some methods may present additional dependencies. For instance, parameters
from class libraries may not be tested by Randoop if the library is not also under test.

Additionally, in Versions 134, 322, and 711140, Randoop produced tests that call the
changed methods, but the tests did not cover the branches affected by the change. In those
cases. the arguments produced by Randoop to the methods under test were not sufficient
to exercise every behavior possible. The Randoop team recently incorporated the option of
using any constant that appears in the source code as input to the methods under test [66].
Moreover, it allows users to specify primitives or String values as input to specific methods.
We plan to investigate whether applying them may reduce SAFEREFACTOR's false positives.

On the other hand, in Version 650 there were two changes that were covered by the tests,
but the assertion established in the tests were not sufficient to detect the change. For instance,
the ComplexColorWheel ImageProducer.getColorAt method returns an array of
floating-point values. Version 650 fixes the value returned by this method, but the test gen-
erated by Randoop only checks whether the value returned was not null. If Randoop could
generate asserts to check the values of the array, the behavioral change would be detected.

The other change affects one private attribute. Recently, Robinson et al. [66] introduced
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an enhancement to Randoop that allows the user to define a set of observer methods to the
attributes, and check their results — an observer method is a method with no side effects.
Therefore, instead of having a single assertion at the end of a generated test, there may be
many assertions at the end. one for each applicable observer method. As future work, we
will investigate how to automatically compute the observer methods and pass to Randoop to
check whether this option improves its effectiveness.

Finally, 3 out of the 4 false positives of Collections were due to addition or removal of
methods not used in other parts of the program. If the transformation removes a method, it
invalidates every unit test that directly calls the absent method. Likewise, if a method and
its unit test is added. this unit test would not compile in the original version. Because of
that. SAFEREFACTOR identifies the common methods of the program, and tests them in the
two versions of the pair, comparing their results. The tests indirectly exercise the change
cause by an added/removed method. as long as this method affects the common methods.
Opdyke compares the observable behavior of two programs with respect to the main method
(a method in common). If it is called twice (source and target programs) with the same
set of inputs, the resulting set of output values must be the same [53]. SAFEREFACTOR
checks the observable behavior with respect to randomly generated sequences of methods
and constructor invocations. They only contain calls to methods in common. Therefore,
SAFEREFACTOR can produce false positives due to different equivalence notion in the APl
context when features are removed or added, since their code may not be used in other parts

of the program but only by clients of the APL.

False Negatives

In Version 503 of JHotDraw, SAFEREFACTOR showed a false negative. By manu-
ally inspecting the results we identified that the behavioral change was due to a non-
deterministic behavior of JHotDraw. The test generated by Randoop contained a statement
assertEquals that indirectly checks the value returned by the t oSt ring method of an
object of class DrawingPageable. This class does not implement toString. There-
fore, it was returned the default value of t oSt ring, which prints a unique identifier based

on the hashcode. The hashcode may change each time the program is executed, which was
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the cause of the non-deterministic result.

Nondeterministic results tend to fall into simple patterns, such as the default return value
of tostring. To avoid that, Randoop has the option of executing the tests twice and
removing the tests that return different results [66]. We also implemented this option in
SAFEREFACTOR, which was used in the experiment. However, it was not sufficient to elim-

inate all cases of non-deterministic results, such as the one in Version 503.
True Negatives

In this section, we discuss some of the non-behavioral transformations detected by
SAFEREFACTOR. In Version 637489 of the Collections API, an overridden method was
changed, while Version 956279 changes a toString method. Any overridden method
may have a very different behavior from the original, which favors its detection by SAFER-
EFACTOR.

In JHotDraw, Version 151 changes the field value inside a constructor, which is de-
tected by an assertion generated by Randoop. In some transformations, the target pro-
gram raised an exception. In Versions 176, 518 and 526, SAFEREFACTOR identified a
NullPointerException in the target program inside a method body and constructors.
In Version 324, the transformation removed an interface from a class. The resulting code
yields a ClassCastException identified by SAFEREFACTOR. Version 596 removed a
System.exit from a method body.

On the other hand, the behavioral changes found by SAFEREFACTOR in Versions 458,
549, 660, 700 were due to non-deterministic results of JHotDraw. JHotDraw contains global
variables that lead to different results of the tests depending of the other that they are exe-
cuted. SAFEREFACTOR currently executes the tests generated by Randoop in batch through
an Ant script. As future work, we plan to implement in SAFEREFACTOR an option to exe-
cute the tests in the same order in the source and target versions to avoid non-deterministic
results because of the order of the tests.

In our experiments, SAFEREFACTOR had better results evaluating a repository of a data
structure library (Collections) than one of a GUI application (JHotDraw). The first one was

easier to evaluate since it does not have GUI, does not produced non-deterministic results,
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and require simpler arguments to exercise its behavior. On the order hand. APIs are less

likely to have behavioral changes during its evolution [66].

Ratzinger

The Ratzinger approach has the advantage of being the simplest and fastest approach for
identifying behavior-preserving transformations. However, in our experiment, many of the
commit messages do not contain keywords related to refactoring, which led this approach
to a recall of only 0.27 in the Collections sample and 0.07 in the JHotDraw sample. Only 4
out of 25 refactoring revisions in both repositories contain some of the refactoring keywords
established by the approach.

Additionally, 3 out of 7 refactorings identified by the approach were false positives. In
Version 173 of JHotDraw, the commit message indicates that developers removed unused
imports and local variables. which suggests the commit was a refactoring. However, by
manually inspecting the changes, we checked that one of the removed local variable assign-
ments contains a method call that changes Ul components. SAFEREFACTOR also classified
this transformation as refactoring since the tests generated by Randoop did not detect this
behavioral change in the GUI. This approach also classified Versions 815022 and 815042 as
refactoring, but SAFEREFACTOR detected that these versions do not compile, so they cannot
be classified as refactorings.

It is not simple to predict refactorings by just inspecting the commit message. The results
confirm Murphy-Hill et al. findings [49; 501, which suggest that simply looking at commit
messages is not a reliable way of identifying refactorings. Nevertheless, in some situations,
if the company recommend strict patterns when writing a commit message, this approach

may be useful.

Answers to the research questions

From the evaluation results, we make the following observations:

e QI. Do the approaches identify all behavior-preserving transformations?

We found evidence that Murphy-Hill approach is capable of detecting all behavior-

preserving transformations since it achieved a recall of 1.0. With respect to the auto-
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mated approaches, SAFEREFACTOR had an excellent recall of 0.96, but it may miss
behavioral changes not detected by the tests or incorrectly detect behavioral changes
in non-deterministic programs. On the other hand, our results show evidence that
Ratzinger approach may miss a number of behavior-preserving transformations since
it had an overall recall of only 0.16. Many of the evaluated behavior-preserving trans-
formations were not documented in the commit messages in the way it is expected by

this approach (see Section 4.2.5);

e Q2. Do the approaches correctly identify behavior-preserving transformations?

No. Our results show evidence that the Murphy-Hill approach is the most precise
among the evaluated approaches (precision of 0.86). However it may incorrectly clas-
sify transformations that contain compilation errors as behavior-preserving transfor-
mations. Itis difficult to manually reason whether a program compiles. With respect to
the automated approaches, the results indicate that SAFEREFACTOR (0.59) is slightly
more precise than Ratzinger (0.57). Some of the non-behavior-preserving transfor-
mations evaluated contain commit messages related to refactorings that were applied
among other changes, leading the Ratzinger approach to incorrectly classify them as

behavior-preserving transformations;

e Q3. Are the overall results of the approaches correct?

The results indicate the Murphy-Hill approach is very accurate. In our experiment, it
only failed in 4 out of the 60 subjects (accuracy of 0.93). Also, the results show evi-
dence that SAFEREFACTOR is more accurate (0.70) than Ratzinger’s approach (0.60).
Although close in terms of accuracy, SAFEREFACTOR and Ratzinger have different
limitations. While the former had a total of 17 false positives, the latter had just 3. On

the other hand, the former had just one false negative, while the latter had 21.

4.2.6 Threats to validity

There are several limitations to this study. Next we describe some threats to the validity of

our evaluation.



4.2 Evaluation 68

Construct validity

To evaluate the correctness of the results of each approach, we created the baseline (see
Column Baseline of Tables 5.8 and 4.2) by comparing the approaches” results since we did
not previously know which versions contain behavior-preserving transformations. Therefore,
it all approaches present incorrect results, our baseline may also be incorrect.

Another threat was our assumption that changes to non-Java files are refactorings. This
may not be true in some cases, such as when a library that the code depends upon is upgraded.
With respect to SAFEREFACTOR, it does not evaluate developer intention to refactor. but

whether a transformation changes behavior.

Internal validity

The time limit used in SAFEREFACTOR for generating tests may have influence on the de-
tection of non-refactorings. To determine this parameter in our experiment, we compared
the test coverage achieved by different values of time limit. In general, achieving 100% test
coverage in real applications is often an unreachable goal; SAFEREFACTOR only analyzes
the methods in common of both programs. For each subject, we evaluated one of the selected
pairs, and analyzed the statement coverage of the test suite generated by SAFEREFACTOR on
the source and the target programs. After increasing the time limit to more than 120 seconds,
the coverage did not present significant variation. So, the value of time limit chosen was 120
seconds. We follow the same approach used in previous evaluations on Randoop [66].

In 17 changes classified as refactoring by SAFEREFACTOR, our manual analysis showed
different change classifications. Some of these changes were not covered by SAFEREFAC-
TOR's test suite. In transformations that only modify a few methods. SAFEREFACTOR con-
siders most methods in common. When this set is large the time limit given to Randoop
(120s) may not be sufficient to generate a test case exposing the behavioral change. As a
future work, we intend to improve SAFEREFACTOR by generating tests only for the meth-
ods impacted by the transformation [64]. In this way, we can use SAFEREFACTOR using a
smaller time limit. '

We used the default value for mostly Randoop parameters. By changing them, we may

improve SAFEREFACTOR results. Moreover, since SAFEREFACTOR randomly generates a
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test suite, there might be different results each time we run the tool. To improve the confi-
dence, we ran SAFEREFACTOR three times to analyze each transformation. If SAFEREFAC-
TOR does not find a behavioral change in all runs. we consider that the transformation to
be behavior-preserving. Otherwise, it is classified as a non-behavior-preserving transforma-
tion. The tests generated by Randoop had coverage lower than 10% in some versions of
JHotDraw. By manually inspecting the tests, we check that they contain calls to JHotDraw’s
methods that call System.exit (), which ends the test execution. As future work, we
plan to improve the test execution by avoiding some method calls.

We manually created the buildFiles for JHotDraw, and downloaded the dependencies. We
made sure the compilation errors found by SAFEREFACTOR were not related to any missed
dependency. We do not have information on the SVN indicating the JDK version used to
build the program. By changing the JDK, results may change. Moreover, we run tests using
JDK L.6.

The Murphy-Hill approach was performed by two experienced evaluators. One one them
was the author of the approach. They also have an extensive background in refactoring.
The accuracy of this approach may change according to the level of Java expertise of the

inspectors.

External validity

We evaluated only two open-source Java projects (JHotDraw and Apache Collections) due
to the costs of manual analyses. Our results, therefore, are not representative of all Java
projects. To maximize the external validity we evaluated two kinds of software: a GUI
application (JHotDraw) and an APl (Apache Common Collections).

Randoop does not deal with concurrency. In those situations, SAFEREFACTOR may yield
non-deterministic results. Also. SAFEREFACTOR does not take into account characteristics
of some specific domains. For instance, currently, it does not detect the difference in the
standard output (System.out.println) message. Neither could the tool generate tests that exer-
cise some changes related to the graphical interface (GUI) of JHotDraw. These changes may
be non-trivial to be tested by using JUnit tests.

Moreover, some changes (Versions 743 and 549) improve the robustness of JHotDraw.

Randoop could not generate test cases that produce invalid conditions of JHotDraw to iden-
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tify these behavioral changes. Also, it seems that some of the bug fixes need complex sce-
narios to expose behavioral changes. For instance, Version 267 introduces a work-around in
one method to avoid a bug in the JDK. Since we may have tested it using a new JDK, prob-
ably. the transformation does not change program’s behavior. In Version 700, developers
change some instructions to assign a copy of the array instead of the array itself. Although
this change fixed the array exposure, Randoop could not detect any behavioral change,
Similarly, the manual analysis presents a number of limitations as well. Manually in-
specting code leaves room for human error. We only selected changes from two projects
(JHotDraw and Collections), which may not be representative of other software projects. In
other software domains, it may be harder to understand the logic of the software and define
whether the change preserves behavior. Moreover, Java semantics is complex. Even for-
mal refactoring tools may fail to identify whether a transformation preserves behavior [77].
We tried to mitigate this by having two experienced evaluators simultaneously analyzing the
source code. Finally, during our manual analysis, we encountered six very large changes that
we were unable to manually inspect completely; in these cases we spent about 30 minutes
manually cataloging refactorings, but did not find any semantics changes in doing so. Had we
spent significantly more time inspecting, we may have encountered some non-refactorings.
This illustrates that manual inspection, while theoretically quite accurate, is practically diffi-

cult to perform thoroughly.

4.3 Concluding remarks

In this chapter, we presented SAFEREFACTOR, a tool for detecting behavioral changes. Its
key idea is to compare the behavior of two versions of a program against the same tests. To
do so, it identifies the methods in common before and after the transformation. generates tests
for them, and run these tests against both programs. If the results are the same, it improves
the confidence that both programs have same behavior. Otherwise. it detects a behavioral
change.

We performed an experiment to compare SAFEREFACTOR and other two approaches
(Murphy-Hill and Ratzinger) with respect to effectiveness in detecting behavioral changes.

Our results suggest that SAFEREFACTOR has 70% accuracy. The evaluation in Section 4.2
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shows some limitations of SAFEREFACTOR. For instance, it produced false positives when
testing GUI code and false negatives when testing non-deterministic code. These limitations
do not affect the use of SAFEREFACTOR in our technique for testing of refactoring engines

since we use it against simple transformations that are deterministic and do not have GUI

code.



Chapter 5

A technique for testing of refactoring

engines

In this chapter, we present our technique for automated testing of Java Refactoring Engines.
It focuses on identifying problems related with missing conditions and strong conditions.
The key elements of the technique are JDOLLY (Chapter 3) and SAFEREFACTOR (Chap-
ter 4).

The remainder of this chapter is organized as follows. Section 5.1 shows an overview of
our technique. Then, each step of our technique is described from Section 5.2 to Section 3.5.
Sections 5.6 and 5.7 describe our experiments to evaluate the technique. Finally, Section 5.8

shows the concluding remarks.

5.1 Overview

We propose an automated approach for testing of Java refactoring engines. The approach
performs four major steps. First, a program generator automatically yields programs as
test inputs for a refactoring (Section 5.2). Second, the refactoring under test is automatically
applied to each generated program (Section 5.3). Then, the output is evaluated by test oracles
in terms of missing conditions and overly strong conditions (Section 5.4). In the end, we may
have detected a number of failures, which are categorized in Step 4 (Section 5.5). The whole

process is depicted in Figure 5.1.
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Figure 5.1: Automated behavioral testing of refactoring engines.
5.2 Test input generation

We automatically generate programs as test inputs for the refactoring engines. To perform
the test input generation, we propose a Java program generator called JDOLLY. We show a

detailed description of JDOLLY in Chapter 3.

5.3 Refactoring application

The second step of our technique is to apply the refactoring under test to each generated
program. This step can be performed manually (by using the IDE directly) or by the use
of an API offered by the IDE infrastructure. Each refactoring checks a set of conditions,
and, given the fulfillment of these conditions, the transformation is applied; otherwise. the

refactoring is rejected, and a warning message is shown.

5.4 Test oracles

An important problem in automated testing of refactoring engines is automated checking
of outputs. In practice, developers manually write the expected output, which can be a
refactored program or a warning message when a condition is violated. Next, we show our

automated oracles to detect missing conditions and overly strong ones.
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5.4.1 Missing conditions

We propose SAFEREFACTOR (Chapter 4), a tool for checking behavioral changes, as oracle
for detecting missing conditions. For each pair of input and output programs produced by the
technique, SAFEREFACTOR checks for behavioral changes. If it detects behavioral changes.
we classify the transformation as a failure.

For instance, Listing 4.1 shows a Java program generated by JDOLLY, and Listing 4.2
shows the output program after applying a Pull Up Method refactoring by using Eclipse.
Since SAFEREFACTOR detects behavioral changes in this transformation, we classify it as
a failure. In Section 5.5.1 we show how to classify failures due to behavioral changes into

distinct faults.

5.4.2 Overly strong conditions

We propose an oracle to detect overly strong conditions based on differential testing [81].
When the refactoring implementation under test rejects a transformation, we apply the same
transformation by using one or more other refactoring implementations. If one implemen-
tation applies the transformation, and SAFEREFACTOR does not find behavioral changes,
we establish that the implementation under test contains an overly strong condition since it
rejected a behavior-preserving transformation.

For example, consider the A class and its subclass B in Listing 5.1. 2 declares the
k (Long) method, and B declares methods n and test. Suppose we would like to re-
name n to k. If we apply this transformation using Eclipse, it shows the warning message:
Method “A.k(long)” will be shadowed by the renamed declaration “B.k(int)".

Eclipse has a functionality that allows us to preview the transformation. In the previous
example, Listing 5.2 presents the preview of the resulting program. Notice that after the
transformation, the test method yields 20, but in the original version it yields 10. This
transformation does not preserve behavior. This is the reason why Eclipse showed a warning
message.

However, we can apply this transformation using JRRT. The resulting program is pre-
sented in Listing 5.3. Notice that this transformation is different from Eclipse. JRRT per-

forms an additional change to make the transformation behavior-preserving. JRRT identifies
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that the call to k inside test mustrefer to A . k instead of B. k after the transformation. So.

it adds a super access to the method invocation k (2) inside test. Therefore, the result-

ing program in Listing 5.3 correctly refactors the original program in Listing 5.1. NetBeans

can also perform the transformation. It yields a target program presented in Listing 5.2.

However, the transformation performed by NetBeans does not preserve behavior.

Listing 5.1: Original version.

public class A |

public long k(long a) |

return 10:

!

public class B extends A |

public long niint
return 20:

}

public long test()

return k(2);

a)

{

Listing 5.2: NetBeans target version.

public class A |

public long k(long a) |

return 10;

)

public class B extends A |

public long k(int a)

return 20
]
public long test()

return k(2):

{

{
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Listing 5.3: JRRT target’s version.

public class A |
public long k(long a) |

return 10;

!
public class B extends A |
public long n(int a) |
return 20:
}
public long test () |

return super . k(2):

We compare the results of Eclipse, NetBeans, and JRRT. While the former rejected the
transformation, NetBeans and JRRT applied it. SAFEREFACTOR evaluates the transforma-
tions applied by JRRT and NetBeans. It does not find behavioral changes in the transforma-
tion applied by JRRT. We conclude that Eclipse rejected a behavior-preserving transforma-
tion due to an overly strong condition since JRRT was able to correctly apply it. Moreover,

it detects a fault (missing condition) in the transformation applied by NetBeans.

5.5 Failure classification

Our technique may produce a large number of failures since it automatically produces a
number of test inputs. The process to manually classify the failures into distinct faults may
demand a considerable effort. In the following subsections, we present techniques to auto-

mate the classification of failures into distinct faults.

5.5.1 Missing conditions

Missing conditions may produce two main types of failures: the ones that introduce com-
pilation errors in user’s code; and the failures that introduce behavioral changes in user’s

code.
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Compilation errors

Jagannath et al. [34] propose an approach to split failures based on oracle messages (Oracle-
based Test Clustering - OTC). They used it to classify refactoring engine failures that intro-
duce compilation errors in the output program. The failures are grouped by the template of
the compiler error message, so that each group contains a distinct fault. We adopt the same
approach to classify this kind of failure.

For instance, Listings 5.4 shows a program generated by JDOLLY. If we apply the Re-
name Field refactoring by using JRRTv 1, the tool will produce the output program shown in
Listing 5.5, which contains the compilation error: “The field Ak is not visible”. Listings 5.6
shows another program generated by JDOLLY. The only different between it and the previ-
ous program (Listings 5.4) is the addition of the C class. If we apply the same Rename Field
refactoring, JRRTvI will produce an output program (Listings 5.7) with the same kind of
compilation error. Our technique groups both transformations together by using the template

of the compilation error: “The field [F] is not visible™.

Listing 5.5: After Refactoring. Apply-

Listing 5.4: Before Refactoring ing Rename Field in JRRTVI leads to a
| package pl; compilation error.
2 public class A | I package pl:
3 protected int n=1; 2 public class A |
i 3 protected int k=-31;
5 4 )
6 package p2; 5
7 import pl .x; 6 package p2;
8§ public class B extends A | 7 import pl.x;
9 int k=2 8 public class B extends A |
10 public long m() { 9 int k=17;
11 return this .n; 10 public long m(){
12 } 11 return ((A)this) . k:
13 ) 12 ]
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Listing 5.6: Before Refactoring

I package pl;

(9]

public class A |

3 protected int n=1;

4

5

6 package p2;
7 import pl.x*;
8
9

public c¢lass B extends A |
int k=2
10 public long m() {
Il return this.n:
12 ]
13 |
14

15 package p2;
16 public class C {
17 )

wn =N (o] (3]

oo N O

16

17

Listing 5.7: After Refactoring. Apply-
ing Rename Field in JRRTvI leads to a

compilation error.

package pl;
public class A |

protected int k=-31;

package p2:

import pl.x;

public class B extends A |
int k=17;
public long m(){

return ((A)this) . k:

package p2;
public class C |
}
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Table 5.1: Filters for classifying behavioral changes.
Filter Description

After a refactoring, a method comes to be (or no longer is)
overridden
After arefactoring, a method comes to be (or no longer is)
overgaded
After arefactoring, a feld comes to be {o7 no longer 1s) nidden oy ]
__another field declaration
After a refactorng, a c'ass declaration comes 1o e shadowed oy |
angther declarat.on
 a method call or field access “as this or implicit this (super} as [
Changes superithis or implicit this) targer, and after a refactoring this reference is replaced oy super
10 this or implicit this (super) {this or implicit this), in order 0 xeep the In<to the same
previous object
Mainta:ns superwhile changng  Areference to super s moved Lp or down t1e hierarchy during
nierarchy refactoring

Enables/disables overriding
Enables/disables overicadng
Enables/disables fie'd h ding

Shadows ¢ ass declaration

The refactoring changes the access mod fier of a given field or
methed

The original program s normally executed by the test sute but
the refactored one tarows some exceptions

Changes access:biity

The refactored program crashes

After arefactering, an implicit cast between primitive types is (or
Enables/disables imp!cit cast nc langer is) applied where it did nat take (or took) place
crignally

Behavioral changes

We do not use the OTC approach for classifying failures related to behavioral changes since
we did not identify any information from our oracle (SAFEREFACTOR) that could be used to
split the failures. We propose an approach to classify behavioral changes by splitting each
detected change based on the characteristics of each pair of input and output programs. Our
approach is based on a set of filters; a filter checks whether the programs follow a specific
structural pattern. For example, there are filters for transformations that enable or disable
overloading/overriding of a method in the output program, relatively to the input program.
All filters are presented in Table 5.1. We defined these filters by analyzing faults found
through the use of our approach, in addition to other reported faults.

The filters may be applied in any order. The fault category of a behavior-changing trans-
formation is then designated by the filters matched by its input and output programs. When
a transformation does not match any of these filters, conventional debugging is demanded
from refactoring engine developers. For instance, the failure in the Pull Up Method on ei-
ther Eclipse JDT 3.7 or JRRTvI showed in Listing 5.2 matches the filter named “Changes
super(this) to this(super)” from Table 5.1, in which a problem with replacing a reference to
super with this is detected.

The set of filters is not complete. Currently, they focus on the Java constructs supported

by JDoLLY. New filters can be proposed based on additional faults found by refactoring
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engine developers. Currently, the classification of behavioral changing transformations is
carried out manually. The process consists in analyzing each pair of programs, and testing

every lilter for matches.

5.5.2 Opverly strong conditions

We also use OTC to categorize the overly strong condition failures. Our hypothesis is that
each condition has a particular warning message. Therefore, to split the failures, we use the
template of the warning message thrown by a refactoring engine when a condition is not
satisfied.

For example, when we apply the Rename Method refactoring of Eclipse to the program
shown in Listing 5.1, the tool yields the following warning messages, respectively: Method
“Ak(long)" will be shadowed by the renamed declaration “B.k(int)". Our approach ignores
the parts inside quotes, which contain names of packages. classes, methods. and fields. If
there is another message that has the same template, the rejected transformations are auto-

matically classified in the same category of overly strong condition.

5.6 Evaluation: missing conditions

The goal of this experiment is to analyze our technique for the purpose of evaluation with
respect to effectiveness in identifying faults related to missing conditions from the point of
view of refactoring engine developers in the context of academic and industrial Java refac-

toring engines. In particular, our experiment addresses the following research question:
e Q1. Can the technique identify faults related to missing conditions?

To address our research questions, we assess the effects of each technique by using the

following metric:

o Number of distinct faults correctly detected by the technique.

5.6.1 Planning

In the following subsections, we describe the subjects used in the experiment, the experiment

design, and its instrumentation.
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Table 5.2: Summury of evaluated refactorings: Scope = Package (P) - Class (C) - Field (F) -
Method (M),
Rafactoring ,_?:':_,. Ecipss JRET  NetBesns

Rename class 2-3-0-3 X X X ‘

) “;{e;'mme method Z-3-0-3 X X x )

Rename fe.d 2-3-2-1 X X X i
Pusndownmethod 2-3-9-4 X X X
Push down fietd 2-3-2-1 X X - X
Pul ip method 2-3-0-4 X X R %

Pull up Feld 2-3-2-1 X X x J

Encapsulate field 2-3-1-3 X X X :

------ i Move method 2-3—i-l3mu— —; H ,
Acd paramete- 2-3-0-3 X X X

Selection of subjects

We evaluated Java refactorings implemented by Eclipse JDT 3.7 (10 refactorings), JRRTvI
and JRRTv2' (10 refactorings), and NetBeans 7.0.1 (9 refactorings). Table 5.2 summarizes
all evaluated refactorings.

Eclipse is the most used Java IDE 48], and contains a number of automated refactorings
(currently, morc than 25). The evaluated refactorings focus on a representative set of program
structures.  Moreover, a survey carried out by Murphy et al. [48] shows the Eclipse IDT
refactorings that Java developers use most: Rename, Move Method, Extract Method, Pull
Up Method. and Add Parameter. Four of these are evaluated in this experiment. NetBeans
is also a popular Java IDE. The Move Method retactoring was not supported by NetBeans
by the time that this experiment was performed. A number of related approaches [ 14; 84;
71| have studied the correctness of their transformations.

JRRT implements a number of refactorings [71; 74; 68]. They aim at outperforming the
refactoring implementations of Eclipse in terms of overly strong and too weak conditions.
Some refactorings may have invariants to be preserved. For instance. their Rename Method
refactoring implementation is based on the name binding invariant: each name should refer
to the same entity before and after the transformation. They proposed other invariants such as
control flow and data flow preservation, To alleviate the problem of overly strong conditions,

their implementations may also perform additional changes, such as the one presented in the

"The JRRT version ftom July 9th. 2011
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Table 5.3: Summary of the main constraints.

| Refoctoing inghementation | MeiaComtrake | Addionsi Gonstrenes

. Rerame { 255 30mie Lizse [P .
: Rerar-¢ Method | some hetnod iz, 3. 41
Renare F ed some Figlo : i3 9 E
“ Pusk Dawer Method \ some c:C 233 | someSubclass cfand somehetadir; i 11, 8} :
’ PuskCawrled ... some o:C ass somesubclassic] and somef.eld[c} o Y {2, 4}
“ Pull Jp Metaod L some ¢ Class semeParent]r; and someMethedle) , fa, 62
! PulupFed o ~ somec.Class| someParentcjand somel e de ‘ 12, 4}
Erzzpsulate Mield X some Fielgd g, B, 7! !
Move Method | some :C ass | some TargetClassField ) and someMethod "ohMevelc] i1, 2}
Acg Parareter some Method 22,1

transformation from Listing 5.1 to Listing 5.3.

We evaluated two versions of JRRT [71; 74; 68]. First. we evaluated with our technique
the refuctorings implemented by JRRTvI. Later, a new version with improvements and
bug fixes was refeased (which we call JRRTv2); this new version was also subject to our
analysis in order 1o evaluate whether our technique could be useful for identifying new faults
during the evolution of the teol. The same refactorings from Eclipse IDT were tested in both

versions of JRRT.

Experiment design and instrumentation

The scope column in Table 5.2 indicates the maximum number of packages, classes, fields,
and methods passed as parameter to JDOLLY. For cach refactoring, we specified main con-
straings for guiding JDOLLY 1o generate programs with certain characteristics needed to
apply the refactoring. Table 5.3 shows these constraints, they prevent the generation of pro-
grams to which the refactoring under test is not applicable. For each refactoring, we used the
same set of generated programs to evaluate Eclipse JDT, JRRTv 1. JRRTv2, and NetBeans.
Exhaustively generatuing programs, even for a given scope. often causes state space ex-
plosion. In order to minimize the number of generated programs to a small. focused set. we
have also defined additional constraints. These constraints were built on data about refac-
toring faults gathered in the literature, enforcing properties such as averriding, overioading,
inheritance, field hiding, and accessibility. For each refactoring (column Additional Con-
straints in Table 5.3), we declare Alloy facts with additional constraints. These are fully
described in Table 5.4, If a developer has the available resources to analyze the entire scope.

then it will not be required 1o specify additional constraints.
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Table 5.4: Summary

of the additional constraints.

| i contri

1 PRI I T

o luaching|

w
AN i

sunineTesler Metbogd?
7o sarnePubhe s e )

8 | :omeMethodsWwithSareNomParameter]}

9 tamePrmitiveFields]]

wrergng e averoad g G Jnser uf patattels
passa ay digument}

Atleasl onearsthod budy cattieg a methog of adcessng a Teid

Allegt une case ol nbertanie

Al leaul e tare of Tu b diny

. [N g |
N R
3 suedthencance ]
P EH RS R AN TR 1
sutnshetled ]

caller rretoagd

Al esut dre g

At fwast prw cethod body wit

AL feast one poliit fiesd

Al least lwo methaes valh the sarme number of parameters

4 surnde cafl 1o speafic maetsad

AL least twa primitive field;

Each refactoring may possibly include parameters. For instance, a method can be re-
named, or a ficld may be encapsulated. In those cases, we declare a singleton subsignature
for each parameter, similar to what we have done with C1, C2 in Section 3.4, und use it in

both the main and the additional constraints.

5.6.2 Operation

We performed the evaluation on a 2.5 GHz dual-core PC with | GB of RAM. We used the
SAFEREFACTOR command-line version with a time limit of one second, which is enough for
testing the small generated programs. Cobertura® was used (o collect the statement coverage
of the test suite as generated by SAFEREFACTOR in the resulting program.

JDOLLY generated 153,444 programs (o evaluate all refactorings. Even though Eclipse
JOT. JRRT and NetBeans have their own test suites, our technique identified 120 (likely)
distinet faults related to missing conditions. Table 5.5 summarizes the faults reported to
Eclipse JDT. NetBeans and JRRT.

From our catalog, most fanlts were accepted (87). Some faults have not been dealt with
by Eclipse JDT and NetBeans developers prior to this writing (22). All faults accepted by
JRRT developers in JRRTvI (20) were fixed in JRRTv2. We have also evaluated their new
version (JRRTv2) after fixing the faults from JRRTvI, and reported 11 faults. They did not
consider 4 faults due to the closed world assumption (CWA) adopted by them, as we discuss

in Section 5.7.1. More importantly, they incorporated our test cases into their test suite”.

Thitg:Aeobertura sourceforee net
Ahetp:fende. govgle com/p/irri/source/checkout


http://cobertura.sourceforge.net
http://code.google.corn/p/jrrt/source/checkout
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Table 5.5: Summary of faults reported.

Submitted Accepted Duplicated NotaFault NotAnswered Fixed

L Eclipse 34 34 16 0 0 2
JRRTWL 24 20 4] 4 0 20
JRRTw2 11 6 0 5 0 6

NetBeans 51 27 0 2 ) 22 7
Total 120 87 16 T 22 35

Eclipse JDT and NetBeans teams have fixed 2 and 7 faults’, respectively, which should be
included in the next version of the IDEs. Developers have already confirmed 34 and 27 faults
in Eclipse JDT and NetBeans. respectively. However, 16 faults were considered duplicated
in Eclipse JDT.

It took from lh36m to 50h24m to evaluate each refactoring. This includes the time
required to generate and compile the input programs, apply the transformations, compile the
resulting programs, run SAFEREFACTOR, and collect the statement coverage. The required
amount of time depends not only on the number of programs to be refactored, but also on the
number of transformations to be carried out. For example, it took 6h54m to test the Rename
Method refactoring on Eclipse JDT, whereas it took 13h36m to test the same refactoring in
JRRTV2, with the same inputs. Time also depends on the static analysis performed by each
refactoring to check conditions. Table 5.8 summarizes the experimental results.

The results include the number of programs generated by JDOLLY, the percentage of
compilable programs, the time for testing. and the number of detected failures (encompassing
compilation errors and behavioral changes). It also shows the number of faults identified by
our approach in each refactoring. Table 5.8 indicates, for each refactoring, the mean value

of the statement coverage from the refactored program.

Compilation Errors

Our technique detected 16 faults in Eclipse JDT, 11 faults in JRRTvI, | fault in JRRTv2,
and 29 faults in NetBeans; all related to compilation errors. Our technique for classifying
failures (Section 5.5.1) takes a few seconds to automatically classify all compilation error
failures of a refactoring. For instance, our technique detected 1,267 compilation failures in

the Push Down Method refactoring implementation of Eclipse JDT. The described approach

“The id of all faults are available at: kttp://www.dsc.ufeg.edu.br/~spg/saferefactor

Sxperiments . htm
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Table 5.6: Overall experimental results; GP = number of generated programs; CP = number

of compilable programs (%): Time = total time to test the refactoring in hours; Fail. = number

of detected failures; Bug = number of identified faults.

Totad pliation Error

o | ‘t:’ S || v Eclipie | JRRTVI | JRRTVZ | NetBuans ! Eclipse E RETVL | AT | NetBeans | ‘ ’-_
| . Fail | Bug | Fail. | Bug| Fail. | Bug | Fail | Bug | Fail | Bug | Fail. | sug | Fai. | Bug | fail | Bug Ee: ARRRYL] IRNIVZ | NOIK
Rename class ! 2 |asa2seioel 3| o 9] 0| o a2l 4 !145 1 & ofofjo] o 15| 1 |se] & 67 | 56
Renamemetnod | 11203 783 69 | 87 | 136 6 |o|a|o [um|z]| oo | a|az| 2 [12:] 2 |83 | B 50 | &
Renar e field | 9,42 ?92:.“:11 224 ‘ 304 | s 2o o3 ‘ slololw|1]o] o ||+ |we| w ! wo | z00
Push dowr methos | 2052 |73 19| 116 5 vors 2 | o | o |oand o s3] 5 [ase| & |ms| 2 |rass] & |0 % 53 | s0
Push down field | 11536 7='i €| 37 | es | 1o fofofo gi ] I 52 ‘ t{olofe] o ‘ 20| 2 |wo| w0 l w00 | 100
Puusmethod | BS3 [ ses (2| 2| o |scasf s [aoz| 3 || 2 [0]| o from| 5 [e0) 30 | @2 [
Pyl up fiele 10527 (797 86 | 53 ‘ 17 |21 518 L o [1:28] 4 |56 | @ oo 2| 2 || = : % |00
Encapsaiae hele | 2000 |928| 25 | 16 | 23 |37 |28 21| o |o| o] o |2z 2 0 |3aa| 1 [a37 | e39 6| 8 86
Mave metnon | 22505 | 69 ;:n;% 45 | 59 ! N EIUR ISR 0 O T } iuat% 3 [u7s8) 3 [esaal 3 ! - 82| e | 8
Ao parameter | 30,18 | 63 (3a69| 2461 | 2505 sedelnees 2 [ o | o | o o [ss2a| 4 (2238 2 |38 2 [0 | o |awme] 2 |87 | ® E 8
Total i:s:,au sa.s!u.nj 11215131 aiius?Es,ua 1 |az38] 11| 9 ‘ 1 [psse 3 iru:i 18 |2384) 13 [8152] 10 |se0s| 22 |

classified them into two groups: some transformations produced the message “The method
[M] from the type [T] is not visible”, while others produced the message “No enclosing
instance of the type [T] is accessible in scope”. Consequently, two faults were catalogued.
Even though all evaluated refactorings implemented by Eclipse JDT and NetBeans con-
tain at least one fault related to compilation errors, our approach did not find faults related
to compilation errors in 50% and 90% of the refactorings of JRRTvI and JRRTV2, respec-
tively. In Eclipse JDT, the Rename Class refactoring contains three faults: from JRRTv1 and
JRRTV2, the Move Method refactoring showed more faults than the other refactorings. In
NetBeans, three refactorings contain four faults each. Notice that the Rename Field, Pull
Up Field and Move Method implemented by JRRTv] have more faults than the similar im-
plementation of Eclipse JDT. After fixing them, JRRTV2 presented fewer faults than Eclipse

JDT.

Behavioral Changes

We identified 18, 13, 10 and 22 faults in Eclipse JDT, JRRTvI, JRRTv2 and NetBeans,
respectively, all related to behavioral changes. We manually classified these faults by using
our proposed set of filters (Section 5.5.1). For each refactoring type, it took approximately
two hours to manually classify behavioral changes. As future work, we intend to implement
tools to automate this process. For instance, Listings 5.1 and 5.2 show a fault of the Pull Up

Method refactoring implemented in the Eclipse JDT, categorized as “Change super to this”.
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5.6.3 Discussion

Next we discuss some issues related to compilation error, behavior preservation and

JDOLLY.

Compilation Errors

Changing the name, location, or accessibility of a declaration can lead to compilation errors.
All engines but JRRTv2 produced transformations that reduced the accessibility of an inher-
ited method, which is not allowed in Java. Most compilation errors were due to dereferences
of inaccessible or nonexistent declarations. For example, in Listing 5.8, m accesses the £
field of its super class. If we apply the Pull Up Field refactoring of Eclipse IDT 3.7 10 B. £,
it yields the uncompilable program presented in Listing 5.9. After the transformation, B. £
hides A . £. and since it is private, it cannot be accessed from C. To prevent such errors, JRRT
statically checks whether every identifier refers to the same declaration as before. In that
case, however, JRRTvI introduced another compilation error by re-qualifying field access
super.f to ((A)super) .f, which has a syntax error. We reported this fault to JRRT
developers, and they fixed it. JRRTV2 correctly applies the transformation by re-qualifying
the super. £ field accessto ( (A)this) . f.

Moreover, JRRT refactorings translate the programs into a richer language, which pro-
vides a more straightforward specification. After this, the programs are translated back into
Java. Although the implementation of the refactoring itself becomes simpler, it does re-
quire some effort to translate the program back from the enriched language into the base
language. Our technique detected some failures in JRRTv 1 that may be related to this step.
For instance, some of the refactored programs presented compilation errors due to method
invocations for non existing declarations, such as unknown ().

Although we only evaluated 9 refactorings from NetBeans, those refactorings contained
more faults related to compilation errors than Eclipse JDT and JRRT. It seems that NetBeans
does not implement a number of expected conditions. Since its refactorings present a lower

rate of rejections, it takes, in general, more time to evaluate NetBeans than the other tools.
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Listing 5.8: Before Refactoring.  Listing 5.9: After Refactoring. Pull Up

| Field implemented by Eclipse JDT 3.7
2 introduces a compilation error due to an
3 invisible field.

4 public class A | I public class A |

5 long f = 1. 2 long [ = 1;

6 ) 3}

7 public class B extends A { 4 public class B extends A |

8 ] 5 private long [ = 2.

9 public class C extends B { g |

10 private long f = 2. 7 public class C extends B |

11 public long m() | 8 public long m() |

12 return super.[; 9 return super.(;

13 } 10 |

14 | 1}

Behavioral Changes

Some faults related to overloading and overriding have been known by Eclipse JDT de-
velopers for years. For instance, a fault related to the Add parameter refactoring has de-
manded the inclusion of additional conditions since 2004”. Nevertheless, it is difficult to
establish and check conditions to avoid these faults. While the Add Parameter fault is still
open, Eclipse JDT developers implemented simpler conditions for Rename Method, check-
ing whether there are other methods in the hierarchy with the same signature as that of the
refactored method. If so, the engine warns the user that the transformation may introduce
behavioral changes. In this case. it is up to the user to analyze whether the transformation is
safe.

For each refactoring, we analyzed the statement coverage of the random test suite used
by SAFEREFACTOR over the program after refactoring; from these, we calculated the mean
value of the statement coverage (see Table 5.8). The minimum mean value of the statement

coverage of Eclipse JDT, JRRTvI, JRRTV2, and NetBeans in our evaluation was 54%, 63%,

*See Eclipse JDT Bug 58616
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67%, and 56%, respectively, for the Rename Class refactoring. These numbers can be par-
tially explained by the tests generated only for methods in common. Additionally, most of
the programs generated by JDOLLY contain at most four methods, and fewer than 15 LOC.
It a class or a method is renamed, and they are not referred to by methods with unchanged
signatures, the statement coverage decreases significantly. Since refactorings engines may
allow different transformations, and the test suite is randomly generated in SAFEREFACTOR,
the mean value of the statement coverage may be ditferent between engines.

The detected faults can be fixed either by modifying conditions or changing the trans-
formation itself. For instance, one fault reported to JRRT generates a program with the
following code fragment: ( (&) super). This is an invalid Java expression. We can fix
this fault by modifying the transformation applied by JRRT, which rewrites a command with
the incorrect fragment. However, fixing faults may not be as straightforward as it appears
to be. For example, consider the transformation showed in Listings 5.8 and 5.9. We can
fix this fault by adding a condition avoiding this kind of transformation. However, adding
conditions may avoid useful behavior-preserving transformations. JRRTv1 can apply this
transformation, and yet preserve program behavior by replacing the super field access to a

qualified this field access, ( (A)this) . f.

JDoOLLY

During evaluation, we specified the scope of the program generation in JDOLLY based on
previous examples of faults in refactorings. For instance, we used the scope of two packages
since Steimann and Thies [84] show accessibility problems when moving elements between
packages. Schiifer et al. [73] show non-behavior-preserving transformations in programs
with up to three classes and four methods/fields. Since JDOLLY exhaustively generates pro-
grams for a given scope, this approach has been useful for detecting faults that have not been
detected so far.

JDOLLY generated uncompilable programs. The lowest percentage of compilable pro-
grams was in the Add Parameter (63%), and the highest was in the Encapsulate Field
(92.8%). Considering all generated programs, the percentage of compilable programs was
68.8%. For future work, we intend to specify more well-formedness constraints so as (o

minimize uncompilable programs.
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Our Java metamodel does not include constructs such as the static modifier, inner classes,
interfaces, and richer method bodies. Therefore, the currently implementation of JDOLLY
cannot reveal some previously identified faults in manual experiments [73]. We aim at im-
proving the expressiveness of the programs generated by JDOLLY by adding more constructs
to our model. This will increase the state space for the Alloy Analyzer to find solutions and,
consequently. the number of programs generated by JDoOLLY, which will take longer to eval-
uate all transformations. We plan to investigate the possibility of generating a greater range
of programs, specifying as well a time limit, or limiting the number of generated programs.
As a result, we will be able to evaluate refactorings by means of more sophisticated pro-
grams, though without considering the entire solution space.

Test data adequacy criteria provide measurements of test quality. Moreover, it may
provide explicit rules to determine when it is appropriate to end the testing phase [24;
93]. There are a number of notions of test data adequacy. For instance. test data adequacy can
be defined in terms of covering all productions in grammar-based testing. In our work, we
have used a similar test data adequacy criterion. JDOLLY generates every possible program,
for a subset of the Java metamodel, within a given scope of constructs. As such, the generator
covers every terminal symbol and nonterminal production rule from the metamodel, which
are represented by signatures and relations from the underlying Alloy specification. In the
evaluation of the refactorings (Table 5.2), JDOLLY generated programs covering from 71%
to 85% of the 41 signatures and relations of the metamodel. Some signatures and relations
were not covered because we had specified a scope of 0 for Field. In other cases, some

additional constraints implied that some relations could not have values.

5.6.4 Threats to Validity

Next we identify some threats to validity from the evaluation performed.

Construct Validity

Some tool developers follow a closed world assumption (CWA) to evaluate the correctness of
the transformation. CWA means that what is not currently known by the refactoring engine

does not exist. Since we generate tests after the refactoring, the tool does not consider the
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generated tests when checking the refactoring conditions. In few cases, JRRT developers did
not accept the faults because the tool would have detected the behavioral change if the tests
existed by the time of the refactoring.

Despite the different criteria, many other reported faults were accepted by JRRT, Eclipse
and NetBeans developers (see Table 5.5). Although our technique may produce false pos-
itives, it was considered useful by those developers in practice. In particular, the feedback
given by the JRRT team shows evidence that our technique is convenient in detecting faults

under both CWA and OWA criteria.

Internal Validity

Concerning JDOLLY generation with Alloy, additional constraints may hide possibly de-
tectable faults. These constraints can be too restrictive with respect to the programs that can
be generated by JDOLLY, which shows that one must be cautious when creating constraints
for JIDOLLY.

The results provided by SAFEREFACTOR deserve closer analysis. If, out of the programs
generated by JDOLLY no compilation error or behavior change is detected, no definitive
conclusion can be drawn from the refactoring under test. Our technique cannot, based on the
absence of behavior changes, claim that a refactoring is correct. Nevertheless, developers
have stronger evidence that the refactoring is correctly implemented. in practice; we use a
test suite to evaluate the transformation.

SAFEREFACTOR only generates test suites that exercise methods with unchanged signa-
tures. Methods with changed signatures may be called by the unchanged methods, which
exercise a potential change of behavior. Otherwise, methods not called by others are not
considered, in our approach, part of the overall behavior of the system under test; changes
in these methods will not affect the system behavior. A stronger notion of equivalence could
be used: testing every changed method of the system and creating a mapping between two
versions of the modified versions, for comparing their results. We believe that this approach

would add considerable costs with limited benefits to testing refactoring engines.
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External Validity

We believe that other refactoring engines can be tested as well with our technique. This exer-
cise can be accomplished by applying a test generator for the target language (a substitute for
Randoop) and adaptations to SAFEREFACTOR. Also, the target language’s metamodel must
be provided to JDOLLY: or else we can use a different program generator. Therefore, refac-
toring engines targeted at other object-oriented programming languages can benefit from our
technique.

Regarding some refactoring transformations other than the ones evaluated in this exper-
iment, we have showed that our technique is applicable to any transformation. because it
does not rely on specific properties of the transformation. In order to generate programs that
exercise a specilic refactoring, we may have to change the Alloy specification in JDOLLY.

The technique for classifying behavioral change failures described in Section 5.4 is lim-
ited, since the classification is not complete. We have only considered a subset of Java. Still,
it is non-trivial to pinpoint a fault in a refactoring. Each refactoring engine may incorporate
different design choices. Our fault categorizer is an approximation, and it may help refactor-
ing engine developers with this task. For example, our approach may classify two distinct
faults under the same category. After fixing the identified faults, the developer should re-run
the technique to catch possibly missed faults. Moreover. our approach may identify two dis-
tinct faults that are, in fact, just one. Developers can easily detect whether two different test
cases are related to the same fault by fixing each fault and running all faults again after. In
spite of that, the technique reduced from thousands of failing test cases to 120 unique faults
to be checked by refactoring engine developers. This classification was useful when report-
ing a number of faults in refactorings in Eclipse JDT, NetBeans and JRRT. Tool developers

accepted a number of those faults.

5.7 Evaluation: overly strong conditions

The goal of this experiment is to analyze our technique for the purpose of evaluation with
respect to effectiveness in identifying overly strong conditions from the point of view of
refactoring engine developers in the context of academic and industrial Java refactoring en-

gines. In particular, our experiment addresses the following research question. Q1: Can the
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Table 5.7: Summary of evaluated refactoring implementations,

Refactoring Eclipse JRRT Netbeans
Rename class X X X
Rename method X X X
Rename field X X X
Push down method X ¢ X
Push down_hélg o X X X
ﬁ;]l]p;ethod - x” 7 'x X o
Pull up field X X X
Encapsulate field X X
Move method X X
Add parameter X X

technique identify overly strong conditions in real Java refactoring engines?
In this section, we describe the subjects used in the experiment, the experiment design,

and its instrumentation.

Selection of subjects

We tested 27 refactorings implementations for Java of three tools: Eclipse 3.7 (10 refactor-
ings), JRRTv1® (10 refactorings), and NetBeans 7.0.1 (7 refactorings). Table 5.7 summarizes
all evaluated refactorings.

In our experiment, we evaluate 10 refactoring types (Table 5.7). We tested only 7 refac-
toring types in NetBeans. The Move Method refactoring is not supported. As future work,

we plan evaluate the Encapsulate Field and Add Parameter refactorings of NetBeans.

Experiment design and instrumentation

We used the SAFEREFACTOR command line version using the time limit of | second to gen-
erate tests, which is enough for testing the small programs generated by JDOLLY. We also
used the JDOLLY command line version. For each generated input by JDolly, we compare

the outputs of these three tools.

®The JRRT version from May 18th, 2010
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Operation

We performed the experiment on a 2,7 GHz dual-core PC with 4 GB of RAM running Ubuntu
10.04. We evaluated Eclipse 3.4.2, NetBeans 6.9.1 and JRRT 1.0.

Our technique evaluated 27 refactoring implementations of Eclipse, NetBeans, and JRRT.
Based on the scope and the additional constraints used for each refactoring, JDOLLY gen-
erated 42,774 programs’. Eclipse and JRRT did not apply a number of transformations,
from which 32% and 16% were behavior-preserving, respectively. They reject them due to
overly strong conditions. We automatically classified these transformations in categories.
As a result, we identified 17 and 7 kinds of overly strong conditions in Eclipse and JRRT,
respectively. We did not find overly strong conditions in the refactorings implemented by
NetBeans.

Table 3 summarizes the experiment results. For each refactoring, we show the results of
each implementation (Eclipse, NetBeans, and JRRT). The number of programs generated by
JDOLLY is shown in Column Program. Column Rejected Transformation shows the number
of transformations that were rejected by each implementation for not satisfying refactoring
conditions. The number of behavior-preserving transformations that were rejected due to an
overly strong condition of the implementation is shown in Column Rejected B. Pres. Trans-
Sformation. Finally, Column QOverly Strong Condition shows the number of overly strong
conditions that were categorized by our technique.

Most transformations can be applied in NetBeans. It did not reject transformations ex-
cept for the Rename Class refactoring. All transformations rejected by it were also rejected
by Eclipse and JRRT. Therefore, we did not find problems related to overly strong conditions
in NetBeans. However, it performed a number of non-behavior-preserving transformations
that were rejected by Eclipse and JRRT. NetBeans contains a number of faults (missing con-
ditions), as we shown in Section 5.6. The focus of this experiment is not on identifying
missing conditions but in identifying overly strong conditions. Since NetBeans does not
contain some conditions, it allows not only non-behavior-transformations, but also a num-
ber of behavior-preserving transformations that cannot be applied by other tools. Since the
oracle of our technique is based on differential testing (Section 5.4), performing almost all

transformations using NetBeans was useful for identifying whether transformations rejected

TAll experiment data are available at: hup:/dsc.ufcg.edu.br/"spg/papers.himl
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Table 5.8: Summary of the experiment; Program = number of programs generated by JDolly:
Rejected Transformation = number of transformations rejected by the implementation; Re-
Jected B. Pres. Transformation = number of behavior-preserving transformations that were
rejected; Overly strong condition = number of overly strong conditions classified by our

technique.

Ny

Eclipse Netheans JRRT . Eclipse Netbeans JRRY : Eciipse  Netbeans IRRT
Rename class 2037 1558 1212 1212 I 44¢ 0 0 2 0 0
Renamemethod | 6830 | 5995 © 1686 4802 T a 0 1
Rename fiela 2647 324 0 o 200 0 0 2 0 0
Push Gown method | 3822 | 2056 ° 2065 58 0 a0 1 o 1
A Push down fiela 3043 1551 0 1551 . 0 0 Q 1} G 0
Pull up methog 5201 2907 0 085 251 0 398 z o 2
Pul up fiexd 4151 | 975 o sz 7as 0 584 1 0 1
© Encapsulate field | 3754 72 . 1736 176 - 1536 1 1
" Move mathod | 6316 5083 . 4757 387 . 135 2 . 1
FMAEC paramater 4973 ?377. Sl 1189 ]i 79 - [+ 2 S ~0 o
o aare 2178 12 .:19153: e T e . . .

by Eclipse und JRRT could. in fact. be upplied.

Eclipse was the tool that rejected more transformations. It rejected 21,759 wransforma-
tions. from which 32% are behavior-preserving. We found overly strong conditions i all
Eelipse’s implementation but the Push Down Field refactoring. For instance, its Rename
Method refactoring implementation rejected 5.995 out of 6,830 transformations but 4,802 of
them could be applied without changing programs™ behavior,

Renaming a method in the presence of features such as overloading and overriding may
lead to behavioral changes in some situations due to changes in name bindings {71, Echipse
developers may have implemented overly strong conditions for simplicity in order to avoid
non-behavior-preserving transformations. However. this overly strong condition also re-
jected a number of useful behavior-preserving transformations since overloading and over-
riding are commonly used by Java developers.

JRRT rejected 19,153 transformations. In 16% of them. the program’s behavior could be
preserved. We tound overly strong conditions in 6 out of 10 refactorings evaluated: Rename
Method. Push Down Method, Pull Up Method, Pull Up Field, Encapsulate Field, and Move
Method.
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Discussion

Manually analyzing and classifying overly strong conditions in thousands of rejected trans-
formations is time-consuming and error-prone. To avoid that, our technique automatically
classifies them according to the template of the message shown by the implementation when
a transformation is rejected. We analyze all warning messages in transformations that are
behavior-preserving in at least another refactoring implementation. Our technique catego-
rized 17 kinds of overly strong conditions in Eclipse, and 7 ones in JRRT. Table 5.9 shows
the overly strong conditions identified in Eclipse and JRRT, respectively. Each line in the
table contains a warning message template. The brackets abstract the names of packages,
classes, methods, and fields, as described in Section 5.5.1.

We manually checked the overly strong conditions we found by randomly selecting a
sample of 10 transformations for each kind of overly strong conditions, and we did not
find false positives (a transformation that does not represent an overly strong condtion) or
false negatives (the same template of warning message representing different overly strong
conditions),

In five refactorings, we found less overly strong conditions in JRRT than Eclipse: Re-
name Class, Rename Method, Rename Field. Move Method, and Add parameter. Moreover,
in four refactorings (Push Down Method, Pull Up Method, Pull Up Field. and Encapsulate
Field), we found the same number of overly strong conditions in both tools. Finally, only in
the Push Down Field refactoring, we did not find overly strong conditions.

Our technique identified § kinds of overly strong conditions in Rename Class, Method,
and Field implementations of Eclipse, and only one in JRRT implementations. JRRT checks
whether name bindings are preserved. Each name should refer to the same entity before and
after the transformation [71]. Moreover, JRRT implementations may also check whether it is
possible to re-qualify a name in order to preserve the name binding. This approach alleviates
the problem of overly strong conditions. Listing 5.3 shows an example in which JRRT re-
qualifies a name adding a super access to avoid name binding changes. Eclipse follows a
different approach.

The overly strong condition found in the Rename Method refactoring of JRRT is related
to overriding. This implementation has the invariant that overriding must be preserved. We

also detected a condition in Eclipse related to that but NetBeans successfully applied a num-
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Table 5.9; Summary of overly strong conditions of Eclipse 3.7 and JIRRTvI.

swrong conditions of Ecliges
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Rename Field
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ber of transformations that change overriding yet preserving program’s behavior. In other
refactorings, such as Move Method and Add Parameter, JRRT does not check conditions
related to overriding.

Furthermore, we identified overly strong conditions related to accessibility. Both, Eclipse
and JRRT, rejected transformations in the Push Down Method and Pull Up Method refactor-
ings due to inaccessible methods. However, these transformations were performed by Net-
Beans. Changing access modifiers is not simple. It may change the name binding leading to
behavioral changes [84]. Making these changes in ad-hoc way may be error-prone. Steimann
and Thies [84] propose a number of conditions for applying refactorings with respect to Java
accessibility. They show that these conditions are less strong than the ones implemented in
Eclipse. While Eclipse implements some heuristics for that, Schiifer and de Moor [68] intend
to integrate these conditions to JRRT.

Eclipse and NetBeans contain test suites for evaluating their refactoring implementations,
For instance, the Eclipse test suite contains more than 2,600 unit tests. JRRT has a different
test suite. Schifer and de Moor [68] also evaluated JRRT over more than 1,000 unit tests
of Eclipse’s test suite. They used them not only for evaluating correctness, but also for
identifying overly strong conditions [68]. Schifer and de Moor checked whether all rejected
transformations ol Eclipse could be applied by JRRT. They identified some overly strong
conditions in Eclipse. However, they also identified overly strong conditions in JRRT in
the Add Parameter, the Move Method. and the Push Down refactorings. The overly strong
conditions were related to visibility adjustment. However, they do not propose an approach
to evaluate whether refactoring implementations have overly strong conditions, We can do it
by using JDOLLY and SAFEREFACTOR.

In our evaluation, JDOLLY generated small programs (up to 15 LOC) with up to two
packages, three classes, four methods, and two fields. These programs contain some common
features of Java such as inheritance, overloading, and overriding. Although simple, they were
useful for identifying 24 kinds of overly strong conditions in Eclipse and JRRT. The test suite
of Eclipse and JRRT also contain small programs. However, the programs have some Java
constructs such as interface, abstract classes and generics, that are currently not supported by
JDolly. By improving the expressivity of JDolly, our technique can be useful for identitying

other overly strong conditions.
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5.7.1 Threats to Validity

Next we identify some threats to validity from the evaluation performed.

Construct Validity

Construct validity refers to whether the overly strong conditions that we have detected are
indeed overly strong conditions in the refactoring engines. JRRT developers confirmed the
overly strong conditions that we found. We have not received feedback from Eclipse de-
velopers yet. Some conditions that we found may not be overly strong with respect to the
notion adopted by the developers. For instance, we found the “overriding has changed”
overly strong condition in the rename method from JRRT. Its developers follow a closed
world assumption. If they followed an open world assumption. this condition could not be
considered overly strong since changing overriding could produce a behavioral change in
some client code.

Additionally, different refactoring engines may use different refactoring templates.
Therefore, comparing their outputs may not reveal overly strong conditions, just different

notions of a refactoring.

Internal Validity

Concerning JDOLLY generation with Alloy, additional constraints may hide possibly de-
tectable overly strong conditions. These constraints can be too restrictive with respect to the
programs that can be generated by JDOLLY. which shows that one must be cautious when

creating constraints for JDOLLY.

External Validity

We believe that other refactoring engines can be tested as well with our technique. Regarding
some refactoring transformations other than the ones evaluated in this experiment, we have
showed that our technique is applicable to any transformation, because it does not rely on
specific properties of the transformation. In order to generate programs that exercise a spe-
cific refactoring, we may have to change the Alloy specification in JDOLLY. Additionally, it

is needed to be at least two implementations of a same refactoring.



5.8 Concluding remarks 99

5.8 Concluding remarks

In this chapter, we presented our technique for automated testing of refactoring engines. Its
goal is to identify missing conditions and overly strong ones. The technique has two main
components: JDOLLY and SAFEREFACTOR.

We report on the results of an experiment to show the effectiveness of our technique.
By using the technique, we tested up to 10 refactoring implementations from 3 refactoring
engines: Eclipse JDT, NetBeans, and JRRT. As a result, we found 120 missing conditions
and 24 overly strong ones. We reported them to the tools’ developers, who have already fixed
a number of them.

JRRT presented fewer faults than Eclipse and NetBeans, which suggests that the formal
techniques used can improve the correctness of refactoring engines. Even so, our technique
was useful for finding faults not only in its first version (JRRTvI) but also in its second
version (JRRTv2) when they had fixed the faults of JRRTv1. We believe that our technique

can be used to systematically evaluate these tools during their life cycle.



Chapter 6

Related Work

In this chapter, we relate our work to a number of approaches for verifying and testing refac-
torings (Section 6.1), approaches for automated testing (Section 6.2), and some empirical

studies on refactorings (Section 6.3).

6.1 Refactoring verification and testing

Conditions are a key concept of research studies on the correctness of refactorings.
Opdyke [53] proposes a number of refactoring conditions to guarantee behavior preservation.
However, there was no formal proof of the correctness and completeness of these conditions.
In fact, later, Tokuda and Batory [87] showed that Opdyke’s conditions were not sufficient to
ensure preservation of behavior. Proving refactorings with respect to a formal semantics is
a challenge [70]. Some approaches have been contributing in this direction. Borba et al. [8]
propose a set of refactorings for a subset of Java with copy semantics (ROOL). They prove
the refactoring correctness based on a formal semantics. Silva et al. [75] propose a set of
behavior-preserving transformation laws for a sequential object-oriented language with ref-
erence semantics (rCOS). They prove the correctness of each one of the laws with respect to
rCOS semantics. Some of these laws can be used in the Java context. Yet, they have not con-
sidered all Java constructs, such as overloading and field hiding. Our testing approach still
applies formal verification techniques (first-order logic and Alloy Analyzer) that are com-
bined for a practical and less costly solution for increasing confidence when refactoring Java

programs.

100
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Steimann and Thies [84] show that by changing access modifiers (public,
protected, package, private) in Java one can introduce compilation errors and be-
havioral changes. They propose a constraint-based approach to specify Java accessibility,
which favors checking refactoring conditions and computing the changes of access modi-
fiers needed to preserve the program behavior. We have also detected new faults related to
the Java access modifiers. Both approaches can be complementary for checking refactorings
that affect accessibility constraints.

Another specialized approach for specifying refactorings — generalization-related refac-
torings such as Extract Interface and Pull Up Method — is proposed by Tip et al. [86]. Their
work proposes an approach that uses type constraints to verify conditions of those refactor-
ings, determining which part of the code they may modify. Using type constraints, they also
propose the refactoring Infer Generic Type Arguments [21], which adapts a program to use
the Generics feature of Java 5, and a refactoring to migration of legacy library classes [3].
These refactorings are implemented in the Eclipse JDT. Their technique allows sound refac-
torings with respect to type constraints. However, a refactoring may have conditions related
to other constructs. Our general-purpose testing approach evaluates a refactoring indepen-
dently of program structures being affected by the refactoring. The faults detected by our
approach are related to missing conditions and overly strong ones.

Mens et al. [44] use graph rewriting for formalizing program refactorings. Two refactor-
ings are specified for a subset of Java, and the authors propose a static semantics for Java,
which is preserved by the two refactoring specifications. Graph-based verification is more
ambitious than testing, aiming at full structural analysis, although presenting limited scal-
ability. They have recognized that some refactorings, such as Move Method, which may
deal with nested structures, require complex graph manipulation. Such analysis becomes
considerably costly, which limits its results, in comparison with a more lightweight testing
approach.

Overbey and Johnson [55] propose a technique to check for behavior preservation. They
implement it in a library containing conditions for the most common refactorings. Refac-
toring engines for different languages can use their library to check refactoring conditions.
The preservation-checking algorithm is based on exploiting an isomorphism between graph

nodes and textual intervals. They evaluate their technique for 18 refactorings in refactoring
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engines for Fortran 95, PHP 5 and BC. They do not evaluate them in terms of correctness but
in terms of expressivity and performance. Our approach can be useful for evaluating their
approach in terms of correctness and overly strong conditions.

Reichenbach et al. [63] propose the program metamorphosis approach for program refac-
toring. It breaks a coarse-grained transformation into small transformations. Although these
small transformations may not preserve behavior individually, they guarantee that the coarse-
grained transformation preserves behavior. Our approach can be used to increase confidence
that the set of small transformations, applied in sequence, indeed preserve behavior.

Daniel et al. [14] propose an approach for automated testing refactoring engines. They
used ASTGen to generate programs as input to refactoring engines. To evaluate the refac-
toring correctness, they implemented six oracles that evaluate the output of each transfor-
mation. For instance, one of them checks for compilation errors, while another applies the
inverse refactoring to the target program, and compares the result with the source program.
If they were syntactically different, the refactoring engine developer would manually check
whether they have the same behavior. They evaluated the technique by testing 21 refactor-
ings, and 1dentified 21 faults in Eclipse JDT and 24 in NetBeans. In Eclipse JDT, 17 faults
were related to compilation errors, 3 were related to incomplete transformations (e.g. the
Encapsulate field did not encapsulate all field accesses). and one was related to behavioral
change. Later, Gligoric et at. [22] used the same approach to evaluate UDITA. They found 4
new compilation error faults in 6 refactorings (2 in Eclipse JDT and 2 in NetBeans). While
the oracles of previous approaches can only syntactically compare the programs to detect
behavioral changes, SAFEREFACTOR generates tests that do compare program behavior. We
found 63 faults related to behavioral changes. Moreover, both techniques found a similar
number of faults related to compilation errors.

Li and Thompson [41] propose an approach to test refactorings for Erlang using a tool
called Quvid QuickCheck. They evaluate a number of implementations of the Wrangler
refactoring engine. For each refactoring, they state a number of properties that it must satisfy,
which is still a challenge. If a refactoring applies a transformation but does not satisfy a
property. they indicate a fault in the implementation. We evaluate behavior preservation by
using SAFEREFACTOR. We propose a similar approach for testing refactorings for Java.

Their approach applies refactorings to a number of real case studies and toy examples. In
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contrast, we apply refactorings to a number of programs generated by JDOLLY.

6.2 Automated Testing

Grammar-Based Test Generation (GBTB) is a well-known technique for automatically gen-
erating programs based on a formal grammar definition [9]. Using this technique, a generator
is capable of building valid (or intentionally invalid) sentences of the target language. GBTB
has been successfully used, for instance, to generate programs for testing the correctness and
error messages in compilers [9: 4]. JDOLLY, by comparison, uses Alloy to specify the Java
metamodel using signatures and relations. By performing analysis using the Alloy Analyzer,
each Alloy solution is translated into a Java program. Moreover, we can guide JDOLLY to
generate programs with properties that are specific to a given target domain (Section 3.4).
[n contrast, context-free grammars are somewhat limited for this purpose, being usually ex-
tended by operational definitions or even by code snippets for adapting generation to the
desired class of test cases.

Recently, GBTB has been mixed with other advanced combinatorial techniques for gen-
erating programs of a language grammar. An approach that is very related to JDOLLY’s
generation technique has been described by Hoffman et al. [31]. It uses grammars instru-
mented by tags and code snippets written in Python that further constrain the generated test
cases. In the referred tool, YouGen, tags inject parameters to the generation. For instance,
parameters adjust the depth of a generation tree, limiting the derivation over recursive pro-
duction rules. This feature is analogous to JDOLLY’s scope. Also, while JDOLLY makes use
of Alloy Analyzer’s exhaustive search to generate a comprehensive set of programs, YouGen
uses combinatorial techniques, such as mixed-strength covering arrays. In both cases, they
evaluate all possible combinations. Their application contexts are in essence different, how-
ever: YouGen has been used for testing XML-based tools and network protocols, whereas
JDoOLLY is tailored for testing refactoring engines, using SAFEREFACTOR as a test oracle.
Still, both tools can be adapted for diverse application cases.

Korel and Yami [40] propose an approach to automated regression test generation [26].
They use TESTGEN., a test data generation system for Pascal programs. Similarly, a com-

ponent of our approach, SAFEREFACTOR, tests evaluate whether a transformation preserves
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behavior. It uses the Randoop test generator. They test the parts of the programs whose
functionality is unchanged after modifications, SAFEREFACTOR automatically detects the
methods with unchanged signatures and generates tests for them. We are concerned with
testing refactorings in this article.

Concerning automated regression testing, a more recent contribution is provided by
BERT [36]. a tool that focuses on detection of state changes from one version of a given
class to its next version, considering transformations of any category (not only refactoring).
The main distinction between the two approaches is their test oracle. SAFEREFACTOR uses
a simple oracle that compares outputs of methods with unchanged signatures for the same
input. If any changed behavior is, directly or indirectly, exercised by one of these meth-
ods, there is a high probability that the test goes wrong, and a behavior change is detected.
BERT, on the other hand, does not consider changes in method signatures. It can be used
only when all signatures are preserved. They focus on identifying differences in several
structural aspects of the target program: return values of all methods, field values, and even
output (textual) results. If a change is detected, there is an indication of a regression fault.
although this may be not the case (false positives). Since they evaluate any kind of transfor-
mation, developers have to analyze whether the behavioral changes have been intentionally
introduced.

Marinov and Khurshid [42; 12] propose TestEra, a framework for automated
specification-based testing of Java programs. It uses Alloy to specify the pre and post-
conditions of a method under test. Using this specification, it automatically generates the
test inputs and checks post-conditions. This approach is similar to JDOLLY for generating

test inputs, but we generate programs as test inputs,

6.3 Empirical studies on refactoring

A number of studies have investigated refactoring tasks in software projects. Ratzinger et
al. [61] analyzed the relationship between refactoring and software defects. They proposed
an approach to automatically identify refactorings based on commit messages, which we de-
scribe in Section 4.2.1. Using evolution algorithms, they confirmed the hypothesis that the

number of software defects in the period decreases if the number of refactorings increases as
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overall change type. To evaluate the effectiveness of the commit message analysis, they ran-
domly sampled 500 versions from 5 projects, and analyzed whether their analysis correctly
classify each version. In their experiment, the commit message analysis had only 4 false
positives 10 false negatives in 500 software versions, leading to a high precision and recall.

Murphy-Hill et al. [50; 49] evaluated nine hypotheses about refactoring activities. They
used data automatically retrieved from users through Mylyn Monitor and Eclipse Usage
Collector. That data allowed Murphy-Hill et al. to identify the frequency of each automated
refactoring. The most frequently applied refactorings are: Rename, Extract local variable,
Move, Extract method, and Change method signature. They confirmed assumptions such as
the fact that refactorings are frequent. Data gathered from Mylyn showed that 41% of the
programming sessions contained refactorings.

Additionally, they evaluated the Ratzinger analysis. By using Ratzinger algorithm, they
classified the refactoring versions from Eclipse CVS repository. Then, they randomly se-
lected 20 versions from each set of refactoring versions and non-refactoring versions iden-
tified by Ratzinger, and applied to these 40 versions the manual inspection proposed by
them, which we describe in Section +.2.1. From the 20 versions labeled as refactoring
by Ratzinger, only 7 could be classified as refactoring versions. The others include non-
refactoring changes. On the other hand, the 20 versions classified as non-refactoring by
Ratzinger were correct. In this thesis, we compared the results of these two techniques
(Ratzinger and Murphy-Hill) with SAFEREFACTOR’s results (Section 4.2). The Murphy-
Hill approach was the most accurate among the refactoring technique we evaluated. How-
ever, it incorrectly classitied versions containing compilation errors as refactoring versions.
Differently from the original work, our results show a low recall and precision of Ratzinger
approach, which we discuss in Section 4.2.

Kim et al. [37] investigate the relationship of API-level refactorings and bug fixes in three
open source projects. They use a tool [38] to infer systematic declaration changes as rules
and determine method-level matches (a previous version of Ref-Finder [57] that identifies 11
refactorings). They found that the number of bug fixes increases after API-level refactorings
while the time taken to fix them decreases after refactorings. Moreover, the study indicated
that refactorings are performed more often before major releases than after the releases.

Prete et al. [57] propose Ref-Finder, a tool that can detect 63 refactoring types from
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FowlerOs catalog [57]. It can detect all refactorings of the previous works, and it can de-
tect intra-method refactoring changes. A comprehensive comparison can be found in Prete
et al. [57]. Rachatasumrit and Kim [59] analyze the relationship between the types and lo-
cations of refactorings identified by Ref-Finder and the affecting changes and affected tests
identified by a change impact analyzer (FaultTracer). They evaluate their approach in three
open source projects (Meter, XMLSecurity, and ANT) and found that refactoring changes
are not very well tested. By selecting the test cases that only exercise the changes, we may
decrease the regression test cost.

Kim et al. [39] interview a subset of engineers who led the Windows refactoring effort
and analyzed Windows 7 version history data. They found that in practice developers may
allow non-behavior-preserving program transformations during refactoring activities. More-
over, developers indicate that refactoring involves substantial cost and risks. By analyzing
Windows 7 version history, the study indicated that refactored modules experienced higher
reduction in the number of inter-module dependencies and post-release defects than other
changed modules.

Gorg and WeiBgerber [25] proposed a technique to identify and rank refactoring candi-
dates using names, signatures, and clone detection results. Later, WeiBigerber and Diehl [90]
evolved and evaluated this tool. WeiBgerber and Diehl [89] analyzed the version histories
of JEdit, JUnit, and ArgoUML and reconstructed the refactorings performed using the tool
proposed before [25]. They also obtained bug reports from various sources. They related the
percentage of refactorings per day to the ratio of bugs opened within the next five days. They
found that the high ratio of refactoring is sometimes followed by an increasing ratio of bug

reports.

6.4 Concluding remarks

In this section, we presented the works most related to this thesis. With respect to approaches
based on formal methods, we propose a more practical approach that was useful for finding a
number of faults in real refactoring engines. The main novelties of our technique with respect
to other testing approach for refactoring engines are: (1) generating input programs by using

Alloy: (2) detecting behavioral changes with SAFEREFACTOR, (4) identifying overly strong



6.4 Concluding remarks 107

conditions; and (3) classifying behavioral changes and overly strong conditions.



Chapter 7

Conclusions

In this work, we propose a technique for testing of Java refactoring engines. Its main compo-
nents are JDOLLY (Chapter 3), a Java program generator, and a test system for refactorings,
SAFEREFACTOR (Chapter 4). For each refactoring, the technique generates a number of
Java programs, followed by the application of the refactoring, with these programs as target.
It uses behavioral oracles to evaluate the outputs. If the engine produces an output program,
it uses SAFEREFACTOR for detecting behavioral changes between the input and the output
programs. On the other hand. if the engine rejects the transformation, it applies the same
refactoring by using other engines and compares the results of the executions. Finally, the
technique classifies failures into distinct faults. The failing transformations are classified by
kind of behavioral change or compilation error introduced by them, and rejected behavior-
preserving transformations are classified by kind of overly strong conditions. We propose a
Java program generator (JDOLLY) to run the program generation step of our technique. It
uses Alloy [32] and the Alloy Analyzer [33] to create programs for a given scope of elements
(packages, classes, fields, and methods). We have evaluated our technique by testing three
refactoring engines: Eclipse JDT 3.7, NetBeans 7.0.1, and two versions of JRRT (JRRTv|I
and JRRTv2). For each refactoring engine, we tested up to 10 refactoring implementations,
and found 57 and 63 faults related to compilation errors and behavioral changes, respectively,
and 24 overly strong conditions.

Specifying the set of conditions needed for each refactorings is not simple. Even refactor-
ing engines written with correctness in mind. such as JRRT, still have faults and overly strong

conditions. We have shown some corner cases automatically detected by our technique. With
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these results, we have demonstrated how the combination of JDOLLY and SAFEREFACTOR
is powerful to detect missing conditions and overly strong ones. In the absence of formal
proofs, our technique can be useful for the improvement of previous solutions. We have
reported all faults to Eclipse JDT, NetBeans and JRRT, and a number of them have already
been accepted. Moreover, Eclipse JDT and NetBeans developers have fixed some of them,
and JRRT developers have already lixed all accepted faults. They have also included 21 test
cases that we generated in their test suite'.

We show that our technique is general enough to test different kinds of refactorings from
different Java refactoring engines. We tested up to 10 refactoring implementations from
Eclipse JDT, NetBeans, and JRRT. These refactoring implementations target declarations of
classes, fields, and methods. Other refactorings that target these constructs, such as Remove
Parameter or Change Access Modifier, can be tested by using the current implementation
of the technique. On the other hand, we cannot test refactorings that target Java constructs
not specified in the current implementation of JDOLLY. For instance, we cannot test the
Rename Local Variable and the Extract Method refactorings because the method bodies gen-
erated by JDOLLY contain only a return statement. The metamodel implemented in JDOLLY
also restricted the input programs that were generated to evaluate the tested refactoring im-
plementations. For instance, we could not test the Rename Field refactoring in the presence
of local variables since we did not generate programs containing local variable declarations.

To reduce these limitations, one can extend JDOLLY increasing the expressivity of the
programs generated by it. It will be necessary to specify new Java constructs and well-
formedness rules in Alloy. So far, it was possible to specify the current implementation of
the Java metamodel with reasonable effort. However, we cannot generalize these results.
Some Java constructs and well-formedness rules may be difficult to specify in Alloy due to
some restrictions of the language. For instance, Alloy does not allow recursive functions
directly. Therefore, we believe that we need further studies to evaluate the effort to extend
JDoLLY. Even so, a version of JDOLLY for C/CC++ (CDolly) has been used for finding

faults in refactoring engines for the C/C++ language”. This work gives evidences that our

'SVN path for our test cases included in JRRT test suite: http: rrt .googlecode.comn/svny/

trunk/tests/BrazilianTests. Java

2CAutomaticTester website: : b


http://www.dsc
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approach is also useful for testing refactorings that target method statements. It also show
that the approach can be applied not only for Java but also for other languages, such as C.

Additionally, the more signatures and relations are added to the Alloy specification, the
more combinations can be generated by Alloy Analyzer, increasing the state space of so-
lutions. As a result, the time required for using our approach can increase from hours to
days. To make it more efficient, one can use optimization techniques that prune the program
generation. For example, Jagannath et al. [34] suggest that we can make small jumps in the
sequence of automated generated programs without losing effectiveness of the test suite.

With respect to SAFEREFACTOR, we evaluated its effectiveness in 60 transformations ap-
plied to real software. In our experiments, SAFEREFACTOR had 70% accuracy. It produced
false positives when testing GUI code and false negative when testing non-deterministic
code. Additionally. in some transformations that affected only few methods, the time limit
used for generating tests was not enough to generate tests for these methods because SAFER -
EFACTOR identified a large set of common methods to test. To handle this limitation, Mon-
giovi et al. [46] extend SAFEREFACTOR including an impact analysis technique, which iden-
tifies the methods impacted by the change. By doing so, SAFEREFACTOR generates tests not
for all common methods but just for the ones impacted by the change. These limitations of
SAFEREFACTOR did not affect the use of it in our technique for testing of refactoring en-
gines since we use it against simple transformations that are deterministic and do not have
GUI code.

Finally, even generating just small programs, containing few classes, methods, and fields,
our technique identified more than 100 faults in refactoring engines. These results corrob-
orate with the small scope hypothesis [32], which believes that, in practice, any failure is
likely to manifest itself on some small input, and thus testing all small inputs is enough to

reveal any failure.

7.1 Future work

We plan to evaluate our technique on other refactorings, such as Extract Method. To do
s0, we need to extend JDOLLY to generate programs containing richer method bodies. For

instance, we could change the relation of the Method signature. Now, b must contain a
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sequence of statements.

sig Method {
b: seq[Body]|

Moreover, we can extend Body to represent other kinds of statements. For example, we
can create the following signature representing method invocation. Notice that we need a

new kind of Id to represent the variable name that invokes a method id.

sig InstanceMethodInvocation extends Body {
id: one Varld,
method: one Methodld

In this way, JDOLLY can generate more elaborated method bodies, such as the one pre-

sented next.

public void m() |
A a = new A();
a.2(2);

a.yl)

Currently, we manually classify the failures related to behavioral change into distinct
faults. This process is done by checking each transformation that introduces behavioral
change against a number of proposed filters (see Table 5.1). It may demand a considerable
effort to perform this task when there are a lot of failures. We plan to automate this step by
developing a static analysis to evaluate the non-behavior-preserving transformations against
the proposed filters.

Additionally, it is time-consuming to test the refactoring implementation with respect
to each test input generated. For instance, in a previous experiment (See Section 5.6), it
was needed around 12 hours to test the Push Down Method implementation of JRRTvI" by
using 15,322 input programs generated by a program generator called JDOLLY. From these

15,322 input programs, 2,247 were useful for producing test cases that expose faults. In

3The JRRT version from May 18th, 2010
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such cases, by reordering the test cases, we may increase the rate of fault detection, reducing
the time spent to find faults. In this way, developers can have an earlier feedback to start
debugging and fixing the faults. Test case prioritization techniques [67; 34] schedule test
cases in order to achieve some goal. Techniques for automated testing of refactoring engines
iteratively test the refactoring implementation against each input program generated by a
program generator. The order of the test cases is the order that the programs are generated.

Therefore, we can prioritize the test cases by changing the order that the input programs
are used by the technique to run the test cases. We have observed that failures detected
by using these programs can be classified into distinct faults based on characteristics of the
input programs, such as overriding, overloading, field hiding. Therefore, having used an
input program produced by the program generator and covered certain characteristics, we
may be gained in subsequent input programs by covering characteristics that have not been
covered yet. We thus can prioritize test cases based on the characteristic coverage of the
input programs.

Besides missing conditions and overly strong ones, refactoring engines may also have
faults related to incorrect or incomplete transformations. Daniel et al. [ 14] have implemented
oracles to check whether an implementation of the Encapsulate Field refactoring encapsu-
lates all accesses of a target field. They have found a fault in Eclipse related to that. Consider
class & shown in Listing 7.1. If we apply the Encapsulate Field refactoring by using Eclipse
3.7, the tool will produce the output program shown in Listing 7.2. Notice that setF (f)
should be setF (getf ()).

We plan to investigate the use of structural oracles to check whether the performed trans-
formation was incorrect or incomplete. In the same way Daniel et al. [14] implemented
checks for the Encapsulate Field Refactoring, we can implement some checks for other refac-
torings. Another approach would be to use a tool such as Ref-Finder [57]. It performs static
analysis on both input and output programs, in order to discover the application of complex
refactorings. The tool identifies 63 refactorings presented by Fowler [19]. Each refactoring
is represented by a set of logic predicates (a template), and the matching between program
and template is accomplished by a logic programming engine. By using Ref-Finder against
the transformations generated by our technique, we could identify transformations that do

not match a specific refactoring template.
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Listing 7.2: After Refactoring. Encap-
sulated Field by Eclipse JDT 3.7 does

not encapsulate the field read.

I class A {

Listing 7.1: Before Refactoring. > private int ;

1 class A | 3 void m() {
2 int f; 4 setF(f):
3 void m() { 5 }
4 e 6 void setF(int f) |
3 ] 7 this.f = f;
6 | 8 }
9 int getF() |
10 return [
11 }
12}

We also plan to perform a user study to compare JDOLLY against UDITA in the context
of testing of refactoring engines. Our research question is: Is specifying program generation
in JDOLLY easier than in UDITA? By performing a human study, we can measure the time
to specify the program generation, the size, and its correctness. Additionally, we can further
investigate both generators with respect to isomorphic programs and exhaustiveness.

Finally, SAFEREFACTOR produced false positives and negatives due to limitations of
Randoop, its test generator. We plan to compare Randoop against other tests generators
with respect their effectiveness. We also plan to investigate how to generate test cases in the

context of concurrence, so that we can extend our approach for concurrent programs.
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Appendix A

Java metamodel specification in Alloy

Next, we present the complete specification of a subset of the Java language in Alloy, which

was used by JDOLLY for generating Java programs.

Listing A.1: A subset of the Java language specified in Alloy

# ABSTRACT SYNTAX

abstract sig 1d { }

sig Package( )

sig Classld, Methodld,Fieldld extends Id |}

abstract sig Accessibility {}

one sig public, private_, protected extends Accessibility { ]

abstract sig Type |

abstract sig PrimitiveType extends Type { )

one sig Int_, Long_ extends PrimitiveType { |

sig Class extends Type |
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49
50
51
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package: one Package,
id: one Classld,
extend: lone Class,
methods: set Method,

fields: set Field

fun classes|pack:Package]: set Class |

pack-"package

sig Field {
id : one Fieldld,
type: one Type,

acce : lone Accessibility

sig Method {
id : one Methodld,
param: lone Type,
acc: lone Accessibility,
return: one Type,

b: one Body

abstract sig Body { |

sig LiteralValue extends Body (|} # returns a literal value

abstract sig Qualilier {}

one sig qthis_, this_, super_ extends Qualifier { ]
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64
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66
67
68

79
80
81

83
84
85
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sig MethodInvocation extends Body |
id : one Methodld,
q: lone Qualilier
!
fact {
/ call a declared method
all mi:MethodInvocation | some m:Method | mi-id = m-id
/ avoid recursive calls

all m:Method | all mb: MethodInvocation | m'b = mb = mb-id # m-id

A return new A( )-k();
sig ConstructorMethodInvocation extends Body |

idClass : one Classld,

idMethod: one Methodld
|
fact |
A calls a method declared in the class

all ¢i: ConstructorMethodInvocation |

some c:Class |
ci-idClass = ¢-id &&

(some m:Method | m in ¢-methods && m-id = ¢i-idMethod)

/i avoid recursive calls

all m:Method | all mb: ConstructorMethodInvocation | m-b = mb = mb-idMethod # m-id

fun classFromClassld[id I:ClasslId]: set Class |
id1-"id

fun ficldFromFieldId[id1:FicldId]: set Field {
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id1-7id

A return x;

/oreturn this-x;

A oreturn super-x;

/ return A-this-x;

sig FieldInvocation extends Body (
idField : one Fieldld,

qField: lone Qualifier

/ return new A( )-x;
sig ConstructorFieldInvocation extends Body |
idClass2 : one Classld.

idField: one Fieldld

}
fact |

Heall field declared in the class

all ci: ConstructorFieldInvocation |

some c:Class |
ci-idClass2 = ¢-id &&
(some [:Field | { in c-fields && f-id = ci-idField)

}

/W WELL—FORMED RULES
fact JavaWellFormedRules |
noPackageContainsTwoClassesWithSameld|
noCalltoUndefinedField[]
noSuperCallToNotInheritedField()
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noClassExtendsltself]]
allFieldsBelongToAClass[]
noClassContainsTwoFieldsWithSameld []
noClassContainsTwoMethods WithSameSignature|[ ]
noClassExtends AnotherWithSameld| |
allBodiesBelongToAMethod(]
allMethodsBelongToAClass|]
noSuperCallToNotInheritedMethod| ]
noCalltoUndefinedMethod| ]
!
pred noPackageContainsTwoClasses WithSameld| | |

all package: Package | all ¢c1.c2:classes[package] | ¢l ¢2 = ¢l id # ¢2-id

pred noClassExtendsItself]] {

no ¢:Class | ¢ in ¢ "extend

pred noClassExtendsAnotherWithSameld[] |

allcl:Class I no ¢2: ¢l-"extend | ¢l-id = ¢2-id

pred noClassContainsTwoFieldsWithSameld [] |

no c:Class | some disj 1.12:Field [ f1-id = 12-id && 1 + 12 in c-fields

pred noCalltoUndefinedMethod(] |
all mi:MethodInvocation |
(#mi-q =0 Il mi-q = this_) =
some c1,c2: Class, ml:cl-methods, m2:c2-methods | mi in m1-b && mi-id = m2-id &&

((cl =c2) 1 {((c2in cl-"extend) && (m2-acc # private_)))

all mi:MethodInvocation |
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(mi-q = qthis_) =

some ¢ :Class, ml.m2:c1-methods | miin m1-b && mi-id = m2-id

pred noSuperCallToNotInheritedMethod| ] {
all mi:MethodInvocation |
mi-q = super_ =
some cl.c2: Class, ml:cl-methods, m2:c2-methods | mi in m1-b && mi-id = m2-id &&

c2incl-"extend && (m2-acc # private_)

pred noSuperCallToNotInheritedField[] {
all ti:FicldInvocation |
fi-qField = super_ =
some disj c1,c2: Class, ml:cl-methods, f:c2-fields | fi in m1-b && fi-idField = f-id && ¢2 in

cl-"extend && f-acc # private_

pred noCalltoUndefinedField[] {
all mi:FieldInvocation |
( mi-qField = this_) =+
some cl.c2: Class, ml:cl-methods, f:c2-fields | mi in m1-b && mi-idField = f-id && ((
cl=c2)ll ((c2incl-"extend) && (f-acc # private_)))

all mi:FieldInvocation |
( mi-qField = qthis_) =
some cl,c2: Class, ml:cl-methods, f:c2-fields | mi in m1-b && mi-idField = f-id && ((

cl=¢2) Il ((c2in cl-"extend) && (f-acc # private_)))

all mi:Fieldlnvocation |
( #mi-qField = 0) =
some c¢l,c2: Class, ml:cl-methods, f:¢c2-fields | miin ml-b && mi-idField = fid && ((

cl=c2) Il ((c2incl-"extend) && (f-acc # private_)))
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pred allFieldsBelongToAClass [] {

all f:Field | one ¢:Class | fin c-lields

pred noClassContainsTwoMethodsWithSameSignature([] {

all ¢: Class | all m1,m2:c-methods | ml# m2 = (ml-id # m2-id or m1-param # m2-param)

pred allMethodsBelongToAClass [] |

all m:Method | one ¢:Class | m in ¢-methods

pred allBodiesBelongToAMethod [] |
Body in Method b




Appendix B

Algorithms for checking refactoring

scope and granularity

Next we formalize some algorithms used to collect data from repository. Algorithm 2 indi-
cates when a transformation is low or high-level. If a transformation only changes inside a
method, it is considered low-level. Otherwise it is considered high-level. methods yields the
set of methods of a program. signature yields the method signature of all methods received

das parameter.

Algorithm 2 Refactoring Granularity
Require: source < program before transformation

Require: target < program after transformation
Ensure: Indicates whether a transformation is low or high-level
mSource < methods(source)
mTarget <= methods(rarger)
if signature(mSource) = signature(mTarget) then
return LOW
else
return HIGH
end if

Algorithm 3 establishes when a transformation is local or global. If a transformation

only changes at most one package, it is considered local. Otherwise it is considered global.
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packages yields the set of packages of a program. name yields the name of a package. diff

is the shell command used to compare to directories.

Algorithm 3 Refactoring Scope
Require: source < program before transformation

Require: target < program after transformation
Ensure: Indicates whether a transformation is local or global
count <= ()
for p € packages(source) do
pTarget <= package(name(p).rarget)
if diff(p.pTarget) # () then
couni++
end if
end for
for p € packages(rarger) do
pSource < package(name(p).source)
if diff(p.pSource) # () then
count++
end if
end for
if count < 1 then
return LOCAL
else
return GLOBAL

end if




