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Resumo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refatoramento é uma transformação aplicada a um programa para melhorar suas qualidades 

internas sem alterar seu comportamento observável. Apesar de trazer benefícios, como fa-

cilitar a manutenção, refatorar também envolver riscos, como introduzir erros de compilação 

ou mudanças comportamentais. Para ajudar o desenvolvedor nesse processo, surgiram as fer-

ramentas de refatoramento. Elas checam condições necessárias para garantir a preservação 

do comportamento, e quando estas condições são satisfeitas, aplicam a transformação. No 

entanto, c difícil identificar o conjunto mínimo e completo de condições para cada refatora-

mento. Se uma condição não é implementada, a ferramenta pode alterar o comportamento 

do programa. Por outro lado, desenvolvedores podem implementar condições que não só 

previnem mudanças comportamentais, mas também impedem a aplicação de transformações 

que preservam comportamento, diminuindo a aplicabilidade da ferramenta. Estas condições 

são conhecidas como condições muito fortes. Nesse trabalho, propomos uma técnica para 

testar ferramentas de refatoramento para Java com o objetivo de avaliar se o conjunto de 

condições implementadas é mínimo e completo. Primeiro, geramos automaticamente um 

conjunto de programas para serem refatorados. Para isso, propomos um gerador de pro-

gramas Java, J D O L L Y , que gera exaustivamente programas para um determinado escopo de 

elementos. Para cada programa gerado, aplicamos o refatoramento utilizando a ferramenta 

em teste. Para detectar falhas nas transformações, utilizamos o S A F E R E F A C T O R , uma fer-

ramenta que propomos para detectar mudanças comportamentais. Por outro lado, quando as 

transformações são rejeitadas pela ferramenta, propomos uma abordagem de teste diferen-

cial para detectar condições fortes. A técnica compara o resultado da ferramenta em teste 

com os resultados dc outras ferramentas. Por fim, as falhas detectadas são classificadas em 

tipos distintos de faltas. Nós avaliamos a eficiência da nossa técnica testando três ferra-

mentas: Eclipse 3 .7 , NetBeans 7 . 0 . 1 , e duas versões do JastAdd Refactoring Tools (JRRTv I 

e JRRTv2). Foram testados até 1 0 implementações de refatoramento em cada ferramenta. 

No total, nossa técnica identificou 34 faltas relacionadas a condições não implementadas no 

Eclipse. 5 1 faltas no NetBeans, 24 faltas no JRRTv 1, e 11 faltas no JRRTv2. Além disso, 

foram encontradas 1 7 e 7 condições muito fortes no Eclipse e JRRTv 1, respectivamente. 
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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refactoring is a transformation applied to the program to improve its internal structure with-

out changing its external behavior. Although it brings benefits, such as making it easier to 

maintain the code, it also involves risks, such as introducing compilation errors or behavioral 

changes. To help developers in this process, there are refactoring engines. They check con-

ditions needed to guarantee behavioral preservation, and when these conditions are satisfied, 

they apply the desired transformation. However, identifying and implementing the complete 

and minimal set of conditions for each refactoring are non-trivial tasks. In practice, tool de-

velopers may not be aware of all conditions. When some condition is not implemented, the 

tool may change the program's behavior. On the other hand, they may also implement con-

ditions that not only prevent behavioral changes, but also prevent behavior-preserving trans-

formations, reducing the applicability of these tools. In this case, we say they implemented 

an overly strong condition. In this work, we propose a technique for automated testing of 

Java refactoring engines to identify problems related to missing conditions and overly strong 

ones. First, we automatically generate programs to be refactored, as test inputs. To do so, 

we propose a Java program generator, J D O L L Y , that exhaustively generates programs for a 

given scope of Java elements. Then, for each generated program, the desired refactoring is 

applied by using the engine under tests. To detect failures in the applied transformations, we 

use S A F E R E F A C T O R , a tool that we proposed for detecting behavioral changes. On the other 

hand, when the transformations are rejected by the engine, we propose an differential testing 

technique to identify overly strong conditions. It compares the results of the engine under 

tests with results of other engines. The final step of the technique is to classify the detected 

failures into distinct faults. We evaluated the effectiveness of the technique by testing up to 

10 refactorings implemented by three tools: Eclipse 3.7, NetBeans 7.0.1, and two versions of 

JastAdd Refactoring Tools (JRRTvl and JRRTv2). Our technique identified 34 faults related 

to missing conditions in Eclipse, 51 ones in NetBeans, 24 ones in JRRTvl , and 1 1 ones in 

JRRTv2. In addition, it detected 17 and 7 overly strong conditions in Eclipse and JRRTvl , 

respectively. 
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Chapter 1 

Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

During the life cycle of a software, its maintenance and evolution are inevitable. After its 

release, clients demand new requirements and revealed faults need to be fixed. The more 

the software is modified, the more complex its code become, making it more difficult to 

be maintained. To avoid that, developers need to restructure the code, improving its inter-

nal structure, while preserving its external functionalities; a kind of maintenance known as 

perfective [1 ]. The process of changing the internal structure of a program to improve its 

internal qualities but preserving its external behavior is known aszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA refactoring. This term was 

coined by Opdyke and Johnson [54; 53], and latter, popularized in practice by Fowler [19], 

Fowler [19] proposes to perform refactorings by applying small changes intercalated with 

compilation checks and tests to guarantee successful compilation and behavioral preserva-

tion. While compilation checks guarantees the absence of compilation errors after the trans-

formation, tests evaluate whether the behavior of the program is preserved. In other words, 

refactorings must not only produce well-formed programs, but also the versions of the pro-

grams before and after refactoring must have the same external behavior. 

To help developers in this activity, Don Roberts proposed the first refactoring tool, Refac-

toring Browser, which automates a number of refactorings for Smalltalk [65]. A refactoring 

tool automates the process of checking conditions that must be satisfied in order to apply 

the transformation. For instance, to pull up a methodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m to a superclass, we must check 

whether m conflicts with the signature of other methods in that superclass. Currently, most 

Java Integrated Development Environments (IDEs), such as Eclipse [16], NetBeans [85], 

JBuilder 118], IntelliJ [35], automate some refactorings. 

I 



1.1 Problem 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Defining and implementing the minimal set of conditions needed for each refactoring are 

non-trivial tasks. One can prove the correctness of this set for a language with a simple and 

formal semantics. For instance, Proietti and Pettorossi [58] propose a formal semantics for 

Prolog and prove some transformation rules. However, a number of popular languages, such 

as Java, C, and C#, have a complex semantics without a complete formal definition consider-

ing all elements of the language, which makes it difficult to prove refactoring correctness. In 

this work, we focus on problems for specifying and implementing refactorings for Java pro-

grams. Java is one of the most popular languages,1 and was used by Fowler [ 19] to illustrate 

all refactorings presented in his catalog. Moreover, modern IDEs for Java, such as Eclipse 

and NetBeans, contain a number of automated refactorings. 

1.1.1 Missing conditions 

In practice, refactoring tool developers may not be aware of all refactoring conditions. If 

some condition is missing, the refactoring engine may perform transformations that intro-

duce compilation errors or behavioral changes. For instance, consider the Java program 

illustrated in Listing 1.1. The methodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B . t e s t () yields 1. If we use Eclipse 3.7 to perform 

the Pull Up Method refactoring on m ( ) , the tool will move method m from class B to class 

A, and update super to t h i s . This transformation introduced a behavioral change: t e s t 

yields 2 instead of 1. Since m is invoked on an instance of B, the call to k using t h i s is 

dispatched to the implementation of k in B. 

Formal methods 

Researches have tried to handle the problem of missing conditions by formally specifying 

refactorings considering a subset of the language [8; 13; 86; 75; 71 ; 74; 68; 84; 51]. They 

provide guidelines and techniques that can be useful for developing refactoring engines. 

Previous approaches include analyses of some of the various aspects of a language, such as: 

accessibility, types, name binding, data flow, and control flow. For instance, Borba et al. [8] 

propose a set of refactorings for a subset of Java with copy semantics, a language called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'http: / /' 1 angpop. com/ 



/./ Problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 3 

Refinement Object-Oriented Language (ROOL). For each ref'actoring, they propose a set 

of conditions that guarantee behavioral preservation. They prove the refactoring correctness 

with respect to a formal semantics for a subset of Java. However, they have not considered all 

Java constructs, such as overloading and field hiding. Considering the whole Java language, 

the proposed conditions may not be enough. 

Listing 1.1: Pulling upzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B . kzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA () by using Eclipse 3.7 or JRRTv 1 changes program behavior, 

p u b l i c c l a s s A { 

int k ( ) { 

re turn 1 ; 

1 

1 

p u b l i c c l a s s B e x t e n d s A { 

int k ( ) { 

r e t u r n 2 ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}  

int m() ! 

r e t u r n s u p e r . k ( ) ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}  

p u b l i c in t t e s t () { 

r e t u r n m() ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

!  

Recently, Schafer and Moor [68] specified and implemented a number of refactorings 

for Java, and proposed a tool called JastAdd Refactoring Tools (JRRT) [68]. For each refac-

toring, as correctness criteria, they proposed some invariants that should be preserved to 

guarantee behavioral preservation. For instance, the Rename Method refactoring should pre-

serve name binding. However, the same problem illustrated in Listing 1.1 occurs when we 

apply this transformation by using JRRTv l2. Proving refactoring correctness for the entire 

language constitutes a challenge [70]. 

2 The JRRT version from May 18th. 2010 
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Testing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Although we cannot prove the absence of faults by using software tests, testing approaches 

have been useful in detecting faults in refactoring engines related to missing conditions. 

Daniel et al. [ 14] propose an approach ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA bounded-exhaustive testing [42] to automate this 

process. While manual testing requires manually identifying and writing each test case, 

bounded-exhaustive testing exhaustively tests all inputs for a given bound. They used a 

program generator (ASTGen) to generate programs as test inputs. To evaluate the engines' 

outputs, they implemented test oracles. These oracles check for compilation errors, and try 

to detect behavioral changes by applying static analysis. For instance, they apply the inverse 

refactoring to the output program and expect that the result be equal to the input program. 

Although the approach proposed by Daniel et al. [14] identified a number of faults, we 

can point out some limitations in their program generator and test oracles. First, most of 

the faults that they identified are related to compilation errors in users' code. They identi-

fied only one fault related to behavioral changes. Second, ASTGen allows users to directly 

implement how the program will be generated. However, for some Java constructions, imple-

menting how they will be combined does require some effort. Therefore, it may be difficult 

to generate a large variability of programs, potentially leaving many hidden faults. Later, 

Gligoric et al. [22] proposed (UDITA), a Java-like language that extends ASTGen allowing 

users to specify what is to be generated (instead of how to generate), and uses the Java Path 

Finder (JPF) model checker as a basis for searching for all possible combinations. By using 

UDITA, they found 4 new faults related to compilation errors in Eclipse. 

In my Master 's thesis [82], we propose S A F E R E F A C T O R . It analyzes a transformation, 

and generates tests for checking behavioral changes. We describe it along with the evaluation 

of 24 specific transformations applied to small examples and real open source projects (such 

as JHotDraw and JUnit). S A F E R E F A C T O R detected a number of behavioral changes. Ad-

ditionally, we proposed an approach and its implementation ( J D O L L Y ) for generating Java 

programs by using Alloy [32], a formal specification language, and ASTGen. It uses Alloy 

for generating the structural parts of the programs and ASTGen to generate the methods' 

bodies of the programs. We also proposed an approach for testing refactoring engines by 

using J D O L L Y and S A F E R E F A C T O R . A S a result, S A F E R E F A C T O R was useful for finding 

50 faults in Eclipse 3.4.2 that lead to compilation errors and behavioral changes in users' 
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code. 

By combining Alloy with ASTGen our technique increased the variability of generated 

programs, which was useful for finding more faults. However, it also required users to learn 

two technologies (Alloy and ASTGen) to specify the program generation. Users also need 

to synchronize the generation of the structural parts of the programs with the generation of 

the method bodies. Additionally, we lack evaluation to answer some questions about such 

a testing approach. First, can we generate programs with more expressivity to test refactor-

ings? For example, the programs generated by J D O L L Y do not contain packages, a common 

construct in Java programs. Steimann and Thies [ 8 4 1 show some faults in refactoring en-

gines in the presence of packages. Second, is this testing approach good enough for finding 

faults in other refactoring engines? For example, JRRT developers used ASTGen to test their 

implementations but did not find any fault [ 7 1 ] . Finally, in spite of S A F E R E F A C T O R having 

being useful for catching a number of behavioral changes, we still need further evaluation to 

understand in which scenarios it can detect behavioral changes and in which ones it cannot. 

These testing approaches may find a number of transformations that introduce compi-

lation errors and behavioral changes. Some of these transformations may be related to the 

same fault in the refactoring engine. An important step is to analyze each one of these trans-

formations to report the distinct faults found. Jagannath et al.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA [ 3 4 ] propose an approach to 

classify the faults related to compilation errors by the template of the compiler error message. 

However, there is no approach for classifying faults related to behavioral changes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1.2 Overly strong conditions 

So far, we have discussed about how difficult is to check whether the implemented conditions 

guarantee behavioral preservation. But we should also check whether these conditions not 

only avoid behavioral changes but prevent useful behavior preserving transformations. Due 

to the complexity of a large language as Java, developers may not realize that some condition 

will prevent some behavior-preserving transformation, reducing the applicability of the tool. 

Additionally, some conditions may be too difficult to implement, which may lead developers 

to implement less precise approximations. When a condition prevent behavior preserving 

transformations, we call it as a overly strong condition. 

For example, consider the Java program in Listing 1.2. The classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA A declares the method 
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k ( l o n g ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, and the class B declares methods n and t e s t . Suppose we would like to rename 

n to k. If we apply this transformation by using Eclipse 3.7, the tool will not apply the 

transformation showing a warning message. However, we can apply this transformation 

by using JRRTvl . It performs an additional change to make the transformation behavior-

preserving by adding a super access to the method invocation k (2) inside t e s t . 

Listing 1.2: Eclipse 3.7 prevents renaming B.n to B.k but JRRTvl correctly applies the 

transformation. 

1 public c la s s A { 

2 public long k( long 1) ( 

3 return 1 ; 

4 ) 

5 ) 

6 public c lass B extends A ( 

7 public long n ( i n t i ) ( 

8 return 2 ; 

9 1 

10 public long t e s t ( ) { 

11 return k ( 2 ) ; 

12 ) 

13 ) 

To the best of our knowledge, there is no automated testing approach to detect and clas-

sify overly strong conditions. 

1.1.3 Research questions 

Given the problems shown in Sections 1.1.1 and 1.1.2, we focus on the following research 

question: 

• R Q 1 : How can we automate Java program generation for generating test inputs useful 

for detecting faults in Java refactoring engines? 

• R Q 2 : How can we automatically evaluate a refactoring engine output to detect faults 

related to overly weak and overly strong conditions? 

• R Q 3 : What is the effectiveness of S A F E R E F A C T O R ? 
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• RQ4: How can we classify transformations that lead to behavioral changes and overly 

strong conditions into distinct faults? 

1.2 Solution 

In this work, we propose a technique for automated testing of Java refactoring engines. Its 

goal is to identify missing conditions that lead to compilation errors or behavioral changes 

in sequential (non-concurrent) Java programs and overly strong conditions that prevent 

behavior-preserving transformations in sequential Java programs. 

First, we automatically generate programs to be refactored, as test inputs. To do so, we 

propose a Java program generator called J D O L L Y . It exhaustively generates programs for a 

given scope of Java declarations (packages, classes, fields, and methods). It contains a subset 

of the Java metamodel specified in Alloy [32]. It also employs the Alloy Analyzer [33], 

a tool for the analysis of Alloy models, to generate solutions for this metamodel. Each 

solution is translated into a Java program. Differently from our previous technique [82], 

which combines the Alloy Analyzer with ASTGen for generating programs, J D O L L Y can 

generate entire programs using only the Alloy analyzer as enabling technology for finding 

all possible programs for a given scope. This difference avoids the need for developers to 

learn two different technologies to specify the program generation. 

For each generated program, the desired refactoring is applied by using the refactoring 

engine under test. Then, the technique uses the following oracles to evaluate the output. 

To detect failures in the applied transformations, we use S A F E R E F A C T O R , a tool that we 

proposed for checking behavioral changes. On the other hand, when the transformations are 

rejected by the engine, we propose a differential testing technique based on S A F E R E F A C T O R 

to identify overly strong conditions. For the same input program, it compares the result of 

the engine under tests with results of other engines. Although, in my Master 's thesis [82], we 

had already used S A F E R E F A C T O R for detecting faults related to missing conditions, here we 

combine it with differential testing to also detect faults related to overly strong conditions. 

Manually inspecting all failures detect by our technique may require a lot of effort. The 

final step of the technique is to classify these failures into distinct faults. To classify failures 

related to compilation errors, we use an approach [34] that classifies the failures by using 
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the template of the compiler error message. We uses a similar approach to classify failures 

related to overly strong conditions, splitting them by the template of the warning message. 

On the other hand, to classify failures related to behavioral changes, we classify them based 

on the structural characteristics of the transformations. In contrast, the technique proposed 

in my Master 's thesis [82] does not classify the failures into distinct faults. 

1.3 Evaluation 

We have conducted experiments1 to evaluate our technique for testing of refactoring engines, 

and its components, J D O L L Y and S A F E R E F A C T O R , with respect to our research questions. 

We evaluated our technique with respect to effectiveness on finding faults due to missing 

conditions. We used it to test three refactoring engines: Eclipse JDT 3.7, NetBeans 7.0.1, and 

two versions of the JastAdd Refactoring Tools (JRRTv 1 and JRRTv2) [71; 74; 68]. We tested 

up to 10 refactorings implemented by each engine. We assessed 153,444 transformations, 

and identified 57 faults related to compilation errors, and 63 faults related to behavioral 

changes. We reported all faults to the tools' developers, who have confirmed 90 out of 120 

so far. Moreover, they have already fixed 35 faults reported by us. 

We also conduct an experiment to evaluate the technique with respect to effectiveness 

in identifying overly strong conditions. We used the technique to test three Java refactoring 

engines (Eclipse JDT 3.7, NetBeans 7.0.1, and JRRTv 1). For each engine, we tested up 10 

refactoring implementations in a sample of 42,757 transformations. We found that 16% and 

1% of transformations rejected by Eclipse and JRRT, respectively, are behavior-preserving. 

The implementations have overly strong conditions avoiding correct transformations to be 

applied. Our technique automatically categorized them in 17 and 7 kinds of overly strong 

conditions of Eclipse and JRRT, respectively. We reported all faults to the tools' developers. 

So far, they have accepted 1 1 faults and fixed 3 of them. 

With respect to J D O L L Y , we perform an experiment to compare J D O L L Y and 

UD1TA [22] with respect to effectiveness and efficiency in generating Java inheritance 

graphs. Our results shows that J D O L L Y exhaustively generates solutions for a given scope. 

3 All exper imental data are available at:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h t t p : / / w w w . d s c . u f c g . e d u . b r / ~ g s o a r e s /  

t h e s i s - e x p e r i m e n t s . h t m l 

http://www.dsc.ufcg.edu.br/~gsoares/
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On the other hand, UDITA failed to generate some solutions. Additionally, J D O L L Y was 

faster than UDITA but generated more isomorphic (structurally equivalent) solutions, which 

is not desired since two or more programs with the same structure do not increase the change 

of finding new faults. 

In regard to S A F E R E F A C T O R , we performed an empirical study to evaluate its effective-

ness in detecting behavioral changes on a sample of 6 0 transformations gathered from two 

repositories of open source Java projects. We compared S A F E R E F A C T O R ' S results with the 

results of a manual analysis and the results of an automated approach for detecting refactor-

ings by analyzing commit messages [ 6 1 ]. In this study, S A F E R E F A C T O R had 7 0 % accuracy. 

In Section 4 . 2 , we its discuss advantages and limitations when testing real Java programs. 

1.4 Summary of contributions 

The main contributions of this thesis can be summarized as follows: 

• We propose an automated technique for testing of Java refactoring engines with respect 

to missing conditions and overly strong ones. We report on the results of experiments 

to show the effectiveness of our technique reporting 1 2 0 missing conditions and 2 4 

overly strong ones to refactoring engine developers [ 7 7 ; 8 1 ; 7 9 ; 7 6 ; 8 3 ] ; 

• We propose and implement a technique ( J D O L L Y ) for generating Java programs that 

allows users to use Alloy constraints to guide the program generation. We show that 

J D O L L Y is useful for generating test inputs for testing of refactoring engines. Our 

results also suggest that J D O L L Y exhaustively generates programs for a given scope. 

On the other hand, UDITA 122] failed to generate all programs for a given scope [ 7 7 ; 

7 6 ; 8 3 ] ; 

• We report on the results of an experiment to show that S A F E R E F A C T O R has 7 0 % accu-

racy in detecting transformations that preserve programs behavior and transformations 

that do not [ 7 8 ] . 
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1.5 Organization 

This thesis is organized as follows. In Chapter 2 , we provide some background on program 

refactoring, testing, and Alloy. In Chapter 3 , we present J D O L L Y , our Java program gener-

ator, and its evaluation. In Chapter 4 , we give an overview of S A F E R E F A C T O R , and present 

an evaluation of S A F E R E F A C T O R on 6 0 transformations of real Java programs. Then, in 

Section 5 , we describe our technique for testing of Java refactoring engines. Moreover, we 

show its evaluation by testing real Java refactoring engines. Chapter 6 presents the related 

work, and Chapter 7 summarizes the contributions of the thesis and future work. Finally, 

Appendix B shows some algorithms used in the experiment shown in Section 4 . 2 . 



Chapter 2 

Background zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present the background needed for the understanding of this work. First, 

we explain refactoring, and show an overview of the state-of-the-art in this area (Section 2.1). 

Then, we present some important concepts related to testing, and introduce testing of refac-

toring engines (Section 2.2). Finally, in Section 2.3, we give an overview of Alloy [32], a 

formal specification language, which we use to build J D O L L Y , our program generator. 

2.1 Program refactoring 

The term refactoring was coined by Opdyke, in his PhD thesis [531. Then, it was popularised 

by Fowler [19]. He delines refactoring as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"It is a change made to the internal structure of a software to make it easier to 

understand and cheaper to modify without changing its observable behavior." 

Fowler also delines refactoring as a verb [19]: 

"// is to restructure software by applying a series of refactorings without chang-

ing its observable behavior." 

2.1.1 Example 

In this section, we give a refactoring example. First, we show the process of identifying 

which part of the code should be refactored, and then, we show the appropriated refac-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 1 
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Coring to be applied. To this example, consider superclasszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Employee and its subclasses 

Engineer and A n a l y s t shown in Listing 2.1. 

Listing 2.1: Program containing duplicated code. 

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA p u b l i c c l a s s Employee { 

2 

3 } 

4 p u b l i c c l a s s E n g i n e e r e x t e n d s Employee { 

5 p r i v a t e doub le s a l a r y ; 

6 p u b l i c d o u b l e g e t S a 1 a ry () { 

7 r e t u r n s a l a r y ; 

8 } 

9 

10 ) 

11 p u b l i c c l a s s A n a l y s t e x t e n d s Employee { 

12 p r i v a t e d o u b l e s a l a r y ; 

13 p u b l i c doub le g e t S a 1 a r y () { 

14 r e t u r n s a l a r y ; 

15 ) 

16 

17 } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Bad Smells 

First, we should identify the code that should be refactored. To help the developer in this 

process. Beck [ 19] categorized 21 cases where there are points in the code indicating that it 

should be improved. Beck refer to these signs as bad Smells. 

The first bad smell that he presents is the duplicated code. When the same code appears 

in different parts of the program, the maintenance of it may become difficult, since it is 

needed to apply the change to all duplications of the code. Therefore, it is better to find a 

way to remove duplicated code. For instance, by looking at the code shown in Listing 2.1, 

we notice that method g e t S a l a r y and field s a l a r y are declared in the two subclasses. 

We thus should refactor that code to avoid this duplication. 
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Other examples of bad smells are: long methods, large classes, and long parameter 

list! 19; 88]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Choosing and applying refactorings 

Fowler [19; 621 defined a refactoring catalog. For each refactoring, he shows the motivation 

and the process to apply it. To remove the duplicated code of our example, we will apply 

two refactorings presented in Fowler's catalog. 

First, we use the Pull Up Field refactoring to move the fields to the superclass. 

Fowler [19] defines the following steps to apply this refactoring: 

1. Inspect the declaration of the candidate fields to assert that they are initialized in the 

same way; 

2. If the fields do not have the same name, rename them so that they have the name you 

want; 

3. Compile and test; 

4. Create a new field in the super class. If the fields are private, you should declare it as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p r o t e c t e d so that the subclass can access it; 

5. Remove the fields from the subclasses; 

6. Compile and test. 

We apply the refactorings by using small steps intercalated with compilation check and 

tests to guarantee that the transformation preserves the external behavior of the program. 

Listing 2.2 shows the program after the performed refactoring. Notice that it was needed, 

as indicated in step 4 of Fowler's catalog, to change the access modifier of the field from 

p r i v a t e to p r o t e c t e d to allow its access from the subclasses. 

Listing 2.2: Program after applying the Pull Up Field refactoring. 

1 p u b l i c c l a s s E m p l o y e e { 

2 p r o t e c t e d doub le s a l a r y ; 

3 
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4 ) 

5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA p u b l i c c l a s s E n g i n e e r e x t e n d s Employee 

6 p u b l i c d o u b l e g e t S a l a r y O { 

7 r e t u r n s a l a r y ; 

8 } 

9 

10 } 

11 p u b l i c c l a s s A n a l y s t e x t e n d s Employee { 

12 p u b l i c d o u b l e g e t S a l a r y O { 

13 r e t u r n s a l a r y ; 

14 } 

15 

16 | 

After removing the duplicated fields, we can apply the Pull Up Method refactoring [19] 

to move thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA g e t S a l a r y methods to the superclass. We can apply this refactoring since 

both implementations of the method have the same behavior. Listing 2.3 shows the resulting 

program after applying the two refactorings. 

Listing 2.3: Program after applying the Pull Up Method refactoring. 

1 p u b l i c c l a s s Employee { 

2 p r o t e c t e d d o u b l e s a l a r y ; 

3 p u b l i c d o u b l e g e t S a l a r y O { 

4 r e t u r n s a l a r y ; 

5 } 

6 

7 1 

8 p u b l i c c l a s s E n g i n e e r e x t e n d s Employee { . . . } 

9 p u b l i c c l a s s A n a l y s t e x t e n d s Employee { . . . } 

Manually applying refactoring is time consuming and error prone. Fowler [19] suggests 

to use small steps intercalated with compilation checks and tests as a safer approach to apply 

refactorings. Besides that, there are tools that automate this process. In the next section, we 

show an overview of these tools. 
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2.1.2 Refactoring engines 

The first Refactoring engine, Refactoring Browser [65], was proposed by Roberts in his PhD 

thesis. It implements a number of refactorings for the Smalltalk [23] language. Refactoring 

has become more popular, and so most of the current IDEs have implemented refactorings to 

support developers. Table 2.1 shows some IDEs that provide Java refactoring engines [88]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C o d e C u i d e 

Ec l i p se 

Id ea 

Ja v a Re f a c t o r 

JBu i l d e r 

JFac t o r 

JRe f a c t o r y 

N e t Be an s 

T r a n s m o g r i f y 

XRe f a c t o r y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Company 

O m n i c o r e 

I n t e l i j  

Bo r l a n d 

I n s t a l l a t i o n s 

Su n 

M i c r o s y s t e m s 

X r e f - T e c h 

IDE 

IDE 

IDE 

Pl u g i n f o r j Ed i t  

IDE 

Pl u g i n f o r Jb u i l d e r a n d 

V i s u a l A g e 

Pl u g i n f o r El i x i r , JBu i l d e r 

a n d N e t Be an s 

IDE 

Pl u g i n f o r JBu i l d e r a n d 

Fo r t e4 Jav a 

Pl u g i n f o r Em ac s , j Ed i t  

a n d XEm ac s 

w w w . o m n i c o r e . c o m 

w w w . e c l i p s e . o r g 

w w w . i n t e l l i j . c o m 

p l u g i n s . j e d i t . o r g / p l u g i n s / ? 

Ja v a Re f a c t o r 

w w w . b o r l a n d . c o m / j b u i l d e r 

w w w . i n s t a t i a t i o n s . c o m / j f a c t o r 

j r e f a c t o r y . s o u r c e f o r g e . n e t 

w w w . n e t b e a n s . o r g 

t r a n s m o g r i f y . s o u r c e f o r g e . n e t 

w w w . x r e f - t e c h . c o m 

Table 2 . 1 : Industrial Java refactoring engines [88]. 

A refactoring engine allows developers to select the refactoring to be applied and the 

parameters for configuration. The tool automatically checks the refactoring conditions to 

guarantee behavioral preservation. For instance, when we apply the Rename Method, the 

tool checks whether there are other methods with the same name of the refactored method. 

If all conditions are satisfied, the tool performs the desired transformation. To exemplify the 

process, we show the application of the Pull Up Field refactoring shown in Section 2.1.1 by 

using Eclipse. The developer selects the field that will be refactored, and choose Pull Up 

from the Refactor menu (Figure 2.1(a)). Eclipse shows a window where the developer can 

choose additional parameters to apply the refactoring (Figure 2.1(b)). 

In addition, Eclipse allows the developer to see the preview of the transformation by 

pressing the next button (Figure 2.1(b)), which allows the developer to manually inspect 

the correctness of the transformation. Figure 2.2 shows the Eclipse preview containing the 

changes that will be applied. 

http://www.omnicore.com
http://www.eclipse.org
http://www.intellij.com
http://plugins.jedit.org/plugins/
http://www.borland.com/jbuilder
http://www.instatiations.com/jfactor
http://jrefactory.sourceforge.net
http://www.netbeans.org
http://transmogrify.sourceforge.net
http://www.xref-tech.com
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Ren am e. . .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA XXR 

Move. . . 

Ex t r act In t er l ace. . . 

Ex t r act Su p er cl ass. . . 

Use Su p er t yp e Wh er e Possi b l e. . . 

Ex t r act Class. . . 

En cap su l at e Fi el d . . . 

In t er Cen en c Typ e A r g u m en t s . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) 

(b) 

Figure 2.1: Pull Up Field from Eclipse, (a) developer selects the desired refactoring; (b) 

developer configures additional parameters, and confirms the refactoring by pressing the 

Finish button. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

<F>  O Refaaormg 

Pull Up 

T r c ' c l o v v i r s c r i n g e s £*'C r e c e s s ; r v t o p c r * o m :- e r c U c i c n r g . 

C n a - g e szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ro be p er l 

t n p t o y M . j Jv a 

C r g r e c i j a v a 

etiCTO'inr.cxarrc'e. 'src 

A- ia iysi Java 

O t g i n a i 5 O J ^ C 

p;;bi i t c A a s s A n a . y s t i d s L* p ". o y e e { 

p r i v a t e dOLioI t *  S Q i O r y ; 

r r t u r n sa ' . U' - y; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
> 

Re f a ct o ' e d So u r ce 

p u b l i c c l a s s A n o ' . y s t e x t e n d s I m p 

I ~ :• • . v g c T Sc T . Q - y O { 

r e t u * * n sozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'.Qfy; 

Figure 2.2: Eclipse 3.7 preview of the desired refactoring. 
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Eclipse was one of the first IDEs to implement refactorings. In its first version, re-

leased in the end of 2001, it included the following refactorings: Rename, Move, and Extract 

Method [20]. The refactorings implemented by Eclipse 3.7 can be seen in Table 2.2. Murphy 

et al. [48] conducted a survey on Java software development by using Eclipse. They analyzed 

the use of the Eclipse refactorings by 41 developers. The five most used refactorings were: 

Rename, Move, Extract Method, Pull Up Method, e Add Parameter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refactorings supported by Eclipse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Mo ve (class, m et h o d ) 

m e t h o d , f i e * : ; 

Chang e M et h o d 

Si g n at u r e 

Cx t r act Local Var i ab l e Ex t r act Co n st an t In l i ne (m e t h o d , var i ab le) Con ver t  A n o n y m o u s C- ass 

t o Nest ed 

Ex t r act Superclass Ex t r act In t er f ace 

Push Do w n (m e t h o d , f i el d ) Pu l l Up (m et h o d , f ie d) Ex t r act Class 

Con ver t  M em b er Type t c 

Top Level 

Use Super Type Wh er e 

Possib le 

In t r o d u ce Par am et er 

Ob j ect 

In t r o d u ce In d i r ect i o n In t r o d u ce Fact o r y In t r o d u ce Par am et er En cap su l at e Field 

Gener al i z e Decl ar ed Type In f er Gener ic Type 

A r g u m en t s 

Table 2.2: Refactorings supported by Eclipse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1.3 Behavioral preservation 

According to the refactoring definition shown in Section 2.1, two programs are equivalent 

when they have the same external behavior. In his PhD thesis, Opdyke formally specified 

23 primitive refactorings and other three complex refactorings. Each primitive refactoring 

contains a set of conditions that guarantee behavioral preservation. For instance, Opdyke 

defines the following conditions to the Pull Up Field refactoring shown in Section 2.1.1: 

1. The field should be defined in the same way in all subclasses; 

2. The field should not be defined in the superclass. 

Notice that if the second condition is violated, it will produce a program with a compi-

lation error due to name conflicts. On the other hand, if the first condition is violated, the 

program will still compile but it may have different behavior since the value of one of the 

fields will be changed. 
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The conditions proposed by Opdyke are based on seven properties defined by him. Ac-

cording to him, these properties assure the correctness of the transformations. They are: 

1. Unique superclass. Each class in the resulting program must have at most one super-

class; 

2. Distinct class names. All classes in the resulting program must have distinct names; 

3. Distinct member names. Each class in the resulting program must have distinct vari-

ables and function names; 

4. Inherited member variables not redefined. A member variable inherited from a super-

class is not redefined in any of its subclasses; 

5. Compatible signatures in member function redefinition. Redefinitions of methods have 

the same signatures as the redefined method; 

6. Compatible signatures in member function redefinition. In the resulting program, every 

expression that is assigned to a variable must have the same type or a subtype of the 

variable's type; 

7. Semantically equivalence references and operations. The resulting program must have 

the same output set of the original program for a given set of inputs. 

The first six properties are related to preservation of well-formedness of the programs. 

We can check that by compiling the program after the transformation: if there is any compi-

lation error, it means that the transformation was not correctly applied. 

On the other hand, the last property is related to semantics preservation of the program, 

and thus, compiling the program is not enough to check it. The program can still compile 

but with a different external behavior of the original one. 

Opdyke [53] defines semantics equivalence between programs as follows: "let the exter-

nal interface of the program be the main function. If the main function is called twice (once 

before and once after a refactoring) with the same set of inputs, the resulting set of output 

values must be the same (p. 40)". This definition of equivalence notion allows a refactoring 

to change the internal structure of the program as long as the mapping between input and 
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outputs of the main function be preserved. This definition can be seen as an application of 

the notion of data refinement [28; 30]. 

Another way to deal with behavioral preservation is through testing. Roberts [65] defines 

that a refactoring is correct if after the transformation, the program still is in conformance 

with its specification. His equivalence notion is based on testing. According to him, a refac-

toring is correct if a program that passes the tests still passes them after the transformation. 

Fowler [ 19] uses the same equivalence notion. 

Additionally, in some application domain, guaranteeing that for a set of inputs, the pro-

gram has the same outputs after the transformation is not enough to state the transformation 

preserved behavior [45]. For instance, in real-time systems, it should also be considered the 

time to execute the program as part of its behavior. Also, in embedded systems, the memory 

space and energy consumption may be used as part of the program's behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1.4 Refactoring verification 

As shown in Section 1.1, even small transformations may be incorrectly applied by refactor-

ing engines. The ideal solution would be formally specify the conditions for each refactoring 

and prove them with respect to a formal semantics. 

Proving refactoring correctness with respect to a formal semantics is a challenge [70]. 

Some approaches have contributed in this direction. Borba et al. [8] propose a set of refactor-

ings for a subset of Java with copy semantics, a language called Refinement Object-Oriented 

Language (ROOL). They prove the refactoring correctness based on a formal semantics. To 

illustrate this process, next we show a refactoring proposed by them. The following rule 

formalizes the Pull Up Field refactoring when applied from the left hand side to the right 

hand side and Push Down Field when applied from the opposite direction (Figure 2.3). Each 

refactoring consists of two templates of ROOL programs. The refactoring can be applied 

as long as the programs match the templates, that is, if all variables in the templates can be 

assigned to the concrete values. 

Each refactoring may also contain meta-variables. For instance, cds, ads, e ops are 

meta-variables that define sets of classes, fields, and operations, respectively. Moreover, 

the c meta-variable represents the main function. Their equivalence notion are based on 

comparing the main function with respect to the two versions of the program, in a similar 
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way of the notion proposed by Opdyke [53]. The (->) arrow before the condition indicates 

that it is required when applying the rule from the left to the right. The (<-) arrow indicates a 

condition when applying it from the opposite direction. Additionally, the arrow (<->) indicates 

a condition needed when applying from both directions. In this example, we can see that to 

move a field to the superclass, there cannot be another field in the super class with the same 

name. 

Figure 2.3: Rule for applying a refactoring in ROOL [8], 

ROOL Refactoring (Move a field to the superclass) 

c l a s s B e x t e n d s .4 c l a s s B e x t e n d s A 

ads p u b a : T\ ads 

ops ops 

e n d e n d 

c l a s s C e x t e n d s B 
cds.c c l a s s C e x t e n d s B 

p u b a : T: ads' ads' 

ops' ops' 

e n d e n d 

restrições 

(—>) The field with name a is not declared in the subclasses of B in cds; 

(«—) D.a, for any D < B and D C, does not appear in cds, c, ops, or ops'. 

Silva et al. [75] extended these previous laws for a sequential object-oriented language 

with reference semantics (rCOS). They prove the correctness of each one of the laws with 

respect to rCOS semantics. Some of these laws can be used in the Java context. Yet, they 

have not considered all Java constructs, such as overloading and field hiding. 

Schafer et al. [711 propose a Rename Class, Method and Field refactoring implementa-

tions. They state that a renaming must preserve name bindings, that is, each name should 

refer to the same entity before and after the transformation. Furthermore, Schafer et al. [74; 

68] present a number of Java refactoring implementations. They translate a Java program 

to an enriched language that is easier to specify and check conditions, and apply the trans-

formation. As correctness criteria, besides using name binding preservation, they used other 
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invariants such as control flow and data flow preservation. 

Steimann and Thies [84] show that by changing access modifierszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ( p u b l i c , 

p r o t e c t e d , package, p r i v a t e ) in Java one can introduce compilation errors and be-

havioral changes. They propose a constraint-based approach to specify Java accessibility, 

which favors checking refactoring conditions and computing the changes of access modi-

fiers needed to preserve the program behavior. 

Another approach for checking refactorings - generalization-related refactorings such as 

Extract Interface and Pull Up Method - is proposed by Tip et al. [86]. Their work proposes 

an approach that uses type constraints to verify conditions of those refactorings, determin-

ing which part of the code they may modify. Using type constraints, they also propose the 

refactoring Infer Generic Type Arguments [21], which adapts a program to use the Generics 

feature of Java 5, and a refactoring to migration of legacy library classes [31. These refac-

torings are implemented in the Eclipse J D T Their technique allows sound refactorings with 

respect to type constraints. However, a refactoring may have conditions related to other con-

structs. Additionally, Schafer et al. [69] propose refactorings for concurrent programs. They 

have proved the correctness of them with respect to some concurrency properties based on 

the Java memory model. 

Dig and Johnson [15] analyzed refactorings in the context of software reuse. They anal-

ysed changes applied to three frameworks and one library largely used. As a result, they 

found that more than 80% of the changes made to API that lead to incompatibilities with 

clients are refactorings. Henkel e Diwan [29] proposed an approach and a tool for evolving 

an API by using refactorings. Their tool allows recording the applied refactorings to the API 

to automatically update the client code based on these refactorings. 

Some studies have been contributing to popularize refactorings in aspect-oriented pro-

gramming. Monteiro and Fernandes [471 proposed a catalog of 27 aspect-oriented refactor-

ings. These refactorings aim at introducing aspects and improve the design of them. Cole 

and Borba [ I0 | formally specify aspect-oriented programming laws (each law defines a bidi-

rectional semantics-preserving transformation) for AspectJ. By composing them, they derive 

AspectJ refactorings. Each law formally states conditions. They proved one of them sound 

with respect to a formal semantics for a subset of Java and AspectJ [111. They can be very 

useful for implementing aspect-aware refactoring tools. Wloka et al. [921 propose a tool sup-
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port for extending currentlyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 0 0 refactoring implementations for considering aspects. They 

developed an impact analysis tool for detecting change effects on pointcuts to generate point-

cut updates. Binkley et al. [7] present a human guided automated approach to refactor 0 0 

programs to the AO. Hannemann et al. 127] introduce a role-based refactoring approach to 

help programmers modularize crosscutting concerns in aspects. These works contribute for 

improving tool support for refactoring aspect-oriented programs. 

2.2 Testing overview 

Software testing is the primary method that industry uses to evaluate the software under 

development [2]. Testing can be defined as an evaluation of the software by observing its 

execution. There are three common concepts in software testing: failure, fault, and error. 

According to Binder [6], a fault is a static defect in the software; a system error is an incorrect 

internal state (the manifestation of some fault); and a failure is an external, incorrect behavior 

with respect to the expected behavior. 

To specify a test, we can use two different techniques: black box testing and white box 

testing [2], In the former, the goal is to evaluate whether the program satisfies some func-

tional or non-functional requirement. We thus do not need the program's source code to 

specify a black box test. On the other hand, white box testing requires the source code in 

order to select parts of the code to be tested. This thesis focuses on black box testing in the 

sense that we do not need to look inside the refactoring engines' code to specify the tests. 

We just need the engine's API. The remainder of this section presents other software testing 

concepts that are important to the understanding of this thesis. 

2.2.1 Test case 

The main challenge on software testing is to determine a set of test cases (named test suite) 

for the software to be tested. A test case is composed of a set of inputs, expected results, and 

prefix and postfix values [2]. 

The inputs are values needed to complete some execution of the software under test. 

On the other hand, the expected result specifies the result that is expected to be produced 

after executing the test if the program satisfies the requirement. Prefix values are any inputs 
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needed to set up the software into the appropriate state to receive the inputs. And, postfix 

values are any inputs that needed to be sent to the software after the test. 

For instance, test cases can be createdzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA by using JUnit [43], a framework for automating 

unit tests. The framework provides the a s s e r t E q u a l s method, which compares the value 

returned by the method under test with the expected value. If the values are different, the 

test fails, and a red bar is shown in JUnit's GUI. On the other hand, if the values are equal, 

it shows a green bar. Listing 2.4 shows a unit test for the g e t S a l a r y () method from 

class A n a l y s t . In this test, we instantiate an object of type A n a l y s t , set a value for field 

s a l a r y , and compare this value with the value returned by the g e t S a l a r y method. 

Listing 2.4: Unit test for method getSalaryO from class Analyst. 

1 p u b l i c void te s t G e S a 1 a ry () { 

2 A n a l y s t a n a l y s t = new A n a l y s t ( ) ; 

3 a n a l y s t . s e t S a l a r y ( 3 0 0 0 ) ; 

4 double e x pec ted V a I u e = 3 0 0 0 ; 

5 double v a l u e = a n a l y s t . g e t S a l a r y ( ) ; 

6 a s s e r t E q u a l s ( e x p e c t e d V a l u e , v a l u e ) ; 

7 ) 

2.2.2 Oracle 

A test case passes when the software under test produces the expected result. The pass/no 

pass evaluation is made by comparing the actual result with the expected one by a trusted 

mechanism, known as test oracle or just oracle [5; 91 ]. 

In many cases this oracle consists of a manual observation of the test input and output, 

which can be time consuming, tedious and error prone. However, it can also be automated, 

or partially automated. For instance, the comparison can be manually done by using the 

programmer's knowledge or automatically done by checking a formal specification. In List-

ing 2.4, the oracle is partially automated. The developer manually specifies the expected 

value, and it is automatically checked by using the JUnit framework. 
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2.2.3 Test coverage criteria zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Usually, the number of inputs for a software is so large as to effectively infinite. For instance, 

potential inputs to a Java compiler are not just all Java programs, but all strings. The only 

limitation is the size of the file that can be read by the parser. Since we cannot test a software 

against all inputs, we use test coverage criteria to decide which inputs to use. 

Test coverage criterion can be defined as a rule or a collection of rules that impose test 

requirements on a test set. A test requirement is a specific element of a software artifact 

that a test case must satisfy or cover [2]. To check how good a test suite is. we can measure 

it against a criterion in terms of coverage. Coverage is important because sometimes it is 

expensive or even infeasible to achieve some criteria, so we want at least achieve some test 

coverage level. There are many test coverage criteria that can be used to evaluate a test suite. 

For instance, for white box testing, we can measure: statement coverage, branch coverage, 

all-defs and all-uses coverage. 

Test coverage criteria can be viewed as defining ways of splitting the input space accord-

ing to test requirements, in the sense that any collection of value that satisfies the same test 

requirement will be equally useful [2]. Therefore, the input space is partitioned into regions 

that are assumed to contain equally useful inputs from a testing perspective. 

We can use a syntactic description such as a grammar to model the input space, and define 

some criteria based on this description. For instance, we can define Java BNF grammar to 

describe the inputs for a Java compiler, and then generate valid (correct syntax) or invalid 

(incorrect syntax) programs to test the compiler. Additionally, there are coverage criteria 

with respect to syntactic descriptions that can be used to evaluate the test suite. For instance, 

considering a BNF grammar, a terminal symbol coverage evaluates the terminal symbols 

in the grammar that are covered by the test suite. Also, production coverage evaluates the 

productions in the grammar that are covered by the test suite. 

2.2.4 Testing refactoring engines 

A test case for a refactoring engine consists of an input program, as test input, and an ex-

pected output, which can be an output program, or an expected transformation rejection 

when some condition is violated. 
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For instance, Figure 2.4 shows two test cases created by JRRT developers to evaluate their 

Pull Up Method refactoring implementation. The firstzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ( t e s t l ) contains an input program 

with the classes Super and A, which extends Super and contains the m method. It also 

contains an expected output program contains the same classes Super and A but with the 

m method in the Super class. After performing this test, if the engine produces an output 

different from the expected one, the test will fail. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2.4: Test cases created by JRRT developers to evaluate the Pull Up Method refactoring 

implementation. 

On the other hand, the second test case ( t e s t 2 ) shows a situation where the refactoring 

engine should not apply the transformation. The input program has two subclasses, A and B. 

They contain a method m, but with different signatures and bodies. Therefore, the refactoring 

should not be applied. 

Manually creating test cases for refactoring engines, besides time consuming, is diffi-
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cult since developers need to create complex inputs (programs) and reason about behavioral 

preservation for creating expected outputs. This may lead to a test suite with a low level of 

production coverage, potentially leaving many hidden faults. 

Daniel et al. [14] proposed an approach for automated testing of refactoring engines. 

They used a program generator (ASTGen) to generate programs as test inputs. ASTGen al-

lows users to directly implement how the programs will be generated. To illustrate it, next 

we show how ASTGen generates Java fields. Suppose we want to generate field declara-

tions for integers or booleans with any access modifier. To do so, ASTGen provides the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F i e l d D e c l a r a t i o n G e n generator (Listing 2.5). 

Listing 2.5: Simplified version of the field generator of ASTGen. 

1 c l a s s F i e l d D e c l a r a t i o n G e n e x t e n d s ASTNodeGenBase< F i e 1 d Dec 1 a r a t i o n > 

! 

2 I G e n e r a t o r < M o d i f i e r > m o d i f i e r G e n ; 

3 I G e n e r a t o r <Type> typeGen ; 

4 I G e n e r a t o r < I d e n t i f i e r > idGen ; 

5 

6 . . . ( c o n s t r u c t o r s and o t h e r m e t h o d s ) 

7 

8 F i e l d D e c l a r a t i o n g e n e r a t e C u r r e n t ( ) { 

9 F i e l d D e c l a r a t i o n g e n e r a t e d = new F i e l d D e c l a r a t i o n ( ) ; 

10 g e n e r a t e d . s e t M o d i f i e r ( m o d i f i e r G e n . c u r r e n t O ) ; 

11 g e n e r a t e d . s e t T y p e ( t y p e G e n . c u r r e n t O ) ; 

12 g e n e r a t e d , s e t i d e n t i f i e r ( i d G e n . c u r r e n t ( ) ) ; 

13 r e t u r n g e n e r a t e d ; 

14 } 

15 } 

The class F i e l d D e c l a r a t i o n G e n extends ASTNodeGenBase, base class to 

create AST nodes. Each node is represented by using the Eclipse Core API1. 

The F i e l d D e c l a r a t i o n node has three child nodes: M o d i f i e r (access modi-

'Java Model Tutorial:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h t t p : / / h e l p . e c l i p s e . o r g / h e l p 3 2 / i n d e x . j s p 7 t o p i c - / o r g . 

e c l i p s e . i d t . d o c . i s v / g u i d e / j d t _ i n t _ r a o d e l . h t m 

http://help.eclipse.org/help32/index.jsp7topic-/org
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fier),zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Type (type declared by the field), I d e n t i f i e r (name of the field). The 

F i e l d D e c l a r a t i o n G e n generator consists of three generators responsible for generat-

ing variations for these child nodes: modif ierGen, typeGen, idGen. In each iteration, 

the g e n e r a t e C u r r e n t () creates a field declaration by combining these three generators. 

To initialize the F i e l d D e c l a r a t i o n G e n generator, we need first to instantiate gen-

erators modif ierGen, typeGen, idGen, as shown in Listing 2.6. 

Listing 2.6: Instantiating generators that compose the FieldDeclarationGen generator. 

1 I G e n e r a t o r < Modi fier > m o d i f i e r G e n =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA new C h a i n < M o d i f i e r >( p u b l i c , 

p r i v a t e . p r o t e c t e d . d e f a u l t ) ; 

2 I G e n e r a t o r <Type> typeGen = new Cha in<Type >( int . b o o l e a n ) ; 

3 I G e n e r a t o r < I d e n t i f i e r > idGen = new C h a i n < I d e n t i f i e r > ( x ) ; 

In this way, the declared field can have accessibility p u b l i c , p r i v a t e , p r o t e c t e d , 

or d e f a u l t . It will have the type i n t or boolean, and the name x. We pass these genera-

tors as parameters to instantiate the F i e l d D e c l a r a t i o n G e n generator (see Listing 2.7). 

By using these parameters, the generator produces eight field declarations. 

Listing 2.7: Instantiating the FieldDeclarationGen generator. 

1 F i e l d D e c l a r a t i o n G e n f i e l d D e c l G e n = 

2 new F i e l d D e c l a r a t i o n G e n ( m o d i f i e r G e n , t y p e G e n , i d G e n ) ; 

Besides using ASTGen, Daniel et al [14] implemented 6 test oracles to evaluate engine 

outputs: 

• DoesCrash. It checks if the refactoring engine throws an uncaught exception during 

the test; 

• DoesNotCompile. It checks if the program compiles after the transformation; 

• WarningStatus. It checks if the refactoring engine throws a warning message as out-

put. This oracle is useful when the tester intentionally creates programs that do not 

satisfies the refactoring conditions, and want to check if the engine correctly identities 

and avoids these transformations; 



2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• InverseOracle. In this oracle, they apply the refactoring under test, then they perform 

the inverse refactoring, that is, the opposite transformation, to the output program, and 

check if the resulting program is equal to the original one. For instance, to test if the 

engine correctly renames class A to B, they perform this transformation, then perform 

the inverse transformation, renaming B to A, and checks if the resulting program is 

equal to the original one. To compare the programs, they have implemented an AST 

comparator; 

• CustomOracle. They have implemented some refactoring-specific oracles. These 

oracles checks properties of some refactorings. For instance, when you rename a field, 

the resulting program should not have the old field name anywhere in the AST; 

• DifferentialOracle. This oracle performs the refactoring under testing by using two 

or more refactoring engines and compares the results. If they are different, a human 

inspect the two output programs to check whether the differences are related to some 

fault in one of the engines. 

Although they have identified a number of faults in Eclipse and NetBeans that introduce 

compilation errors on the user's code, they have found only one fault related to behavioral 

change. 

Additionally, writing ASTGen generators requires a considerable effort since the devel-

opers need to implement how the programs will be generated. Later, Gligoric et al. [ 2 2 1 

proposed UDITA, which follows a filtering approach, that is, the generator automatically 

searches for all possible combinations of Java constructs to generate programs. Moreover, 

the tester can specify constraints to filter the program generation. The more constraints the 

tester specifies, the fewer programs it will generate. UDITA uses the Java Path Finder (JPF) 

model checker as a basis for searching for all possible combinations. 

Gligoric et al. [ 2 2 ] previously specified a Java inheritance graph generation in UDITA. 

Figure 2 . 5 presents Java programs that illustrate different inheritance graphs that can be 

generated for a scope of two elements. Each inheritance graph needs to satisfy two invariants: 

1. Directed Acyclic Graph (DAG). We cannot have directed cycles in Java inheritances; 
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i 
class A {} 

class B ex t en d s A {} 

2 
i n t e r f ace A {} 

class B i m p l e m e n t s A {} 

3 
i n t e r f ace A {} 

i n t e r f ace B ex t en d s A {} 

Figure 2.5: Programs representing Java Inheritance Graphs. 

UDITA allows users to specify the generation by using a Java language extended with 

non-deterministic choices. Next, we describe the inheritance graph specification presented 

by Gligoric et al. [22]. In Listing 2.8, we show the Java inheritance graph representation in 

UDITA. The class IG represents the graph, and contains fields that represent a list of nodes 

and the size of the graph. It also contains a class representing a node, which has an array 

of nodes as supertypes and a b o o l e a n flag to mark the node as a class (otherwise it is 

an interface). In Listings 2.9 and 2.10, we present invariants for the Java inheritance graph 

specified in UDITA. It returns true when these properties hold. 

Listing 2.8: Java inheritance graph representation in UDITA 

1 c l a s s IG { 

2 Node [ ] nodes ; 

3 i n t s i z e ; 

4 s t a t i c c l a s s Node { 

5 Node | ] s u p e r t y p e s ; 

6 b o o l e a n i sC 1 a s s ; 

7 I 

8 ) 

Listing 2.9: Java inheritance graph invariants in UDITA 

1 boo lean isDAG(IG i g ) { 

2 Se t<Node> v i s i t e d = new H a s h S e t < N o d e > ( ) ; 



2.2 Testing overview zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 Se t<Node> pa th =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA new HashSet <Node >( ) ; 

4 if ( i g . n o d e s == nu l lzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA II i g . s i z e != ig . nodes . l e n g t h ) 

5 r e t u r n f a l s e ; 

6 for (Node n i g . n o d e s ) 

7 ifzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ( ! v i s i t e d , c o n t a i n s ( n ) ) 

8 if ( ! i s A c y c l i c ( n , p a t h , v i s i t e d ) ) r e t u r n f a l s e ; 

9 r e t u r n t r u e ; 

10 ) 

I I 

12 boo lean i s Ac y c 1 i c ( Node n o d e , Se t<Node> p a t h , Se t<Node> v i s i t e d ) ) 

13 ifzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ( p a t h . c o n t a i n s ( n o d e ) ) r e t u r n f a l s e ; 

14 p a t h . a d d ( n o d e ) ; 

15 v i s i t e d . a d d ( n o d e ) ; 

16 for ( i n t i = 0; i < s u p e r t y p e s . l e n g t h ; i + + ) { 

17 Node s = s u p e r t y p e s [ i ] ; 

18 / / two supertypes cannot be the same 

19 for ( i n t j = 0 ; j < i ; j + + ) 

20 if ( s == s u p e r t y p e s [ j ] ) r e t u r n f a l s e ; 

21 / / check property on every supertype of this node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

22 i f (! i s Ac y c 1 i c ( s , p a t h , v i s i t e d ) ) r e t u r n f a l s e ; 

23 } 

24 pa th . remove ( node ) ; 

25 r e t u r n t rue ; 

26 } 

Listing 2.10: Well-formedness rules for Java inheritance specified in UD1TA 

1 boo lean i s J a v a I n h e r i t a n e e (IG i g ) { 

2 for (Node n : i g . n o d e s ) { 

3 b o o l e a n d o e s E x t e n d = f a l s e ; 

4 for (Node s n . s u p e r t y p e s ) 

5 i f ( s . i s C 1 a s s ) { 

6 / / interface must not extend any class 

1 i f (! n . i s C 1 a s s ) 
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8 r e t u r n f a l s e ; 

9 i f ( ! d o e s E x t e n d ) { 

10 doesExtend = t r u e ; 

I I // class must not extend more than one class 

12 } else { 

13 r e t u r n f a l s e ; 

14 

1? 

16 

17 } 

To generate all graphs from predicates, we need to specify bounds on possible values for 

each elements in the graph representation, which are the array sizes, and the fieldzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA i s C l a s s . 

UDITA uses non-deterministic choices based on JPF for this purpose. For example, when we 

run the command k = g e t l n t ( 1 , N) , JPF introduces N branches in a non-deterministic 

execution, where in the branch /' (for 1 < / < AO k has value /'. JPF explores the combinations 

of all possible choices for primitive types. UDITA extends JPF, introducing new algorithms 

to explore combinations of choices for objects in a new object pool abstraction. Listing 2.1 1 

presents the code to initialize the Java inheritance graph generation in UDITA. The method 

i n i t i a l i z e performs 3 steps. First, it sets the graph size (the number of nodes). Then 

creates a pool of Node objects of this size, and finally iterates over all objects in the pool 

to initialize their supertypes pointing to other objects in the pool. The class Ob j e c t P o o l 

has two methods: getNew, which returns a new object from the pool, and getAny, which 

returns an arbitrary object. 

Listing 2.11: Initialization of Java inheritance graph generation in UDITA 

1 IG i n i t i a l i z e ( i n t N) { 

2 IG i g = new I G ( ) ; 

3 i g . s i z e = N ; 

4 Objec tPoo l <Node> pool = new Objec tPool <Node>(N) ; 

5 ig . nodes = new N o d e [ N ] ; 

6 f o r ( i n t i = 0; i < N ; i + + ) i g . n o d e s [ i ] = poo l .ge tNew ( ) ; 

7 for (Node n : nodes) { 
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8 i n t num = g e 1 1 n t ( 0 , N - 1 ) ; 

9 n . s u p e r t y p e s = new Node [ n u m ] ; 

10 f o r ( i n t j = 0; j < num; j + + ) 

H n . supe r ty pes [ j ] = pool . getAny ( ) ; 

12 n . i s C l a s s = ge tBoolean ( ) ; 

13 } 

14 r e t u r n ig ; 

15 } 

16 

17 s t a t i c v o i d m a i n F i 11 ( i n t N) { 

18 IG ig = i n i t i a l i z e ( N ) ; 

19 assume (isDAG ( i g ) ) ; 

20 assume) i s J a v a l n h e r i t a n c e ( i g ) ) ; 

21 p r i n t l n ( i g ) ; 

22 } 

2.3 Alloy Overview 

An Alloy model or specification is a sequence of paragraphs of two kinds: signatures and 

constraints. Each signature denotes a set of objects associated to other objects by relations 

declared in the signatures. Each signature paragraph represents a type, and may declare a set 

of relations along with their types and other constraints on their included values. 

We use as example part of the Java metamodel encoded in Alloy. A Java class is a type, 

and may extend another class. Additionally, it may declare fields and methods, as specified 

in the U M L class diagram, as shown in Figure 2.6(a). Figure 2.6(b) presents its specifica-

tion in Alloy. A l l classes and associations in the U M L class diagram are analogous to the 

Alloy signatures and their relations, respectively. InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Class, thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA s e t in relation f i e l d s 

and relation methods imposes no constraint on multiplicity. There are other multiplicity 

qualifiers, such as lone, denoting partial functions. I f we omit the qualifier, the relation 

becomes a total function. In Alloy, one signature can extend another, establishing that the 

extended signature (subsignature) is a subset of the parent signature. For example, a Class 
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Type 

^methods T f ields 0 *  
Mett : :l 

^methods 
Class 

fields 0 *  
Field Mett : :l 

" s. 
0..*  

Class 

> 
Field 

" s. 
0..*  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/  \ 0 . . 1  

extend zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) 

sig Type {) 

sig Class extends Type { 

extend: lone Class, 

methods: set Method, 

fields: set Fiel 

1 

sig Method {) 

sig Field )) 

(b) 

Figure 2.6: A U M L class diagram and its representation in Alloy. 

i 

i 

is a subsignature ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Type. i 

I 

A number of well-formedness constraints can be specified for Java. For instance, a class 

cannot extend itself. In Alloy, we can declare facts which package formulas that always hold. 

The C l a s s C a n n o t E x t e n d l t s e l f fact specifies this constraint. 
i 

1 fact ClassCannotExtendltself { 
2 all c: Class I c ! in c.Aextend 

3 1 

ThezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a l l keyword represents the universal quantifier, and the i n keyword denotes the 

set membership operator in the previous fragment. The operators A and ! represent the 

transitive closure and negation operators, respectively. The dot operator ( . ) is a generalized 

definition of the relational jo in operator. For example, the expression c . e x t e n d yields the 

superclass of c. 

In Alloy, predicates are used to package reusable formulas and specify operations. The 

following Alloy fragment declares the predicate someClassHasNoField, stating that 

there is a class without fields. The some keyword represents the existential quantifier. The 

no keyword, when applied to an expression, denotes that the expression is empty. 

1 pred someClassHasNoField [] ( 

2 some c: Class I no c.licld 

3 } 

UFCGJBIBUOTECAIBC 
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The Alloy Analyzer tool [33] allows us to perform analysis on an Alloy specification; for 

example, in order to find a solution for a model in a pre-defined scope. A scope defines the 

maximum number of objects allowed for each signature during analysis, assigning a bound 

to the number of objects of each type. The simulations performed by the Alloy Analyzer tool 

are sound and complete, up to a given scope. 

Alloy commands are used for analysis purposes. Next, we declare azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA run command 

that is applied to a predicate, specifying a scope for all declared signatures. For desired 

solutions containing as many as three of each type, class, field and method, and at least one 

of the classes with no fields, the Alloy Analyzer searches for all combinations that satisfy 

the signature and fact constraints, in addition to thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA someClassHasNoField predicate. 

1 run someClassHasNoField for 3 

2.4 Concluding remarks 

In this chapter, we presented the theoretical basis needed for the understanding of this the-

sis. First, we showed an overview on program refactoring, along with the state-of-the-art 

approaches on refactoring verification. 

Next, we introduced important concepts on software testing, such as test case, oracle, 

and coverage criteria. We also present the approach proposed by Daniel et al [] for testing 

of refactoring engines, and their program generator, ASTGen. We also presented UDITA an 

extension of ASTGen. In Chapter 3 we present a comparison between our program generator, 

J D O L L Y , and UDITA. Finally, we presented an overview of Alloy and Al loy Analyzer, which 

we used to propose our program generator, J D O L L Y . 



Chapter 3 

J D O L L Y : A Java program generator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present J D O L L Y 1 , a Java program generator that exhaustively generates 

programs, up to a given scope of Java constructs (e.g. packages, classes, methods, fields). 

The Alloy specification language (Section 2.3) is employed as the formal infrastructure for 

generating programs; a metamodel for Java is encoded in Alloy, and the Alloy Analyzer finds 

instances of this model, which are translated into programs by J D O L L Y , for user-specified 

constraints. 

Next we present an overview of the technique (Section 3.1). Then we show the encoding 

of a subset of the Java metamodel in Alloy. We then describe how to translate each Alloy 

solution to Java (Section 3.3), and explain how to use J D O L L Y for generating more specific 

Java programs in Section 3.4. In Section 3.5, we describe an experiment to compare J D O L L Y 

with another Java program generator, UDITA [22]. Finally, we present the concluding re-

marks (Section 3.6). 

3.1 Overview 

J D O L L Y is a Java program generator. It contains a subset of the Java metamodel specified in 

Alloy [32]. It employs the Alloy Analyzer, a tool for analysis of Alloy models, to generate 

solutions (instances) for this metamodel. It then translates each solution into a Java program. 

J D O L L Y exhaustively generates all Java programs specified by its metamodel for a given 

scope. The user defines this scope by specifying the maximum number of elements for each 

' i t can be downloaded from: http://www.dsc.ufc«.edu.brrspg/jdolly 
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Java construct presented in the metamodel. For instance, the user can specify the maximum 

number of classes to three. By doing so, J D O L L Y w i l l generate all programs with up to three 

classes. Furthermore, the user can specify specific constraints for the program generation. 

For example, when testing a refactoring that pulls up a method to a superclass, the input 

programs must contain at least a subclass declaring a method that is subject to be pulled up. 

The user can specify these constraints in Alloy. 

3.2 Java metamodel 

In this section, we describe the subset of the Java metamodel that we specified. I f we consider 

the entire Java language, we can create a large number of different programs even for a small 

scope of elements, which may make it too expensive to exhaustive generate programs even 

for a small scope. Additionally, some Java constructs and well-formedness rules may require 

considerable effort to be specified in Alloy due to restrictions of the language. For instance. 

Alloy does not allow recursive predicates. Our goal is to specify a subset of the Java language 

that can be useful for finding real faults in refactoring engines. To do so, we studied faults 

previously identified by researchers [84; 72; 14] in order to understand which constructs are 

relevant to this context. 

3.2.1 Abstract syntax 

We illustrate a U M L class diagram representing the subset of the Java metamodel encoded 

in Alloy in Figure 3.1. From Java, we have considered two primitive types: int and long. By 

using these primitive types, we can evaluate the refactoring engines in the presence of method 

overloading and implicit cast. We believe that i f we have included other primitive types, 

such as float, it would not make much difference with respect to method overloading and 

implicit casting, but it would increase the number of programs, making it more expensive to 

generate all programs. A class is the only non-primitive type - currently, we do not consider 

interfaces. A Java class has an identifier, field and method declarations, and extends another 

class. Moreover, each class is located in a package. I f a class is not explicitly related to a 

package, the default package is assumed. 

Each field is associated with one identifier, one type, and at most one modifier, such as 
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Accessib i l i t y 
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private publ ic protected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3.1: The Java metamodel specified in JDOLLY. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p u b l i c , p r o t e c t e d , or p r i v a t e . When it does not have a modifier, its accessibility is 

package. Similarly, a method declaration contains a return type, an identifier, a number of 

parameters, and a body. Moreover, it may contain an access modifier. We have considered 

methods with at most one parameter, which is useful for generating programs containing 

overloading. For instance, a method can have no parameter and another method with the 

same name can have one parameter, or both methods can have one parameter but with dif-

ferent types. Moreover, by generating methods with parameter we can generate programs 

to test refactorings that operate over parameters, such as the Remove Parameter refactor-

ing. Although adding more parameters can be useful for finding more faults, it also would 

significantly increase the number of combinations for generating programs. 

In Java, a method body contains a sequence of statements, whose last statement must 

be a return for every non-void method. Currently, a method body contains just a sin-

gle return statement. So, the simplest return statement returns a literal value based on 

the return type. Return statements can also contain field accesses or method invocations. 

Field accesses include: f, A.f, t h i s . f , super, f and new A () . f - the latter is a 

C o n s t r u c t o r F i e l d A c c e s s . L i t e r a l V a l u e represents the simplest kind of state-

ment, extending the signature Body. F i e l d A c c e s s and M e t h o d l n v o c a t i o n contain 

the identifier of the accessed field and method with a single qualifier at most, respectively. I f 



3.2 Java metamodel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a method with a single parameter is called J D O L L Y always passes a constant value, such as 

2, as argument to the call. 

3.2.2 Well-formedness rules 

The Java language contains a number of well-formedness rules to evaluate whether 

a program is valid. We specified these rules within Alloy facts. For example a 

Java class cannot have two fields with the same identifier, as declared in the fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

noClassTwoFieldsSameld. 

1 fact noClassTwoFieldsSameld { 

2 allc: Class I all 11.12: c.fields I 

3 f l ! = f2 => f 1 .id ! = f2.id 

4 } 

Similarly, a Java class cannot contain two methods with the same name and parameter 

type, as presented in the fact noClassTwoMethodsSameSignature. 

1 fact noClassTwoMethodsSameSignature { 

2 all c: Class I all m 1 ,m2: c.methods I 

3 ml ! = m2 =• 

4 (ml.id ! - m2.id or m 1 .paramType ! = m2.paramType) 

5 } 

Some well-formedness may require a lot of effort to specify in Alloy. For example, we 

cannot have a method invocation to an undefined method. To analyze the binding between a 

method invocation and a method declaration, we may need to evaluate i f the method declara-

tion is in the same class, hierarchy, and package of the method invocation, its access modifier 

(public, protected, package, private), its parameters, and the kind of the method invocation 

(e.g. using super, this, qualified this). We could try to specify these rules exactly how they 

are, avoiding uncompilable programs, or specifying approximations that may result in un-

compilable programs. Although the first option guarantees that all generated programs wi l l 

compile, it requires more effort, and may lead to over constraining the model, leading the tool 

to miss some compilable programs. On the other hand, the second option requires less effort 

but produces uncompilable programs. We chose the second option because we can discard 
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Package Classic!  Mc rhod field 

aid J j iiu_ J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 package Package 

2 p u b l i c Classic! 

3 i n t f i e l d l d = 

4 p r o t e c t e d i n t 

methodld ( ) 

5 r e t u r n 2; 

6 } 

7 I 

(a) 

(b) 

Figure 3.2: Translation of an Alloy solution to a Java program, (a) A solution of the Java 

metamodel generated by Alloy Analyzer; (b) the translation of the solution into a concrete 

Java program. 

the uncompilable input programs while testing a refactoring engine. Appendix A presents 

the complete specification of the abstract syntax and well-formedness rules for J D O L L Y . 

3.3 Program generation 

The previous Alloy model is then used to generate Java programs. We specify thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA run 

command; specifically with the generate predicate. By default, the scope of at most three 

objects is used for each signature. Then we use the Alloy Analyzer API to execute the run 

command, generating all solutions for the given scope. 

1 pred generate [1 {} 

2 run generate for 3 

The Alloy Analyzer finds for solutions such as the instance depicted in Figure 3.2(a). The 

graph contains the Class object, which is associated with objects Package, C l a s s l d , 

Method, and F i e l d . Moreover, object F i e l d is associated with F i e l d l d and I n t _ , 

and Method is associated with L i t e r a l V a l u e , Methodld, P r o t e c t e d , and I n t _ . 

For simplicity, we distinguish class from field identifiers. For example, Figure 3.2(b) shows 

the counterpart in Java of the Alloy solution. 
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The Alloy Analyzer does not automatically convert an Alloy instance into a Java pro-

gram. In fact, we use its API to generatezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA every possible solution 2. To complete the gener-

ation step, we reused the syntax tree available in Eclipse J D T [17] for generating programs 

from those solutions. For example, the Alloy objectszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Class and Package are mapped to a 

T y p e D e c l a r a t i o n and a PackageDeclaration, respectively. The imports are auto-

matically calculated from each Alloy instance generated; they are included in each program. 

3.4 Generating more specific programs 

With J D O L L Y , we can specify different scopes to limit program generation. For instance, 

i f we are not interested in fields, we can specify the scope of zero. Besides, the generation 

can be further constrained. In a context in which programs are needed with at least one 

class (C2) extending another one (CI), and C2 declares at least a method (Ml), the following 

Alloy fragment specifies generate. This particular specification is useful for testing the 

Pull Up Method refactoring. considering Ml. For each instance, we pass the value given to 

Ml to the refactoring engine. 

1 one sig C I , C2 extends Class {} 

2 one sig M1 extends Method {} 

3 pred generate! ] { 

4 CI in C2extend 

5 M1 in C2methods 

6 } 

3.5 Evaluation 

In this section, we present an experiment comparing J D O L L Y against UDITA [ 2 2 ] . 

3.5.1 Definition 

In previous work. Gligoric et al. [22] uses an Java inheritance graph generation to show that 

UDITA is more expressive and easier to use than ASTGen. In Section 2.2.4 we present an 

2 Accessing Alloy 4 using Java API: http://alloy.mit.edu/alloy4/api.html 

http://alloy.mit.edu/alloy4/api.html
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UDITA specification to generate Java inheritance graphs. 

We carried out a similar comparison on the differences between J D O L L Y and UDITA. 

The goal of this experiment is to analyze two tools ( J D O L L Y and UDITA) for the purpose 

of evaluation with respect to test input generation from the point of view of researchers in 

the context of Java inheritance graph generation. For instance, In particular, our experiment 

addresses the following research questions: 

• Q l . Do the tools exhaustively generate inheritance graphs for a given scope? 

Since we do not know all inheritance graphs that can be generated, we compare all 

graphs generated by J D O L L Y against the ones generated by UDITA in order to detect 

missing graphs in each one of the tools' results. 

• Q2. Do the tools generate isomorphic inheritance graphs? 

A tool may generate more than one structurally equivalent (isomorphic) solution. In 

the context of test input generation, generating isomorphic inputs does not increase the 

chances of finding new faults, and makes the test input generation slower. Therefore, 

the less isomorphic graphs generated by each approach, the better. We measure the 

number of isomorphic and non-isomorphic graphs for each tool. 

3.5.2 Planning 

Next, we describe how we selected the subjects and how we instrument the experiment. 

Selection of subjects 

To compare J D O L L Y against UDITA, we chose to generate a Java inheritance graph by using 

both tools. We chose to use a Java inheritance graph because it has non-trivial invariants and 

it is directly related to generating Java programs. Additionally, it was previously used to 

describe UDITA and compare it with ASTGen [22]. Each inheritance graph needs to satisfy 

two invariants: 

1. Directed Acyclic Graph (DAG). We cannot have directed cycles in Java inheritances; 

2. A class has at most one supertype class, and all supertypes of an interface are inter-

faces. 
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Experiment Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For each approach, we perform the Java inheritance graph generation by using scopes from 1 

to 4. This scope is similar to the scope of previous programs that revealed faults in refactoring 

engines [84; 72; 14]. 

Instrumentation 

To perform the UDITA generation, we downloaded the Java inheritance graph specification 

from UDITA website\ In Section 2.2.4, we present a simplified version of this specification. 

We created a J D O L L Y version containing the metamodel of the Java graph inheritance. 

Next, we describe this metamodel. First, we specified the signatureszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA IG and Node to repre-

sent the inheritance graph as shown in Listing A . l . 

Listing 3.1: Java inheritance graph representation in JDolly 

1 s ig lG{ 

2 nodes: set Node 

3 } 

4 abstract sig Node] 

5 supertypes : set Node, 

6 isClass : one Bool 

7 } 

Then, we specified Alloy facts that represent the invariants of the Java inheritance graph 

as shown Listing 3.5. 

Listing 3.2: invariants for the Java inheritance graph in JDolly 

1 fact DAG { 

2 no n:Node I n in n.Asupertypes 

3 1 

4 fact Javalnheritance ( 

5 all n:Node I isTrue[nisClass] => 

6 lone nl:Node I nl in nsupertypes and isTruefnl -isClass] 

7 all tr.Node I isFalse|nisClass] => 

3http://mir.cs.Illinois.edu/udita/ 

http://mir.cs.Illinois.edu/udita/
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8 nonl :Node ln l in nsupertypes and isTrue[nl isClass] 

9 ! 

Finally, we initialize the generation by running thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Run command on the Show predicate 

as illustrated in Listing 3.6. We specified a constraint in the Show predicate to specify that 

all generated nodes must be in the inheritance graph. 

Listing 3.3: Running Java graph generation by using the Al loy Analyzer, 

pred show[] { 

Node in IGnodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

} 

run show for exactly 1 IG, exactly 4 Node 

We implemented a graph comparator to compare the graphs generated by both tools. The 

comparator abstracts the name of the nodes, so that i f two graphs have the same structure but 

different names, the comparator says that they are isomorphic. 

To check whether the tools exhaustively generates solutions for a given scope, we check 

if each graph generated by J D O L L Y was also generated by UDITA, and the other way around, 

by using our graph comparator. To check i f the tools generate isomorphic graphs, we use our 

graph comparator to compare each graph generated by the tool against all the other graphs 

generated by it. 

In J D O L L Y , we specify the Java inheritance graph generation by using Alloy. First, 

we specified the signatures IG and Node to represent the inheritance graph as shown in 

Listing A . l . 

Listing 3.4: Java inheritance graph representation in JDolly 

sig IG { 

nodes: set Node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

! 

abstract sig Node) 

supertypes : set Node, 

isClass : one Bool zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

}  
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Then, we specified Alloy facts that represent the invariants of the Java inheritance graph 

as shown Listing 3.5. 

Listing 3.5: Java inheritance graph representation in JDolly 

1 fact DAG { 

2 no n:Node I n in n.Asupertypes 

3 ) 

4 fact Javalnheritance j 

5 all n:Node I isTrue[nisClass] 

6 lone n 1 :Node I n 1 in nsupertypes & & isTrue[n 1 -isClass] 

7 all n:Node I isFalse[n-isClass] => 

8 non l :Node ln l in nsupertypes & & isTrue[nl isClass] 

9 ) 

Finally, we initialize the generation by running thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Run command on the Show predicate 

as illustrated in Listing 3.6. We specified a constraint in the Show predicate to specify that 

all generated nodes must be in the inheritance graph. 

Listing 3.6: Running Java graph generation by using the Alloy Analyzer. 

1 pred show|] { 

2 Node in IG-nodes 

3 1 

4 run show for exactly 1 IG, exactly 4 Node 

3.5.3 Operation 

We performed the Java inheritance graph generation on a MacBook Pro Intel Core i5 2.4GHz 

with 8GB of R A M . Table 3.1 summarizes the results of the experiment. In contrast with 

J D O L L Y , UDITA did not generate 2, 7 and 37 non-isomorphic programs in scopes 2, 3 

and 4, respectively. For example, Figure 3.3 shows the programs that represent the Java 

inheritance graphs generated by J D O L L Y and UDITA for a scope of two elements. UDITA 

did not generate the program 5, which contains two classes, and program 6, which has two 

classes, one extending the other one. On the other hand, J D O L L Y generated much more 

isomorphic programs than UDITA. 
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Table 3.1: Comparison of J D O L L Y and UDITA; Prog.: Number of generated programs; 

Comp.: number of compilable programs; Isomor: number of isomorphic programs; Unique: 

number of unique programs; NG: number of unique programs that were not generated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
JDol ly UDITA 

Scope Prog. I somor. Uni que NG Prog. I somor. Uni que NG 

1 2 0 2 C 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 
0 2 

1 

0 

2 6 0 6 0 4 0 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? 

3 29 5 24 0 18 1 17 7 

4 2 30 8 1 149 0 123 11 112 3 7 

3.5.4 Discussion 

One of the reasons why UDITA did not generate all programs may be an incorrect specifica-

tion of the constraints for the Java inheritance. By looking at the code that we downloaded 

from UDITA website, we noticed slightly differences with respect to the simplified code 

presented in Listings 2.8, 2.9, 2.10, and 2.1 1. For instance, in thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA i s J a v a l n h e r i t a n c e 

predicate (Listing 2.10), before checking i f the node is a class (line 5), there is another state-

ment i f ( i s C l a s s ) ; . This statement would have no effect in Java because there is no 

command to be executed in this i f statement. However, when we remove this statement, 

and run UDITA again, it generates all six programs for the scope of 2; in fact, it generates 

seven programs (one isomorphic program). We also evaluated to replace this i f statement 

to System, out . p r i n t I n ( i s C l a s s ) . When we added this statement to print this vari-

able, UDITA generated only four programs (the same ones that it generated in the original 

version), missing two graphs. This may be a fault in the current implementation of UDITA. 

In our experiment, both tools generated isomorphic inheritance graphs. J D O L L Y uses the 

Alloy Analyzer for generating programs, which uses SAT solvers for searching solutions for 

the Alloy models. These solvers contain algorithms for avoiding generating several isomor-

phic solutions. UDITA also implements an algorithm for this purpose. On the other hand, in 

ASTGen, the tester would be in charge of this task. 

Figure 3.4 shows two programs representing isomorphic graphs generated by J D O L L Y 

for a scope of three elements. These programs have the same structure but different identi-

fiers. Although J D O L L Y generated other four isomorphic programs for this scope, it avoided 

a number of other isomorphic programs. Notice that it generated 24 distinct programs (see 

Table 3.1). Each one of these programs has tree elements. By permuting the identifiers of 
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n JDolly UDITA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i interface A (} 
class B {} 

interface A {} 
class B {} 

2 interface A () 
class B implements A {} 

interface A {} 
class B implements A {} 

3 interface A {} 
interface B {} 

interface A {} 
interface B {} 

4 interface A {) 
interface B extends A{} 

interface A {} 
interface B extends A{} 

5 class A 1} 
class BO 

6 class A f; 
class B extends A (]• 

Figure 3.3: Programs representing the generation of Java Inheritance Graphs by UDITA and 

J D O L L Y for the scope of two elements. 

1 i n t e r f a c e A j ) 1 i n t e r f a c e B ( ) 

2 i n t e r f a c e B ex tends A { ) 2 i n t e r f a c e C ex tends B {} 

3 i n t e r f a c e C extends B { } 3 i n t e r f a c e A ex tends C { } 

Figure 3.4: Isomorphic programs generated by J D O L L Y . 

these elements, we can have 6 programs with the same structure. Considering all 24 pro-

grams, J D O L L Y could have generated 144 programs (120 isomorphic ones). It is important 

to avoid isomorphic programs because they do not increase the chances of linding faults in 

refactoring engines and slow the program generation. 

Alloy logic presented, as expected, a higher level of abstraction than Java-like code of 

UDITA. For example, while we specified the DAG invariant in one line by using Alloy, 

Gligoric et al. [22] needed about 20 lines to specify it in UDITA. 

3.5.5 Answers to the research questions 

Next, we discuss these results with respect to our research questions. 
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Do the tools exhaustively generate inheritance graphs for a given scope? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

No. J D O L L Y generated all inheritance graphs, but UD1TA failed to generate some graphs 

for the scope of two, three, and four. In bounded-exhaustive testing, failing to generate some 

test input may lead to leave some fault uncaught, reducing the effectiveness of the approach. 

Do the tools generate isomorphic inheritance graphs? 

Yes. In our experiment, both tools generated isomorphic inheritance graphs. J D O L L Y , 

though, generated more than UDITA. For instance, with a scope of four, while 35% of the 

graphs generated by J D O L L Y were isomorphic, in UDITA, only 9% of the graphs were iso-

morphic. Our results suggest that UDITA handles isomorphism better than J D O L L Y . 

3.5.6 Threats to validity 

With respect to construct validity, we compare the results of both tools to evaluate whether 

they exhaustively generates inheritance graphs. Therefore, i f none of the tools exhaustively 

generates these graphs, our results wi l l be incorrect. Finally, we compare both tools with re-

spect to Java inheritance graphs. Our results are not representative of all program generation 

allowed on both tools. 

3.6 Concluding remarks 

In this chapter, we presented J D O L L Y , a Java program generator that uses Alloy and the 

Alloy Analyzer as basis for generating programs. It allows users to exhaustively generate 

Java programs by specifying the scope of the program generation and constraints on what 

programs should be generated. Our goal was to define a subset of the language expressive 

enough for finding faults in refactoring engines, but not too large to make it too complex 

and expensive. We studied previously faults in refactoring engines found in literature. We 

used this knowledge to specify a Java metamodel that includes relevant constructs to test 

refactoring engines. 

We compared J D O L L Y against a state-of-the-art program generator, UDITA. Our results 

suggest that while J D O L L Y exhaustively generates programs, UDITA may fail to generate 
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some programs in a given scope. On the other hand, J D O L L Y generates more isomorphic 

programs than U D I T A , which may slow down the program generation. In our experiment, 

though, J D O L L Y was faster than U D I T A . 



Chapter 4 

S A F E R E F A C T O R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present S A F E R E F A C T O R [80], a tool for checking behavioral changes in 

program transformations. In Section 4.1, we show its overview. Next, we show an empirical 

study to evaluate the effectiveness of S A F E R E F A C T O R 4.2. Finally, we show the concluding 

remarks (Section 4.3). 

4.1 Overview 

S A F E R E F A C T O R [80] checks whether a transformation introduce behavioral changes. First, 

the tool checks for compilation errors in the resulting program, and reports those errors; i f no 

errors are found, it analyzes the transformation and generates a number of tests suited for de-

tecting behavioral changes. S A F E R E F A C T O R identifies the methods with matching signature 

(methods with exactly the same modifier, return type, qualified name, parameter types and 

exceptions thrown) before and after the transformation. Next, it applies Randoop [56], a Java 

unit test generator, to produce a test suite for those methods. Randoop randomly generates 

tests for a set of methods given a time limit. Finally, it runs the tests before and after the 

transformation, and evaluates the results. I f results are different, the tool reports a behavioral 

change, and displays the set of unsuccessful tests. Figure 4.1 illustrates this process. 

To illustrate S A F E R E F A C T O R , take classzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA A and its subclass B as illustrated in Listing 4.1. 

A declares the k method, and B declares methods k, m, and t a r g e t . The latter yields 1. 

Suppose we want to apply the Pull Up Method refactoring to move m from B to A. This 

method contains a reference to A . k using the super access. The use of either Eclipse JDT 

49 
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D e v e i o p c r 

H > Run t est sui t ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA P) Program - » v Co m m o n 

Test su i t e " ^Changes W m et hod s 

^ " I - J 

Figure 4.1: Sale Refactor's technique; I) The tool identilies the methods with same signature 

before and after the transformation; 2) It generates a test suite for the identified methods 

using Randoop; 3) It runs the tests on the source program; 4) It runs the tests on the target 

program; 5) Finally, Safe Refactor evaluates the results: i f they are different, the tool reports 

a behavioral change. Otherwise, the deveiopcr can increase confidence that the programs 

have the same behavior. 

3.7 or JRRTv 1 to perform this refactoring wi l l produce the program presented in Listing 4.2 1 . 

MethodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m is moved from B to A , and super is updated to t h i s ; a compilation error is 

avoided with this change. Nevertheless, a behavioral change was introduced: t a r g e t yields 

2 instead of 1. Since m is invoked on an instance of B, the call to k using t h i s is dispatched 

on to the implementation of k in B. 

Assuming the programs in Listings 4.1 and 4.2 as input, S A F E R E F A C T O R first identilies 

the methods with matching signatures on both versions: A . k, B . k, and B . t a r g e t . Next, 

it generates 78 unit tests for these methods within a time limit of two seconds. Finally, it runs 

the test suite on both versions and evaluates the results. A number of tests (64) passed in the 

source program, but did not pass in the refactored program; so S A F E R E F A C T O R reports a 

behavioral change. Next, we show one of the generated tests that reveal behavioral changes. 

The test passes in the source program since the value returned by B . t a r g e t is 1; however, 

it fails in the target program since the value returned by B . t a r g e t is 2. 

'The same problem happens when we omit the keyword this 
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Listing 4.2: After Refactor-

ing.Applying Pull Up Method in 

Listing 4.1: Before Refactoring Eclipse JDT 3.7 or JRRTvl leads to 

1 p u b l i c c lass A { a behavioral change due to incorrect 

2 i n t k ( ) { change of super to this. 

3 r e t u r n 1 ; i p u b l i c c lass A { 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 i n t k ( ) ( 

5 ) 3 r e t u r n 1 ; 

6 p u b l i c c lass B extends A { 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! 

7 i n t k ( ) { 5 i n t m() { 

8 r e t u r n 2; 6 r e t u r n t h i s . k ( ) ; 

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA} 7 } 

10 i n t m() { 8 } 

1 1 r e t u r n s u p e r . k ( ) : 9 p u b l i c c lass B extends A ( 

12 1 10 i n t k ( ) { 

13 p u b l i c i n t t a r g e t ( ) { i 1 r e t u r n 2; 

14 r e t u r n m( ) ; 12 I 

15 } 13 p u b l i c i n t t a r g e t ( ) { 

16 } 14 r e t u r n m ( ) ; 

15 

16 } 

1 p u b l i c v o i d t e s t ( ) { 

2 B b = new B ( ) ; 

3 i n t x = b . t a r g e t ( ) ; 

4 a s s e r t T r u e ( x == 1 ) ; 

5 ) 
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4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Previously, we evaluated S A F E R E F A C T O R in 8 transformations applied to real Java pro-

grams [79]. Although these transformations were classified as refactorings by the developers 

that performed them, S A F E R E F A C T O R found that one of them changed program's behavior. 

These results suggest that S A F E R E F A C T O R can find behavioral changes in real software, but 

do not give evidences on how effective the tool is. 

In this section, we evaluate2
 S A F E R E F A C T O R in 60 transformations gathered from source 

code repositories. We previously did not know whether these transformations are behavior 

preserving. To evaluate the correctness of S A F E R E F A C T O R ' S results, we compare it against 

other two approaches for identifying refactorings: a manual inspection proposed by Murphy-

Hil l et al. [49; 50]; and an approach based on commit-message analysis [61; 60]. 

The remaining of this section is organized as follows: the following subsection describes 

the approaches compared with S A F E R E F A C T O R ( S e c t i o n 4.2.1). Then, we present the exper-

iment definition (Section 4.2.2), and show the experiment planning (Section 4.2.3). Next, 

we describe the experiment operation, and show the results (Section 4.2.4). Then, we inter-

pret and discuss them in Section 4.2.5. Finally, we describe some threats to validity (Sec-

tion 4.2.6). 

4.2.1 Compared techniques 

Manual Analyses Overview 

The manual analysis is based on the methodology of Murphy-Hil l et al. [49; 50], which 

compares the code before each commit against its counterpart after the commit. For brevity, 

we wi l l simply call this approach 'Murphy-Hi l l ' . For each commit, two evaluators sit to-

gether and use the standard Eclipse diff tool to compare files before the commit to the files 

after the commit. Reading through each file, the evaluators attempt to logically group fine-

grained code changes together, classifying each change as either a refactoring (such as "Ex-

tract Method") or a non-refactoring (such as ' A d d null Check"). The evaluators also attempt 

to group together logical changes across files by re-comparing files as necessary. Forexam-

2 Al l experimental data are available at: h t t p : / / w w w . d s c . u f c g . e c l u . b r / ~ g s o a r e s / 

t h e s i s e x p e r i m e n t s . h t m l 

http://www.dsc.ufcg.eclu.br/~gsoares/
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pie, i f the evaluators noticed that a change to one file deleted a piece of code, they would 

have initially classified that change as a non-refactoring, but i f later the evaluators found that 

the code had actually been moved to another file, the evaluators would re-classify the two 

changes together as a single refactoring. I f the two evaluators did not agree on whether a 

change was a refactoring, to reach agreement they would discuss under what circumstances 

it might possibly change the behavior of the program. 

By assessing the transformations performed during a commit, this approach is able to 

determine whether a commit contained only refactorings, no refactorings, or a mix of refac-

torings and non-refactorings.3 

Commit Message Analyses Overview 

Ratzinger et al. [60; 61 ] proposed an approach to detect whether a transformation is a refac-

toring by analyzing a commit message. I f the message contains a number of words that are 

related to refactoring activities, the transformation is considered a refactoring. We imple-

mented their approach in Algorithm I . 

The implemented analyzer is based on Ratzinger et. al.'s algorithm [60; 611, which we 

wi l l simply call 'Ratzinger'. 

4.2.2 Definition 

The goal of this experiment is to analyze three approaches ( S A F E R E F A C T O R , Ratzinger, and 

Murphy-Hil l) for the purpose of evaluation with respect to identifying bevahior-preserving 

transformations from the point of view of researchers in the context of open-source Java 

project repositories. In particular, our experiment addresses the following research questions: 

• Q l . Do the approaches identify all behavior-preserving transformations? 

For each approach, we measure the true positive rate (also called recall). tPos (true 

positive) and fPos (false positive) represent the correctly and incorrectly behavior-

3One difference between the present study and the previous study [49] was that in the previous study they 

included a "pure whitespace" category: in the present study, we consider "pure whitespace". "Java comments 

changes", and "non-Java files changes" to be a refactoring, to maintain consistency with the definition of 

refactoring used by SAFEREFACTOR. 
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AlgorithmzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1 Ratzinger 

Require: message <= commit message 

Ensure: Indicates whether a transformation is a refactoring 

keywords <= {refactor. restruct, clean, not used, unused, reformat, import, remove, re-

moved, replace, split, reorg, rename, move) 

if 'needs refactoring' € message then 

return FALSE 

end if 

for k 6 keywords do 

if k € message then 

return TRUE 

end if 

end for 

return FALSE 

preserving transformations, respectively. tNeg (true negative) and fNeg (false neg-

ative) represent correctly and incorrectly identified non-behavior-preserving transfor-

mations, respectively. Recall is defined as follows [52]: 

#tPos 
recall = — (4. ) 

#t.Pos + #fNeg 

• Q2. Do the approaches correctly identify behavior-preserving transformations? 

For each approach, we measure the false positive rate (precision). It is defined as 

follows [52]: 

precision = —— ——— (4.2) 
#lPos + #fPos 

• Q3. Are the overall results of the approaches correct? 

We measure the accuracy of each approach by dividing the total correctly identified 

behavior-preserving and non-behavior-preserving transformations by the total number 

of samples. It is defined as follows [52]: 
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#tPos + #tNeq 
accuracyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA = (4 3) 

•' iff Pos + if: f Pos + ir-tNeg + #fNeg ^
V 

4.2.3 Planning 

In this section, we describe the subjects used in the experiment, the experiment design, and 

its instrumentation. 

Selection of subjects 

We analyze two Java open-source projects. JHotDraw is a framework for development of 

graphical editors. Its SVN repository contains 650 versions. The second SVN repository is 

from the Apache Common Collections (we wi l l simply call •Collections'), which is an API 

build upon the JDK Collections Framework to provide new interfaces, implementations and 

utilities. 

We randomly select 40 out of 650 versions from the JHotDraw repository (four devel-

opers were responsible for these changes) and 20 out of 466 versions from the Collections 

repository (six developers were responsible for these changes). For each randomly selected 

version, we take its previous version to analyze whether they have the same behavior. For 

instance, we evaluate Version 134 of JHotDraw and the previous one (133). 

Tables 5.8 and 4.2 indicate the version analyzed, number of lines of code of the selected 

version and its previous version, and characterize the scope and granularity of the transfor-

mation. We evaluate transformations with different granularities (low and high level) and 

scope (local and global). 

Experiment design 

In our experiment, we evaluate one factor (approaches for detecting behavior-preserving 

transformations) with three treatments ( S A F E R E F A C T O R , Murphy-Hil l , Ratzinger). We 

choose a paired comparison design for the experiment, that is, the subjects are applied to 

all treatments. Therefore, we perform the approaches under evaluation in the 60 pairs of 

versions. The results can be "Yes" (behavior-preserving transformation) and "No" (non-

behavior-preserving transformation). 
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Instrumentation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We invited Murphy-Hil l and one of his collaborators to perform his approach. We auto-

mate the experiment for checking S A F E R E F A C T O R and Ratzinger results4. The Ratzinger 

approach was implemented in Algorithm 1. 

We use S A F E R E F A C T O R 1.1.4 with default configuration but using a time limit of 

120 seconds, and setting Randoop to avoid generating non-deterministic test cases. We 

chose the time limit based on previous experiences of Randoop in real subjects [79; 56; 

66]. Additionally, S A F E R E F A C T O R may have different results each time it is executed due 

to the randomly generation of the test suite. So, we execute it up to three times in each 

version. I f none of the executions linds a behavioral change, we classify the version as 

behavior-preserving transformation. Otherwise, we classify it as non-behavior-preserving 

transformation. We use Emma 2.0.5312 s to collect the statement coverage of the test suite 

generated by S A F E R E F A C T O R in the resulting program. Additionally, we collect additional 

metrics for the subjects: non-blank, non-comment lines of code, scope, and granularity. The 

algorithms to collect refactoring scope and granularity are presented in B. 

Since we previously do not know which versions contain behavior-preserving transfor-

mations, we the results of all approaches in all transformations to derive a Baseline. For 

instance, i f the Murphy-Hil l approach yielded "Yes" and S A F E R E F A C T O R returned "No", 

the first author would checked whether the test case showing the behavioral change reported 

by S A F E R E F A C T O R was correct. I f so, the correct result was "No". So, we establish a Base-

line to check the results of each approach, and calculate their recall, precision, and accuracy. 

4.2.4 Operation 

Before performing the experiment, we implemented a script to download 60 pairs of versions 

and log commit information: versionjd, date, author, and commit message. We named each 

pair of versions with suffix _BEFORE and _AFTER to indicate the program before and after 

the change. The versions that were non-Eclipse projects were made Eclipse projects so that 

the Murphy-Hil l approach could use the Eclipse diff tool. Murphy-Hil l and his collaborators 

4The automated experiment containing SAFEREFACTOR and Ratzinger approaches, and additional infor-

mation are available at: http://www.dsc.ufcg.edu.brrspg/jss_experiments.html 
5http://em ma.sourceforge.net/ 

http://www.dsc
http://em
http://ma.sourceforge.net/
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scheduled two meetings to analyze the subjects following the Murphy-Hil l approach. The 

automated analyses of S A F E R E F A C T O R and Ratzinger were performed on a MacBook Pro 

Core i5 2.4GHz and 4 GB R A M , running Mac OS 10.7.4. 

Additionally, for S A F E R E F A C T O R we also downloaded all dependencies of JHot-

Draw. S A F E R E F A C T O R compiles each version and than generates tests to detect behavioral 

changes. We also manually create buildFiles to compile the JHotDraw subjects. As software 

evolves, it may modify the original build file due to changes in the project structure, compiler 

version or used libraries. For JHotDraw's subjects, we needed 4 buildFiles. and used JDK 

1.5 and 1.6. We do not have information which JDK they used. For each subject, we used 

S A F E R E F A C T O R with a specific buildFile. The Apache Common Collections subjects were 

compiled with JDK 1.6. Moreover, we performed the test generation of Randoop, and the 

test execution using JDK 1.6 on both samples. 

Tables 5.8 and 4.2 present the results of our evaluation for JHotDraw and Collections, 

respectively. Column Version indicates the version analyzed, and Column Baseline shows 

whether the pair is indeed a refactoring. This column was derived based on all results, as 

explained in Section 4.2.3. The following columns represent the results of each approach. In 

the bottom of the table, it is shown the precision, recall, and accuracy of each approach with 

respect to Column Baseline. 

We have identified 14 and I 1 refactorings (Baseline) in JHotDraw and Collections, re-

spectively. In 17 out of 60 pairs, all approaches have the same result. While some versions 

fixed bugs, such as Versions 134. 176, and 518, or introduced new features, for instance 

Version 572952, others are refactorings (see Baseline of Tables 5.8 and 4.2). Some versions 

did not change any Java file (Versions 251. 274, 275, 300, 304, 405, 697, 609497. 923339, 

1095934) or changed just Java comments (Versions 156,814123,814128, 966327, 1023771, 

1023897, 1299210, 1300075). In this study, we regard them as refactorings (behavior-

preserving transformations). 

The Murphy-Hil l approach detected all refactorings of JHotDraw and Collections, which 

means a recall of 1 on both samples. However, it classifies four uncompilable versions 

as refactoring: one in JHotDraw (Version 357) and three in Collections (Versions 814997. 

815022. 815042). This is the main reason why the manual inspection performed by the 

Murphy-Hill approach is not considered as the Baseline alone. So, 14 out of the 15 detected 



4.2 Evaluation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA58 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm i l h i I M ahatr 1 MH izyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA SAFEREFACTOR 

Ve r s t o n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B e f o re Af t e r 

Gre nu . 
Refact . Refact . Refact . Refac t » Test s Cov. (% 

1 3 4 2 0 4 2 2 2 0 4 2 2 » o w Local No No No Yes 4 4 9 2 4 

1 5 1 2 8 1 0 3 2 8 1 0 8 Low No No No No 4 7 7 8 4 8 

1 5 6 2 8 1 2 1 2 8 1 2 1 Low - O 0 Ù Yes tes Yes Yes 4 7 7 8 4 8 

1 7 3 2 8 1 0 1 2 8 0 5 2 Gl ob a l V Yes No Yes 4 5 4 2 0 

1 7 4 2 8 0 5 2 2 8 0 5 3 Gl ob a l yes No Yes Yes l ï - 2 3 

1 7 6 2 8 0 5 5 2 8 0 5 5 LOW Local No No No ' . 4 3 6 3 3 

1 7 9 2 8 0 6 5 2 S0 6 5 Low Local Yes Yes Yes 3 1 9 9 4 1 

1 9 3 2 8 2 9 1 2 8 2 9 8 Low Gl ob a l Yes No Yes Yes 2 1 0 8 35 

2 5 1 2 8 3 9 8 2 8 3 9 8 Low Local Yes No Yes Yes 5 1 6 2 4  S 

2 6 7 2 8 3 9 8 2 8 4 0 9 No \ No Yes 5 4 3 3 4 8 

2 7 4 3 2 4 0 8 3 2 4 0 8 Low Loca Yes ' . : Yes Yes 4 1 8 0  

2 7 5 3 2 4 0 8 3 2 4 0 8 Low Local Yes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% Yes Yes - : c 3 

2 9 4 3 9 2 4 9 3 9 0 8 1 - gh Loca V No '. Co m p i l a t i o n Erro 

3 OC 3 9 1 6 1 3 9 1 6 1 LU H Local Yes ' . : Yes 3 1 4 14 

3 0 2 3 8 9 9 3 3 9 1 6 1 - gl- Local No No N, Co m p i l a t i o n Erro 

104 3 9 1 6 1 3 9 1 6 1 Low .cca ' es NO Yes l ies 15 

3 1 8 3 9 1 6 0 3 9 1 7 3 Low Local No No No Yes 2 3 5 6 -

3 2 2 3 9 3 7 7 3 9 4 8 0 High Local No No ' . : Yes i: 
3 2 4 3 9 4 7 2 3 9 5 5 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Gl ob a l No No No No - a : 10 

3 4 4 5 1 3 3 9 5 1 5 9 6 Higf Gl ob a l No No \ 0  Yes 1 0 2 2 13 

3 5 7 5 2 9 9 1 5 2 6 3 6 . .Cv. Gl ob a l No No Yes Co m p i l a t i o n Erro 

3 8 4 5 2 5 9 4 5 2 6 0 1 Low Loca No No Yes 2 1 6 7 2 4 

4 0 5 5 3 7 0 8 5 3 7 0 8 Low Loca Yes No Yes Yes 1 8 1 6 1 0 

4 0 9 5 3 7 1 2 5 3 7 2 1 High Gl ob a l So NO Yes 1 6 8 7 1 0 

4 5 8 6 4 9 3 9 6 4 9 4 0 Low _o.:. : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ No No No 1 5 4 9 12 

5 0 1 6 9 3 0 0 6 9 4 0 4 High G oba Yes NO Yes Yes 2 6 0 0 2 9 

5 0 3 6 9 5 7 0 6 9 5 6 6 High Gl ob a l Yes NO fes : 2 1 

7 1 5 7 8 7 1 9 7 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Gl ob a l • .- No N V. 1 1 1 4 9 

5 2 6 7 2 0 2 7 7 2 0 5 3 High Gl ob a l NO NO No No 1 9 4 2 7 

5 4 9 7 2 2 4 5 7 2 2 8 6 Low Gl ob a l V NO No No is-'-r 12 

5 9 0 7 4 2 3 5 7 1 9 4 3 High _o: ä Yes ' .. Yes Yes 2 5 5 7 

5 9 6 7 2 4 0 2 7 2 5 5 3 High Gl ob a l No V V 8 2 3 2S 

6 0 9 7 2 7 5 2 7 2 7 5 4 High Gl ob a l No NO No Yes 2 4 1 7 3 1 

6 4 9 7 5 6 6 4 7 5 6 6 4 Low Local No ' . No 1 7 5 2 2 7 

6 5 0 7 5 6 6 4 7 6 2 2 0 H gh Gl ob a l \.-. No Yes 1 7 5 5 2 7 

6 6 0 7 6 4 6 9 7 9 1 3 5 High Gl ob a l v . No No ' . . 9 6 6 2 7 

6 9 7 7 9 7 0 8 7 9 7 0 8 Low Local Yes '. Yes Yes 1 4 1 8 2 1 

7 0 0 7 9 7 3 1 7 9 7 4 1 _zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA .:•  Gl ob a l No No V 1 2 8 2 2 3 

7 0 4 7 9 7 4 6 7 9 7 4 6 Low Local No •. ' . Yes 2 3 3 4 2 8 

7 4 3 8 0 2 0 8 8 0 2 1 3 , .•. Local No - , No •f. 1 1 7 5 2 3 

Pre ci si on 0 3C 0 .9 3 C 5 0 

• ^ 1 o : .00 0 93 

Accuracy |  : 6b : 98 : 65 

Table 4.1: Results of analyzing 40 versions of JHotDraw; LOC = non-blank, non-comment 

lines of code before and after the changes; Granu.: granularity of the transformation; Scope: 

scope of the transformation; Refact. = Is it a refactoring?; #Tests = number of tests used to 

evaluate the transformation; Cov. (%) = statement coverage on the target program; M H = 

Murphy-Hil l . 
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G r a n u . Scop© 

1 minai» 1 U É j i — E 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Refact . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

! • zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAFEREFACTOR 

G r a n u . Scop© 
Refact . Refact . 

E 9 
Refact . Refact <f Test s Cov. (%|  B e f o re Af t e r 

G r a n u . Scop© 
Refact . Refact . 

E 9 
Refact . Refact <f Test s Cov. (%|  

5 7 2 9 5 2 2 6 3 5 0 2 6 4 2 8 Hi gh Gl ob a l No So No Yes 8 7 9 

6 0 9 4 9 7 2 6 4 2 8 2 6 4 2 8 Low Local Yes No Yes Yes 2 2 5 9 4 2 

6 3 7 4 8 9 2 6 4 2 8 2 6 4 5 4 Hi gh Local No No No No 3 1 5 8 4 4 

6 5 6 9 6 0 2 6 5 0 1 2 6 5 1 4 Low Local No No No Yes 3 4 8 7 4 7 

7 1 1 1 4 0 2 6 5 3 6 2 6 5 3 9 Low Local No No Yes 1 2 4 7 3 6 

8 1 4 1 2 3 2 6 5 5 8 2 6 5 5 8 Low Gl ob a l Yes No Yes • 'es 2 9 7 2 4 4 

8 1 4 1 2 8 2 6 5 5 8 2 6 5 5 8 Low Gl ob a l Yes No 2 7 4 1 4 4 

8 1 4 9 9 7 2 6 5 5 8 2 6 7 6 1 Gl ob a l No No No Co m p i l a t i o n Error 

8 1 5 0 2 2 2 0 2 2 1 2 0 2 2 2 Low Local No Yes Yes No Co m p i l a t i o n Error 

8 1 5 0 4 2 2 0 2 5 8 2 0 2 5 5 Low Local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'. '•  c s res No Co m p i l a t i o n Error 

9 2 3 3 3 9 2 0 9 0 1 2 0 9 0 1 Low „ y c a * e = Yes Yes 2 7 1 2 4 9 

9 5 6 2 7 9 2 0 9 0 1 2 0 8 4 8 High Local , j Nt No 2 7 0 9 4 9 

9 6 6 3 2 7 2 0 9 2 6 2 1 5 1 3 Low Gl ob a l Yes \ 0 res Yes 2 5 6 /  4 9 

1 0 2 3 7 7 1 2 1 5 5 1 2 1 5 5 1 Low Gl ob a l Yes No Yes 2 2 0 1 4 4 

1 0 2 3 8 9 7 2 1 5 5 1 2 1 5 5 1 Low Gl ob a l Yes No Yes Yes 2C ! : 4 4 

1 0 9 5 9 3 4 2 1 6 0 8 2 1 6 0 8 Low Loca Yes »es Yes 3 1 8 0 5 1 

1 1 4 8 8 0 1 2 1 6 1 8 2 1 6 2 8 High Gl ob a l Yes Yes 
. . . . 

Yes 3 2 3 7 5 0 

1 2 9 9 2 1 0 2 1 6 2 7 2 1 6 2 7 Low Gl ob a l tes YeS Yes 1 8 8 6 4 9 

1 3 0 0 0 7 5 2 1 6 3 2 2 1 6 3 2 Low Local Yes Yes Yes 1 8 1 3 4 8 

1 3 1 1 9 0 4 2 1 6 3 6 2 1 8 9 3 Global No No No Yes 2 0 7 2 - : •  

1 0 . 6 0 ; 73 0 .7 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
EsaJL 1 0 . 2 7 : 0 0 : 0 0 

B . • •  1 -.J 1 0 . 5 0 0 .8 5 0 .8 0 

Table 4.2: Results of analyzing 20 versions of Apache Common Collections; LOC = non-

blank, non-comment lines of code before and after the changes; Granu.: granularity of the 

transformation; Scope: scope of the transformation; Refact. = Is it a refactoring?; #Tests = 

number of tests used to evaluate the transformation; Cov. (%) = statement coverage on the 

target program: M H = Murphy-Hil l . 
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Ratzinger |  Murphy-HIII |  SAFtHEFACTew zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 1 17 

2 1 0 1 

4 2 5 2 1 

3 2 3 1 1 8 

6 0 6 0 6 0 

0 16 1 .00 0 9 6 

0 5 7 0 8 6 0 .5 9 

0 6 0 0 .9 3 0 .7 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4.3: Summary of false positives, false negatives, true positives, and true negatives. 

refactorings were correct in JHotDraw (precision of0.93)and 11 out of the 14 detected refac-

torings in Collections were correct (precision of 0.79). The Murphy-Hil l analysis correctly 

classified 39 out of 40 versions in JHotDraw and 17 out of 20 versions in Collections, leading 

to an accuracy of 0.98 and 0.85, respectively. 

S A F E R E F A C T O R identified all refactorings but one (Version 503), leading to a recall 

of 0.93 in JHotDraw sample. However, it also classified 13 non-refactoring as rcfactoring, 

which gives it a precision of 0.5. S A F E R E F A C T O R correctly classified 26 out of the 40 pairs 

of JHotDraw (Accuracy of 0.65). On the other hand, it had an accuracy of 0.8 in Collections, 

which means that it was correct in 16 out of the 20 versions. S A F E R E F A C T O R identified 

11 out of the I 1 refactorings (recall of 1). However, it incorrectly classified 4 versions as 

refactoring (precision of 0.73). 

Finally, the Ratzinger approach correctly classified 26 out of the 40 versions of JHot-

Draw (accuracy of 0.65) and 10 out of 20 versions of Collections (accuracy of 0.5). The 

approach detected 1 (Version 156) out of 14 refactorings in the JHotDraw sample, and 3 out 

of 11 refactorings in Collections, having recall values of 0.07 and 0.27, respectively. The 

approach also incorrectly classified three versions as refactoring: Version 173 of JHotDraw 

(precision of 0.5) and Versions 815022 and 815042 of Collections (precision of 0.6). Ta-

ble 4.3 summarizes the approaches' results with respect to false positives, false negatives, 

true positives, and true negatives. It also shows the overall recall, precision, and accuracy of 

each approach. 

Performing the evaluated approaches involves different time costs. The Murphy-Hill 

approach took around 15 minutes to evaluate each subject. However, in some subjects con-

taining larger changes, the approach took up to 30 minutes and was not able to check all 

changed files. Ratzinger automatically evaluate the commit message in less than a second. 

False Posi t i ve 

f a l se Nega t i ve 

True Posi t i ve 

True Negat i ve 

To t a l 
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S A F E R E F A C T O R took around 4 minutes to analyze each subject. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.2.5 Discussion 

In this section, we interpret and discuss the results. First, we present the main advantages and 

disadvantages of each approach. Then, we summarize the answers of the research questions 

(Section 4.2.5). 

M u r p h y - H i l l 

The manual analysis presented the best results in terms of accuracy, recall, and precision, in 

our evaluation. An evaluator can carefully review the code to understand the syntax and the 

semantic changes to check whether they preserve behavior. Although a manual process can 

be error-prone, the Murphy-Hil l et al. approach [49; 50] double checked the results by using 

two experienced evaluators. Moreover, they systematically decompose the transformation in 

minor changes making it easier to understand them. They also used a diff tool to help them 

analyze the transformation. 

On the other hand, it is time consuming to analyze all changes in large transformations. 

For instance, Collections Versions 1148801, 814997, 815042, and 966327 were so large 

that the reviewers could not inspect all the changes. Furthermore, it is not trivial to iden-

tify whether the code compiles by manually inspecting the transformation. The approach 

classified four versions that do not compile as refactoring. 

In Version 357 of JHotDraw, among other changes, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A b s t r a c t D o c u m e n t O r i e n t e d A p p l i c a t i o n class was moved from folder 

o r g / j h o t d r a w / a p p to folder o r g / j h o t d r a w / a p p l i c a t i o n . Although this 

seems to be a move package refactoring, it fixes a compilation error because the class begins 

with the statement package org . j h o t d r a w . a p p l i c a t i o n ; in both versions. Also, 

the commit message describes the transformation as fixing broken repository, which suggest 

that the transformation is not a refactoring. S A F E R E F A C T O R detected compilation errors in 

this version. 

Finally, the manual analysis classified 15 versions as having a mix of refactorings and 

non-refactorings. The S A F E R E F A C T O R and Ratzinger approaches are not able to identify 
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1 Test i ng o f GUI co d e 3 1 8 . 3 2 2 , 3 4 4 . 3 8 4 , 4 0 9 , 6 0 9 , 6 5 0 , 7 0 4 , 7 4 3 

2 Tests d o no t cover i m p a c t ed m e t h o d s 1 7 3 , 2 6 7 , 3 2 2 . 3 4 4 , 6 4 9 . 6 5 0 

3 Test s d o no t cover i m p a c t ed b ranches 1 3 4 . 3 2 2 , 7 1 1 1 4 0 

4 Weak JUni t assert i ons 6 5 0 

5 Canno t ap p l y regressi on t es t i n g 5 7 2 9 5 2 , 6 5 6 9 6 0 , 1 3 1 1 9 0 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 4.4: False positives of S A F E R E F A C T O R ; Problem = description of the reason of the 

false positive; Versions = ids of the versions related to the false positives. 

which refactorings are applied. 

SzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAFEREFACTOR 

Although the manual analysis had the best results, it is a time-consuming activity to manually 

analyze all versions. It also depends on experienced evaluators. S A F E R E F A C T O R has the 

advantage of automating this process, making an entire repository analysis feasible. In this 

study, the main problem of S A F E R E F A C T O R was the high number of false positives in the 

JHotDraw sample, that is, non-refactorings that were classified as refactoring, which leaded 

to the precision of only 0.5. In the Collections sample, its precision was close to manual 

analysis (0.73 to 0.79), though. Next, we discuss about the false positives, false negatives, 

and also the true negatives of S A F E R E F A C T O R . 

False Positives 

S A F E R E F A C T O R had 13 and 4 false positives in the JHotDraw and Collections samples, 

respectively. We manually analyzed each one and classified them as shown in Table 4.4. 

Most of the false positives were related to testing of GUI code. Application code may inter-

act with the user (such as creating a dialog box) in a variety of different situations. In JHot-

Draw, some generated tests needed manual intervention to cover the functionality under test. 

S A F E R E F A C T O R ignored them during evaluation. Moreover, Randoop did not generate tests 

for methods that require events from the Java AWT framework, for instancezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA MouseEvent, 

since Randoop could not generate this type of dependence. 

Recently, a new feature was added to Randoop to allow specifying a map-

ping from current method calls to a replacement call [66]. For instance. 
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thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA javax . swing . JOptionPane . showMessageDialog method, which usually 

presents a dialog box, can be replaced with a call that simply prints out the message and 

returns. In this way, it can be used to remove dialog boxes that require a response. We plan 

to incorporate this feature into S A F E R E F A C T O R ' S approach in the near future. 

S A F E R E F A C T O R also generated false positives because the tests generated by Randoop 

within a time l imit did not cover methods changed by the transformation. For instance, while 

in Versions 173, 267, 649, one changed method was not covered by the tests, in Versions 322 

and 650, two and three changed methods were not covered, respectively. S A F E R E F A C T O R 

passes to Randoop the list of all methods in common for both versions of a pair. The time 

limit passed to Randoop to generate the tests may have been insufficient to produce a test 

for these methods. The average statement coverage of the tests was 22.68% and 45.12% in 

JHotDraw and Collections, respectively. As future work, we intend to improve S A F E R E F A C -

T O R by identifying the methods impacted by a transformation. In this way, we can focus on 

generating tests for those methods. 

Moreover, Randoop uses primitive. String and return values as input to the called meth-

ods. Stil l , some methods may present additional dependencies. For instance, parameters 

from class libraries may not be tested by Randoop i f the library is not also under test. 

Additionally, in Versions 134, 322, and 711140, Randoop produced tests that call the 

changed methods, but the tests did not cover the branches affected by the change. In those 

cases, the arguments produced by Randoop to the methods under test were not sufficient 

to exercise every behavior possible. The Randoop team recently incorporated the option of 

using any constant that appears in the source code as input to the methods under test [66|. 

Moreover, it allows users to specify primitives or String values as input to specific methods. 

We plan to investigate whether applying them may reduce S A F E R E F A C T O R ' S false positives. 

On the other hand, in Version 650 there were two changes that were covered by the tests, 

but the assertion established in the tests were not sufficient to detect the change. For instance, 

the ComplexColorWheellmageProducer . g e t C o l o r A t method returns an array of 

floating-point values. Version 650 fixes the value returned by this method, but the test gen-

erated by Randoop only checks whether the value returned was not null. I f Randoop could 

generate asserts to check the values of the array, the behavioral change would be detected. 

The other change affects one private attribute. Recently, Robinson et al. [661 introduced 
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an enhancement to Randoop that allows the user to define a set of observer methods to the 

attributes, and check their results - an observer method is a method with no side effects. 

Therefore, instead of having a single assertion at the end of a generated test, there may be 

many assertions at the end, one for each applicable observer method. As future work, we 

wi l l investigate how to automatically compute the observer methods and pass to Randoop to 

check whether this option improves its effectiveness. 

Finally, 3 out of the 4 false positives of Collections were due to addition or removal of 

methods not used in other parts of the program. I f the transformation removes a method, it 

invalidates every unit test that directly calls the absent method. Likewise, i f a method and 

its unit test is added, this unit test would not compile in the original version. Because of 

that, S A F E R E F A C T O R identifies the common methods of the program, and tests them in the 

two versions of the pair, comparing their results. The tests indirectly exercise the change 

cause by an added/removed method, as long as this method affects the common methods. 

Opdyke compares the observable behavior of two programs with respect to thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA main method 

(a method in common). I f it is called twice (source and target programs) with the same 

set of inputs, the resulting set of output values must be the same [ 5 3 ] . S A F E R E F A C T O R 

checks the observable behavior with respect to randomly generated sequences of methods 

and constructor invocations. They only contain calls to methods in common. Therefore, 

S A F E R E F A C T O R can produce false positives due to different equivalence notion in the API 

context when features are removed or added, since their code may not be used in other parts 

of the program but only by clients of the API . 

False Negatives 

In Version 5 0 3 of JHotDraw, S A F E R E F A C T O R showed a false negative. By manu-

ally inspecting the results we identified that the behavioral change was due to a non-

deterministic behavior of JHotDraw. The test generated by Randoop contained a statement 

a s s e r t E q u a l s that indirectly checks the value returned by the t o S t r i n g method of an 

object of class DrawingPageable. This class does not implement t o S t r i n g . There-

fore, it was returned the default value of t o S t r i n g , which prints a unique identifier based 

on the hashcode. The hashcode may change each time the program is executed, which was 
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the cause of the non-deterministic result. 

Nondeterministic results tend to fall into simple patterns, such as the default return value 

ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA t o S t r i n g . To avoid that, Randoop has the option of executing the tests twice and 

removing the tests that return different results [ 6 6 ] . We also implemented this option in 

S A F E R E F A C T O R , which was used in the experiment. However, it was not sufficient to elim-

inate all cases of non-deterministic results, such as the one in Version 5 0 3 . 

True Negatives 

In this section, we discuss some of the non-behavioral transformations detected by 

S A F E R E F A C T O R . In Version 6 3 7 4 8 9 of the Collections API , an overridden method was 

changed, while Version 9 5 6 2 7 9 changes a t o S t r i n g method. Any overridden method 

may have a very different behavior from the original, which favors its detection by S A F E R -

E F A C T O R . 

In JHotDraw, Version 151 changes the field value inside a constructor, which is de-

tected by an assertion generated by Randoop. In some transformations, the target pro-

gram raised an exception. In Versions 176, 5 1 8 and 5 2 6 , S A F E R E F A C T O R identified a 

N u l l P o i n t e r E x c e p t i o n in the target program inside a method body and constructors. 

In Version 3 2 4 , the transformation removed an interface from a class. The resulting code 

yields a C l a s s C a s t E x c e p t i o n identified by S A F E R E F A C T O R . Version 5 9 6 removed a 

System. e x i t from a method body. 

On the other hand, the behavioral changes found by S A F E R E F A C T O R in Versions 4 5 8 , 

5 4 9 , 6 6 0 , 7 0 0 were due to non-deterministic results of JHotDraw. JHotDraw contains global 

variables that lead to different results of the tests depending of the other that they are exe-

cuted. S A F E R E F A C T O R currently executes the tests generated by Randoop in batch through 

an Ant script. As future work, we plan to implement in S A F E R E F A C T O R an option to exe-

cute the tests in the same order in the source and target versions to avoid non-deterministic 

results because of the order of the tests. 

In our experiments, S A F E R E F A C T O R had better results evaluating a repository of a data 

structure library (Collections) than one of a G U I application (JHotDraw). The first one was 

easier to evaluate since it does not have G U I . does not produced non-deterministic results, 
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and require simpler arguments to exercise its behavior. On the order hand, APIs are less 

likely to have behavioral changes during its evolution [66]. 

Ratzinger 

The Ratzinger approach has the advantage of being the simplest and fastest approach for 

identifying behavior-preserving transformations. However, in our experiment, many of the 

commit messages do not contain keywords related to refactoring, which led this approach 

to a recall of only 0.27 in the Collections sample and 0.07 in the JHotDraw sample. Only 4 

out of 25 refactoring revisions in both repositories contain some of the refactoring keywords 

established by the approach. 

Additionally, 3 out of 7 refactorings identilied by the approach were false positives. In 

Version 173 of JHotDraw, the commit message indicates that developers removed unused 

imports and local variables, which suggests the commit was a refactoring. However, by 

manually inspecting the changes, we checked that one of the removed local variable assign-

ments contains a method call that changes U I components. S A F E R E F A C T O R also classified 

this transformation as refactoring since the tests generated by Randoop did not detect this 

behavioral change in the GUI . This approach also classified Versions 815022 and 815042 as 

refactoring, but S A F E R E F A C T O R detected that these versions do not compile, so they cannot 

be classified as refactorings. 

It is not simple to predict refactorings by just inspecting the commit message. The results 

confirm Murphy-Hil l et al. findings [49; 50], which suggest that simply looking at commit 

messages is not a reliable way of identifying refactorings. Nevertheless, in some situations, 

i f the company recommend strict patterns when writing a commit message, this approach 

may be useful. 

Answers to the research questions 

From the evaluation results, we make the following observations: 

• Q l , Do the approaches identify all behavior-preserving transformations? 

We found evidence that Murphy-Hil l approach is capable of detecting all behavior-

preserving transformations since it achieved a recall of 1.0. With respect to the auto-
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mated approaches. S A F E R E F A C T O R had an excellent recall of 0.96, but it may miss 

behavioral changes not detected by the tests or incorrectly detect behavioral changes 

in non-deterministic programs. On the other hand, our results show evidence that 

Ratzinger approach may miss a number of behavior-preserving transformations since 

it had an overall recall of only 0.16. Many of the evaluated behavior-preserving trans-

formations were not documented in the commit messages in the way it is expected by 

this approach (see Section 4.2.5); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

• Q2. Do the approaches correctly identify behavior-preserving transformations? 

No. Our results show evidence that the Murphy-Hill approach is the most precise 

among the evaluated approaches (precision of 0.86). However it may incorrectly clas-

sify transformations that contain compilation errors as behavior-preserving transfor-

mations. It is difficult to manually reason whether a program compiles. With respect to 

the automated approaches, the results indicate that S A F E R E F A C T O R (0.59) is slightly 

more precise than Ratzinger (0.57). Some of the non-behavior-preserving transfor-

mations evaluated contain commit messages related to refactorings that were applied 

among other changes, leading the Ratzinger approach to incorrectly classify them as 

behavior-preserving transformations; 

• Q3. Are the overall results of the approaches correct? 

The results indicate the Murphy-Hill approach is very accurate. In our experiment, it 

only failed in 4 out of the 60 subjects (accuracy of 0.93). Also, the results show evi-

dence that S A F E R E F A C T O R is more accurate (0.70) than Ratzinger's approach (0.60). 

Although close in terms of accuracy, S A F E R E F A C T O R and Ratzinger have different 

limitations. While the former had a total of 17 false positives, the latter had just 3. On 

the other hand, the former had just one false negative, while the latter had 21. 

4.2.6 Threats to validity 

There are several limitations to this study. Next we describe some threats to the validity of 

our evaluation. 
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Construct validity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

To evaluate the correctness of the results of each approach, we created the baseline (see 

Column Baseline of Tables 5.8 and 4.2) by comparing the approaches' results since we did 

not previously know which versions contain behavior-preserving transformations. Therefore, 

if all approaches present incorrect results, our baseline may also be incorrect. 

Another threat was our assumption that changes to non-Java hies are refactorings. This 

may not be true in some cases, such as when a library that the code depends upon is upgraded. 

With respect to S A F E R E F A C T O R , it does not evaluate developer intention to refactor. but 

whether a transformation changes behavior. 

Internal validity 

The time l imit used in S A F E R E F A C T O R for generating tests may have influence on the de-

tection of non-refactorings. To determine this parameter in our experiment, we compared 

the test coverage achieved by different values of time limit. In general, achieving 100% test 

coverage in real applications is often an unreachable goal; S A F E R E F A C T O R only analyzes 

the methods in common of both programs. For each subject, we evaluated one of the selected 

pairs, and analyzed the statement coverage of the test suite generated by S A F E R E F A C T O R on 

the source and the target programs. After increasing the time limit to more than 120 seconds, 

the coverage did not present significant variation. So. the value of time limit chosen was 120 

seconds. We follow the same approach used in previous evaluations on Randoop 166]. 

In 17 changes classified as refactoring by S A F E R E F A C T O R , our manual analysis showed 

different change classifications. Some of these changes were not covered by S A F E R E F A C -

T O R ' S test suite. In transformations that only modify a few methods. S A F E R E F A C T O R con-

siders most methods in common. When this set is large the time limit given to Randoop 

(120s) may not be sufficient to generate a test case exposing the behavioral change. As a 

future work, we intend to improve S A F E R E F A C T O R by generating tests only for the meth-

ods impacted by the transformation [641. In this way, we can use S A F E R E F A C T O R using a 

smaller time limit. 

We used the default value for mostly Randoop parameters. By changing them, we may 

improve S A F E R E F A C T O R results. Moreover, since S A F E R E F A C T O R randomly generates a 
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test suite, there might be different results each time we run the tool. To improve the confi-

dence, we ran S A F E R E F A C T O R three times to analyze each transformation. I f S A F E R E F A C -

T O R does not find a behavioral change in all runs, we consider that the transformation to 

be behavior-preserving. Otherwise, it is classified as a non-behavior-preserving transforma-

tion. The tests generated by Randoop had coverage lower than 10% in some versions of 

JHotDraw. By manually inspecting the tests, we check that they contain calls to JHotDraw's 

methods that callzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA System, e x i t ( ) , which ends the test execution. As future work, we 

plan to improve the test execution by avoiding some method calls. 

We manually created the buildFiles for JHotDraw, and downloaded the dependencies. We 

made sure the compilation errors found by S A F E R E F A C T O R were not related to any missed 

dependency. We do not have information on the SVN indicating the JDK version used to 

build the program. By changing the JDK, results may change. Moreover, we run tests using 

JDK 1.6. 

The Murphy-Hil l approach was performed by two experienced evaluators. One one them 

was the author of the approach. They also have an extensive background in refactoring. 

The accuracy of this approach may change according to the level of Java expertise of the 

inspectors. 

External validity 

We evaluated only two open-source Java projects (JHotDraw and Apache Collections) due 

to the costs of manual analyses. Our results, therefore, are not representative of all Java 

projects. To maximize the external validity we evaluated two kinds of software: a GUI 

application (JHotDraw) and an API (Apache Common Collections). 

Randoop does not deal with concurrency. In those situations, S A F E R E F A C T O R may yield 

non-deterministic results. Also, S A F E R E F A C T O R does not take into account characteristics 

of some specific domains. For instance, currently, it does not detect the difference in the 

standard output (System.out.println) message. Neither could the tool generate tests that exer-

cise some changes related to the graphical interface (GUI) of JHotDraw. These changes may 

be non-trivial to be tested by using JUnit tests. 

Moreover, some changes (Versions 743 and 549) improve the robustness of JHotDraw. 

Randoop could not generate test cases that produce invalid conditions of JHotDraw to iden-
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tify these behavioral changes. Also, it seems that some of the bug fixes need complex sce-

narios to expose behavioral changes. For instance, Version 2 6 7 introduces a work-around in 

one method to avoid a bug in the JDK. Since we may have tested it using a new JDK, prob-

ably, the transformation does not change program's behavior. In Version 7 0 0 , developers 

change some instructions to assign a copy of the array instead of the array itself. Although 

this change fixed the array exposure, Randoop could not detect any behavioral change. 

Similarly, the manual analysis presents a number of limitations as well. Manually in-

specting code leaves room for human error. We only selected changes from two projects 

(JHotDraw and Collections), which may not be representative of other software projects. In 

other software domains, it may be harder to understand the logic of the software and define 

whether the change preserves behavior. Moreover, Java semantics is complex. Even for-

mal refactoring tools may fail to identify whether a transformation preserves behavior [ 7 7 1 . 

We tried to mitigate this by having two experienced evaluators simultaneously analyzing the 

source code. Finally, during our manual analysis, we encountered six very large changes that 

we were unable to manually inspect completely; in these cases we spent about 3 0 minutes 

manually cataloging refactorings, but did not find any semantics changes in doing so. Had we 

spent significantly more time inspecting, we may have encountered some non-refactorings. 

This illustrates that manual inspection, while theoretically quite accurate, is practically diffi-

cult to perform thoroughly. 

4.3 Concluding remarks 

In this chapter, we presented S A F E R E F A C T O R , a tool for detecting behavioral changes. Its 

key idea is to compare the behavior of two versions of a program against the same tests. To 

do so, it identifies the methods in common before and after the transformation, generates tests 

for them, and run these tests against both programs. I f the results are the same, it improves 

the confidence that both programs have same behavior. Otherwise, it detects a behavioral 

change. 

We performed an experiment to compare S A F E R E F A C T O R and other two approaches 

(Murphy-Hill and Ratzinger) with respect to effectiveness in detecting behavioral changes. 

Our results suggest that S A F E R E F A C T O R has 7 0 % accuracy. The evaluation in Section 4 .2 
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shows some limitations of S A F E R E F A C T O R . For instance, it produced false positives when 

testing G U I code and false negatives when testing non-deterministic code. These limitations 

do not affect the use of S A F E R E F A C T O R in our technique for testing of refactoring engines 

since we use it against simple transformations that are deterministic and do not have GUI 

code. 



Chapter 5 

A technique for testing of refactoring 

engines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we present our technique for automated testing of Java Refactoring Engines. 

It focuses on identifying problems related with missing conditions and strong conditions. 

The key elements of the technique are J D O L L Y (Chapter 3) and S A F E R E E A C T O R (Chap-

ter 4). 

The remainder of this chapter is organized as follows. Section 5.1 shows an overview of 

our technique. Then, each step of our technique is described from Section 5.2 to Section 5.5. 

Sections 5.6 and 5.7 describe our experiments to evaluate the technique. Finally, Section 5.8 

shows the concluding remarks. 

5.1 Overview 

We propose an automated approach for testing of Java refactoring engines. The approach 

performs four major steps. First, a program generator automatically yields programs as 

test inputs for a refactoring (Section 5.2). Second, the refactoring under test is automatically 

applied to each generated program (Section 5.3). Then, the output is evaluated by test oracles 

in terms of missing conditions and overly strong conditions (Section 5.4). In the end, we may 

have detected a number of failures, which are categorized in Step 4 (Section 5.5). The whole 

process is depicted in Figure 5.1. 

72 
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Figure 5.1: Automated behavioral testing of refactoring engines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2 Test input generation 

We automatically generate programs as test inputs for the refactoring engines. To perform 

the test input generation, we propose a Java program generator called J D O L L Y . We show a 

detailed description of J D O L L Y in Chapter 3. 

5.3 Refactoring application 

The second step of our technique is to apply the refactoring under test to each generated 

program. This step can be performed manually (by using the IDE directly) or by the use 

of an API offered by the IDE infrastructure. Each refactoring checks a set of conditions, 

and, given the fulfillment of these conditions, the transformation is applied; otherwise, the 

refactoring is rejected, and a warning message is shown. 

5.4 Test oracles 

An important problem in automated testing of refactoring engines is automated checking 

of outputs. In practice, developers manually write the expected output, which can be a 

refactored program or a warning message when a condition is violated. Next, we show our 

automated oracles to detect missing conditions and overly strong ones. 
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5.4.1 Missing conditions 

We propose S A F E R E F A C T O R (Chapter 4), a tool for checking behavioral changes, as oracle 

for detecting missing conditions. For each pair of input and output programs produced by the 

technique, S A F E R E F A C T O R checks for behavioral changes. I f it detects behavioral changes, 

we classify the transformation as a failure. 

For instance, Listing 4.1 shows a Java program generated by J D O L L Y , and Listing 4.2 

shows the output program after applying a Pull Up Method refactoring by using Eclipse. 

Since S A F E R E F A C T O R detects behavioral changes in this transformation, we classify it as 

a failure. In Section 5.5.1 we show how to classify failures due to behavioral changes into 

distinct faults. 

5.4.2 Overly strong conditions 

We propose an oracle to detect overly strong conditions based on differential testing [81]. 

When the refactoring implementation under test rejects a transformation, we apply the same 

transformation by using one or more other refactoring implementations. I f one implemen-

tation applies the transformation, and S A F E R E F A C T O R does not find behavioral changes, 

we establish that the implementation under test contains an overly strong condition since it 

rejected a behavior-preserving transformation. 

For example, consider the A class and its subclasszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA B in Listing 5.1. A declares the 

k (long) method, and B declares methods n and t e s t . Suppose we would like to re-

name n to k. I f we apply this transformation using Eclipse, it shows the warning message: 

Method "A.k(long)" will be shadowed by the renamed declaration "B.k(int)". 

Eclipse has a functionality that allows us to preview the transformation. In the previous 

example. Listing 5.2 presents the preview of the resulting program. Notice that after the 

transformation, the t e s t method yields 2 0, but in the original version it yields 10. This 

transformation does not preserve behavior. This is the reason why Eclipse showed a warning 

message. 

However, we can apply this transformation using JRRT. The resulting program is pre-

sented in Listing 5.3. Notice that this transformation is different from Eclipse. JRRT per-

forms an additional change to make the transformation behavior-preserving. JRRT identifies 
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that the call tozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA k inside t e s t must refer to A. k instead of B . k after the transformation. So, 

it adds a super access to the method invocation k (2) inside t e s t . Therefore, the result-

ing program in Listing 5.3 correctly refactors the original program in Listing 5.1. NetBeans 

can also perform the transformation. It yields a target program presented in Listing 5.2. 

However, the transformation performed by NetBeans does not preserve behavior. 

Listing 5.1: Original \ersion. 

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA pub l i c c l a s s A ( 

2 p u b l i c long k ( I o n g a ) { 

3 r e t u r n 10; 

4 1 

5 ) 

6 publ i c c l a s s B extends A j 

7 p u b l i c long n ( i n t a ) { 

8 r e t u r n 20 ; 

9 1 

10 p u b l i c long t e s t ( ) ( 

11 r e t u r n k ( 2 ) ; 

12 ) 

13 1 

Listing 5.2: NetBeans target version. 

1 publ i c c l a s s A | 

2 p u b l i c long k ( I o n g a ) { 

3 r e t u r n 10; 

4 1 

5 1 

6 pub l i c c l a s s B extends A ( 

7 p u b l i c long k ( i n t a ) ( 

8 r e t u r n 20 ; 

9 ) 

10 p u b l i c long t e s t ( ) | 

11 r e t u r n k ( 2 ) ; 

12 ) 

13 1 

file:///ersion
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Listing 5.3: JRRT target's version. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I pub l i c c l a s s A { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 p u b l i c long k ( long a) { 

3 r e t u r n 10; 

4 

5 ) 

6 pub l i c c l a s s B extends A { 

7 p u b l i c long n ( i n t a ) ( 

s r e t u r n 20 : 

9 

in p u b l i c long t c s t ( ) j 

r e t u r n s u p e r . k ( 2 ) ; 

12 

3 ) 

We compare the results of Eclipse, NetBeans, and JRRT. While the former rejected the 

transformation, NetBeans and JRRT applied it. S A F E R E F A C T O R evaluates the transforma-

tions applied by JRRT and NetBeans. It does not lind behavioral changes in the transforma-

tion applied by JRRT. We conclude that Eclipse rejected a behavior-preserving transforma-

tion due to an overly strong condition since JRRT was able to correctly apply it. Moreover, 

it detects a fault (missing condition) in the transformation applied by NetBeans. 

5.5 Failure classification 

Our technique may produce a large number of failures since it automatically produces a 

number of test inputs. The process to manually classify the failures into distinct faults may 

demand a considerable effort. In the following subsections, we present techniques to auto-

mate the classification of failures into distinct faults. 

5.5.1 Missing conditions 

Missing conditions may produce two main types of failures: the ones that introduce com-

pilation errors in user's code; and the failures that introduce behavioral changes in user's 

code. 
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Compilation errors 

Jagannath et al. [34] propose an approach to split failures based on oracle messages (Oracle-

based Test Clustering - OTC). They used it to classify refactoring engine failures that intro-

duce compilation errors in the output program. The failures are grouped by the template of 

the compiler error message, so that each group contains a distinct fault. We adopt the same 

approach to classify this kind of failure. 

For instance, Listings 5.4 shows a program generated by J D O L L Y . I f we apply the Re-

name Field refactoring by using JRRTv 1, the tool wi l l produce the output program shown in 

Listing 5.5, which contains the compilation error: "The lield A.k is not visible". Listings 5.6 

shows another program generated by J D O L L Y . The only different between it and the previ-

ous program (Listings 5.4) is the addition of the C class. I f we apply the same Rename Field 

refactoring, JRRTv 1 wi l l produce an output program (Listings 5.7) with the same kind of 

compilation error. Our technique groups both transformations together by using the template 

of the compilation error: "The field [F] is not visible". 

Listing 5.5: After Refactoring. Apply-

Listing 5.4: Before Refactoring ing Rename Field in JRRTv 1 leads to a 

1 p a c k a g e p 1 ; compilation error. 

2 p u b l i c c l a s s A ( 1 p a c k a g e p 1 ; 

3 p r o t e c t e d i n t n = 1 ; 2 p u b l i c c l a s s A { 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!  3 p r o t e c t e d i n t k = — 31; 

5 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! 

6 p a c k a g e p2 ; 5 

7 i m p o r t p i . * ; 6 p a c k a g e p2 ; 

8 p u b l i c c l a s s B e x t e n d s A { 7 i m p o r t p i . * ; 

9 i n t k = 2 ; 8 p u b l i c c l a s s B e x t e n d s 

10 p u b l i c l o n g m ( ) { i n t k=17 ; 

1 i r e t u r n t h i s . n ; 10 p u b l i c l ong m ( ) { 

12 1 ! i r e t u r n ( ( A ) t h is ) . k 

13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA}  12 1 

13 1 



5.5 Failure classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA78 

Listing 5.6: Before Refactoring 

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA p a c k a g e p 1 ; 

2 p u b l i c c l a s s A { 

3 p r o t e c t e d i n t n = 1 ; 

4 ) 

5 

6 p a c k a g e p2; 

7 i m p o r t p i . * ; 

8 p u b l i c c l a s s B e x t e n d s A { 

9 i n t k = 2 : 

10 p u b l i c l o n g m() { 

1 1 r e t u r n t h i s . n ; 

12 | 

13 ) 

14 

15 p a c k a g e p2 ; 

16 p u b l i c c l a s s C { 

17 I 

Listing 5.7: After Refactoring. Apply-

_ ing Rename Field in JRRTvl leads to a 

compilation error. 

1 p a c k a g e p 1 ; 

2 p u b l i c c l a s s A { 

3 p r o t e c t e d i n t k=—31; 

4 1 

5 

6 p a c k a g e p2; 

7 i m p o r t p i . * ; 

8 p u b l i c c l a s s B e x t e n d s A j 

9 i n t k = 1 7 : 

10 p u b l i c l o n g m ( ) ( 

11 r e t u r n ( ( A ) t h i s ) . k ; 

12 | 

13 ) 

14 

15 p a c k a g e p2; 

16 p u b l i c c l a s s C { 

17 1 



5.5 Failure classification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 7 9 

Table 5.1 : Filters for classifying behavioral changes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Filter  Descript ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

En ao l es/ d i sab i es o v er r i d i n g 
A f t e r a r e f ac t o r n q , a m e t h o d co m es t o oe (or n o l o n g er is) 

o ver r i d d en 

Enab es/ d sao les cver f cad nq 
A f t e r a r e f ac t o r n q , a m e t h o d co m es t o oe f o r n o l o n q er i s; 

over o ad ed 

En ao l es/ d i sab es r i e d h d i n g 
A f t e r a r e f ac t o r n q , a f iela co m es t o b e (o r n o l o n q er s) i i d d e n oy 

an o t h er f i e l d d ec l ar at o n 

Sh ad o w s c ass d e c o r a t i o n 

Ch an g es su p er ( t h i s o r i m p l i c i t  t h i s ; 

t o t h i s o r i m p l i c i t  t h i s (su p er ; 

Mat n ' .d ns s u p er w h le Chang n g 

h i er ar ch y 

Ch an g es access b i i t y 

A f t e r a r e f ac t o r n g , a c ass d ec l ar at i o n co m es t o oe sh ad o w ed oy 

an o t h er déclarât o n 

I ' a m e t h o d cal l o r f i e l d access nas t h i s o r i m p l i c i t  t h i s (su p er ; as 

t a r g e t , en d a* t er a r e f ac t o r i n g t h i s r e f e ' en ce 'S r ep l aced oy su p er 

( t h i s o r i m p l i c i t  t h i s ) , m o r d er t o < eep t h e l i n k t o t n e sam e 

p r ev ous o b j ec t 

A r ef er en ce t o su p er s r r o v e d u p or d o w n '.ne h i er ar ch y d u r n g 

r e f ac t o n n g 

Th e r e f ac t o r n g ch an g es t h e access m o d f i er o ' a g ; v en f i e l d o r 

m e t h o d 

Th e o r i g i n al p rog ram * s n o r m ah y ex ecu t ed b y t h e t est su t e b u t 

t h e r e f ac t o r ed o n e t h r o w s so m e ex cep t i o n s 

A f t e r a r e f ac t o n n g , an i m p i c; t  cast b e t w een p r i r r i t ve t yp es is (or 

n o o n g er is} ap p l i ed w h er e i t  d i d n o t t ak e (o r t o o k ) p i ace 

o r i g na ly 

Tn e r e f ac t o r ed p r o g r am cr ashes 

EnaDles/ d i sab !es i m p ci t  cast zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Behavioral changes 

We do not use the OTC approach for classifying failures related to behavioral changes since 

we did not identify any information from our oracle ( S A E E R E F A C T O R ) that could be used to 

split the failures. We propose an approach to classify behavioral changes by splitting each 

detected change based on the characteristics of each pair of input and output programs. Our 

approach is based on a set of filters; a filter checks whether the programs follow a specific 

structural pattern. For example, there are filters for transformations that enable or disable 

overloading/overriding of a method in the output program, relatively to the input program. 

A l l filters are presented in Table 5 . 1 . We defined these filters by analyzing faults found 

through the use of our approach, in addition to other reported faults. 

The filters may be applied in any order. The fault category of a behavior-changing trans-

formation is then designated by the filters matched by its input and output programs. When 

a transformation does not match any of these filters, conventional debugging is demanded 

from refactoring engine developers. For instance, the failure in the Pull Up Method on ei-

ther Eclipse JDT 3.7 or JRRTvl showed in Listing 5.2 matches the filter named "Changes 

super(this) to this(super)" from Table 5 . 1 , in which a problem with replacing a reference to 

s u p e r with t h i s is detected. 

The set of filters is not complete. Currently, they focus on the Java constructs supported 

by J D O L L Y . New filters can be proposed based on additional faults found by refactoring 
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engine developers. Currently, the classification of behavioral changing transformations is 

carried out manually. The process consists in analyzing each pair of programs, and testing 

every filter for matches. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.5.2 Overly strong conditions 

We also use OTC to categorize the overly strong condition failures. Our hypothesis is that 

each condition has a particular warning message. Therefore, to split the failures, we use the 

template of the warning message thrown by a refactoring engine when a condition is not 

satisfied. 

For example, when we apply the Rename Method refactoring of Eclipse to the program 

shown in Listing 5.1, the tool yields the following warning messages, respectively: Method 

"A.k(long)" will be shadowed by the renamed declaration "B.k(int)". Our approach ignores 

the parts inside quotes, which contain names of packages, classes, methods, and fields. I f 

there is another message that has the same template, the rejected transformations are auto-

matically classified in the same category of overly strong condition. 

5.6 Evaluation: missing conditions 

The goal of this experiment is to analyze our technique for the purpose of evaluation with 

respect to effectiveness in identifying faults related to missing conditions from the point of 

view of refactoring engine developers in the context of academic and industrial Java refac-

toring engines. In particular, our experiment addresses the following research question: 

• Q l . Can the technique identify faults related to missing conditions? 

To address our research questions, we assess the effects of each technique by using the 

following metric: 

• Number of distinct faults correctly detected by the technique. 

5.6.1 Planning 

In the following subsections, we describe the subjects used in the experiment, the experiment 

design, and its instrumentation. 
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Table 5.2: Summary of evaluated refactorings; Scope = Package (P) - Class (C) - Field (F) -

Method (M) . 

M K M V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scope 

p - C - F - M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAft*. jnrr Net Bean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ren am e cl ass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 3 - 0 - 3 X X X 

Re n am e m e t h o d 2 - 3 - 0 - 3 X X X 

Ren am e t e d 2 - 3 - 2 - 1 X X X 

Pu sh d o w n m e t h o d 2 - 3 - 0 - 4 X X X 

Pu sh d o w n l e d 2 - 3 - 2 - 1 X X X 

Pu l t p m e t h o d 2 - 3 - 0 - 4 X X X 

Pu l l UD f i e l d 2 - 3 - 2 - 1 X X X 

En cap su l at e f i e l d 2 - 3 - 1 - 3 X X X 

M o v e m e t h o d 2 - 3 - 1 - 3 X X 
i 

A c d p a r o m e t e - 2 - 3 - 0 - 3 X X X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Selection of subjects 

We evaluated Java refactorings implemented by Eclipse JDT 3.7 (10 refactorings), JRRTvl 

and JRRTv2' (10 refactorings), and NetBeans 7.0.1 (9 refactorings). Table 5.2 summarizes 

all evaluated refactorings. 

Eclipse is the most used Java IDE [48], and contains a number of automated refactorings 

(currently, more than 25). The evaluated refactorings focus on a representative set of program 

structures. Moreover, a survey carried out by Murphy et al. [481 shows the Eclipse JDT 

refactorings that Java developers use most: Rename, Move Method, Extract Method, Pull 

Up Method, and Add Parameter. Four of these are evaluated in this experiment. NetBeans 

is also a popular Java IDE. The Move Method refactoring was not supported by NetBeans 

by the time that this experiment was performed. A number of related approaches [14; 84; 

71 ] have studied the correctness of their transformations. 

JRRT implements a number of refactorings [71; 74; 68]. They aim at outperforming the 

refactoring implementations of Eclipse in terms of overly strong and too weak conditions. 

Some refactorings may have invariants to be preserved. For instance, their Rename Method 

refactoring implementation is based on the name binding invariant: each name should refer 

to the same entity before and after the transformation. They proposed other invariants such as 

control flow and data flow preservation. To alleviate the problem of overly strong conditions, 

their implementations may also perform additional changes, such as the one presented in the 

'The JRRT version from July 9th. 2011 
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Table 5.3: Summary of the main constraints. 
1 Rtfactoriwj lmpl<in<Bt>tK> i J MainComtraint 1 Additional Constraint» zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Renam e C ass so m e Class l l . 2, I) 
Re n a r e M e t h o d so m e i v e n o d | 2 , Î, s; 

Ren ar r e F eld so m e Fi el d ! (2 , 3 . 9 ; 

Push Do w n M e t h o d s o m e c C ass J som eSu b d ass.cJ an d s o m e N ' e n o d l e , !v '•>) 

Push D o w n T e d so m e c:C ass so m eSu b ci ass[c] an d so m eFt el d [ c] U, <,) 

Pj l i Jp M e n o d s o m e c Class s o t i ePa r en t Lc ] an d s o m eM e t h o d [ c j | i , V 
Pu 1 Up Re d so m e c Class |  scn~eP3 r en t ;cj an d s o m e r e d ;cj 12, 4) 

En cap su l at e Field so m e Field 15. b. 7! 

Mo ve M e t h o d so m e c:C ass |  som eTar ge:ClassFiel c".cj an d so m eM et h o d T cM o v e [ c j U. 2 j 

A c d Ps- ar e t e- so m e [Vet  n o d | 1 . 2, 1) 

transformation from Listing 5.1 to Listing 5.3. 

We evaluated two versions of JRRT [71; 74; 68]. First, we evaluated with our technique 

the refactorings implemented by JRRTvl . Later, a new version with improvements and 

bug fixes was released (which we call JRRTv2); this new version was also subject to our 

analysis in order to evaluate whether our technique could be useful for identifying new faults 

during the evolution of the tool. The same refactorings from Eclipse JDT were tested in both 

versions of JRRT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Experiment design and instrumentation 

The scope column in Table 5.2 indicates the maximum number of packages, classes, fields, 

and methods passed as parameter to J D O L L Y . For each refactoring, we specified main con-

straints for guiding J D O L L Y to generate programs with certain characteristics needed to 

apply the refactoring. Table 5.3 shows these constraints; they prevent the generation of pro-

grams to which the refactoring under test is not applicable. For each refactoring, we used the 

same set of generated programs to evaluate Eclipse JDT, JRRTvl , JRRTv2, and NetBeans. 

Exhaustively generating programs, even for a given scope, often causes state space ex-

plosion. In order to minimize the number of generated programs to a small, focused set, we 

have also defined additional constraints. These constraints were built on data about refac-

toring faults gathered in the literature, enforcing properties such as overriding, overloading, 

inheritance, field hiding, and accessibility. For each refactoring (column Additional Con-

straints in Table 5.3), we declare Alloy facts with additional constraints. These are fully 

described in Table 5.4. I f a developer has the available resources to analyze the entire scope, 

then it w i l l not be required to specify additional constraints. 
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Table 5.4: Summary of the additional constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

•  AdditionalzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Co n s t r a i n t D es c r i p t i o n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 so r n eOver r i d i n c r j o r 

so m eOver l o ad i n g . [ l n t , l n l ] 

o ver r i d t n g oi o ver t o ad i n g (nüm ber o r * p s ' d r ^ et er s 

p assed ctv a t y o n i en t ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 s o m e f a l l g r f l _ A i ied^ t o n e r n t f h o d b o d y L*\ SV^ a m e t b o d OF d i t e ^  n g d f t ef d 

i so m el n h er i l an cef . ) A t t east u n e case o f m h en t an ce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
» bOrneF- eldh ieinq l l A: l easl o n e t ät e o f  f ietd h i d t n g 

so m eGet t t i t J A I iedb t u n e g e l l e r r n e t h o d 

6 w i r * T e 4 u r . M « h o c t f : A t eabt j " ? n i e t h o d b o d y w i t h d s i m p l e t d l l t o d s p e t i n t  r n e t h o d 

so m ePu b l i cFi e i d u A l tedbt one p u b i k Heid 

S sOi r i eM t l h u d sVv ' i t h Sd i f eNu ' n Pd f d i n e t e t i i A t i edst t w o m et h o d s w i t h t h e idr?- ** n u m b er of Par am et er s 

so m ePn m i t i veRel d sf J At l eci i t  t w o p r i m i t i v e f ieids 

Each refactoring may possibly include parameters. For instance, a method can be re-

named, or a field may be encapsulated. In those cases, we declare a singleton subsignature 

for each parameter, similar to what we have done withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA C I , C 2 in Section 3.4, and use it in 

both the main and the additional constraints. 

5.6.2 Operation 

We performed the evaluation on a 2.5 GHz dual-core PC with 1 GB of R A M . We used the 

S A F E R E F A C T O R command-line version with a time limit of one second, which is enough for 

testing the small generated programs. Cobertura- was used to collect the statement coverage 

of the test suite as generated by S A F E R E F A C T O R in the resulting program. 

J D O L L Y generated 153,444 programs to evaluate all refactorings. Even though Eclipse 

JDT, JRRT and NetBeans have their own test suites, our technique identified 120 (likely) 

distinct faults related to missing conditions. Table 5.5 summarizes the faults reported to 

Eclipse JDT, NetBeans and JRRT. 

From our catalog, most faults were accepted (87). Some faults have not been dealt with 

by Eclipse JDT and NetBeans developers prior to this writing (22). A l l faults accepted by 

JRRT developers in JRRTvl (20) were fixed in JRRTv2. We have also evaluated their new 

version (JRRTv2) after fixing the faults from JRRTvl , and reported 11 faults. They did not 

consider 4 faults due to the closed world assumption (CWA) adopted by them, as we discuss 

in Section 5.7.1. More importantly, they incorporated our test cases into their test suite1. 

http://cobertura.sourceforge.net 
3http://code.google.corn/p/jrrt/source/checkout 

http://cobertura.sourceforge.net
http://code.google.corn/p/jrrt/source/checkout
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Table 5.5: Summary of faults reported. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Submit ted Accepted Duplicated Not • Fault  Not Answered Fined 1 

Eclipse 34 34 16 0 0 2 

JRRTvl 24 20 0 0 2C 

JRRTv2 11 6 0 5 0 6 

NetBeans 51 27 0 2 22 7 

Total zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA120 87 16 11 22 35 

Eclipse JDT and NetBeans teams have fixed 2 and 7 faults 4, respectively, which should be 

included in the next version of the IDEs. Developers have already confirmed 34 and 27 faults 

in Eclipse JDT and NetBeans, respectively. However, 16 faults were considered duplicated 

in Eclipse JDT. 

It took from lh36m to 50h24m to evaluate each refactoring. This includes the time 

required to generate and compile the input programs, apply the transformations, compile the 

resulting programs, run S A F E R E F A C T O R , and collect the statement coverage. The required 

amount of time depends not only on the number of programs to be refactored, but also on the 

number of transformations to be carried out. For example, it took 6h54m to test the Rename 

Method refactoring on Eclipse JDT, whereas it took 13h36m to test the same refactoring in 

JRRTv2, with the same inputs. Time also depends on the static analysis performed by each 

refactoring to check conditions. Table 5.8 summarizes the experimental results. 

The results include the number of programs generated by J D O L L Y , the percentage of 

compilable programs, the time for testing, and the number of detected failures (encompassing 

compilation errors and behavioral changes). It also shows the number of faults identified by 

our approach in each refactoring. Table 5.8 indicates, for each refactoring, the mean value 

of the statement coverage from the refactored program. 

Compilation Errors 

Our technique detected 16 faults in Eclipse JDT, 11 faults in JRRTvl , 1 fault in JRRTv2, 

and 29 faults in NetBeans; all related to compilation errors. Our technique for classifying 

failures (Section 5.5.1) takes a few seconds to automatically classify all compilation error 

failures of a refactoring. For instance, our technique detected 1,267 compilation failures in 

the Push Down Method refactoring implementation of Eclipse JDT. The described approach 

4The id of all faults are available at: h t t p : / / w w w . d s c . u f c g . e d u . b r / ~ s p g / s a f e r e f a c t o r / 

e x p e r i m e n t s . h t m l 
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Table 5.6: Overall experimental results; GP = number of generated programs; CP = number 

of compilable programs (%); Time = total time to test the refactoring in hours; Fail. = number 

of detected failures; Bug = number of identified faults. 

B B S S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
GP 

E5E 371 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
JRRTvl JRRTv2 Net Be an* Eclipse JRRTvl JRRTv2 Net Beans 

V . ! 1 !» 
Ed. JRRTvl JRRTv2 NeiB 

Fail. 
Eel. JRRTvl JRRTv2 

~ Fail. Bu |  Fail. F a l  Bu K Fail. Bu i  Fal l Fa Bug Bug Fail. Bug 
Eel. JRRTvl JRRTv2 

Rt f l i mt  class 15,322 74zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.3 6.7 23 16.3 22.84 1,016 3 0 0 0 0 3,352 4 U S 0 0 0 0 15 1 54 63 67 56 

Re-ii~e met toe 11,203 79.5 6.9 8 7 13.6 23.2 559 1 0 0 0 0 1.731 2 0 0 0 0 482 2 1,231 2 83 B4 90 86 

19,424 79.2 29.3 22.4 30.4 50.41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA]  520 2 0 0 326 3 0 0 167 1 0 0 1,667 1 100 100 10C 100 

Push t iowrzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m* !'i32 20 ,5" •- 9 11.6 I E 5 31 ? 1,267 2 1,989 2 0 0 13.321 4 853 5 258 4 715 3 1,485 6 90 30 93 ••" 

^Lsh dowr>  helc 11,936 6 37 4.6 13.7 342 1 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 0 6889 a 92 0 0 0 0 270 2 100 100 100 100 

Pi. u3me:hoc I .M 1 72 73 63 C 9 13 5 30? 2 « 9 2 0 0 3.C49 3 202 3 78 2 10 1,073 90 M 92 89 

hi uo helc 10,927 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 8.6 5 3 7.7 12.1 518 1 80 2 0 0 1,128 4 546 4 0 0 0 0 239 2 100 99 100 100 

Encapsulate rielc; 2.003 92.8 2,5 16 2 3 5.7 238 1 0 0 0 0 23« 0 0 344 1 437 £39 1 66 81 86 76 

wa v e metioc 22,905 G 3 10.3 4.5 5 9 214 2 1,398 3 9 1 3.586 3 1.759 3 6.944 3 82 82 86 

Acc p*f jmete- 30,186 63 34.C9 24 0! 25.05 , ; K 1,663 2 0 3 0 0 5,824 4 • 2 378 2 0 0 2.186 2 87 BJ 90 

Total 153,444 68 9 124,2 112.15 111 65 223.7 S.134 16 4,236 11 9 1 32,856 29 7,662 18 2,964 13 8,152 10 B.605 22 

classified them into two groups: some transformations produced the message "The method 

[M] from the type [T] is not visible", while others produced the message 'Wo enclosing 

instance of the type [T] is accessible in scope". Consequently, two faults were catalogued. 

Even though all evaluated refactorings implemented by Eclipse JDT and NetBeans con-

tain at least one fault related to compilation errors, our approach did not find faults related 

to compilation errors in 50% and 90% of the refactorings of JRRTvl and JRRTv2, respec-

tively. In Eclipse JDT, the Rename Class refactoring contains three faults; from JRRTvl and 

JRRTv2. the Move Method refactoring showed more faults than the other refactorings. In 

NetBeans, three refactorings contain four faults each. Notice that the Rename Field, Pull 

Up Field and Move Method implemented by JRRTvl have more faults than the similar im-

plementation of Eclipse JDT. After fixing them. JRRTv2 presented fewer faults than Eclipse 

JDT. 

Behavioral Changes 

We identified 18, 13, 10 and 22 faults in Eclipse JDT, JRRTvl , JRRTv2 and NetBeans, 

respectively, all related to behavioral changes. We manually classified these faults by using 

our proposed set of filters (Section 5.5.1). For each refactoring type, it took approximately 

two hours to manually classify behavioral changes. As future work, we intend to implement 

tools to automate this process. For instance. Listings 5.1 and 5.2 show a fault of the Pull Up 

Method refactoring implemented in the Eclipse JDT, categorized as "Change super to this". 
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5.6.3 Discussion 

Next we discuss some issues related to compilation error, behavior preservation and 

J D O L L Y . 

Compilation Errors 

Changing the name, location, or accessibility of a declaration can lead to compilation errors. 

A l l engines but JRRTv2 produced transformations that reduced the accessibility of an inher-

ited method, which is not allowed in Java. Most compilation errors were due to dereferences 

of inaccessible or nonexistent declarations. For example, in Listing 5.8,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA m accesses the f 

field of its super class. I f we apply the Pull Up Field refactoring of Eclipse JDT 3.7 to B . f , 

it yields the uncompilable program presented in Listing 5.9. After the transformation, B . f 

hides A. f , and since it is private, it cannot be accessed from C. To prevent such errors, JRRT 

statically checks whether every identifier refers to the same declaration as before. In that 

case, however, JRRTvl introduced another compilation error by re-qualifying field access 

super. f to ( (A) super) . f, which has a syntax error. We reported this fault to JRRT 

developers, and they fixed it. JRRTv2 correctly applies the transformation by re-qualifying 

the super . f field access to ( (A) t h i s ) . f. 

Moreover, JRRT refactorings translate the programs into a richer language, which pro-

vides a more straightforward specification. After this, the programs arc translated back into 

Java. Although the implementation of the refactoring itself becomes simpler, it does re-

quire some effort to translate the program back from the enriched language into the base 

language. Our technique detected some failures in JRRTvl that may be related to this step. 

For instance, some of the refactored programs presented compilation errors due to method 

invocations for non existing declarations, such as unknown ( ) . 

Although we only evaluated 9 refactorings from NetBeans, those refactorings contained 

more faults related to compilation errors than Eclipse JDT and JRRT. It seems that NetBeans 

does not implement a number of expected conditions. Since its refactorings present a lower 

rate of rejections, it takes, in general, more time to evaluate NetBeans than the other tools. 
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Listing 5.8: Before Refactoring. Listing 5.9: After Refactoring. Pull Up 

1 Field implemented by Eclipse JDT 3.7 

2 introduces a compilation error due to an 

3 invisible field. 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp u b l i c c l a s s A { l p u b l i c c l a s s A j 

5 l o n g f = 1 ; 2 l ong f = 1 ; 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA}  3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! 

7 p u b l i c c l a s s B e x t e n d s A { 4 p u b l i c c l a s s B e x t e n d s A { 

S ! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? p r i v a t e l o n g f = 2 ; 

9 p u b l i c c l a s s C e x t e n d s B { 6 }  

l(i p r i v a t e l o n g f = 2; 7 p u b l i c c l a s s C e x t e n d s B { 

11 p u b l i c l o n g m ( ) { 8 p u b l i e l o n g m ( ) { 

12 r e t u r n s u p e r . f ; 9 r e t u r n s u p e r . f ; 

13 ! 10 1 

14 }  1 1 }  

Behavioral Changes 

Some faults related to overloading and overriding have been known by Eclipse JDT de-

velopers for years. For instance, a fault related to the Add parameter refactoring has de-

manded the inclusion of additional conditions since 2004\ Nevertheless, it is difficult to 

establish and check conditions to avoid these faults. While the Add Parameter fault is still 

open, Eclipse JDT developers implemented simpler conditions for Rename Method, check-

ing whether there are other methods in the hierarchy with the same signature as that of the 

refactored method. I f so, the engine warns the user that the transformation may introduce 

behavioral changes. In this case, it is up to the user to analyze whether the transformation is 

safe. 

For each refactoring, we analyzed the statement coverage of the random test suite used 

by S A F E R E F A C T O R over the program after refactoring; from these, we calculated the mean 

value of the statement coverage (see Table 5.8). The minimum mean value of the statement 

coverage of Eclipse JDT, JRRTvl , JRRTv2, and NetBeans in our evaluation was 54%, 63%, 

5See Eclipse JDT Bug 58616 
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67%, and 56%, respectively, for the Rename Class refactoring. These numbers can be par-

tially explained by the tests generated only for methods in common. Additionally, most of 

the programs generated by J D O L L Y contain at most four methods, and fewer than 15 LOC. 

I f a class or a method is renamed, and they are not referred to by methods with unchanged 

signatures, the statement coverage decreases significantly. Since refactorings engines may 

allow different transformations, and the test suite is randomly generated in S A F E R E F A C T O R , 

the mean value of the statement coverage may be different between engines. 

The detected faults can be fixed either by modifying conditions or changing the trans-

formation itself. For instance, one fault reported to JRRT generates a program with the 

following code fragment:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ( ( A ) super) . This is an invalid Java expression. We can fix 

this fault by modifying the transformation applied by JRRT, which rewrites a command with 

the incorrect fragment. However, fixing faults may not be as straightforward as it appears 

to be. For example, consider the transformation showed in Listings 5.8 and 5.9. We can 

fix this fault by adding a condition avoiding this kind of transformation. However, adding 

conditions may avoid useful behavior-preserving transformations. JRRTvl can apply this 

transformation, and yet preserve program behavior by replacing the super field access to a 

qualified this field access, ( ( A ) t h i s ) . f . 

JDOLLY 

During evaluation, we specified the scope of the program generation in J D O L L Y based on 

previous examples of faults in refactorings. For instance, we used the scope of two packages 

since Steimann and Thies [84] show accessibility problems when moving elements between 

packages. Schafer et al. 173] show non-behavior-preserving transformations in programs 

with up to three classes and four methods/fields. Since J D O L L Y exhaustively generates pro-

grams for a given scope, this approach has been useful for detecting faults that have not been 

detected so far. 

J D O L L Y generated uncompilable programs. The lowest percentage of compilable pro-

grams was in the Add Parameter (63%), and the highest was in the Encapsulate Field 

(92.8%). Considering all generated programs, the percentage of compilable programs was 

68.8%. For future work, we intend to specify more well-formedness constraints so as to 

minimize uncompilable programs. 
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Our Java metamodel does not include constructs such as thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA static modifier, inner classes, 

interfaces, and richer method bodies. Therefore, the currently implementation of J D O L L Y 

cannot reveal some previously identified faults in manual experiments [73]. We aim at im-

proving the expressiveness of the programs generated by J D O L L Y by adding more constructs 

to our model. This wi l l increase the state space for the Alloy Analyzer to find solutions and, 

consequently, the number of programs generated by J D O L L Y , which wi l l take longer to eval-

uate all transformations. We plan to investigate the possibility of generating a greater range 

of programs, specifying as well a time limit, or limiting the number of generated programs. 

As a result, we w i l l be able to evaluate refactorings by means of more sophisticated pro-

grams, though without considering the entire solution space. 

Test data adequacy criteria provide measurements of test quality. Moreover, it may 

provide explicit rules to determine when it is appropriate to end the testing phase [24; 

93]. There are a number of notions of test data adequacy. For instance, test data adequacy can 

be defined in terms of covering all productions in grammar-based testing. In our work, we 

have used a similar test data adequacy criterion. J D O L L Y generates every possible program, 

for a subset of the Java metamodel, within a given scope of constructs. As such, the generator 

covers every terminal symbol and nonterminal production rule from the metamodel, which 

are represented by signatures and relations from the underlying Alloy specification. In the 

evaluation of the refactorings (Table 5.2), J D O L L Y generated programs covering from 7 1 % 

to 85% of the 4 1 signatures and relations of the metamodel. Some signatures and relations 

were not covered because we had specified a scope of 0 forzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA F i e l d . In other cases, some 

additional constraints implied that some relations could not have values. 

5.6.4 Threats to Validity 

Next we identify some threats to validity from the evaluation performed. 

Construct Validity 

Some tool developers follow a closed world assumption (CWA) to evaluate the correctness of 

the transformation. CWA means that what is not currently known by the refactoring engine 

does not exist. Since we generate tests after the refactoring, the tool does not consider the 
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generated tests when checking the refactoring conditions. In few cases, JRRT developers did 

not accept the faults because the tool would have detected the behavioral change i f the tests 

existed by the time of the refactoring. 

Despite the different criteria, many other reported faults were accepted by JRRT, Eclipse 

and NetBeans developers (see Table 5.5). Although our technique may produce false pos-

itives, it was considered useful by those developers in practice. In particular, the feedback 

given by the JRRT team shows evidence that our technique is convenient in detecting faults 

under both CWA and OWA criteria. 

Internal Validity 

Concerning J D O L L Y generation with Alloy, additional constraints may hide possibly de-

tectable faults. These constraints can be too restrictive with respect to the programs that can 

be generated by J D O L L Y , which shows that one must be cautious when creating constraints 

for J D O L L Y . 

The results provided by S A F E R E F A C T O R deserve closer analysis. If, out of the programs 

generated by J D O L L Y no compilation error or behavior change is detected, no definitive 

conclusion can be drawn from the refactoring under test. Our technique cannot, based on the 

absence of behavior changes, claim that a refactoring is correct. Nevertheless, developers 

have stronger evidence that the refactoring is correctly implemented, in practice; we use a 

test suite to evaluate the transformation. 

S A F E R E F A C T O R only generates test suites that exercise methods with unchanged signa-

tures. Methods with changed signatures may be called by the unchanged methods, which 

exercise a potential change of behavior. Otherwise, methods not called by others are not 

considered, in our approach, part of the overall behavior of the system under test; changes 

in these methods wi l l not affect the system behavior. A stronger notion of equivalence could 

be used: testing every changed method of the system and creating a mapping between two 

versions of the modilied versions, for comparing their results. We believe that this approach 

would add considerable costs with limited benetits to testing refactoring engines. 
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External Validity 

We believe that other refactoring engines can be tested as well with our technique. This exer-

cise can be accomplished by applying a test generator for the target language (a substitute for 

Randoop) and adaptations to S A F E R E F A C T O R . Also, the target language's metamodel must 

be provided to J D O L L Y ; or else we can use a different program generator. Therefore, refac-

toring engines targeted at other object-oriented programming languages can benefit from our 

technique. 

Regarding some refactoring transformations other than the ones evaluated in this exper-

iment, we have showed that our technique is applicable to any transformation, because it 

does not rely on specific properties of the transformation. In order to generate programs that 

exercise a specific refactoring, we may have to change the Alloy specification in J D O L L Y . 

The technique for classifying behavioral change failures described in Section 5 .4 is l im-

ited, since the classification is not complete. We have only considered a subset of Java. Still , 

it is non-trivial to pinpoint a fault in a refactoring. Each refactoring engine may incorporate 

different design choices. Our fault categorizer is an approximation, and it may help refactor-

ing engine developers with this task. For example, our approach may classify two distinct 

faults under the same category. After fixing the identified faults, the developer should re-run 

the technique to catch possibly missed faults. Moreover, our approach may identify two dis-

tinct faults that are, in fact, just one. Developers can easily detect whether two different test 

cases are related to the same fault by fixing each fault and running all faults again after. In 

spite of that, the technique reduced from thousands of failing test cases to 120 unique faults 

to be checked by refactoring engine developers. This classification was useful when report-

ing a number of faults in refactorings in Eclipse JDT, NetBeans and JRRT. Tool developers 

accepted a number of those faults. 

5.7 Evaluation: overly strong conditions 

The goal of this experiment is to analyze our technique for the purpose of evaluation with 

respect to effectiveness in identifying overly strong conditions from the point of view of 

refactoring engine developers in the context of academic and industrial Java refactoring en-

gines. In particular, our experiment addresses the following research question. Q l : Can the 

nFr.rzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,IPJRUuTFfJW| 
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Table 5.7: Summary of evaluated refactoring implementations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Refactoring Eclipse JRRT Netbeans zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Renam e class X X X 

Renam e m et h o d X X X 

Renam e f i el d X X X 

Push d o w n m et h o d X X X 

Push d o w n f i el d x X X 

Pul l up m et h o d x X X 

Pull up f i el d x X X 

Encapsulat e f i el d x X 

Mo ve m et h o d x X 

Ad d p ar am et er X X 

technique identify overly strong conditions in real Java refactoring engines? 

In this section, we describe the subjects used in the experiment, the experiment design, 

and its instrumentation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Selection of subjects 

We tested 27 refactorings implementations for Java of three tools: Eclipse 3.7 ( 1 0 refactor-

ings), JRRTvl ' ' ( 1 0 refactorings), and NetBeans 7.0.1 (7 refactorings). Table 5.7 summarizes 

all evaluated refactorings. 

In our experiment, we evaluate 1 0 refactoring types (Table 5.7). We tested only 7 refac-

toring types in NetBeans. The Move Method refactoring is not supported. As future work, 

we plan evaluate the Encapsulate Field and Add Parameter refactorings of NetBeans. 

Experiment design and instrumentation 

We used the S A F H R E F A C T O R command line version using the time l imit of 1 second to gen-

erate tests, which is enough for testing the small programs generated by J D O L L Y . We also 

used the J D O L L Y command line version. For each generated input by JDolly, we compare 

the outputs of these three tools. 

6The JRRT version from May 18th. 2010 
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Operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We performed the experiment on a 2,7 GHz dual-core PC with 4 GB of R A M running Ubuntu 

10.04. We evaluated Eclipse 3.4.2, NetBeans 6.9.1 and JRRT 1.0. 

Our technique evaluated 27 refactoring implementations of Eclipse, NetBeans, and JRRT. 

Based on the scope and the additional constraints used for each refactoring, J D O L L Y gen-

erated 42,774 programs 7. Eclipse and JRRT did not apply a number of transformations, 

from which 32% and 16% were behavior-preserving, respectively. They reject them due to 

overly strong conditions. We automatically classified these transformations in categories. 

As a result, we identified 17 and 7 kinds of overly strong conditions in Eclipse and JRRT, 

respectively. We did not find overly strong conditions in the refactorings implemented by 

NetBeans. 

Table 3 summarizes the experiment results. For each refactoring, we show the results of 

each implementation (Eclipse, NetBeans, and JRRT). The number of programs generated by 

J D O L L Y is shown in Column Program. Column Rejected Transformation shows the number 

of transformations that were rejected by each implementation for not satisfying refactoring 

conditions. The number of behavior-preserving transformations that were rejected due to an 

overly strong condition of the implementation is shown in Column Rejected B. Pres. Trans-

formation. Finally, Column Overly Strong Condition shows the number of overly strong 

conditions that were categorized by our technique. 

Most transformations can be applied in NetBeans. It did not reject transformations ex-

cept for the Rename Class refactoring. A l l transformations rejected by it were also rejected 

by Eclipse and JRRT. Therefore, we did not find problems related to overly strong conditions 

in NetBeans. However, it performed a number of non-behavior-preserving transformations 

that were rejected by Eclipse and JRRT. NetBeans contains a number of faults (missing con-

ditions), as we shown in Section 5.6. The focus of this experiment is not on identifying 

missing conditions but in identifying overly strong conditions. Since NetBeans does not 

contain some conditions, it allows not only non-behavior-transformations, but also a num-

ber of behavior-preserving transformations that cannot be applied by other tools. Since the 

oracle of our technique is based on differential testing (Section 5.4), performing almost all 

transformations using NetBeans was useful for identifying whether transformations rejected 

' A l l experiment data are available at: http://dsc.ufcg.cdu.brrspg/papers.htrnl 

http://dsc.ufcg.cdu.brrspg/papers.htrnl
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Table 5.8: Summary of the experiment; Program = number of programs generated by JDolly; 

Rejected Transformation = number of transformations rejected by the implementation; Re-

jected B. Pres. Transformation = number of behavior-preserving transformations that were 

rejected; Overly strong condition = number of overly strong conditions classified by our 

technique. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Rejected Transformat ion Rejected B. Pres. Transformat ion Over ly St rong Condi t ion 
KeTOCTonrtg program • • • • • BHRHI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Eclipse Metbeans JRRT Eclipse Netbeans JKRÏ Eclipse Netbeans JRRT 

Rename class 2037 1658 1212 1212 446 0 0 2 0 0 

Rename method 68 3C 5995 0 1666 4802 0 4 1 9 4 0 1 

Rename field 2647 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5;-' . 0 0 200 0 0 2 0 0 

Push down method ÏS2 2 2056 0 2065 59 0 4 0 1 0 1 

Push down fielc 3043 1551 0 1551 0 0 0 0 0 0 

Pull uo method 5201 2907 0 3065 251 0 398 2 0 2 

Pu 1  up fie d 4151 976 0 912 744 0 584 1 0 1 

Encapsulate field 3754 472 2736 176 1536 1 1 

Move method 6316 5083 4757 367 135 2 1 

Add para m e t e 4973 737 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1189 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
___ 

- 0 2 - 0 

Total 42774 21759 1212 19153 7124 0 3112 17 0 7 

by Eclipse and JRRT could, in fact, be applied. 

Eclipse was the tool that rejected more transformations. It rejected 21,759 transforma-

tions, from which 32% are behavior-preserving. We found overly strong conditions in all 

Eclipse's implementation but the Push Down Field refactoring. For instance, its Rename 

Method refactoring implementation rejected 5,995 out of 6,830 transformations but 4,802 of 

them could be applied without changing programs' behavior. 

Renaming a method in the presence of features such as overloading and overriding may 

lead to behavioral changes in some situations due to changes in name bindings [71 ]. Eclipse 

developers may have implemented overly strong conditions for simplicity in order to avoid 

non-behavior-preserving transformations. However, this overly strong condition also re-

jected a number of useful behavior-preserving transformations since overloading and over-

riding are commonly used by Java developers. 

JRRT rejected 19,153 transformations. In 16% of them, the program's behavior could be 

preserved. We found overly strong conditions in 6 out of 10 refactorings evaluated: Rename 

Method, Push Down Method, Pull Up Method, Pull Up Field, Encapsulate Field, and Move 

Method. 
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Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Manually analyzing and classifying overly strong conditions in thousands of rejected trans-

formations is time-consuming and error-prone. To avoid that, our technique automatically 

classifies them according to the template of the message shown by the implementation when 

a transformation is rejected. We analyze all warning messages in transformations that are 

behavior-preserving in at least another refactoring implementation. Our technique catego-

rized 17 kinds of overly strong conditions in Eclipse, and 7 ones in JRRT. Table 5.9 shows 

the overly strong conditions identified in Eclipse and JRRT, respectively. Each line in the 

table contains a warning message template. The brackets abstract the names of packages, 

classes, methods, and fields, as described in Section 5.5.1. 

We manually checked the overly strong conditions we found by randomly selecting a 

sample of 10 transformations for each kind of overly strong conditions, and we did not 

find false positives (a transformation that does not represent an overly strong condtion) or 

false negatives (the same template of warning message representing different overly strong 

conditions). 

In five refactorings, we found less overly strong conditions in JRRT than Eclipse: Re-

name Class, Rename Method, Rename Field, Move Method, and Add parameter. Moreover, 

in four refactorings (Push Down Method, Pull Up Method, Pull Up Field, and Encapsulate 

Field), we found the same number of overly strong conditions in both tools. Finally, only in 

the Push Down Field refactoring, we did not find overly strong conditions. 

Our technique identified 8 kinds of overly strong conditions in Rename Class, Method, 

and Field implementations of Eclipse, and only one in JRRT implementations. JRRT checks 

whether name bindings are preserved. Each name should refer to the same entity before and 

after the transformation [711. Moreover, JRRT implementations may also check whether it is 

possible to re-qualify a name in order to preserve the name binding. This approach alleviates 

the problem of overly strong conditions. Listing 5.3 shows an example in which JRRT re-

qualifies a name adding azyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA super access to avoid name binding changes. Eclipse follows a 

different approach. 

The overly strong condition found in the Rename Method refactoring of JRRT is related 

to overriding. This implementation has the invariant that overriding must be preserved. We 

also detected a condition in Eclipse related to that but NetBeans successfully applied a num-
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Table 5.9: Summary of overly strong conditions of Eclipse 3.7 and JRRTv 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Overty strong conditions of Edipse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Renam e Class Renam e Fietd 

Nam e con f l i ct  w i t h t yp e [] In [ ] Prob cm n [ ] The r ef er ence t o [ ] w i l be sh ad o wed by a - enam ec d ecl ar an on 

An o t h er l yp e n am ed [} is ref e* encec in [" P'ob lem m [] An o t h er nam e w izyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1  sn aco w access t o t he ' en am ed e em en t 

Renam e M e t h o d Push Do w n M e t h o d 

[1 0 ' a t yoe n its h 'erarchy d e' i nes a m et h o d [ ] w i t h t n e sam e n u m b er  o
f 

p a'am et er s, t> ul d f l er en t p a r a m e t c t yp e nam es. 
The v s b ' l i t v o*' m et h o d [] w 1 be changea t o pub l ic 

P- ob em n [ ] t h e re*e*ence t o [] w i 1 oe sh ad owed by J ' en am ed dec ar at i o n Pu l l Up M e t h o d 

Code m o d i f i cat i o n "nay n o : oe accurat e as af f ect ed 'esou r ce [] has co m p i l e 

e- rors. 
The vi si b i l i t y o* m et h o d [] w ' l l be changee t o pub l i c. 

[] o* a t yo e n i t s h i er ar chy d e' i nes a m et h o d [ ] w i t h t i e sam e n u m b er o ' 

p ar am et er s and t i e sam e p a r a m c t c t yp e nam es. 

Put) Up Field 

M et h o d | ] 'ef er enced in o n e o ' t h e m o ved el em en t s is not accessioie ' r o m 

t yp e [) 

Encapsu lat e Field 

Fie d [ ] d ecar cd in t yp e {] has a d • f er ei t  t yo c t h an its m ovec c o ^ n t c o a t 

Mo ve M e t h o d 

T i e m et h o d revocat ions t o [ ] can n o t be - o cat ec. smce t h e o r i g i n al m et h o d is 

usee po ym o r p h i cn l l y . 

New m et h o d [I o vcr ' i ces an cx  st i ng m et h o c n i vp e [ ] 

Ad d Par am et er 

T i e m et n o d [ ] f ' o m t h e t yp e [] is n o t v s'b e 

The v s o l i t y o ' m et h o d ['_ w i l l be changed t o pub l i c. The se ect ec m et h o c over r des m et h o d [ ] d eclar ed n t yp e [[ 

Owrty strong conditions of JRRT 

Renam e M e t h o d Push Do w n M e t h o d 

o v e n d i n g has changed can n o t access m et h o d 

Pu l l Up M e t h o d Pu l l Up Field 

m et h o d ts used can n o t access var i ab le 

can n o t access m et h o d Mo ve M e t h o d 

Encap su lat e Field can n o t n l ne am b i g u o u s m et h o d ca 1 

can n o t nser t  m et h o d he- e 
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ber of transformations that change overriding yet preserving program's behavior. In other 

refactorings, such as Move Method and Add Parameter, J R R T does not check conditions 

related to overriding. 

Furthermore, we identilied overly strong conditions related to accessibility. Both, Eclipse 

and JRRT, rejected transformations in the Push Down Method and Pull Up Method refactor-

ings due to inaccessible methods. However, these transformations were performed by Net-

Beans. Changing access modifiers is not simple. It may change the name binding leading to 

behavioral changes [84]. Making these changes in ad-hoc way may be error-prone. Steimann 

and Thies [84] propose a number of conditions for applying refactorings with respect to Java 

accessibility. They show that these conditions are less strong than the ones implemented in 

Eclipse. While Eclipse implements some heuristics for that, Schafer and de Moor [68] intend 

to integrate these conditions to JRRT. 

Eclipse and NetBeans contain test suites for evaluating their refactoring implementations. 

For instance, the Eclipse test suite contains more than 2,600 unit tests. JRRT has a different 

test suite. Schafer and de Moor [68] also evaluated JRRT over more than 1,000 unit tests 

of Eclipse's test suite. They used them not only for evaluating correctness, but also for 

identifying overly strong conditions [681. Schafer and de Moor checked whether all rejected 

transformations of Eclipse could be applied by JRRT. They identified some overly strong 

conditions in Eclipse. However, they also identilied overly strong conditions in JRRT in 

the Add Parameter, the Move Method, and the Push Down refactorings. The overly strong 

conditions were related to visibility adjustment. However, they do not propose an approach 

to evaluate whether refactoring implementations have overly strong conditions. We can do it 

by using J D O L L Y and S A E E R E B A C T O R . 

In our evaluation, J D O L L Y generated small programs (up to 15 LOC) with up to two 

packages, three classes, four methods, and two fields. These programs contain some common 

features of Java such as inheritance, overloading, and overriding. Although simple, they were 

useful for identifying 24 kinds of overly strong conditions in Eclipse and JRRT. The test suite 

of Eclipse and JRRT also contain small programs. However, the programs have some Java 

constructs such as interface, abstract classes and generics, that are currently not supported by 

JDolly. By improving the expressivity of JDolly, our technique can be useful for identifying 

other overly strong conditions. 
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Next we identify some threats to validity from the evaluation performed. 

Construct Validity 

Construct validity refers to whether the overly strong conditions that we have detected are 

indeed overly strong conditions in the refactoring engines. J R R T developers confirmed the 

overly strong conditions that we found. We have not received feedback from Eclipse de-

velopers yet. Some conditions that we found may not be overly strong with respect to the 

notion adopted by the developers. For instance, we found the "overriding has changed" 

overly strong condition in the rename method from JRRT. Its developers follow a closed 

world assumption. I f they followed an open world assumption, this condition could not be 

considered overly strong since changing overriding could produce a behavioral change in 

some client code. 

Additionally, different refactoring engines may use different refactoring templates. 

Therefore, comparing their outputs may not reveal overly strong conditions, just different 

notions of a refactoring. 

Internal Validity 

Concerning J D O L L Y generation with Alloy, additional constraints may hide possibly de-

tectable overly strong conditions. These constraints can be too restrictive with respect to the 

programs that can be generated by J D O L L Y , which shows that one must be cautious when 

creating constraints for J D O L L Y . 

External Validity 

We believe that other refactoring engines can be tested as well with our technique. Regarding 

some refactoring transformations other than the ones evaluated in this experiment, we have 

showed that our technique is applicable to any transformation, because it does not rely on 

specific properties of the transformation. In order to generate programs that exercise a spe-

cific refactoring, we may have to change the Alloy specification in J D O L L Y . Additionally, it 

is needed to be at least two implementations of a same refactoring. 
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5.8 Concluding remarks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter, we presented our technique for automated testing of refactoring engines. Its 

goal is to identify missing conditions and overly strong ones. The technique has two main 

components: J D O L L Y and S A F E R E F A C T O R . 

We report on the results of an experiment to show the effectiveness of our technique. 

By using the technique, we tested up to 10 refactoring implementations from 3 refactoring 

engines: Eclipse J D T , NetBeans. and JRRT. As a result, we found 120 missing conditions 

and 24 overly strong ones. We reported them to the tools' developers, who have already lixed 

a number of them. 

JRRT presented fewer faults than Eclipse and NetBeans, which suggests that the formal 

techniques used can improve the correctness of refactoring engines. Even so, our technique 

was useful for finding faults not only in its first version (JRRTvl) but also in its second 

version (JRRTv2) when they had fixed the faults of JRRTv 1. We believe that our technique 

can be used to systematically evaluate these tools during their life cycle. 



Chapter 6 
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In this chapter, we relate our work to a number of approaches for verifying and testing refac-

torings (Section 6.1), approaches for automated testing (Section 6.2), and some empirical 

studies on refactorings (Section 6.3). 

6.1 Refactoring verification and testing 

Conditions are a key concept of research studies on the correctness of refactorings. 

Opdyke [53] proposes a number of refactoring conditions to guarantee behavior preservation. 

However, there was no formal proof of the correctness and completeness of these conditions. 

In fact, later, Tokuda and Batory [87] showed that Opdyke's conditions were not sufficient to 

ensure preservation of behavior. Proving refactorings with respect to a formal semantics is 

a challenge [70]. Some approaches have been contributing in this direction. Borba et al. [8] 

propose a set of refactorings for a subset of Java with copy semantics (ROOL). They prove 

the refactoring correctness based on a formal semantics. Silva et al. [75] propose a set of 

behavior-preserving transformation laws for a sequential object-oriented language with ref-

erence semantics (rCOS). They prove the correctness of each one of the laws with respect to 

rCOS semantics. Some of these laws can be used in the Java context. Yet, they have not con-

sidered all Java constructs, such as overloading and Held hiding. Our testing approach still 

applies formal verification techniques (first-order logic and Alloy Analyzer) that are com-

bined for a practical and less costly solution for increasing confidence when refactoring Java 

programs. 
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Steimann and Thies [84] show that by changing access modifiers ( p u b l i c , 

p r o t e c t e d , p a c k a g e , p r i v a t e ) in Java one can introduce compilation errors and be-

havioral changes. They propose a constraint-based approach to specify Java accessibility, 

which favors checking refactoring conditions and computing the changes of access modi-

fiers needed to preserve the program behavior. We have also detected new faults related to 

the Java access modifiers. Both approaches can be complementary for checking refactorings 

that affect accessibility constraints. 

Another specialized approach for specifying refactorings - generalization-related refac-

torings such as Extract Interface and Pull Up Method - is proposed by Tip et al. [86]. Their 

work proposes an approach that uses type constraints to verify conditions of those refactor-

ings, determining which part of the code they may modify. Using type constraints, they also 

propose the refactoring Infer Generic Type Arguments [ 2 1 ] , which adapts a program to use 

the Generics feature of Java 5, and a refactoring to migration of legacy library classes [3]. 

These refactorings are implemented in the Eclipse JDT Their technique allows sound refac-

torings with respect to type constraints. However, a refactoring may have conditions related 

to other constructs. Our general-purpose testing approach evaluates a refactoring indepen-

dently of program structures being affected by the refactoring. The faults detected by our 

approach are related to missing conditions and overly strong ones. 

Mens et al. [44] use graph rewriting for formalizing program refactorings. Two refactor-

ings are specified for a subset of Java, and the authors propose a static semantics for Java, 

which is preserved by the two refactoring specifications. Graph-based verification is more 

ambitious than testing, aiming at full structural analysis, although presenting limited scal-

ability. They have recognized that some refactorings, such as Move Method, which may 

deal with nested structures, require complex graph manipulation. Such analysis becomes 

considerably costly, which limits its results, in comparison with a more lightweight testing 

approach. 

Overbey and Johnson [55] propose a technique to check for behavior preservation. They 

implement it in a library containing conditions for the most common refactorings. Refac-

toring engines for different languages can use their library to check refactoring conditions. 

The preservation-checking algorithm is based on exploiting an isomorphism between graph 

nodes and textual intervals. They evaluate their technique for 1 8 refactorings in refactoring 
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engines for Fortran 95, PHP 5 and BC. They do not evaluate them in terms of correctness but 

in terms of expressivity and performance. Our approach can be useful for evaluating their 

approach in terms of correctness and overly strong conditions. 

Reichenbach et al. [63] propose the program metamorphosis approach for program refac-

toring. It breaks a coarse-grained transformation into small transformations. Although these 

small transformations may not preserve behavior individually, they guarantee that the coarse-

grained transformation preserves behavior. Our approach can be used to increase confidence 

that the set of small transformations, applied in sequence, indeed preserve behavior. 

Daniel et al. [14] propose an approach for automated testing refactoring engines. They 

used ASTGen to generate programs as input to refactoring engines. To evaluate the refac-

toring correctness, they implemented six oracles that evaluate the output of each transfor-

mation. For instance, one of them checks for compilation errors, while another applies the 

inverse refactoring to the target program, and compares the result with the source program. 

If they were syntactically different, the refactoring engine developer would manually check 

whether they have the same behavior. They evaluated the technique by testing 21 refactor-

ings, and identified 21 faults in Eclipse JDT and 24 in NetBeans. In Eclipse JDT, 17 faults 

were related to compilation errors, 3 were related to incomplete transformations (e.g. the 

Encapsulate field did not encapsulate all field accesses), and one was related to behavioral 

change. Later, Gligoric et at. [22] used the same approach to evaluate UDITA. They found 4 

new compilation error faults in 6 refactorings (2 in Eclipse JDT and 2 in NetBeans). While 

the oracles of previous approaches can only syntactically compare the programs to detect 

behavioral changes, SAFEREFACTOR generates tests that do compare program behavior. We 

found 63 faults related to behavioral changes. Moreover, both techniques found a similar 

number of faults related to compilation errors. 

L i and Thompson [41] propose an approach to test refactorings for Erlang using a tool 

called Quvid QuickCheck. They evaluate a number of implementations of the Wrangler 

refactoring engine. For each refactoring, they state a number of properties that it must satisfy, 

which is still a challenge. I f a refactoring applies a transformation but does not satisfy a 

property, they indicate a fault in the implementation. We evaluate behavior preservation by 

using SAFEREFACTOR. We propose a similar approach for testing refactorings for Java. 

Their approach applies refactorings to a number of real case studies and toy examples. In 
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6.2 Automated Testing 

Grammar-Based Test Generation (GBTB) is a well-known technique for automatically gen-

erating programs based on a formal grammar definition [9], Using this technique, a generator 

is capable of building valid (or intentionally invalid) sentences of the target language. GBTB 

has been successfully used, for instance, to generate programs for testing the correctness and 

error messages in compilers [9; 4], J D O L L Y , by comparison, uses Alloy to specify the Java 

metamodel using signatures and relations. By performing analysis using the Alloy Analyzer, 

each Alloy solution is translated into a Java program. Moreover, we can guide J D O L L Y to 

generate programs with properties that are specific to a given target domain (Section 3.4). 

In contrast, context-free grammars are somewhat limited for this purpose, being usually ex-

tended by operational definitions or even by code snippets for adapting generation to the 

desired class of test cases. 

Recently. GBTB has been mixed with other advanced combinatorial techniques for gen-

erating programs of a language grammar. An approach that is very related to J D O L L Y ' S 

generation technique has been described by Hoffman et al. [ 3 1 ] . It uses grammars instru-

mented by tags and code snippets written in Python that further constrain the generated test 

cases. In the referred tool, YouGen, tags inject parameters to the generation. For instance, 

parameters adjust the depth of a generation tree, limiting the derivation over recursive pro-

duction rules. This feature is analogous to J D O L L Y ' s scope. Also, while J D O L L Y makes use 

of Alloy Analyzer's exhaustive search to generate a comprehensive set of programs, YouGen 

uses combinatorial techniques, such as mixed-strength covering arrays. In both cases, they 

evaluate all possible combinations. Their application contexts are in essence different, how-

ever: YouGen has been used for testing XML-based tools and network protocols, whereas 

J D O L L Y is tailored for testing refactoring engines, using S A F E R E F A C T O R as a test oracle. 

Still, both tools can be adapted for diverse application cases. 

Korel and Yami [ 4 0 ] propose an approach to automated regression test generation [ 2 6 ] , 

They use TESTGEN, a test data generation system for Pascal programs. Similarly, a com-

ponent of our approach, S A F E R E F A C T O R , tests evaluate whether a transformation preserves 
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behavior. It uses the Randoop test generator. They test the parts of the programs whose 

functionality is unchanged after modifications. S A F E R E FACTOR automatically detects the 

methods with unchanged signatures and generates tests for them. We are concerned with 

testing refactorings in this article. 

Concerning automated regression testing, a more recent contribution is provided by 

BERT [36], a tool that focuses on detection of state changes from one version of a given 

class to its next version, considering transformations of any category (not only refactoring). 

The main distinction between the two approaches is their test oracle. S A F E R E F A C T O R uses 

a simple oracle that compares outputs of methods with unchanged signatures for the same 

input. I f any changed behavior is, directly or indirectly, exercised by one of these meth-

ods, there is a high probability that the test goes wrong, and a behavior change is detected. 

BERT, on the other hand, does not consider changes in method signatures. It can be used 

only when all signatures are preserved. They focus on identifying differences in several 

structural aspects of the target program: return values of all methods, field values, and even 

output (textual) results. I f a change is detected, there is an indication of a regression fault, 

although this may be not the case (false positives). Since they evaluate any kind of transfor-

mation, developers have to analyze whether the behavioral changes have been intentionally 

introduced. 

Marinov and Khurshid [42; 12] propose TestEra. a framework for automated 

specification-based testing of Java programs. It uses Alloy to specify the pre and post-

conditions of a method under test. Using this specification, it automatically generates the 

test inputs and checks post-conditions. This approach is similar to J D O L L Y for generating 

test inputs, but we generate programs as test inputs. 

6.3 Empirical studies on refactoring 

A number of studies have investigated refactoring tasks in software projects. Ratzinger et 

al. [61] analyzed the relationship between refactoring and software defects. They proposed 

an approach to automatically identify refactorings based on commit messages, which we de-

scribe in Section 4.2.1. Using evolution algorithms, they confirmed the hypothesis that the 

number of software defects in the period decreases i f the number of refactorings increases as 
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overall change type. To evaluate the effectiveness of the commit message analysis, they ran-

domly sampled 5 0 0 versions from 5 projects, and analyzed whether their analysis correctly 

classify each version. In their experiment, the commit message analysis had only 4 false 

positives 1 0 false negatives in 5 0 0 software versions, leading to a high precision and recall. 

Murphy-Hil l et al. [ 5 0 ; 4 9 ] evaluated nine hypotheses about refactoring activities. They 

used data automatically retrieved from users through Mylyn Monitor and Eclipse Usage 

Collector. That data allowed Murphy-Hil l et al. to identify the frequency of each automated 

refactoring. The most frequently applied refactorings are: Rename, Extract local variable, 

Move, Extract method, and Change method signature. They confirmed assumptions such as 

the fact that refactorings are frequent. Data gathered from Mylyn showed that 4 1 % of the 

programming sessions contained refactorings. 

Additionally, they evaluated the Ratzinger analysis. By using Ratzinger algorithm, they 

classified the refactoring versions from Eclipse CVS repository. Then, they randomly se-

lected 2 0 versions from each set of refactoring versions and non-refactoring versions iden-

tified by Ratzinger, and applied to these 4 0 versions the manual inspection proposed by 

them, which we describe in Section 4 . 2 . 1 . From the 2 0 versions labeled as refactoring 

by Ratzinger, only 7 could be classified as refactoring versions. The others include non-

refactoring changes. On the other hand, the 2 0 versions classified as non-refactoring by 

Ratzinger were correct. In this thesis, we compared the results of these two techniques 

(Ratzinger and Murphy-Hil l ) with S A F E R E F A C T O R ' S results (Section 4 . 2 ) . The Murphy-

Hil l approach was the most accurate among the refactoring technique we evaluated. How-

ever, it incorrectly classified versions containing compilation errors as refactoring versions. 

Differently from the original work, our results show a low recall and precision of Ratzinger 

approach, which we discuss in Section 4 . 2 . 

K im et al. [ 3 7 ] investigate the relationship of API-level refactorings and bug fixes in three 

open source projects. They use a tool [ 3 8 ] to infer systematic declaration changes as rules 

and determine method-level matches (a previous version of Ref-Finder [ 5 7 ] that identifies 1 1 

refactorings). They found that the number of bug fixes increases after API-level refactorings 

while the time taken to fix them decreases after refactorings. Moreover, the study indicated 

that refactorings are performed more often before major releases than after the releases. 

Prete et al. [ 5 7 ] propose Ref-Finder. a tool that can detect 6 3 refactoring types from 
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FowlerOs catalog [57]. It can detect all refactorings of the previous works, and it can de-

tect intra-method refactoring changes. A comprehensive comparison can be found in Prete 

et al. [57]. Rachatasumrit and Kim [59] analyze the relationship between the types and lo-

cations of refactorings identified by Ref-Finder and the affecting changes and affected tests 

identified by a change impact analyzer (FaultTracer). They evaluate their approach in three 

open source projects (Meter, XMLSecurity, and A N T ) and found that refactoring changes 

are not very well tested. By selecting the test cases that only exercise the changes, we may 

decrease the regression test cost. 

Kim et al. [39] interview a subset of engineers who led the Windows refactoring effort 

and analyzed Windows 7 version history data. They found that in practice developers may 

allow non-behavior-preserving program transformations during refactoring activities. More-

over, developers indicate that refactoring involves substantial cost and risks. By analyzing 

Windows 7 version history, the study indicated that refactored modules experienced higher 

reduction in the number of inter-module dependencies and post-release defects than other 

changed modules. 

Gorg and WeiBgerber [25] proposed a technique to identify and rank refactoring candi-

dates using names, signatures, and clone detection results. Later, WeiBgerber and Diehl [901 

evolved and evaluated this tool. WeiBgerber and Diehl [89] analyzed the version histories 

of JEdit, JUnit, and A r g o U M L and reconstructed the refactorings performed using the tool 

proposed before [25]. They also obtained bug reports from various sources. They related the 

percentage of refactorings per day to the ratio of bugs opened within the next five days. They 

found that the high ratio of refactoring is sometimes followed by an increasing ratio of bug 

reports. 

6.4 Concluding remarks 

In this section, we presented the works most related to this thesis. With respect to approaches 

based on formal methods, we propose a more practical approach that was useful for finding a 

number of faults in real refactoring engines. The main novelties of our technique with respect 

to other testing approach for refactoring engines are: ( 1 ) generating input programs by using 

Alloy; (2) detecting behavioral changes with SAFEREFACTOR, (4) identifying overly strong 



6.4 Concluding remarks ^ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

conditions; and (3) classifying behavioral changes and overly strong condit ions. 



Chapter 7 
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In this work, we propose a technique for testing of Java refactoring engines. Its main compo-

nents are J D O L L Y (Chapter 3), a Java program generator, and a test system for refactorings, 

S A F E R E F A C T O R (Chapter 4). For each refactoring, the technique generates a number of 

Java programs, followed by the application of the refactoring, with these programs as target. 

It uses behavioral oracles to evaluate the outputs. I f the engine produces an output program, 

it uses S A F E R E F A C T O R for detecting behavioral changes between the input and the output 

programs. On the other hand, i f the engine rejects the transformation, it applies the same 

refactoring by using other engines and compares the results of the executions. Finally, the 

technique classifies failures into distinct faults. The failing transformations are classified by 

kind of behavioral change or compilation error introduced by them, and rejected behavior-

preserving transformations are classified by kind of overly strong conditions. We propose a 

Java program generator ( J D O L L Y ) to run the program generation step of our technique. It 

uses Al loy [32] and the Alloy Analyzer [33] to create programs for a given scope of elements 

(packages, classes, fields, and methods). We have evaluated our technique by testing three 

refactoring engines: Eclipse JDT 3.7, NetBeans 7 . 0 . 1 , and two versions of JRRT (JRRTvl 

and JRRTv2). For each refactoring engine, we tested up to 1 0 refactoring implementations, 

and found 57 and 63 faults related to compilation errors and behavioral changes, respectively, 

and 24 overly strong conditions. 

Specifying the set of conditions needed for each refactorings is not simple. Even refactor-

ing engines written with correctness in mind, such as JRRT, still have faults and overly strong 

conditions. We have shown some corner cases automatically detected by our technique. With 

108 



109 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

these results, we have demonstrated how the combination of J D O L L Y and S A F E R E F A C T O R 

is powerful to detect missing conditions and overly strong ones. In the absence of formal 

proofs, our technique can be useful for the improvement of previous solutions. We have 

reported all faults to Eclipse JDT, NetBeans and JRRT, and a number of them have already 

been accepted. Moreover, Eclipse JDT and NetBeans developers have fixed some of them, 

and JRRT developers have already fixed all accepted faults. They have also included 21 test 

cases that we generated in their test suite 1. 

We show that our technique is general enough to test different kinds of refactorings from 

different Java refactoring engines. We tested up to 1 0 refactoring implementations from 

Eclipse JDT, NetBeans, and JRRT. These refactoring implementations target declarations of 

classes, fields, and methods. Other refactorings that target these constructs, such as Remove 

Parameter or Change Access Modifier, can be tested by using the current implementation 

of the technique. On the other hand, we cannot test refactorings that target Java constructs 

not specified in the current implementation of J D O L L Y . For instance, we cannot test the 

Rename Local Variable and the Extract Method refactorings because the method bodies gen-

erated by J D O L L Y contain only a return statement. The metamodel implemented in J D O L L Y 

also restricted the input programs that were generated to evaluate the tested refactoring im-

plementations. For instance, we could not test the Rename Field refactoring in the presence 

of local variables since we did not generate programs containing local variable declarations. 

To reduce these limitations, one can extend J D O L L Y increasing the expressivity of the 

programs generated by it. It w i l l be necessary to specify new Java constructs and well-

formedness rules in Alloy. So far, it was possible to specify the current implementation of 

the Java metamodel with reasonable effort. However, we cannot generalize these results. 

Some Java constructs and well-formedness rules may be difficult to specify in Alloy due to 

some restrictions of the language. For instance, Alloy does not allow recursive functions 

directly. Therefore, we believe that we need further studies to evaluate the effort to extend 

J D O L L Y . Even so, a version of J D O L L Y for C/CC++ (CDolly) has been used for finding 

faults in refactoring engines for the C/C++ language2. This work gives evidences that our 

'SVN path for our test cases included in JRRT test suite:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h t t p : / / j r r t . q o o q l e c o d e . com/svn/ 

t r u n k / t e s t s / B r a z i l i a n T e s t s . J a v a 

2CAutomaticTester website: : h t t p : //www.dsc . u f eg. edu . b r / ~ s p g / c a u t o m a t i c t e s t e r / 

http://www.dsc
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approach is also useful for testing refactorings that target method statements. It also show 

that the approach can be applied not only for Java but also for other languages, such as C. 

Additionally, the more signatures and relations are added to the Alloy specification, the 

more combinations can be generated by Alloy Analyzer, increasing the state space of so-

lutions. As a result, the time required for using our approach can increase from hours to 

days. To make it more efficient, one can use optimization techniques that prune the program 

generation. For example, Jagannath et al. [ 3 4 ] suggest that we can make small jumps in the 

sequence of automated generated programs without losing effectiveness of the test suite. 

With respect to S A F E R E F A C T O R , we evaluated its effectiveness in 6 0 transformations ap-

plied to real software. In our experiments, S A F E R E F A C T O R had 7 0 % accuracy. It produced 

false positives when testing GUI code and false negative when testing non-deterministic 

code. Additionally, in some transformations that affected only few methods, the time limit 

used for generating tests was not enough to generate tests for these methods because S A F E R -

E F A C T O R identified a large set of common methods to test. To handle this limitation, Mon-

giovi et al. [ 4 6 ] extend S A F E R E F A C T O R including an impact analysis technique, which iden-

tifies the methods impacted by the change. By doing so, S A F E R E F A C T O R generates tests not 

for all common methods but just for the ones impacted by the change. These limitations of 

S A F E R E F A C T O R did not affect the use of it in our technique for testing of refactoring en-

gines since we use it against simple transformations that are deterministic and do not have 

Finally, even generating just small programs, containing few classes, methods, and fields, 

our technique identified more than 100 faults in refactoring engines. These results corrob-

orate with the small scope hypothesis [ 3 2 ] , which believes that, in practice, any failure is 

likely to manifest itself on some small input, and thus testing all small inputs is enough to 

reveal any failure. 

We plan to evaluate our technique on other refactorings, such as Extract Method. To do 

so, we need to extend J D O L L Y to generate programs containing richer method bodies. For 

instance, we could change the relation of thezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Method signature. Now, b must contain a 

GUI code. 

7.1 Future work 
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sequence of statements. 

1 sig Method { 

2 b:seq[Body] 

3 } 

Moreover, we can extend Body to represent other kinds of statements. For example, we 

can create the following signature representing method invocation. Notice that we need a 

new kind of I d to represent the variable name that invokes a method id. 

1 sig InstanceMethodlnvocation extends Body ( 

2 id: one Varld, 

3 method: one Methodld 

4 ) 

In this way, J D O L L Y can generate more elaborated method bodies, such as the one pre-

sented next. 

1 p u b l i c v o i d m ( ) { 

2 A a = new A ( ) ; 

3 a . z ( 2 ) ; 

4 a . y ( ) ; 

5 1 

Currently, we manually classify the failures related to behavioral change into distinct 

faults. This process is done by checking each transformation that introduces behavioral 

change against a number of proposed filters (see Table 5.1). It may demand a considerable 

effort to perform this task when there are a lot of failures. We plan to automate this step by 

developing a static analysis to evaluate the non-behavior-preserving transformations against 

the proposed filters. 

Additionally, it is time-consuming to test the refactoring implementation with respect 

to each test input generated. For instance, in a previous experiment (See Section 5.6), it 

was needed around 12 hours to test the Push Down Method implementation of JRRTvF by 

using 15 ,322 input programs generated by a program generator called J D O L L Y . From these 

15 ,322 input programs, 2 , 2 4 7 were useful for producing test cases that expose faults. In 

3The JRRT version from May 18th, 2010 
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such cases, by reordering the test cases, we may increase the rate of fault detection, reducing 

the time spent to find faults. In this way, developers can have an earlier feedback to start 

debugging and fixing the faults. Test case prioritization techniqueszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA [67; 34] schedule test 

cases in order to achieve some goal. Techniques for automated testing of refactoring engines 

iteratively test the refactoring implementation against each input program generated by a 

program generator. The order of the test cases is the order that the programs are generated. 

Therefore, we can prioritize the test cases by changing the order that the input programs 

are used by the technique to run the test cases. We have observed that failures detected 

by using these programs can be classified into distinct faults based on characteristics of the 

input programs, such as overriding, overloading, field hiding. Therefore, having used an 

input program produced by the program generator and covered certain characteristics, we 

may be gained in subsequent input programs by covering characteristics that have not been 

covered yet. We thus can prioritize test cases based on the characteristic coverage of the 

input programs. 

Besides missing conditions and overly strong ones, refactoring engines may also have 

faults related to incorrect or incomplete transformations. Daniel et al. [ 14| have implemented 

oracles to check whether an implementation of the Encapsulate Field refactoring encapsu-

lates all accesses of a target field. They have found a fault in Eclipse related to that. Consider 

class A shown in Listing 7.1. I f we apply the Encapsulate Field refactoring by using Eclipse 

3 .7 , the tool w i l l produce the output program shown in Listing 7.2. Notice that setF ( f ) 

should be setF (getF () ). 

We plan to investigate the use of structural oracles to check whether the performed trans-

formation was incorrect or incomplete. In the same way Daniel et al. [14] implemented 

checks for the Encapsulate Field Refactoring, we can implement some checks for other refac-

torings. Another approach would be to use a tool such as Ref-Finder [571. It performs static 

analysis on both input and output programs, in order to discover the application of complex 

refactorings. The tool identities 6 3 refactorings presented by Fowler [19]. Each refactoring 

is represented by a set of logic predicates (a template), and the matching between program 

and template is accomplished by a logic programming engine. By using Ref-Finder against 

the transformations generated by our technique, we could identify transformations that do 

not match a specific refactoring template. 
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Listing 7.2: After Refactoring. Encap-

sulated Field by Eclipse JDT 3.7 does 

not encapsulate the field read. 

1 c l a s s A { 

Listing 7.1: Before Refactoring 2 p r i v a t e i n t f 

1 c l a s s A j 3 vo id m ( ) { 

2 i n t i : 4 s e t F ( f ) ; 

3 v o i d m( ) { 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA! 

4 f = f ; 6 v o i d s e t F ( i n t 

5 1 7 t h i s . f = 1 ; 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA}  8 I 

9 i n t g e t F ( ) { 

!() r e t u r n f ; 

11 

We also plan to perform a user study to compare J D O L L Y against UDITA in the context 

of testing of refactoring engines. Our research question is: Is specifying program generation 

in J D O L L Y easier than in UDITA? By performing a human study, we can measure the time 

to specify the program generation, the size, and its correctness. Additionally, we can further 

investigate both generators with respect to isomorphic programs and exhaustiveness. 

Finally, S A F E R E F A C T O R produced false positives and negatives due to limitations of 

Randoop, its test generator. We plan to compare Randoop against other tests generators 

with respect their effectiveness. We also plan to investigate how to generate test cases in the 

context of concurrence, so that we can extend our approach for concurrent programs. 
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Next, we present the complete specification of a subset of the Java language in Alloy, which 

was used by J D O L L Y for generating Java programs. 

Listing A. I : A subset of the Java language specified in Alloy 

1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA //ABSTRACT S YNTAX 

2 

3 abstract sig Id {} 

4 

5 sig Packagej} 

6 

7 sig Classld, MethodId,FieldId extends Id {} 

8 

9 abstract sig Accessibility {} 

10 

11 one sig public, private_, protected extends Accessibility {} 

12 

13 abstract sig Type {} 

14 

15 abstract sig PrimitiveType extends Type (} 

16 

17 one sig Int_, Long_ extends PrimitiveType {} 

18 

19 sig Class extends Type ( 

125 
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20 package: one Package, 

21 id: one Classld, 

22 extend: lone Class, 

23 methods: set Method, 

24 fields: set Field 

25 } 

26 

27 fun classes[pack:Package]: set Class { 

28 pack-~package 

29 } 

30 

31 sig Field j 

32 id : one Fieldld. 

33 type: one Type, 

34 acc : lone Accessibility 

35 ) 

36 

37 sig Method { 

38 id : one Methodld, 

39 param: lone Type, 

40 acc: lone Accessibility, 

41 return: one Type, 

42 b: one Body 

43 } 

44 

45 abstract sig Body {} 

46 

47 sig Literal Value extends Body (}zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA //returns a literal value 

48 

49 abstract sig Qualifier { } 

50 

5 1 one sig qthis_, this_, super_ extends Qualifier {) 

52 
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53 

54 sig Methodlnvocation extends Body { 

55 id : one Methodld, 

56 q: lone Qualifier 

57 } 

58 fact { 

59 / /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA call a declared method 

60 all mkMethodlnvocation I some m:Method I mi-id = m i d 

61 / / avoid recursive calls 

62 all m:Method I all mb: Methodlnvocation I m b = mb => mb-id ^ m i d 

63 } 

64 

65 //return newA()k(); 

66 sig ConstructorMethodlnvocation extends Body j 

67 idClass : one Classld, 

68 idMethod: one Methodld 

69 } 

70 fact { 

71 // calls a method declared in the class 

72 all ci: ConstructorMethodlnvocation I 

73 some c:Class I 

74 ciidClass = c i d & & 

75 (some m:Method I m in cmethods & & mid = ciidMethod) 

76 

77 //avoid recursive calls 

78 all m:Method I all mb: ConstructorMethodlnvocation I m b = mb > mb-idMethod / m i d 

79 } 

80 

81 fun classFromClassId[idl:ClassIdl: set Class { 

82 id l~ id 

83 ) 

84 

85 fun heldFromFieldId[idl :Fieldld]: set Field { 
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86 i d l ' i d 

87 } 

88 

89 / /zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA return x; 

90 //return thisx; 

91 // return super-x; 

92 //returnAthisx; 

93 sig Fieldlnvocation extends Body { 

94 idField : one Fieldld, 

95 qField: lone Qualifier 

96 ) 

97 

98 //return new A()x; 

99 sig ConstructorFieldlnvocation extends Body { 

100 idClass2 : one Classld, 

101 idField: one Fieldld 

102 } 

103 fact { 

104 //call field declared in the class 

105 all ci: ConstructorFieldlnvocation I 

106 somec:Classl 

107 ciidClass2 = c i d & & 

108 (some F.Field I f in clields & & f i d = ci idField) 

109 } 

110 

1 I I 

112 

113 // WELL - FORMED RULES 

114 fact JavaWellFormedRules ( 

115 noPackageContainsTwoClassesWithSameId[] 

116 noCalltoUndefinedField[] 

117 noSuperCallToNotlnheiitedFieldf] 

118 
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119 noClassExtendsItself[] 

120 allFieldsBelongToAClass[] 

121 noClassContainsTwoFieldsWithSameld [] 

122 noClassContainsTwoMethodsWithSameSignature[] 

123 noClassExtendsAnotherWithSameId[] 

124 allBodiesBelongToAMethod[) 

125 allMethodsBelongToAClass[] 

126 noSuperCallToNotInheritedMethod[ ] 

127 noCalltoUndefinedMethod[] 

128 } 

129 pred noPackageContainsTwoClassesWiihSameId[] { 

130 all package: Package I all cl,c2:classes[package] I c l ^ c2 c 1 id ^ c2id 

131 } 

132 

133 pred noClassExtendsItself[] j 

134 no c:Class I c in c'extend 

135 j 

136 

137 pred noClassExtendsAnotherWithSameld[] { 

138 all c 1 :Class I no c2: c 1 -"extend I c l id = c2id 

139 } 

140 

141 pred noClassContainsTwoFieldsWithSameld | ] j 

142 no c:Class I some disj fl,f2:Field I f l- id = 1'2-id & & fl + f2 in c-tields 

143 | 

144 

145 pred noCalltoUndelinedMethod[] ( 

146 all mi:Methodlnvocation I 

147 ( # m i q = 0 II m i q = this_) => 

148 some cl,c2: Class, ml :cl methods, m2:c2methods I mi in ml b & & mi id = m2id & & 

((c 1 = c2) II ((c2 in c 1 "extend) & & (m2-acc ^ private_))) 

149 

150 all mi:MethodInvocation I 
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151 (miq = qthis_) => 

152 some cl:Class, ml,m2:cl methods I mi in ml-b & & mi-id = m2-id 

153 ) 

154 

155 pred noSuperCallToNotInheritedMethod[] { 

156 all mi:Methodlnvocation I 

157 m i q = super_ => 

158 some cl,c2: Class, ml :cl methods, m2:c2methods I mi in ml-b & & mi-id = m2id & & 

c2 in cl "extend & & (m2acc / private_) 

159 ) 

160 

161 pred noSuperCallToNotlnheritedField[] ( 

162 all tkFieldlnvocation I 

163 ri-qField = super. => 

164 some disj cl,c2: Class, ml:cl-methods, f:c2fields I fi in ml-b & & fi-idField = f i d & & c2 in 

cl "extend & & face ^ private_ 

165 } 

166 

167 pred noCalltoUndefinedFieldf] { 

168 all mi:Fieldlnvocation I 

169 ( mi-qField = this_) => 

170 some cl,c2: Class, ml :c l methods, f:c2-fields I mi in ml-b & & mi-idField = f i d & & (( 

c 1 = c2) II ((c2 in c 1 "extend) & & (face ^ private.))) 

171 

172 all mkFieldlnvoeation I 

173 ( mi-qField = qthis_) => 

174 some c 1 ,c2: Class, ml :cl methods, f:c2-fields I mi in ml-b & & mi-idField = f i d & & (( 

cl = c2) II ((c2 in c l "extend) & & (face / private.))) 

175 

176 all mkFieldlnvoeation I 

177 ( #mi-qField = 0) => 

178 somecl,c2: Class, ml:cl-methods, f:c2-fields I mi in ml-b & & mi-idField = f i d & & (( 

cl = c2) II ((c2 in cl "extend) & & (face / private.))) 
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179 } 

180 

181 pred allFieldsBelongToAClass [] { 

182 all f:Field I one c:Class I f in c fields 

183 ) 

184 

185 pred noClassContainsTwoMethodsWithSameSignature[] { 

186 ail c: Class I all m l,m2:c methods I ml ̂  m2 => (ml id ^ m2id or ml param ^ m2param) 

187 } 

188 

189 pred allMethodsBelongToACIass [] ( 

190 all m:Method I one c:Class I m in cmethods 

191 ) 

192 

193 pred allBodiesBelongToAMethod 11 ) 

194 Body in Method b 

195 1 
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Algorithms for checking refactoring 

scope and granularity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Next we formalize some algorithms used to collect data from repository. Algorithm 2 indi-

cates when a transformation is low or high-level. I f a transformation only changes inside a 

method, it is considered low-level. Otherwise it is considered high-level,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA methods yields the 

set of methods of a program, signature yields the method signature of all methods received 

as parameter. 

Algorithm 2 Refactoring Granularity 

Require: source <= program before transformation 

Require: target <= program after transformation 

Ensure: Indicates whether a transformation is low or high-level 

mSource <= methods(.w»rce) 

mTarget <= melhods(target) 

if s\gnalure(mSource) = signaturefmTarge/) then 

return LOW 

else 

return HIGH 

end if 

Algorithm 3 establishes when a transformation is local or global. I f a transformation 

only changes at most one package, it is considered local. Otherwise it is considered global. 

132 
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packageszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA yields the set of packages of a program, name yields the name of a package, diff 

is the shell command used to compare to directories. 

Algorithm 3 Refactoring Scope 

Require: source <^ program before transformation 

Require: target <= program after transformation 

Ensure: Indicates whether a transformation is local or global 

count 0 

for p e packages(.so»n:e) do 

pTarget <= package(name(p),m/-ge/) 

if d\ff(p,pTarget) ^ 0 then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

COUIU++ 

end if 

end for 

for /;zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA G packages(ffl/-ge/) do 

pSource <= package(name(p), .w»/re) 

if d\ff(p,pSource) ^ 0 then 

COUIU++ 

end if 

end for 

if count < 1 then 

return L O C A L 

else 

return G L O B A L 

end if 


