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Abstract

We consider the Brans-Dicke theory of gravity, assuming a weak

gravitational field generated by a material source with a rotating mo-

tion. In this context, we find the equations of electrodynamics, verifying

the gravitational effects, such as gravitomagnetic effects, that contribute

to the production of electric and magnetic fields. The equations ob-

tained are compared with those predicted by general relativity. Then,

some particular results are discussed.

Keywords: Electrodynamics, Weak Field Approximation, Brans-Dicke
Theory.

1 Introduction

We can obtain the equations of electrodynamics in a curved spacetime [10],
and the most varied applications can be made [1, 2, 7]. It is interesting to
observe the presence of new terms in these equations, compared to Maxwell’s
equations of flat spacetime. These may be additional terms that depend on
mass, for example. Also, it is worth noting the case where the material source,
which determines the geometric properties of a given spacetime, is rotating;
if the weak field approximation is admitted, one shows that the rotation of a
mass creates the gravitomagnetic field [8]. Then, there should appear terms in
the equations for the electric and magnetic fields that depend on the angular
momentum of the rotating source.
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On the other hand, the theory of general relativity is the standard the-
ory of gravity. However, there are also some alternative theories, such as the
scalar-tensor theories [16]. These theories generalize Einstein’s theory, since
gravitational effects are described by the spacetime metric and also by a scalar
field φ, which can be related to the variation of Newtonian gravitational con-
stant. In the scalar-tensor theories context, a coupling parameter ω = ω(φ)
of the scalar field with the geometry is included. When ω = constant, one
have the case of the Brans-Dicke theory [6], being that the value of ω must be
fixed from experimental observations. The scalar-tensor theories utilize some
ingredients of string theories, such as a dilaton-like gravitational scalar field
and its non-minimal coupling to the curvature [12]. Furthermore, many other
aspects are being studied in these theories [4, 13, 3].

In this paper, we will consider the Brans-Dicke scalar-tensor theory, sup-
posing a weak gravitational field generated by a material source with a rotating
motion. Using the fact that one can establish a straightforward correspondence
between weak field solutions in general relativity and Brans-Dicke theory [5],
we will determine the equations of electrodynamics in Brans-Dicke theory. Af-
ter, some specific cases will be explored.

The paper is organized as follows. In Section 2, we consider the weak field
approximation of general relativity and the equations of electrodynamics are
exhibited. Next, in Section 3, we obtain the appropriate metric in the Brans-
Dicke theory from the metric of general relativity, subsequently carrying out
the calculation of the equations of electrodynamics in this context. Some
results are presented in Section 4. Finally, in Section 5, our conclusions are
exposed.

2 The equations of electrodynamics in general

relativity

Let us consider the weak field approximation of general relativity, in which the
metric is given by

gµν = ηµν + hµν , (1)

where ηµν is the Minkowski metric and hµν a small perturbation, such that
only first-order terms in hµν are kept. In this approximation, the Kerr metric
can be written as [11]

ds2 = c2
(
1− 2

Φ

c2

)
dt2 −

(
1 + 2

Φ

c2

)
δijdx

idxj

+
4

c
(
−→
A · d−→r )dt, (2)



Equations of electrodynamics in Brans-Dicke theory 11

where c is the speed of light, Φ = GM/r, G is the Newtonian gravitational
constant and M is the central body mass. We use a Cartesian-like coordinate
system xα = (ct,−→r ) with −→r = (x, y, z) and α = 0, 1, 2, 3. Also, we define

−→
A =

G(
−→
j ×−→r )
cr3

, (3)

being
−→
j = jẑ the angular momentum of the central body. In these conditions,

we obtain √
−g = 1 + 2

Φ

c2
, (4)

where g is the determinant of the metric.
Now, If we admit (2) as background metric, one can find the equations for

the electric and magnetic fields, which sources are ρ and
−→
J , the charge and

current densities, respectively. For this, let us consider the field equations [10]

Fµν;σ + Fσµ;ν + Fνσ;µ = 0, (5)

F µν
;ν = −4π

c
Jµ =

1√−g

(√
−gF µν

)
,ν
, (6)

and the current four-vector

Jµ =
ρc

√
g00

dxµ

dx0
=

(
1 +

Φ

c2

)
(ρc,

−→
J ), (7)

being Fµν the electromagnetic field tensor, which is given by

Fµν =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 . (8)

Thus, the following expressions can be obtained in a straightforward way from
the equations (5)-(8):

∇ · −→E = 4πρ

(
1 +

Φ

c2

)
+

2

c2
−→g · −→E +

2

c2
∇ ·

(−→
B ×−→

A
)
, (9)

∇ · −→B = 0, (10)

∇×−→
E = −1

c

∂
−→
B

∂t
, (11)

∇×−→
B =

4π

c

−→
J

(
1 +

5Φ

c2

)
+

1

c

∂
−→
E

∂t

(
1 +

4Φ

c2

)

− 2

c2
−→g ×−→

B +
2

c2
∇×

(−→
E ×−→

A
)
− 2

c3
∂
−→
B

∂t
×−→

A. (12)
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In the above formulas, we utilize the usual expressions for the divergence
and the curl of a vector in a Cartesian coordinate system. Also, we define
−→g = −∇Φ. The equations (9)-(12) are the equations of electrodynamics in a
spacetime generated by a rotating body.

3 The equations of electrodynamics in Brans-

Dicke theory

In the sequence, the same problem will be considered in the context of the
Brans-Dicke theory of gravity [6]. When we adopt the weak-field approxima-
tion, the solutions of Brans-Dicke theory can be obtained directly from the
corresponding solutions in general relativity in a simple way [5]. In fact, a
solution for Brans-Dicke can be written as

ds2BD = [1− εG0] ds
2
RG (G → G0) , (13)

where G0 =
(
2ω+3

2ω+4

)
G and ds2RG (G → G0) represents the solution of general

relativity to the corresponding problem with the exchange of G by G0, with
the scalar field φ(x) = φ0 + ε(x), being φ0 a constant.

Then, using (2) and (13), we obtain

ds2BD = [1− εG0] [c
2

(
1− 2

ΦBD

c2

)
dt2 −

(
1 + 2

ΦBD

c2

)
δijdx

idxj

+
4

c
(
−→
ABD · d−→r )dt], (14)

with ΦBD = G0M/r and
−→
ABD = [G0(

−→
j × −→r )]/cr3. Still, it should be done

ε = 2M/c2r(2ω + 3) [6]. Thus, we have

ds2BD = c2
(
1− 2

Φ

c2

)
dt2 −

[
1 + 2

(
ω + 1

ω + 2

)
Φ

c2

]
δijdx

idxj

+
4

c

(
2ω + 3

2ω + 4

)
(
−→
A · d−→r )dt. (15)

Now, we find that
√
−g = 1 +

(
2ω + 1

ω + 2

)
Φ

c2
. (16)

Repeating the procedure of the previous section, using (5)-(8), we can get the
equations for the electric and magnetic fields

∇ · −→E = 4πρ

[
1 +

ωΦ

(ω + 2)c2

]
+

(
2ω + 3

ω + 2

) −→g · −→E
c2

+
2

c2

(
2ω + 3

2ω + 4

)
∇ ·

(−→
B ×−→

A
)
, (17)
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∇ · −→B = 0, (18)

∇×−→
E = −1

c

∂
−→
B

∂t
, (19)

∇×−→
B =

4π

c

−→
J

[
1 +

(5ω + 6)Φ

(ω + 2)c2

]
−

(
2ω + 3

ω + 2

) −→g ×−→
B

c2

+
2

c2

(
2ω + 3

2ω + 4

)
∇×

(−→
E ×−→

A
)
+

1

c

[
1 +

(4ω + 6)Φ

(ω + 2)c2

]
∂
−→
E

∂t

− 2

c3

(
2ω + 3

2ω + 4

)
∂
−→
B

∂t
×−→

A. (20)

Examining the equations (17) and (20), we note the participation of fields

Φ, −→g and
−→
A generating new terms, which are absent when we find the Maxwell

equations in Minkowski’s spacetime. The discrepancy between the gravita-
tional theories of Einstein and Brans-Dicke is encoded in the terms in which
the constant ω appears, representing the influence of the scalar field φ. It is
interesting to note that, in the limit ω → ∞, the equations (17) and (20) are
reduced to the equations (9) and (12) [14, 9].

4 Some interesting results

Now, let us consider some results from the equations obtained in section 3.
Initially, let us admit that the magnetic field is a first-order term. Also,

let
−→
E and

−→
B be static fields and

−→
J = 0. Thus, the following equations are

obtained from (17)-(20):

[
∇−

(
2ω + 3

ω + 2

) −→g
c2

]
· −→E = 4πρ

[
1 +

ωΦ

(ω + 2)c2

]
, (21)

∇ · −→B = 0, (22)

∇×−→
E = 0, (23)

∇×−→
B =

2

c2

(
2ω + 3

2ω + 4

)
∇×

(−→
E ×−→

A
)
. (24)

In this case, we observe that the mass M influences the value of
−→
E . Addi-

tionally, it can be seen that the product
−→
E × −→

A is source for
−→
B , so that the

emergence of the magnetic field is related to the presence of a static electric

field, as well as to the angular momentum
−→
j of the central body.
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Another case, analogous to what we just commented, is to consider the

electric field a first-order term, with
−→
E and

−→
B static again and ρ = 0. Then,

immediately can be obtained from (17)-(20) the equations:

∇ · −→E =
2

c2

(
2ω + 3

2ω + 4

)
∇ ·

(−→
B ×−→

A
)
, (25)

∇ · −→B = 0, (26)

∇×−→
E = 0, (27)

[
∇+

(
2ω + 3

ω + 2

) −→g
c2

]
×−→

B =
4π

c

−→
J

[
1 +

(5ω + 6)Φ

(ω + 2)c2

]
. (28)

It is concluded that M influences the value of
−→
B , while the product

−→
B ×−→

A

is source for
−→
E . Hence, a static magnetic field becomes one of the elements

necessary for the generation of the electric field.

5 Conclusion

We obtain the equations of electrodynamics in the scalar-tensor theory of
Brans-Dicke, considering the weak field approximation and a background met-
ric representing a central rotating body. These equations present terms with

the fields Φ, −→g and
−→
A , indicating the participation of gravitational effects in

the generation of fields
−→
E and

−→
B .

In turn, the presence of
−→
A in the equations is related to the gravitational

effects due to the rotation of the central body, known as gravitomagnetic effects
[15].

It is interesting to mention that the constant ω appears in the equations
for the electric and magnetic fields, expressing the effects of the Brans-Dicke
scalar field. When we take the limit ω → ∞, the equations are reduced to
those of general relativity.

We present some particular results, allowed by the field equations, which
show the participation of the mass M as well as the angular momentum of the

rotating central mass in the determination of
−→
E and

−→
B . Finally, it was found

that a static electric field contributes to the generation of the magnetic field
and vice versa.
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