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Abstract

We obtain vacuum solutions in the presence of a cosmological constant in the context of the

Weyl geometrical scalar-tensor theory. We investigate the limit when ω goes to infinity and show

by working out the solutions that in this limit there are some cases in which the scalar field tends

to a constant (with the implicit consequence of the geometry becoming Riemannian), although

the solutions do not reduce to the corresponding Einstein solutions. We have also extended a

previous result, known in the literature, by showing that in the case of vacuum with cosmological

constant the field equations of the Weyl geometrical scalar-tensor theory are formally identical to

Brans-Dicke field equations, even though these theories are not physically equivalent.
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I. INTRODUCTION

Among the so-called modified gravity theories one that stands as the most simple and

popular is that proposed by C. Brans and R. Dicke in 1961[1]. As is well known, the main

motivation of the authors was to incorporate Mach’s principle into a relativistic theory of

gravity. With this purpose in mind they managed to formulate a scalar-tensor theory, in

which the gravitational effects would be described both by a metric field gµν and a scalar

field Φ, with the geometry of the underlying space-time manifold being assumed to be

Riemannian. The scalar field, which is neither a geometrical nor a matter-related field,

replaces the gravitational constant and is interpreted as the inverse of the gravitational

coupling parameter. To date Brans-Dicke theory which is generally considered to be in

agreement with observation, has been regarded with interest by many theoreticians[2].

A different approach to a scalar-tensor theory of gravity consists in considering the scalar

field Φ to be of a geometrical nature, which would be more in accordance with the geometriza-

tion program of physics that Einstein started with general relativity. In this sense, the scalar

field which appears in the so-called Weyl geometrical scalar-tensor theory is regarded as an

essential element of the space-time geometry[3]. Indeed, in this theory space-time is assumed

to be a very special case of Weyl (non-integral) space-time[4]. This has been referred to in

the literature as a Weyl integrable space-time (WIST)[5]. Other gravity theories in which a

scalar field plays a geometrical role have been proposed[6].

Due to some similarities between the Weyl geometrical scalar-tensor theory and the Brans-

Dicke theory, it is interesting to see what happens when ω, the scalar field coupling constant,

goes to infinity. Concerning this point, let us firstly recall that for quite a long time it

was (erroneously) held that Brans-Dicke theory would reduce to general relativity when

ω → ∞[7]. The question now seems to be settled after the publication of a series of articles

on the subject[8]. In fact, it has been shown that under certain circumstances Brans-

Dicke theory does not go over general relativity when ω → ∞. This result is not entirely

inconsequential as it may affect the way we set limits on the values of ω from solar system

experiments or even from cosmological observation. In this paper, we examine the same kind

of asymptotic behaviour, however now in the context of another scalar-tensor theory which

also contains an adimensional parameter, namely, Weyl geometrical scalar-tensor theory.

Inspired by previous work[9], our approach to this problem will consist in initially ob-
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taining some solutions of the Weyl geometrical scalar-tensor theory, considering the vacuum

field equations in the presence of a cosmological term Λ. With the help of these solutions, we

shall study the limit ω → ∞, investigating the possibility of obtaining the general relativity

equations.

Finally, a relevant question is concerned with the physical motivation of the present

work. As a matter of fact, the problem we have examined in the present paper is of purely

theoretical nature: We investigate a mathematical feature of a class of scalar-tensor theories

which have a free parameter ω. The behaviour of different solutions when ω goes over

infinity may have consequences in the interpretation of the theory. For instance, it was long

believed that the original Brans-Dicke theory would approach general relativity for large ω,

in which case the theory would completely lose its interest since on the basis of the Occam’s

rasor principle the simplest theory is always preferable. Now it is well known that the

limit of Brans-Dicke solutions to general relativistic solutions corresponding to the same

momentum-energy tensor is not unique, or may not yield a solution of Einstein’s equations

at all, in which case they must not simply be discarded as devoid of interest even for large ω.

For additional motivation concerning this question, which apply both to the original Brans-

Dicke theory and the geometrical scalar-tensor theory, we would like to refer the reader to

Ref. 10.

The paper is organized as follows. In Section 2, we show that if one considers the vacuum

field equations with cosmological constant, the field equations of the Weyl geometrical scalar-

tensor theory and Brans-Dicke theory are formally identical. Based on this result, we exhibit

solutions of the Weyl geometrical scalar-tensor theory in Section 3. We proceed in Section 4

to examine the limit ω → ∞ for some cases. Finally, Section 5 is devoted to our conclusions.

II. THE WEYL GEOMETRICAL SCALAR-TENSOR THEORY

The field equations of the Weyl geometrical scalar-tensor theory in its most general form

are given by[11]

Ḡµν = ω(φ)

(

φ,αφ
,α

2
gµν − φ,µφ,ν

)

− 1

2
eφgµνV (φ)− 8πTµν (1)

�̄φ = −
(

1 +
1

2ω

dω

dφ

)

φ,µφ
,µ − eφ

ω

(

1

2

dV

dφ
+ V

)

, (2)
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where φ is a scalar field, ω is a function of φ, V (φ) corresponds to the scalar field potential

and Tµν represents the Weyl invariant energy-momentum tensor of the matter fields.[3]

Moreover, we are denoting by Ḡµν and �̄ the Einstein tensor and the d’Alembertian operator,

respectively, as defined with respect to the Weyl connection, whose coefficients in a local

coordinate basis read

Γα
µν = {αµν} −

1

2
gαβ(gβµφ,ν + gβνφ,µ − gµνφ,β), (3)

with {αµν} representing the usual Christoffel symbols. At this point, we should mention that

the scalar field φ is regarded as a purely geometrical field. Indeed, φ is a basic ingredient

essential of the Weyl nonmetricity condition

▽αgµν = gµνφ,α (4)

which in this form characterizes the space-time manifold as a Weyl integrable space-time[5].

Let us now restrict ourselves to the particular case when ω(φ) = ω = const. The field

equations written above then becomes

Gµν = −(ω − 3
2
)

Φ2

(

Φ,µΦ,ν −
gµν
2

Φ,αΦ
,α
)

− 1

Φ
(Φ,µ;ν − gµν�Φ )− gµν

2Φ
V (Φ)− 8πTµν , (5)

�Φ =
1

ω

(

−1

2

dV

dΦ
Φ + V (Φ)

)

, (6)

where we are using the field variable Φ = e−φ. Note also that we are expressing the Weylian

geometric quantities Ḡµν and �̄φ in terms of their Riemannian counterparts, the latter being

denoted by Gµν and �φ calculated from the metric gµν and the Christoffel symbols {αµν}.
If we take V (Φ) = 2ΛΦ, which is equivalent to introduce the cosmological constant Λ, then

the vacuum field equations can be written as

Gµν = −W

Φ2

(

Φ,µΦ,ν −
1

2
gµνΦ,αΦ

,α

)

− 1

Φ
(Φ,µ;ν − gµν�Φ )− Λgµν , (7)

�Φ =
2ΛΦ

2W + 3
, (8)
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where W = ω − 3
2
. On the other hand, the Brans-Dicke vacuum field equations with a

cosmological term Λ are given by[12]

Gµν = − ω

Φ2

(

Φ,µΦ,ν −
1

2
gµνΦ,αΦ

,α

)

− 1

Φ
(Φ,µ;ν − gµν�Φ )− Λgµν , (9)

�Φ =
2ΛΦ

2ω + 3
, (10)

which are formally identical to (7) and (8) if we just set W = ω − 3
2
. It should be noted,

however, that the two theories are not physically equivalent, since in the Weyl geometrical

scalar-tensor theory test particles follow affine Weyl geodesics (auto-parallels) and not metric

geodesics[3].

III. SOME SOLUTIONS OF THE WEYL GEOMETRICAL SCALAR-TENSOR

THEORY

As a consequence of the formal equality of field equations in the vacuum regime plus cos-

mological constant, it is clear that a solution of the Weyl geometrical scalar-tensor theory can

be obtained if we make the change ω → ω− 3/2 in a known solution of Brans-Dicke theory.

Thus, let us consider some solutions of Brans-Dicke theory and obtain the corresponding

solutions in Weyl geometrical scalar-tensor theory.

Initially, let us consider a Friedmann-Robertson-Walker metric with flat spatial section

ds2 = dt2 −R2(t)[dχ2 + χ2(dθ2 + sin2 θdϕ2)], (11)

where R(t) denotes the scale factor. A known class of solutions of the Brans-Dicke vacuum

field equations with a cosmological constant is given by[13]

R(t) = R0 exp[(1 + ω)Ψ0t], (12)

Φ(t) = Φ0 exp[Ψ0t], (13)

where R0, Φ0 are constants, and

Ψ0 = ±
√

2Λ

(2ω + 3)(3ω + 4)
, (14)
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with Λ > 0, ω > −4
3
or ω < −3

2
. In this case, it is not difficult to see that the corresponding

solutions of the Weyl geometrical scalar-tensor theory are simply

R(t) = R0 exp

[(

ω − 1

2

)

Ψ1t

]

, (15)

Φ(t) = Φ0 exp[Ψ1t], (16)

where, for ω > 1
6
or ω < 0,

Ψ1 = ±
√

Λ

ω(3ω − 1
2
)
. (17)

As a second example, let us consider a Friedmann-Robertson-Walker geometry in the

form

ds2 = dt2 −R2(t)[dχ2/(1− kχ2) + χ2(dθ2 + sin2 θdϕ2)]. (18)

For k = 1 and ω > −1, a class of static solutions of the Brans-Dicke vacuum field equations

with Λ > 0 is given by[14],

R(t) =

√

2ω + 3

Λ(ω + 1)
= const, (19)

Φ(t) = Φ0 exp

[

±
√

2Λ

2ω + 3
t

]

, (20)

where Φ0 is a constant. Again, in the Weyl geometrical scalar-tensor theory we can obtain

the following solutions, which are valid for ω > 1
2
:

R(t) = const =

√

2ω

Λ(ω − 1
2
)
, (21)

Φ(t) = Φ0 exp

[

±
√

Λ

ω
t

]

. (22)

For our purposes, it is also interesting to consider some vacuum solutions with Λ = 0.

Let us now consider the following well known spherically symmetric solution in Brans-Dicke

theory[1]

ds2 = e2αdt2 − e2β [dχ2 + χ2(dθ2 + sin2 θdϕ2)], (23)

e2α =

(

1− B/χ

1 +B/χ

)2/σ

, (24)

e2β = (1 +B/χ)4
(

1− B/χ

1 +B/χ

)(2/σ)(σ−C−1)

, (25)
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Φ = Φ0

(

1− B/χ

1 +B/χ

)

−C/σ

, (26)

with,

σ =

[

(C + 1)2 − C

(

1− 1

2
ωC

)]1/2

,

B =
M

2Φ0

(

2ω + 4

2ω + 3

)1/2

, C = − 1

ω + 2
, (27)

where Φ0 is constant and M is the mass of a spherical matter distribution. Thus, the

analogous solution in the Weyl geometrical scalar-tensor theory will given by Eqs. (23)-

(26), with the new redefined constants

σ =

[

(C + 1)2 − C

(

1− 1

2
ωC +

3

4
C

)]1/2

,

B =
M

2Φ0

(

2ω + 1

2ω

)1/2

, C = − 1

ω + 1
2

. (28)

Another vacuum solution with Λ = 0 is provided by the O’Hanlon-Tupper solutions[15],

with line element given by (11) with

R(t) = R0t
q, (29)

Φ(t) = Φ0t
r, (30)

where R0,Φ0, q, r are constants, q = 1
3
(1− r) and 1

r
= −1

2

[

1±
√

3(2ω + 3)
]

, ω > −3
2
. The

corresponding solutions in the Weyl geometrical scalar-tensor theory are also expressed by

Eqs. (29) and (30), with the redefinition

1

r
= −1

2

[

1±
√
6ω

]

, (31)

where ω > 0.

IV. THE LIMIT ω → ∞

In Weyl geometrical scalar-tensor theory, let us consider a solution of the scalar field Φ

that takes the form1

1 Here we would like to point out that to our knowledge as far as the literature is concerned the precise

meaning of the limit ω → ∞ has not been explicitly given. In fact, the focus has been always on the

7



Φ = Φ0 +O

(

1

ω

)

(32)

for large ω. Now, in the limit ω → ∞, we have Φ → Φ0 = const and the equation (7) may

be written as

Gµν + Λgµν = 0. (33)

Furthermore, as Φ = e−φ, we get for large ω:

φ,α = −Φ,α

Φ
∼ O

(

1

ω

)

. (34)

Then, for ω → ∞, φ,α → 0 and the Eqs. (3) and (4) will be given by

Γα
µν = {αµν}, ▽αgµν = 0. (35)

Let us remark that, in the limit ω → ∞, we have a Riemannian space-time manifold and

we recover the Einstein vacuum field equations with cosmological constant. Moreover, the

space-time geometry becomes Riemannian as can be seen from the behaviour of both the

compatibility conditions and the coefficients of the affine connection.

As a first example, we note that the solution (16) presents the behavior indicated in Eq.

(32) for large ω. Thus, in the limit ω → ∞, we have from (15) that

R(t) = R0 exp

[

±
√

Λ

3
t

]

, (36)

becoming identical to de Sitter’s solution of general relativity . A second example, for the

particular case Λ = 0, is furnished by the solution (26), since from Eqs. (28) when ω is large

we obtain
C

σ
∼ O

(

1

ω

)

. (37)

behaviour of the solutions with regard solely to the parameter ω. Although not explicitly mentioned, the

procedure seems to take for granted that in the limit ω → ∞ the scalar field Φ becomes Φ = Φ0+O(1/ω)

or Φ = Φ0 + O(1/
√
ω) , where both O(1/ω) and O(1/

√
ω) goes to zero for fixed coordinates. More

formally, the meaning of this limit is the following: given an arbitrary ε > 0, there exists a number N

such that if ω > N, then |ψ(ω, x)| < ε for any fixed values of the coordinates x, where ψ(ω, x) = O(1/ω) or

O(1/
√
ω). In other words, what is required in this procedure is pointwise convergence instead of uniform

convergence.
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It is not difficult to see that when ω → ∞ the solution given by Eqs. (23)-(26) and (28)

goes over to the Schwarzschild metric of general relativity, with the identification 1/Φ0 = G,

G denoting the gravitational constant.

Let us now examine the case in which the solution of the scalar field Φ for large ω behaves

like

Φ = Φ0 +O

(

1√
ω

)

. (38)

In this case, the Eq. (7) in the limit ω → ∞ may be written as

Gµν + Λgµν = lim
ω→∞

[

− ω

Φ2

(

Φ,µΦ,ν −
1

2
gµνΦ,αΦ

,α

)]

6= 0. (39)

Also, we verify that

φ,α = −Φ,α

Φ
∼ O

(

1√
ω

)

(40)

when ω is large. It is clear that in this case the Eqs. (3) and (4) becomes identical to

(35) when ω → ∞, which then implies that the space-time manifold becomes Riemannian.

However, according to (39), the Einstein vacuum field equations with cosmological constant

(or in the particular case Λ = 0) are not recovered.

Let us now consider examples of solutions which behave in accordance to (38). It is

immediately seen that the solutions (22) and (30)-(31) satisfy (38) and that, in these cases,

the space-time manifold again becomes Riemannian in the limit ω → ∞. Nevertheless,

in the context of the solution (22), the static solution (21) does not coincide with the

general relativity vacuum solution with Λ 6= 0 when the limit mentioned is taken. The same

conclusion is true in the context of the solution (30)-(31), i.e., the solution (29) does not

represent the Einstein vacuum solution if ω → ∞.

Finally, let us briefly comment on the case in which Tµν 6= 0 and V (Φ) = 0. We note that

if a given solution Φ satisfies the Eq. (32), then in the limit ω → ∞ the field equations (5)

become

Gµν = −8πTµν . (41)

In addition, the Eqs. (35) would also be valid in this limit.

V. CONCLUSION

In this note we have shown that the Weyl geometrical scalar-tensor theory possesses

some similarities with Brans-Dicke theory. Indeed, the two theories are formally identical if
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we restrict ourselves to the vacuum field equations[3]. This formal identity also holds if we

include the cosmological constant in the field equations. Due to this identification, we were

able to investigate the limit ω → ∞ in the Weyl geometrical scalar-tensor theory simply

by getting new solutions from known solutions of the Brans-Dicke theory. Surely the two

theories are not entirely equivalent, but this simple method allowed us to find solutions in

a straightforward way. We thereby verify that, depending on the behavior of Φ for large

ω, two possibilities appear when we take the limit ω → ∞. Depending on the asymptotic

behaviour of Φ with respect to large values of ω, i.e., in accordance to Eq. (32) or to Eq.

(38), the field equations reduce or do not reduce to the general relativistic equations. The

space-time geometry, however, becomes Riemannian in any case.
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