
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Investigation of Similarity-based Test Case Selection

for Specification-based Regression Testing

Francisco Gomes de Oliveira Neto

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus

I como parte dos requisitos necessários para obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Dra. Patrícia Duarte Lima Machado

(Orientadora)

Campina Grande - Paraíba - Brasil

c©Francisco Gomes de Oliveira Neto, Julho de 2014

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

O48i

 Oliveira Neto, Francisco Gomes de.

 Investigation of similarity-based test case selection for specification-base

regression testing / Francisco Gomes de Oliveira Neto. – Campina Grande,

2014.

 134 f. : il. color.

 Tese (Doutorado em Ciência da Computação) – Universidade Federal de

Campina Grande, Centro de Engenharia Elétrica e Informática, 2014.

 "Orientação: Prof.ª Dr.ª Patrícia Duarte Lima Machado".

 Referências.

 1. Teste de Software. 2. Teste de Regressão. 3. Engenharia de Software

Empírica. I. Machado, Patrícia Duarte Lima. II. Título.

 CDU 004.415.53(043)=111

Declaro, para os devidos fins, que participei por videoconferência da

apresentação da defesa da Tese de Doutorado de Francisco Gomes de

Oliveira Neto, intitulada: “Investigation of Similarity-based Test Case Selection

for Specification-based Regression Testing”, em 30 de julho de 2014 e

considero o trabalho aprovado.

Eduardo Henrique da Silva Aranha (UFRN)

Acknowledgements

Here I express my gratitude to everyone that witnessed my long journey comprising this

doctorate research. The joy, challenges, obstacles and sacrifices undertaken could only be

accomplished through the support of important people in my life. The outcome of this en-

deavour provided me encouragement to pursue personal goals, and exercised my belief that

there are things beyond my understanding. Ultimately, this allows me to discover not only

new ideas, but, more importantly, new boundaries. A list of the people and institutions below

had an important role on this accomplishment.

To José Bener for all his partnership, love and comforting words that have given me the

drive and energy to achieve my goals. More importantly, for unlocking my mind and heart

to the clarity of true happiness. For helping me to accomplish and create dreams.

To my family for their love, understanding and support throughout this long journey.

More specifically, my parents Luis Oliveira and Lucia Macedo who have taught me from

the cradle that education and knowledge are among the most valuable assets of a human

being. My siblings Emmanuelle Oliveira and Adam Oliveira for their love, support and

care. To Sueli Alves and Benardi Souza for their love, kindness, support and friendship.

To Richard Torkar for his mentoring and friendship that inspiring me to achieve higher

standards, apply my best and stay true to myself. For his never-ending encouragement to

push the envelope and achieve higher standards. In addition, I am thankful for allowing

me a life changing experience where I could exceed my own expectations and overcome

professional and personal challenges.

To Patrícia Machado for her trust, supervision and, more importantly, for allowing me

the freedom and autonomy to conduct the research. For providing me with challenging

research problems, professional inspiration and above all, valuable advices that I will carry

with me and pass it along my students.

To Emanuela Cartaxo for nearly a decade of teaching and friendship. For providing

me the foundation of an academic career and showing the importance and responsibilities of

achieving and applying research results. Alongside the professional inspiration and research

partnership, I am thankful for her support, trust, friendship, for listening to my worries and

for teaching me to never doubt myself.

v

To my best friend Arthur Yuri Jordão for all his patience and friendship that gave me

joy, happiness and has always managed to make me laugh during the most stressful moments.

To Robert Feldt for his valuable input, feedback and collaboration that allowed this

research to venture into new territory and overcome the challenges of experimentation with

model-based techniques. All the hard and intense (yet fun) work/meetings have inspired me

to improve the quality of this research.

To my friends from Gothenburg: Ali Shahrokni, Antonio Martini, Nicole Costa, Hiva

Alahyari, Ana Magazinius, Emil Alégroth, Ildiko Pilan and Lucas Gren for their support,

friendship and kindness. They made my stay in Sweden the best experience that I lived, so

far. Despite the cold temperatures, I was able to find warmth during our lunches, conversa-

tions, fyka, and game nights. I also thank Carolina Andrade and Emilia Villani for their

company, support and friendship during my stay in Sweden.

To my friends Rafaella Italiano, Matthew Shropshire, Paloma Freire, Elloá Guedes

and Andrea Mendonça that provided me with comfort, joy and encouragement during these

4 years.

To my friends Alberto Burity and Paola Alves who encouraged me to expand my own

knowledge and explore a reality that I assumed to be familiar with. In summary, for showing

me the meaning of freedom, understanding and compassion.

To my colleagues João Felipe Ouriques and Ana Emília Coutinho, and the other mem-

bers of the Software Practices Laboratory (SPLab) for all their support, collaboration and

company during this research.

To Chalmers University of Technology and its Software Engineering Division, for re-

ceiving me during 9 months and providing complete assistance, help and cooperation during

my stay. During that time, I was able to interact with great Software Engineering researchers

and experience life in Gothenburg.

To the funding agencies Coordenação de Aperfeiçoamento de Pessoal do Nível Su-

perior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPq) for their financial support throughout this work.

Last but not least, I thank the staff of Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de Campina Grande (PPGCC-UFCG) for all their

administrative support. More especifically, Rebeka Lemos for her assistance and help.

vi

vii

Contents

1 Introduction 2

1.1 Problem and Proposed Solution . 5

1.2 Research Questions and Methodology . 6

1.3 Contributions . 9

1.4 Chapter Concluding Remarks . 9

2 Theoretical Background 10

2.1 Model-Based Testing (MBT) . 11

2.2 Automatic Model Generation . 16

2.3 Specification-Based Regression Testing 18

2.4 Similarity-Based Test Case Selection . 21

2.5 Experimental Studies in Software Engineering 22

2.6 Basic Concepts of Statistical Analysis . 25

2.7 Meta-Empirical Studies of Regression Testing Techniques 28

2.8 Concluding Remarks . 29

3 Similarity Approach for Regression Testing 30

3.1 Example . 32

3.2 SART’s Selection Strategy . 37

3.3 Concluding Remarks . 42

4 Review on Test Case Selection for Regression Testing 44

4.1 Selection Strategies . 45

4.1.1 Cluster-Based Selection . 47

4.1.2 Dependence Analysis on Extended Finite State Machines 49

viii

CONTENTS ix

4.1.3 Regression Test Case Selection with Risk Analysis 50

4.2 Concluding Remarks . 52

5 Stochastic Model Generation for Evaluation of Model-based Techniques 54

5.1 The Model-Based Technique Evaluation Approach 56

5.2 ALTS Model Generator . 60

5.3 Concluding Remarks . 66

6 Evaluation 68

6.1 Experiment . 69

6.1.1 Response Variables . 71

6.1.2 The Experiment Environment and Execution 73

6.2 Analysing Failure Coverage through Fault Models 75

6.2.1 Mutating a Model . 76

6.2.2 Fault Models . 79

6.3 Concluding Remarks . 83

7 Results and Analysis for SART 85

7.1 Experimental Study . 85

7.2 Comparative Study . 91

7.3 Evaluation with Industrial Specification Models 95

7.4 Threats to Validity . 97

7.5 Challenges and Rewards with SBMTE . 99

7.6 Concluding Remarks . 100

8 Conclusions 103

A Example using the Weighted Similarity Analysis 108

B Tables detailing coefficients and p-values. 113

C An Example of a Complete Use Case Document 117

Acronyms

ALTS - Annotated Labelled Transitions System

IEEE - Institute of Electrical and Electronics Engineers

LTS - Labelled Transitions System

LTS-BT - Labelled Transitions System - Based Testing

MBT - Model-based Testing

MOF - MetaObject Facility

OMG - Object Management Group

SART - Similarity Approach for Regression Testing

SBMTE - Search-based Model Generation for Technology Evaluation

STCS - Similarity-based Test Case Selection

SUT - System Under Test

TaRGeT - Test and Requirements Generation Tool

TTCN - Testing and TEst Control Notation

UML - Unified Modelling Language

UMLAUT - Unified Modelling Language All pUrposes Transformer

WSA-RT - Weighted Similarity Approach for Regression Testing

XMI - XML Metadata Interchange

XML - eXtensible Markup Language

x

List of Figures

1.1 The activities, schedule and artifacts of our research. 8

2.1 Activities and artifacts of an MBT Approach. 12

2.2 Example of a use case document used as input for our MBT process. A

complete version is available on Appendix C 14

2.3 Example of an LTS generated from our use case document template. 15

2.4 Example of a generated test suite. 16

2.5 Experiment principles (adapted from Wohlin et al.[Wohlin et al. 2012]) . . 23

2.6 Examples of (a) scatterplot, (b) histogram and (c) boxplots. 25

3.1 Example of a test process suitable for SART. 31

3.2 Examples of ALTS specification models and test cases. 33

3.3 Examples of regions and model elements affected by model’s modifications. 35

3.4 Compact version of the specification model, and test cases obtained from the

respective models. 36

3.5 SART’s selection process. 37

4.1 Examples of CFGs and clusters obtained from a baseline, (a), (c) and (e),

and a delta version, (b), (d), (f). 47

4.2 Execution of the technique proposed by Korel et al. [Korel et al. 2002]. . . 50

4.3 The process for selecting regression test cases proposed by Chen et al. [Chen

et al. 2002] . 51

5.1 Steps to create a model generator for evaluation of MB techniques. 56

5.2 An overview of SBMTE. 58

xi

LIST OF FIGURES xii

5.3 An overview of technology transfer in practice (Adapted from [Gorschek

et al. 2006]). 60

5.4 (a) The model elements of an ALTS and (b) a test case. 62

5.5 (a) Example of a generated ALTS, (b) the patterns used and (c) examples of

modifications. 63

5.6 Algorithm to generate the baseline and delta ALTS. 65

5.7 A step by step example to generate an ALTS. 67

6.1 Overview of the experiment. 71

6.2 Platform where the experiment is executed. 74

6.3 Usage of a faulty implementation model (FIM) to measure PFail. 77

6.4 Roulette wheels obtained from different graph configurations. 79

6.5 (a) Example of a generated ALTS, (b) the respective generated test suite and

(c) fault models for each fault hypothesis. 80

6.6 Algorithm to find the state nearest to all the other modified states. 82

6.7 Algorithm that randomly chooses one of the modified state. 83

7.1 Boxplot for measuring (a) SizeRed and (b) PFail. 86

7.2 Main effects of each factor’s treatment on SizeRed. 86

7.3 Mean for each of the main factors and their treatments. 88

7.4 Means for interacting 2-factors. 89

7.5 Plot of all effects for a full-factorial 26 design. Most important effects are B,

A and R. The values for each effect can be seen in Appendix B. 90

7.6 Overview of our comparative study. 92

7.7 Percentage of ALTS’s transitions covered by each selected subset. 93

7.8 PFail for each fault model and selected. 94

7.9 Percentage of targeted and reusable test case selected by each technique. . . 94

7.10 Overview of our case study with industrial artefacts. 96

A.1 (a) Example of an ALTS model with weights assigned to branches, and (b)

the weights for each test case. The shaded test cases represent the subset

selected in Chapter 3. 110

LIST OF FIGURES xiii

A.2 Steps to execute WSA given, as input: A test suite with weighted test cases,

and the number of test cases that should be removed. 111

List of Tables

2.1 Some examples of experimental designs and respective parametric and non-

parametric tests. 27

3.1 Similarity matrix from the test suites in Figure 3.4. 39

3.2 (a) Traceability between test requirements and test cases, and (b) cardinality

of each test requirement. 41

3.3 Similarity matrix for the reduced subset and the reusable test cases. 42

6.1 Null and alternative hypotheses for SizeRed and PFail. 73

6.2 Table with treatments (or levels) for factors. 75

7.1 Table with p-values and correlation (R2) between factors and the response

variables. The p-values smaller than α = 0.05 are underlined. 87

7.2 Industrial artefacts characteristics (size and number of modifications). . . . 96

7.3 Comparison between SART and a manual selection using industrial artefacts. 97

A.1 Weighted similarity matrix from the test suite of Figure A.1. 112

B.1 Data and p-values for all main factors and 2-way interactions of factors. . . 114

B.2 Data and p-values for all 3-way interactions of factors. 115

B.3 Data and p-values for all 4,5 and 6-way interactions of factors. 116

xiv

Abstract

During software maintenance, several modifications can be performed in a specification

model in order to satisfy new requirements. Perform regression testing on modified software

is known to be a costly and laborious task. Test case selection, test case prioritization, test

suite minimisation, among other methods, aim to reduce these costs by selecting or prioritiz-

ing a subset of test cases so that less time, effort and thus money are involved in performing

regression testing. In this doctorate research, we explore the general problem of automati-

cally selecting test cases in a model-based testing (MBT) process where specification models

were modified. Our technique, named Similarity Approach for Regression Testing (SART),

selects subset of test cases traversing modified regions of a software system’s specification

model. That strategy relies on similarity-based test case selection where similarities between

test cases from different software versions are analysed to identify modified elements in a

model. In addition, we propose an evaluation approach named Search Based Model Gener-

ation for Technology Evaluation (SBMTE) that is based on stochastic model generation and

search-based techniques to generate large samples of realistic models to allow experiments

with model-based techniques. Based on SBMTE, researchers are able to develop model gen-

erator tools to create a space of models based on statistics from real industrial models, and

eventually generate samples from that space in order to perform experiments. Here we de-

veloped a generator to create instances of Annotated Labelled Transitions Systems (ALTS),

to be used as input for our MBT process and then perform an experiment with SART. In this

experiment, we were able to conclude that SART’s percentage of test suite size reduction is

robust and able to select a subset with an average of 92% less test cases, while ensuring cov-

erage of all model modification and revealing defects linked to model modifications. Both

SART and our experiment are executable through the LTS-BT tool, enabling researchers to

use our selection strategy and reproduce our experiment.

1

Chapter 1

Introduction

Quality is one of the key aspects of a successful product release, and that is a recurrent con-

cern for software systems. Software engineering addresses software quality through different

approaches and one of the most popular is software testing. Unfortunately, effectively test-

ing a software is costly, thus encouraging researchers and industry practitioners to propose

several cost-effective techniques in order to make software testing more affordable.

Maintaining quality is even more challenging whenever a software system changes since

modifications can affect proper functioning of a system. Examples of modifications are: Bug

fixing, enhancement or removal of a functionality, code refactoring, updates to the operating

environment, etc. Modifications could occur both during and after software development,

and therefore, (re)testing activity named regression testing is recommended [Agrawal et al.

1993]. The specific goal of regression testing, when comparing to other testing approaches

(e.g. system, acceptance or integration testing) is to reveal defects caused by a modification,

named regression defects or regression faults [Binder 1999].

Regression testing depends on the development context. For agile development with

constantly changing functionalities, regression testing should be performed every time the

software is saved and compiled. On the other hand, release of a new version, patch or

nightly build represents the moment for regression testing during traditional development

processes. In either cases, the goal is to increase the confidence that the modifications behave

as expected and do not affect unchanged parts of the system [Harrold and Orso 2008; Binder

1999].

In order to verify whether modifications affected the proper functioning of the software,

2

3

the test history1 of previous versions of the software is required. Given that software undergo

several modifications throughout its life cycle, the artefacts related to regression testing can

grow to an extent where both the execution and management of all test cases become im-

practicable. Even though it is very important to assess the quality of a modified software,

regression testing is very expensive [Binder 1999; Korel et al. 2002; Harrold and Orso 2008;

Tamimi and Zahoor 2011].

To address this cost issue, researchers have proposed regression test case selection strate-

gies to reduce the size of a test suite by selecting only a subset of test cases to be tested. This

strategy is recommended whenever the costs of executing the entire test suite is higher than

selecting and executing only a subset of these test cases. The drawback, on the other hand,

is that some of the defects may not be revealed because some of the scenarios may not be

covered during the test. Thus, an appropriate selection strategy needs to be used in order to

increase chances of detecting defects.

For example, a very simple strategy is to randomly select the test cases until the sub-

set meets the testing time and budget constraints. The random selection is easy to use in

practice since it does not require any information or assumptions based on the system under

test (SUT). However, without an appropriate coverage criterion to select test cases, critical

requirements and components of the system may go untested increasing risks of releasing a

defective product and compromising the company’s reputation.

Moreover, regression test cases can be selected in two different contexts: Code-based or

specification-based selection. The first considers source code modifications (e.g. refactoring)

as the main guideline, for example coverage of methods, classes, code statements, among

others. The specification-based selection, on the other hand, uses modified specification

models, such as state machines, or UML (Unified Modelling Language) diagrams, as the

main guideline for test case selection. Then, modelling elements such as transitions and

states could be used as coverage criteria or test requirements.

Regression testing at the code level has been widely explored in the literature [Korel

et al. 2002] and enables solution for most software’s structural problems such as modified

code coverage or finding data and control dependences affected by modifications. Besides,

1Test artefacts of previous versions. For example, test cases and reports from previous versions, analysis

and correction of defects from previous versions.

4

the selected test cases are already written in code language enabling automatic execution of

the code and test cases, instead of requiring models and documents used for specification.

Consequently, the code itself is sufficient to both select test cases and test the system.

However, there are three main problems when performing code-based selection. First,

the test cases are described using the source code, hindering traceability between modifica-

tions at higher levels of abstractions (e.g. requirements, subsystems, components) and the

respective part of modified source code. The second problem is understanding what is being

tested, since reading the test cases requires knowledge of the programming language(s) used

to write the tests. The third problem is the dependence between the code and the tests, so

that code refactoring or small changes in methods will require maintenance on the test suite

[Chen et al. 2007; Fahad and Nadeem 2008].

At the same time, there has been a growing interest in specification-based regression

testing due to the many benefits of handling high level models. In addition to help ad-

dressing those problems, specification-based approaches bring regression testing closer to a

requirements/functional level as well as scaling better to large and complex systems when

compared to traditional code-based approaches [Briand et al. 2002]. On the other hand,

test cases generated from specification models are usually abstract, and thus cannot be au-

tomatically executed. Also, most specification models are usually described in high-level

languages such as natural language, hence requiring reliable Model-based Testing (MBT)

approaches to properly handle and relate model information to testing artefacts.

MBT benefits from a specification model to enable automatic generation, selection or

execution of test cases. Therefore, the abstract specification model of software can be used

as a basis for testing a concrete implementation. In this doctorate research, we address a

system’s behaviour and therefore, transitions and states of software models represent steps

and scenarios of use cases. Also, modifications are represented as changes to transitions

and, consequently, the states connected by those transitions, since we focus on modifications

at specification models.

In addition, proposed selection strategies need to target the considered scope of test-

ing. For example, specification-based selection is not recommended when only the source

code changes (e.g. code refactoring) because source code analysis is required and providing

traceability between requirements and code statements can be costly. Similarly, if we con-

1.1 Problem and Proposed Solution 5

sider large and complex software systems, code-based selection may be unable to identify

all parts of the code that exercise a modified requirement. In summary, both contexts com-

plement each other and by combining both the source code and the specification elements,

we are able to select test cases based on modifications performed at different levels of the

system [Carver and Tai 1998; Korel et al. 2002].

1.1 Problem and Proposed Solution

This doctorate research focuses at specification-based test case selection for regression test-

ing. Therefore, our goal is to provide strategies to select test cases whenever specification

models of a software system are modified. In other words, our problem is the selection of

a representative subset of test cases in order to reduce the costs of regression testing at the

system level. In order to achieve cost-effective regression testing, we need to maximize the

chances of defect detection, as well as minimize the number of test cases needed.

To portray our problem, imagine that during a meeting clients request a new software

version in order to include and remove several functionalities. Therefore, the specification

models need to be modified as well in order to reflect the new version of our software. Based

on the assumption that there are not enough resources to execute all test cases for this new

version, we apply test case selection to identify a representative subset to enable regression

testing under the given resource’s constraints.

In general, representativeness of a test set refers to a test criterion (also known as test

requirement) used to identify representative test cases. Some examples of such criteria are:

Code or defect coverage, critical functionalities tested, among others. Here, we consider

as representative the test cases exercising modifications performed on a software system.

Those test cases, often referred as modification-traversing test cases, comprise the set of test

cases that, when executed, will exercise the modified parts of a software system. That is a

very common criterion for selecting test cases for regression testing since empirical studies

and experiments [Rothermel and Harrold 1996; Yoo and Harman 2012] show that the set

of modification-traversing test cases are the closest approximation to the set of test cases

able to to reveal regression defects (fault-revealing test cases). The question is: How can

we identify these test cases in a test suite? Our solution is then to combine two different

1.2 Research Questions and Methodology 6

approaches to address the mentioned problem. They are: Model-based regression testing

and similarity-based selection.

Model-based regression testing relies on MBT approaches to enable use of software mod-

els (e.g. UML diagrams or even Control Flow Graphs generated from source code) in order

to automate test case selection [Farooq et al. 2010]. Moreover, those models carry details

regarding software behaviour and component interactions that is often hard to see by just

reading the code. In turn, similarity-based test case selection (STCS) relies on similarity

functions to select the more (or less) different test cases, hence enabling removal of redun-

dancy among test cases [Cartaxo et al. 2007a; Cartaxo et al. 2011]. The benefit with this

type of selection is testing a diversity of scenarios in a SUT. Besides, similarity functions

are usually mathematical functions easy to understand and incorporate in a tool.

We propose usage of a similarity function to identify modifications between different ver-

sions of specification models and allow automatic identification and selection of test cases

exercising the modified parts of a specification model. Previous to this thesis we have pro-

posed the Weighted Similarity Approach for Regression Testing (WSA-RT) technique to

reduce test suites focusing on coverage of important2 test cases exercising modified parts

of the specification [de Oliveira Neto 2010]. Here we expand the technique (renaming it

to Similarity Approach for Regression Testing - SART) and focus on a thorough investiga-

tion regarding the effectiveness of STCS for specification-based regression testing. Thus, the

value-based approach is not discussed in this research and is instead presented as an example

in Appendix A.

1.2 Research Questions and Methodology

The main goal established for this thesis is to investigate whether similarity functions are

able to identify modification-traversing test cases in a test suite. And in order to achieve that

goal, we must answer the following research questions:

RQ1: How to use similarity functions to identify modifications?

RQ2: How to select test cases based on the identified modifications?
2The technique used a value-based approach where weights were manually assigned to test cases in order

to determine their importance.

1.2 Research Questions and Methodology 7

RQ3: How to address redundancy issues occurring in test suites from both regression

test suites and MBT approaches?

RQ4: Is our selection strategy beneficial for regression testing when compared to

direct application of similarity functions on a test suite?

Alongside the difficulties in exploring our selection strategy, its evaluation was one of

our main concerns since an experiment would be necessary to obtain significant conclusions

and assess our hypothesis. Thus, we asked how can we evaluate our proposed model-based

technique? Model-based (MB) techniques are frequently evaluated through case studies with

specific models, leading to conclusions that are hardly general and often limited due to the

context of the study. Systematic, empirical evaluation, such as an experimental study, on the

other hand, allows the investigation into the strengths and weaknesses of a technique, backed

by extensive empirical data and rigorous statistical analysis. But at the same time, it requires

large samples of realistic models (i.e. large number of models with characteristics such as

size and type that are typical of models used in organizations developing software), often

unavailable to researchers.

To address this issue we decided to use stochastic model generation with descriptive

statistics of realistic models [de Oliveira Neto et al. 2013]. Combining information from

actual models used in practice with stochastic model generators would allow us to generate

large number of models that share characteristics with industrial models. The automati-

cally generated models will create a space of models that can be used as input for our tech-

nique. We named this approach Search-Based Model Generation for Technology Evaluation

(SBMTE).

For being a contribution of our study, we also investigated some aspects towards usage

of SBMTE for evaluation of MB techniques in general, more specifically, experimental eval-

uation of MB techniques. Would it possible to obtain large samples of models to enable

statistical analysis of a technique’s performance? If so, would our generator tool be able to

generate realistic models to achieve conclusions of practical significance? And ultimately,

would that practical significance help technology transfer of MB techniques? Definition and

usage of a model generator tool has provided valuable insight towards evaluation of MB

techniques, such as existing challenges that hinder experimental studies and how we are able

1.2 Research Questions and Methodology 8

to overcome them.

An overview of our methodology, including schedule, activities and artefacts is presented

in Figure 1.1. Based on the research questions, we began a literature review to find directions

towards an appropriate combination of similarity-based strategies and specification-based

regression test, leading, then to the proposal of WSA-RT. Next, we started to use WSA-RT

on case studies with both toy and real3 specification models to gather data and to improve

our strategy towards a more precise selection of test cases. The result was the current version

of our technique named Similarity Approach for Regression Testing, or simply SART.

Specification-based

Regression Testing

Literature

Review

Similarity-based

Test Case Selection

WSA-RT

Tunning

Case Studies

Case Studies’

Data

Satisfactory

Results?

SART

Meta-empirical

Regression Test

Literature

Review

Empirical Software

Engineering

SBMTE

Experiment

Experiment’s

Data

Analysis

Conclusions

YesNo

1st year 2nd year 3rd year 4th year

Figure 1.1: The activities, schedule and artifacts of our research.

In order to enable SART’s evaluation through an experiment, we began searching for

approaches to overcome the lack of availability of models to use as input in our MBT pro-

cess. As a result, we proposed SBMTE in collaboration with Professor Robert Feldt from

Chalmers University of Technology (Gothenburg, Sweden) and created our generator tool to

obtain large samples of realistic specification models. The next step consisted in evaluation

of our research by defining, planning and executing an experiment based on our usage of a

stochastic model generator. Finally, the data collected during the experiment was analysed

and provided answers to our research questions.

3The specification models obtained were not for industrial tools, instead, we used specification for open-

source and academic tools.

1.3 Contributions 9

1.3 Contributions

Several contributions are presented throughout this work, but for now we highlight two main

contributions. The first one is a similarity-based test case selection technique (SART). Most

model-based regression test case selection relies on model comparison to identify modifica-

tions, that can lead to dependencies with a specific type of model, or high costs and com-

plexity for comparison of large specification models or software systems. On the other hand,

our technique relies on similarity functions also known as distance functions that are easy to

adapt and independent of a model type.

The second contribution is a tool that uses stochastic model generation as an alternative

for empirical evaluation of model-based techniques. As a result our experiment can be easily

adapted and executed by other researchers. By providing means to overcome the general lack

of samples of specification models, we intend to encourage researchers to perform experi-

mental studies with their own techniques. This evaluation approach allows early validation

of an MB technique enabling the technique’s improvement before presenting it to industry

practitioners.

1.4 Chapter Concluding Remarks

This introduction chapter presented an overview of our entire doctorate research. Further de-

tails regarding the remainder of our research is discussed in the upcoming chapters according

to the following structure.

Chapter 2 provides the background required to better understand the targeted solution

of our research, such as model-based regression testing and test case selection. Next, the

technique used to execute our strategy is detailed in Chapter 3. Other proposed work and

their relation to our proposed technique are discussed in Chapter 4. We discuss stochastic

model generation and present our model generator tool in Chapter 5, in order to allow the

reader to understand the evaluation methodology and the experimental design discussed in

Chapter 6. Results and analysis are then presented in Chapter 7 followed by Chapter 8 where

conclusions are drawn and future work is discussed.

Chapter 2

Theoretical Background

Software testing is a part of the software development process where tests are designed and

then executed in order to investigate quality attributes and find defects [Jorgensen 2002].

One of the goals for testing software is revealing defects or demonstrating to developers or

customers that the software meets its requirement.

Whenever discussing software testing it is important to clarify the differences between

the terms “error”,“fault”, “defect”, and “failure”. According to IEEE definition, a mistake or

error is a human action that caused a defect (also known as fault) to appear in the product

that the person is working on (e.g. requirements specification or software components). The

defect has no impact on the operation of the software if it is not encountered when the

software is used. However, if the defect is encountered, the product fails to meet the user’s

needs. Therefore, defects can compromise business reputation or economic viability, and in

some cases, even the environment or public safety [IEEE 2013].

In order to test a software system, a set of test cases (named test suite) must be chosen.

These test cases are composed of elements able to describe software behaviour, such as the

system’s pre-conditions, inputs, expected outputs, states of the system, among others. If the

output produced by the System Under Test (SUT) matches the expected output specified in

the test case, then we assign a pass verdict to the executed test case. A fail verdict is assigned

otherwise, and thus begins the investigation and correction of the defect(s) that caused this

failure.

This format for test case can be seen throughout all of the system’s levels [Beizer 1990;

Jorgensen 2002], from method calls (e.g. unit level) to components and, ultimately, the sys-

10

2.1 Model-Based Testing (MBT) 11

tem. The latter is the focus of our research, thus our test cases are usually described in natural

language and need to be executed manually (named abstract test cases). Albeit the difficulty

in tracing abstract test cases to the respective executable code parts, it is easier to identify

which functionalities or use case scenarios are being tested. Thus, they are recommended

for black-box testing approaches, for example acceptance testing.

Despite its benefits, it is known that software testing is costly [Beizer 1990; Harrold

and Orso 2008]. Therefore, most of the times software testing is not executed properly or

skipped, hence compromising the quality of software being produced. Studies for reducing

costs of software testing have been proposed and are still being researched by the software

engineering community. Three approaches are well known for addressing this issue: Test

case prioritization, test suite minimization (or reduction), test case selection.

In test case prioritization, a priority is assigned to test cases and those with highest pri-

orities are scheduled to execute first in an attempt to reveal defects at early stages of testing,

enabling early correction of these defects. In turn, the goal for test suite minimization (also

known as test suite reduction) is to choose a subset of test cases with equivalent coverage in

relation to the original test suite, concerning a specific criterion, or test requirement. The size

reduction is mainly provided by removing redundant test cases, i.e. test cases that provide

the same coverage concerning the test requirement analysed (e.g. transitions or statements

covered) [Ma et al. 2005]. Test case selection is used to select a subset of test cases that

meets resource constraints of the test. Despite being similar to minimization techniques, the

selected subset may not provide the same coverage as the original test suite.

Among proposed work in literature, this research focuses on test case selection. Concepts

related to our selection strategy, such as regression testing and model-based testing will

be addressed in the next sections of this chapter. Also, in order to explain our evaluation

methodology, definitions of meta-empirical studies and experiments are presented.

2.1 Model-Based Testing (MBT)

Model-based testing is a black-box approach for automatically generating tests from mod-

els representing software [El-Far 2001]. The generated test cases are executed in order to

evaluate correspondence between software implementation and its specification model, thus

2.1 Model-Based Testing (MBT) 12

a formal model specifying software behaviour is required [Dalal et al. 1999]. The main

activities and artefacts of an MBT approach are presented on Figure 2.1. Given that the

MBT process starts with software requirements, testing can begin once the requirements are

specified.

Requirements
Build the

model

Inputs for the
Test

Expected
Outputs

Generate
Expected Inputs

Generate
Expected Outputs

Execute the
Test

System Under
Test

Test
Infrastructure

Outputs

Compare

Test Results
(Pass/Fail)

Figure 2.1: Activities and artifacts of an MBT Approach.

MBT approaches provide two main benefits. The first one is that models can help in

communication between developers and testers; the second one is that these activities can be

performed automatically, hence reducing costs and effort related to software testing. How-

ever, MBT approaches are seen by many to be too reliant on the specification model.

The model needs to represent information accurately since good results with MBT tech-

niques also depend on good models provided as input [Beizer 1990]. For example, bad mod-

els with inconsistencies or ambiguous information will affect negatively the performance of

an MBT technique. There are several aspects that affect the quality of a model, such as

completeness and correctness of information being represented and the expertise of people

responsible for creating and maintaining the model. By building a good model we are able

to design test cases using information from models (e.g. expected inputs and outputs).

2.1 Model-Based Testing (MBT) 13

Our work uses a document template (Figure 2.2) adapted from Cabral and Sampaio

[Cabral and Sampaio 2008] to describe main and alternative flows of use cases. In its origi-

nal version, the use case template considered each step (of a use case) to be composed by a

description combining a user action, and the corresponding system state and response. Our

adaptation separates those elements as a sequence, in which a stakeholder can describe the

user action and the respective system response separately. That allows more versatility in

definitions of alternative flows and paths with loops, since our adaptation enables two differ-

ent steps to share a common expected system response.

Then, from this use case template, we generate a Labelled Transition System (LTS)

model from those use case documents to provide an intermediary model format for auto-

matic test case generation. An LTS is defined as a 4-tuple S = (Q;A;Ttr; q0), where:

• Q: The set of states;

• A: A finite non-empty set of labels;

• Ttr: The transition relation (Ttr ⊆ (Q× A×Q)), where (qa, l, qb) indicates:

– qa and qb are, respectively, a source and sink (or destination) state, and l is a label;

• q0: The initial state.

Aside from being used as a semantic formalism for several tools (TGV [Jard and Jéron

2005], LTS-BT [Cartaxo et al. 2008], TaRGeT [Nogueira et al. 2007], UMLAUT [Jzquel

et al. 1999], etc.), LTS is a simple format that is capable of representing steps of user actions

and expected results, thus being a suitable candidate to our context. Unlike similar UML

Diagrams, LTS can be expressed simply on a standardized text file format (Trivial Graph

Format - TGF) removing dependencies to modelling tools or XMI processing libraries. On

the other hand, using a generic graph format hinders applicability in real software develop-

ment processes where UML models are dominant in industry.

Therefore, by choosing LTS, we can write simple yet expressive (system level) speci-

fication models, that enables early and numerous execution of our selection strategy. That

simplicity also allows LTS to be an underlying semantics models for other formalism (e.g.

Finite State Machines), and, consequently, it becomes easier to extend its usage to consider

2.1 Model-Based Testing (MBT) 14

Step Id Type Label

1C user_action Select "Cancel" option.

2C
expected

results

"Want to send other item?" message

is displayed.

3C user_action Press "No" button.

4C
expected

Results

"No items were sent" message is

displayed.

Step Id Type Label

1D user_action Press "Yes" button.

Description: Return to the "Send Item" screen

to allow users to repeat the operation.

From Step: 2C

To Step: 2M

Description: Cancel saved message inclusion.

From Step: 2B

To Step: END

Step

Id
Type Label

1M user_action Select "Send Item" option.

2M
expected

results
List of options is displayed.

3M user_action Include an image file.

4M
expected

results

List of saved image files is

displayed.

5M user_action Press "Send Image" button.

6M
expected

results
"Item sent" message is displayed.

Step

Id
Type Label

1A user_action Press "Return" icon.

2A
expected

results
Main menu is displayed.

Step

Id
Type Label

1B user_action Include a saved message.

2B
expected

results

List of saved messages is

displayed.

3B user_action
Select the message and press

"Send" button.

Feature 01 – Messaging
UC_01 – Sending messages with attached items

Description

This use case describes how a message can be sent by

attaching an image file (multimedia) or a message saved on

memory.

Main Flow

Description: Create a new contact

From Step: START

To Step: END

Alternative Flows

Description: Return to the main screen

From Step: 2M

To Step: END

Description: Include message already saved on memory

From Step: 2M

To Step: 6M

Figure 2.2: Example of a use case document used as input for our MBT process. A complete

version is available on Appendix C

specification of non-determinism and timed models [Broy et al. 2005]. Furthermore, an LTS

is able to visually present the system’s behaviour regarding main and alternative flows of a

use case, without requiring much effort in building the model.

Internal and external actions can be represented in an LTS, but since we are focusing on

functional system testing, the transitions will represent interactions between the user and the

system, and the system states required to execute the scenario. Annotations can be used on

the LTS (Annotated LTS - ALTS) to indicate special types of interactions, for example user

actions, system states, among others types of interactions [Cartaxo et al. 2007b]. Figure

2.3 presents an example of an ALTS generated from Figure 2.2. Because the ALTS is a

key element in our evaluation, a more detailed description of ALTS models is provided in

Chapter 5.

In order to automatically generate test cases from an LTS, we need to establish a coverage

criteria such as: Requirements, paths with loops, all transitions, pairs of transitions, all states,

among others mentioned in the literature [Utting and Legeard 2006]. In our approach, we

use a Depth First Search (DFS) algorithm to find all paths of the LTS beginning at the initial

2.1 Model-Based Testing (MBT) 15

Select “Send Item” option

List of options is displayed

”Want to send other item?”
message is displayed

List of image files
is displayed

Include an
Image File

Press “Send Image”
button

“Items sent” message
is displayed

Include a
saved message

List of messages is
displayed

Select the message
and press “Send”

Select “Cancel”
option

Press “No” button

Press “Yes”
button

“ No items were sent”
message is displayed

Press “Return” icon.

Main menu
is displayed

Figure 2.3: Example of an LTS generated from our use case document template.

state and ending on a state without outgoing transitions that do not create cycles (e.g. a leaf).

In order to avoid overhead during test case generation and uncontrolled growth of our test

suite, we determined that all paths with loops are traversed only once. In other words, upon

finding a cycle (e.g. paths with loops), the generation continues until all transitions have been

traversed at most twice or until a leaf is found.

The DFS algorithm was chosen among other techniques in literature because it is a simple

algorithm, easy to implement and to execute1 Figure 2.4 illustrates an example of a test suite

generated from our toy LTS.

In our example we were able to automatically generate test cases exercising all software

behaviours specified in the model. The main drawback is that the generated test cases need

to be executed manually since our test suite is described in natural language. Eventually, a

controlled natural language or model-driven testing approaches can be incorporated in this

strategy to reduce this gap between test cases and code. Nonetheless, having test cases at

early stages of software development is very beneficial for allowing early testing of software,

and availability of a software specification at high level improves visualization of the system

1More sophisticated test case generation techniques may provide better or worse performance, however that

is outside our scope of test case selection investigation.

2.2 Automatic Model Generation 16

User Action Expected Outputs

Select “Send Item”

option

List of options is

displayed

Include an

Image File

List of image files

is displayed

Press “Send Image”

button

“Items sent” message

is displayed

Test Verdict:

User Action Expected Outputs

Select “Send Item”

option

Display list of options

is displayed

Include a

saved message

List of messages is

displayed

Select the message

and press “Send”

“Items sent” message

is displayed

Test Verdict:

User Action Expected Outputs

Select “Send Item”

option

Display list of options is

displayed

Include a

saved message

List of messages is

displayed

Select “Cancel”

option

”Want to send other item?”

message is displayed

Press “No” button
“ No items were sent”

message is displayed

User Action Expected Outputs

Select “Send Item”

option

Display list of options is

displayed

Press “Return” icon.
Main menu

is displayed

Test Verdict:

Test Verdict:

User Action Expected Outputs

Select “Send Item”

option

Display list of options is

displayed

Include a

saved message

List of messages is

displayed

Select “Cancel”

option

”Want to send other item?”

message is displayed

Press “Yes”

button
List of options is displayed

Include an

Image File

List of image files

is displayed

Press “Send Image”

button

“Items sent” message

is displayed

Test Verdict:

Figure 2.4: Example of a generated test suite.

and helps stakeholders to be on the same page when developing a product.

One of the big problems with MBT in general is the size of the generated test suite. For

large and complex system, the number of possible scenarios can be very big, hence impairing

the execution of all generated test cases. Consequently, whenever the specification model

changes, the costs of finding the test cases traversing model modifications are even bigger

due to the test suite’s complexity and size. Automatic selection strategies, such as ours, can

aid overcoming that difficulty and alleviate the problems of having large and redundant test

suites.

2.2 Automatic Model Generation

The increasing popularity of model-based technology has led to a wide range of techniques

proposed in different fields of software engineering research. Models gather valuable infor-

mation regarding software and enable harness of knowledge concerning internal, external,

structure, and/or behavioural interactions. Accordingly, there are several model formats to

represent different types of information from software systems, such as structure (class dia-

grams, object diagrams) or behaviour (state machines, sequence diagrams).

2.2 Automatic Model Generation 17

Therefore, building good and consistent models is not easy and usually becomes an

expensive task, consuming a lot of time and effort from the development process. As an

alternative, automatic generation of models can be used, either to generate models from

scratch [de Oliveira Neto et al. 2013], to extract properties of the system [Feng et al. 2007;

Huselius et al. 2006; Lorenzoli et al. 2008; Deeptimahanti and Sanyal 2011], or to perform

model transformation [Brottier et al. 2006; Sen et al. 2009] with specific quality attributes

under control, for instance, coverage and diversity.

The Model-Driven Engineering (MDE) field has been targeting model generation from

different angles. In a sense, the transformations between models can be seen as a well defined

generation based on constraints established by meta-models or Object-Constraint Language

(OCL) expressions [Guerra 2012]. That leads to several issues to preserve the model’s in-

formation when transitioning between different types of models and levels of abstraction. A

different approach could also be to then generate instances of models as input to test these

transformations [Brottier et al. 2006; Sen et al. 2009]. That may resemble our approach

(SBMTE), but ours is concerned in generating a space of models and finding regions of this

space for optimal or near-optimal solutions, i.e. models with a positive effect on an MB

technique’s performance.

An example of model generation similar to ours is the technique proposed by Kanstrén

[Kanstrén 2009] where a model type is defined to generate instances of that model to enable

automatic test case generation. Then, behavioural patterns of the SUT are defined to extract

traces of execution resulting in executable test cases. The advantage of their approach is

that the generated test cases covered complex interactions that could only be seen because of

the generated models. But unlike SBMTE, his approach requires an actual SUT and human

interaction to edit the generated models.

In other work, Cartaxo proposed an algorithm to generate LTS models [Cartaxo 2011].

However, her generator does not address levels of realism among generated models focusing

instead on generation of toy LTS. Furthermore, her generator did not perform modifications

on the LTS and had different constraints and rules to guide the construction of models (e.g.

choice of states and transition).

SBMTE is different from the work mentioned throughout this section because it focus

on empirical evaluation by providing an underlying approach to investigate MB techniques

2.3 Specification-Based Regression Testing 18

in general. To the best of our knowledge, we could not find work generating samples of

models to overcome the lack of availability of real models. The generation of models is

widely used for different purpose, but the meta-heuristic search within the space of models

and the concern in having realistic samples of models is a unique feature of SBMTE.

2.3 Specification-Based Regression Testing

Regression testing is performed after modifying a software system. The goal is capturing

regression defects, which, in turn, are defects inserted due to a modification [Binder 1999],

i.e. the test cases are executed to verify if the modifications caused the software to stop

functioning as expected.

In short, let P be a baseline version of the program, and P ′ be the next version (i.e. delta

version) of P . In turn, S and S ′ are, respectively, the baseline and delta specifications for P

and P ′. The test suite used to test P is referred to as T , and T ′ is the test suite used to test

P ′. Throughout this work, T and T ′ will be referred as baseline test suite and delta test suite,

respectively. P (t)/P ′(t′) stands for the execution of P/P ′ with test case t ∈ T/t′ ∈ T ′.

There are two main types of regression testing: Corrective and progressive regression

testing. Corrective regression testing is applied when specification is not changed, for exam-

ple when code refactoring is performed. Since the specification remains the same, test cases

can be reused. On the other hand, in progressive regression testing the specification changes

and new test cases must be designed (at least for new parts of the specification) [Tamimi and

Zahoor 2011].

After each regression testing session is finished, the test cases used to test the delta ver-

sion become a part of the regression test suite, and the cycle repeats each time a set of

modifications are performed. Since modifications are performed frequently, the test suite

size and the costs related to testing often increase significantly. Test case selection can be

used to alleviate the costs incurred in regression testing. The goal is to select a (minimal)

subset of test cases Ts that tests P ′. Whenever the costs to select and execute the subset are

smaller than the costs to execute all of the test cases (i.e. the retest all approach), the cost of

regression testing has been reduced [Rothermel and Harrold 1996].

Ideally, Ts should contain only fault-revealing test cases, that are test cases that will reveal

2.3 Specification-Based Regression Testing 19

defects in P ′. However, identifying this subset is impractical because there is not enough

information to select only those test cases. Instead, a weaker criterion is considered and

the goal becomes selecting all modification-traversing test cases, i.e. test cases exercising

new or modified parts of P ′/S ′, or test cases that formerly executed removed parts from

P/S [Rothermel and Harrold 1996]. The subset of modification-traversing test cases is the

closest approximation to the fault-revealing test cases that can be achieved without executing

all test cases [Yoo and Harman 2012].

Our selection strategy (SART) focuses on progressive regression testing, where modifi-

cations are performed on a specification model and the goal is to select all test cases that

exercise the parts of the system that has been modified in S ′ (compared to S). Two types

of modifications are considered here, the addition and removal of model elements in the

specification models.

As an example, consider that a client requests removal of use cases or scenarios from

a system. This removal is reflected by a removal of transitions from a specification model.

In turn, addition of new transitions represent, for example, new functionalities or scenarios.

More complex modifications can be expressed as a combination of these two [Korel et al.

2002; Chen et al. 2007]. According to Leung and White [Leung and White 1989], the test

cases for regression testing can be classified as:

• Obsolete: This class contains test cases that cannot be executed anymore due to an

invalid input/output relationship, or for traversing a removed part of S or P .

• Reusable: This class comprises test cases exercising unmodified parts of the specifi-

cation and their corresponding unmodified program construct. Since no modification

is exercised, the same result is expected, meaning that they do not need to be executed

during progressive regression testing.

• Retestable: This class includes test cases that exercise unmodified parts of the speci-

fication and may present a different result. An example of retestable test cases are sce-

narios exercising unchanged parts of S ′ but with new program constructs (e.g. bound-

ary values).

• New-structural: This class contains structural test cases for new program constructs.

2.3 Specification-Based Regression Testing 20

• New-specification: These test cases exercise the modified parts of the specification by

executing new code in P ′.

Distinguishing the classification of retestable and reusable test cases at system’s specifi-

cation level can be challenging. For models with lower levels of abstraction (e.g. control flow

graphs built from a source code) the program construct can be easily accessed. However, that

is very difficult to achieve with abstract test cases. Briand et al. adapted Leung and White’s

classification to consider UML designs in order to handle a higher level of abstraction. Ac-

cording to their definition, a retestable test case remains valid in terms of the sequence of

messages to boundary objects but one or more of these messages may have changed (e.g. op-

eration postcondition, signal class), whereas reusable test cases remains unchanged both in

the sequence and the internal messages [Briand et al. 2009]. We consider a similar definition

where retestable test cases are sequences of transitions that remain the same but at least one

of the labels of those transitions has changed (i.e. no addition or removal of transitions hap-

pened, just changes in the label). In turn, unchanged sequences and labels will be considered

as reusable test cases.

Similarly, classification and selection of obsolete test cases is challenging and yet very

important. If executed, an obsolete test cases will fail not due to a regression defect, but due

to an attempt to execute removed parts of the software system. Thus, maintenance to identify

and remove these test cases from the test suite is required. Nonetheless, removals can also

cause regression defects. For example, an inappropriate removal may cause the SUT to reach

a state that should not be reached according to the new specification. But how can we test

a removed part of the SUT? One solution is to exercise transitions (of an obsolete test case)

that were not removed [Korel et al. 2002] based on the assumption that a region2 (named

firewall) around the removal can be defined where regression defects can be triggered.

Selected test cases can belong to any of the mentioned classes according to the selec-

tion goal. Specification-based regression test selection benefits from model-based tech-

niques since most types of models support a high level representation of the system. Thus,

specification-based strategies provide a more precise traceability between test cases and the

2For specification models, we consider regions to be a set of transitions and states within a small distance

from the state where modifications were performed. For example direct predecessors and successors of the

modified state.

2.4 Similarity-Based Test Case Selection 21

modified requirements of the software, since test cases can be generated using a software’s

specification [Fahad and Nadeem 2008] as shown in previous sections of this chapter.

2.4 Similarity-Based Test Case Selection

There are various strategies to select test cases in literature. For example, the choice of a

subset can be done manually by a tester based on her expertise, or even by randomly selecting

test cases until the subset reaches the desired size. More sophisticated approaches can use

probability values (or weights) to guide selection of important test cases [Prowell et al. 1999;

Basanieri et al. 2002; Barbosa et al. 2007] or even specification of scenarios (named test

purposes) to prune undesired scenarios and select a subset exercising a specific system’s

requirements [Jard and Jéron 2005; Nogueira et al. 2007].

Among proposed selection strategies in literature, similarity-based test case selection

(STCS) has shown positive results for MBT approaches including some industrial cases

[Cartaxo et al. 2011; Hemmati et al. 2013; Rogstad et al. 2013]. The goal is selecting

the most diverse test cases based on the assumption that a diverse subset of test cases have

a higher defect detection rate. This diversity is then obtained by similarity measurements

among each pair of test cases. Considering that each test case is a vector of elements (e.g.

code statements, model transitions, system conditions, etc.), similarity functions can be used

to assign values determining the distance between two vectors. Consequently, close vec-

tors indicate similar test cases. The challenge then becomes choosing appropriate similarity

functions and encoding strategies for each test case [Hemmati et al. 2013].

For example, by considering each of our abstract test cases as a vector of steps from

the LTS model, a similarity function can be used to determine which pair of test cases have

similar steps. There are several similarity functions used in literature each with their own

strengths and weaknesses, such as the Hamming distance and Jaccard index. Hemmati et al.

[Hemmati et al. 2013] provide thorough description and examples for the different similarity

functions used for test case selection.

The similarity function used by SART [de Oliveira Neto and Machado 2013] is an

adapted version of the similarity function proposed by Cartaxo et al. [Cartaxo et al. 2011].

This function was chosen for presenting beneficial results in early evaluation with SART and

2.5 Experimental Studies in Software Engineering 22

with selection of test cases generated from our chosen type of specification model. More-

over, we decided to further explore the benefits of using a similarity function for selecting

test cases based on modified specification models, before beginning to experiment with dif-

ferent similarity functions. Details regarding our similarity function will be presented when

explaining SART in Chapter 3.

2.5 Experimental Studies in Software Engineering

In order to achieve reliable conclusions during research, we need to choose an appropri-

ate method such as surveys, case studies and experiments and then evaluate our hypothesis.

Surveys are used for exploring and understanding a population based on a sample. The anal-

ysis is often performed through forms, interviews and questionnaires, allowing researchers to

explain and describe the population based on the sample drawn. In turn, case studies are con-

ducted to investigate phenomenon within a specific time interval or industrial setting, hence

observations and conclusions are often limited and hard to scale up or generalize [Wohlin

et al. 2012].

The main difference between those empirical methods and an experiment is that the lat-

ter is based on a formal, rigorous and controlled investigation of variables, thus increasing

confidence in obtained results. The starting point is to observe a cause and effect relationship

(Figure 2.5) expressed through a hypothesis, thus we want to study the outcome (dependent

variables) after changing the input variables (independent variables) to a process. Examples

of experiments could be to investigate the effect of changing a software development process

or testing technique (examples of independent variables) in the productivity rates of devel-

opers, time to release a product, or defect detection rate (examples of dependent variables).

Factors in an experiment, are one or more independent variables with varying values

named treatments (or levels) that when changed will affect the dependent variables. Thus

during an experiment factors assume different treatments while other independent variables

(objects such as software artefacts and subjects/participants involved with the experiment)

are controlled and then the effect of these changes are measured through the dependent vari-

able for subsequent analysis. Experiments require a process in order to be properly con-

ducted. Here, we use Wohlin’s et al. process that comprise the following steps [Wohlin et al.

2.5 Experimental Studies in Software Engineering 23

Treatment Outcome

Cause
construct

Effect
construct

Experiment objective

Experiment operation

Theory

Observation

Cause-effect

construct

Treatment-outcome

construct

Figure 2.5: Experiment principles (adapted from Wohlin et al.[Wohlin et al. 2012])

2012]:

• Definition: The main concern in this step is properly defining the elements of the

experiments, such as the hypothesis being investigated, context and purpose of the

study.

• Planning: This step is the foundation of the experiment where variables and their

values are defined, main activities are planned and the experimental design is deter-

mined. The latter establishes how the execution is conducted and plays a major role in

enabling analysis of dependent variables with the appropriate statistical functions and

tools. Also, the null and alternative hypotheses are created, and they usually represent

the causation effect between treatments of a factor. Traditionally the null hypothesis

indicates that the outcome is not affect by different treatments (H0 : µa = µb) and the

alternative indicate otherwise (H1 : µa 6= µb
3), hence the goal is often to reject the null

hypothesis.

• Operation: Preparation and actual execution of the experiment are performed during

this step, i.e. setting up tools, defining scripts and questionnaires for subjects, etc.

3The sign can change among the inequalities greater/less than.

2.5 Experimental Studies in Software Engineering 24

• Analysis: The data collected during operation is organized (e.g. reduced or processed)

and interpreted to draw conclusions regarding the hypothesis. Interpretation of data

is mainly done by analysing descriptive statistics and perform hypothesis testing to

ensure a significance level in conclusions drawn.

• Packaging: This step focuses on presentations and packaging of results regarding the

experiment. This last activity is important since it allows other researches to repro-

duce the experiment based on information made available, thus it is recommended to

generate research compendia with access to data, reports and the platform where the

experiment was executed [González-Barahona and Robles 2012].

During this process several validity threats may appear and compromise validity of re-

sults, meaning that the results must be valid for the population being considered in order to

allow generalization of results. These threats are classified as conclusion, internal, external

and construct validity [Cook and Campbell 1979]. Conclusion and internal validity threats

are related to the observed effect between treatment and outcome during analysis and execu-

tion respectively. For example, the former is a consequence of wrong statistical relationship

and the latter is a consequence of not controlling or measuring the variables properly. In

turn construct validity threats refer to properly transition from theory to observation where

treatments and outcome indeed reflect cause and effect constructs, respectively. Last, exter-

nal validity threats are concerned with generalization where the relationship observed during

execution really implies in a general cause-effect construct relationship.

Therefore, validity threats must be identified and reported for two main reasons. First,

they allow researchers to properly define what aspects of the experiment can be applied in

practice in order to avoid risks or compromise the integrity of the object being studied by, for

example, transferring technology to production based on wrong results. The second reason is

to encourage reproducibility where, not only the threats but all information possible must be

accessible, allowing other researchers to reproduce or adapt the experiment and then expand

the results. Next we will discuss some basic aspects of statistical analysis to familiarize the

reader with interpretation of data in an experiment.

2.6 Basic Concepts of Statistical Analysis 25

2.6 Basic Concepts of Statistical Analysis

Statistics are powerful tools to interpret and explain data and in experiments they are used

to observe the investigated cause-effect relationship. Traditionally, descriptive statistics are

used to visually observe central tendencies and dispersion regarding data, and then hypoth-

esis testing allows (or not) rejection of the experiment’s null hypotheses based on a level of

significance.

At early stages of analysis, interesting information regarding the data collected can be ob-

tained through graphical representation of descriptive statistics such as mean, median, mode,

variance, frequency, among others. Here we focus our discussion on arithmetic mean and

variance that indicate, respectively, an estimation to the stochastic variable sampled and the

dispersion of the data set around this mean [Jain 1991]. Moreover, these descriptive statistics

can be plotted on commonly known types of graphic representation to allow visualization of

the data set. Figure 2.6 show examples of (a) a scatter plot, (b) a histogram and (c) a boxplot.

20
40

60
80

Exampledofdboxplots

TechniquedX TechniquedY TechniquedZ

D
ef

ec
ts

dre
ve

al
ed

C5
z

2 3 4 510
20

30

ScatterplotdExample

DefectsdrevealedTe
st

dC
as

ed
si

ze
dCt

ra
ns

iti
on

sz

TestdcasedsizedCtransitionsz

Fr
eq

ue
nc

y

10 15 20 25 30 35

0
4

8
12

ExampledofdHistogram

Caz

Cbz Ccz

Figure 2.6: Examples of (a) scatterplot, (b) histogram and (c) boxplots.

Scatter plots are good for assessing dependence between variables and to observe outliers

and data tendency whether the data is outspread or concentrated, whereas histograms consist

of bars with heights representing frequency of values (or interval of values), hence providing

2.6 Basic Concepts of Statistical Analysis 26

an overview of the distribution density. In turn, boxplots are good to visualize dispersion and

sample’s skewness, since median and quartiles are shown.

Boxplots are also useful for comparing two or more alternatives of variables. For ex-

ample, the boxplot for Technique X of Figure 2.6 (c) has a better defect detection rate than

Techniques Y and Z, the same cannot be stated about Techniques Y and Z since both in-

terval overlap, apparently indicating no statistical difference between them. Although there

may not be statistical difference between them, a visual interpretation of data indicates that

Technique Z is better than Technique Y since the interval of the former is tighter among

higher values of defects than the latter.

That idea is related to a “practical significance” of data, where a calculated difference has

meaningful information that affects decision making. Albeit an initial impression that over-

lapping intervals indicate no statistical significant difference between treatments, the experi-

menter needs to be aware of the practical significant difference of data, specially for experi-

ments with software engineering where, ultimately, a stakeholder needs to decide whether a

technique/method/tool should be adopted by the company, or not.

Besides visual interpretation of data and statistics, hypothesis testing allows researchers

to verify if the null hypothesis can be rejected according to the sample distribution. Those

tests are more rigorous than visual interpretation of data because a careful comparison of

residuals and sample distribution is performed. There are several tests available in literature

and the choice must be done carefully since the analysis depends on the experimental design

used. For example, some tests do not support analysis of more than two alternatives being

investigated, whereas others depend on the data distribution. The main difference begins in

choosing parametric or non-parametric tests.

Parametric tests are based on models of specific distributions, thus the data must comply

with assumptions of those distribution, for example being normally distributed [Jain 1991;

Arcuri and Briand 2014]. Non-parametric on the other hand are less rigorous and do not

make assumption regarding the data. As a consequence, non-parametric tests are more gen-

eral and most of the times less powerful than parametric test. However, meeting all of a

parametric test’s assumptions is very difficult4 and using the wrong test is a severe conclu-

4Especially in software engineering studies where new problems arise constantly and bounds or mean values

are usually unknown. Besides, parametric tests assume normal distribution of data that is hardly met when

2.6 Basic Concepts of Statistical Analysis 27

Table 2.1: Some examples of experimental designs and respective parametric and non-

parametric tests.

Experimental Design Parametric Test Non-parametric Test

Comparing of means Tukey Dunn

One factor
(two treatments) t-test Mann-Whitney

One factor
(more than two treatments) One-way ANOVA Kruskal-Wallis

More than one factor Two-way ANOVA Friedman test

sion validity threat compromising the results [Arcuri and Briand 2014].

There is a lot of discussion in literature whether to choose parametric or non-parametric

tests [Siegel and Junior 1988; Jain 1991; Arcuri and Briand 2014]. Besides the assumptions

regarding the data, there are other aspects that affect that choice such as sample size, num-

ber of alternatives to compare and the purpose of the test. Table 2.1 presents a summary

with several hypothesis tests and the correspondent experimental design where they can be

applied.

Ultimately, the outcome of hypothesis testing is a p-value, that is compared to an estab-

lished level of significance (α) to determine if the null hypothesis can be rejected. The rule

of thumb is that if p < α then the null hypothesis can be rejected in favour of the alterna-

tive hypothesis. For example, consider that after testing hypotheses H0 : Technique Y =

Technique Z and H1 : Technique Y 6= Technique Z with a Mann-Whitney test we obtained

p = 0.02 < 0.05 = α, we are allowed to claim with 95% significance level (100%× (1−α))

that Technique Y has a different effect than Technique Z on the investigated dependent vari-

able.

investigating or comparing algorithms that are deterministic or pseudo-random.

2.7 Meta-Empirical Studies of Regression Testing Techniques 28

2.7 Meta-Empirical Studies of Regression Testing Tech-

niques

Regression test case selection is a widely researched topic, given the many possibilities of

application. The community began investigating and developing different ways to evalu-

ate these techniques, hence creating meta-empirical studies. Research on this topic seek

to provide more confidence in efficiency and effectiveness of regression testing techniques

by addressing cross-cutting concerns such as cost-benefit analysis and the study of evalua-

tion methodology. Despite still being in early stages it is believed that its contributions will

significantly help technology transfer of proposed techniques [Yoo and Harman 2012].

One of the main contributions in this field is a framework proposed by Rothermel and

Harrold that has been widely used to evaluate regression test selection techniques [Rothermel

and Harrold 1996] based on generality, inclusiveness, precision and efficiency. Nonetheless,

the community in general needs different or complementary approaches for new issues being

addressed like model-based regression testing, real-time systems or web-applications, given

that these issues usually require methods and artefacts considering specific concepts and

assumptions such as parallelism or non-determinism.

By clearly defining methods and artefacts used in an experiment, the results become

easier to understand and reproduce [González-Barahona and Robles 2012]. For example,

sharing methodologies to extract and process datasets can help in the comparison of results.

Another example that encourages comparison of results is using the same dependent vari-

ables in different studies, like the Average Percentage of Fault Detection (APFD) used in

prioritization techniques. Among the main variables that measure performance of a regres-

sion test technique, two are widely used: Rate of reduction in size and in defect detection

capability [Yoo and Harman 2012].

Most of the times, assessing defect detection capability is very difficulty given that defect

data is often unavailable, and without a priori knowledge of defects, controlled experiments

are hard to perform hindering comparison of different techniques [Andrews et al. 2005].

One solution to address this issue is to use defects seeded by mutants, since studies with

prioritization techniques concluded that mutation defects can be safely used when real or

hand-seeded defects are not available [Do et al. 2005; Do and Rothermel 2006]. However,

2.8 Concluding Remarks 29

there is no guarantee that seeded defects are an accurate predictor of real defects.

In turn, rate of size reduction allows investigation of coverage criteria (e.g. modifications)

and results from different techniques can be compared to assess the trade-off between them.

Despite being an inaccurate cost measure, size reduction can be used to envision a cost

reduction of the regression test. Cost models provide more conclusive results towards cost-

effectiveness of a regression test selection technique [Leung and White 1991; Rothermel and

Harrold 1997; Harrold et al. 2001b]. On the other hand, measuring costs of a regression test

involves many variables that may not be available during the evaluation, such as the costs to

execute the test suites, and the time needed to analyse and correct defects revealed.

Besides the dependent variables, the definition and proper usage of methods and guide-

lines improves on the empirical evaluation of regression test selection techniques. This is an

ongoing work within the community in an attempt to overcome the current lack of empirical

evaluation [Engström et al. 2008; Yoo and Harman 2012]. Eventually, methods and variables

can be shared so that researchers are able to reach more confident conclusions and eventually

reproduce, compare and expand existing results.

2.8 Concluding Remarks

This chapter covered the fundamental aspects of the research. Most of the discussion was

focused on regression testing, test case selection and experimental studies in software en-

gineering. Another fundamental concept used in our work is evaluation of model-based

techniques through stochastic model generation [de Oliveira Neto et al. 2013], however that

discussion will be found in Chapter 5 since it is also a result of this doctorate research.

Chapter 3

Similarity Approach for Regression

Testing

Similarity Approach for Regression Testing (SART) is a test case selection technique to

automatically identify and select test cases exercising new, modified, or affected parts of the

specification model. In summary, SART compares two sets of test cases from a baseline and

a delta version of the specification model. Since test cases are described through scenarios

(i.e. sequences of transitions from the model), comparing the similarities enables testers

to identify changes in the model. The idea is that very similar sets of test cases between

different versions indicate that little modifications were performed on the model, whereas

very different sets (i.e. less similar) indicate that severe modifications were performed to a

point where the sequences of transitions have significantly changed.

Usage of our selection technique alone on a pre-defined set of test cases allows automatic

selection of the desired subset, but when combined with automatic test case generation, the

technique becomes even more powerful since comparison between test cases covering all

paths can be performed automatically. In its original version SART performed test suite

minimisation considering as test requirement the modifications of the model. Therefore, the

reduced subset would only contain test cases traversing a modification. Case studies per-

formed with the technique revealed promising results regarding the technique’s percentage

of size reduction [de Oliveira Neto 2010; de Oliveira Neto and Machado 2011]. However,

due to transition coverage redundancy in the reduced subset, the same set of defects were

being triggered lowering the defect detection rate [de Oliveira Neto and Machado 2013].

30

31

The development and improvement of the technique have continued during this doctor-

ate research. Before presenting details regarding SART’s execution, we present how the

technique can be used in an MBT related test process (Figure 3.1).

Model

(S)

Model

(S’)
Modifications

CreateTest

Cases

Abstract
Test Cases

(T’)

Abstract Test Cases
(T)

System
(P’)

Development

SART
Regression

Test

Test Results

Selected Subset
(Ts)

Baseline Delta

Release

Needs
Fixing?

Yes

No

Figure 3.1: Example of a test process suitable for SART.

After changing the functionalities of the system, a new version of the specification is

defined, hence a new specification model is obtained. In an MBT context, we assume that

there are techniques (either manual or automatic) for creating test cases from the specification

model, and since we target high level specification models we provide as input for SART sets

of abstract test cases. Usually, these test suites tend to be big and redundant [Jorgensen 2002;

Fraser and Wotawa 2007], specially for complex and large system models. Assuming that

the resources (e.g. time, budget) are insufficient to execute the entire test suite, the tester

needs to select a subset of test cases able to test the delta version of the software system

and find the regression defects. In order to illustrate how SART selects test cases, we use an

illustrative example.

3.1 Example 32

3.1 Example

The example is a use case specification for a simple contact list application from a mobile

phone. Figure 3.2 presents an ALTS model and examples of test cases generated from this

model. The use case has two scenarios: Add or edit a contact. Editing allows removal of one

or several contacts, whilst a new contact can be added by inserting the contact’s information

or to import it from a different source (e.g. an e-mail contact, or social media database).

3
.1

E
xa

m
p
le

3
3

0

1

4

5

2

3

6

9

10

11 13

15

16

17

18

19

20

? Start “Contacts” Application

? Choose “Edit” Option

? Choose more than

one Contact and

press “Remove” button.

! “Main Screen” is shown

! List of Contacts is shown

! Selected contacts

are removed.

? Press “Save”

button.

? Choose “Add”

option.

? Press “Cancel”

button.

? Fill in

the form

? Select

“New”

? Choose

“Import”

? Select an

existing contact

! List of options

is shown.

! The confirmation

screen is shown.
! Application

Is closed.

! Confirmation buttons

are enabled.

? Press the

“Exit” button.

! Form with contact

information is shown

12 14

? Select one contact

and Press “Update”

option

! Contact’s form

is shown.

21

? Press “Save and

Export” button.

! Contact is saved on

device and

linked accounts.

22

23

! List of

contacts is

shown.

0

1

4

5

2

3

6 8

7

9

10

11 13

15

16

17

18

19

20

? Start “Contacts” Application

? Choose “Edit” Option

? Choose one

contact and press

“Remove” button

! “Main Screen” is shown

! List of Contacts is shown

! Selected contacts

are removed.

!Selected contact

is removed.

? Press “Save”

button.

? Choose “Add”

option.

? Press “Cancel”

button.

? Fill in

the form

? Select

“New”

? Choose

“Import”

? Select an

existing contact

! List of options

is shown.

! The confirmation

screen is shown.
! Application is

closed.

? Confirmation buttons

are enabled.

? Press the

“Exit” button.

! Form with contact

information is shown
12 14

! List of

contacts is

shown.

Baseline Specification Delta Specification

User

Actions

Expected

Outputs

Start “Contacts”

Application

“Main Screen” is

shown

Choose “Edit”

Option

List of Contacts is

shown

Choose one

contact and press

Remove” button

Selected contact

Is removed.

User

Actions

Expected

Outputs

Start “Contacts”

Application
“Main Screen” is shown

Choose “Add”option. List of options is shown.

Select “New”
Form with contact

information is shown

Fill in the form.
Confirmation buttons

are enabled

Press “Cancel”

button.
List of options is shown.

Choose “Import” List of contacts is shown.

Select an

existing contact

Confirmation buttons

are enabled

Press the

“Exit” button.

Application is

closed.

User

Actions

Expected

Outputs

Start “Contacts”

Application
“Main Screen” is shown

Choose “Add”option. List of options is shown.

Select “New”
Form with contact

information is shown

Fill in the form.
Confirmation buttons

are enabled

Press “Cancel”

button.
List of options is shown.

Select “New”
Form with contact

information is shown

Fill in the form.
Confirmation buttons

are enabled

Press “Save and

Export” button.

Contact is saved on device

and linked accounts.

User

Actions

Expected

Outputs

Start “Contacts”

Application
“Main Screen” is shown

Choose “Edit”

Option
List of Contacts is shown

Select one contact

and Press

“Update” option

Contact’s form

is shown

Fill in the form.
Confirmation buttons

are enabled

Press “Save”

button.

The confirmation screen is

shown

Examples of Test Cases

Delta VersionBaseline Version

? Choose more than

one Contact and press

“Remove” button.

Figure 3.2: Examples of ALTS specification models and test cases.

3.1 Example 34

Eventually, the specification is changed to incorporate three modifications: (1) The sce-

nario for deleting only one contact has been removed. (2) An option to update a contact’s

information is added. (3) Export a contact’s information to a different contact list (e.g. e-

mail). These modifications respectively reflect on the model as following:

• Removal of transitions: (4, “Choose one contact and press ‘Remove’ button”,7) and

(7, “Selected Contacts are Removed”,8);

• Addition of transitions: (4, “Select one contact and press ‘Update’ option.”,21) and

(21, “Contact’s form is shown.”,12);

• Addition of transitions: (16, “Press ‘Save and Export’ buttons’.”,22) and (22, “Con-

tact is saved on device and linked accounts”.,23).

Based on Korel’s et al. description of interaction patterns from modifications [Korel et al.

2002; Chen et al. 2007], we consider two situations where regression defects can be trig-

gered: First, the modified element itself can affect software behaviour, second, any behaviour

(states and transitions) specified near a modification can be affected as a side-effect from

modifications. Since modifications can affect states, we assume that branching states1 are

sensitive to these modifications because a defect on that branch state can cause the system

to reach a different, unexpected state. Thus, the system will not produce the correspondent

output for the performed user action.

In order to clarify our concept of a “modified region”2 (Figure 3.3), consider that the

addition of the “Update contact” functionality caused a defect on the functionality of “Re-

moving a contact”. During our test execution, the user action “Select one contact and Press

“Update” option” is performed and since the functionality was successfully implemented,

the test case passes. Now imagine that, when executing the next test case, the tester per-

forms the action “Choose more than one contact and press the “Remove” button” and when

checking the produced output she finds out that the contact was not removed, thus signalling

a failure.

Therefore, to address these side-effects, we consider that regions near modifications com-

prise the modified model elements themselves and the steps from the same level of the mod-

1We refer to branching states as states with more than one outgoing transitions.
2States and transitions from the ALTS.

3.1 Example 35

10

11 13

15

16

17

18

19

20

? Start “Contacts” Application

? Choose “Edit” Option

? Choose more than
one Contact and

press “Remove” button.

! “Main Screen” is shown

! List of Contacts is shown

! Selected contacts
 are removed.

? Press “Save”
 button.

? Choose “Add”
option.

? Press “Cancel”
button.

? Fill in
the form

? Select
“New”

? Choose
“Import”

? Select an
existing contact

! The confirmation
screen is shown.

! Application
Is closed.

! Confirmation buttons
are enabled.

? Press the
“Exit” button.

! Form with contact
information is shown

12 14

? Select one contact
and Press “Update”

option

! Contact’s form
is shown.

21

? Press “Save and
Export” button.

! Contact is saved
 on device and
 linked accounts.

22

23

! List of
contacts is
shown.

4

5

6

0

1

2

3
9

! List of options
is shown.

Figure 3.3: Examples of regions and model elements affected by model’s modifications.

ified element3. For instance the dark background highlighting states and transitions (Figure

3.3) represent the regions of the model affected by the three modifications performed. The

dotted white transitions and dark states are the modified elements, whereas we assume that

the white solid transitions can suffer side-effects from the performed modifications.

Based on the LTS definition presented in Chapter 2, Section 2.1 the following definition

is presented regarding modified states, transitions and regions of the LTS. Let S and S ′ be the

baseline and delta version of the LTS model, hence Ttr, Q, L and T ′
tr, Q

′, L′ is respectively,

the set of transitions, states and labels from S and S ′. Consider that qm ∈ (Q ∪ Q′) is a

modified state, and a modified transitions (
−→
t m) can either belong to the set of added (Ttr:add)

or removed (Ttr:rem) transitions. Therefore:

•
−→
t m ∈ Ttr:add ⇐⇒

−→
t m 6∈ Ttr ∧

−→
t m ∈ T ′

tr;

•
−→
t m ∈ Ttr:rem ⇐⇒

−→
t m ∈ Ttr ∧

−→
t m 6∈ T ′

tr;

• In order to define the set Ttr:reg of affected regions4 in S ′, consider that:

3The level is the longest distance between the current and the initial state.
4To keep the explanation simple, we decided to consider only the set of affected transitions, since affected

3.1 Example 36

– ∀
−→
t 1,

−→
t 2 ∈ T ′

tr, ∃q1, q2 ∈ Q′, ∃la, lb ∈ L′;

– Ttr:reg = {
−→
t 1,

−→
t 2 |

−→
t 1 = (qm, la, q1),

−→
t 2 = (q1, lb, q2)}

This concept of modified and affected elements will be used to explain our selection

strategy. In order to simplify the technique’s step by step execution, we will change the

transition’s labels, generating a more compact version of the model. A summary of the test

suite (defined manually by traversing the LTS models) and the model is presented in Figure

3.4.

Baseline Test Suite - T

TC1 a b c d e f

TC2 a b c d g h

TC3 a b i j k l m n o p

TC4 a b i j q r s n o p

TC5 a b i j k l m n v j k l m n u t

TC6 a b i j k l m n v j q r s n u t

TC7 a b i j q r s n v j k l m n o p

TC8 a b i j q r s n v j q r s n o p

Delta Test Suite – T’

TC’1 a b c d e f

TC’2 a b c d w x m n y z

TC’3 a b c d w x m n v j k l m n y z

TC’4 a b c d w x m n v j q r s n o p

TC’5 a b i j k l m n y z

TC’6 a b i j q r s n y z

TC’7 a b i j k l m n o p

TC’8 a b i j q r s n o p

TC’9 a b i j q r s n u t

TC’10 a b i j k l m n v j k l m n u t

TC’11 a b i j k l m n v j q r s n u t

TC’12 a b i j k l m n v j q r s n o p

TC’13 a b i j k l m n v j q r s n y z

TC’14 a b i j q r s n v j q r s n o p

TC’15 a b i j q r s n v j k l m n u t

TC’16 a b i j q r s n v j k l m n o p

0

1

4

5

2

3

6 8

7

9

10

11 13

15

16

17

18

19

20

a

c

ge

b

d

f h

o

i

v

m

k q

s

j

p

u

n

t

l

12 14

r

0

1

4

5

2

3

6

9

10

11 13

15

16

17

18

a

c

we

b

d

f

o

i

v

m

k q

s

j

p

u

n

t

l

14

r

12

x

21

19

20

22

23

y

z

Delta Model

Baseline Model

Modifications

Figure 3.4: Compact version of the specification model, and test cases obtained from the

respective models.

states can be found through each affected transition.

3.2 SART’s Selection Strategy 37

3.2 SART’s Selection Strategy

By selecting and executing only a subset of representative test cases, we alleviate some of the

cost issues when money, time or personnel are limited for testing the software system. For

our regression testing context, a representative subset is the one containing test cases that

exercise the modified parts of the model. Initially, our selection strategy uses a similarity

function to identify the test cases exercising the modifications themselves. Then, we apply

test suite minimisation techniques to minimise the set of transitions being covered by test

cases and remove unnecessary transition redundancy. Last we add test cases to our subset

to increase transitions coverage and complement the modifications coverage achieved in the

first step. Figure 3.5 presents an overview of SART’s selection strategy that will be next

applied in our example.

Build Similarity

Matrix

Similarity

Matrix

Classification of

Test Cases

Weight Analysis

Selected
Subset

Delta Test

Suite

Baseline

Test Suite

Test Case

Selection

TargetedReusable Obsolete

Minimisation

Similarity Function

Weights

Desired size (%)

Increase

Coverage

More size

reduction?

Yes

No

Figure 3.5: SART’s selection process.

The input for SART are T and T ′, and the output is Ts ⊆ T ′, hence no obsolete test cases

are selected removing the need for test suite maintenance to identify and remove outdated test

cases. The first step is to build the similarity matrix, which contains information between all

pairs of test cases (tj, t′i) | tj ⊆ T, t′i ⊆ T ′. The baseline test cases are placed in the columns

of the matrix, while delta test cases are placed in the rows. Each position a[i, j] of the matrix

3.2 SART’s Selection Strategy 38

is filled with the similarity values calculated through Equations 3.1 and 3.2.

a[i, j] = Similarity(t′i, tj) =
nit(t′i, tj)

AvgSize(t′i, tj)
(3.1)

AvgSize(t′i, tj) =
|t′i|+ |tj|

2
. (3.2)

The function nit counts the number of identical transitions between a test case from T and

T ′. Here, identical transitions is a pair of transitions with the same source and sink state, and

the same label. In other words, let
−→
t a = (sa1, la, sa2) ∈ Ttr and

−→
t b = (sb1, lb, sb2) ∈ T ′

tr.

Then,
−→
t a =

−→
t b ⇐⇒ sa1 = sb1 ∧ la = lb ∧ sa2 = sb2

5. The number of identical transitions

is then divided by an average of sizes (i.e. number of transitions) in order to normalize the

ratings among all similarity values. As an example, we show calculation of the similarity

value between TC ′6 and TC4.

AvgSize(TC ′6, TC4) =
|TC ′6|+ |TC4|

2
=

10 + 10

2
= 10;

a[6, 4] =
nit(TC ′6, TC4)

AvgSize(TC ′6, TC4)

=
|[−→a

−→
b
−→
i
−→
j −→q −→r −→s −→n −→y −→z] ∩ [−→a

−→
b
−→
i
−→
j −→q −→r −→s −→n −→o −→p]|

10

=
|[−→a

−→
b
−→
i
−→
j −→q −→r −→s −→n]|

10
=

8

10
= 0.80;

The resulting value is then placed in the respective row and column of the matrix, thus

0.8 is placed at row 6, column 4 of the matrix. Furthermore, the similarity value “1” indicates

that an identical sequence is found in both test suites. Therefore, all transitions are the same

and no modification is exercised, being one candidate to be removed from the test suite

(that can be seen by calculating the similarity between TC1 and TC ′1). For the example

considered, the remaining similarity values were calculated, resulting in the matrix of Table

3.2.
5The currently implemented version of SART considers a pair of states to be equal if they share the same

label. For example, transitions (4, g, 7) and (4, w, 21) have the same source state (4), but different labels and

sink states. Thus, in our technique, they are not identical transitions.

3.2 SART’s Selection Strategy 39

Table 3.1: Similarity matrix from the test suites in Figure 3.4.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

TC’1 1 0.667 0.250 0.250 0.182 0.182 0.182 0.182

TC’2 0.500 0.500 0.400 0.300 0.308 0.308 0.231 0.231

TC’3 0.545 0.545 0.769 0.231 0.625 0.625 0.563 0.375

TC’4 0.364 0.364 0.538 0.692 0.438 0.625 0.688 0.688

TC’5 0.500 0.500 0.500 0.700 0.769 0.615 0.769 0.385

TC’6 0.250 0.250 0.500 0.800 0.385 0.615 0.615 0.615

TC’7 0.250 0.250 1 0.700 0.615 0.615 0.769 0.538

TC’8 0.250 0.250 0.700 1 0.385 0.615 0.769 0.769

TC’9 0.250 0.250 0.500 0.800 0.538 0.769 0.615 0.615

TC’10 0.182 0.182 0.615 0.385 1 0.813 0.688 0.500

TC’11 0.182 0.182 0.615 0.385 0.813 1 0.875 0.688

TC’12 0.182 0.182 0.769 0.769 0.688 0.875 1 0.813

TC’13 0.182 0.182 0.615 0.615 0.688 0.875 0.875 0.688

TC’14 0.182 0.182 0.538 0.769 0.500 0.688 0.813 1

TC’15 0.182 0.182 0.615 0.615 0.750 1 0.875 0.688

TC’16 0.182 0.182 0.769 0.769 0.688 0.875 1 0.813

The next step is to analyse the similarity values and classify test cases as:

• Obsolete: Identified through columns that present not a single similarity value of 1.

– Tobs = {TC2};

• Reusable: Rows containing at least one similarity value of 1 indicate unchanged se-

quences of transitions already tested in a previous version, thus a reusable test case.

– Treus = {TC ′1, TC ′7, TC ′8, TC ′10, TC ′11, TC ′12, TC ′14, TC ′15, TC ′16};

• Targeted Test Cases: Contains both new specification and test cases that were not

executed before. They can be identified through rows that do not have a similarity

value of 1.

– Ttarg = {TC ′2, TC ′3, TC ′4, TC ′5, TC ′6, TC ′9, TC ′13};

After the classification is concluded, we select test cases that exercise added (targeted

test cases) and removed (obsolete) parts of the specification model. Note that an obsolete

test case cannot be executed on the SUT, hence SART selects delta test cases very similar to

obsolete test cases. This enables execution of similar sequences of paths where a removal

3.2 SART’s Selection Strategy 40

has occurred, increasing the chances of revealing a regression defect caused by such a mod-

ification [Korel et al. 2002].

First, the delta test cases more similar to each respective obsolete test case are added to

the subset. In this example, there is only one obsolete test case (TC2), thus, the highest

similarity value of the respective column is obtained (0.667), resulting in the selection of

TC ′1. Notice that TC ′1 exercises a very similar sequence to TC2 (both in the exercised

transitions and size), specially since TC ′1 also traverses state 4, where a transition’s removal

occurred.

Next, we add all targeted test cases to a subset resulting in: Taux =

{TC ′1, TC ′2, TC ′3, TC ′4, TC ′5, TC ′6, TC ′9, TC ′13}. As can be seen all modifications

have been covered, but several test cases repeatedly cover the same transitions, hence there

is still a lot of redundancy among covered transitions. The solution is applying minimisa-

tion techniques to select a reduced set of test cases covering all transitions of our current

subset. There has been extensive research on usage of heuristics for test suite minimisation

[Bertolino et al. 2010; Hemmati et al. 2011].

The H heuristic [Harrold et al. 1993] was chosen for our minimisation step because

it showed good results6 for revealing defects in an MBT process similar to ours [Cartaxo

2011]. The technique is to first define a cardinality table where each cardinality corresponds

to the number of test cases covering a specific test requirements (TR), or in our case, a

single transition from the subset. Then, the test cases covering the lowest cardinality TR are

included in the reduced subset to ensure coverage of requirements being covered only by a

specific test case (named essential test case). As test cases are included, all the respectively

covered TR are marked.

After defining the traceability and cardinality tables (Table 3.2), we include the test cases

covering more requirements from each cardinality set until all requirements are marked,

i.e. the reduced subset covers all TR. If there is a tie among the test cases, the next car-

dinality is examined and so on. From our example, we begin with an empty reduced

subset Tr and then investigate cardinality 1 for requirements −→u ,
−→
t ,−→o ,−→p ,−→e ,

−→
f . The

test cases covering TR at this cardinality are TC ′1, TC ′4, TC ′9, resulting in addition of

6In a case study, Cartaxo showed that the H heuristic reveals more defects when compared to the Greedy

(G), Greedy-Essential (GE) , and Greedy-1to− 1 Redundancy-Essential (GRE) heuristics.

3.2 SART’s Selection Strategy 41

Table 3.2: (a) Traceability between test requirements and test cases, and (b) cardinality of

each test requirement.

TR
Test Cases

Number

of Test
Cases

TC'1 TC'2 TC'3 TC'4 TC'5 TC'6 TC'9 TC'13

a x x x x x x x x 8

b x x x x x x x x 8

c x x x x 4

d x x x x 4

e x 1

f x 1

i x x x x 4

j x x x x x x 6

k x x x 3

l x x x 3

m x x x x x 5

n x x x x x x x 7

o x 1

p x 1

q x x x x 4

r x x x x 4

s x x x x 4

t x 1

u x 1

v x x x 3

w x x x 3

x x x x 3

y x x x x x 5

z x x x x x 5
6 10 14 15 10 10 10 14

Cardinality Test Requirements

1 e, f, o, p, t, u

3 k, l, v, w, x

4 c, d, i, q, r, s

5 m, y, z

6 j

7 n

8 a, b

(a) (b)

TC ′4 for covering more TR among them (last row of Table 3.2). Consequently, TRs
−→a ,

−→
b ,−→c ,

−→
d ,−→w ,−→x ,−→m,−→n ,−→v ,

−→
j ,−→q ,−→r ,−→s ,−→n ,−→o ,−→p are all marked as covered. Con-

tinuing with unmarked TRs at cardinality 1 test cases TC ′9 and TC ′1 are added to the re-

duced subset. The next cardinality is 3 with unmarked TRs
−→
k ,

−→
l resulting in choice of

TC ′13. After this, all TRs become marked concluding our minimisation stage with subset:

Tr = {TC ′4, TC ′1, TC ′9, TC ′13}.

At this point all transitions of the subset are covered with half the number of test cases.

However, some regression defects may be revealed only through interaction of transitions or,

as mentioned earlier, triggered as side-effects from nearby modifications. In order to cover

the side-effect regions, we fill the gaps left from removing redundant test cases with reusable

test cases similar to our reduced subset. By keeping a constant similarity analysis, we ensure

that our test cases are still near the modifications, even if not covering the modifications

themselves.

The technique proceeds by calculating a new similarity matrix (Table 3.3) between Tr

(rows) and Treus (columns). Then, we search for the highest similarity value in each row

(random choice is used for tie breaks) and then add the respective column to our final sub-

3.3 Concluding Remarks 42

Table 3.3: Similarity matrix for the reduced subset and the reusable test cases.
TC’7 TC’8 TC’10 TC’11 TC’12 TC’14 TC’15 TC’16

TC’1 0.25 0.25 0.18 0.18 0.18 0.18 0.18 0.18

TC’4 0.46 0.61 0.43 0.62 0.75 0.68 0.62 0.56

TC’9 0.5 0.8 0.53 0.76 0.61 0.61 0.76 0.61

TC’13 0.61 0.61 0.68 0.87 0.87 0.68 0.87 0.87

set followed by removal of that column from our new matrix in order to avoid repetitive

selection of the same set of similarity values. From Table 3.3 we begin at row TC ′1 by

finding a tie (0.25) between TC ′7 and TC ′8, resulting in (random) selection and removal

of column TC ′8. We proceed with analysis of TC ′4, TC ′9, TC ′13 resulting in selection of

TC ′12, TC ′15, TC ′11 respectively. At this point the size limit is reached and SART’s out-

put for our example is: Ts = {TC ′1, TC ′4, TC ′8, TC ′9, TC ′11, TC ′12, TC ′13, TC ′15}. If

there were more slots to fill, the technique would return to the first row and repeat the pro-

cess, until the gaps are filled or all reusable test cases are removed from the matrix. As can

be seen both the modifications and regions shown in Figure 3.3 are being exercised by our

selected subset, increasing the chances of revealing regression defects.

3.3 Concluding Remarks

This chapter discussed our selection strategy, and the steps for executing SART through

an illustrative example. The main benefit of SART is providing automatic selection of test

cases close to the specification level, instead of investigating test cases at the source code

level where programming language skills and knowledge of the system’s components and

subsystems is required. Using this black-box approach enables, for example, stakeholders

to present test cases for clients as part of an acceptance test. The major drawback, on the

other hand, is requiring manual execution, albeit existing research can mitigate that problem,

for example, by creating model transformations to provide executable code from high level

models or to create TTCN7 (Testing and Test Control Notation) test cases.

Furthermore, the simplicity of our similarity function provides versatility because it can

be easily adapted to support different types of models such as activity diagrams or finite state

7http://www.etsi.org/technologies-clusters/technologies/testing/ttcn-3

3.3 Concluding Remarks 43

machines, hence making our approach more independent of a model type. For example, the

number of identical transitions could be used to count the number of identical activities, or

guards in conditions, or messages in a sequence diagram and so forth. The classification of

test cases can also alleviate maintenance of the regression test suite by helping the tester to

remove obsolete test cases.

SART has come a long way since it was introduced as WSA-RT. Our similarity-based

strategy has gone through major changes in order to improve in percentage of size reduction

and transitions coverage, the latter being an attempt to improve defect detection rate. Un-

fortunately, conclusions regarding defect detection rate are hard to obtain due to limitations

in evaluation methodologies, such as the lack of defect data or difficulties in tracing code

defects to the model’s elements. As a consequence measuring defects is challenging, and

instead we are limited to measuring the number of test cases that failed8.

Nonetheless, the evaluation strategy also proposed in this doctorate research addresses

some of these limitations and allowed us to draw conclusions about usage of STCS to iden-

tify and select modification-traversing test cases. This evaluation methodology is based on

stochastic generation of specification models presented in Chapter 5, but before that we will

discuss some other proposed work for specification-based regression test selection and how

they differ from SART.

8A failure can be caused by one or more defects, making it hard to precisely identify and correct each of

those defects.

Chapter 4

Review on Test Case Selection for

Regression Testing

Test case selection for regression testing is a widely researched topic in literature, resulting

in creation of a variety of techniques, each with their own solution to select a subset of test

cases, for example genetic algorithms, adaptive random selection, search-based techniques,

and most of those techniques rely on artefacts from source code level [Korel et al. 2002]. Ac-

tually, the techniques were first proposed for procedural programs [Leung and White 1990;

Gupta et al. 1996; Vokolos and Frankl 1997], followed by object-oriented programs

[Hsia et al. 1997; Rothermel et al. 2000; Harrold et al. 2001a], but recent tech-

niques explore several other aspects of software such as components [Zheng et al. 2006;

Mao et al. 2007], database [Willmor and Embury 2005], web-services [Xu et al. 2003;

Tarhini et al. 2006] and, among others, information from software models [Rothermel et al.

2000; Chen et al. 2007; Naslavsky et al. 2010].

Moreover, usage of models is not restricted only to a system’s specification level. Some

techniques use models to analyse source code [Wu et al. 1999; Rothermel et al. 2000;

Harrold et al. 2001a; Ren et al. 2004; White et al. 2008; Mansour and Statieh 2009] and

perform test case selection based on changed classes, methods, etc. Even though these tech-

niques use a model-based approach they are not related to our research because they are

mainly for white-box approaches, whereas we focus on black-box. This chapter will dis-

cuss some related work for specification-based test case selection, beginning with general

aspects for selecting test cases for regression testing, followed by a section detailing some

44

4.1 Selection Strategies 45

techniques.

4.1 Selection Strategies

There are several ways to select test cases, each with its own benefits and drawbacks. A

strategy widely used for test case selection in general is a random selection. The subset is

chosen by randomly adding test cases until the subset size meets the resources constraints for

performing the test [Graves et al. 2001; Cartaxo et al. 2011]. In addition, some experienced

testers may use their own expertise or knowledge about the SUT to select a proper set of test

cases. In either cases, these strategies are risky for not relying on a formal criterion able to

express representativeness of a selected subset, resulting in a proposal of more sophisticated

approaches targeting specific coverage criteria.

One criterion widely used for selecting regression test cases is modification coverage

through selection of modification-traversing test cases, since they are more likely to reveal

regression defects [Rothermel and Harrold 1996; Yoo and Harman 2012]. Therefore, selec-

tion strategies developed to identify and analyse aspects of a modification can increase the

defect detection capability of the selected subset, leading to one of the main strategies for se-

lecting regression testing: Identifying modifications. After identifying the modified elements

of a software system we select the test cases exercising these elements.

In order to identify what has been modified, information regarding different software

versions is required, because then a ‘simple’ way to identify modified entities is comparing

both versions (baseline and delta). On the other hand, this comparison can be costly depend-

ing on a software’s complexity and size. One of the first techniques with that strategy was

proposed by Laski and Szermer [Laski and Szermer 1992]. The goal was to compare Control

Flow Graphs obtained from different versions of a source code and then identify subgraphs

comprising the modified transitions and states, that in turn are mapped to code statements.

Several more recent techniques select regression test cases by identifying modifications

[Sajeev and Wibowo 2003; Liang 2005; Gao et al. 2006; Naslavsky and Richardson 2007;

Muccini 2007; Farooq et al. 2007; Gorthi et al. 2008; Farooq et al. 2010]; however, not

all modifications are handled by these techniques. For example, some are unable to identify

removed elements or more complex modifications (e.g. to replace an architectural module,

4.1 Selection Strategies 46

or change a complex component of the software).

As mentioned before, some regression defects may be found on unmodified parts of

software, triggered as side effect of a modification, such as software parts dependent of a

modified element (e.g. methods, classes or transitions in a model). Therefore, identifying

modifications may not be enough to cover all regression defects leading then to more sophis-

ticated selection strategies where dependence analysis is required.

In dependence analysis of specification models [Chung et al. 1999; Orso et al. 2001;

Korel et al. 2002; Orso et al. 2004; Chen et al. 2007], all of the model elements are in-

vestigated to identify their correspondent dependencies. Thus, if any of those elements are

modified the dependencies are marked as affected leading to selection of test cases travers-

ing these elements. Consequently, these techniques tend to be costly in practice, or limited

by constraints (e.g. system’s size) because complex software systems have several compo-

nents often dependent among them and being able to analyse all these components and the

possibilities of interactions require a lot of time and effort. On the other hand, subsets se-

lected through dependence analysis provide more confidence because they usually increase

the chances of finding regions sensitive to side effects of modifications.

In order to reduce the cost of this analysis, some techniques [Wu and Offutt 2003; Mao

and Lu 2005; Chittimalli and Harrold 2008; Pasala et al. 2008; Subramaniam et al. 2009;

Naslavsky et al. 2009; Naslavsky et al. 2010] perform a simpler analysis of the models,

by defining boundaries where the modification can reach other parts of the software system.

This analysis can be combined with the ‘modification identification’ strategy so that smaller

regions of modified components are analysed (instead of analysing the entire system and test

suite). Therefore, identifying modifications is the more common approach and it is usually

combined with other strategies (e.g. genetic algorithms, value-based approaches or model

checking) to increase the confidence of the selected subset.

Among these selection strategies, SART identifies modifications and analyses similarities

between test cases to increase coverage of transitions attempting to cover modified parts of

the specification model. In order to illustrate the differences between those three approaches,

we present some techniques well known in literature.

4.1 Selection Strategies 47

4.1.1 Cluster-Based Selection

Laski and Szermer proposed a technique to automatically identify modifications on Control

Flow Graphs (CFGs) obtained from baseline and delta versions of a source code [Laski and

Szermer 1992]. Initially, the technique (referred in this work as the “Cluster” technique)

identifies subgraphs, named clusters, on both CGFs and then begins traversing and marking

the states that do not match. Then, the model elements belonging to a marked cluster are

also marked as affected and all test cases exercising them are selected.

This idea has been adapted for specification models [Chen et al. 2002; de Oliveira Neto

2010] where the CFG would represent scenarios of a use case. As an example, consider the

CFGs from Figures 4.1 (a) and (b) (baseline and delta respectively). Three modifications

were performed in this example: The addition of a transition between states 16 and 12; the

removal of the highlighted transition (between states 8 and 10); and the removal of state 11.

1

2

3

4

8

5

7

9

0

1

2

3

4

8

5

7

9

0

10

11 12

13

14

15

16

17 18 19

20

10

12

13

14

15

16

17 18 19

20

6
6

11

1

2

7, 8, 9

0

14

15, 16,
17, 18,

19

20

6

3, 4, 5
10, 11.
12, 13

1

2

0

20

6, 7, 8, 9, 10,
12, 13, 14,
15, 16, 17,

18,193, 4, 5

1

2

0

20

6, 7, 8, 9, 10,
11, 12, 13,
14, 15, 16,
17, 18, 193, 4, 5

1

2

0

20

6, 7, 8, 9, 10,
12, 13, 14,
15, 16, 17,

18,193, 4, 5

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Examples of CFGs and clusters obtained from a baseline, (a), (c) and (e), and a

delta version, (b), (d), (f).

By traversing the CFGs we identify the clusters, each beginning at a ‘branch’1, and end-

1States with more than one outgoing transitions.

4.1 Selection Strategies 48

ing in a ‘join’2. Laski and Szermer propose a bottom-up approach, where small clusters

are identified at first and then these smaller clusters are combined in bigger clusters. The

technique stops when both CFGs are isomorph3.

In our example, after first traversal of each CFG, 4 clusters are identified for the baseline

model while only 2 are identified for the delta version. The clusters can be seen in Figures

4.1 (c) and (d). For example, the cluster named “10, 11, 12, 13” in Figure 4.1 (c) represents

the subgraph containing states 10, 11, 12 and 13.

Since the CFGs are not isomorphic, we traverse the models once more resulting in Fig-

ures 4.1 (e) and (f). Note that the 3 clusters of Figure 4.1 (c) were combined with states 6

and 14 into one big cluster (named 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19). Now that

both CFGs are isomorphic, the technique selects the test cases traversing the clusters where

modifications were identified (i.e. test cases exercising states 6 to 19). It can be seen that no

modification is found on states 1, 2 and the cluster 3, 4, 5, hence test cases traversing these

states are not to be selected.

The authors of the technique stated that numerous small clusters provide a more accurate

selection. This claim was later confirmed by Rothermel and Harrold [Rothermel and Harrold

1996] in an empirical study where Cluster presented a very good defect detection capabil-

ity and regression test suite size reduction. However, the study was performed for CFGs

generated from source code, where several methods tend to form several small clusters.

On the other hand at the specification level, the scenarios of use cases tend to have a

higher level of dependence, for instance the features of a mobile phone where a user can

send a message and attach a picture taken from the camera, or send voice messages and

so on. Consequently, this creates smaller numbers of big clusters. Similarly, more complex

systems with several components tend to generate larger and more complex CFGs, in a sense

that Cluster requires more time and effort to execute.

In conclusion, the idea of identifying the clusters to establish the entities affected by the

modifications can be applied at the specification level. However, other approaches should

also be used (e.g. search-based software engineering, model analysis, etc.) to improve the

process of finding the clusters and selecting the test cases. This problem, on the other hand, is

2States where the divided flows join again
3The CFGs exactly corresponds in form with another.

4.1 Selection Strategies 49

alleviated when using SART, because our technique’s input are test suites, hence comparison

is done automatically through similarity functions.

4.1.2 Dependence Analysis on Extended Finite State Machines

Korel et al. [Korel et al. 2002] proposed a technique for selecting regression test cases by

analysing dependencies in Extended Finite State Machine (EFSM) models. The technique

uses a baseline model and a description of the modifications performed in order to generate

the model’s delta version. Then, from each EFSM a new model named Static Dependence

Graph (SDG) is generated based on dependency analysis between the states and transitions

of the EFSM.

The authors formalized several aspects of the dependencies between the EFSM’s modi-

fied model elements as interaction patterns. Those interactions patterns are subgraphs of the

SDG containing the entities of the EFSM affected by the modification. Chen et al. [Chen

et al. 2007] extended the study revising and identifying more interaction patterns analysed

by the technique. The next step is marking the test cases traversing a modified element of

the EFSM, and then getting interaction patterns from each of those test cases. Therefore,

test cases are expressed by SDG subgraphs representing the control and data dependencies

among the traversed states and transitions. The technique then begins removing test cases

with the same interaction pattern. Figure 4.2 illustrates this process.

The main challenge is obtaining the SDG from each EFSM, since thorough analysis of

all the model elements is costly and complex. Moreover, for big test suites (a very common

case in regression testing and model-based testing) identification of all redundant interaction

patterns requires time. In conclusion, despite performing a very strong selection strategy

[Korel et al. 2002; Chen et al. 2007], application of this technique in real industrial cases

may not be practical.

In addition, most of the dependency analysis is linked to model elements of an EFSM

making the technique dependent of a specific model type. That hinders the technique’s ver-

satility in an MBT process, where the entire dependence analysis needs to be adapted if a

company uses different models, such as UML models. Also, the technique requires knowl-

edge regarding modifications, because EFSM are not compared automatically, and it takes

time to visually analyse models. SART, on the other hand, is fully automatic considering as

4.1 Selection Strategies 50

Modifications

Regression
Test Suite

Baseline
Model

Delta
Model

Baseline
SDG

Delta
SDG

Selected
Subset

Technique Interaction Patterns

Figure 4.2: Execution of the technique proposed by Korel et al. [Korel et al. 2002].

input the test suites, hence our technique is not linked to a specific type of model.

4.1.3 Regression Test Case Selection with Risk Analysis

Chen et al. proposed a technique able to select regression test cases by identifying modifi-

cations in an UML activity diagram and performing a risk analysis [Chen et al. 2002]. In

their work, the authors classify regression test cases as Targeted or Safety test cases. Tar-

geted test cases traverse model elements affected by a modification while safety test cases

traverse the unaffected model elements. The authors claim that it is important to also execute

some test cases unrelated to modifications, because they may test essential functionalities or

requirements of a software.

The technique is divided in two parts (Figure 4.3): The first part is to select targeted

test cases, whilst the second aims at selecting safety test cases. During the first part, both

versions of the activity diagram are compared to identify modifications. The second part, in

turn, performs a risk analysis among the test cases not selected. The goal is to identify test

cases with high risk exposure4.

4The Risk Exposure (RE) is a value calculated by the technique indicating a rank that represents the proba-

bility of revealing a severe defect, and the cost for correcting this defect [Chen et al. 2002].

4.1 Selection Strategies 51

Risk
Values

Affected Entities

Targeted Test Cases

Risk Analysis
SafetyTest Cases

Modification

Baseline Model Delta Model

Stage 1:
Identifying

Modifications

Stage 2:
Risk

Analysis

Selected
Subset

Tester

Figure 4.3: The process for selecting regression test cases proposed by Chen et al. [Chen

et al. 2002]

.

For the first part the technique creates a traceability map, connecting all the test cases with

each model element (i.e. activities and transitions) that it exercises. Next, both models are

compared in order to identify the diagram’s modifications marking all the affected entities.

Chen et al. consider as affected model elements any transition or state that was modified or

any descendent of a modified element. Then, the map is used to trace and select the test cases

linked to affected model elements.

The next part is to perform the risk analysis, where the tester assigns values to test cases.

The values represent the number of defects that a test case can reveal and the severity of

these defects (a value from 1 to 5, where 1 is low and 5 is high severity). Based on those two

values, the technique automatically calculates a risk value and ranks the test cases by a value

called ‘risk exposure’ [Chen et al. 2002]. The test cases with the higher risk exposure values

are selected as safety test cases, and then both targeted and safety test cases are included in

one subset as the technique’s output.

The combination of both parts benefit the technique, since test cases traversing both the

affected elements and critical functionalities are executed on the SUT. Studies with the

4.2 Concluding Remarks 52

technique have shown that the risk analysis can increase the capability of revealing severe

defects by automatically selecting critical test cases [Chen et al. 2002].

Moreover, the case study performed by the technique’s authors only considered experi-

enced testers, but did not address the fact that the risk analysis relies on the tester’s expertise

in assigning the appropriate values for test cases. Therefore, one can assume that inexpe-

rienced testers are likely to assign wrong or inaccurate risk values and then compromise

the technique’s performance. Despite addressing an important issue of automatic selection

strategies (e.g. to ensure coverage of important parts of the model), the technique becomes

sensitive to human skills. We had a similar problem detected when using old versions of

SART during the weight analysis in an experiment [de Oliveira Neto 2010], and that was, in

fact, a hindrance when trying to include the weight analysis in this doctorate research.

Similarly to the EFSM dependence analysis, Chen’s et al. technique is dependent on a

traceability between test cases and a specific type of model. Besides, selecting all descen-

dants of a modified element is not accurate because, depending on where the modification is

performed, most of the activities and transitions of the diagram will be marked and the tech-

nique is forced to select a lot of test cases. SART, on the other hand, avoids that problem by

performing test suite minimisation on the subset of targeted test cases, resulting in a removal

of transitions coverage redundancy and providing a smaller subset of test cases.

4.2 Concluding Remarks

This chapter discussed some work regarding specification-based test case selection and re-

gression testing. Some selection strategies and techniques were presented to provide an

overview of the context in which our proposed strategy is a part of. The original version

of SART was closer to Chen’s et al. technique by combining selection of affected model

elements and test cases’ weights. However, we decided to focus on selection of affected

model elements and keep the weight analysis as an alternative for testers that want to ensure

coverage of important test cases.

The current version of our selection strategy is more similar to the cluster analysis tech-

nique where affected regions of the model tend to be covered due to similarities between

targeted and reusable test cases. Nonetheless, SART is more versatile than other techniques

4.2 Concluding Remarks 53

presented in this chapter, because it only requires two sets of test cases as input, instead of

specific types of models.

Chapter 5

Stochastic Model Generation for

Evaluation of Model-based Techniques

Evaluation of an MB technique, including SART, can only be properly done if there are sam-

ples of models large enough to enable extensive investigation of the technique’s real strengths

and weaknesses. However, these samples are hard to find both in industry and academia re-

vealing the problem of a limited availability of specification models to perform empirical

evaluation of MB techniques. Getting access to real industrial models is a problem since

many companies are reluctant to share their models and usually the number of models avail-

able may not be enough to obtain sample sizes for statistically significant results. Turning

to literature can also be an issue, since many publications often do not provide all artefacts

used in an experiment, providing instead, just a general description about the models used,

such as size or type.

Usually, researches have to rely on repositories to obtain samples, and even then there

is no guarantee that the objects can be very different (or similar) to allow conclusive results

based on a controlled experiment. Besides, the models should comply with assumptions and

constraints established by the investigated MB technique. For example, some techniques re-

quire state-based models, while others require class diagrams, annotations, time constraints,

paths with loops, etc. That aspect is not restricted to model-based techniques.

Similar problems have been reported by researches evaluating code-based techniques as

well (e.g. JDolly1 [Soares et al. 2013], UDITA [Gligoric et al. 2010]), where large samples

1https://code.google.com/p/jdolly/wiki/JDollyManual

54

55

of programs with specific characteristics are needed for experiments. Therefore, availability

alone is not the problem since repositories containing samples of source code, such as open

source software communities, are widely available on the Internet. In addition, a proper

evaluation method requires diversity and control over the sample of objects being used with

the investigated technique.

Then, how can we evaluate SART, or any other MB technique, if we cannot find a suffi-

cient, controllable and diverse sample of models? To address this situation we have proposed

to combine search based techniques and stochastic model generation with descriptive statis-

tics of realistic models [de Oliveira Neto et al. 2013]. Combining information from actual

models used in practice with stochastic model generators would allow us to generate large

number of models (i.e. a space of models) that may share characteristics with industrial mod-

els. Therefore, each model within that space is a possible input and its specific characteristics

will lead to a specific behaviour and thus performance of an evaluated technique.

The goal of finding models with relevant/particular characteristics leads to a search

problem and search-based software engineering (SBSE) can be applied. In SBSE, classic

software engineering problems are reformulated as search problems and metaheuristic search

(MHS) such as genetic algorithms and simulated annealing can be used to find optimal or

near-optimal solutions [Harman and Jones 2001; Clarke et al. 2003].

For example, consider that the best solutions are models where a better performance

is observed when executing the investigated MB technique. Then, we are able to anal-

yse performance on specific sets of models (regions of the space), or search for can-

didates where the MB technique shows especially good or bad performance. In gen-

eral, search-based techniques would allow exploration and visualization of different (sub-

)spaces of models as well as the difficulty for the technique over this space [Feldt 1998;

Feldt 1999], enabling a kind of sensitivity analysis of the technique [Saltelli et al. 2004].

Taken together this approach is named Search Based Model Generation for Technology

Evaluation (SBMTE) [de Oliveira Neto et al. 2013] and is proposed to enable empirical

evaluation of MB techniques when there is a limited availability of models. In this doctorate

research we focus on specification models, but the same approach can be applied to other

types of models, or more generally, development artefacts for which an at least partially

formal formulation can be provided.

5.1 The Model-Based Technique Evaluation Approach 56

5.1 The Model-Based Technique Evaluation Approach

The stochastic model generation is performed by a generator tool developed by the re-

searcher. This generator performs automatic generation of instances of models using de-

scriptive parameters of real models. The parameters are used mainly as constraints to gen-

erate specific subsets of models that are of interest, whereas stochastic choices determine

which instances of models within the subset are generated on a specific invocation of the

generator. Figure 5.1 presents the steps to create a stochastic model generator used in our

approach. We suggest a bottom-up approach, where smaller units of the model are combined

into bigger parts that, in turn, are combined to create a model layout.

Break down into
model elements

Find repetitive
patterns

Define rules to
create patterns

Define rules to
combine patterns

Model
Format

Model
Elements

Patterns Generator
Tool

Figure 5.1: Steps to create a model generator for evaluation of MB techniques.

The first step in creating the generator is to choose the targeted format (or type) of model,

such as Finite State Machines (FSM), Activity Diagrams, Message Sequence Charts, Se-

quence Diagrams, etc. After that, we break down the model into its smallest units, named

‘model elements’. Then, we search for ‘patterns’, defined as bigger combinations of model

elements that are repetitively used to represent meaningful information of a model. Exam-

ples of patterns are: Decisions in an activity diagram (e.g. a combination of decision nodes,

actions and activities), loops in a FSM (a transition with the same source and sink state),

among others. Note that the difference between model elements and patterns is that model

elements are atomic units of the model, whereas patterns are composed of one or more model

elements and usually appear more than once in an instance of the model.

After defining model elements and its patterns, the next step is defining the rules to

combine model elements into patterns. This is an important step regarding the generator’s

validation, because the rules ensure that the generated model instances are consistent and

do not violate the model’s invariant. For example, in an FSM we cannot define a state with

two outgoing transitions both with the exact same guard, cause that creates non-determinism

5.1 The Model-Based Technique Evaluation Approach 57

of the model. The same applies to the next step, where the rules that define the procedure

to combine pattern into model layouts need to be defined. We suggest usage of stochastic

decisions on how to combine pattern into model layouts, in order to achieve a higher diversity

of models.

Throughout the process, especially during definition of model elements and patterns, the

researcher is able to identify which pattern and model elements are representative to be used

as the generator’s input parameters. Imagine that the input parameter of an Activity Diagram

generator could be the number of transitions and activities (model elements), or even the

number of decisions/merges or concurrent activities (patterns). Thus, those decisions depend

on the generator’s design and the type of models targeted.

There are several elements that can help the design of a generator. Aside from experience

in using and modelling using the chosen model format, the research can rely on meta-models

to help definition and rules in creation of models. There is an extensive array of documenta-

tion formally defining Unified Modelling Language (UML) diagrams provided by the Object

Management Group (OMG) 2, expressed in a standardized language (Meta-Object Facility

— MOF). Most of the UML diagrams have their model elements defined through meta-

models, and those artefacts can aid creation of a generator to the respective model format,

such as definition of model elements and rules to combine the patterns.

Once the generator is defined, a desired quantity of models3 with the specified parame-

ters can be systematically generated. We emphasize that the generator tool must be designed

to guarantee consistent instances among generated models, i.e. models that comply (defini-

tions and rules) with the type of model and constraints defined during the specification of

the generator. But, after finished, how can we use the generator to evaluate model-based

techniques?

Overall, SBMTE can vary in two main dimensions: Realism of models and type of search

employed. The level of realism can be related to the parameters used to generate the models,

whereas the type of search is related to the purpose of evaluation. Figure 5.2 presents how

the generation can be used considering both dimensions.

2http://www.omg.org/spec/
3Some classes of models might not allow the generation of arbitrary sizes of samples. The quantity may be

limited depending on model complexity, and combinations of model elements available.

5.1 The Model-Based Technique Evaluation Approach 58

High
(industrial)

None

(toy)
No Search

(Random)

Offline

(Experiments)

Online

(Tech Performance Search)

…

Industrial

models

Property

Extrac"on

Model

Generator

MB

Technique

Search/

Op"miza"on

Model

Generator

Model

Parameters

Industrial

models

Property

Extrac"on

Model

Generator

Sta"s"cal

Analysis

MB

Technique

Model

Generator

Sta"s"cal

Analysis

Model

Parameters

MB

Technique

Industrial

models

Property

Extrac"on

Model

Generator

MB

Technique

Model

Generator

Tuning
Model

Parameters

… …

Types of

Search

Level of

Realism

Figure 5.2: An overview of SBMTE.

High level of realism can only be achieved if the generator or its creator has access to

models used in industry. The generation of models based on input from industry can help

approximating the technique’s performance when used outside laboratory, i.e. in industry.

That reduces risks of applying the technique directly on the actual models and helps the

practitioners decide if it is worthy to adopt the investigated MB technique.

However, getting access to industrial models may be a problem since companies are

usually reluctant to share their models given that they often carry confidential information.

Through SBMTE, researchers can develop scripts that can be executed by industry part-

ners to get statistics regarding the models, such as an average number of states, transitions,

constraints, activities, among other modelling elements. That way the researcher does not

need to access the confidential models themselves, and instead, can gather the descriptive

parameters to generate a similar set of models, thus avoiding or at least mitigating NDA

(non-disclosure agreement) issues. We refer to that approach as model-property extraction.

The lower levels of realism comprise the generation based on parameters reported in

literature or obtained from a few companies. Despite the generation of less realistic models,

a proper type of search can still be employed to provide valid evaluation to the investigated

MB technology. The search is conducted among the space of models and the purpose can

5.1 The Model-Based Technique Evaluation Approach 59

vary from finding models matching a specific combination of parameters or finding models

that cause a better or worse performance of the investigated MB technology. The idea is

that the search-type can achieve at least three different levels: No/Basic, offline SBMTE and

online SBMTE.

• Basic level: At this level, no optimization search is used. At low levels of realism,

many small (toy) models are generated to ensure that the technique is feasible and

properly implemented. Realistic models can be used at this level to obtain convincing

evidence of the scalability of the technology to industrial systems.

• Offline SBMTE: The goal is to search for models that comply with specific combina-

tions of parameters. Models are generated to enable the execution of an MB technique

when industrial models (from which we possibly extracted the parameters) are not nu-

merous enough to provide a proper evaluation. An example is to generate models to

obtain samples for experiments.

• Online SBMTE: At this level performance measures of applying the MB technique

are combined with search. The goal is to find areas among the space of models with a

better (or worse) performance. With the models found, the investigated MB technique

can be executed, evaluated or compared so that trade-offs are identified. This can en-

able a more detailed understanding of the pros and cons of the investigated technique.

Online SBMTE combined with high levels of realism provides means to perform a very

strong evaluation of the investigated MB technique. By observing the models found, one

can decide whether the technique should be applied in industry, based on the models of the

product being developed. However, keeping the search ‘in the loop’ can be costly when the

MB technique is very time consuming to use.

In turn, Offline SBMTE can be a very powerful asset to empirically evaluate MB tech-

niques with limited objects (models). Depending on the descriptive parameters alone, the

stochastic generation can be used to generate enough subjects for the estimated sample size,

specially if statistical significance is desired. Note that the researcher needs to be careful

when using the generation to target statistical significance of a sample, since the sample

size must be properly estimated based on confidence intervals and variations. Furthermore,

5.2 ALTS Model Generator 60

researchers can change the generator to add constraints enabling control of the generation,

such as an upper bound on the sample size.

Problem

Founda!on

Study State-

of-the-art

Candidate

Solu!on

Valida!on in

Academia

Sta!c

Valida!on

Dynamic

Valida!on
Release

Solu!on Problem/

Issue

Industry

Academia

1

2

3

4

5

6
7

Figure 5.3: An overview of technology transfer in practice (Adapted from [Gorschek et al.

2006]).

SBMTE can also help technology transfer of MB techniques to industry. If we consider

Gorschek’s et al. [Gorschek et al. 2006] technology transfer model (Figure 5.3) SBMTE

can be applied in Step 4. Performing experiments with a controlled generation of models

allows the investigation of the technique’s performance under several configurations of mod-

els. This provides a stronger evidence for when the technique is applicable and likely to be

beneficial, and when it is not. With more (and better) information regarding the technique’s

behaviour assembled, we lower risks and increase confidence in decisions about introducing

the technique in the specific development process of an industrial partner (i.e. Steps 5–6).

5.2 ALTS Model Generator

In order to develop a model generator tool according to our process presented in Figure

5.1, we began by choosing the Annotated Labelled Transitions System (ALTS) as model

format. As mentioned in Chapter 2, ALTS provides a simple and easy to use model format

that also allows versatility for combining simple model elements to represent software’s

behavioural scenarios. Next we began defining its model elements and patterns used to create

the generator’s rules. Here, ALTS are used as an extension to the LTS definition (presented in

5.2 ALTS Model Generator 61

Chapter 2 and Section 2.1). Therefore, the following terminology is considered, in addition

to the standard LTS 4-tuple (Q,A,Ttr,q0), in order to represent states and transitions of a

reactive system.

• States: We consider that the set of states in an LTS (Q) can be divided in two different

subsets of states, representing the user action states and the expected output states,

referred respectively as Qua and Qeo. The first represents software’s states where user

actions can be performed during execution, whereas the second represents the set of

states where the software system produces an output in response to that user action.

Therefore, the following statement holds for all generated instances of models: (Q =

Qua ∪Qeo) ∧ (Qua ∩Qeo = ∅), qo ∈ Qua.

• Transitions: Similarly, we divided the set of transitions (Ttr) to allow representation

of user actions and system responses. The user action transitions (Tua) are marked

with the symbol ‘?’ at the beginning of its label and they connect a user action state

to an expected output state. In turn, the expected output transitions (Teo) connect an

expected output state to a user action state, and their label are marked with the symbol

‘!’. They can also be defined as:

– Tua = {
−→
t ∈ Ttr |

−→
t = (Qua×? · A×Qeo)}

– Teo = {
−→
t ∈ Ttr |

−→
t = (Qeo×! · A×Qua)}

• Step: A step is a pair composed by one user action and the correspondent expected

output, representing a user actions and the output that should be produced by the sys-

tem. Or, in other words: stepi = (
−→
ti ,

−→
tj) |

−→
ti ∈ Tua ∧

−→
tj ∈ Teo.

The annotations above were included in the definition in order to achieve a reasonable

level of realism, and allow generation of abstract test cases from paths of the ALTS, i.e. a

non-empty finite sequence of steps (inputs and expected outputs of the system). Since we

are only interested in sequences of steps, only deterministic ALTS will be considered, i.e.

annotated LTS without internal actions (τ) and non-determinism4 represented in the model

4Non-determinism is defined by: ti ∈ Tua, tj , tk ∈ Teo, ∃stepm = (
−→
ti ,

−→
tj) ∧ stepn(

−→
ti ,

−→
tk) |

−→
tj 6=

−→
tk . In

other words, we consider non-determinism to be represented as a user action transition (
−→
ti) followed by two

different expected output transitions (
−→
tj 6=

−→
tk)

5.2 ALTS Model Generator 62

[Tan et al. 1997]. Figures 5.4 (a) and (b) show, respectively, an example of an ALTS and a

test case.

? Select “Send Item” option

!List of options is displayed

! ”Want to send other item?”
message is displayed

! List of image files
is displayed

? Include an
Image File

? Press “Send Image”
button

! “Items sent” message
is displayed

? Include a
saved message

! List of messages is

displayed

? Select the message
and press “Send”

? Select “Cancel”
option

? Press “No” button

? Press “Yes”
button

! “ No items were sent”

message is displayed

? Press “Return” icon.

! Main menu

is displayed

User Action Expected
Outputs

Select “Send
Item” option

List of options is
displayed

Include an
Image File

List of image files
is displayed

Press “Send
Image”
button

“Items sent”
message

is displayed

Initial state User action state

Expected output stateUser action transition

Expected output transition

(a) (b)

Figure 5.4: (a) The model elements of an ALTS and (b) a test case.

To automatically generate ALTS, states and transitions of simple structures (patterns)

must be systematically combined. Furthermore, an automatic modification (addition and

removal of transitions5) of the generated ALTS is also performed. In summary, the patterns

are:

• Main flow size (S): In our test process, each ALTS must specify at least one scenario

of an application to be executed, i.e. the main flow in which alternative flows will

branch and connect, yielding different states of the system. The length is determined

by the number of steps in the sequence.

• Branches (B): During the execution of the main flow, the user can perform different

actions (transitions) causing the system to reach alternative flows. States with such

transitions are defined as branches.
5States that become unreachable after deleting a transition are also removed from the ALTS. Similarly new

states can be added as destination to recently added transition. For example, a completely new alternative flow

can be added/removed to the main flow.

5.2 ALTS Model Generator 63

• Joins (J): Some flows may have a common expected output for different actions.

Thus, transitions leading to different actions to a common expected output state are

joins.

• Paths with loops (L): Paths that contain a sequence of one or more transitions where

the initial and final location are the same (i.e. a cycle).

• Additions (A): The new scenarios or steps added to the specification.

• Removals (R): The steps or entire scenarios removed from the specification.

Figure 5.5 shows: (a) The example of an ALTS automatically generated, (b) the patterns

used to construct the model and, (c) a delta version after modifications are performed. The

generated ALTS is isomorphic to that of Figure 5.4 illustrating that it is possible to obtain

ALTS similar to real specification models.

? A

!a

! e

! c

? C

? F_2

! f

? B

! b

? F_1 ? E

? G

? H

! g

? D

! d

(a)

? A

!a

! e

? B

! b

? E

? G

! g

? A

!a

! e

? B

! b

? E

? H

! c

? C ? D

! d

? F_2

! f

? F_1

(b)

Main Flow Path with Loop Branch

Join

? H

? D

! d

(c)

? X

! x

? Y

! y

? F_1
? F_2

! f

Figure 5.5: (a) Example of a generated ALTS, (b) the patterns used and (c) examples of

modifications.

Once model elements and patterns are defined, we create the rules to create the patterns,

and followed by the procedure of combining patterns into instances of ALTS. The defini-

tion of rules and procedures of model generation is the main aspect of the generator tool,

because they ensure control in an experiment and help mitigating construct and internal va-

lidity threats. Our generator uses the following rules to create and combine the patterns:

5.2 ALTS Model Generator 64

• Creation of the ALTS: The creation is done iteratively so that in each iteration a

branch, join or path with loop is added to the ALTS. The addition is performed in a

user action state randomly selected from the current ALTS layout.

• Eligible states: The default selection of states is done among the user action states

(q ∈ Qua), except for the initial and the last state of the initial sequence created. Note

that this strategy ensures model integrity, because each pattern will begin with a user

action after an expected output. Also, the expected output states created when adding

patterns to the ALTS become eligible for the next iteration’s state selection.

– Create main sequence: The first step of the generation is creating a sequence of

steps with the specified size. Consequently, the initial state of this sequence will

also be the initial state of the ALTS (q0). By default, patterns cannot be placed on

the first and last state of this sequence (the former has an exception for branches),

in order to control the main sequence length during an experiment.

– Add branches: Branches are placed either on a random eligible state or the

initial state of the ALTS. Two outgoing steps are then added to the chosen state.

– Add joins: Joins are added on two random eligible states, so each will have an

outgoing user action transition that reaches a single expected output state (q ∈

Qeo) as destination.

– Path with Loops: A random eligible state is chosen as source state of the loop

transition, then the generator backtracks the model until it reaches the q0, and the

loop transition’s destination is a random expected output state from that path. The

created transitions are always a user action, because we assume that the user will

determine the repetition of activities when interacting with the software system

(e.g. provide an invalid password, or return to the main screen).

• Modification of the ALTS: After creating the baseline layout of the ALTS, we begin

modifications to obtain a delta version. In order to keep consistence among the number

of additions and removals performed, we decided to first perform all removals, and

then perform the additions, otherwise the randomness of state selection can cause the

generator to remove a recently added transition, hence generating a wrong ALTS with

5.2 ALTS Model Generator 65

respect to the specified number of patterns.

– Removal: In order to avoid generation of disconnected ALTS, removals are per-

formed on the leaves6. Thus, a random leaf (except for the main sequence’s

leaf) is selected, and the correspondent user action is also removed from the

ALTS. Note that when selecting a leaf from a join, only one of the user actions

is removed, since the expected output must remain as output of the remaining

user action transition. An example can be seen on removal of step (
−−−−→
?F − 1,

−→
!f)

from Figure 5.5 (c), where transition
−→
!f cannot be removed because the step

(
−−−−→
?F − 2,

−→
!f) still remains in the ALTS.

– Additions: Similarly to branches, additions are performed either on eligible

states or the initial state of the ALTS, but only one step is created in each ad-

dition.

Input:The number of ALTS to be generated (N), main sequence size (S), and the number

of branches (B), joins (J), paths with loops (L), additions (A) and removals (R).

Output:A sample with N generated ALTS models with the specified input parameters.

GenerateModels(N, S, B, J, L, A, R)

1 space_of_models Ø

2 for i : 1 to N do

3 aux_ALTS generateSequence(S)

4 patterns createCollectionPatterns(B,J,L)

5 shuffle(patterns)

6 for j : 1 patterns.size do

7 if patterns[j] = B then addBranch(aux_ALTS)

8 else if patterns[j] = J then addJoin(aux_ALTS)

9 else addLoop(aux_ALTS) //patterns[j] = L

10 baseline aux_ALTS

11 for j : 1 to A do

12 addNewStep(aux_ALTS)

13 for j : 1 to R do

14 removeStep(aux_ALTS)

15 delta aux_ALTS

16 space_of_models ∪ {baseline,delta}

17 return space_of_models

Figure 5.6: Algorithm to generate the baseline and delta ALTS.

6We refer to leaf as a state without outgoing transitions. However, the ALTS is not a tree due to the presence

of cycles.

5.3 Concluding Remarks 66

Both processes of generating and modifying the ALTS are automatic, enabling the quick

generation of a quantity N of models, specified by the generator’s user. The algorithm for

generation is presented in Figure 5.6. Considering that our algorithm, for the specified num-

ber N of ALTS, creates each pattern and performs all modifications, our algorithm executes

in polynomial time O(N × (S +B + J + L+ A+R)).

Initially, we begin with an empty sample of models (line 1), and iteratively include a

generated ALTS. Note that each ALTS begins with a main sequence (line 3) and then patterns

are attached to eligible states (lines 6–9) so that before we start modifications, we have

a baseline ALTS with the specified patterns. Then, we remove steps from this baseline

ALTS and then start adding transitions to it. This order is relevant, since performing the

additions intertwined with removals would cause removal of a recently added transitions.

Consequently, the resulting instance would not comply with the specified input patterns and

modifications. After modifying the ALTS (lines 11–14), we include it in our sample of

models (line 16) and then repeat the process by generating a new instance until the specified

sample size is reached.

To illustrate the algorithm, Figure 5.7 presents a step by step example of a generation

with parameters N = 1, S = 4, B = 3, J = 2, L = 1, A = 1 and R = 1. Note

that the generator assigns a random order to create each patterns (except for additions and

removals). For instance, the ALTS generated in this example considered the ordered patterns

[B,B,L,B, J, J], which means the generator creates two branches followed by a path with

loop, then another branch and two joins. A different generation with the same parameters

could yield a different order of patterns, for example [L,B, J,B, J, B], which means that

different layouts are created iteratively. That reduces the chances of having very similar

ALTS.

5.3 Concluding Remarks

Alongside SART, SBMTE is one of the main contributions to this doctorate research. There-

fore, while evaluating our selection strategy, we also gathered information regarding ad-

vantages and challenges of SBMTE itself. In order to verify our generator tool we used

automated test scripts to verify whether the generated instances are well formed and consis-

5.3 Concluding Remarks 67

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G

!g

?H

!h

?I
?J

!j

?K

!k

?L_1

?L_2

!l

?M_1 ?m_2

!m

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G

!g

?H

!h

?I
?J

!j

?K

!k

?L_1

?L_2

!l

?M_1 ?m_2

!m

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G

!g

?H

!h

?I
?J

!j

?K

!k

?L_1

?L_2

!l

?M_1 ?m_2

!m

?A

!b

?B

?C

!c

!a

?D

!d

?F

!f

?G

!g

?H

!h

?I
?J

!j

?K

!k

?L_1

?L_2

!l

?M_1 ?m_2

!m

?N

!n

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G

!g

?H

!h

?I
?J

!j

?K

!k

?L_1

?L_2

!l

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G

!g

?H

!h

?I
?J

!j

?K

!k

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G

!g

?H

!h

?I

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?G
?H

!h !g

?A

!b

?B

?C

!c

!a

?D

!d

?E

!e

?F

!f

?A

!b

?B

?C

!c

!a

?D

!d
B B L B J J B B B J J L B B L B J J B B L B J J B B L B J J

patterns

B B L B J J B B L B J J baseline R A

modif.

R A

Figure 5.7: A step by step example to generate an ALTS.

tent (i.e. comply with the specified number of input parameters). Unfortunately, we were not

able to define and execute an experiment to evaluate our generator tool in a controlled envi-

ronment. The randomness related to construction of ALTS hinders control of our generated

input sample.

However, future work comprise a thorough execution and analysis of our ALTS genera-

tor using similarity measures among graphs [Singh et al. 2007; Zager and Verghese 2008]

to mathematically observe the differences among the generated instances of ALTS. So far,

our evaluation was done manually by generating a few hundreds of models and visually

observing whether the ALTS are similar among each other.

The discussion in this chapter covered the general aspects of SBMTE, such as the

methodology to introduce automatic model generation into an evaluation process, followed

by presentation of our model generator tool. The benefits, challenges and answers to re-

search questions were obtained after applying SBMTE in our evaluation process, leaving the

remainder of discussion together with the experiment’s results (Chapter 7).

Chapter 6

Evaluation

Next, we present details of the evaluation methodology used to explore and evaluate SART’s

potential. Our evaluation is divided in three different studies. First and foremost we investi-

gate SART’s capabilities through an experiment. Second, we perform a different experiment

(re-using some artefacts from the first experiment) in order to compare SART with two other

test case selection techniques: A traditional approach for similarity-based test case selection

[Cartaxo et al. 2011], and a random selection of test cases. Last, but not least, we conduct

an exploratory case study where SART is used on industrial artefacts.

The goal with the second experiment and the exploratory case study is to complement

information regarding SART’s performance obtained in the first experimental study. There-

fore, the main investigation towards SART is based on results from the first experimental

study. The goal with our comparative study is to show whether our adaptation of the count-

ing function [Cartaxo et al. 2011] affected the technique’s performance under the specific

regression testing context, i.e. if the technique is able to handle specific regression test re-

quirements such as covering modifications and triggering regression defects. In turn, com-

parison with random selection allows us to observe the benefits and drawbacks of adding a

specific coverage criteria to our selection technique.

In turn, the exploratory case study with industrial artefacts provide valuable insight to-

wards practical applicability of SART in an MBT process. Unfortunately, the limited size of

our sample of industrial specification models hindered execution of an experimental study

with practitioners. Since the definition and execution of our case study is small, we de-

cided to describe details regarding the definition, planning, artefacts and results in Chapter 7

68

6.1 Experiment 69

(Section 7.3).

Similarly, we decided to provide all information for our second experiment in Chapter 7

(Section 7.2), because most of its definition and planning is similar to the first (for example,

the artefacts and tools). Consequently, this chapter will explain the main elements of our first

(and main) experimental study, such as: Our goals, hypotheses, factors, dependent variables

and tools.

6.1 Experiment

The first direction to explore SART’s potential and robustness is by investigating its capa-

bility of selecting representative1 subsets regardless of the input provided. Since our test

process begins with a modified specification model, we conjectured if our selection strategy

is affected by specific types of models, e.g. with specific quantities or layout of states and

transitions. Consequently, we gather information to assist a tester in deciding whether to

apply SART or not.

For example, the addition of several alternative flows in a document describing the sce-

narios of a use case can be represented as models with several additions of branches. As a

consequence, there will be more paths to be covered and perhaps the investigated technique

will show an improved size reduction or reveal more defects. Or it might have problems

handling those (or other) specific types of models.

Therefore, we investigate the informal hypothesis that the performance of SART is

strongly affected by the type of model used to design/generate the test cases. Similarly to

SART, some MB techniques use test cases that are very close to the specification model,

i.e. they can be mapped to paths of the model [Bertolino et al. 2008; Cartaxo 2011;

de Araújo et al. 2012; Coutinho et al. 2013; Ouriques et al. 2013]. So this experiment

can be adapted to include other MB techniques to observe if those techniques are robust or

dependent of the type of models used as input. For now, we focus our experiment on SART,

under the following definition template ([Wohlin et al. 2012]):

1It was determined in the introduction of this thesis that representativeness, in our research, is expressed

through model modifications being covered and probability of triggering regression defects

6.1 Experiment 70

Analyse SART

for the purpose of detecting strengths and weaknesses

with respect to its performance

from the point of view of the tester

in the context of progressive regression testing.

Given that we could not find a sufficient sample of industrial specification models, we

decided to use SBMTE to generate a large sample of specification models to execute our

MBT process. Besides enabling the evaluation of SART, by actually applying SBMTE we

gather information about issues, challenges and advantages regarding usage of stochastic

model generation to evaluate MB techniques.

Considering that our goal is to analyse an automatic test case selection technique, there

is no human interaction in our experiment, hence no subjects participate. Instead, we use

objects representing artefacts of the considered test process, such as: Specification models,

the modifications performed, mutation on the models, test suites and test cases. Since it can

be costly to design test cases manually from a large sample of specification models, we will

use automatic test case generation based on a DFS algorithm (as described in Chapter 2) to

obtain all paths traversing only one loop, since the coverage of more loops would represent

a costly time overhead in test case generation. An overview of the experiment is presented

in Figure 6.1.

SART selects from test cases obtained from instances of models, that are, in turn, de-

fined by the input parameters given to the generator, i.e. the patterns: Main sequence size

(S), branches (B), joins (J), paths with loops (L), additions (A) and removals (R). Thus,

S,B, J, L,A and R are factors in our design. Considering that the generation of models is

affected by isolated and combined patterns, we will vary each factor to a high and low value

(“+” and “-” respectively) and investigate all interactions. Hence a 26 factorial design is de-

fined for this experiment, with 64 combinations of treatments. During the next paragraphs,

each combination will be referred as configuration.

Despite defining random locations and orders to create the patterns, the generation is

not completely random. Also, since constraints and a desired number of patterns guide the

generation, the developed generator is pseudo-random. Nonetheless, observing the results

6.1 Experiment 71

Test cases
(delta)

Test cases
(baseline)

Selected
Test Cases

Automatic
Model

Generation

Automatic
Test Case

Generation

SART

Baseline
Model

Delta
Model

Parameters
(factors)

Response variables

Analysis

Experiment Execution

Figure 6.1: Overview of the experiment.

from a single generated ALTS would provide inaccurate results. Thus, a number2 N = 10

ALTS is generated for each configuration, resulting in 64 mean values. We replicate the

experiment 3 times in order to address possible outliers or residual errors due to execution

issues. In summary, SART was executed 1, 920 times (64 ∗ 10 ∗ 3) providing nearly 2000

data points to be statistically analysed.

6.1.1 Response Variables

SART’s performance is measured based on two widely used response variables in regression

testing literature [Yoo and Harman 2012]: Percentage of size reduction and effectiveness

of defect detection. By analysing these two variable we observe how much size reduction

the technique can achieve and whether this reduction pays off by still revealing defects in

a significant way. The percentage of size reduction, referred as SizeRed in this work, is

calculated by Equation 6.1. Remember that T ′ is the test suite automatically generated from

the delta version of the model and Ts is the selected subset of test cases. In practice, each

2The number of generated ALTS (10) was chosen after a prior power analysis where we considered N =

100 ALTS. This prior analysis revealed that N ≤ 10 would be sufficient to achieve statistical significance in

our analysis.

6.1 Experiment 72

test case may cost differently (e.g. each may require a different amount of time to execute).

Since such information is not available in our experimental setting, we consider that each

test case has the same cost, for example, to be executed in the SUT.

SizeRed = (1−
|Ts|

|T ′|
)× 100 (6.1)

Measuring effectiveness of defect detection, on the other hand, is challenging for our

experiment. One or more defects are revealed when test cases fail, that is when the output

produced by the SUT differs from the expected output specified in the test case [Binder 1999;

IEEE 2013]. After observing a failure, the defect is searched in the source code. Tradition-

ally, effectiveness of defect detection is measured by counting the defects revealed by the

complete test suite and then compare it with the number of defects revealed when executing

only the selected subset [Yoo and Harman 2012]. Our experiment is not suitable for the

traditional approach because the models are automatically generated and there are no real

implementation or defects to measure. Even if a source code were available, SART selects

abstract test cases and measuring defects at the natural language level is very inaccurate since

the gap between the specification and the code hinders the traceability between the failure

observed at the high level test case and the defect in the code. Ultimately, the information

visible at our level of abstraction are the triggered failures.

Given these limitations, we decided to measure the probability of observing a failure

after reducing the size of the test suite. Basically, each subset will trigger (or not) at least

one failure, i.e. 1 means that at least one failure is observed, and 0 otherwise. By observing

the result for quantity N of ALTS generated for each configuration, we have a binomial

distribution yielding the probability that the selected subset will trigger a failure. We will

refer to this probability as PFail (Equation 6.2).

PFail =

N
∑

i=1

xi

N
where xi =

1,if and only if Ts reveals at least one failure during trial i.

0,otherwise.

(6.2)

In order to observe failures, this work combines fault models and mutation of the specifi-

cation model. The fault models are constructed based on different fault hypotheses regarding

defect representation [Binder 1996]. Thus, we will have insight about SART’s performance

6.1 Experiment 73

Table 6.1: Null and alternative hypotheses for SizeRed and PFail.

H0 sr:S: S+(SizeRed) = S-(SizeRed) H0 pf:S: S+(PFail) = S-(PFail)

H1 sr:S: S+(SizeRed) ≠ S-(SizeRed) H1 pf:S: S+(PFail) ≠ S-(PFail)

H0 sr:B: B+(SizeRed) = B-(SizeRed) H0 pf:B: B+(PFail) = B-(PFail)

H1 sr:B: B+(SizeRed) ≠ B-(SizeRed) H1 pf:B: B+(PFail) ≠ B-(PFail)

H0 sr:J: J+(SizeRed) = J-(SizeRed) H0 pf:J: J+(PFail) = J-(PFail)

H1 sr:J: J+(SizeRed) ≠ J-(SizeRed) H1 pf:J: J+(PFail) ≠ J-(PFail)

H0 sr:L: L+(SizeRed) = L-(SizeRed) H0 pf:L: L+(PFail) = L-(PFail)

H1 sr:L: L+(SizeRed) ≠ L-(SizeRed) H1 pf:L: L+(PFail) ≠ L-(PFail)

H0 sr:A: A+(SizeRed) = A-(SizeRed) H0 pf:A: A+(PFail) = A-(PFail)

H1 sr:A: A+(SizeRed) ≠ A-(SizeRed) H1 pf:A: A+(PFail) ≠ A-(PFail)

H0 sr:R: R+(SizeRed) = R-(SizeRed) H0 pf:R: R+(PFail) = R-(PFail)

H1 sr:R: R+(SizeRed) ≠ R-(SizeRed) H1 pf:R: R+(PFail) ≠ R-(PFail)

for different situations in which a defect can occur. In order to keep the discussion within

the definition and planning of the experiment, we will only present the details concerning the

fault models later in this chapter (Section 6.2).

Based on the response variables, we defined null and alternative hypothesis (Table 6.1)

to investigate the effect of changing the factor’s treatments on SizeRed and PFail. Besides

statistical hypothesis testing, we will use a table of contrast and liner regression model to

observe the coefficients and assess each factor’s effect on SART’s mean SizeRed and PFail.

6.1.2 The Experiment Environment and Execution

SART, the generator and the experiment are implemented in the LTS-BT tool [Cartaxo

et al. 2008], and the experiment execution is designed to be fully automatic and easily

configured. In its current version, LTS-BT is written in Java 1.7 enabling cross-platform

execution through a jar file, and provides support to execute different techniques for test

case generation [de Araújo et al. 2012], prioritization [Ouriques et al. 2013], selection

[de Oliveira Neto and Machado 2011; de Oliveira Neto and Machado 2013] and test suite

6.1 Experiment 74

minimisation [Coutinho et al. 2013]. The jar file is executed using the terminal and provid-

ing keywords as parameters, and LTS-BT’s output is an XML file that can be imported by

the TestLink tool.

LTS-BT defines interfaces for all of its techniques, thus adding a new technique is fairly

easy. Both SART and the ALTS generator can be executed independently of the experiment,

that in turn is configured through text files provided as input for the tool that allows modifi-

cation of factor’s treatments. In order to support automatic statistical analysis, we wrote R

scripts, by which data is processed, plotted and tested generating graphic and textual infor-

mation regarding distribution, intervals, and p-values. Figure 6.2 illustrates the environment

for our experiment’s execution.

LTS-BT

Experiment Execution

R
scripts

Configuration
File

Collected Data

Generated
ALTS

Selected
Subsets

Analysis Results

Figure 6.2: Platform where the experiment is executed.

In order to define the factor’s treatments for generating the ALTS, a search for reposito-

ries of specification models was performed. However, none of the repositories found had a

sufficient database of ALTS. Therefore, the values were chosen based on industry’s techni-

cal reports describing dimensions of use cases [Smith 2003], because the description of main

and alternative flows in the ALTS considered in this study is similar to scenarios specified in

use cases for test case generation [Cabral and Sampaio 2008]. The author states that a total

of 300 scenarios (which will lead to approximately 300 test cases) is a reasonable quantity

of scenarios to be described at the system level’s use cases. This was the starting point to

define our treatments.

Considering our ALTS generator, a test suite with approximately 300 test cases can be

6.2 Analysing Failure Coverage through Fault Models 75

Table 6.2: Table with treatments (or levels) for factors.
Factors Main Size Branches Joins Path with loops Additions Removals

ID S B J L A R

High level
(+) 20 150 50 8 10 10

Low Level
(-) 10 75 25 4 5 5

obtained if our model has, approximately 150 branches. Based on that number of branches,

we started simulations3 with our ALTS generator to create a sample of models able to yield

a test suite containing approximately 300 test cases. Then, we divided the value for each

treatment by 2, in order to obtain a big (yet reasonable) distance among dimensions of our

models. Ultimately, the values chosen are presented in Table 6.2.

6.2 Analysing Failure Coverage through Fault Models

Fault models represent defects and can be used to validate a technique or gather information

regarding the defect detection capability of a test suite, when real defects are not available

for the tester [Binder 1996]. Tan et al. introduced [Tan et al. 1997] the concepts of a fault

model F (m) for LTS models as a set of all defective LTS implementation of the specifica-

tion considered. An instance of a fault model M ∈ F (m) can be obtained by performing

mutations, i.e. modifications on the specification models to obtain different behaviour. Here

we consider a fault model where a single mutation is performed, that can be either an ‘output

defect’ (an output of a transition is wrong) or a ‘transfer defect’ (the transition leads to a

different state than expected) [Bochmann and Petrenko 1994].

The goal by using mutations is not to assess the generated test cases, but to simulate a

testing phase with automatically generated artefacts and obtain data to allow the analysis of

model-based techniques. We will refer to the process of changing an element of the ALTS

implementation model as a mutation of the model4.

To support the fault models, a fault hypothesis (FH) is created based on: An extrapolation

3By varying the remaining factors: Main sequence size, joins, paths with loops, additions and removals
4Note that this approach is not related to traditional mutation testing, instead we refer to mutants as changes

in the model since it is conceptually similar to mutation testing.

6.2 Analysing Failure Coverage through Fault Models 76

from past experiences; an assumption that a defect is related to specific circumstances of

the specification (e.g. boundary values on conditions) and; an argument (or evidence) on

possible errors and the defects they could yield [Binder 1996]. Complementary information

such as an expert’s opinion, or an operational profile can improve the fault model, and help

in estimating more defects.

We will consider an instance M of a fault model as a faulty implementation of the delta

specification S ′. This faulty implementation model (FIM) represents the execution of the

SUT, given that the actual implementation of the specification model is not available in this

study. As mentioned by Tan et al., any faulty implementation of F (m) must be detected by

failing at least one test case.

In order to find failures, we will traverse M collecting traces of execution (i.e. sequence

of transitions) to represent the behaviour of the SUT from executing the test cases generated

from the specification. Each configuration of factors will need a number N generated delta

ALTS to execute SART and consequently a quantity N of FIM. Each selected subset may

trigger a failure on the FIM (1 or 0) and the sum of these events divided by N results in PFail

for each configuration (see Equation 6.2). This process is illustrated by Figure 6.3.

6.2.1 Mutating a Model

In order to be traversed, the mutant needs to be placed in a transition of the ALTS. In practice,

estimation for defect detection rely on analysis from the expert involved with the model being

used. Here, SART is continuously executed, thus, the process of choosing the location of the

mutant needs to be automatic as well. Four different fault hypotheses were defined, resulting

in four different fault models. These fault hypotheses were chosen to represent a variety of

situations where a defect can occur, considering the modifications performed in a model and

possible defects during implementation of the model.

FH1: An output may present an unexpected output due to the wrong interaction of steps

performed.

FH2: A code defect causes a step to reach a different state, thus executing a different flow.

FH3: The modification causes a defect resulting in a different output ‘near’ the modification.

6.2 Analysing Failure Coverage through Fault Models 77

Automatic Generation of Test Cases

Baseline (Sj) Delta (Sj’)
Faulty

Implementation(Mj)

SART TS

mutant

PFailj = 1

Execute Sequences

Considering the j-th generated ALTS:

Figure 6.3: Usage of a faulty implementation model (FIM) to measure PFail.

FH4: The state modified caused a defect producing a different output in the modified state

itself.

Fault hypotheses FH1, FH3 and FH4 are represented by mutations in the output transi-

tions (e.g. by changing of labels to signal the difference), whereas FH2 represents a modifi-

cation in the flows of the ALTS (for example, an unspecified sequence in the delta model).

The goal with these four fault hypotheses is to verify if SART is able to reveal a failure de-

spite the size reduction obtained. FH1 and FH2 are related to the layout of the ALTS (i.e.

states and transitions), whilst FH3 and FH4 are related to the location of the modification

performed.

In order to find regions of the ALTS that are more likely to trigger defects (i.e. perform

a mutation), we rely on the assumption that at the system specification level, a state with

several outgoing transitions (branching states) are more likely to cause errors during imple-

mentation. When thinking at the code level, these different scenarios can represent different

parts of the code that need to interact in order to provide the specified functionality. For

example, when writing a text message in a smartphone the user can decide to attach pictures

6.2 Analysing Failure Coverage through Fault Models 78

taken from the camera or from a gallery of saved images, hence activating different features

of the device. Failures can be caused by wrong interactions when invoking these features

and then the system produces an unexpected output, thus we assume that branching states

are more likely to reveal failures. Furthermore, more transitions represent more interactions

yielding even greater chances of revealing a failure.

To also consider the chance of having a defect anywhere on the ALTS, a roulette wheel is

used. However, the wheel is modified so that states that fit the above assumption have bigger

slices of the wheel (i.e. a biased wheel), hence increasing their chances of being chosen for

mutation. In order to identify and group these branching states we use the longest path of

all states from the initial state (q0), defined by l_path(q) of a state q ∈ Q is the number of

transitions in the longest (q0, q)− path of the ALTS5.

• l_path(q0) = 0;

• l_path(qi) = max(l_path(qj1), ..., l_path(qjn)) + 1; where ∀qj∃qi|∃(qj, α, qi) ∈ T ;

Whenever a state q divides the flow of execution, more states will share the same l_path

from the initial state. Those states can then be clustered. Finally, the size of the clusters

(i.e. its number of states) will determine the slice of the wheel and, hence, the probability of

choosing a random state from that cluster. An example can be seen in Figure 6.4.

Both ALTS of Figure 6.4 were generated with the same configuration. However, the

different layout of flows implies that both implementation should have different distribution

of mutants. The model is divided into clusters according to the l_path(q), and these clusters

are then ordered by size. Bigger clusters have bigger slices of the wheel. For Figure 6.4

(a), most division of flows happen near the leaves of the ALTS, yielding bigger clusters

for l_path(q) equal to 9 and 10. On the other hand Figure 6.4 (b) has a more balanced

distribution of flows, which reflects a more balanced wheel than Figure 6.4 (a). After the

wheel spins, a random state from the chosen cluster (slice) is selected. The result of this

process is a state where the mutation will be performed.

5To avoid infinite values, the loops are not traversed when calculating the path

6.2 Analysing Failure Coverage through Fault Models 79

1

2

3

0

5

4

6

7

8

10

9

Levels

0 1
2

3

4

5
6

7

8

9
10

LTS2

0 1
2

3

4

5

6

7

8
9

10

LTS1

Figure 6.4: Roulette wheels obtained from different graph configurations.

6.2.2 Fault Models

Each fault model will be explained through the example provided in Figure 6.5. Four differ-

ent fault models were considered in this experiment (one for each fault hypothesis) and the

mutants are indicated by the transitions with labels changed to ‘!x’ (Figure 6.5 (c)).

FM1: Binder’s Fault Model

According to Binder, a defect is observed at the system specification level through the failure

that exposed it [Binder 1999]. The tester usually signals a failure when the output produced

by the system differs from what was expected. Therefore, based on FH1 we change the label

of a chosen expected output to represent the defect. The choice of state is based on the biased

wheel, noting that only output transitions are eligible for the mutation.

As an example, consider that the biased wheel chooses state 5 resulting in creation of

FM1 of Figure 6.5 (c). The test suite from Figure 6.5 (b) shows that 4 test cases will not

have paths in FM1 (TC1, TC4, TC5, TC6). Therefore, if SART selects any of those 4 test

cases, the failures will be triggered, since the system would produce output ‘!x’ instead of

the expected ‘!c’.

FM2: Single-State-Transition Fault Model

6.2 Analysing Failure Coverage through Fault Models 80

3

5

1

4

0

6

?A

!a

?B

!b

?C

!x

2 ?F

!f

9

!h

?H-2

?H-1

?E

7

8

?D

!d

10
?J

!j

11

12

13

14

3

5

1

4

0

6

?A

!a

?B

!b

?C

!c

2 ?F

!f

9

!h

?H-2
?H-1

?E

7

8

?D

!d

10

?J

!j

11

12

13

14

3

5

1

4

0

6

?A

!a

?B

!b

?C

!c

2 ?F

!x

9

!h

?H-2
?H-1

?E

7

8

?D

!d

10

?J

!j

11

12

13

14

2/6 = 8

1/5 = 6

1/3 = 4

2/2 = 4

3/1 = 4

5/1 = 6

6/2 = 8

1/3 = 4

2/2 = 4

3/3 = 6

5/5 = 10

6/6 = 12

4/4 = 8

3

5

1

4

0

6

?A

!a

?B

!b

?C

!c

2 ?F

!f

9

!h

?H-2

?H-1

?E

7

8

?D

!d

10

?J

!x

11

12

13

14

FM1 FM2 FM3 FM4

3

5

1

4

0

6

?A

!a

?B

!b

?C

!c

2 ?F

!f

9

!h

?H-2
?H-1

?E

7

8

?D

!d

10

?J

!j

11

12

13

14

Action Output

?A !a

?B !b

?C !c

?D !d

Action Output

?A !a

?B !b

?H-1 !h

?J !j

Action Output

?A !a

?B !b

?C !c

?E !a

?B !b

?C !c

?D !d

Action Output

?A !a

?B !b

?C !c

?E !a

?B !b

?H-1 !h

?J !j

Action Output

?A !a

?F !f

?H-2 !h

?J !j

Action Output

?A !a

?B !b

?C !c

?E !a

?F !f

?H-2 !h

?J !j

TC1 TC2 TC3

TC4 TC5 TC6

(a) (b)

(c)

Figure 6.5: (a) Example of a generated ALTS, (b) the respective generated test suite and (c)

fault models for each fault hypothesis.

6.2 Analysing Failure Coverage through Fault Models 81

Failures can also be triggered when the execution reaches an unexpected state, thus an out-

put specified in the system (i.e. from another state) is produced but differs from the expected

output of the test case [Cheng and Jou 1990]. For example, imagine that a transition re-

moved from the ALTS did not have its correspondent code part removed properly and is still

traversed when executing the SUT [Korel et al. 2002].

In our case, the FIM is obtained by spinning the biased wheel and changing the desti-

nation of one input transition of the chosen state (thus named single-state-transition). For

example, consider that state 11 was chosen resulting in the FIM labeled FM2 from Figure

6.5 (c). The destination of transition ?J is modified to state 7 (randomly chosen) and when

executed with FM2, any of TC2, TC3, TC5 and TC6 will signal a different output, hence

triggering a failure.

FM3: Mutation Near Modifications

Based on FH3 we defined a fault model to simulate defects near the modifications performed

(algorithm of Figure 6.6). To find regions near the modifications, the distances between

each modified state and the remaining states are calculated (line 5). In order to calculate the

shortest distance, we traverse the graph ignoring the direction of transitions.

For example, the distance between states 2 and 1 is defined by shortestDistance(2, 1) =

shortestDistance(1, 2) = 1. Otherwise, we would not be able to reach all ancestors of a

modified state, leading to an invalid distance value. In addition, if the same distance is found

among states (lines 12 and 13), we decide randomly which state is chosen. In the end, the

state with the smallest total distance is chosen.

Note that we traverse all states once for each modification performed (lines 3–5), and

each of these |Q| × |Qm| times the method shortestDistance(m, q) is called, in which

a simple DFS search can be performed to determine the shortest distance between states

m and q. Worst case scenario shortestDistance(m, q) executes in polynomial time with

complexity O(|T ′
tr|). Therefore, our algorithm in Figure 6.6 takes time O(|Q|×|Qm|×|T ′

tr).

In our example of Figure 6.5 (a), two modifications were performed: A removal in state

2 and an addition to state 10. The calculated distance and their total sum (dotted boxes near

each state) is presented in FM3 of Figure 6.5 (c). Since states 3, 4, 9, 13, 14 have the same

total distance (d = 4), a random state among them is chosen. Considering that State 13 is

6.2 Analysing Failure Coverage through Fault Models 82

Input :The FIM (e.g. FM3) and the set of modified states Qm ⊆ Q

Output:The nearest state to all modifications performed.

FM NEAR MODIFICATIONS(F,Qm)

1 For all q ∈ Q do

2 d[q] 0

3 For all m ∈ Qm do

4 For all q ∈ Q - Qm do

5 D[q] d[q] + shortestDistance(m,q)

6 chosenState q0 //Begins the search with the initial state

7 minDistance d[q0]

8 For all q ∈ Q - Qm do

9 if d[q] < minDistance then

10 minDistance d[q]

11 chosenState q

12 else if d[q] = minDistance then

//Tie breaks between equal distances

// are decided randomly

13 chosenState RANDOM(chosenState,q)

14 return chosenState

Figure 6.6: Algorithm to find the state nearest to all the other modified states.

the output for our algorithm, then we perform a mutation on its output transition. In the end,

the test cases TC3 and TC6 will trigger a failure when executed with FM3.

FM4: Mutation at the Modifications

In a more optimistic scenario one would assume that the defects are found in the modification

themselves. The problem in handling this assumption is that we cannot directly map tran-

sitions to their respective code part(s). Nevertheless, when considering the goal of covering

all modifications with the selected subset, FH4 becomes a hypothesis worthy of investiga-

tion. Therefore, we defined an algorithm presented in Figure 6.7 to create instances of faulty

implementation models where the mutant is on a modified state of the ALTS.

Representing an optimal scenario, the mutation is performed on one of the modified states

that, in turn, is chosen randomly (line 2). For instance, consider that State 10 is chosen, we

then obtain FM4 of Figure 6.5 (c) and change its output transition. Consequently, the test

cases that will trigger a failure become TC2, TC3, TC5 and TC6.

6.3 Concluding Remarks 83

Input :The FIM (e.g. FM4) and the set of modified states Qm ⊆ Q

Output:One of the modified states, chosen randomly

FM AT MODIFICATIONS(F,Qm)

//Chooses a random state among the set of modified states

1 chosenState RANDOM(Qm)

2 return chosenState

Figure 6.7: Algorithm that randomly chooses one of the modified state.

6.3 Concluding Remarks

This chapter discussed the evaluation methodology for our proposed selection strategy. We

presented the definition, planning and execution of an experimental study to analyse SART’s

performance based on percentage of size reduction (SizeRed) and probability to trigger fail-

ures when executing the selected subset (PFail). There are two main challenges when de-

signing this experiment, both due to the lack of specification models for our test process and

due to the lack of defect data to measure rate of defect detection.

The former was solved through SBMTE, where our ALTS generator creates large sam-

ples of models to provide as input to our test process. Consequently, the values chosen to

define the number of patterns generated are the factors for this experiment, and the goal is

investigating if specification of different patterns significantly affects SART’s performance,

i.e. if the technique is able to select test cases exercising modified regions regardless of the

type of model provided as input (e.g. big models, with several branches, small additions).

In turn, we used mutants to overcome lack of defect data and allow visualization of

SART’s behaviour when handling four different scenarios where a defect can be triggered.

A full factorial design is used to enable analysis of all interactions between factors, yielding a

thorough investigation of SART’s selection capability. Despite the large number of possible

combination of factors, the experiment executes automatically in a platform integrated with

other tools (LTS-BT and R).

The integrated and automatic execution allows other researches to reproduce our experi-

ment, or execute it with different treatments for factors by simply editing a configuration file.

In fact, that allowed us to execute a simple comparative study between SART and two other

test case selection strategies: A technique proposed by Cartaxo et al. [Cartaxo et al. 2011]

6.3 Concluding Remarks 84

and a random test case selection. By comparing SART with each technique, we can observe

if our adaptation of the similarity function is better than the other two when targeting specific

regression testing needs, such as coverage of modifications and regression defects.

Chapter 7

Results and Analysis for SART

After definition and planning of the experimental study, we executed the experiment and

collected the data for analysis. Details regarding the results (graphics, p-values, the effects

of each factor, etc.) are presented in this chapter along answers to our research questions.

In addition, we performed an exploratory study where SART is executed with industrial

specification models, thus yielding access to information regarding test case execution and

defects found. That allows comparison between our automatic selection of test cases and a

traditional approach where a subject (e.g. a tester) manually selects test cases.

7.1 Experimental Study

Our hypothesis in the experiment states that there is a strong relationship between the model

type used to generate test cases and SART’s performance. Therefore, the analysis is focused

on the effect that a factor has on the dependent variables. Figure 7.1 presents the results for

the (a) effectiveness of reduction in size (SizeRed) and (b) probability of revealing failures

(PFail). First, the intervals for SizeRed and PFail are presented and discussed, then we take

a closer look at p-values and the effects of main and confounding of factors. As mentioned

in the previous chapter, we will use S,B, J, L,A and R to respectively address the factors

main size, branches, joins, loops, additions and removals. Also, the plots and intervals for

interactions of the factors (e.g. SBJ , BLAR, etc.) were removed from figures, since the

observed effect for them was small.

Note that our percentage of size reduction is high, reducing up to 96% of the test suite

85

7.1 Experimental Study 86

8
6

9
0

9
4

P
e

rc
e

n
ta

g
e

 (
%

)
o

f
T

C
 r

e
m

o
v
e

d
Effectiveness of Size Reduction

SizeRed

FM1 FM2 FM3 FM4

0
.2

0
.6

1
.0

P
ro

b
a

b
ili

ty
 o

f
o

b
s
e

rv
in

g
 a

 f
a

ilu
re

PFail

Probability of Revealing Failures

(a) (b)

Figure 7.1: Boxplot for measuring (a) SizeRed and (b) PFail.

size. Despite the variation, the results indicate that an average of 92% (standard-deviation of

3.11%) of size reduction can be achieved by executing SART. The intervals for each main

effects presented in Figure 7.2 show that the variation of the treatments in almost all con-

figurations would not significantly increase the size of the selected subset (i.e. the intervals

overlap). The only exception is the branches factor and since the difference is small (roughly

1.5%) we conclude that SART’s size reduction capability is robust.

High

Size Branches Joins Loops Additions Removals

Low High Low High Low High Low High Low High Low

8
6

8
8

9
0

9
2

9
4

9
6

Figure 7.2: Main effects of each factor’s treatment on SizeRed.

Figure 7.1 (b) presents the results for PFail representing the probability that SART will

select a subset that triggers failures. The main aspect to remember of the four fault models is

that FM1 and FM2 are based on the distribution of states and transitions among the delta

7.1 Experimental Study 87

Table 7.1: Table with p-values and correlation (R2) between factors and the response vari-

ables. The p-values smaller than α = 0.05 are underlined.

Response
Variables R2

Shapiro-Wilk
test

(p-values)

p-values (main factors separately)
(Mann-Whitney test)

S B J L A R

SizeRed 0.9853 3.17e-03 0.7949 2.40e-07 0.1576 0.8572 4.23e-04 1.5e-04

PF
ai

l

FM1 0.08859 2.34e-04 0.04669 0.00096 0.2408 0.4799 0.1478 0.1498

FM2 0.3136 1.27e-04 0.8524 7.65e-02 0.5307 0.2981 0.014 0.4526

FM3 0.1351 6.26e-02 0.2642 0.0086 0.2148 0.04 0.1312 0.3244

FM4 0.1641 < 2e-16 0.3327 0.3327 0.3327 0.3327 0.3327 0.3327

model, whereas FM3 and FM4 are based on the modifications performed on the baseline

model. FM1 and FM2 indicate that SART has a low probability (around 21%) of triggering

failures when defects are more likely to appear in branches, joins and loops.

However, FM3 and FM4 have an increased probability of triggering failures since both

FM3 and FM4 consider the modifications performed in the ALTS (unlike the mutants in

FM1 and FM2). Whenever the mutant is near a modification (FM3), SART has a probabil-

ity of 60% of triggering a failure. Despite illustrating an unrealistic scenario, FM4 indicates

that SART covers all the modifications. In some cases of removed transitions (outliers in

FM4 presented in Figure 7.1), SART did not cover the mutated transition, but instead cov-

ered the state where the removal happened. That happens when several test cases are equally

similar to an obsolete test case, leading to a random choice during tie breaks.

Now we will investigate the p-values and the effects of the factors to assert the hypothesis

of our experiment. We used R scripts to obtain a linear regression model (lm) based on the

full factorial design and then began analyzing the resulting coefficients and p-values. Table

7.1 shows a summary of the lm model.

Initially, we turned to the adjusted coefficient of determination (R2) to see how well the

data points fit the models. In our case, none of the PFail results present a high R2 indicating

that the respective lm models fit the data poorly. That makes sense since it is hard to find

accurate coefficients to predict PFail given that the mutants can be very unpredictable due to

the biased wheel (FM1, FM2) or the random choice of modifications (FM3, FM4).

7.1 Experimental Study 88

In summary, it is risky to assert the hypotheses with respect to PFail by considering

the coefficients of the lm model, hence limiting the conclusions of PFail to the evidence

that SART has an increased probability of revealing failures caused by modifications. As

a consequence, we will then focus our investigation on SizeRed since it showed a high R2.

First, a Shapiro-Wilk test to verify normality of samples revealed that none of the results

were normally distributed. Consequently, we performed a Mann-Whitney non-parametric

test to assert the SizeRed hypotheses (presented initially in Table 6.1).

By considering a level of significance α = 0.05 we are able to reject null hypotheses

H0 sr:B, H0 sr:A, H0 sr:R, implying that variations on branches, additions and removals sig-

nificantly affect SART’s percentage of size reduction. On the other hand, we could not reject

the null hypotheses for the remaining factors (H0 sr:S, H0 sr:J , H0 sr:L) leading to the conclu-

sion that SART achieves significant size reduction regardless of the model’s number of joins,

loops and main sequence size.

Si
ze

R
ed

−1 1

89
90

91
92

93
94

B

−1 1 −1 1 −1 1 −1 1 −1 1

Main effects plot for size
S J A RL

Figure 7.3: Mean for each of the main factors and their treatments.

A closer look at the visual data strengthens confirmation drawn from hypotheses testing,

where some of those factors have a higher effect than others. Figure 7.3 show the effect

sizes for each of the main factors. As can be seen, the most important factor is Branches (B)

followed by Addition and Removals (A and R). Also, the lowest treatments (−1) of A and

R provided a bigger size reduction. In turn, we concluded that S, J and L do not have a

significant impact on the results because their coefficients are close to 0. The importance of

Branches can also be seen on the interaction plots of Figure 7.4.

The diagonal spaces in the grid plot indicates (i) the factors associated with the x-axis

7.1 Experimental Study 89

along the same column and (ii) two lines in the same row (each line indicating a treatment of

respective row factor). The key aspect to observe is whether the solid black and dotted red

lines are parallel to each other. For example, the plot labelled S × B contains averages for

low and high treatment of the B factor (x-axis) for both treatments of S. The red dotted line

represents the low treatment of S, whilst the solid black line represents its high treatment.

For S×B, the lines show that SizeRed is basically the same for both low and high treatments

of B (i.e. the lines are parallel). Thus, the interaction S×B does not have a significant impact

on SizeRed.

−1

1
S

87
91

95
87

91
95

87
91

95
87

91
95

87
91

95
87

91
95

−1 1

−1

1
B

−1 1

−1

1
J

−1 1

−1

1
L

−1 1

−1

1
A

−1 1

−1

1
R

−1 1

Interaction Plot matrix for SizeRed
S S S S S

S

S

B B B B B

J J J J J

L L L L L

AAAA A

RRRRR

S

S

S

B

B

B

B

B

J

J

J

J

J

L

L

L

L

L A

A

A

A

A

R

R

R

R

Rx x x x x

x x x xx

x x x x x

x x x x x

x x x x x

x x x x x

Si
ze

R
ed

Si
ze

R
ed

Si
ze

R
ed

Si
ze

R
ed

Si
ze

R
ed

Si
ze

R
ed

Figure 7.4: Means for interacting 2-factors.

7.1 Experimental Study 90

On the other hand, for column B, the dotted and solid lines for most interactions

(J, A, R) are not parallel to each other, indicating a strong effect from the interacting

factors. Moreover, observing row B closely (i.e. the second row in the grid) we see that

a high treatment of B in all interactions results in a higher size reduction, indicating that

SART shows a good size reduction for test suites exercising several alternative flows that

were modified. A similar conclusion can be obtained from factors A and R (rows A and R

from Figure 7.4). But unlike factor B, higher treatments of A and R indicate a smaller size

reduction. Therefore, SART achieves better size reduction when less modifications (addi-

tions and removals) are performed on the model.

The effect on average SizeRed for branches is bigger because each branch indicates that

there is one new scenario to be covered by a test case. The higher the number of branches

the bigger the test suite becomes, hence allowing greater size reduction. In turn, the effect

sizes for additions and removals is explained by the fact that SART selects test cases until all

modifications are covered, thus performing less modifications results in a smaller subset.

Effect Sizes for SizeRed

−1.0 −

A
R

BBxA
BxR

J

0.5 0.5 1.0 1.5 2.00.0
Effects (coefficients)

Figure 7.5: Plot of all effects for a full-factorial 26 design. Most important effects are B, A

and R. The values for each effect can be seen in Appendix B.

By plotting the effects obtained for all 64 interactions (Figure 7.5), one can see how

factors B, A and R stand out when compared with all the other interactions (including 3, 4, 5

and 6 − factors interaction). The analysis of all p-values (see Appendix B) indicates that

interactions with more than 2 factors are not significant, unless involving the factor B (e.g.

7.2 Comparative Study 91

B × A and B ×R).

In summary, the statistical evidence shows (with a level of confidence α = 0.05) that

there is a strong relationship between the generated models and SART’s percentage of size

reduction, more specifically the number of branches and modifications on the model. In

addition, the confidence intervals and the low standard deviation compared to the average

SizeRed indicate that the size reduction is also robust. Unfortunately, the hypothesis could

not be asserted with respect to PFail, but the analysis reveals that the technique is more

likely to reveal failures triggered by defects related to model modifications, showing that

SART still reveals failures despite the significant size reduction.

In conclusion, SART is able to achieve significant size reduction and still cover all model

modifications and reveal failures. However, the results from FM3 and FM4 still indicates

that the selection can be improved to increase PFail. During this experiment, SART required

an average of 200 milliseconds in each execution (to reduce hundreds of test cases). Given

that this work targets a higher level of abstraction of the system, most test cases are manually

executed, which implies that execution of all test cases is a tedious and time-consuming task.

The size reduction provided by SART can reduce this time when each test case has the same

cost of execution. However, further studies using cost models are recommended to precisely

assess the cost efficiency of SART in practice.

7.2 Comparative Study

Next, we present a study to compare the results from adapting the traditional counting func-

tion (CF) proposed by Cartaxo et al. for our regression testing context (RQ4 presented in

Chapter 1). In other words, we wanted to investigate whether it was worthwhile to change

the CF to analyse test suites from different software versions, or would a straightforward

application of CF on T ′ result in a representative subset for regression testing. We also com-

pared SART with a random selection (RDM) technique because a random selection tend to

present satisfactory transition coverage whenever size reduction is high (below 80%) [Car-

taxo et al. 2011].

Therefore, our goal is to assess whether CF and RDM are better than SART in targeting

regression test issues, such as coverage of new and modified parts of the system’s specifica-

7.2 Comparative Study 92

tion. Figure 7.6 presents an overview of this second experiment. We used the same set of

generated ALTS from the previous experiment as input for this study. SART, CF and RDM

were executed to select subsets from the automatically generates test suite. Thus, this exper-

iment has the same input and instruments used in the previous experiment (Section 7.1). The

main difference lies in our analysis.

Test cases
(delta)

Test cases
(baseline)

Selected Test Cases

Automa0c
Model

Genera0on

Automa3c
Test Case
Genera3on

CF

Parameters
(factors)

Analysis:
•  PFail
•  Transi3ons coverage
•  Types of test cases

2 nd Experiment Execu0on Baseline
Model

RDM

SART

Delta
Model

Figure 7.6: Overview of our comparative study.

We analyse all three techniques with respect to PFail, coverage of model’s transitions and

selected classes of test cases (reusable and targeted). Analysis with SizeRed is not suitable

for this study because, when using CF and RDM, the tester establishes the desired size ration,

since the goal with both techniques is to select a subset of test cases suitable for time and

budget constraints. For instance, if the budget available allows execution of only 40% of the

entire test suite, both techniques will produce a subset with only 40% of the test cases. SART

on the other hand, first establishes the minimum subset size to cover all modified regions of

the model, and then if the resulting subset is still big, the tester can apply other strategies to

reduce even more the number of test cases. In order to obtain subsets of the same size and

provide a fair coverage comparison, the size ratio criteria provided for CF and RDM was the

size of the subset provided by SART.

Figure 7.7 presents the results for transitions coverage, indicating that all subsets have

7.2 Comparative Study 93

10
15

20
25

30
35

40
45

Coverage for Each Technique

Pe
rc

en
ta

ge
 o

f T
ra

ns
iti

on
s

C
ov

er
ed

 (%
)

 SART CF RDM

Figure 7.7: Percentage of ALTS’s transitions covered by each selected subset.

a very similar percentage of transitions coverage, i.e. the transitions of the reduced subsets

from SART, CF and RDM correspond, respectively, to 22.42%, 22.18% and 24.86% of the

delta ALTS model. As expected, RDM presents the highest transitions coverage due to the

high percentage of size reduction (around 92%). For RDM, the chances of selecting the

same transition is smaller if any path of the model is a candidate, whereas SART and CF

have specific selection goals leading to less options, hence a more restrictive coverage.

These results become clearer as we analyse PFail for each technique (Figure 7.8). Note

that all techniques have similar performance for FM1, FM2 and FM3 due to the randomness

involved in determining the mutants in these three fault models. However, the benefits of

using a selection criterion based on modifications becomes evident when analysing FM4,

where RDM and CF have an average probability of 33.8% and 37% (respectively) of trigger-

ing defects at the modifications, whereas SART’s probability is 100%.

Figure 7.9 presents the average percentage of targeted1 and reusable test cases selected

by each technique. SART has a balanced proportion where the test suite is composed by

1Targeted test cases refer to both new-specification and retestable test cases.

7.2 Comparative Study 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

ab
ilit

ie
s

of
 T

rig
ge

rin
g

Fa
ilu

re
s

 SART CF RDM

PFail for each Subset
FM1 FM2 FM3 FM4

 SART CF RDM SART CF RDM SART CF RDM

Figure 7.8: PFail for each fault model and selected.

0
20

40
60

80
10

0

Proportions of Selected Types

Pe
rc

en
ta

ge
 S

el
ec

te
d

(%
)

SART CF RDM

*T = Targeted
T R T R T R

R = Reusable

Figure 7.9: Percentage of targeted and reusable test case selected by each technique.

7.3 Evaluation with Industrial Specification Models 95

an average of 48% targeted and 52% reusable test cases. CF and RDM, on the other hand,

have very low percentages of targeted test cases (respectively, 8% and 4%), indicating that

coverage of modifications is lower. Considering that regression testing should be executed

with modification-traversing test cases, the evidence shows that SART is more suitable than

CF and RDM.

Therefore, despite better transition coverage, the analysis shows that it is very risky to use

RDM for regression testing instead of SART, that, in turn, guarantees modifications coverage

and increased chances of triggering regression defects. Moreover, the results show that using

the CF alone on a regression testing context does not address its specific needs. The time

required to execute all techniques was less than 1 second, in fact each execution took between

50 to 200 milliseconds to reduce hundreds of test cases, hence comparison between execution

time was unnecessary. In conclusion, our adaptation of the counting function gave SART the

boost to achieve an automatic selection of test cases exercising the modified regions of a

specification model, providing more confidence whenever less test cases are necessary to

meet resource constraints of a progressive regression test process.

7.3 Evaluation with Industrial Specification Models

In complement to the evidence gathered on both experiments, we need to observe benefits of

using SART in an industrial context. Thus, we developed an exploratory case study to use

SART with industrial artefacts. This study is part of a collaboration between practitioners and

researchers in academia where an MBT process is used to test a software system that collects

and processes biometrics information. Unfortunately, only a limited number of specification

models were available to our research, hindering execution of experiments. Albeit only a

small investigation could be performed, the results are promising.

Figure 7.10 presents an overview of our exploratory case study. A total of four speci-

fication models were modified to meet new requirements, and the test cases were automat-

ically generated from each specification model. Given that there was not enough time to

run all generated test cases, a participant from our research group used her own expertise

and knowledge about the SUT to select, and, subsequently, execute the test cases. We then

applied SART to compare the pros and cons of testing the modified use cases.

7.3 Evaluation with Industrial Specification Models 96

Test cases
(delta)

Test cases
(baseline)

Automa3c
Test Case
Genera3on

SART

Manual
Selec-on

Selected
Subsets

Test Case
Selec3on Analysis

Time to Select
Test Cases

Number of

Failures Revealed

Industrial Artefacts

Baseline Version

Delta Version

Figure 7.10: Overview of our case study with industrial artefacts.

Due to confidentiality agreements, we are not able to present the industrial models used.

Instead, we present the number of states, transitions and modifications in each generated

ALTS to illustrate their size (Table 7.2). Model 1 and Model 2 are small, whereas Model 3

and Model 4 are bigger and have more complex interactions (e.g. more branches, loops and

joins in the ALTS).

A summary of data regarding test cases’ selection is presented in Table 7.3. As can be

seen, SART was able to select a test suite that is either equal or smaller than the one selected

by the tester. Also note that SART was able to select the test cases that failed when testing

the SUT, thus the same defects were found.

Consequently, SART was able to perform better than the manual approach, since less

test cases were selected and still all the failures were observed during the test. Moreover, the

main benefit is related to the selection process. The subject required a significant amount of

time (approximately 4 hours) to select a subset of test cases, and SART, on the other hand,

required an average of 200 millisecond to select each subset.

Besides being a very time consuming process, the manual selection is laborious and te-

Table 7.2: Industrial artefacts characteristics (size and number of modifications).

Specifica(on
Models

Baseline
Version

Delta
Version Modifica(ons

States Transi*ons States Transi*ons Removals Addi*ons Total

Model 1 11 11 10 9 3 1 4
Model 2 22 24 20 21 5 2 7
Model 3 32 33 28 28 6 1 7
Model 4 32 38 22 25 13 0 13

7.4 Threats to Validity 97

Table 7.3: Comparison between SART and a manual selection using industrial artefacts.

Specifica(on
Models

Number of
Generated
Test Cases

Selected Subset
Size

Number of Test
Cases that Failed

Manual SART Manual SART

Model 1 3 3 3 0 0

Model 2 14 10 6 1 1

Model 3 16 8 5 5 5

Model 4 67 7 7 4 4

dious, since most test cases have very similar sequences that can be bewildering. In addition,

relying on a tester’s expertise can be risky, since human factors such as experience, moti-

vation, etc. can compromise the outcome leading to an error prone selection. Usage of an

automatic strategy yields more consistent results, whereas the effort lies in deciding whether

the technique would be appropriate for the model being used. For example, imagine that we

are interested in branch coverage, instead of modifications. In that case, a different technique

would be more appropriate instead of SART.

7.4 Threats to Validity

In order to overcome the difficulties related to our evaluation methodology, several threats

to validity had to be addressed. One of the main concerns is the construct validity of our

first experiment, given that its execution relies on automatic generation of models. However,

the definition of patterns and the constraints to generate consistent ALTS hold the integrity

of the generated models. Also, the model type used for model generation and the resulting

test suites comply with similar formats used in literature [Bertolino et al. 2008; Cabral and

Sampaio 2008; Cartaxo 2011].

One concern regarding internal validity is the choice of parameters to generate models,

in turn related to: (i) The representativeness of the sample (i.e. space of models) obtained,

and (ii) the generalization of the results. To obtain a fairly general and representative sample,

it would be necessary to obtain parameters from a wide sample of real models. The choice

of values for parameters in this study was based on industry reports describing dimensions

(sizes, number of steps and branches) of use cases [Smith 2003]. Thus, the sample was

7.4 Threats to Validity 98

able to achieve a representativeness and is general to the ALTS specification models. Our

methodology and generator are also applicable in other techniques, since graph models are

widely used for regression test case selection [Biswas et al. 2011; Tamimi and Zahoor 2011;

Yoo and Harman 2012]. Eventually, results from different selection strategies in graph mod-

els (control/program/system dependencies, clusters, graph walk, etc.) can be compared by

using our methodology.

Another difficulty with this study is the evaluation of SART’s performance regarding de-

fect detection capability. Mutations of the model, fault hypotheses and fault models were

used to address the lack of implementations and defect data experienced in many empirical

studies [Andrews et al. 2005]. Despite hindering definitive conclusions regarding SART’s

defect detection capability, the analysis provides statistical evidence that the technique se-

lects test cases exercising the modifications of the specification models, regardless of their

location in the model.

Regarding external validity, the size of the sample used, the p-values for SizeRed and our

comparative study allows generalization, to similar contexts, of our results regarding SART’s

percentage of size reduction (unlike the results with PFail). In order to take generalization

to the next level, an experiment with specification-based regression test selection should

be performed to compare performance of different selection strategies, such as dependence

analysis [Korel et al. 2002; Chen et al. 2007] and model comparison [Leung and White 1991;

Chen et al. 2002]. However, the complexity involved in controlling all these techniques

(each one uses a different type of model) demands effort and time beyond the scope of this

research.

Despite providing important information regarding SART’s applicability, our study with

industrial models has some limitations as well, because the specification models used are

reasonably small and simple. Nonetheless, the subject participating in our case study em-

phasized that it is very difficult and tedious to perform manual selection of diverse test cases

exercising the modifications. In turn, the selection performed by SART was much faster, eas-

ier and able to reveal defects. Eventually, we intend to investigate further modifications on

other industrial specification models and apply other techniques to compare with our results.

Note that many of the threats to validity are side effects from attempting to overcome

challenges found in empirical evaluations of MB techniques (for example, the small avail-

7.5 Challenges and Rewards with SBMTE 99

ability of models) and regression test case selection (e.g. the lack of real fault data). This

highlights the importance of this work as a proposal of an evaluation framework for similar

techniques. Thus, with this study we want to encourage other researchers to use SBMTE and

stimulate the empirical evaluation of proposed MB techniques.

7.5 Challenges and Rewards with SBMTE

Samples of models are hard to find hindering empirical evaluation of MB techniques. To ad-

dress this lack of availability we decided to use stochastic model generation with descriptive

statistics of realistic models [de Oliveira Neto et al. 2013]. This approach, named SBMTE,

enabled the generation of a large number of models that share characteristics with industrial

models.

Besides properly defining the role of the generator tool in an experiment, the experi-

menter needs to be able to generate realistic instances of models, i.e. the generated models

should have characteristics typical of models used in organizations developing software (the

larger and the more complex, the better). Otherwise, it is hard to translate the conclusions

obtained from analysed data to the decision of adopting an investigated MB technique. Those

characteristics can be expressed through parameters of the model such as size, type, depen-

dencies, among others.

Consequently, the main challenges in using SBMTE are: Choosing an appropriate model

format and defining a good set of parameters to generate representative models. We chose

ALTS for being simple to use and easy to adapt, and the level of realism was obtained through

rules to ensure consistent input and output relationships among transitions and states. For

example, Finite State Machines (FSM) share characteristics with LTS models, such as states,

transitions and labels. Thus, we believe that similar concepts can be applied in developing

an FSM generator.

As SBMTE is used, generators for different model formats can be shared, making it eas-

ier to generate models used by different techniques being investigated. Regarding the chal-

lenge of choosing parameters, we suggest using model property extraction from repositories,

industry partners, or by referring to literature.

The advantage of SBMTE is providing a platform for strong empirical evaluation of

7.6 Concluding Remarks 100

model-based techniques when large samples of models are not available. Nonetheless, the

experimenter needs to design the experiment carefully to consider the model generation,

or else the observed causation may be invalid. Many empirical evaluations of regression

test selection technique present contradictory results, because some evaluations are done in

a specific context [Engström et al. 2008]. Definition of experiments in terms of SBMTE

allows comparison of MB techniques on the same platform, for example, dimensions of

models, scalability, transitions coverage, among others.

Ultimately, our objective with SBMTE was to first validate SART through an experiment

and obtain conclusive results, hence industry partners were not involved and we cannot really

argue towards technology transfer of SART, specifically. However, based on Gorsheck’s et

al. model [Gorschek et al. 2006], we believe that thorough investigation of possible scenarios

(e.g. executing any technique with a wide range of model types) increases confidence and

encourages technology transfer of any MB technique, including SART.

7.6 Concluding Remarks

Usually, proposed research on MB techniques relies on model elements such as transitions,

states or classes to get information from software to achieve a specific goal (e.g. model trans-

formation or test suite prioritization). In our work, Offline SBMTE enabled observation of

the effects that a variety of instances of models have on an MB technique (e.g. scalability,

versatility, weaknesses). For example, the generation of thousands of models allowed us

to confirm a relationship between branches in an ALTS model and SART’s SizeRed, oth-

erwise unseen in case studies with smaller samples [de Oliveira Neto and Machado 2011;

de Oliveira Neto et al. 2013].

Greater potential is expected when including meta-heuristics to identify regions of the

space of models that yields better (or worse) results. By dynamically finding better/worse

models and providing them as input to experiments, the MB technique can be better un-

derstood, challenged and thus improved. Eventually, when model generation and meta-

heuristics are included and SBMTE can be executed “in the loop” of a development process

(Online SBMTE), then each organization will be able to develop and constantly evaluate its

own MB technique.

7.6 Concluding Remarks 101

In conclusion to our evaluation, we have gathered the data collected throughout the

research and summarize them below in order to answer our research questions:

RQ1: How to use similarity functions to identify modifications?

A very common approach is considering transitions coverage as a criterion to de-

termine if test cases are similar [Cartaxo et al. 2007a; Cartaxo et al. 2011;

Hemmati et al. 2011]. Instead of analysing similarities among test cases belonging

to the same test suite, we analyse similarities between test cases of different versions of a

software, which made it possible to identify test cases traversing modified parts of a model.

Therefore, very different pairs of test cases indicate sequences of transitions that were

changed.

RQ2: How to select test cases based on the identified modifications?

Regression testing literature suggests classification of test cases based on their differ-

ent roles (see Chapter 2) when performing regression test [Leung and White 1991;

Briand et al. 2009]. Based on the similarity values from rows and columns of the matrix,

we are able to classify the test cases as obsolete, reusable and targeted (i.e. retestable or

new-specification) and select the ones traversing modified regions of the model.

RQ3: How to address redundancy issues occurring in test suites from both regression test

suites and MBT approaches?

Since regression test suites tend to grow with each new version, redundancy scales up

significantly. Our concern here is transitions coverage, and our solution is to apply test

suite minimization techniques on the selected subset of targeted test cases. Subsequently,

the modifications being repeatedly traversed by selected test cases are replaced by similar

reusable test cases to ensure coverage of transitions nearby modified parts of the model.

RQ4: Is our selection strategy beneficial for regression testing when compared to plain

application of similarity functions on a test suite?

Based on the comparative study, we concluded that there is no indication of an improvement

in transitions coverage when using SART because of the significant size reduction achieved.

7.6 Concluding Remarks 102

On the other hand, our usage of STCS is better in achieving coverage of modifications

and selection of test cases for regression testing, when compared to the original use of the

counting function on a set of test cases and the random selection of test cases.

Chapter 8

Conclusions

Specification models have been used as an important asset for software development pro-

cess by providing useful information about the product being developed. Moreover, ef-

fective and efficient test generation techniques based on models are becoming available,

giving leverage to automated traceability between design models and test cases. For re-

gression testing this represents an automated mechanism to handle modifications at the

specification level [Harrold and Orso 2008]. Consequently, research about specification-

based test case selection for regression testing keeps growing in order to fill the gap

of selecting test cases based on modifications of a model [Tamimi and Zahoor 2011;

Yoo and Harman 2012]. This doctorate research presents a new selection strategy to address

this issue, by mitigating existing problems in handling high level specification elements, such

as abstract test cases.

Our research is part of a model-based testing process where specification models

representing the system are used to design test cases and execute the SUT. For ad-

dressing the regression testing context, we assume that these models undergo modifica-

tions representing addition and removal of a software’s functionalities. In order to ad-

dress the problem of accrued test suites commonly found in MBT and regression test-

ing processes [Fraser and Wotawa 2007; Harrold and Orso 2008; Bertolino et al. 2010;

Yoo and Harman 2012] we developed a selection strategy named Similarity Approach for

Regression Testing (SART) that uses a similarity function to analyse pairs of abstract test

cases from different versions of software and determine which test cases traverse modified

regions of the specification model.

103

104

Our goal was to investigate similarity-based test case selection (STCS) based on the as-

sumption that searching among similarity values allows the technique to identify test cases

covering severe modifications (low similarities) and remove those covering unmodified parts

(high similarities). This investigation was performed through an experiment that confirmed

our assumption that not only the technique is able to cover modifications performed on a

specification model, but also provide a robust size reduction in a test suite. Furthermore,

comparison with a STCS technique (counting function) [Cartaxo et al. 2011] and a random

test case selection technique provided evidence that SART is able to address regression test-

ing needs, being a more appropriate choice for selecting test cases in a progressive regression

testing context than the other two techniques.

In order to obtain conclusive results, we used a large sample of specification models

provided as input to our test process. To account for more representativeness and diver-

sity of models, we proposed an approach, named Search-Based Model Technology Evalua-

tion (SBMTE) to evaluate model-based techniques through stochastic generation of realistic

models. Studies with model-based (MB) techniques often struggle with availability of sam-

ple of models to obtain statistically significant conclusions [de Oliveira Neto et al. 2013],

and through SBMTE we address that problem by using generator tools to create instances

of models based on characteristics of real industry models, such as size and layout. That

enables early validation of MB techniques still in laboratory, mitigating risks before apply-

ing the technique in practice and encouraging empirical evaluation of existing techniques by

alleviating the challenges of obtaining industrial models.

Besides SART and SBMTE, our research provides many other contributions de-

tailed in publications achieved during our research [de Oliveira Neto and Machado 2011;

de Oliveira Neto and Machado 2013; de Oliveira Neto et al. 2013]. In general, smaller, yet

significant, contributions of this doctorate research are:

• The experiment: All artefacts and methods of our experiment are detailed in this

document and available on the Internet1 so that other researches can reuse its parts or

reproduce it completely. In addition, the entire experiment is automatically executed

in a tool allowing quick and easy reproduction in case other researchers decide to

1Details of the data and tables are available for download: https://sites.google.com/site/

fgonetosite/home/downloads

105

investigate our results or expand them by using different treatments for factors.

• Analysis based on fault models: We define a method to determine four different fault

models to represent defects on implementation that would trigger failures in turn rep-

resented by mutants at the specification model. Those mutants are changes of model’s

elements and would signal a failure when traversed by a test case. Consequently we

can investigate if a technique is able to achieve an intended coverage. For example,

one of our fault models represented defects triggered when traversing a model mod-

ification. Another example using our approach is to create a fault model to include

mutants in loop transitions to assess loop coverage, and so on.

• Tool support: One of the main concerns throughout development of this research was

to provide a platform for automatic execution of our proposed and investigated tech-

niques. SART, our generator tool and the experiment platform is executable through

the LTS-BT tool 2, and the statistical analysis is performed with the assistance of R3

scripts. Besides alleviating the effort in using a full factorial experimental design, this

decision allowed us to enhance reproducibility of our research.

In addition to all contributions we would in particular like to highlight the benefits pro-

vided by both SART and SBMTE. First, most work with similarity-based test case selection

do not address specific issues of regression testing and use similarity functions to determine

similarity among test cases of a single test suite or software version, whereas we use it as

tool to investigate similarities between different software versions. More importantly, our

proposal of SBMTE is a unique contribution to the MBT community for allowing the evalu-

ation of MB techniques.

Nevertheless, the endeavour to overcome the obstacles of empirical evaluation of model-

based techniques yields threats to validity to our methodology, hence limiting some of our

conclusions. More specifically, the lack of parameters from real industry models limit gen-

eralization of our study to the type of model used (ALTS), instead of applying our results to

specification models in general. Also, we believe that the randomness in assigning mutants

through a biased wheel (FM1 and FM2) and breaking ties (when choosing states in FM3)

2https://sites.google.com/a/computacao.ufcg.edu.br/lts-bt/
3http://www.r-project.org/

106

hindered our conclusions with respect to our failure analysis.

Moreover, our selection strategy has been used for a general type of state-based or be-

havioural model, hence we cannot draw conclusions regarding usage of our strategy for test

cases generated from structural diagrams such as UML class, component and object dia-

grams. These diagrams contain different information from software, usually from lower

software levels such as code statements and functions/methods. That would require a new

experiment using a different set of variables and hypotheses.

Also, usage of ALTS in our current implementation of SART limit the technique’s ap-

plicability because most companies use UML diagrams to represent their models. However,

LTS-BT supports creation of ALTS models from more popular diagrams such as activity and

sequence diagrams [Cartaxo et al. 2007b; de Oliveira Neto 2010]. In the mean time, we use

the document template to describe use case and scenarios (presented in Chapter 2) as primary

input format, and ALTS are used as intermediary format to generate test cases. Additionally,

the output is an XML file that can be imported to TestLink4.

That leads us to the discussion of future work regarding our research. Now that the ex-

periment provides evidence regarding the benefits of using SART to identify modifications

on a test suite, we expect that usage of SART with different similarity functions presented

in literature can yield different results that can be better or worse than SART’s current ver-

sion. In an experiment Hemmati et al. investigated 320 techniques [Hemmati et al. 2013] for

STCS that could, eventually, be incorporated with SART to obtain better results. Further-

more, we could also investigate different minimisation heuristics to achieve more effective

minimisation of the targeted test cases set. Accordingly, there are numerous possibilities to

combine different similarity function and minimisation heuristics in an experiment (possibly

using SBMTE) to determine which of them can enhance SART’s performance.

Furthermore, SBMTE can be executed with techniques similar to SART that have been

proposed for test case prioritization and minimization [Ouriques et al. 2013; Coutinho et al.

2013]. Those strategies can benefit from SBMTE, given the appropriate adaptation to address

their respective issues and assumptions. For example, prioritization techniques could benefit

from measuring Average Percentage of Faults Detected (APFD) of the resulting set of test

cases. Moreover, other specification-based selection techniques could be executed with the

4http://testlink.org/

107

same space of models to compare rate of size reduction.

Besides the several options of using SBMTE in empirical evaluations, future work also

comprise improvement of SBMTE itself. The generation can be engineered to target specific

types of models. For example, the model generator could be engineered to receive meta-

model specifications and then automatically generate instances of a desired model format.

Moreover, some models are not available to the academic community due to concerns from

industrial partners regarding proprietary information included in models. Those concerns

hinder publication of results from experiments performed with real models. With SBMTE,

researchers can write extraction scripts that industrial partners can apply on their models to

gather data and avoid confidentiality issues. In turn, realistic models are generated at large

scales allowing execution and publishing of experiments.

In conclusion, we produced a new selection strategy and proposed an evaluation method-

ology. The latter is also an attempt to encourage and disseminate some of the experimenting

practices such as awareness to validity threats, control and definition of variables, conclu-

sions based on statistical tests and reproducibility. Those practices raise the bar on confidence

and significance required to achieve satisfactory results in any research, yielding a more rig-

orous reviewing process for existing work in literature and consequently an improvement on

feedback and research provided to the academic community.

Appendix A

Example using the Weighted Similarity

Analysis

The size of the selected subset provided by SART depends mainly on the number of modifi-

cations that must be covered. In some cases, the size of the selected subset may not comply

with the testing resources of a development process. Since more size reduction is required,

we believe that it is up to the tester to determine which test cases are more important to be

tested, among those traversing modifications of the specification. Then, we decided to in-

clude an additional strategy based on a value-based approach to select important test cases.

But what is a value-based approach?

Traditionally, each test case has an equal value, also known as weight, often indicating

that the scenarios being tested in a System Under Test (SUT) are equally important, for

example, to the client. But usually, in industry, specific parts of the SUT have different val-

ues, and thus, test cases exercising critical or “valuable” parts should have different weights

[Boehm 2006].

In a value-based approach, weights are assigned to artefacts in order to represent their

importance with respect to the product being produced. As an example, consider a medical

application software where a patient’s symptoms are provided as input to obtain a list of dis-

eases as output. Naturally, testing the parts responsible for analysing the symptoms becomes

more important than, for example, testing formatting of strings in exported reports. Defects

on the first testing criteria can lead to a wring medication or even the patient’s death, whereas

defects on the second would lead to less severe consequences.

108

109

The challenge then becomes how to properly define and assign the weights to software

artefacts. Usually, weights can represent operational profiles, scenarios likely to reveal de-

fects, and are often defined by humans with appropriate expertise on the subject, e.g. an

experienced tester, manager or even the client. SART’s strategy regarding weight analysis

is based on Bertolini et al. strategy, named Weighted Similarity Approach, or simply WSA

[Bertolino et al. 2008; Cartaxo 2011]. This section presents and overall description and

example of WSA selection strategy. Further details regarding the algorithm of WSA can be

found in Cartaxo’s thesis [Cartaxo 2011].

WSA ensures that the least important and most similar test cases are automatically re-

moved (i.e. test cases with low weights and exercise similar sequences of transitions). For

considering a similarity analysis on specification models, WSA becomes a suitable candidate

to be used alongside SART. Therefore, we chose WSA to provide usage of a value-based ap-

proach when executing SART, enabling selection of important test cases traversing changed

parts of the specification.

In WSA, the weights are assigned only to transitions and they represent an operational

profile of the delta specification model (S ′) since the delta version P ′ is the one delivered to

the system’s users. Each transition has a value defined as p(
−→
ti) that indicates the probability

that the system’s user will execute transitions
−→
ti . The idea is that once the user reaches

a certain location of the scenario (i.e. state), p(
−→
ti) represents the probability that the user

will perform a specific step among all steps yielding from the current specification state.

That is defined by equations A.1 and A.2, considering that State q ∈ Q has i = 1, 2, · · · , n

successors A successor is a state that can be reached through an outgoing transition of the

current state.

Toutgoing(q) = {
−→
ti | ∃qi,

−→
ti = (q, qi) ∈ Ttr (A.1)

n
∑

i=1

p(
−→
ti) = 1,

−→
ti ∈ Toutgoing(q) (A.2)

In other words, for each state in the ALTS, the sum of all p(
−→
ti) regarding its outgoing

transition must be 1. Therefore, states with a single outgoing transition will have a transition

with probability p(
−→
ti) = 1, whereas branching states will have its probability distributed

110

among all outgoing transitions.

Weights Delta Test Suite – T’

0,070 TC’1 a b c d e f

0,084 TC’2 a b c d w x m n y z

0,006 TC’3 a b c d w x m n v j k l m n y z

0,004 TC’4 a b c d w x m n v j q r s n o p

0,137 TC’5 a b i j k l m n y z

0,059 TC’6 a b i j q r s n y z

0,228 TC’7 a b i j k l m n o p

0,098 TC’8 a b i j q r s n o p

0,020 TC’9 a b i j q r s n u t

0,003 TC’10 a b i j k l m n v j k l m n u t

0,001 TC’11 a b i j k l m n v j q r s n u t

0,007 TC’12 a b i j k l m n v j q r s n o p

0,004 TC’13 a b i j k l m n v j q r s n y z

0,003 TC’14 a b i j q r s n v j q r s n o p

0,001 TC’15 a b i j q r s n v j k l m n u t

0,007 TC’16 a b i j q r s n v j k l m n o p

0

1

4

5

2

3

6

9

10

11 13

15

16

17

18

a

0.35 = c

w = 0.80.2 = e

b

d

f

0.5 = o

i = 0.65

v = 0.1

m

0.7 = k q = 0.3

s

j

p

u = 0.1

n

t

l

14

r

12

x

21

19

20

22

23

y = 0.3

z

Delta Model

(a) (b)

Figure A.1: (a) Example of an ALTS model with weights assigned to branches, and (b) the

weights for each test case. The shaded test cases represent the subset selected in Chapter 3.

In order to illustrate this process, we assigned weights to the transitions of the specifi-

cation used in Chapter 3, resulting in Figure A.1. So, for instance p(
−→−→
k) = 0.7 indicates

that, after reaching State 10 the user has a 70% probability to execute action
−→
k , and 30%

probability of executing action −→q . In order to improve visualisation, all weights p(
−→
ti) = 1

have been omitted.

After the operational profile is defined, the weight of each test case (weight(ti), ti ∈

Ts) is automatically calculated by multiplying the weights of its correspondent transitions.

For instance, the test case TC ′8 (with weight 0.097) is the more important test case of our

selected subset, and represents the scenario of importing and saving a contact’s information

on a phonebook. After obtaining weights for each test case, we begin to execute WSA

(Figure A.2) using, as input, SART’s selected subset. From Chapter 3, the input for our

example is Ts = {TC ′1, TC ′4, TC ′8, TC ′9, TC ′11, TC ′12, TC ′13, TC ′14}.

Initially, we generate the weighted similarity matrix W that, in turn, differs from our

similarity matrix in two aspects: Only one test suite is considered in the analysis, and the

111

Weights

Desired size (%)

Weight Analysis - WSA

Build Weighted
Similarity Matrix

Remove TCs
(least important)

Selected Subset

Figure A.2: Steps to execute WSA given, as input: A test suite with weighted test cases, and

the number of test cases that should be removed.

similarity values are divided by a weight. Therefore, based on Equations A.3 and A.4 we

generate each element w[i, j] of the matrix, remembering that each index of the matrix rep-

resent a test case. Since we only use one test suite as input, and all pairs of test cases are

analysed, resulting in a square matrix W|Ts|×|Ts|, where each t ∈ Ts is placed on a respective

row and column of W .

WSA(ti, tj) =
nit(ti, tj)

AvgSize(ti, tj)
, ti, tj ∈ Ts (A.3)

w[i, j] =
WSA(ti, tj)

weight(ti)
(A.4)

Mathematically, the baseline value is the similarity value WSA(ti, tj)
1 between the se-

lected test cases; then we divide this value by a test case’s weight 0 < weight(ti) ≤ 1. In

other words, each similarity value obtained is divided by the weight of the test cases of the

correspondent matrix row, leading to a significant increase in w[i, j] of the least important

test cases (i.e. low weights). As a result, the unwanted test cases (very similar and least

important) can be found by searching for the higher values in W .

In each turn, and after finding the highest w[i, j], we remove the respective row and

column of the chosen test case (for a tie break we randomly choose one of the candidates),

and repeat the process until the user of the technique (e.g. a tester) decides that the size

obtained is suitable. For instance, in our example of Figure A.1, we calculate the W matrix

for Ts resulting in Table A, and the tester wants to remove 3 test cases.

First, we find w[TC ′15, TC ′′11] = w[TC ′11, TC ′15] = 732.6 meaning that TC15 and

TC11 are both very similar and less important test cases, thus we (randomly) choose TC15

1AvgSize and nit are the same functions described in Chapter 3, where the first calculates the average size

between both test cases, and the second retrieves the number of identical transitions between both test cases.

112

Table A.1: Weighted similarity matrix from the test suite of Figure A.1.

TC’1 TC’4 TC’8 TC’9 TC’11 TC’12 TC’13 TC’15

TC’1 0.00 5.19 3.57 3.57 2.57 2.57 2.60 2.57

TC’4 85.71 0.00 145.24 128.21 147.62 178.57 133.93 133.33

TC’8 2.56 6.26 0.00 8.21 6.31 7.89 6.26 6.31

TC’9 12.82 27.59 41.03 0.00 38.97 31.28 31.54 31.28

TC’11 131.87 454.21 450.55 556.78 0.00 641.03 637.36 732.60

TC’12 26.37 109.89 112.67 89.38 128.21 0.00 127.47 128.21

TC’13 43.96 137.24 148.96 150.18 212.45 212.45 0.00 212.45

TC’15 131.87 410.26 450.55 446.89 732.60 641.03 637.36 0.00

to be removed from Ts and then remove its row and column from W in order to proceed

with the technique. The next removal is TC ′11 due to w[TC ′11, TC ′12] = 641.03 followed

by removal of TC ′13 (w[TC ′13, TC ′12] = 212.4). Therefore, the resulting subset becomes

Ts = {TC ′1, TC ′4, TC ′8, TC ′9, TC ′12}. Note that TC ′11, TC ′12, TC ′13, TC ′15 are very

similar among themselves and the technique was able to keep the more important test case

— weight(TC ′12) = 0.0068 — and although TC ′4 has a smaller weight, it traverses a very

unique sequence of transitions when compared to the other ones in Ts, thus it should not be

removed from the subset.

The main benefit of WSA is providing the automatic algorithm to strike a balance be-

tween weights and similarity values to ensure removal of redundant and least important test

cases [Cartaxo 2011]. Despite the benefits, appropriate evaluation and safe application of

WSA is hindered by the process of assigning weights. That is, to rely on a subject’s ex-

pertise to express an operational profile can compromise the technique’s performance, since

the selection is guided by a subjective value (e.g. an operational profile, a distribution of

estimated defects) defined by a human being. On the other hand, that can be beneficial if the

information provided by the subject is accurate.

In summary, we recommend usage of the weight analysis in SART whenever the selected

subset, obtained after identifying modifications, does not comply with available resources

and more size reduction is necessary. Otherwise, the weight analysis can be avoided, since

the focus of regression testing is still finding regression defects and WSA analysis does not

consider modifications of the specification model in its selection process.

Appendix B

Tables detailing coefficients and p-values.

This appendix contains data regarding p-values and coefficients obtained from all interac-

tions of factors reported in our experiment (Chapter 7). We present p-values regarding the

linear regression model for each coefficient obtained for the main factors and all possible

interactions (Tables B.1, B.2 and B.3). Below, the “Indicator” column signals whenever a p-

value is smaller than the considered level of significance (‘∗ ∗ ∗, α = 0.001’; ‘∗∗, α = 0.01’;

‘∗, α = 0.05’; ‘., α = 0.01’). R scripts were used to obtain the data and p-values.

113

114

Table B.1: Data and p-values for all main factors and 2-way interactions of factors.

Main factors Coefficient t value p-value Indicator

S -0.1279406 -4.718 6.13e-06 ***

B 22.233729 81.996 < 2e-16 ***

J 0.5423573 20.002 < 2e-16 ***

L 0.0107323 0.396 0.69291

A -13.664448 -50.393 < 2e-16 ***

R -14.033688 -51.755 < 2e-16 ***

2-way interactions Coefficient t value p-value Indicator

S:B 0.0505292 1.863 0.06469 .

S:J -0.0838510 -3.092 0.00244 **

B:J -0.2650833 -9.776 < 2e-16 ***

S:L -0.0365198 -1.347 0.18042

B:L 0.0011375 0.042 0.96660

J:L 0.0507594 1.872 0.06349 .

S:A 0.0047510 0.175 0.86119

B:A 0.3311833 12.214 < 2e-16 ***

J:A 0.0692448 2.554 0.01183 *

L:A -0.0012344 -0.046 0.96376

S:R -0.0043500 -0.160 0.87280

B:R 0.3659969 13.498 < 2e-16 ***

J:R 0.1281167 4.725 5.97e-06 ***

L:R 0.0345563 1.274 0.20483

A:R -0.0011458 -0.042 0.96636

115

Table B.2: Data and p-values for all 3-way interactions of factors.

3-way interactions Coefficient t value p-value Indicator

S:B:J 0.0159646 0.589 0.55706

S:B:L 0.0210000 0.774 0.44009

S:J:L 0.0207948 0.767 0.44456

B:J:L -0.0421271 -1.554 0.12275

S:B:A -0.0498771 -1.839 0.06817 .

S:J:A 0.0349198 1.288 0.20014

B:J:A -0.0694729 -2.562 0.01156 *

S:L:A -0.0694740 -2.562 0.01156 *

B:L:A -0.0213979 -0.789 0.43149

J:L:A -0.0534573 -1.971 0.05083 .

S:B:R 0.0134344 0.495 0.62113

S:J:R -0.0117813 -0.434 0.66467

B:J:R -0.0546135 -2.014 0.04610 *

S:L:R -0.0003688 -0.014 0.98917

B:L:R 0.0061802 0.228 0.82007

J:L:R 0.0034917 0.129 0.89774

S:A:R -0.0179938 -0.664 0.50814

B:A:R -0.0324573 -1.197 0.23352

J:A:R 0.0365562 1.348 0.17999

L:A:R -0.0097833 -0.361 0.71884

116

Table B.3: Data and p-values for all 4,5 and 6-way interactions of factors.

4-way interactions Coefficient t value p-value Indicator

S:B:J:L -0.0256229 -0.945 0.34646

S:B:J:A -0.0537500 -1.982 0.04959 *

S:B:L:A 0.0326688 1.205 0.23051

S:J:L:A 0.0245656 0.906 0.36666

B:J:L:A -0.0085917 -0.317 0.75187

S:B:J:R -0.0054969 -0.203 0.83968

S:B:L:R -0.0206385 -0.761 0.44798

S:J:L:R -0.0455833 -1.681 0.09519 .

B:J:L:R 0.0252865 0.933 0.35281

S:B:A:R 0.0412885 1.523 0.13030

S:J:A:R 0.0236250 0.871 0.38524

B:J:A:R -0.0261135 -0.963 0.33734

S:L:A:R 0.0099625 0.367 0.71392

B:L:A:R -0.0339823 -1.253 0.21240

J:L:A:R 0.0276813 1.021 0.30925

5-way interactions Coefficient t value p-value Indicator

S:B:J:L:A -0.0141250 -0.521 0.60332

S:B:J:L:R 0.0082135 0.303 0.76245

S:B:J:A:R -0.0060719 -0.224 0.82317

S:B:L:A:R -0.0194385 -0.717 0.47476

S:J:L:A:R 0.0106604 0.393 0.69487

B:J:L:A:R -0.0253177 -0.934 0.35222

6-way interactions Coefficient t value p-value Indicator

S:B:J:L:A:R 0.0110552 0.408 0.68417

Appendix C

An Example of a Complete Use Case

Document

117

Feature 01 – Messaging
UC_01 – Sending messages with attached items
Description
This use case describes how a message can be sent by attaching an image
file (multimedia) or a message saved on memory (e.g. received or
forwarded message).

Main Flow
Description: Create a new contact
From Step: START To Step: END

Step Id Type Label

1M user_action Select "Send Item" option.

2M expected_results List of options is displayed.

3M user_action Include an image file.

4M expected_results List of saved image files is displayed.

5M user_action Press "Send Image" button.

6M expected_results "Item sent" message is displayed.

Alternative Flows

Description: Return to the main screen
From Step: 2M To Step: END

Step Id Type Label

1A user_action Press "Return" icon.

2A expected_results Main menu is displayed.

Description: Include message already saved on memory (e.g. messages
received, previous conversations or forwarded to inbox).
From Step: 2M To Step: 6M

Step Id Type Label

1B user_action Include a saved message.

2B expected_results List of saved messages is displayed.

3B user_action Select the message and press "Send"
button.

Description: Cancel saved message inclusion.
From Step: 2B To Step: END

Step Id Type Label

1C user_action Select "Cancel" option.

2C expected_results "Want to send other item?" message is
displayed.

3C user_action Press "No" button.

4C expected_results "No items were sent" message is
displayed.

Description: Return to the "Send Item" screen to allow users to repeat
the operation.
From Step: 2C To Step: 2M

Step Id Type Label

1D user_action Press "Yes" button.

Bibliography

[Agrawal et al. 1993] Agrawal, H., Horgan, J. R., Krauser, E. W., and London, S. (1993).

Incremental regression testing. In ICSM ’93: Proceedings of the Conference on Software

Maintenance, pages 348–357, Washington, DC, USA. IEEE Computer Society.

[Andrews et al. 2005] Andrews, J. H., Briand, L. C., and Labiche, Y. (2005). Is mutation

an appropriate tool for testing experiments? In Proceedings of the 27th international

conference on Software engineering, ICSE ’05, pages 402–411, New York, NY, USA.

ACM.

[Arcuri and Briand 2014] Arcuri, A. and Briand, L. (2014). A hitchhiker’s guide to statisti-

cal tests for assessing randomized algorithms in software engineering. Software Testing,

Verification and Reliability, 24(3):219–250.

[Barbosa et al. 2007] Barbosa, Daniel, L., Lima, H. S., Machado, P. D. L., Figueiredo, J. C.,

Jucá, M. A., and Andrade, W. L. (2007). Automating functional testing of components

from UML specifications. International Journal of Software Engineering and Knowledge

Engineering.

[Basanieri et al. 2002] Basanieri, F., Bertolino, A., and Marchetti, E. (2002). The cow suite

approach to planning and deriving test suites in UML projects. In Proceedings of the 5th

International Conference on The Unified Modeling Language (UML 02), UML’02, pages

383–397, London,UK. Springer-Verlag.

[Beizer 1990] Beizer, B. (1990). Software testing techniques (2nd ed.). Van Nostrand Rein-

hold Co., New York, NY, USA.

[Bertolino et al. 2008] Bertolino, A., Cartaxo, E. G., Machado, P. D. L., and Marchetti, E.

120

BIBLIOGRAPHY 121

(2008). Weighting influence of user behavior in software validation. In 19th International

Workshop on Database and Expert Systems Application, pages 495–500.

[Bertolino et al. 2010] Bertolino, A., Cartaxo, E. G., Machado, P. D. L., Marchetti, E., and

Ouriques, J. a. F. S. (2010). Test suite reduction in good order: Comparing heuristics

from a new viewpoint. In The 22nd IFIP International Conference on Testing Software

and Systems (ICTSS’10), pages 13–18.

[Binder 1996] Binder, R. (1996). Testing object-oriented software: a survey. Software Test-

ing, Verification and Reliability, 6:125–252.

[Binder 1999] Binder, R. V. (1999). Testing object-oriented systems: models, patterns, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Biswas et al. 2011] Biswas, S., Mall, R., Satpathy, M., and Sukumaran, S. (2011). Regres-

sion test selection techniques: A survey. Informatica, 35(3):289–321.

[Bochmann and Petrenko 1994] Bochmann, G. V. and Petrenko, A. (1994). Protocol testing:

Review of methods and relevance for software testing. In Proceedings of the 1994 ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’94, pages

109–124, New York, NY, USA. ACM.

[Boehm 2006] Boehm, B. (2006). Value-based software engineering: Overview and agenda.

In In book, pages 3–14. Springer Verlag.

[Briand et al. 2009] Briand, L. C., Labiche, Y., and He, S. (2009). Automating regression

test selection based on UML designs. Information and Software Technology, 51(1):16–30.

Special Section - Most Cited Articles in 2002 and Regular Research Papers.

[Briand et al. 2002] Briand, L. C., Labiche, Y., and Soccar, G. (2002). Automating impact

analysis and regression test selection based on uml designs. In Proceedings of the Inter-

national Conference on Software Maintenance (ICSM’02), page 252, Washington, DC,

USA. IEEE Computer Society.

[Brottier et al. 2006] Brottier, E., Fleurey, F., Steel, J., Baudry, B., and Le Traon, Y. (2006).

Metamodel-based test generation for model transformations: an algorithm and a tool. In

BIBLIOGRAPHY 122

Software Reliability Engineering, 2006. ISSRE ’06. 17th International Symposium on,

pages 85–94.

[Broy et al. 2005] Broy, M., Jonsson, B., Katoen, J. P., Leucker, M., and Pretschner, A.,

editors (2005). Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes

in Computer Science. Springer.

[Cabral and Sampaio 2008] Cabral, G. and Sampaio, A. (2008). Formal specification gen-

eration from requirement documents. Electron. Notes Theor. Comput. Sci., 195:171–188.

[Cartaxo 2011] Cartaxo, E. G. (2011). Estratégias para Controlar o Tamanho da Suíte de

Teste Gerada a partir de Abordagens de Teste Baseado em Modelos. PhD thesis, Federal

University of Campina Grande.

[Cartaxo et al. 2008] Cartaxo, E. G., Andrade, W. L., de Oliveira Neto, F. G., and Machado,

P. D. L. (2008). LTS-BT: A tool to generate and select functional test cases for embedded

systems. In Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08,

pages 1540–1544, New York, NY, USA. ACM.

[Cartaxo et al. 2007a] Cartaxo, E. G., de Oliveira Neto, F. G., and Machado, P. D. L.

(2007a). Automated test case selection based on a similarity function. In Proceedings

of MOTES07 - Model-based Testing - Workshop in conjunction with the 37th Annual

Congress of the Gesellschaft fuer Informatik, volume 110 of Lecture Notes in Informatics

(LNI), pages 381–386.

[Cartaxo et al. 2007b] Cartaxo, E. G., de Oliveira Neto, F. G., and Machado, P. D. L.

(2007b). Test case generation by means of UML sequence diagrams and labeled tran-

sition systems. In Proceedings of IEEE International Conference on Systems, Man and

Cybernetics, 2007 (SMC’07), pages 1292–1297.

[Cartaxo et al. 2011] Cartaxo, E. G., Machado, P. D. L., and de Oliveira Neto, F. G. (2011).

On the use of a similarity function for test case selection in the context of model-based

testing. Software Testing, Verification and Reliability, 21(2):75–100.

[Carver and Tai 1998] Carver, R. H. and Tai, K.-C. (1998). Use of sequencing constraints

BIBLIOGRAPHY 123

for specification-based testing of concurrent programs. IEEE Transanctions on Software

Engineering, 24(6):471–490.

[Chen et al. 2002] Chen, Y., Probert, R. L., and Sims, D. P. (2002). Specification-based

regression test selection with risk analysis. In CASCON ’02: Proceedings of the 2002

conference of the Centre for Advanced Studies on Collaborative research. IBM Press.

[Chen et al. 2007] Chen, Y., Probert, R. L., and Ural, H. (2007). Regression test suite reduc-

tion using extended dependence analysis. In SOQUA ’07: Fourth international workshop

on Software quality assurance, pages 62–69, New York, NY, USA. ACM.

[Cheng and Jou 1990] Cheng, K.-T. and Jou, J.-Y. (1990). A single-state-transition fault

model for sequential machines. In IEEE International Conference on Computer-Aided

Design, pages 226–229.

[Chittimalli and Harrold 2008] Chittimalli, P. K. and Harrold, M. J. (2008). Regression test

selection on system requirements. In Proceedings of the 1st India Software Engineering

Conference, ISEC ’08, pages 87–96, New York, NY, USA. ACM.

[Chung et al. 1999] Chung, I. S., Kim, H. S., Bae, H. S., Kwon, Y. R., and Lee, D. G. (1999).

Testing of concurrent programs after specification changes. In Proceedings of the IEEE

International Conference on Software Maintenance, ICSM ’99, pages 199–, Washington,

DC, USA. IEEE Computer Society.

[Clarke et al. 2003] Clarke, J., Dolado, J. J., Harman, M., Hierons, R., Jones, B., Lumkin,

M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., and Shepperd, M. (2003). Re-

formulating software engineering as a search problem. Software, IEE Proceedings -,

150(3):161–175.

[Cook and Campbell 1979] Cook, T. D. and Campbell, D. T. (1979). Quasi-

Experimentation: Design and Analysis Issues for Field Settings. Houghton Mifflin Com-

pany.

[Coutinho et al. 2013] Coutinho, A. E. V. B., Cartaxo, E. G., and Machado, P. D. L. (2013).

Test suite reduction based on similarity of test cases. In 7th Brazilian Workshop on Sys-

tematic and Automated Software Testing, volume 7, Brasilia.

BIBLIOGRAPHY 124

[Dalal et al. 1999] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton,

G. C., and Horowitz, B. M. (1999). Model-based testing in practice. In ICSE ’99: Pro-

ceedings of the 21st international conference on Software engineering, pages 285–294,

New York, NY, USA. ACM.

[de Araújo et al. 2012] de Araújo, J. D. S., Cartaxo, E. G., de Oliveira Neto, F. G., and

Machado, P. D. L. (2012). Controlando a diversidade e a quantidade de casos de teste na

geração automática a partir de modelos com loop. In 6th Brazilian Workshop on System-

atic and Automated Software Testing, volume 6, Natal, RN, Brazil.

[de Oliveira Neto 2010] de Oliveira Neto, F. G. (2010). Investigação e avaliação experi-

mental de técnicas de re-teste seletivo para teste de regressão baseado em especificação.

Master’s thesis, Federal University of Campina Grande.

[de Oliveira Neto et al. 2013] de Oliveira Neto, F. G., Feldt, R., Torkar, R., and Machado,

P. D. L. (2013). Searching for models to evaluate software technology. In Proceedings

of the 1st International Workshop on Combining Modelling and Search-Based Software

Engineering, pages 12–15.

[de Oliveira Neto and Machado 2011] de Oliveira Neto, F. G. and Machado, P. D. L. (2011).

WSA-RT: uma técnica para a seleção de casos de teste de regressão baseados na especi-

ficação do sistema. In 5th Brazilian Workshop on Systematic and Automated Software

Testing, volume 5, São Paulo, SP, Brazil.

[de Oliveira Neto and Machado 2013] de Oliveira Neto, F. G. and Machado, P. D. L. (2013).

Seleção automática de casos de teste de regressão baseada em similaridade e valores.

Revista de Informática Teórica e Aplicada, 20:139–154.

[Deeptimahanti and Sanyal 2011] Deeptimahanti, D. K. and Sanyal, R. (2011). Semi-

automatic generation of uml models from natural language requirements. In Proceedings

of the 4th India Software Engineering Conference, ISEC ’11, pages 165–174, New York,

NY, USA. ACM.

[Do et al. 2005] Do, H., Elbaum, S., and Rothermel, G. (2005). Supporting controlled ex-

BIBLIOGRAPHY 125

perimentation with testing techniques: An infrastructure and its potential impact. Empir-

ical Software Engineering, 10:405–435. 10.1007/s10664-005-3861-2.

[Do and Rothermel 2006] Do, H. and Rothermel, G. (2006). An empirical study of re-

gression testing techniques incorporating context and lifetime factors and improved cost-

benefit models. In Proceedings of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, SIGSOFT ’06/FSE-14, pages 141–151, New York,

NY, USA. ACM.

[El-Far 2001] El-Far, I. K. (2001). Enjoying the perks of model-based testing. In In Pro-

ceedings of the Software Testing, Analysis, and Review Conference.

[Engström et al. 2008] Engström, E., Skoglund, M., and Runeson, P. (2008). Empirical

evaluations of regression test selection techniques: a systematic review. In Proceedings of

the Second ACM-IEEE international symposium on Empirical software engineering and

measurement, ESEM ’08, pages 22–31, New York, NY, USA. ACM.

[Fahad and Nadeem 2008] Fahad, M. and Nadeem, A. (2008). A survey of UML based re-

gression testing. In Shi, Z., Mercier-Laurent, E., and Leake, D., editors, Intelligent Infor-

mation Processing IV, volume 288 of IFIP Advances in Information and Communication

Technology, pages 200–210. Springer Boston.

[Farooq et al. 2007] Farooq, Q., Iqbal, M. Z. Z., Malik, Z. I., and Nadeem, A. (2007). An

approach for selective state machine based regression testing. In Proceedings of the 3rd

international workshop on Advances in model-based testing, A-MOST ’07, New York,

NY, USA. ACM.

[Farooq et al. 2010] Farooq, Q., Iqbal, M. Z. Z., Malik, Z. I., and Riebisch, M. (2010). A

model-based regression testing approach for evolving software systems with flexible tool

support. In Proceedings of the 2010 17th IEEE International Conference and Workshops

on the Engineering of Computer-Based Systems, ECBS ’10, pages 41–49, Washington,

DC, USA. IEEE Computer Society.

[Feldt 1998] Feldt, R. (1998). Generating diverse software versions with genetic program-

ming: an experimental study. Software, IEE Proceedings-, 145(6):228–236.

BIBLIOGRAPHY 126

[Feldt 1999] Feldt, R. (1999). Genetic programming as an explorative tool in-early software

development phases. Proceedings of the 1st International Workshop on Soft Computing

Applied to Software Engineering, pages 11–19.

[Feng et al. 2007] Feng, T. H., Wang, L., Zheng, W., Kanajan, S., and Seshia, S. A. (2007).

Automatic model generation for black box real-time systems. In Design, Automation Test

in Europe Conference Exhibition, 2007. DATE ’07, pages 1–6.

[Fraser and Wotawa 2007] Fraser, G. and Wotawa, F. (2007). Redundancy based test-suite

reduction. In Dwyer, M. and Lopes, A., editors, Fundamental Approaches to Software En-

gineering, volume 4422 of Lecture Notes in Computer Science, pages 291–305. Springer

Berlin Heidelberg.

[Gao et al. 2006] Gao, J., Gopinathan, D., Mai, Q., and He, J. (2006). A systematic regres-

sion testing method and tool for software components. In Proceedings of the 30th Annual

International Computer Software and Applications Conference, COMPSAC ’06, pages

455–466, Washington, DC, USA. IEEE Computer Society.

[Gligoric et al. 2010] Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., and

Marinov, D. (2010). Test generation through programming in UDITA. In Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering, volume 1, pages

225–234, New York, NY, USA. ACM.

[González-Barahona and Robles 2012] González-Barahona, J. M. and Robles, G. (2012).

On the reproducibility of empirical software engineering studies based on data retrieved

from development repositories. Empirical Software Engineering, 17(1-2):75–89.

[Gorschek et al. 2006] Gorschek, T., Wohlin, C., Carre, P., and Larsson, S. B. M. (2006). A

model for technology transfer in practice. Software, IEEE, 23(6):88–95.

[Gorthi et al. 2008] Gorthi, R. P., Pasala, A., Chanduka, K. K., and Leong, B. (2008).

Specification-based approach to select regression test suite to validate changed software.

In Proceedings of the 2008 15th Asia-Pacific Software Engineering Conference, APSEC

’08, pages 153–160, Washington, DC, USA. IEEE Computer Society.

BIBLIOGRAPHY 127

[Graves et al. 2001] Graves, T. L., Harrold, M. J., Kim, J.-M., Porter, A., and Rothermel, G.

(2001). An empirical study of regression test selection techniques. ACM Transactions on

Software Engineering Methodology, 10(2):184–208.

[Guerra 2012] Guerra, E. (2012). Specification-driven test generation for model transforma-

tions. In Theory and Practice of Model Transformations, volume 7307 of Lecture Notes

in Computer Science, pages 40–55. Springer Berlin Heidelberg.

[Gupta et al. 1996] Gupta, R., Harrold, M. J., and Soffa, L. (1996). Program slicing-based

regression testing techniques. Journal of Software Testing, Verification, and Reliability,

6:83–112.

[Harman and Jones 2001] Harman, M. and Jones, B. F. (2001). Search-based software en-

gineering. Information and Software Technology, 43:833–839.

[Harrold et al. 1993] Harrold, M. J., Gupta, R., and Soffa, M. L. (1993). A methodology for

controlling the size of a test suite. ACM Transactions Softwware Engineering Methodol-

ogy, 2(3):270–285.

[Harrold et al. 2001a] Harrold, M. J., Jones, J. A., Li, T., Liang, D., Orso, A., Pennings,

M., Sinha, S., Spoon, S. A., and Gujarathi, A. (2001a). Regression test selection for

java software. In Proceedings of the 16th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA ’01, pages 312–326, New

York, NY, USA. ACM.

[Harrold and Orso 2008] Harrold, M. J. and Orso, A. (2008). Retesting software during

development and maintenance. In Frontiers of Software Maintenance (FoSM 2008), pages

99–108, Beijing, China.

[Harrold et al. 2001b] Harrold, M. J., Rosenblum, D., Rothermel, G., and Weyuker, E.

(2001b). Empirical studies of a prediction model for regression test selection. Software

Engineering, IEEE Transactions on, 27(3):248–263.

[Hemmati et al. 2011] Hemmati, H., Arcuri, A., and Briand, L. (2011). Empirical investi-

gation of the effects of test suite properties on similarity-based test case selection. In 4th

ICST 2011.

BIBLIOGRAPHY 128

[Hemmati et al. 2013] Hemmati, H., Arcuri, A., and Briand, L. (2013). Achieving scalable

model-based testing through test case diversity. Transactions on Software Engineering

and Methodology, 22(1):6:1–6:42.

[Hsia et al. 1997] Hsia, P., Li, X., Kung, D. C., Hsu, C.-T., Li, L., Toyoshima, Y., and Chen,

C. (1997). A technique for the selective revalidation of oo software. Journal of Software

Maintenance, 9(4):217–233.

[Huselius et al. 2006] Huselius, J., Andersson, J., Hansson, H., and Punnekkat, S. (2006).

Automatic generation and validation of models of legacy software. In Proceedings of the

12th IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications, pages 342 –349.

[IEEE 2013] IEEE (2013). IEEE Standard for Software and systems engineering - Software

testing - Part 1: Concepts and definitions. IEEE Std. 29119-1:2013(E), pages i –56.

[Jain 1991] Jain, R. (1991). The Art of Computer Systems Performance Analysis: Tech-

niques for Experimental Design, Measurement, Simulation and Modeling. John Wiley.

[Jard and Jéron 2005] Jard, C. and Jéron, T. (2005). TGV: theory, principles and algorithms:

A tool for the automatic synthesis of conformance test cases for non-deterministic reactive

systems. International Journal Software Tools for Technology Transfer, 7(4):297–315.

[Jorgensen 2002] Jorgensen, P. C. (2002). Software Testing: A Craftsman’s Approach. CRC

Press, Inc., Boca Raton, FL, USA.

[Jzquel et al. 1999] Jzquel, J.-m., Ho, W. M., and Guennec, A. (1999). Pennaneac ’h. UM-

LAUT: an extendible UML transformation framework. In Proc. of the 14th IEEE Inter-

national Conference on Automated Software Engineering, ASE’99. IEEE.

[Kanstrén 2009] Kanstrén, T. (2009). Behaviour pattern-based model generation for model-

based testing. In Future Computing, Service Computation, Cognitive, Adaptive, Content,

Patterns, 2009. COMPUTATIONWORLD ’09. Computation World:, pages 233–241.

[Korel et al. 2002] Korel, B., Tahat, L. H., and Vaysburg, B. (2002). Model based regres-

sion test reduction using dependence analysis. In Proceedings of the International Con-

BIBLIOGRAPHY 129

ference on Software Maintenance (ICSM ’02), pages 214–223, Washington, DC, USA.

IEEE Computer Society.

[Laski and Szermer 1992] Laski, J. and Szermer, W. (1992). Identification of program mod-

ifications and its applications in software maintenance. In ICSM ’92: Proceedings of the

Conference on Software Maintenance, pages 282–290. IEEE Computer Society.

[Leung and White 1989] Leung, H. K. N. and White, L. (1989). Insights into regression

testing. In Software Maintenance, 1989., Proceedings., Conference on, pages 60–69.

[Leung and White 1990] Leung, H. K. N. and White, L. (1990). A study of integration

testing and software regression at the integration level. In Proceedings of the International

Conference on Software Maintenance (ICSM’90), pages 290–300.

[Leung and White 1991] Leung, H. K. N. and White, L. (1991). A cost model to compare

regression test strategies. In In Proceedings of International Conference on Software

Maintenance, pages 201–208.

[Liang 2005] Liang, H. (2005). Regression testing of classes based on TCOZ specification.

In Proceedings of the 10th IEEE International Conference on Engineering of Complex

Computer Systems, ICECCS ’05, pages 450–457, Washington, DC, USA. IEEE Computer

Society.

[Lorenzoli et al. 2008] Lorenzoli, D., Mariani, L., and Pezzé, M. (2008). Automatic gener-

ation of software behavioral models. In Proceedings of the 30th International Conference

on Software Engineering, ICSE ’08, pages 501–510, New York, NY, USA. ACM.

[Ma et al. 2005] Ma, X.-y., He, Z.-f., Sheng, B.-k., and Ye, C.-q. (2005). A genetic algo-

rithm for test-suite reduction. In IEEE International Conference on System, Man and

Cybernetics, pages 133–139.

[Mansour and Statieh 2009] Mansour, N. and Statieh, W. (2009). Regression test selection

for c# programs. In Advances in Software Engineering, ASE ’09.

[Mao and Lu 2005] Mao, C. and Lu, Y. (2005). Regression testing for component-based

software systems by enhancing change information. In Proceedings of the 12th Asia-

BIBLIOGRAPHY 130

Pacific Software Engineering Conference, pages 611–618, Washington, DC, USA. IEEE

Computer Society.

[Mao et al. 2007] Mao, C., Lu, Y., and Zhang, J. (2007). Regression testing for component-

based software via built-in test design. In Proceedings of the 2007 ACM symposium on

Applied computing, SAC ’07, pages 1416–1421, New York, NY, USA. ACM.

[Muccini 2007] Muccini, H. (2007). Using model differencing for architecture-level regres-

sion testing. In Proceedings of the 33rd EUROMICRO Conference on Software Engineer-

ing and Advanced Applications, EUROMICRO ’07, pages 59–66, Washington, DC, USA.

IEEE Computer Society.

[Naslavsky and Richardson 2007] Naslavsky, L. and Richardson, D. J. (2007). Using trace-

ability to support model-based regression testing. In Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, ASE ’07, pages

567–570, New York, NY, USA. ACM.

[Naslavsky et al. 2009] Naslavsky, L., Ziv, H., and Richardson, D. J. (2009). A model-

based regression test selection technique. In Proceedings of the International Conference

on Software Maintenance (ICSM’09), pages 515–518.

[Naslavsky et al. 2010] Naslavsky, L., Ziv, H., and Richardson, D. J. (2010). MbSRT2:

Model-based selective regression testing with traceability. In Proceedings of the 2010

Third International Conference on Software Testing, Verification and Validation, ICST

’10, pages 89–98, Washington, DC, USA. IEEE Computer Society.

[Nogueira et al. 2007] Nogueira, S., Cartaxo, E. G., Torres, D., Aranha, E., and Marques, R.

(2007). Model based test generation: An industrial experience. In 1st Brazilian Workshop

on Systematic and Automated Software Testing.

[Orso et al. 2001] Orso, A., Harrold, M. J., Rosenblum, D., Rothermel, G., Do, H., and

Soffa, M. L. (2001). Using component metacontent to support the regression testing

of component-based software. In Proceedings of the IEEE International Conference on

Software Maintenance (ICSM’01), ICSM ’01, pages 716–, Washington, DC, USA. IEEE

Computer Society.

BIBLIOGRAPHY 131

[Orso et al. 2004] Orso, A., Shi, N., and Harrold, M. J. (2004). Scaling regression testing

to large software systems. In Proceedings of the 12th ACM SIGSOFT International Sym-

posium on Foundations of software engineering, SIGSOFT ’04/FSE-12, pages 241–251,

New York, NY, USA. ACM.

[Ouriques et al. 2013] Ouriques, J. F. S., Cartaxo, E. G., and Machado, P. D. L. (2013). On

the influence of model structure and test case profile on the prioritization of test cases

in the context of model-based testing. In 27th Simposio Brasileiro de Engenharia de

Software, volume 27, Brasilia.

[Pasala et al. 2008] Pasala, A., Fung, Y. L. H. L. Y., Akladios, F., and Gorthi, A. R. G.

R. P. (2008). Selection of regression test suite to validate software applications upon de-

ployment of upgrades. In Proceedings of the 19th Australian Conference on Software

Engineering, ASWEC ’08, pages 130–138, Washington, DC, USA. IEEE Computer So-

ciety.

[Prowell et al. 1999] Prowell, S. J., Trammell, C. J., Linger, R. C., and Poore, J. H. (1999).

Cleanroom Software Engineering: Technology and Process. Addison-Wesley.

[Ren et al. 2004] Ren, X., Shah, F., Tip, F., Ryder, B. G., and Chesley, O. (2004). Chianti:

A tool for change impact analysis of java programs. In Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 432–448. ACM Press.

[Rogstad et al. 2013] Rogstad, E., Briand, L. C., and Torkar, R. (2013). Test case selec-

tion for black-box regression testing of database applications. Information and Software

Technology, 55(10):1781 – 1795.

[Rothermel and Harrold 1996] Rothermel, G. and Harrold, M. J. (1996). Analyzing regres-

sion test selection techniques. IEEE Transactions on Software Engineering, 22:529–551.

[Rothermel and Harrold 1997] Rothermel, G. and Harrold, M. J. (1997). A safe, efficient

regression test selection technique. Transactions on Software Engineering and Method-

ology, 6(2):173–210.

[Rothermel et al. 2000] Rothermel, G., Harrold, M. J., and Dedhia, J. (2000). Regression

test selection for C++ software. Software Testing, Verification & Reliability, 10.

BIBLIOGRAPHY 132

[Sajeev and Wibowo 2003] Sajeev, A. S. M. and Wibowo, B. (2003). Regression test selec-

tion based on version changes of components. In Proceedings of the Tenth Asia-Pacific

Software Engineering Conference Software Engineering Conference, APSEC ’03, Wash-

ington, DC, USA. IEEE Computer Society.

[Saltelli et al. 2004] Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sen-

sitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons.

[Sen et al. 2009] Sen, S., Baudry, B., and Mottu, J.-M. (2009). Automatic model generation

strategies for model transformation testing. In Proceedings of the 2nd International Con-

ference on Theory and Practice of Model Transformations, ICMT ’09, pages 148–164,

Berlin, Heidelberg. Springer-Verlag.

[Siegel and Junior 1988] Siegel, S. and Junior, N. J. C. (1988). Nonparametric Statistics for

The Behavioral Sciences. McGraw-Hill.

[Singh et al. 2007] Singh, R., Xu, J., and Berger, B. (2007). Pairwise global alignment of

protein interaction networks by matching neighborhood topology. In Proceedings of the

11th Annual International Conference on Research in Computational Molecular Biology,

RECOMB’07, pages 16–31, Berlin, Heidelberg. Springer-Verlag.

[Smith 2003] Smith, J. (2003). The estimation of effort based on use cases. Technical report,

IBM Corporation.

[Soares et al. 2013] Soares, G., Gheyi, R., and Massoni, T. (2013). Automated behavioral

testing of refactoring engines. IEEE Transactions on Software Engineering, 39(2):147–

162.

[Subramaniam et al. 2009] Subramaniam, M., Xiao, L., Guo, B., and Pap, Z. (2009). An

approach for test selection for efsms using a theorem prover. In TESTCOM ’09/FATES

’09: Proceedings of the 21st IFIP WG 6.1 International Conference on Testing of Software

and Communication Systems and 9th International FATES Workshop, pages 146–162,

Berlin, Heidelberg. Springer-Verlag.

[Tamimi and Zahoor 2011] Tamimi, S. and Zahoor, M. (2011). Analysis of model based

regression testing approaches. In Proceedings of the 10th WSEAS International Confer-

BIBLIOGRAPHY 133

ence on Communications, Electrical; Computer Engineering, ACELAE’11, pages 65–70,

Stevens Point, Wisconsin, USA. World Scientific and Engineering Academy and Society

(WSEAS).

[Tan et al. 1997] Tan, Q., Petrenko, A., and Bochmann, G. V. (1997). Checking experiments

with labeled transition systems for trace equivalence. In Kim, M., Kang, S., and Hong,

K., editors, Testing of Communicating Systems, IFIP The International Federation for

Information Processing, pages 167–182. Springer US.

[Tarhini et al. 2006] Tarhini, A., Fouchal, H., and Mansour, N. (2006). Regression testing

web services-based applications. In Proceedings of the IEEE International Conference

on Computer Systems and Applications, AICCSA ’06, pages 163–170, Washington, DC,

USA. IEEE Computer Society.

[Utting and Legeard 2006] Utting, M. and Legeard, B. (2006). Practical Model-Based Test-

ing: A Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Vokolos and Frankl 1997] Vokolos, F. I. and Frankl, P. G. (1997). Pythia: A regression test

selection tool based on textual differencing. In IFIP 3rd Internatinal Conference on on

Reliability, Quality and Safety of Software-intensive Systems, ENCRESS ’97, pages 3–21,

London, UK, UK. Chapman & Hall, Ltd.

[White et al. 2008] White, L. J., Jaber, K., Robinson, B., and Rajlich, V. (2008). Extended

firewall for regression testing: an experience report. Journal of Software Maintenance,

20(6):419–433.

[Willmor and Embury 2005] Willmor, D. and Embury, S. M. (2005). A safe regression test

selection technique for database driven applications. In Proceedings of the IEEE Interna-

tional Conference on Software Maintenance, pages 421–430. IEEE Computer Society.

[Wohlin et al. 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and

Wesslén, A. (2012). Experimentation in Software Engineering. Springer.

[Wu et al. 1999] Wu, Y., Chen, M.-H., and Kao, H. M. (1999). Regression testing on object-

oriented programs. In Proceedings. 10th International Symposium on Software Reliability

Engineering, pages 270–279.

BIBLIOGRAPHY 134

[Wu and Offutt 2003] Wu, Y. and Offutt, J. (2003). Maintaining evolving component-based

software with uml. In Proceedings of the Seventh European Conference on Software

Maintenance and Reengineering, CSMR ’03, Washington, DC, USA. IEEE Computer

Society.

[Xu et al. 2003] Xu, L., Xu, B., Chen, Z., Jiang, J., and Chen, H. (2003). Regression testing

for web applications based on slicing. In Proceedings of the 27th Annual International

Conference on Computer Software and Applications, COMPSAC ’03, pages 652–, Wash-

ington, DC, USA. IEEE Computer Society.

[Yoo and Harman 2012] Yoo, S. and Harman, M. (2012). Regression testing minimiza-

tion, selection and prioritization: A survey. Software Testing, Verification and Reliability,

22(2):67–120.

[Zager and Verghese 2008] Zager, L. A. and Verghese, G. C. (2008). Graph similarity scor-

ing and matching. Applied Mathematics Letters", 21(1):86–94.

[Zheng et al. 2006] Zheng, J., Robinson, B., Williams, L., and Smiley, K. (2006). Applying

regression test selection for COTS-based applications. In Proceedings of the 28th inter-

national conference on Software engineering, ICSE ’06, pages 512–522, New York, NY,

USA. ACM.

	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document
	Introduction
	Problem and Proposed Solution
	Research Questions and Methodology
	Contributions
	Chapter Concluding Remarks

	Theoretical Background
	Model-Based Testing (MBT)
	Automatic Model Generation
	Specification-Based Regression Testing
	Similarity-Based Test Case Selection
	Experimental Studies in Software Engineering
	Basic Concepts of Statistical Analysis
	Meta-Empirical Studies of Regression Testing Techniques
	Concluding Remarks

	Similarity Approach for Regression Testing
	Example
	SART's Selection Strategy
	Concluding Remarks

	Review on Test Case Selection for Regression Testing
	Selection Strategies
	Cluster-Based Selection
	Dependence Analysis on Extended Finite State Machines
	Regression Test Case Selection with Risk Analysis

	Concluding Remarks

	Stochastic Model Generation for Evaluation of Model-based Techniques
	The Model-Based Technique Evaluation Approach
	ALTS Model Generator
	Concluding Remarks

	Evaluation
	Experiment
	Response Variables
	The Experiment Environment and Execution

	Analysing Failure Coverage through Fault Models
	Mutating a Model
	Fault Models

	Concluding Remarks

	Results and Analysis for SART
	Experimental Study
	Comparative Study
	Evaluation with Industrial Specification Models
	Threats to Validity
	Challenges and Rewards with SBMTE
	Concluding Remarks

	Conclusions
	Example using the Weighted Similarity Analysis
	Tables detailing coefficients and p-values.
	An Example of a Complete Use Case Document

