

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL CCPGEC: COORDENAÇÃO DOS CURSOS DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

CARACTERIZAÇÃO E APLICAÇÕES INDUSTRIAIS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

AUTOR: EUGÊNIO FIGUEIRÊDO DE ALBUQUERQUE ORIENTADOR: PROF^o DR. JOÃO BATISTA QUEIROZ DE CARVALHO

CARACTERIZAÇÃO E APLICAÇÕES INDUSTRIAIS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

EUGÊNIO FIGUEIRÊDO DE ALBUQUERQUE

Dissertação apresentada à Universidade Federal da Paraíba, como parte dos requisitos para obtenção do título de mestre em Engenharia Civil ORIENTADOR: Prof². Dr. João Batista Queiroz de Carvalho

Campina Grande 1999

A345c Albuquerque, Eugênio Figueirêdo de.

Caracterização e aplicações industriais de argilas da região centro-sul do Estado de Sergipe / Eugênio Figueirêdo de Albuquerque. - Campina Grande, 1999. 249 f.

Dissertação (Mestrado em Engenharia Civil) -Universidade Federal da Paraíba, Centro de Ciências e Tecnologia, 1999

"Orientação : Prof. Dr. João Batista Queiroz de Carvalho".

Referências.

1. Argilas - Cerâmica. 2. Indústrias Cerâmicas. 3. Caracterizações e Aplicações. 4. Dissertação - Engenharia Civil. I. Carvalho, João Batista Queiroz de. II. Universidade Federal da Paraíba - Campina Grande (PB). III. Título

CDU 666.32(043)

"CARACTERIZAÇÃO E APLICAÇÕES INDUSTRIAIS DE ARGILAS DA REGIÃO CENTRO-SUL DE SERGIPE"

Eugênio Figueirêdo de Albuquerque

DISSERTAÇÃO APROVADA POR:

BANCA EXAMINADORA:

João Batista Queiroz de Carvalho, Ph.D. - UFPb / Campina Grande (ORIENTADOR)

Líllian de Lins Wanderley, D.Sc. - UFS

(EXAMINADORA)

Luiz Renato de Araújo Pontes, D.Sc. - UFPb / João Pessoa

(EXAMINADOR)

Campina Grande, Novembro - 1999

A meus pais

João Figueirêdo e Ruth

a minhas irmãs

Maria da Luz e Jane

e especialmente

a meus queridos filhos e esposa

João, Júnior e Diana

"Nada te perturbe,
nada te espante,
tudo passa.
Só Deus não muda.
A paciência tudo
alcança.
Quem Deus tem
nada lhe falta.
Só Deus basta!"
(Santa Teresa de Jesus d'Ávila)

A Deus que me deu a graça, sabedoria e perseverança para realizar este trabalho.

Ao Prof. Dr. João Batista Queiroz de Carvalho, pela orientação, paciência, disponibilidade e apoio no decorrer de todo este trabalho.

Ao Dr. Luís Antônio Gasparian, Diretor Técnico do centro de Pesquisa e Desenvolvimento do Estado da Bahia e ao Dr. José Roberto Salomão pelas facilidades experimentais, recursos humanos e materiais que nos concederam para ampla utilização dos diversos setores especializados dessa Instituição.

À Escola Técnica Federal de Sergipe, na pessoa do seu ex-Diretor, Prof²
Zacarias Batista do Rego Júnior, que me incentivou a fazer o curso de PósGraduação.

Aos amigos Dr. Francisco Raimundo do Nascimento, coordenador do COMAT - CEPED pela permissão concedida para uso do Laboratório de Materiais durante os ensaios de Caracterização e Tecnológicos, e particularmente ao Técnico Emílio Souza Neto, pela orientação durante os trabalhos realizados.

Aos estagiários José Wellington e Sidney Seixas pela colaboração dispensada na coleta e preparação de amostra.

Aos professores funcionários, e demais colegas do Departamento de Geotecnia, pela gentileza e colaboração dispensada.

Ao CNPq, pela bolsa concedida.

Em fim, a todos aqueles que direta e indiretamente contribuíram com este trabalho.

LIST	A DE FIGURAS	i
LIST	A DE TABELAS	iii
LIST	A DE SÍMBOLOS	iv
RESU	UMO	v
ABST	TRACT	vi
<i>1</i> .	INTRODUÇÃO	I
<i>2</i> .	REVISÃO BIBLIOGRÁFICA	2
2.1	DEFINIÇÃO	2
2.2	GÊNESE DAS ARGILAS	3
2.3	GEOLOGIA REGIONAL	5
2.4	UTILIZAÇÃO INDUSTRIAL DE ARGILAS	7
2.5	ESTUDOS DE ARGILAS PARA USO INDUSTRIAL EM CERÂMICA	
	VERMELHA	10
2.6	ESTUDO DE ARGILAS EM ESCALA DE LABORATÓRIO, VISANDO	
	SUA UTILIZAÇÃO INDUSTRIAL	13
<i>3</i> .	MATERIAIS E MÉTODOS	17
<i>3.1</i>	MATERIAIS	17
3.1.I	LOCALIZAÇÃO E DESCRIÇÃO SUMÁRIA DAS AMOSTRAS	17
3.1.2	AMOSTRAGEM	78
3.2	MÉTODOS	<i>78</i>
3.2.1	MÉTODOS DE AMOSTRAGEM UTILIZADOS	78
3.2.2	PREPARAÇÃO DAS AMOSTRAS	78
3.2.3	CARACTERIZAÇÃO DAS AMOSTRAS	79
<i>3.2.3</i> .	I ANÁLISE GRANULOMÉTRICA EM PENEIRA	<i>79</i>
<i>3.2.3</i>	2 LIMITES DE ATTERBERG - LIMITE DE PLASTICIDADE	79
3.2,3	3 MASSA ESPECÍFICA REAL PELO MÉTODO DO PICNÔMETRO	79
3.2.3.	4 ANÁLISE GRANULOMÉTRICA PELO SEDÍGRAFO	80
3.2.3.	5 ANÁLISE TERMOGRAVIMÉTRICA	82
3.2.3.	6 IDENTIFICAÇÃO MINERALÓGICA	82
3.2.4	ENSAIOS TECNOLÓGICOS	83
<i>3.2.4</i> .	I ENSAIO PRELIMINAR DE ARGILAS VISANDO SUA APLICAÇÃO	
	CERÂMICA COM BASE NAS CORES APÓS SECAGEM E QUEIMA E	
	NOS CARACTERÍSTICOS CERÂMICOS EM SEIS TEMPERATURAS	83
324	2 ENSAIO COMPLETO DE ARGILAS PARA CERÂMICA VERMELHA	83

4.	APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	84
4.1	CARACTERIZAÇÃO DAS QUARENTA E CINCO AMOSTRAS	84
4.1.1	ANÁLISE GRANULOMÉTRICA EM PENEIRA	84
4.1.2	ÍNDICE DE ATTERBERG - LIMITE DE PLASTICIDADE	84
4.1.3	MASSA ESPECÍFICA REAL PELO MÉTODO DO PICNÔMETRO	102
4.1.4	ANÁLISE GRANULOMÉTRICA PELO MÉTODO DO SEDÍGRAFO	105
4.1.5	ANÁLISE TERMOGRAVIMÉTRICA	105
4.1.6	IDENTIFICAÇÃO MINERALÓGICA	178
	- Composição Química	178
	- Análise Racional Calculada	182
	- Ponto de Fusão	182
4.2	ENSAIOS TECNOLÓGICOS	185
4.2.1	ENSAIO PRELIMINAR DE ARGILAS VISANDO SUA APLICAÇÃO	
	CERÂMICA COM BASE NAS CORES APÓS SECAGEM E QUEIMA,	
	E NOS CARACTERÍSTICOS CERÂMICOS EM SEIS TEMPERATU-	
	RAS	185
	- Classificação com base na cor	185
	- Classificação com base nos resultados de laboratório dos característicos	
	cerâmicos, em comparação com as argilas padrões brasileiras	227
4.2.2	ENSAIO COMPLETO DE ARGILAS PARA CERÂMICA VERMELHA	228
5.	CONCLUSÕES	234
6.	SUGESTÕES PARA TRABALHOS FUTUROS	238
7.	REFERÊNCIAS BIBLIOGRÁFICA	239
	ANEXOS A	242
	ANEXOS B	245
	APÊNDICE - Correlações lineares pelo método dos mínimos quadrados	
	entre perdas ao fogo de argilas determinadas por diversos	
	métodos	. 248

FIGURA 2.0: Representação esquemática da estrutura cristalina da caulinita e	
montmorilonita (Souza Santos, 1969)	4
FIGURA 2.1: Diagrama mostrando as condições gerais para formação de várias ar-	
gilas silicatadas e de óxidos de ferro e de alumínio (Correia Souza,	
1975)	5
FIGURA 2.2: Fluxograma de processo para fabricação de blocos cerâmicos	15
FIGURA 2.3: Esquema da etapa de moldagem de blocos cerâmicos	16
FIGURA 3.0: Mapa do Estado de Sergipe com indicação da área objeto da pesquisa	25
FIGURAS 3.1 À 3.8: Mapa de localização dos pontos amostrados	26
FIGURAS 3.10 À 3.55: Dados adicionais da prospecção geológica	33
FIGURA 3.9: Técnica de homogeneização / quarteamento com homogeneizador tipo	
rotativo	78
FIGURA 3.10: Sedimentação de partículas no meio líquido	80
FIGURA 3.11: Distribuição granulométrica em um aparelho Sedigraph 5100 V3.03	81
FIGURA 3.12: Aparelho analisador termogravimétrico, modelo 951 da Dupont	82
FIGURA 3.13: Gráficos do diâmetro esférico equivalente versus porcentagem de	
finos de argilas da região Centro-Sul de Sergipe	107
FIGURA 3.14: Gráficos mass population vs. diameter de argilas da região Centro-	
Sul do Estado de Sergipe	108
FIGURA 3.16: Gráfico da faixa de variação da tensão de ruptura a flexão das Argi-	
las Padrões Brasileiras após secagem a 110 °C (3)	223
FIGURA 3.17: Gráficos das faixas de variação dos característicos cerâmicos das Ar-	
gilas Padrões Brasileiras após queima a 950 °C (3)	224
FIGURA 3.18: Gráficos das faixas de variação dos característicos cerâmicos das Ar-	
gilas Padrões Brasileiras após queima a 1250 °C (3)	225
FIGURA 3.19: Gráficos das faixas de variação dos característicos cerâmicos das Ar-	
gilas Padrões Brasileiras após queima a 1450 °C (3)	226
FIGURA 3.20: Área de distribuição granulométrica ótima para alguns produtos de	
cerâmica vermelha (Heystek, 1964)	130
FIGURA 3.21: Distribuição granulométrica de algumas argilas brasileiras medidas	
pela pipeta de Andreasen	130
FIGURA 3.22: Diagrama de equilíbrio do sistema $Al_2O_3 + SiO_2$	131
FIGURA 3.23: Maromba a vácuo de laboratório, marca Bonfante	245
FIGURA 3.24: Máquina universal de ensaios acoplado a um reometro capilar	,
modelo Instron	245

FIGURA 3.25: Queima dos corpos de prova em forno elétrico	240
FIGURA 3.26: Jazida inundada em decorrência de um processo de lavra predatório.	240
FIGURA 3.27: Corpos de Prova	24
FIGURA 3.28: Domo de Itabaiana - Povoado Batula	24

TABELA 2.0: Coluna estrategráfica simplificada da bacia sedimentar de Sergipe	6
TABELA 2.1: Classificação tecnológica operacional para usos industriais de argilas	
englobando os principais usos existentes (Ferreira, 1972)	8
TABELA 3.0: Análises granulométrica em peneiras	85
TABELA 3.1: Limite de plasticidade (ATTERBERG) de argilas da Região Centro-	
Sul de Sergipe	100
TABELA 3.2: Massa Específica Real de argilas da Região Centro-Sul de Sergipe	103
TABELA 3.2.1 À 3.2.8: Distribuição granulométrica em sedígrafo	106
TABELA 3.3: Umidade natural e umidade de preparação das amostras de argilas da	
Região Centro-Sul do Estado de Sergipe	242
TABELA 3.4: Análises químicas de argilas da Região Centro-Sul do Estado de	
Sergipe	180
TABELA 3.5: Pontos de fusão calculados pela fórmula de SCHUEN e pelo método	
do Diagrama de Fases, de argilas da Região Centro-Sul do Estado de	
Sergipe	183
TABELAS 3.6 À 3.35: Resultados de ensaios físico-mecânicos em corpos de prova	
moldado por extrusão nas amostras de argilas da Região Centro	•
Sul do Estado de Sergipe	188
TABELA 3.36: Cores direta dos corpos de prova das argilas da Região Centro-Sul do	
Estado de Sergipe em diferentes temperaturas de queima	186
TABELA 3.37: Classificação das argilas da Região Centro-Sul nos sub-grupos cerâ-	
micos com base nas faixas de variação dos característicos cerâmicos	
das Argilas Padrões Brasileiras	218
TABELA 4.0: Classificação de argilas para fins cerâmicos pelas cores no estado cru	
e após queima em várias temperaturas	187
TABELA 4.1: Faixas de variação dos característicos cerâmicos das Argilas Padrões	
Brasileiras após queima em diversas temperaturas	229
TABELA 4.4: Valores-limites recomendados para que uma massa cerâmica possa	
ser utilizada na fabricação de tijolos, telhas e ladrilhos de piso	230
TABELA 4.5: Grupos de absorção de água, segundo NBR-13.818/97 da ABNT	244
TABELA 4.6: Codificação dos grupos de absorção de água em função dos métodos	
de fabricação, segundo a NBR-13.818/97 da ABNT	244
TABELA 4.7: Uso recomendado de revestimentos cerâmicos em função do grau de	
absorção de água	244
TABELA 5.1: Regressões lineares pelo método dos mínimos quadrados de perdas ao	
Cogo de argilas da Região Centro-Sul do Estado de Sergine	249

a₀ - coeficiente angular, adimensional
 a₁ - coeficiente linear, adimensional

AE - área específica, em m²/g d_m - diâmetro médio, em mm

D - diâmetro da partícula esférica, em mm

0_{med} - diâmetro equivalente médio, em microns

0_{mo} - diâmetro modal, em microns

γ viscosidade do líquido na temperatura de análise, em stokes (cm²/s)

 ρ - massa específica, em N/m^3

ρ_o - densidade do líquido na temperatura de análise, adimensional

M - coeficiente de correlação, adimensional

V - velocidade de sedimentação, em m/s

ALBUQUERQUE, E.F. Caracterização e aplicações industriais de argilas da Região Centro-Sul do Estado de Sergipe. Campina Grande, 1999. Dissertação (mestrado) Universidade Federal da Paraíba, Campus II.

Neste trabalho foram estudadas quarenta e cinco amostras de argilas, em escala de laboratório, visando suas aplicações industriais cerâmicas. As amostras estão assim distribuídas quanto aos locais de ocorrência: Município de Itabaianinha (dezessete amostras), município de Itabaiana (onze amostras), município de Lagarto (sete amostras), município de Campo do Brito (duas amostras), município de Boquim (duas amostras), município de Simão Dias (uma amostra), município de Tobias Barreto (duas amostras), município de Santa Luzia do Itanhy (duas amostras), município de Estância (uma amostra). As amostras foram submetidas a ensaios de caracterização e tecnológicos, sendo identificados os prováveis usos industriais cerâmicos, como também, suas propriedades e características básicas. São também apresentadas correlações lineares, pelo método dos mínimos quadrados, entre perdas ao fogo determinadas por diversos métodos.

Os resultados obtidos permitiram identificar os prováveis usos industriais cerâmicos seguintes:

a) Cerâmica vermelha - tijolos maciços = vinte e cinco amostras; tijolos furados = vinte e cinco amostras; telhas = vinte e cinco amostras; manilhas = vinte e cinco amostras; ladrilhos de piso = sete amostras e agregados leves = cinco amostras.

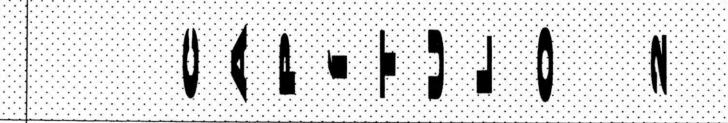
ALBUQUERQUE, E.F. Characterization and industrial test of clays of Centry-South Country Sergipe. Campina Grande, 1999. Dissertação (mestrado) - Centro de Ciências e Tecnologia, Universidade Federal da Paraíba.

Forty five clay samples from Centry-South Country Sergipe, were studied in laboratory tests aimed at their application in ceramic industry. Those samples were distributed as locations of ocurrence as: municipio de Itabaianinha (seventeen clay samples); municipio de Itabaiana (eleven clay samples); municipio de Lagarto (seven clay samples); municipio de Campo do Brito (two clay simples); municipio de Boquim (two clay samples); municipio de Simão Dias (one clay samples); municipio de Tobias Barreto to (two clay samples); municipio de Santa Luzia do Itanhy (two clay samples); municipio de Estancia (one clay samples). The samples were analysed by characterization and techonologics tests wich had been identifred those problabe uses of folowing ceramic industries. Also presented the linear correlations. by least square method, between the determined last at XX° by different methods and correlations.

The results obtained allowed to identify the next probable ceramic industrial uses:

a) Heavy ware - comom bricks = twenty-five samples; hallow bricks = twenty-five samples; tiles = twenty-five samples; pipes = twenty-five samples; floor tile = seven samples and light agregates = five samples.

1. INTRODUÇÃO


Caracterizar uma argila, especialmente visando seu uso tecnológico, é conhecer a variabilidade de suas propriedades, o que não é um problema simples, pois necessita-se não só do emprego de técnicas comuns (como a medição das propriedades físico-mecânicas) como também de técnicas mais complexas (como as de análise química e troca de cations) e até de sofisticadas, como: a microscópia eletrônica de transmissão ou de varredura (para determinar a morfologia e textura das partículas individualizadas de argilominerais), de difração de raios x e análise térmica diferencial. Assim, caracterizar preliminarmente uma argila para a utilização tecnológica significa medir e/ou determinar experimentalmente as seguintes propriedades: textura, composição mineralógica, ions trocáveis, propriedades micromeríticas, propriedades físico-mecânicas em função da temperatura e propriedades tecnológicas especificadas, mensuráveis em laboratórios.

As argilas, com raríssima exceções, são sistemas complicados devido às variadas condições geológicas de sua formação. Logo, diferenças apreciáveis existem em suas diversas propriedades, atribuindo-lhes propriedades tecnológicas diversas para as indústrias de cerâmica, borracha, papel, metalúrgica, de petróleo, agrícola, química e de engenharia civil. Pelo conhecimento dos valores medidos, geralmente de um conjunto das propriedades citadas é possível prever, com bastante segurança, a utilização da argila nos diversos produtos industriais.

O objetivo básico dessa pesquisa constitui-se, em tornar conhecida a enorme potencialidade da Região Centro-Sul do Estado de Sergipe no que concerne aos depósitos argilosos, através de um programa de mapeamento das principais áreas com ocorrências significativas de materiais argilosos, efetuando-se uma sistemática coleta de amostras para ensaios tecnológicos, visando definir as prováveis utilizações industriais cerâmicas para tais recursos.

Em Sergipe, os depósitos argilosos são abundantes e de origens diversificadas. Entretanto, não existem estudos ou mesmo citações de ocorrências na vasta literatura brasileira especializada, que possibilitem definir, racionalmente, as aplicações prováveis para esta matéria prima, fato que impede a programação de seu aproveitamento econômico. Por outro lado, no que diz respeito ao caso específico das atividades cerâmicas e em função da alta demanda de seus produtos, como resultado de crescimento volumoso das construções civis no Estado, observa-se que as importações dos referidos produtos têm crescido muito além de ser fato conhecido que as unidades cerâmicas já implantadas no Estado têm problemas com as argilas utilizadas no processo industrial, por inadequação ou insuficiência de reservas aproveitáveis da referida matéria-prima.

Desta forma, a pesquisa em foco, além de possibilitar a solução de problemas já existentes, poderá fazer aparecer, com os seus resultados, novas possibilidades de aproveitamento econômico dos recursos minerais, vindo reforçar a economia da região.

2. REVISÃO BIBLIOGRÁFICA

2.1 <u>DEFINIÇÃO</u>

O termo argila, segundo Grim, refere-se a um material terroso de granulação fina, que geralmente adquire, quando umedecido com água, certa plasticidade. O conceito de argila pode ser encarado sob diversos aspectos. Do ponto de vista geológico é o constituinte dos sedimentos geológicos com tamanho de partículas abaixo de 4 microns: sob os aspectos químicos e mineralógicos são constituídos essencialmente por silicatos hidratados de alumínio, ferro e magnésio, denominados argilo-minerais (Souza Santos, 1969). Verifica-se que as conceituações, específicas a campos restritos, apresentam imprecisões ou superposições, quando examinadas simultaneamente sob diferentes aspectos. Assim, por exemplo, em estudos de solos, a tendência usual é a de usar 2 µm como limite superior de dimensões da fração argila e, as argilas do tipo "flint" não apresentam plasticidade quando umedecidas com água, não enquadrando-se na conceituação genérica inicialmente apresentada. Levando-se em conta essas peculiaridades, foi possível estabelecer um conceito melhor definido de argila, que é apresentado a seguir; argila é uma rocha finamente dividida, constituída essencialmente de argilo-minerais (calcita, dolomita, gibsita, quartzo e outros), matéria orgânica e outras impurezas, caracterizando-se por:

- a) ser constituída por argilo-minerais geralmente cristalinos (caulinita mal cristalizada apresenta desordem em relação à direção do eixo b, haloisita 2H₂O apresenta desordem nos eixos a e b; e o alofano nos três eixos;
- b) possuir elevado teor de partículas de diâmetro equivalente a 2 microns (cristobalita, ocorre nas bentonitas com partículas de diâmetro abaixo de 1 microm;
- c) quando pulverizada e umedecida torna-se plástica ("flint-clay" não é plástica); após secagem é dura e rígida;
- d) possuir capacidade de troca de cations entre 3 e 150 meq/100g de argila (ácidos orgânicos apresentam capacidade de troca dentro dessa faixa), (Souza Santos, 1969).

A definição de argila torna necessária, portanto, a definição prévia de argilo-minerais, a qual é, segundo o "Comitê Internacional para o Estudo das Argilas": são os minerais constituintes característicos das argilas, geralmente cristalinos, quimicamente são silicatos de alumínio hidratados, contendo em certos tipos outros elementos, como magnésio, ferro, cálcio, sódio, potássio, lítio e outros; após moagem, formam com água uma pasta mais ou menos plástica, que endurece após a secagem ou após a queima.

No decorrer desta dissertação, o termo "argila" será usado no seu sentido mais amplo (científico, técnico e comumente), incluindo materiais naturais designados por taguás, tabatingas, massapés, barros, caulins, folhelhos e outros).

2.2 GÊNESE DAS ARGILAS

As rochas matrizes ou rochas mães, dão origem aos solos e cada tipo de rocha é constituída de minerais primários. Cada mineral primário tem uma composição química própria, como vimos do mais simples para o mais complexo em suas fórmulas aproximadas;

Quartzo - Si O₂

Ortoclásio - K Al Si O2

Microclina - K Al Si₂ O₈

Plagioclásio de sódio - Na Al Si₂ O₈

Plagioclásio de cálcio - Ca Al Si₂ O₈

Moscovita - K Al₃ Si₃ O₁₀ (OH)₂

Biotita - K Al (Mg Fe) Si O₁₀ (OH)₂

Hornblenda - Ca₂ Al₂ Mg₂ Fe₃ Si₆ O₂₂ (OH)₂

Augita - Ca₂ (Al Fe)₄ (Mg Fe)₄ Si₆ O₂₄

O quartzo somente contém silício e oxigênio. Todos os outros minerais primários contém alumínio e silício e outros elementos químicos que os diferenciam. Estes minerais além do piroxênio, feldspato, anfibólios e micas, componentes das rochas, deram origem as argilas silicatadas por meio de dois processos: alteração e decomposição.

2.2.1 - <u>ALTERAÇÃO</u> - A água das chuvas, penetrando nas rochas por um longo período, amolece as rochas. Estas reagem com a água, que por hidrólise, hidratação ou mesmo água de cristalização, começam a se alterar:

K Al Si
$$O_8$$
 + HOH \rightarrow H Al Si O_8 + KOH
2H Al Si₃ O_8 + 8OH \rightarrow Al₂ O_3 . 3H₂ O + 6H₂ Si O_3

O microclina umedecendo com a água forma uma base forte, a potassa KOH, dois ácidos de silicio o H Al Si O₈ e H₂ Si O₃ e o óxido hidratado de alumínio, que começam a reagir no solo. Estes compostos químicos reagem entre si e com outros componentes das rochas, alterando a sua composição inicial e reações e mais reações vão se processando no solo, alterando tudo.

Para a moscovita, tem-se:

$$H_2$$
 $K_2 \text{ Al}_4(\text{Al}_2 \text{ Si}_6) \text{ O}_{20}(\text{OH})_4 + \text{Si} \longrightarrow (K_{0,2}) (K_{0,8}) (\text{Al Si}_7) \text{ O}_{20}(\text{OH})_4 + K_+ \text{Al}^{+2}$
 $Moscovita com reticulado rígido$

Ilita com reticulado semi-rígido

K_{0.2} = Potássio permutável

K_{0,8} = Potássio retido entre as unidades cristalográficas simi-regidamente

A moscovita umedecida atraí o silício e forma a ilita, liberando ions K⁺ e de Al³⁺ no solo e as reações continuam na rocha alterada.

Havendo perda continuada de K⁺ e substituição de Mg²⁺ por Al³⁺ em determinada quantidade na lâmina de alumínio, a ilita se transforma em argila montmorilonita.

Iniciada a alteração, o mineral vai se modificando e podem ser encontrados solos com argilas intermediárias como ilita-montmorilonita, ilita-vermiculita, montmorilonita-caulinita. Na mata Atlântica, em Sergipe é comum se encontrar misturadas a montmorilonita-caulinita e a caulinita-óxidos hidratados de ferro e alumínio.

RECRISTALIZAÇÃO - O umedecimento das rochas e a sua alteração, vai liberando ions K⁺, Ca²⁺, Mg²⁺, Al³⁺, Si⁴⁺ e outros o silício combina-se com o oxigênio formando SiO₂. O alumínio combina-se com o oxigênio formando Al₂O₃. O silício (SiO₂) combina-se com alumínio (Al₂O₃) formando argila caulinita ou montmorilonita:

$$\begin{array}{c|c} SiO_2 \\ \hline Al_2O_3 \\ \hline SiO_2 \\ \hline Al_2O_3 \\ \hline SiO_2 \\ \end{array}$$

Fig. 2.0 - Representação esquemática da estrutura cristalina da caulinita e montmorilonita.

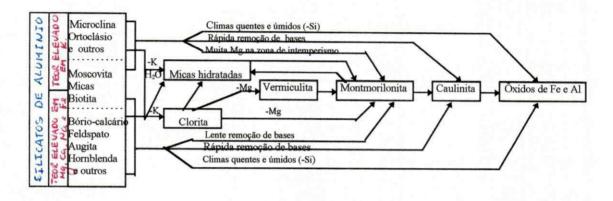
Há recristalização e síntese. Estas argilas absorvem os cátions livres do solo.

As reações no solo podem ocorrer das seguintes formas: Moscovita - hidromica - ilita - vermiculita - montmorilinita.

Feldspatos, como ions ou gels - meio pouco ácido em presença de $K^+ \rightarrow ILITA$.

Feldspatos, como ions ou gels - meio ácido em presença de $H^+ \rightarrow CAULINITA$.

O gel misto de SiO₂ e Al₂O₃ chama-se de alofano.


2.2.2 - DECOMPOSIÇÃO

Alterada a rocha há liberação de Si, Al e cátions. O silício e o alumínio se oxidam e formam SiO₂ e Al₂O₃. Estes formam um gel, o alofano ou uma formação para - cristalina que evoluindo vai tomar uma forma cristalizada que é a argila.

Em linhas gerais, a gênese, das argilas ocorre da seguinte maneira em climas quente e úmido:

Minerais primários + HO_2 ---- perdem K^+ , $Mg^{2+} \rightarrow Micas hidratadas ou ilita --- perdem <math>Mg^{2+} \rightarrow Vermiculita$ --- perdem $Mg^{2+} \rightarrow montmorilonita$ --- rápida remoção das bases \rightarrow caulinita --- perdem silício e bases \rightarrow óxidos hidratados de Fe e Al (conforme Fig. 1.0 abaixo).

Os minerais primários influem na formação inicial das argilas. O microclina e o ortoclásio são ricos em K⁺. A biotita, moscovita e as micas têm teor elevado de Ca²⁺, Na⁺ e Fe³⁺. Os feldspatos, a augita, a Hornblenda são ricos em Mg²⁺, Ca²⁺ e Na⁺ e Fe³⁺ (Correia de Souza, 1975).

Aumento do grau de intemperismo

Fig. 2.1 - Diagrama mostrando as condições gerais para formação de várias argilas silicatadas e de óxidos de ferro e de alumínio. Em cada caso, a gênese é acompanhada pela remoção de elementos soluúveis como K, Na, Ca e Mg.

2.3 GEOLOGIA REGIONAL

O Estado de Sergipe apresenta duas feições tectônicas bem caracterizadas, a Bacia Sedimentar e o Complexo Cristalino ou Faixa de Dobramentos Sergipanos.

A Bacia Sedimentar localiza-se na porção leste-nordeste do Estado e limita-se a oeste com os meta-sedimentos do Grupo Vasa-Barris, através da falha de Propriá; ao sul com a falha de Itaporanga (a qual se encontra recoberta pelos sedimentos terciários e quaternários, do Grupo Barreiras); ao norte penetra no Estado de Alagoas e a leste mergulha sob os sedimentos holocênicos fluvio-marinhos litorâneos.

A origem da fossa tectônica dessa Bacia data da fase de reativação waldeniana, isto é, Aptiano ao Eoceno. O flanco imerso do graben alongado na direção NE / SO está mergulhado para SE do Atlântico. Na formação da bacia predominam forças tensionais, dando origem a blocos escalonados e limitados por falhas normais, "horsts", "grabens" e algumas estruturas dobradas. As feições tectoestruturais apresentadas estabilizaram-se no eocretáceo, e sua depressão está preenchida por mais 5.000 m de sedimentos pertencentes aos Grupos Baixos São Francisco, Sergipe, Barreiras e por materiais fluviomarinhos e eólicos, aflorando apenas 6% dos sedimentos.

A coluna estratigráfica da bacia está representada no quadro abaixo: contudo é bom frisar que a sequência completa nunca ocorre em uma determinada área:

TABELA 2.0 COLUNA ESTRATIGRÁFICA SIMPLIFICADA DA BACIA SEDIMENTAR

GRUPO	SUB-GRUPO		FORMAÇÃO	IDADE
			PIAÇABUÇU	CRETÁCEO
SERGIPE			COTINGUIBA	SUPERIOR
			RIACHUELO	
	FORMA	ÇÃO M	IURIBECA	
	T			
GRUPO	SUB-GRUPO		FORMAÇÃO	
GRUPO BAIXO SÃO FRANCISCO	SUB-GRUPO CURURIPE IGREJA NOVA SUPERIOR	RIO PITANGA	FORMAÇÃO MORRO DO CHAVE PENEDO B. DE ITIUBA	CRETÁCEO INFERIOR

O Complexo Cristalino ou Faixa de Dobramentos Sergipanos, é constituído de rochas pré-cambrianas e cambrianas, e corresponde a um "horst" estrutural que separa os "grabens" de Sergipe e Tucano.

Este "horst" foi denominado (Humphrey e Allard-1969) Geossinclinal de Sergipe e Geossinclinal de Própria. Brito Neves (1975) substitui essa denominação por Faixa de Dobramentos Sergipanos, que pode ser dividida em quatro unidades: Complexo Granulítico, Grupo Miaba, Grupo Vasa-Barris e Formação Estância.

O Complexo Granulítico, de idade pré-cambriana C, ocorre em três áreas distintas: no interior do domo envasiado de Itabaiana, na janela estrutural de Simão Dias e no alto tectônico de Itabaianinha.

O Grupo Miaba, de idade pré-cambriana A, ocorre na parte central do Estado, constitui os relevos residuais dos bordos do domo de Itabaiana e é formado por metassedimentos. Três formações compõem este Grupo: Formação Itabaiana, de rochas quartzíticas; Formação Jacoca, de metacalcários e Formação Jacarecica, constituída por metagrauvacas. As maiores elevações situadas em volta do domo de Itabaiana, correspondem aos afloramentos dos quartzitos da Formação Itabaiana.

O Grupo Vasa-Barris, de idade pré-cambriana A; é a unidade de maior significância no Estado, estando limitado a leste pela falha de Própria (bacia de sedimentação de Sergipe / Alagoas) e a Oeste pelo Estado da Bahia, onde mergulha sob os sedimentos da bacia de Tucano; ao norte, pela falha de Porto da Folha (Alto Tectônico Pernambuco - Alagoas) e ao sul prolongase até um pouco abaixo da cidade de Simão Dias, onde é sequenciado pelos sedimentos da Formação Estância, de idade Cambriana.

Intrusões batolíticas, do denominado Batólito de Glória, afloram em áreas descontínuas, onde a erosão removeu os metassedimentos que o recobriam.

Formação Estância, de Idade Cambriana, ocorre na parte sudoeste do Estado e é constituída por arenitos avermelhados.

2.4 <u>UTILIZAÇÃO INDUSTRIAL DE ARGILAS</u>

As argilas são matéria prima para aproximadamente meia centena de produtos industriais cerâmicos e não cerâmicos; o estudo de argilas visando sua utilização industrial constitui o objetivo da Tecnologia de Argilas, que é a aplicação dos conhecimentos fundamentais sobre a estrutura e as propriedades físico-químicas das argilas e dos argilo-minerais, às industrias artes e profissões que trabalham com argilas como matéria prima (Souza Santos, 1969).

Ferreira (1972), fez um estudo de classificação tecnológica operacional para usos industriais de argilas englobando os principais usos industriais existentes, conforme mostra a Tabela 2.1 abaixo:

GRUPOS	SUBGRUPOS	USOS INDUSTRIAIS DAS ARGILAS
	SG1 - Argilas p/ cerâmica vermelha	U1 - Argilas para tijolos maciços e furados
		U2 - Argilas para telhas
		U3 - Argilas para manilhas
Argilas cerâmicas		U4 - Argilas para ladrilhos de piso
		U5 - Argilas para agregados leves
	SG2 - Argilas p/ cerâmica branca	U6 - Argilas para vidrados e esmaltes
	SG3 - Argilas p/ materiais refratários	U7 - Argilas para grés sanitário
		U8 - Argilas refratárias ligantes e para obtenção de chamotas
	SG4 - Argilas como carga ativa	U9 - Argilas como carga ativa p/ borracha
		U10 - Argilas como carga ativa p/ plásticos
		U11 - Argilas para cobertura de papéis
		U12 - Argilas como carga ativa para adesivos e colas
Argilas como carga (filler) em		U13 - Argilas como diluentes para inseticidas
produtos industriais	SG5 - Argilas como carga inerte	U14 - Argilas como carga inerte para borracha
		U15 - Argilas como carga inerte para papel
		U16 - Argilas como carga inerte para cobertura de sementes
		U17 - Argilas como carga inerte para linóleos e oleados
	SG6 - Argilas como agente de emulsificação,	U18 - Argilas p/usos medicinais e farmacêuticos
	estabilização e suspensão para produtos de	U19 - Argilas para cosméticos e produtos de toucador
	utilização direta pelo homem	U20 - Argilas para rações alimentares
	SG7 - Argilas como agente de emulsificação,	U21 - Argilas como agente de emulsificação e estabilização para produto
Argilas como agente de	estabilização e suspensão para produtos	industriais em geral
emulsificação, estabilização e	industriais	U22 - Argilas utilizadas na indústria do couro
suspensão.		U23 - Argilas para sabões e outros detergentes
		U24 - Argilas para limpadores e polidores
	SG8 - Argilas como agente de suspensão	U25 - Fluídos para perfuração de poços de petróleo
		U26 - Argilas descorantes para óleos minerais, vegetais e animais
		U27 - Argilas descorantes para águas, vinhos, licores, caldo de cana e produto
Argilas descorantes	Não é adequada a divisão em subgrupos	similares
		U28 - Argilas descorantes para papéis e produtos têxteis
		U29 - Argilas para rejeição de resíduo radiativos e limpeza em geral
		U30 - Argilas ligantes para fabricação de minas de lápis
Argilas como ligantes	Não é adequada a divisão em subgrupos	U31 - Argilas aglomerantes de areias de moldagem para fundição
		U32 - Argilas ligantes para pelotização de minérios
		U33 - Argilas para pozolanas
Argilas para engenharia civil	Não é adequada a divisão em subgrupos	U34 - Argilas para impermeabilização
		U35 - Argilas plastificantes
		U36 - Argilas para fabricação de catalisadores sílico-aluminosos
		U37 - Argilas para fabricação de tintas
		U38 - Argilas para fabricação de cimentos
		U39 - Argilas para fabricação de ultramarinas
		U40 - Argilas para fabricação de alumina e alumínio
Argilas para produtos químicos	Não é adequada a divisão em subgrupos	
Argilas para produtos químicos	Não é adequada a divisão em subgrupos	U41 - Argilas para fabricação de zeólitas
Argilas para produtos químicos	Não é adequada a divisão em subgrupos	
Argilas para produtos químicos	Não é adequada a divisão em subgrupos	U41 - Argilas para fabricação de zeólitas

TABELA 2.1 - Classificação tecnológica operacional para usos industriais de argilas englobando os principais usos existentes na atualidade (Ferreira, 1972).

O grande número de usos industriais das argilas são consequência de um conjunto de fatores que são específicos para as argilas e que outras rochas (ou minerais) não os possuem simultaneamente. Esses fatores são os seguintes:

- 1. As argilas são constituídas por argilominerais, os quais compreendem vários grupos, que incluem diversas espécies mineralógicas;
- 2. As diversas espécies mineralógicas apresentam composições químicas diferentes, quer devido às estruturas cristalinas (silicato de alumínio e/ou magnésio hidratado), quer devido às substituições isomórficas (por exemplo, Al³⁺ substituindo Si⁴⁺ e Fe²⁺ substituindo Mg²⁺), quer devido aos cátions trocáveis (por exemplo, Na⁺, K⁺, Mg²⁺, Ca²⁺, H₃O⁺, Fe³⁺, Al³⁺);
- 3. As diversas espécies mineralógicas apresentam propriedades físico-químicas variando numa faixa ampla de valores (por exemplo, capacidade de troca de cátions entre 3meq/100g e 150 meq/100g), baixa granulometria (passam totalmente em peneira USS nº 325 de 44 μ de abertura), forma anisotérmica das partículas (lamelar ou tubular-fibrilar) com relação diâmetro / espessura (placas) ou comprimento / diâmetro (fibras) variando numa faixa ampla de valores;
- 4. As argilas são rochas naturalmente subdivididas, isto é, não precisam ser moídas para se obter a individualização das partículas já naturalmente menores que 44 μm; é necessário apenas uma desagregação que é muito mais barata que a moagem, como, por exemplo, a de um calcário para a fabricação de cimento Portland. Daí resulta que as argilas têm a área da superfície externa das partículas muito grande, levando a valores da área específica que somente se encontram em produtos industriais caros, como negros-de-fumo e catalisadores.
- 5. As argilas , sendo produto de alteração de rochas por ação de intemperismo deutérico ou hidrotermal e depois transportadas, são constituintes de sedimentos flúvio-lacustres, por isso estão freqüentemente próximas às comunidades humanas atuais: isto é, de forma simples, onde há água superficial, há argilas em quantidade.
- 6. As indústrias químicas de processo exigem matérias-primas de propriedade as mais constantes possíveis (isto é, com pequeno desvio-padrão em torno da média aritmética), ora, as argilas podem ocorrer em depósitos grandes e bastante homogêneos, apesar da possível variabilidade em propriedades, as impurezas (são geralmente minerais detritais) são facilmente separáveis (para um dado custo de produção) porque têm, geralmente, uma granulometria bastante acima da peneira nº 325;
- 7. As argilas são fácilmente dispersáveis em água (e em outros solventes) podendo dar suspensões quer instáveis, quer estáveis, com uma faixa ampla de propriedades reológicas.

Esse conjunto de propriedades torna as argilas matérias-primas com amplas possibilidades de aplicação industrial, além de serem abundantes e geralmente próximas a agrupamentos humanos e possuírem granulometria extremamente fina ou elevada área específica, com custo de aquisição muito baixo (Souza Santos, 1969).

Para industrialização de matérias primas não-metálicas, como é o caso de argilas, deve ser seguida uma sequência de operações concatenadas, compreendendo as seguintes etapas:

identificação de ocorrências; identificação de uma ou mais jazidas nas ocorrências viáveis; produção em escala piloto e implantação da indústria.

A primeira etapa consta de uma exploração geológica na qual são reconhecidas grandes regiões e selecionados determinados alvos onde forem constatadas ocorrências promissoras. As áreas selecionadas serão estudadas detalhadamente, decidindo-se, a partir dos dados superficiais, a conveniência da avaliação dos depósitos. Nesta fase, são executados os trabalhos de levantamento topográficos, execução de sondagens e escavações visando um estudo em maior detalhe das áreas selecionadas, indicando a reserva existente e efetuando-se uma sistemática amostragem.

Com os dados da amostragem encaminhados ao laboratório, realizar-se-ão os ensaios científicos e tecnológicos, com a finalidade de caracterizar científica e tecnicamente uma amostra de argila, através de uma sequência concatenada de ensaios específicos, procurando-se determinar sua provável adequabilidade para determinados usos industriais. Por fim, faz-se um requerimento solicitando ao DNPM (Departamento Nacional da Produção Mineral), autorização para exploração do minério em regime de licenciamento.

2.5 ESTUDO DE ARGILAS PARA USO INDUSTRIAL EM CERÂMICA VERMELHA

- O estudo de argila abrange os seguintes aspectos:
- a) sua existência
- b) origem
- c) estrutura dos depósitos
- d) constituição física
- e) constituição química
- f) variedades
- g) impurezas
- h) colorações

A primeira providência a ser tomada para utilização de uma argila em cerâmica é, portando, fazer uma sondagem perfeita das jazidas e a determinação das principais propriedades das argilas, tais como:

- a) plasticidade
- b) resistência
- c) retração

1.47

- d) porosidade
- e) massa específica

And the state of t

f) temperaturas ideais para queima

A determinação destas propriedades é importantíssima não só para conhecer o que poderá ser feito com as argilas, como também quais as máquinas que serão necessárias para operações, as quais as argilas deverão ser submetidas para se obter resultados satisfatórios.

Após analisada a quantidade é necessário avaliar a capacidade das jazidas, de acordo com o volume de fabricação que se pretende manter.

Os principais fatores comerciais de avaliação das jazidas são:

- a) quantidade
- b) qualidade
- c) conformação
- d) localização
- e) acesso
- f) facilidade de transporte
- g) existência de água, etc

Avaliada a jazida, poderá ser determinado o sistema de extração conforme as condições econômicas locais, ou seja:

- a) manual
- b) semi-mecanizada ou
- c) mecanizada

Quaisquer que sejam os sistemas da lavra, antes de utilizar a argila é necessário depositála num monte para descansar por cerca de 10 a 12 meses, a fim de que a mesma se submeta à
"atmosferização. Certas argilas extraídas são duras, e se tornam difíceis de serem trabalhadas
imediatamente, sendo possível modificar-se completamente essa propriedade desvantajosa com
repouso de 10 a 12 meses. Este, faz com que as piritas se oxidem, transformando-se em
sulfuretos ferrosos que podem ser, portanto, eliminado por lavagens (chuvas). Decomposição
dos sais minerais e materiais orgânicos também trazem grandes vantagens de eliminar ou reduzir
as impurezas indesejáveis. Este é um sistema pouco usado na indústria cerâmica nacional,
devido ao seu custo inicial elevado, mas recompensa pela melhoria da qualidade dos produtos no
mercado, fator essencial ao sucesso da Empresa.

- Preparação da argila

A prosperidade de toda fábrica de blocos, tijolos, telhas, etc, baseia-se na escolha das suas máquinas de preparação exclusivamente de acordo com a qualidade da argila. Grandes fracassos têm ocorrido pela falta de conhecimento tecnológico e compreensão deste assunto.

De acordo com a natureza das argilas, as quais raramente são de composição uniforme, tanto os métodos empregados como as máquinas utilizadas na preparação, tem grande variação.

THE RESERVE OF THE PARTY OF THE

As argilas podem se apresentar muito plásticas (gordas) ou pouco plásticas (magras) e então são submetidas a operações especiais de preparo, misturas, até conseguir-se tanto quanto possível o estado de homogeneidade entre os seus elementos. Quando as argilas contêm raízes, detritos de rochas, pedregulhos, pedaços de pedras calcárias ou quartzo, etc, devem ser adotados dispositivos especiais para eliminação dos mesmos, a fim de não prejudicar a qualidade do produto.

As figuras 2.2 e 2.3 apresentam um fluxograma e esquema de uma pequena fábrica clássica para produção de blocos cerâmicos. Consta dos seguintes equipamentos:

- a) caixões de alimentação (posição 1 e 2) são indispensáveis para perfeita e constante alimentação do conjunto de máquinas de preparação;
- b) desintegrador (posição 4) especialmente indicado para argilas duras. A desintegração dos torrões facilita o trabalho das outras máquinas de preparação, como também, pelas características construtivas do equipamento permite a expulsão centrífuga das pedras contidas na massa argilosa;
- c) misturador-molhador (posição 5) para assegurar a homogeneidade da mistura, existem dois tipos: o misturador-molhador simples e o misturador-molhador filtro. O segundo é mais usado quando ocorre abundante presença de raízes nas argilas;
- d) laminador-refinador (posição 7), ocupa o lugar mais importante do grupo de máquinas destinadas à preparação da argila. reduz ao mínimo o tamanho das partículas de argila e as impurezas nelas contidas, e distribui uniformemente a água de amassamento;
 - e) as máquinas de posição 3, 6 e 8 são correias transportadoras intermediárias.

- Moldagem da argila

A moldagem pode ser feita a seco e a úmido, sendo o segundo o método mais utilizado no Brasil.

Para a moldagem a úmido utiliza-se a maromba (posição 9) que pode ser simples ou a vácuo. A maromba a vácuo é a mais utilizada, pois retira todo o ar contido na argila, permitindo uma extrusão perfeita do produto. A utilização do processo à vácuo apresenta, comercialmente, as seguintes vantagens:

- a) produção de materiais mais resistentes de qualidade mais uniforme, e com maior diversificação;
- b) matérias primas que pelo processo simples não são utilizáveis, podem, pelo emprego de desaeração ser trabalhadas satisfatoriamente;
 - c) a queima resultará num material mais resistente e menos absorvente de água;
- d) em geral as especificações de qualidade e propriedades físicas são muito mais facilmente alcançadas que no processo simples;

e) a extração do ar permite, por acrescentar maior resistência ao material cru, aumentar a capacidade do forno e secadores, podendo ser utilizados empilhamentos mais altos;

f) como o material é mais denso, o calor é transmitido mais rapidamente ao seu interior, provocando uma queima mais homogênea e, em alguns casos, um consumo menor de combustível.

No esquema apresentado na Figura 2.2, a posição 10 refere-se a cortadeira, que pode ser manual, semi-automática ou automática, podendo ser utilizado qualquer tipo, dependendo dos produtos a serem fabricados ou do sistema geral da fábrica.

Como complementação da linha de produção estão identificado também, na Figura 2.2:

- Posição 11 bomba de vácuo
- Posição 12 caixa d'água
- Posição 13 mesa de comando
- Posição 14 quadro elétrico (para chave de comando)
- Posição 15 compressor (para limpeza ou comando pneumático).

A Figura 2.1 apresenta, ainda, secadores alimentados por uma fornalha. O tipo de secador mais comumente utilizado em indústrias cerâmicas pequenas é o secador de câmaras, existindo, entretanto, para produções maiores, secadores rápidos contínuos.

Finalmente, para a queima dos produtos cerâmicos utiliza-se fornos que podem ser descontínuos ou contínuos. Nos fornos descontínuos, a carga é retirada após o resfriamento total, enquanto que nos fornos contínuos, a carga vai se deslocando até atingir o ponto de temperatura máxima do forno, sendo depois retirada sem que o forno necessite ser resfriado. Evidentemente, este segundo tipo de forno é utilizado para grandes produções. Como o forno descontínuo tem um consumo de combustível mais elevado, é aconselhável a utilização de fornos do tipo câmara, ou fornos Hoffman, nos quais a fonte de aquecimento vai se deslocando através de câmaras situadas umas ao lado das outras e promovendo a queima, sendo os gases de queima de uma câmara aproveitados para aquecer a próxima a ser queimada e assim sucessivamente.

Qualquer tipo de forno utilizado deve sempre ser provido de dispositivos de aproveitamento de calor que pode ser transferido para os secadores, promovendo, assim, grande economia no processo.

2.6 <u>ESTUDO DE ARGILAS EM ESCALA DE LABORATÓRIO, VISANDO SUA UTILIZAÇÃO INDUSTRIAL</u>

O desenvolvimento industrial força o desenvolvimento de novas técnicas que exigem controles de matéria prima, novos processos e o desenvolvimento de produtos, com isso, aumentando a importância dos ensaios em escala de laboratório e piloto e das especificações.

Atualmente, universidades, institutos e industrias, vem estudando o desenvolvendo métodos de ensaio para usos cerâmicos e não-cerâmicos de argilas, conforme suas necessidades, já existindo um número apreciável de publicações, algumas das quais serão consideradas nesta dissertação.

Inicialmente, no campo de Tecnologia de Argilas, Ries (1927), publicou um livro contendo a síntese dos estudos sobre aplicações de argilas para usos cerâmicos e não-cerâmicos. No ano seguinte, a "American Ceramic Society" padronizou métodos de ensaio para determinação de características, tais como: retração de secagem, desagregabilidade, densidade real, módulo ou tensão de ruptura a flexão, refratariedade ou cone pirométrico equivalente à refratariedade sob carga. Especial destaque deve ser feito ao livro do Prof. Grim (1962), Applied Clay Mineralogy que trata quase que especificamente de aplicações industriais de argilas.

No Brasil, na revista cerâmica da Associação Brasileira de Cerâmica ficam concentradas quase que todas as informações existentes sobre argilas brasileiras, devendo também ser mencionados outro, autores que também contribuíram para o conhecimento das argilas. Barzaghi (1949), estabeleceu normas e especificações para o ensaio de argilas para fabricação de tijolos de alvenaria furados e telhas, baseando-se em argilas utilizadas em várias indústrias brasileiras. Gross (1947), estudou métodos de ensaios e especificações para argilas utilizadas em telhas e tijolos, com base em argilas de Porto Alegre. O Instituto Biológico de São Paulo padronizou métodos de ensaio e especificações para pó como inertes para inseticidas, que contém determinações de pH, umidade, higroscopicidade, densidade absoluta e aparente, tamanho de partículas, mobilidade e capacidade de absorção. Stefan (1966), apresenta o método de ensaio de utilização pela Petrobrás para argilas utilizadas como fluídos de perfuração de poços de petróleo pelo sistema rotativo, em que são determinadas características físico-químicas e mineralógicas das argilas. Souza Santos (1969), desenvolveu um método de ensaio preliminar de argilas visando a utilização cerâmica, com base na cor após queima, nas características cerâmicas apresentadas pelas argilas após queima a 950 °C, 1250 °C e 1450 °C utilizando corpos de prova de 6.0 x 2.0 x 0.5 cm, moldados por prensagem a 200 Kgf/cm² em massa semi-seca. Este método já foi aplicado em argilas de vários estados brasileiros e em outros países com sucesso.

Deve ser assinalada a contribuição de diversas indústrias produtoras, que desenvolveram seus próprios métodos de ensaio de controle e de especificações, de argilas e caulins para diversos fins, tais como ensaios de pH, umidade, resíduos em peneiras, distribuição granulométrica de partículas e ensaios cerâmicos.

Nesta revisão bibliográfica há omissão de diversos trabalhos realizados sobre as argilas, pela dificuldade de acesso a essas publicações e outras.

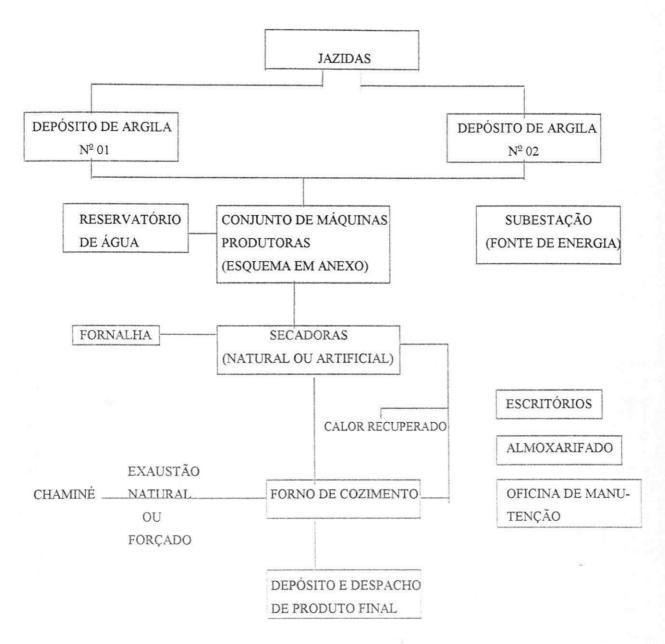


Fig. 2.2: Fluxograma de processo para fabricação de blocos cerâmicos

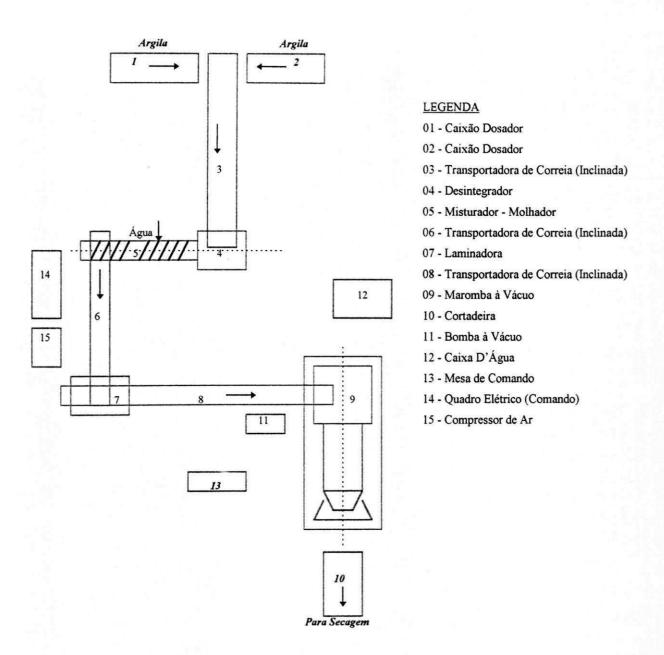


Fig. 2.3 Esquema da etapa de moldagem de blocos cerâmicos

Materiais e Métodos

Line words on the second

3. MATERIAIS E MÉTODOS

3.1 MATERIAIS

3.1.1 LOCALIZAÇÃO E DESCRIÇÃO SUMÁRIA DAS AMOSTRAS

Foram coletadas quarenta e cinco amostras em nove municípios, conforme discriminadas abaixo:

a) MUNICÍPIO DE ITABAIANINHA:

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
IHS-01	Material amostrado as margens do riacho Água-Verde, distando aproximada
	mente 2,5 Km do Povoado do Alto/Itabaianinha.
	Apresenta-se com cor cinza escuro, argilo-escuro, argilo-arenoso, pertencen-
	te a depósitos recentes. A amostra apresenta-se na forma de agregados de
	difícil desagregação manual.
IHS-02	Material amostrado as margens do riacho Água Verde, distando aproxidamen
	mente 2,7 Km do Povoado do Alto.
	Apresenta-se com cor cinza escuro, argilo-arenoso, pertencente a depósitos
	com formação recente (quaternário), sendo visível matéria orgânica na forma
	de raízes.
IHS-03	Material amostrado a 2,8 Km do Povoado do Alto.
	Apresenta-se com cor cinza escuro, argilo-arenoso, depósito recente em for-
	ma de bolsões gradando lateralmente em siltes e materiais arenosos. A amos-
	tra apresenta-se na forma de agregadas muitos duros, não compactos, sendo
	visível matéria orgânica na forma de raízes.
IHS-04	Material amostrado na Fazenda Olho D'água, município de Itabaianhnha.
	Apresenta-se com cor cinza claro a escuro, argilo-arenoso, pertencente a uma
	ocorrência decorrente de um terraço aluvionar, com período de formação re-
	cente.
IHS-05	Material amostrado na Fazenda Olho D'água, Povoado do Alto de proprie-
	dade do Sr. Ilzo Silveira, distando 3,2 Km do povoado.
	Apresenta-se com cor marrom clara (Munsell- 2.5 y - 5/2), argilo-arenoso,
	pertencente a uma ocorrência, com período de formação recente, em forma
	de lente compondo um terraço aluvionar a amostra apresentava-se com agre-
	gados de diâmetros variáveis de difícil desagregação manual.

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
IHS-06	Material amostrado no sítio Olho D'água Povoado Campinhos/Itabaianinha
	de propriedade do Sr. José Firmino da Cruz.
	Apresenta-se com cor marrom-escura, argilo-arenoso, bastante homogêneo
	pertencente a depósitos recentes.
IHS-07	Material amostrado na Fazenda Barreiro à 2,8 Km do município de Itabaia-
	ninha em propriedade do Sr. Hildebrando Dias da Costa.
	Apresenta-se com cor cinza claro a escuro, bastante homogêneo pertencen-
	te a depósitos recentes.
IHS-08	Material amostrado as margens do riacho Cablocó no Povoado Muquem a
	4,2 Km do município de Itabaianinha, de propriedade do Sr. Manuel Dias.
	Apresenta-se com cor cinza escuro, argilo-arenoso, período de formação
	recente (quaternário).
IHS-09	Material amostrado as margens da rodovia SE-102, a 9,5 Km do município
	de Itabaianinha.
	Apresenta-se com cor vermelha escura (Munsell-2.RYR- 7/4), de dificil de-
	sagregação, caracterizando um argilito de elevada plasticidade.
IHS-10	Material amostrado as margens do riacho Tamirim, no povoado da Ilha, em
	propriedade do Sr. José Abilio.
	Apresenta-se com cor cinza-escuro, argilo-arenoso, muito duro e compacto,
	sendo visível matéria orgânica na forma de raízes. Provavelmente trata-se
	de um depósito de várzea com período de formação recente.
IHS-11	Material amostrado próximo ao riacho Tamirim, no Povoado Piripiri à 9,0
	Km do município de Itabaianinha.
	Apresenta-se com cor cinza-escuro, argilo-arenoso, pertencente a depositos
	recentes.
IHS-12	Material amostrado na Fazenda Diamante à 4,5 Km do município de Ita-
	baianinha.
	Apresenta-se com cor vermelho claro à escuro, areno argiloso, fácil desa-
	gregação manual.

1:47

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
IHS – 13	Material amostrado na Fazenda Barra, em propriedade da cerâmica Santana
	Apresenta-se com cor vermelho claro, areno-argiloso, em forma de agrega-
	do fácil desagregação manual.
IHS-14	Material amostrado no Povoado Puxica, em Barreiro de propriedade da ce-
	râmica Santa Maria.
	Apresenta-se com cor vermelho escuro, argilo-arenoso, na forma de agrega-
	dos de pequenos diâmetros e fácil desagregação manual.
IHS-15	Material amostrado no Povoado Puxica, município de Itabaianinha, em pro-
	priedade da cerâmica Santa Maria.
	Apresenta-se com cor amarelo claro, argilo-arenoso, pertencente a depósi-
:	tos recentes. A amostra apresentava-se na forma de agregados com diâme-
	tros variáveis e de fácil desagregação manual.
IHS-16	Material amostrado no Povoado Pau da Onça, em propriedade da Cerâmica
	Teles.
	Apresenta-se com cor cinza claro a escuro, argilo-arenosa, pertencente a de-
	pósitos recentes. A amostra apresenta-se na forma de agregados de difici
	desagregação manual.
IHS-17	Material coletado no povoado Jardim / Itabaianinha.
	Apresenta-se com cor vermelho escuro, areno-argiloso, na forma de agrega-
	dos de pequeno diâmetro e fácil desagregação manual.

b) MUNICÍPIO DE ITABAIANA:

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
ITB-01	Material amostrado em um Várzea no Povoado do Batula, distando 4,0 Km
	a Leste da cidade de Itabaiana, em propriedade do Sr. João Gomes.
	Apresenta-se com cor marrom escuro, argilo-arenoso, compondo um terra
	ço aluvionar esculpido pelo rio das Pedras, c/ periodo de formação recente.
	A amostra apresentava-se na forma de agregados duros e compactos de difí
	cil desagregação manual.

Let all the miller of the control of

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
	LOCALIZAÇÃO E DESCRIÇÃO
ITB-02	Material amostrado no Povoado Bom Jardim, situado a 6,0 Km a nordeste
	do município de Itabaiana, em propriedade do Sr. José Alves Silva.
	Apresenta-se na cor amarelo claro argilo-arenoso de fácil desagregação ma-
	nual, pertencente a depósitos recentes.
ITB-03	Material amostrado as margens do Riacho Doce, no Povoado Agrovila, dis-
	tando 6,5 Km a oeste do município de Itabaiana, em propriedade do Sr.
	Carlos Alberto.
	Apresenta-se na cor marrom escuro, argilo-arenoso, pertencente a depósitos
	recentes.
ITB-04	Material amostrado no Barreiro da Olaria Marcela, situado no Povoado Rio
	das Pedras.
	Apresenta-se na cor amarelo-claro, argilo-arenoso, pertencente a depósitos
	recentes.
ITB-05	Material amostrado no povoado Botija, município de Itabaiana.
	Apresenta-se na cor marrom claro e escuro, argilo-arenoso, pertencente a
	depósitos recentes. O material apresenta-se na forma de agregados de difíci
	desagregação manual.
ITB-06	Material amostrado as margens da BR-235, distando um 1,0 Km a oeste de
	Itabaiana, em propriedade da Cerâmica Marcela.
	Apresenta-se na cor vermelho escuro, argilo-arenoso. A amostra encontra-
	se na forma de agregados de fácil desagregação manual, com diâmetros va
	riáveis.
ITB-07	Material amostrado no Povoado Terra Dura, à oeste do município de Ita
	baiana.
	Apresenta-se na cor cinza escuro, argilo-arenoso, associado a depósitos de
	formação recente(quaternário). A amostro apresentava-se na forma de agre
	gados muito duros e densos, de difícil desagregação manual (Munsell - 2.:
	Y - 4/10.
ITB-08	Material amostrado as margens do Rio Várzea da Gama, a 2,0 Km do Po-
	voado Pé do Veado, a Noroeste da cidade de Itabaiana, em propriedade de
	Sr. Artur L. dos Reis. Apresenta-se na cor cinza escuro, argilo-arenoso, a
	ocorrência tem a forma de bolsões e gradam lateralmente em lentes de ma
	teriais silte-arenosos (top-soil), caracterizando período de formação recent
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
ITB-09	Material amostrado na Fazenda do Sr. Antônio Catulino, no Povoado Vermelho, situado a 6,5 Km a sudoeste do município de Itabaiana. Apresenta-se na cor marrom escura, argila-arenoso, pertencente a depósito recentes.
ITB-10	Material amostrado no Barreiro da Cerâmica Batula, no Povoado Rio das Pedras / Itabaiana. Apresenta-se cor amarelo claro a escuro, argilo-arenoso. O material apresentava-se na época da colheita na forma de agregados de pequenos diâmetro e fácil desagregação manual.
ITB-11	Material amostrado no povoado Vermelho, em propriedade do Sr. Antônio Catulino. Apresenta-se na cor vermelho escuro, argilo-arenoso, com alta plasticidade de fácil desagregação manual.

c) <u>MUNICÍPIO DE LAGARTO</u>:

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
LAG-01	Material amostrado na Fazenda São Miguel, a 3,5 Km a Sudoeste do Muni-
	cípio de lagarto, em propriedade da Paróquia Nossa Senhora da Piedade.
	Apresenta-se na cor cinza esverdeada, argilo-arenoso, pertencente a deposi-
	tos recentes. A amostra encontra-se na forma de agregados de difícil desa-
	gregação manual.
LAG-02	Material amostrado as margens do Riacho Macuna, no Povoado Macuna
	Lagarto, em propriedade do Sr. Roberto Tavares.
	Apresenta-se na cor cinza escuro, argilo-arenoso, ocorrência em forma de
	um bolsões, pertencente a depósitos recentes.
LAG-03	Material amostrado no Povoado Carcará, em propriedade do Sr. Antônio
	Augusto.
	Apresenta-se na cor verde claro, argilo-arenoso, denominado no local por
	Tauá. A ocorrência encontra-se sob um capeamento de conglomerado com
	0,30m em média de espessura. A amostra é formada por material de dificil
	desagregação.

with the transfer make the will be about the

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
LAG-04	Material amostrado as margens da Lagoa do Brejo no Povoado Brejo do
	Baixo, município de Lagarto, em propriedade do Sr. Leonardo Alves Silva.
	Apresenta-se cor vermelho escuro, argilo-arenoso, pertencente a depósitos
	recentes e de fácil desagregação manual.
LAG-05	Material amostrado no Povoado Santo Antônio, propriedade da Paróquia
	Nossa Senhora da Conceição.
	Apresenta-se na cor cinza clara, argilo-arenoso, pertencente a depósitos re-
	centes, e de dificil desagregação manual.
LAG-06	Material amostrado na Fazenda São Miguel, em propriedade da Paróquia
	Nossa Senhora da Piedade.
	Apresenta-se na cor marrom escura, argilo-arenoso, trata provavelmente
	de uma argila de várzea com formação recente(quaternária), material de di-
	ficil desagregação manual.
LAG-07	Material amostrado nas proximidades do riacho do Brejo, no Povoado Brejo
	Lagarto, em propriedade do Sr. João Alves da Silva.
	Apresenta-se na cor vermelha, argilo-arenosa, de fácil desagregação manual
	e de elevada plasticidade.

d) MUNICÍPIO DE BOQUIM:

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
BQS-01	Material amostrado no vale do riacho Fundo, Povoado da Pista 8, distante,
	em linha reta, cerca de 10 quilômetros a noroeste da sede do município de
	Boquim, em propriedade do Sr. Antônio José Trindade.
	Apresenta-se com cor marrom claro a cinza, argilo-arenoso, pertencente a
	depósito recente. A amostra encontra-se na forma de agregados muito duros
	e compactos, de dificil desagregação manual, sendo visível matéria orgâni-
	cas na forma de raízes.
BQS-02	Material amostrado no Povoado do Carro Quebrado, próximo a rodovia SE
	102, distante, linha reta, cerca de 12 Km a noroeste do município de Bo-
	quim, em propriedade do Sr. Antônio José Trindade.
	Apresenta-se na cor marrom clara, argilo-arenoso, trata-se de uma argila de
	várzea (Ries, 1927), o material encontra-se muito duro e compacto, sendo
	visível matéria orgânica na forma de raízes.

e) MUNICÍPIO DE ESTÂNCIA:

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
EST-02	Material amostrada na Fazenda Donana, situado a 2,0 Km ao sul da sede do
	Município de Estância, em propriedade do Sr. José Aroaldo.
	Apresenta-se na cor branca, argilo-arenoso, pertencente a depósitos recente.

f) MUNICÍPIO DE SANTA LUZIA DO ITANHY:

AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
SLI-01	Material amostrado, as margens do Rio das Pedras, na Fazenda Apolônio,
	distando 5,0 Km a sudoeste da sede do município de Santa Luzia, em pro-
	priedade do Sr. José Augusto Apolônio de Jesus.
	Apresenta-se na cor cinza claro, areno-argiloso, de fácil desagregação ma-
	nual, sendo visível matéria orgânica na forma de raízes.
SLI-03	Material amostrado, na Fazenda Apolônio, em propriedade do Sr. José Au-
	gusto Apolônio de Jesus.
	Apresenta-se na cor marrom claro, argilo-arenoso, pertencente a depósito
	recente.

g) <u>MUNICÍPIO DE TOBIAS BARRETO</u>:

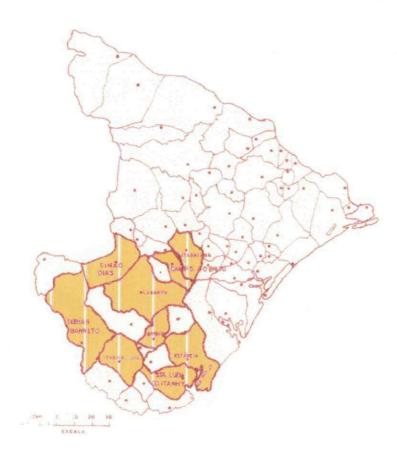
AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
BT-09	Material amostrado no Povoado Batula, município de Tobias Barreto, em
	propriedade do Sr. Antônio Capitulino.
	Apresenta-se na cor cinza escuro, argilo-arenoso, pertencente a depósitos
	recente, amostra em formas de agregados de fácil desagregação manual.
BT-16	Material amostrado no Povoado Banhega, município de Tobias Barreto, em
	propriedade do Sr. Antônio Valério.
	Apresenta-se na cor cinza escuro argilo-arenoso, na forma de agregados de
	difícil desagregação manual, com diâmetros variáveis.

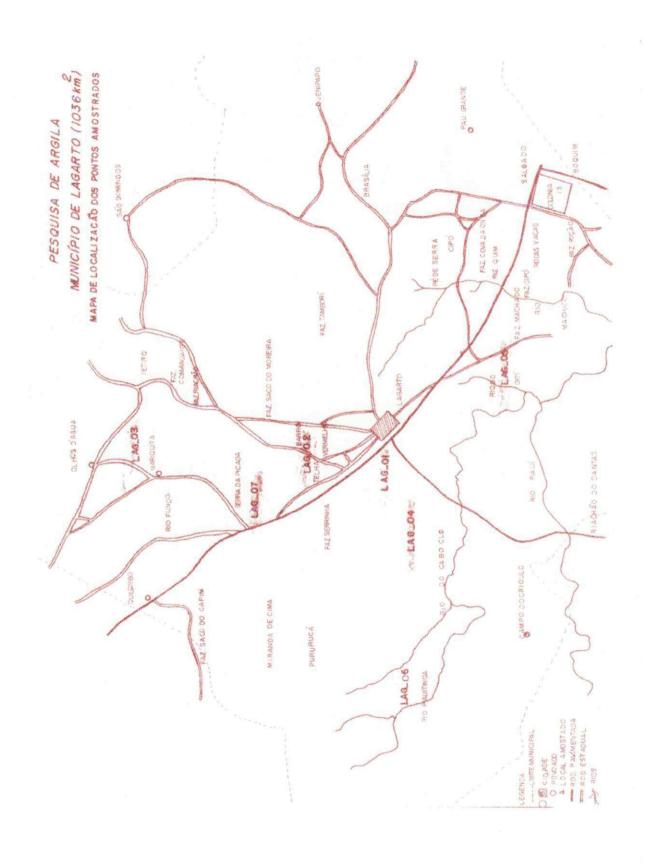
h) MUNICÍPIO DE CAMPO DO BRITO:

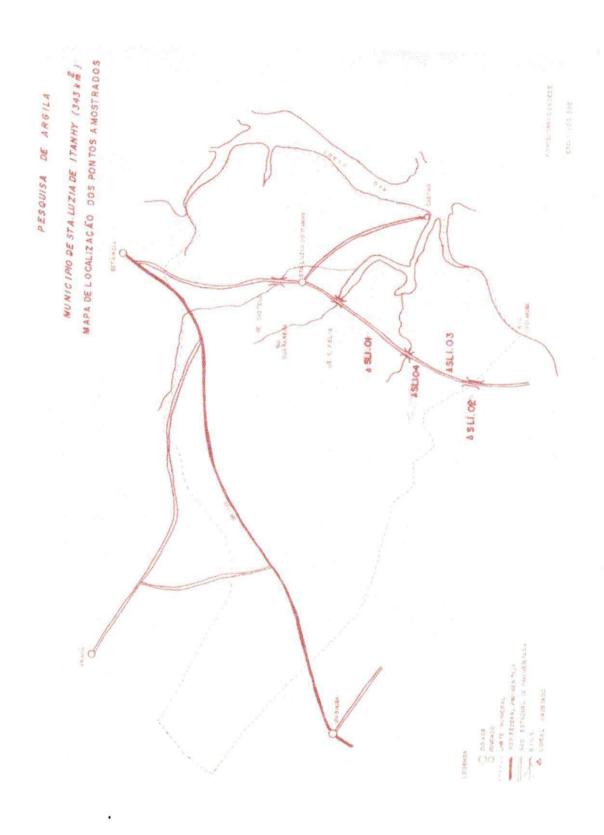
AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
CB-01	Material amostrado as margens do rio do Lomba no Povoado Brito Velho
	Município de Campo do Brito, em propriedade do Sr. Zé de João.
	Apresenta-se na cor cinza escuro, argilo-arenoso, decorrente de um terraço
	aluvionar de formação recente e encontra-se na forma de agregados de di-
	ficil desagregação manual, com diâmetros variáveis.
CB-02	Material amostrado no Povoado Pilão, município de Campo do Brito, em
	propriedade do Sr. José Acrísio Santos.
	Apresenta-se na cor amarelo claro, argilo-arenoso, na forma de agregados
	de fácil desagregação manual.

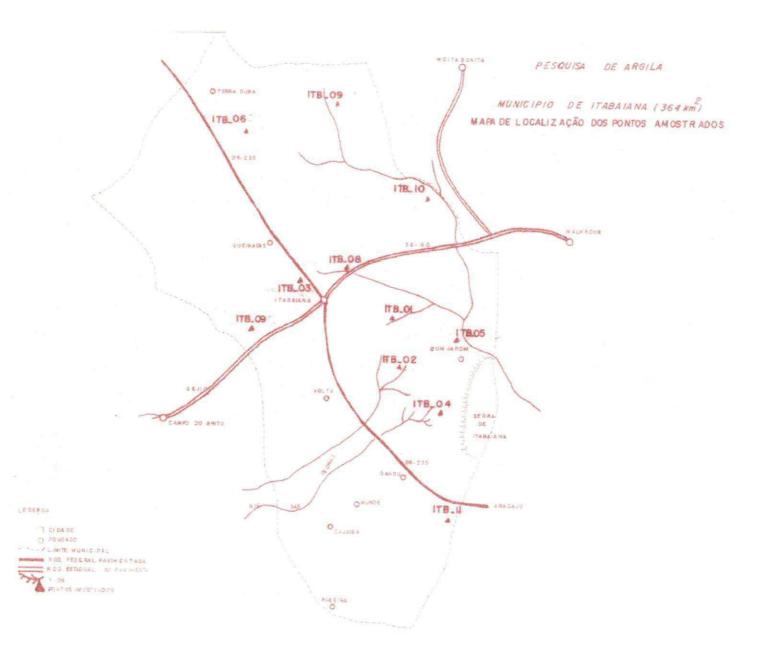
i) AMOSTRAS DE SIMÃO DIAS

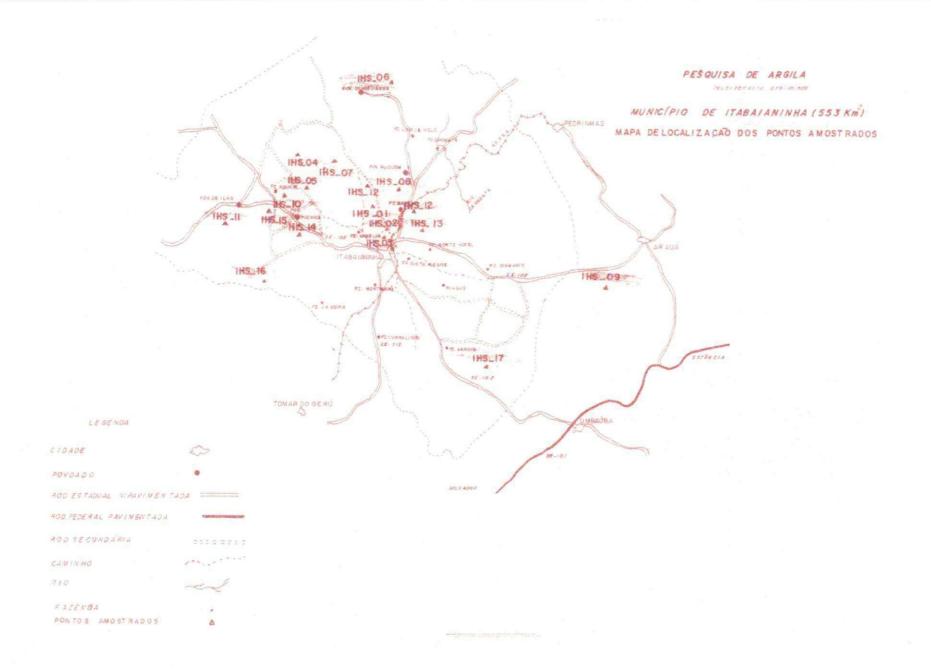
AMOSTRAS	LOCALIZAÇÃO E DESCRIÇÃO
SDI-01	Material amostrado no Povoado Lagoa Seca, município de Simão Dias, em
	propriedade do Sr. Antônio Araújo.
	Apresenta-se na cor verde, argilo arenoso, de deficil desagregação manual
	muito duro e compacto. O perfil da jazida apresenta divisão bem denifida.
	Tem-se um horizonte A na superficie formado por cascalho com uma es-
	pessura média de 0,30 m, em seguida vem o material coletado.

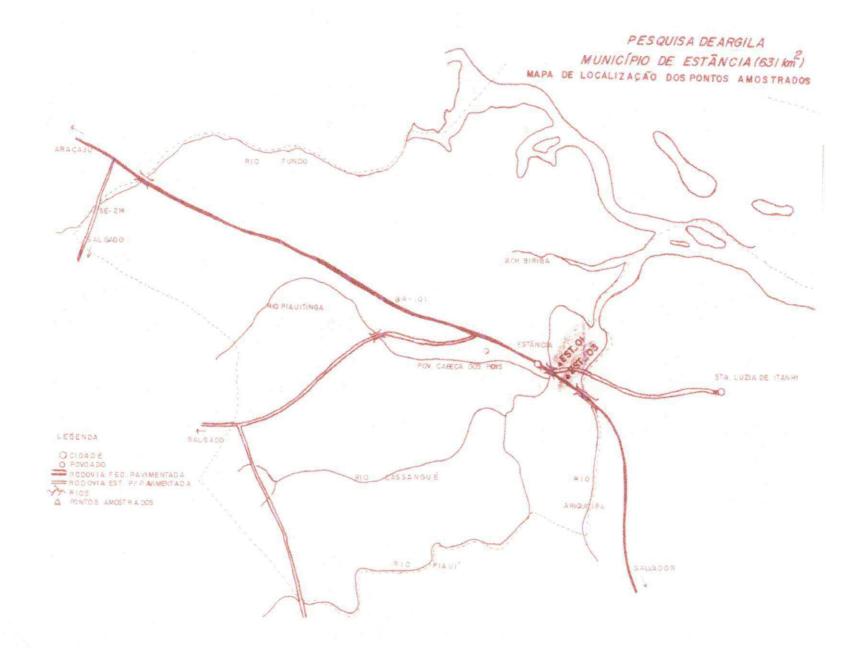

Na Fig. 3.0 encontram-se assinalados os municípios da Região Centro-Sul objeto da pesquisa e nas Fig. 3.1 à 3.8 os locais das ocorrências de argilas.

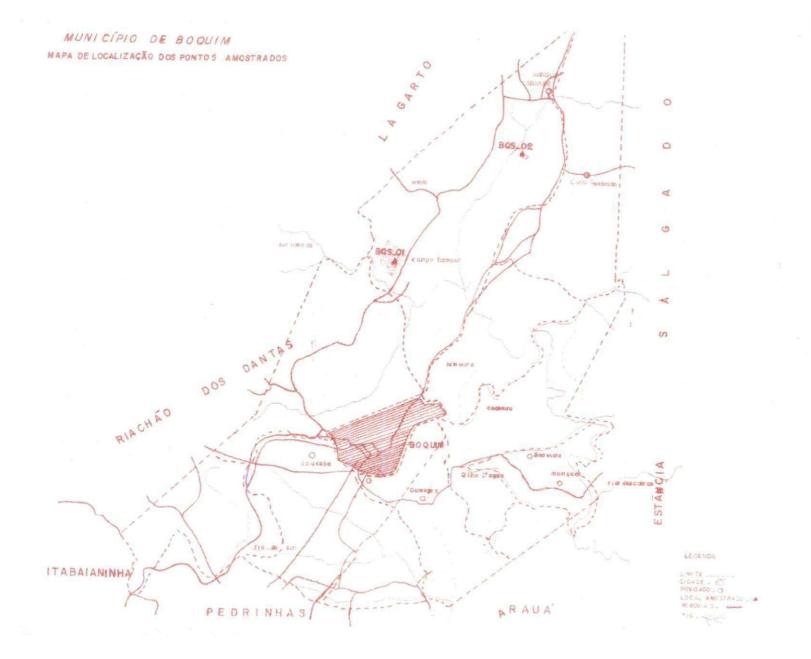

As Fig. 3.10 à 3.54 apresentam as identificações e dados adicionais da prospecção geológica.

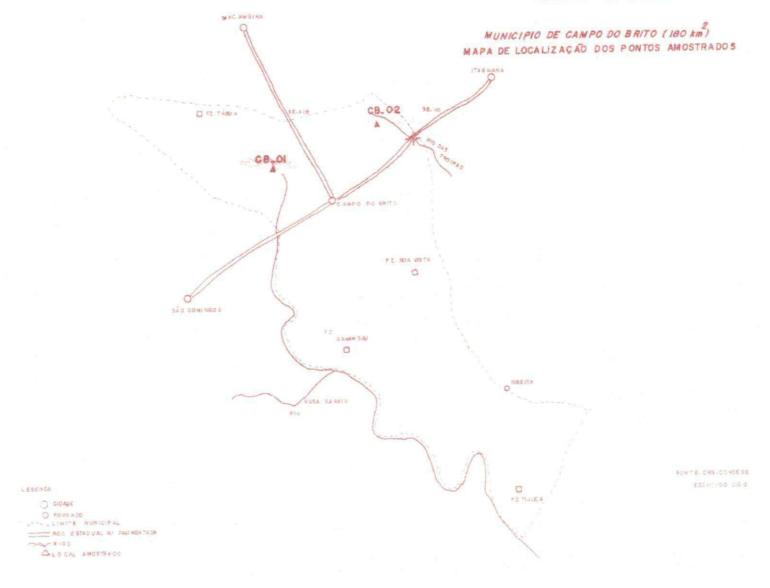

A THE RESIDENCE OF THE PARTY OF


ESTADO DE SERGIPE


MAPA DE LOCALIZAÇÃO DOS MUNICÍPIOS OBJETO DA PESOUISA







PESQUISA DE ARGILA

IDENTIFICAÇÃO DA AMOSTRA: BQS-01	MUNICÍPIO: BOQUIM	LOCALIDADE: POV. PISTA 8
PROPRIETÁRIO DA OCORRÊNCIA: Antônio José Trindade		ÁREA PESQUISADA: 45.000m²
RESERVA ESTIMADA: 85.500m ³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.° DE FUROS:02 P. FINAL:2,45m N. A. 2,45m

INFORMAÇÕES TÉCNICAS

ELIDO A	TRADO	DEC	IDEDE	CIE NO	01
TUKU F	LIKADU	DE 9	UPEKI	LIEN	UI

Profundidade	Descrição litológica	Ana	álise	intervalo
		QUÍMIC AS	TEC NOLÓGI CAS	m
0,05m	Solo orgânico			
		igina unun esta		0,05
	Argila cinza clara a escura			
1.00				1.00
1.90m	A :11- 1- (1~-)			1.90
	Argiia amareiada (seiao)			
2.45m v.NA				
2.43III <u>V</u> IVA				
	=	0,05m Solo orgânico Argila cinza clara a escura 1.90m Argila amarelada (selão)	O,05m Solo orgânico Argila cinza clara a escura 1.90m Argila amarelada (selão)	Outmic As Nológi CAS 0,05m Solo orgânico Argila cinza clara a escura 1.90m Argila amarelada (selão)

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA BQS-01 = Argila coletada em uma várzea, depósito de forma lenticular com período de formação recente (quaternário), com cor variando de cinza clara a escura. A amostra apresentava-se na forma de agregados muitos duros e compactos de difícil desagregação manual, sendo visível matéria orgânica na forma de raízes. No momento da coleta parte da jazida encontrava-se inundada em decorrência de um processo de lavra predatória.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
BQS-02	BOQUIM	POV. CARRO
		QUEBRADO
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Antônio José Trindade		PESQUISADA:
		90.000m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
189.000m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:03
		P. FINAL: 2,15m
		N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 02

Perfil	Profundidade	Descrição litológica		lise	intervalo
Litológico			QUÍMIC AS	TEC NOLÓGI CAS	m
		Solo orgânico			0,05
	0,05m				
		Argila cinza clara			
	2.10m				2.10
			<u> </u>		

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA BQS-02 = Argila de cor clara coletada em uma ocorrência caracterizada por argila de várzea com período de formação recente. Na época da coleta a amostra apresentava-se na forma de agregados muito duros e compactos de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
LAG - 01	LAGARTO	FAZ. SÃO
		MIGUEL
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Paróquia Nossa Senhora da Piedade		PESQUISADA:
		40.000m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
112.000m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:	-	N.° DE FUROS:02
		P. FINAL: 2,80m
		N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 03

	Descrição litológica	Ana	álise	Intervalo
Profundidade		QUÍMIC AS	TEC NOLÓGI CAS	М
0,20 m	Solo orgânico			0,20
2.80 m	Argila cinza esverdeada			2.80
2.80 m				2.80
		Profundidade Solo orgânico O,20 m Argila cinza esverdeada	Profundidade Solo orgânico O,20 m Argila cinza esverdeada	Profundidade Solo orgânico O,20 m Argila cinza esverdeada

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA LAG-01 = Argila de cor cinza esverdeada, coletada em uma ocorrência de forma lenticular, com período de formação recente . A amostra apresentava-se na forma de agregados de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
LAG – 02	LAGARTO	POV. MACUNA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Roberto Tavares		PESQUISADA:
		3.600 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
3.960 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:	•	N.º DE FUROS:01
		P. FINAL: 1,30m
		N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 04

Perfil	Profundidade	Descrição litológica	Ana	Análise	
litológico		v	QUÍMIC AS	TEC NOLÓGI CAS	intervalo m
		Solo orgânico			
	0,20m				0,20
	1	Argila cor cinza			
			5580556855685508655	A-100100110011001001001000	1.30
	1.30m				
		Massapê			
	35-1				

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA LAG-02 = Argila de cor cinza escura, coletada em uma ocorrência em forma de bolsão, com provável período de formação recente (quaternário), localizada, as margens do riacho macuna. A amostra apresentava-se na forma de agregados de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: LAG – 03	MUNICÍPIO: LAGARTO	LOCALIDADE: POV. CARCARÁ
PROPRIETÁRIO DA OCORRÊNCIA: Antônio Augusto		ÁREA PESQUISADA:
		49.600 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
173.600m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
		P. FINAL: 3,80m
		N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 05

Perfil		Descrição litológica	Ana	álise	Intervalo
litológico	Profundidade		QUÍMIC AS	TEC NOLÓGI CAS	(m)
		Conglomerado			
	0,30 m				0,30
		Argila de cor verde clara, denominada no local por Tauá.			
Susanojusa etki	3.50 m	Taua .			3.50
		1 1			

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA LAG- 03 = Argila de cor esverdeada apresentando-se na forma de agregados de grandes diâmetros e difícil desagregação manual. A ocorrência encontrava-se recoberta por uma camada de conglomerado com espessura média de 0,30m material sem uso industrial na época da coleta.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
LAG - 04	LAGARTO	POV. BREJO DE
		BAIXO
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Leonardo Alves		PESQUISADA:
		18.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
108.000m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:02
		P. FINAL:6,00m
		N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 06

Perfil	Profundidade	Descrição litológica	Ana	álise	Intervalo
litológico			QUÍMIC AS	TEC NOLÓGI CAS	(M)
	0,50 m	Solo orgânico			0,50
		Argila arenosa de cor vermelha			
	6,0 m				6,0
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		v		

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA LAG-04 = argila arenosa de cor vermelha escura e fácil desagregação manual. Material utilizado na fabricação de adoube.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
LAG - 05	LAGARTO	POV. SANTO
		ANTÔNIO
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Paróquia Nossa Senhora da Piedade		PESQUISADA:
		60.000m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
120.000m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
		P. FINAL; 2,50m
		N. A.

INFORMAÇÕES TÉCNICAS

Perfil	Profundid	Descrição litológica		álise	Intervalo
litológico	ade		QUÍMIC AS	TEC NOLOGI CAS	m
		Solo orgânico		ł	
	0,50 m				0,50
3 2	0,50 III			<u> </u>	
		Argila arenosa cinza clara			
	2,00 m				2.00

AMOSTRA LAG – 05 = Argila arenosa, cor cinza clara coletada em propriedade da Paróquia de Nossa Senhora da Piedade, no povoado Santo Antônio. A ocorrência trata-se provavelmente de um terraço aluvionar em forma de lente, com período de formação recente. A amostra apresentava-se na forma de agregados de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: LAG - 06	MUNICÍPIO: LAGARTO	LOCALIDADE: FAZ. SÃO MIGUEL
PROPRIETÁRIO DA OCORRÊNCIA: Paroquia Nossa Senhora da Piedado	e	ÁREA PESQUISADA: 52.500m²
RESERVA ESTIMADA: 105.000m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:3,10 m N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 08

	Profundidade	Descrição litológica	Ana	Análise	
Perfil litologico			QUÍMIC AS	TEC NOLÓGI CAS	М
	Berth.	Solo orgânico			
	0,30 m				0,30
		Argila marrom escura			
	2,80 m				2,80

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA LAG - 06 = Argila de cor marrin escura, coletada em uma ocorrência localizada em uma várzea; com provável período de formação recente (quaternária). A amostra apresentava-se na forma de agregados com diâmetros variáveis e de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
LAG - 07	LAGARTO	LAGOA DO
		BREJO
PROPRIETÁRIO DA OCORRÊNCIA:	•	ÁREA PESQUISADA:
João Alves da Silva		50.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
180.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:01
		P. FINAL:9,60m
		N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 09

Perfil		Descrição litológica	Ana	álise	intervalo
Litoiógico	Profundidade		QUÍMIC AS	TEC NOLÓGI CAS	m
*****	0,20 m	Solo orgânico			0,20
*********		Argila vermelha com cascalho de			
*****	-	granulometria variada			
***					5,80
	5,80				
		Argila vermelha			
	9,40				9,40

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA LAG -07 = Argila de cor vermelha, apresentando um material de fácil desagregação manual e de elevada plasticidade .

IDENTIFICAÇÃO DA AMOSTRA: IHS - 01	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. ALTO
PROPRIETÁRIO DA OCORRÊNCIA: ILZO SILVEIRA		ÁREA PESQUISADA: 41.600 m²
RESERVA ESTIMADA: 79.040 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:03 P. FINAL:2,80 m N. A.

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 010

Perfil litológico		Descrição litológica	An	álise	intervalo
	Profundidade		QUÍMIC AS	TEC NOLÓGI CAS	m
	0,20 m	Solo orgânico			0,20
		Argila arenosa marrom escura	Aliangospasson in a second sec	111 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	- 2.30 m				2.30
	2.50 m	Argila amarela claro			

CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 01 = Argila arenosa, cor marrom escura, coletada em uma ocorrência as margens do riacho água verde; apresentando-se em forma de bolsões e gradam lateralmente em siltes e materiais arenosos, com provável período de formação recente (quaternário) . A amostra apresentava-se na forma de agregados de difícil desagregação manual . Sem uso industrial na época da coleta.

IDENTIFICAÇÃO DA AMOSTRA: IHS - 02	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. DO ALTO
PROPRIETÁRIO DA OCORRÊNCIA: ILSO SILVEIRA		ÁREA PESQUISADA: 41.600 m²
RESERVA ESTIMADA: 79.040 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	·	N.º DE FUROS:03 P. FINAL:3,20 m N. A. 3,10 m

INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFÍCIE Nº 011

Perfil	Profundidade	Descrição litológica	An	álise	Intervalo
litológico			QUÍMIC AS	TEC NOLÓGI CAS	М
	0,25 m	Solo orgânico			0,25
		Argila arenosa marrom escura			
	2.30 m	Argila amarela		A STATE OF THE STA	2.30
~~~~	3.20 m	Gnaisse migmatizado fraturado composto de quartzo, feldspato e biotita			

AMOSTRA IHS – 02 = Material coletado no furo F2, trata-se de uma argila arenosa de cor marrom escura com provável período de formação recente ( quaternário ) , localizada á 2,5 km do povoado alto . O material apresentava-se na forma de agregados duros e compactos, sendo visível matéria orgânica na forma de raízes . Sem uso industrial na época da coleta .

IDENTIFICAÇÃO DA AMOSTRA: IHS - 03	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. DO ALTO
PROPRIETÁRIO DA OCORRÊNCIA: ILZO SILVEIRA		ÁREA PESQUISADA: 41,600m²
RESERVA ESTIMADA: 70.040 m³	INÍCIO DATA: 20/04/97 HORA: 8 horas	TÉRMINO DATA:20/04/97 HORA:16 horas
OBSERVAÇÕES:	ı	N.º DE FUROS:03 P. FINAL:2.80 m N. A. 2.80 m

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 012

			An	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,05 m	Solo orgânico			0,05
	2.30 m	Argila arenosa, marrom escura			
	2.80 m VNA	Argila de coloração amarelada a vermelho			2.80

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS- 03 = Argila coletada no furo F-03, trata-se de uma argila provavelmente arenosa de cor marrom escura, com período de formação recente (quaternário), localizada a 2,8 Km do povoado do Alto. O material apresentava-se na forma de agregados muitos duros, sem uso industrial no momento da coleta.

4

IDENTIFICAÇÃO DA AMOSTRA: IHS – 04	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. DO ALTO
PROPRIETÁRIO DA OCORRÊNCIA: ILZO SILVEIRA	ÁREA PESQUISADA: 7.000m²	
RESERVA ESTIMADA: INÍCIO 17.500 m³ DATA: 21/04/97 HORA: 8 horas		TÉRMINO DATA: 21/04/97 HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:3.00 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 013

			Ana	álise	Intervalo
Perfil litológico	Profundidade	fundidade Descrição litológica		TEC NOLÓGI CAS	m
	0,12 m	Solo orgânico			0,05
	*	Argila cinza clara a escura			
	2.50 m				
	2.85 m	Argila marrom escura		NOTES OF THE PROPERTY OF THE P	2.85
		Argila coloração amarelada a vermelho		*	
	3.00 m				

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA – IHS 04 = Argila cinza escura, coletada em uma ocorrência provavelmente decorrente de um terraço aluvionar em forma de lente, com período de formação recente ( quaternária ). O material foi coletado na fazenda olho D'água, Povoado do Alto, município de Itabaianinha . Apresentava-se na forma de agregados de dificil desagregação manual, com diâmetros variáveis de cor cinza clara a escura.

4

IDENTIFICAÇÃO DA AMOSTRA: IHS – 05	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. DO ALTO
PROPRIETÁRIO DA OCORRÊNCIA: CERAMICA BRASILIA	ÁREA PESQUISADA: 7.000 m²	
RESERVA ESTIMADA: 17.500 m³	INÍCIO DATA:22/04/97 HORA: 7 horas	TÉRMINO DATA:22/04/97 HORA:11 horas
OBSERVAÇÕES:		N.º DE FUROS:02 P. FINAL:5,80 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 014

			Análise		Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,15 m	Solo orgânico			0,15
	2.50	Argila cinza clara a escura			
	2.50 m	Argila cinza escura			
	5.80 m	Selão			5.80

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS- 05 = Argila cinza claro a escura, coletada em uma ocorrência decorrente de um terraço aluvionar com provável período de formação recente ( quaternário ), localizado na Fazenda Olho D'agua, no Povoado do Alto. O material é utilizado na fabricação de tijolos furados e lajotas. A amostra apresentava-se na forma de agregados de dificil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: IHS - 06	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. CAMPINHOS
PROPRIETÁRIO DA OCORRÊNCIA: José Firmino da Cruz	1	ÁREA PESQUISADA: 43.200 m²
RESERVA ESTIMADA: 129.600 m³	INÍCIO DATA:23/04/97 HORA: 7 horas	TÉRMINO DATA:23/04/97 HORA: 14 horas
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:5,20 m N. A. 5,20 m

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 015

			An	álise	Intervalo
Perfil litologico	Profundidade	Descrição litológica	QUÍMI CAS	TEC NOLÓG ICAS	m
	0,20 m	Solo orgânico			0,20
		Argila cinza escura			
	3,00 m	Argila cinza clara a amarelada			3,00
	5,20 m V NA				

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 06 = Argila cinza escura, coletada em propriedade do Sr. José Firmino da Cruz, no sítio Olho D água, município de Itabaianinha. Sendo utilizado na fabricação de tijolos maciços por um grupo de pequenas olarias que utilizam um processo de fabricação manual. O material apresentava-se bastante homogêneo, tratando-se provavelmente de terraço aluvionar com período de formação recente (quartenario).

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
IHS - 07	<b>ITABAIANINHA</b>	FAZ.
		BARREIRO
PROPRIETÁRIO DA OCORRÊNCIA:	•	ÁREA PESQUISADA:
HILDEBRANDO DIAS DA COSTA		48,600 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
291.600 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
		P. FINAL:6.10 m
		N. A. 1.80 m

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 016

10000111100001			Ana	álise	Intervalo
Perfil litologico	Profundidad		QUÍMIC AS	TEC NOLÓGI CAS	m
	0,10 m	Solo orgânico			0,10
	0,90 m v NA	Argila cinza clara			
	5,10	Argila marrom escura			5.10

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 07 = Argila cinza clara à escura, bastante homogênea, coletada em propriedade do Sr. Hildebrando Dias da Costa, na Fazenda Barreiro. Trata-se provavelmente de uma argila de várzea, com período de formação recente (quaternário), apresentando-se em forma de um grande bolsão. Sem uso industrial no momento da coleta.

IDENTIFICAÇÃO DA AMOSTRA: IHS – 08	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. MUQUEM
PROPRIETÁRIO DA OCORRÊNCIA: MANOEL DIAS		ÁREA PESQUISADA: 60.000 m²
RESERVA ESTIMADA 126.000 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:2,20 m N. A. 2,20 m

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 017

	5000e kare edit ti ceri		An	Análise	
Perfil litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,10 m	Solo orgânico Argila cinza			0,10
	1.30 m				
		Argila cinza escura á marrom			2,20
	2,20 m VNA	Argila amarelada (selão)			

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 08 = Argila cor marrom escura, coletada em uma ocorrência com forma lenticular, de origem recente ( quaternário ), localizada as margens do Riacho Cablocó, no Povoado Muquem à 4,2 km do município de Itabaianinha. A amostra apresentava-se na forma de agregados de dificil desagregação manual, com diâmetros variáveis.

IDENTIFICAÇÃO DA AMOSTRA: IHS – 09	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: 9,5 km de Itabaianinha no sentido Arauá.
PROPRIETÁRIO DA OCORRÊNCIA: Cerâmica Santana		ÁREA PESQUISADA: 90,000 m²
RESERVA ESTIMADA: 320.400 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:02 P. FINAL:3,66m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 018

			Ana	álise	Intervalo
Perfil litologico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,10 m	Solo orgânico			0,10
		Argila vermelha escura			3,56
	3.56 m	Selão			
		Sciao			

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS- 09 = Argila vermelha escura, de difícil desagregação e elevada plasticidade. A ocorrência localiza-se a 9,5 km do município de Itabaianinha, as margens da rodovia que liga ao município de Arauá.

IDENTIFICAÇÃO DA AMOSTRA: IHS - 10	MUNICÍPIO: ITABAIANIA	LOCALIDADE: POV. PERIPERI
PROPRIETÁRIO DA OCORRÊNCIA:  José Abílio		ÁREA PESQUISADA: 42.000 m²
RESERVA ESTIMADA: 75.600m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	I	N.º DE FUROS:02 P. FINAL:2,80 m N. A. 2,80 m

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 019

			An	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	М
	0,15 m	Solo orgânico			0,15
		Argila marrom			
	1.80 m	Areia com lentes de argila			1.80
	2.80 m <b>v NA</b>				
*					

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 10 = Argila coletada em uma ocorrência as margens do Riacho Tamirim, no Povoado Periperi. A amostra apresentava-se com cor marrom escura, sendo visível a presença de matéria orgânica na forma de raízes e bastante compacta. Provavelmente trata-se de um deposito de várzea com provável período de formação recente. Sem uso industrial na época da coleta.

IDENTIFICAÇÃO DA AMOSTRA: IHS – 11	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. DA ILHA
PROPRIETÁRIO DA OCORRÊNCIA: Cerâmica São José		ÁREA PESQUISADA: 20.000 m²
RESERVA ESTIMADA: 40.000 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:01 P. FINAL:2,10 m N. A.

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 020

			An	Análise	
Perfil litologico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,10 m	Solo orgânico			0,10
		Argila cinza escura	e - 20 00 - 20 00 00 00 000	100 miles (100 miles (	
	2.10 m				2.10

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS - 11 = Argila de cor cinza escura, apresentando-se muito dura e compacta sendo visível a presença de matéria orgânica na forma de raízes. É utilizada na fabricação de blocos e lajotas. A ocorrência encontra-se em parte inundada, decorrente de um processo de lavra predatória.

IDENTIFICAÇÃO DA AMOSTRA: HIS – 12	MUNICÍPIO: ITABAIANINHA	LOCALIDADE:
1113 – 12	HADAIANINHA	DIAMANTE
PROPRIETÁRIO DA OCORRÊNCIA:	10	ÁREA PESQUISADA:
Cerâmica São José		30,000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
144.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:	,	N.º DE FUROS:02
		P. FINAL:5,00 m
		N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 021

Perfil		Análise		Intervalo
litológico Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	М
0,20 m	Solo orgânico			0,20
4.80 m	Argila de cor vermelha variando de claro à escura			4.90
				4.80

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS -12 = Argila de cor vermelha clara a escura de fácil desagregação manual, coletada em uma ocorrência no povoado Diamante, município de Itabaianinha.

IDENTIFICAÇÃO DA AMOSTRA: IHS - 13	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: FAZ. BARRA
PROPRIETÁRIO DA OCORRÊNCIA: Cerâmica Santana		ÁREA PESQUISADA: 80,000 m²
RESERVA ESTIMADA: 304.000 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:3,80 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 022

	192-10 Varie   219-141   24	Descrição litológica	Análise		Intervalo
Perfil litológico	Profundidade		QUÍMIC AS	TEC NOLÓGI CAS	m
	0.20 m	Solo orgânico			0.20
	3.80 m	Argila vermelha clara			3.80

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 13 = Argila de cor vermelha clara, apresentando-se na forma de agregados de fácil desagregação manual .

IDENTIFICAÇÃO DA AMOSTRA: IHS - 14	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. PUXICA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Santa Maria		PESQUISADA:
		62.500 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
175.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
•		P. FINAL: 2,80 m
		N. A.

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 023

			Aná	lise	Intervalo
Perfil	Profundidade	Descrição litológica	QUÍMI	TEC	
litologico			CAS	NOLÓ	m
				GICAS	
		Solo orgânico			
	0,20 m	1.400			0,20
		50.5			
		Argila vermelha escura			
	2.00				
	2.80 m				2.80
		Selão			2.80
		Sciao			

## CARACTERÍSTICAS DA AMOSTRA

 $AMOSTRA\ IHS-14 = Argila\ vermelha\ escura\ de\ fácil\ desagregação\ manual\ .$ 

IDENTIFICAÇÃO DA AMOSTRA: IHS - 15	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. PUXICA
PROPRIETÁRIO DA OCORRÊNCIA: Cerâmica Santa Maria		ÁREA PESQUISADA: 20.000 m²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
30.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
		P. FINAL: 1.80 m
		N. A.

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 024

			An	álise	intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
		Solo orgânico	CONTRACTOR AND A DESCRIPTION OF THE PERSON O		
	0,23 m				0,23
		Argila de cor amarela clara			
	1.80 m				
					1.80

#### CARACTERÍSTICAS DA AMOSTRA

AMOSTRA IHS -15 = Argila de cor amarela clara de fácil desagregação manual, coletada no povoado Puxica, no município de Itabaianinha.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
IHS – 16	ITABAIANINHA	POV. PAU D'ONÇA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Teles		PESQUISADA:
		41.400 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
103.500 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:01
		P. FINAL: 3,00 m
		N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 025

			Ana	ilise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ	TEC	
Intologico			MIC AS	NOL ÓGI	m
			AS	CAS	
		Solo orgânico			
	0,15 m				0,15
		Argila cinza clara	SALES UNIVERSIDAD		
	2.50 m	Argila cinza escura			2,50
	3,00 m	I I Sill oliza obosia			

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS – 16 = Argila de cor cinza clara à escura, coletada em uma ocorrência bastante homogênea, com provável período de formação recente, caracterizando um depósito de várzea. O material apresentava-se na forma de agregados de dificil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: IHS – 17	MUNICÍPIO: ITABAIANINHA	LOCALIDADE: POV. JARDIM
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Teles		PESQUISADA:
		78.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
117.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:	•	N.º DE FUROS:02
~		P. FINAL: 1,80m
		N. A.

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 026

		ERITCIE IV 020	Ana	álise	Intervalo
Perfil	Profundidade	Descrição litológica	QUÍ	TEC	
litológico			MIC	NOL	m
			AS	ÓGI CAS	
		Solo orgânico		CAS	
	0,20 m	Sole organice			0,20
		Argila vermelha escura			
	1.80 m				1.80
		Selão			
	E	Selao			

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA IHS - 17 = Argila vermelha escura de fácil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: ITB - 01	MUNICÍPIO: ITABAIANA	LOCALIDADE: POV. BATULA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
João Gomes		PESQUISADA:
		100.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
250.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:03
15		P. FINAL: 2,60 m
		N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 027

		Ana	álise	Intervalo
Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
	Solo orgânico			
0,10 m				0,10
	Argila marrom escura			2.50
2.50 m	Selão			
		O,10 m  Solo orgânico  Argila marrom escura	Profundidade Descrição litológica QUÍ MIC AS  Solo orgânico  Argila marrom escura  2.50 m	MIC AS ÓGI CAS  Solo orgânico  Argila marrom escura

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA ITB – 01 = Argila arenosa, cor marrom escura coletada no Povoado Batula. A ocorrência apresenta-se em forma de um terraço aluvionar com provável período de formação recente. A amostra apresentava-se na forma de agregados de difícil desagregação manual .

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
ITB – 02	ITABAIANA	POV. BOM
		JARDIM
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
José Alves da Silva		PESQUISADA:
		40.000 m ²
RESERVA ESTIMADA	INÍCIO	TÉRMINO
23.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:02
		P. FINAL: 2,45 m
		N. A

### INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 026

			An	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	М
		Solo orgânico			
	0,20 m				0,20
		Argila de cor amarelo claro			
	2.45 m				2,45
		Selão			

## CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA ITB – 02 = Argila coletada em uma várzea, com provável período de formação recente. A amostra apresentava-se na forma de agregados de fácil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: ITB – 03	MUNICÍPIO: ITABAIANA	LOCALIDADE: POV. AGROVILA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Carlos Alberto		PESQUISADA:
		57.500 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:03
©.		P. FINAL: 2,75 m
		N. A.

### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 027

			Ana	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI	m
		C-1		CAS	
	0,25 m	Solo orgânico			0,25
		Argila cinza clara a escura			
	2.50 m				
	· S	Selão			2.50
	12.462				

#### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** - **03** = Argila arenosa, cor marrom escura, coletada em uma várzea formada por um terraço aluvionar.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
ITB – 04	ITABAIANA	POV. RIO DAS
		PEDRAS
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Marcela		PESQUISADA:
		45.000m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
85.500 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
*		P. FINAL: 2,60 m
		N. A.

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 028

			An	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	М
	0,25 m	Solo orgânico			0,25
		Argila amarelo claro			
	2.60 m	Selão			2.60

## CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA ITB – 04 = Argila de cor amarelo claro, coletada no povoado Rio das Pedras. A amostra apresentava-se na forma de agregados de fácil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: ITB – 05	MUNICÍPIO: SÃO DOMINGOS	LOCALIDADE POV. BOTIJA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica São José		PESQUISADA:
		40.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
80.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
*		P. FINAL: 2,55m
		N. A.

### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 029

			Ana	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
	0,15 m	Solo orgânico			0,15
		Argila marrom clara a escura			
	2,55 m	Selão			2,55

## CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA ITB-05 = Argila de cor marrom claro à escuro, coletada em uma várzea, com período de formação recente.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
ITB – 06	ITABAIANA	POV. RIO DAS
		PEDRAS
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Marcela		PESQUISADA:
		45.000m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
160.200 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:02
*		P. FINAL: 3,66 m
		N. A.

### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 030

			Ana	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
	0,10 m	Solo orgânico			0,10
		Argila vermelha escura			
	3,56 m	Selão			3,56

#### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** – 06 = Argila de cor vermelha escura. O material e usado na fabricação de tijolo e blocos, em uma mistura com outro tipo de argila. A amostra apresentava-se na forma de agregados de fácil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: ITB – 07	MUNICÍPIO: ITABAIANA	LOCALIDADE: POV. TERRA DURA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Marcela		PESQUISADA:
		40.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
100.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:02
-		P. FINAL:2,60 m
		N. A.

### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 033

		ERGICIE IV 033	An	álise	Intervalo
Perfil litologico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
		Solo orgânico	-	CAS	
	0,10 m	Solo organico			0,10
		Argila cinza claro à escura			200 200 200 200 200 200 200 200 200 200
	2.60				
	2.60 m	Selão			2.60
				1	1

#### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** – 07 = Argila de cor cinza claro à escura. Trata-se provavelmente de uma argila de várzea formada por um grande bolsão. A amostra apresentava-se bastante homogênea na forma de agregados densos e compactos.

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
ITB - 08	ITABAIANA	POV. PÉ DO
		VEADO
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Artur Loureço dos Reis	PESQUISADA:	
*		42.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
84.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:03
		P. FINAL: 2,20 m
		N. A. 2,20 m

### INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 034

Intervalo
m
0,20
A CONTRACT AND
PERSON PERSON MERCHANICAL VICTORIA PERSON MERCHANICAL
Anthony of the Control of the Contro
No. 1 (I)
2 00
2.00
2. 在1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

#### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** – **08** = Argila arenosa cor cinza escura, coletada às margens do rio Várzea da Gama. A ocorrência tem forma de um grande bolsão, gradando lateralmente em siltes e areia. O material apresentava-se na forma de agregados de difícil desagregação manual .

IDENTIFICAÇÃO DA AMOSTRA: ITB - 09	MUNICÍPIO: ITABAIANA	LOCALIDADE: POV. VERMELHA
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Tonho Capitulino		PESQUISADA:
		80.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
160.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:02
		P. FINAL: 2,30 m
		N. A. 2,10 m

### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 035

			Ana	álise	Intervalo
Perfil litologico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
		Solo orgânico			
	0,30 m				0,30
		Argila marrom escura			
	2,10 m v NA				2.10
		К			
			1		

### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** – **09** = Argila de cor marrom escura, coletada no Povoado Vermelho, com provável período de formação recente.

IDENTIFICAÇÃO DA AMOSTRA: ITB – 10	MUNICÍPIO: ITABAIANA	LOCALIDADE: POV. RIO DAS PEDRAS
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Cerâmica Batula		PESQUISADA:
		40.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
78.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.° DE FUROS:02
ē		P. FINAL: 1,80 m
		N. A

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 036

		Ana	álise	Intervalo
Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
0.10	Solo orgânico			0,10
0,10 m				0,10
	Argila cinza clara a escura		AND THE	
1 80 m				1.80
1.00 iii				
	5			
	Profundidade  0,10 m  1.80 m	O,10 m  Argila cinza clara a escura	Solo orgânico  O,10 m  Argila cinza clara a escura	Solo orgânico  Argila cinza clara a escura

### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** −10 = Argila de cor amarelo claro a escuro. O material apresentava-se na forma de agregados de pequenos diâmetros e fácil desagregação manual .

#### 69

# IDENTIFICAÇÃO E DADOS ADICIONAIS DA PROSPECÇÃO GEOLÓGICA

IDENTIFICAÇÃO DA AMOSTRA:	MUNICÍPIO:	LOCALIDADE:
ITB - 11	ITABAIANA	POV. DO
		VERMELHO
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA
Antônio Catulino		PESQUISADA:
		36.000 m ²
RESERVA ESTIMADA:	INÍCIO	TÉRMINO
72.000 m ³	DATA:	DATA:
	HORA:	HORA:
OBSERVAÇÕES:		N.º DE FUROS:02
		P. FINAL: 2,30 m
		N. A.

## INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 038

			Ana	álise	Intervalo
Perfil litológico	Profundidade	Descrição litológica	QUÍ MIC AS	TEC NOL ÓGI CAS	m
	0,10 m	Solo orgânico			0,10
		Argila vermelho escura			
	2.20 m				2.20

#### CARACTERÍSTICAS DA AMOSTRA:

**AMOSTRA ITB** – 11 = Argila de cor vermelha escura. A amostra apresentava-se na forma de agregados de făcil desagregação manual .

IDENTIFICAÇÃO DA AMOSTRA: SDI – 01	MUNICÍPIO: SIMÃO DIAS	POV. LAGOA SECA
PROPRIETÁRIO DA OCORRÊNCIA: Antônio Araújo		ÁREA PESQUISADA: 6.300 m²
RESERVA ESTIMADA: 25,200 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:02 P. FINAL:4,00 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 39

		15 US 1800 WIND HE	Ana	Análise	
Perfil litológico	Profundidade	Descrição litológica	QUÍMI CAS	TEC NOLÓ GICAS	m
	0,30 m	Conglomerado			0,30
		Argila verde clara (Taguá)			0,30
	4.00 m			LL CARLEST LA CONTROL	## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
					4.00
				1	

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA SDI – 01 = Argila cor verde clara, conhecida na região como TAGUÁ. O perfil da jazida apresenta divisão bem definidas, na superfície tem-se um horizonte de cascalho de pequena espessura e, em seguida vem o material coletado com 4,0 m de espessura. A amostra apresentava-se na forma de agregados de tamanhos variados e de difícil desagregação manual .

IDENTIFICAÇÃO DA AMOSTRA: EST – 02	MUNICÍPIO: ESTANCIA	LOCALIDADE: POV. DONANA
PROPRIETÁRIO DA OCORRÊNCIA:  José Aroaldo		ÁREA PESQUISADA: 45.000m²
RESERVA ESTIMADA: 34.649 m³	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:3.15 m N. A.

### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 040

			Análise		Intervalo
Perfil Litológico	Profundidade	Descrição litológica	QUÍMI CAS	TEC NOLÓ GICAS	m
	0,15 m	Solo orgânico			0,15
		Argila cor branca		haedheanne ar air	
	3.15 m			ground state of the same	
					3.15

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA EST -02 = Argila de cor branca coletada em uma várzea. A amostra apresentava-se na forma de aglomerados compactos e duros, de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA:  CB - 01	MUNICÍPIO: CAMPO DO BRITO	POV. BRITO VELHO
PROPRIETÁRIO DA OCORRÊNCIA:		ÁREA PESQUISADA:
Zé de João	Differo	mrn mio
RESERVA ESTIMADA:	DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:01 P. FINAL:1,40 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 041

	1000 1000 1000 1000 1000		Ana	álise	Intervalo
Perfil Litológico	Profundidade	Descrição litológica	QUÍMI CAS	TEC NOLÓ GICAS	m
	0,20 m	Solo orgânico			0,05
		Argila marrom escura			100 100 100 100 100 100 100 100 100 100
25 W 1935	1.20 m	Massapé			1,20

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA CB - 01 = Argila de cor marrom escura, coletada em uma ocorrência decorrente de um terraço aluvionar, a amostra apresentava-se na forma de agregados de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: CB - 02	MUNICÍPIO: CAMPO DO BRITO	POV. PILÃO
PROPRIETÁRIO DA OCORRÊNCIA:  José Acrísio Santos	DRITO	ÁREA PESQUISADA: 57. 600 m²
RESERVA ESTIMADA: 144.000 m³	DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:2,20 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 042

		Ana	Análise		
Perfil Litológico	Profundidade	Descrição litológica	QUÍMI CAS	TEC NOLÓ GICAS	m
	0,20 m	Solo orgânico			0,20
		Argila de cor amarelo claro			80
	2,20 m				2,20

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA CB - 02 = Argila de cor amarelo claro. O material apresentava-se na forma de agregados de pequenos diâmetros e de fácil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: SLI - 01	MUNICÍPIO: SANTA LUZIA DO ITANHY	POV. PRIAPÚ
PROPRIETÁRIO DA OCORRÊNCIA: José Augusto Apolônio		ÁREA PESQUISADA:
RESERVA ESTIMADA:	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	1	N.º DE FUROS:02 P. FINAL:1.50 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 042

	100 Per 0.100000 0.10	0.00	An	Análise	
Perfil litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,20 m	Solo orgânico			0,20
		Argila arenosa cinza clara		lo ao combo dia cità	
	1,50 m				1.50

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA SLI – 01 = Argila arenosa cor cinza clara. Provavelmente trata-se de uma argila de várzea. No momento da coleta o material apresentava-se na forma de torrões de fácil desagregação manual sendo visível matéria orgânica na forma de raízes.

IDENTIFICAÇÃO DA AMOSTRA: SLI - 03	MUNICÍPIO: SANTA LUZIA DO ITANHY	POV. PRIA PU
PROPRIETÁRIO DA OCORRÊNCIA:  José Augusto Apolônio		ÁREA PESQUISADA:
RESERVA ESTIMADA:	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:02 P. FINAL:1,80 m N. A.

## INFORMAÇÕES TÉCNICAS

FURO A TRADO DE SUPERFICIE Nº 043

			An	Análise	
Perfil Litológico		Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,20 m	Solo orgânico			0,20
		Argila arenosa marrom clara			
	1.80 m				1.80

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA SLI – 03 = Argila arenosa de cor marrom clara, características semelhantes a SLI-01.

IDENTIFICAÇÃO DA AMOSTRA:  BT - 16	MUNICÍPIO: TOBIAS BARRETO	LOCALIDADE: POV. BANHEGA
PROPRIETÁRIO DA OCORRÊNCIA: Cerâmica shell		ÁREA PESQUISADA:
RESERVA ESTIMADA: 85.500m ²	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:		N.º DE FUROS:01 P. FINAL:2,70 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 044

			Análise		Intervalo
Perfil Litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,20 m	Solo orgânico			0,20
		Argila escura a preta			
	2.70 m				2.70

## CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA BT – 16 = Argila de cor marrom a preta . A amostra apresentava-se na forma de agregados de diâmetro de variados tamanhos e de difícil desagregação manual.

IDENTIFICAÇÃO DA AMOSTRA: BT - 09	MUNICÍPIO: TOBIAS BARRETO	POV. BATULA
PROPRIETÁRIO DA OCORRÊNCIA: Antônio Capitulino		ÁREA PESQUISADA:
RESERVA ESTIMADA:	INÍCIO DATA: HORA:	TÉRMINO DATA: HORA:
OBSERVAÇÕES:	·	N.º DE FUROS:01 P. FINAL:1,50 m N. A.

#### INFORMAÇÕES TÉCNICAS

#### FURO A TRADO DE SUPERFICIE Nº 01

			An	álise	Intervalo
Perfil Litológico	Profundidade	Descrição litológica	QUÍMIC AS	TEC NOLÓGI CAS	m
	0,10 m	Solo orgânico			0,10
		Argila marrom escura			
	1.50 m				1.50

#### CARACTERÍSTICAS DA AMOSTRA:

AMOSTRA TB-09 = Argila cor marrom escura. A amostra apresentava-se na forma de agregados de fácil desagregação manual .

#### 3.1.2 AMOSTRAGEM

A importância da amostragem é ressaltada principalmente quando entram em jogo a avaliação de depósitos minerais, o controle de processos em laboratório e indústria, e a comercialização dos produtos. Portanto, uma amostragem mal conduzida pode resultar em prejuízo vultosos ou em distorção dos resultados, de consequência técnicas imprevisíveis.

A amostragem consiste em uma seqüência de operações com o objetivo de retirar uma parte representativa (densidade, teor, distribuição granulométrica, constituintes minerais) de seu universo. Esta parte representativa e denominada de amostra primária ou global. Desta, pode-se retirar frações destinadas a análise ou ensaios de laboratório. Esta fração é chamada amostra final ou reduzida, que deve ser representativa da amostra global e, portanto, do todo amostrado.

#### 3.2 MÉTODOS

3.2.1 - MÉTODOS DE AMOSTRAGEM UTILIZADOS — Nesta pesquisa, foi realizada uma amostragem extensiva, onde a partir de sondagem obteve-se a amostra primária, conforme descritas na referência (2). A amostra final foi obtida através de uma cominuição com posterior homogeneização mecânica, para o qual utilizou-se um homogeneizador rotativo, conforme mostra figura 3.9 abaixo:




Fig. 3.9 - Técnica de homogeneização / com homogeneizador rotativo.

#### 3.2.2 PREPARAÇÃO DAS AMOSTRAS:

A preparação de amostras consta de três etapas: secagem, britagem e moagem até granulometria inferior a peneira USS nº 80 (0,177 mm), e estão descritas na referência (2).

Segundo Souza Santos (1969), em hipótese alguma as amostras deverão ser secas em temperaturas superiores a 40°C, pois suas propriedades plásticas e geológicas poderão ser alteradas irreversivelmente.

### 3.2.3 CARACTERIZAÇÃO DAS AMOSTRAS:

## 3.2.3.1 ANÁLISE GRANULOMÉTRICA EM PENEIRA

- <u>AMOSTRA</u> Todas as amostras foram submetidas aos ensaios de determinação da composição granulométrica por peneiramento em via úmida, visto que o rendimento por este processo, supera o peneiramento em via seca.
- <u>PREPARAÇÃO DAS AMOSTRAS</u> As amostras foram ensaiadas na forma bruta, conforme recebidas.
- <u>MÉTODO</u> As amostras de argilas foram ensaiadas segundo métodos descritos da NBR-7181 da ABNT e do manual de procedimentos do centro de Pesquisa e Desenvolvimento da Bahia. Neste caso específico foram usadas as peneiras USS nº 10 (2,00 mm), nº 20 (0,84 mm), nº 50 (0,297 mm), nº 80 (0,177 mm), nº 100 (0,149 mm), nº 200 (0,074 mm) e nº 325 (0,044 mm).

#### 3.2.3.2 <u>LIMITES DE ATTERBERG – LIMITE DE PLASTICIDADE</u>

- AMOSTRA Foram submetidos aos ensaios de determinação do limite de plasticidade as argilas designadas pelos seguintes símbolos: IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-13, IHS-14, IHS-15, IHS-16, IHS-17, ITB-01, ITB-02, ITB-03, ITB-04, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07, BQS-01, CB-01, CB-02, BT-09, BT-16, SLI-01, SLI-03, EST-02, SDI-01.
- PREPARAÇÃO DAS AMOSTRAS As argilas já previamente preparadas como descrito no item 3.2.2.
- MÉTODO As amostras foram ensaiadas segundo método de ensaio da NBR-7180 da ABNT, destinado a solos e correntemente utilizado no Laboratório de Materiais Cerâmicos do CEPED para argilas e caulins.

## 3.2.3.3 MASSA ESPECÍFICA REAL PELO MÉTODO DO PICNÔMETRO

• AMOSTRAS – Foram submetidas aos ensaios de massa específica real as argilas designadas pelos seguintes símbolos: IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-13, IHS-14, IHS-15, IHS-16, IHS-17, ITB-01, ITB-02, ITB-03, ITB-04, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07, BQS-01, CB-01, BT-09, BT-16, SLI-01, SLI-03, EST-02, SDI-01.

- PREPARAÇÃO DAS AMOSTRAS As argilas já previamente preparadas como descrito no item 3.2.2.
- <u>MÉTODO</u> As amostras foram ensaiadas segundo métodos descritos da NBR-6221 da ABNT.

## 3.2.3.4 ANÁLISE GRANULOMÉTRICA PELO MÉTODO DO SEDÍGRAFO

 PRINCÍPIO TEÓRICO – O Sedígrafo é um analisador da distribuição do diâmetro de partículas está acoplado a um micro-computador tipo IBM-XT, no qual são controladas todas as etapas da análise, efetuando cálculos e emitindo vários tipos de relatórios.

O Sedígrafo mede, na verdade, a velocidade de queda das partículas em suspensão, ou seja, a altura que uma partícula cai, sob a ação da gravidade, num certo período de tempo. Tal grandeza é denominada taxa de sedimentação.

A lei científica que descreve a taxa de sedimentação de partículas num meio líquido é chamada Lei de Stokes. Partículas maiores têm maiores taxas de sedimentação, como é mostrado na figura 3.10 abaixo:

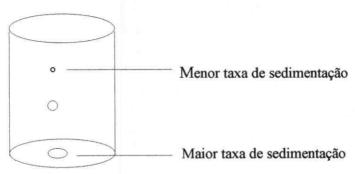



Fig. 3.10 - Sedimentação de partículas no meio líquido

Para partículas esféricas, a Lei de Stokes pode ser expressa pela seguinte equação:

D = K . V Equação 1 – Determinação do diâmetro da partícula esférica, segundo a Lei de Stokes

Onde: 
$$K = \sqrt{\frac{18 \text{ n}}{(\rho - \rho \text{o})}}$$
 g

D = Diâmetro da partícula esférica

V = Velocidade de sedimentação

 $\rho$  = Densidade da partícula

ρο = Densidade do líquido na temperatura da análise

n = Viscosidade do líquido na temperatura da análise

No Sedigráfo, usa-se um líquido (quase sempre água) numa temperatura constante. Portanto po e n são constantes; g é a aceleração da gravidade, que é constante e p será sempre constante para o mesmo tipo de sólido.

Concluímos que K é uma constante e, portanto, basta medir V para determinar D, é isso exatamente que o Sedígrafo faz. A figura 3.11 mostra o aparelho em operação.



Fig. 3.11 - Distribuição granulométrica em aparelho sedigraph 5100 V3.03

- <u>AMOSTRAS</u> Foram submetidos aos ensaios de análise granulométrica pelo Sedígrafo as argilas designados pelos seguintes símbolos: IHS-11, ITB-01, LAG-02, BQS-01, EST-02, CB-02, SLI-01 e BT-16.
- PREPARAÇÃO DAS AMOSTRAS As argilas já previamente preparadas como descrito no item 3.3, foram passados por via úmida em peneira USS nº 325 (0,044 mm) e posteriormente secas a 110°C, até massa constante.
- MÉTODO O método de ensaio foi desenvolvido no Laboratório de Materiais Cerâmicos do CEPED e consta em linhas gerais, das seguintes etapas. Da amostra tratada é separada uma porção de aproximadamente 1,00 g, que é colocada em um bequer de 100 ml contendo um bastão magnético. Adiciona-se 5 ml de solução 1:1000 de hexametafosfato de sódio e faz-se circuevoluções manuais com o bequer a fim de que toda o pó se misture com o líquido. Coloca-se o bequer dentro do compartimento do ultra-som, regula a agitação magnética fecha-se o comportamento e liga o ultra-som. Em seguida faz-se uma drenagem do sistema do Sedígrafo, coloca-se a mistura dispersada no compartimento de mistura e o aparelho um Sedigraph tipo 5100 V3.03 efetua as análises, conforme descrito na referência (3.2)

### 3.2.3.5 ANÁLISE TERMOGRAVIMÉTRICA

- AMOSTRA Foram submetidos aos ensaios de análise termogravimétrica (ATG), as argilas designados pelos seguintes símbolos: IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-13, IHS-14, IHS-15, IHS-16, IHS-17, ITB-01, ITB-02, ITB-03, ITB-04, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07, CB-01, CB-02, SLI-01, SLI-03, BT-09, BT-16, BQS-01, EST-02 e SDI-01.
- <u>PREPARAÇÃO DAS AMOSTRAS</u> As amostras conforme recebidas (na forma bruta) foram homogeneizadas em misturador mecânicos tipo V, em seguida retirou-se uma alíquota e submeteu-a a um processo de quarteamento para obter-se uma amostra representativa e fez-se uma amostra representativa e fez-se uma secagem em estufa a 105 ± 5 °C.
- <u>MÉTODO</u> O ensaio foi realizado em um Analisador Termogravimétrico, modelo 951 da Du Pont Instruments, segundo método contido na referência (3.3).




Fig. 3.12 - Aparelho analisador termogravimétrico, modelo 951 da Ju pont.

## 3.2.3.6 IDENTIFICAÇÃO MINERALÓGICA

• AMOSTRA – Foram submetidas aos ensaios de identificação mineralógica por análise química, as amostras de argilas designadas pelos seguintes símbolos: IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-10, IHS-11, IHS-12, IHS-13, IHS-14, IHS-15, IHS-16, IHS-17, ITB-01, ITB-02, ITB-03, ITB-04, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, BT-09, BT-16, SLI-01, SLI-03, EST-02, LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07, CB-01, CB-02, SDI-01, BQS-01 e BQS-02.

- PREPARAÇÃO DAS AMOSTRAS As argilas já previamente preparadas como descrito no item 3.2.2
- <u>MÉTODO</u> As amostras de argilas foram ensaiadas seguindo métodos contidos nas referências (9,27 e 29). A partir dos dados da composição química podem ser calculados: Composição mineralógica e temperatura de fusão segundo método contido na referência (2).

## 3.2.4 ENSAIOS TECNOLÓGICOS

## 3.2.4.1 ENSAIO PRELIMINAR DE ARGILAS VISANDO SUA APLICAÇÃO CERÂMI-CA COM BASE NAS CORES APÓS SECAGEM E QUEIMA E NOS CARACTE-RÍSTICOS CERÂMICOS EM SEIS TEMPERATURAS

- <u>AMOSTRA</u> Foram submetidas ao ensaio preliminar de argilas, visando sua utilização cerâmica, as amostras designados pelos seguintes símbolos: IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-10, IHS-11, IHS-12, IHS-16, ITB-01, ITB-03, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, LAG-01, LAG-02, LAG-05, LAG-06, LAG-07, BQS-02, BT-09, BT-16, CB-01, CB-02 e EST-02.
- <u>PREPARAÇÃO DAS AMOSTRAS</u> As argilas foram preparadas como descritos no item 3.2.2.
- <u>MÉTODO</u> As amostras foram ensaiadas seguido métodos contidos nas referências (2 e 22). As cores dos corpos de prova foram determinadas visualmente e pelo Munsell (18). Os característicos cerâmicos foram determinados segundo métodos da ABNT (13, 14, 31 e 34) e métodos contidos na referência (2).

## 3.2.4.2 ENSAIO COMPLETO DE ARGILAS PARA CERÂMICA VERMELHA

- <u>AMOSTRA</u> Foram submetidas ao ensaio preliminar completo de argilas para cerâmica vermelha, visando sua utilização cerâmica vermelha, amostras de argilas designadas pelos seguintes símbolos: IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-10, IHS-11, IHS-12, IHS-16, ITB-01, ITB-03, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, LAG-01, LAG-02, LAG-05, LAG-06, LAG-07, BQS-02, BT-09, BT-16, CB-01, CB-02 e EST-02.
- <u>PREPARAÇÃO DAS AMOSTRAS</u> As amostras de argilas foram preparadas como descrito no item 3.2.2 desta dissertação.
- <u>MÉTODO</u> As amostras foram ensaiadas segundo métodos contidos nas referências (2 e 22). As cores dos corpos de prova foram determinadas visualmente. Os característicos cerâmicos, ou seja, os ensaios físicos-mecânicos foram determinados segundo métodos de ABNT (13, 14, e 15) e métodos contidos na referência (2).

## Apresentação e Análise dos Resultados

## 4. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

#### 4.1 <u>CARACTERIZAÇÃO DAS QUARENTA E CINCO AMOSTRAS</u>

#### 4.1.1 ANÁLISE GRANULOMÉTRICA EM PENEIRA

Os resultados obtidos através da análise granulométrica em peneira (via úmida) com as argilas da Região Centro-Sul do Estado de Sergipe são apresentadas nas Tabelas 3.0.

Através da análise dos resultados obtidos, observou-se que as amostras ensaiadas apresentam-se em sua maioria com grande quantidade de fração fina (percentagem passante na peneira nº 200), com exceção da amostra SDI-01, que apresentou 52,80% de suas partículas maiores que 2,00 mm.

Fazendo-se uma inspeção visual quanto a natureza dos resíduos nas peneiras, observa-se que os mesmos são compostos basicamente por argila não desagregada, quartzo e matéria orgânica. As amostras podem ser classificadas como de média à difícil desagregação e apresentam pequena quantidade de material grosso (retido na peneira nº 10) e grande quantidades de finos, com exceção da amostra SDI-01.

#### 4.1.2 <u>LIMITES DE ATTERBERG-LIMITE DE PLASTICIDADE</u>

Os resultados obtidos para os limites de plasticidade (média aritmética de três determinações), com as amostras de argilas da Região Centro-Sul do Estado de Sergipe estão contidos na Tabela 3.1.

Após análise comparativa do conjunto de resultados obtidos para o limite de plasticidade de argilas, observou-se o seguinte: a) as argilas plásticas coletadas no município de Itabaianinha (designadas por IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-10, IHS-11, IHS-12, IHS-13, IHS-14, IHS-15, IHS-16, IHS-17) apresentaram limite de plasticidade variando na faixa de 14,60% a 24,80%; b) as argilas plásticas coletadas no município de Itabaiana (designadas por: ITB-01, ITB-02, ITB-03, ITB-04, ITB-05, ITB-06, ITB-07, ITB-08, ITB-09, ITB-10 e ITB-11) apresentaram limite de plasticidade variando na faixa de 16,40% a 30,00%; c) as argilas plásticas coletadas no município de Lagarto (designadas por LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07) apresentaram limites de plasticidade variando na faixa de 15,20% a 25,20%; d) as argilas plásticas coletadas no município de Campo do Brito (designadas por CB-01 e CB-02) apresentaram limite de plasticidade variando na faixa de 18,40% a 21,20%; e) as argilas plásticas coletadas no município de Tobias Barreto (BT-09 e BT-16) apresentaram limite de plasticidade na faixa de 18,00% a 20,00%; f) as argilas plásticas coletadas no município de Santa Luzia do Itanhy (SLI-01 e SLI-03) apresentaram limite de

IDENTIFICAÇÃO DA AMOSTRA: BQS – 01 Mse = 294,37 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,79	0,27	0,27	99,73
20	0,84	4,34	1,47	1,74	98,26
50	0,297	27,13	9,22	10,96	89,04
80	0,177	35,05	11,91	22,87	77,13
100	0,149	19,26	6,54	29,41	70,59
200	0,074	39,45	13,40	42,81	57.19
325	0,044	22,54	7,66	50,,47	49,53
> 325	FUNDO	145,81	49,53	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: BQS - 02 Mse = 260,55 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,50	0,19	0,19	99,81
20	0,84	3,42	1,31	1,50	98,50
50	0,297	6,91	2,65	4,15	95,85
80	0,177	3,24	1,24	5,39	94,61
100	0,149	1,35	0,52	5,91	94,09
200	0,074	7,34	2,82	8,73	91,27
325	0,044	12,63	4,85	13,58	86,42
> 325	FUNDO	225,16	86,42	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS – 05

Mse = 268,69 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,05	0,02	0,02	99,98
20	0,84	3,30	1,23	1,25	98,75
50	0,297	5,92	2,17	3,42	96,58
80	0,177	1,93	0,68	4,10	95,90
100	0,149	0,49	0,18	4,28	95,72
200	0,074	4,66	1,73	6,01	93,99
325	0,044	9,13	3,40	9,41	90,59
> 325	FUNDO	243,41	90,59	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: CB-02

Mse = 689,09 g
----------------

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)	
10	2,00	50,46	7,32	7,32	92,68	
20	0,84	68,27	9,91	17,23	82,77	
50	0,297	77,75	11,28	28,51	71,49	
80	0,177	27,41	3,98	32,49	67,51	
100	0,149	11,21	1,63	34,12	65,88	
200	0,074	28,47	4,13	38,25	61,75	
325	0,044	18,44	2,68	40,93	_ 59,07	
> 325	FUNDO	407,08	59,07	100,00	0,00	

IDENTIFICAÇÃO DA AMOSTRA: IHS -16 Mse = 974,07 g

Mse = 97	7 <b>4.</b> 07 g
----------	------------------

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO	MATERIAL RETIDO	MATERIAL RETIDO	MATERIAL PASSANTE
	. "	(g)	(%)	ACUMULADO (%)	(%)
10	2,00	1,01	0,10	0,10	99,90
20	0,84	3,87	0,40	0,50	99,50
50	0,297	6,29	0,65	1,15	98,85
80	0,177	6,07	0,62	1,77	98,23
100	0,149	3,19	0,33	2,10	97,90
200	0,074	29,41	3,02	5,12	94,88
325	0,044	16,85	1,73	6,85	93,15
> 325	FUNDO	907,38	93,15	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: SLI – 03 Mse = 737,59 g

		83		•	
0.2	=	7 🐔	7.5	ч	43

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	58,62	7,95	7,95	92,05
20	0,84	46,85	6,35	14,30	85,70
50	0,297	57,02	7,73	22,03	77,97
80	0,177	36,98	5,00	27,03	72,97
100	0,149	23,93	3,25	30,28	69,72
200	0,074	160,49	21,76	52,04	47,96
325	0,044	61,93	8,40	60,44	39,56
> 325	FUNDO	291,77	39,56	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -08 Mse = 263,41 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,09	0,03	0,03	99,97
20	0,84	0,22	0,08	0,11	99,89
50	0,297	1,24	0,47	0,58	99,42
80	0,177	2,06	0,78	1,36	98,64
100	0,149	1,92	0,73	2,09	97,91
200	0,074	10,12	3,84	5,93	94,07
325	0,044	13,75	5,22	11,15	88,85
> 325	FUNDO	234,01	88,85	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -09 Mse = 259,65 g

DENTIFICAÇÃO DIVINIOSTRAS DIS			17130 207,00 5		
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAI PASSANTE (%)
10	2,00	19,21	7,40	7,40	92,60
20	0,84	12,64	4,87	12,27	87,73
50	0,297	14,64	5,64	17,91	82,09
80	0,177	9,39	3,62	21,53	78,47
100	0,149	5,04	1,94	23,47	76,53
200	0,074	11,73	4,52	27,99	72,01
325	0,044	11,20	4,31	32,30	67,70
> 325	FUNDO	175,80	67,70	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: EST -02 Mse = 918,36 g

DENTIFICAÇÃO DA AMOSTRA. EST -02				1415c - 710,50 g		
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)	
10	2,00	1,41	0,15	0,15	99,85	
20	0,84	0,77	0,08	0,23	99,77	
50	0,297	5,15	0,56	0,79	98,25	
80	0,177	10,72	1,17	1,96	98,04	
100	0,149	4,51	0,49	2,45	97,55	
200	0,074	17,19	1,87	4,32	95,68	
325	0,044	20,72	2,26	6,58	93,42	
> 325	FUNDO	857,89	93,42	100,00	0,00	

IDENTIFICAÇÃO DA AMOSTRA: IHS- 07

Mse = 840,78

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,92	0,11	0,11	99,89
20	0,84	3,86	0,46	0,57	99,43
50	0,297	3,44	0,41	0,98	99,02
80	0,177	2,30	0,27	1,25	98,75
100	0,149	1,30	0,15	1,40	98,60
200	0,074	6,66	0,79	2,19	97,81
325	0,044	11,82	1,41	3,60	96,40
> 325	FUNDO	810,48	96,40	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: BT - 09 Mse = 815.90 g

Division Division Division Inchis			11130 010,00		
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,24	0,03	00,3	99,97
20	0,84	2,01	0,25	0,28	99,72
50	0,297	13,27	1,63	1,91	98,09
80	0,177	14,50	1,78	3,69	96,31
100	0,149	6,89	0,84	4,53	95,47
200	0,074	32,12	3,94	8,47	91,54
325	0,044	45,10	5,52	13,99	86,01
> 325	FUNDO	701,77	86,01	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAG-01 Mse = 1.009.75 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	6,03	0,60	0,60	99,40
20	0,84	5,97	0,60	1,20	98,80
50	0,297	4,21	0,41	1,61	98,39
80	0,177	2,72	0,27	1,88	98,12
100	0,149	1,06	0,10	1,98	98,02
200	0,074	3,71	0,37	2,35	97,65
325	0,044	8,40	0,83	3,18	96,82
> 325	FUNDO	977,65	96,82	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB -07 Mse = 479,94 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	8,45	1,76	1,76	98,24
20	0,84	12,96	2,70	4,46	95,54
50	0,297	16,36	3,40	7,86	92,14
80	0,177	50,82	10,59	18,45	81,55
100	0,149	8,90	1,85	20,30	79,70
200	0,074	22,28	4,64	24,94	75,06
325	0,044	16,44	3,42	28,35	71,64
> 325	FUNDO	343,73	71,74	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB -06 Mse = 224,11 g

DEIVINIENÇÃO DITIMOSTAN.			IID OU	11130 227911 5	
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	9,22	4,11	4,11	95,89
20	0,84	12,19	5,44	9,55	90,45
50	0,297	23,32	10,41	19,96	80,04
80	0,177	17,66	7,88	27,84	72,16
100	0,149	6,53	2,91	30,75	69,25
200	0,074	11,94	5,33	36,08	63,92
325	0,044	2,51	1,12	37,20	62,80
> 325	FUNDO	140,74	62,80	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB -05 Mse = 314,16 g

DENTIFICAÇÃO DA AMOSTRA. 11D 05			17150 51 1910 5		
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,02	0,00	0,00	100,00
20	0,84	4,10	1,31	1,31	98,69
50	0,297	2,98	0,95	2,26	97,74
80	0,177	4,44	1,41	3,67	96,33
100	0,149	2,42	0,77	4,44	95,56
200	0,074	17,25	5,49	9,93	90,07
325	0,044	26,60	8,47	18,40	81,50
> 325	FUNDO	256,35	81,60	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB – 04 Mse = 259,45 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	35,07	13,52	13,52	86,48
20	0,84	41,25	15,90	29,42	70,58
50	0,297	52,16	20,10	49,52	50,48
80	0,177	12,54	4,83	54,35	45,65
100	0,149	5,16	1,99	56,34	43,66
200	0,074	11,10	40,28	60,62	39,38
325	0,044	1,9	0,73	61,35	38,64
> 325	FUNDO	100,27	38,64	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB - 03 Mse = 296,44 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAI PASSANTE (%)
10	2,00	6,97	2,35	2,35	97,65
20	0,84	6,10	2,06	4,41	95,59
50	0,297	24,94	8,41	12,82	87,18
80	0,177	26,60	8,97	21,79	78,21
100	0,149	11,68	3,94	25,73	74,27
200	0,074	26,25	8,86	34,59	65,41
325	0,044	20,40	6,90	41,49	58,51
> 325	FUNDO	173,44	58,51	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB -02 Mse = 259.68 g

DENTIL	AÇAO DA M	HODINA II	- VI	17156 #4	,,,,,,,
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	13,14	5,06	5,06	94,94
20	0,84	22,05	8,49	13,55	86,45
50	0,297	39,69	15,28	28,83	71,17
80	0,177	14,04	5,41	34,24	65,76
100	0,149	3,03	1,17	35,41	64,59
200	0,074	8,63	3,32	38,73	61,27
325	0,044	3,10	1,19	39,92	60,08
> 325	FUNDO	156,00	60,08	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB -01 Mse = 259,90 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,78	0,30	0,30	99,70
20	0,84	0,50	0,19	0,49	99,51
50	0,297	9,64	3,71	4,20	95,80
80	0,177	14,49	5,58	9,78	90,22
100	0,149	8,26	3,18	12,96	87,04
200	0,074	19,26	7,41	20,37	79,63
325	0,044	15,69	6,04	26,40	73,60
> 325	FUNDO	191,28	73,60	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS – 13 Mse = 211.33 g

DESTRUCTION OF THE PARTY OF THE	TAGINO DINTAL	TOOTIUM II	10 10	TYES M.	11,00 5
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAI PASSANTE (%)
10	2,00	13,45	6,36	6,36	93,64
20	0,84	19,15	9,06	15,42	84,58
50	0,297	50,18	23,74	39,18	60,84
80	0,177	9,13	4,32	43,50	56,52
100	0,149	30,87	14,61	58,11	41,91
200	0,074	27,98	13,24	71,35	28,67
325	0,044	12,23	5,79	77,14	22,88
> 325	FUNDO	48,34	22,88	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB-07

Mse = 234.92 g

PENEIRA ABERTURA MATERIAL MATERIAL ABNT (mm) RETIDO RETIDO				11,150	
				MATERIAL RETIDO ACUMULADO (%)	MATERIAI PASSANTE (%)
10	2,00	3,29	1,40	1,40	98,60
20	0,84	6,13	2,61	4,01	95,99
50	0,297	18,76	7,99	12,00	88,00
80	0,177	11,84	5,04	17,04	82,96
100	0,149	5,50	2,34	19,38	80,62
200	0,074	11,02	4,69	24,07	75,93
325	0,044	8,7	3,70	27,77	72,23
> 325	FUNDO	169,68	72,23	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -10 Mse = 258,42 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAI PASSANTE (%)
10	2,00	0,55	0,21	0,21	99,79
20	0,84	0,61	0,24	0,45	99,55
50	0,297	2,16	0,84	1,29	98,71
80	0,177	2,91	1,13	2,42	97,58
100	0,149	2,56	0,99	3,41	96,59
200	0,074	16,63	6,44	9,85	90,15
325	0,044	19,30	7,47	17,32	82,68
> 325	FUNDO	213,70	82,68	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -12 Mse = 248,81 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	8,83	3,55	3,55	96,45
20	0,84	24,39	9,80	13,35	86,65
50	0,297	37,35	15,01	28,36	71,64
80	0,177	15,31	6,15	34,51	65,49
100	0,149	4,42	1,78	36,29	63,71
200	0,074	17,87	7,18	43,47	56,53
325	0,044	16,92	6,80	50,27	49,73
> 325	FUNDO	123,72	49,73	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -01

 $Mse = 271.60 \, \sigma$ 

DENTIFIC	AÇAU DA AI	AU DA AMOSTRA. IIIS-UI		Mist - 2/1,00 g		
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)	
10	2,00	0,28	0,10	0,10	99,90	
20	0,84	1,28	0,47	0,57	99,43	
50	0,297	14,79	5,45	6,02	93,98	
80	0,177	29,47	10,85	16,87	83,13	
100	0,149	13,33	4,91	21,76	78,22	
200	0,074	19,58	7,21	28,99	71,01	
325	0,044	8,87	3,27	32,25	67,74	
> 325	FUNDO	184,00	67,75	100,01	0,00	

IDENTIFICAÇÃO DA AMOSTRA: IHS – 02 Mse = 311,04 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,12	0,04	0,04	99,96
20	0,84	0,69	0,22	0,26	99,74
50	0,297	21,78	7,00	7,26	92,74
80	0,177	68,69	22,08	29,34	70,66
100	0,149	26,71	8,59	37,93	62,07
200	0,074	79,38	25,52	63,45	36,55
325	0,044	28,71	9,23	72,68	27,32
> 325	FUNDO	84,96	27,32	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS – 03

Mse = 287,20 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO	MATERIAL PASSANTE (%)
10	2,00	0,89	0,31	0,31	99,69
20	0,84	2,18	0,76	1,07	98,93
50	0,297	32,43	11,29	12,36	87,64
80	0,177	36,09	12,57	24,93	75,07
100	0,149	14,70	5,12	30,05	69,95
200	0,074	27,74	9,66	39,71	60,29
325	0,044	16,49	5,74	45,45	54,55
> 325	FUNDO	156,68	54,55	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS – 04

Mse = 232.84 g

AA7 821 1 8 8 8 8 C	TIGHTO DITTI	TOOLINK II	<u> </u>		7-,0 - 5
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,98	0,42	0,42	99,58
20	0,84	6,11	2,62	3,04	96,96
50	0,297	11,29	4,85	7,89	92,11
80	0,177	2,67	1,15	9,04	90,96
100	0,149	0,62	0,27	9,31	90,69
200	0,074	3,11	1,34	10,65	89,35
325	0,044	6,88	2,95	13,60	86,40
> 325	FUNDO	201,18	86,40	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB -08 Mse = 903,26 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	18,40	2,04	2,04	97,96
20	0,84	3,54	0,39	2,43	97,57
50	0,297	20,59	2,28	4,71	95,29
80	0,177	49,92	5,53	10,24	89,76
100	0,149	26,82	2,97	13,21	86,79
200	0,074	80,23	8,88	22,09	77,91
325	0,044	52,70	5,83	27,92	72,08
> 325	FUNDO	651,06	72,08	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: CB - 01 Mse = 876.70 g

DEI TELLE	Trying Divin	TOOTIER. C.	O O I	Wise o	70,705
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,45	0,05	0,05	99,95
20	0,84	1,39	0,16	0,21	99,79
50	0,297	7,55	0,86	1,07	98,93
80	0,177	12,89	1,47	2,54	97,46
100	0,149	6,04	0,69	3,23	96,77
200	0,074	19,55	2,23	5,46	94,54
325	0,044	25,56	2,92	8,38	91,62
> 325	FUNDO	803,27	91,62	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAC-03

 $M_{SO} = 933.03 \, \sigma$ 

DENIIFIC	AÇAU DA AN	MOSIKA: L	AG - 03	Nise - 9.	13,03 g
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	129,14	13,84	13,84	86,16
20	0,84	23,59	2,53	16,37	83,03
50	0,297	24,02	2,57	18,94	81,06
80	0,177	16,69	1,79	20,73	79,27
100	0,149	7,93	0,85	21,58	78,42
200	0,074	77,94	8,35	29,93	70,07
325	0,044	94,80	10,16	40,09	59,91
> 325	FUNDO	558,92	59,91	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: 1HS – 14 Mse = 636,59 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	27,98	4,40	4,40	95,60
20	0,84	54,23	8,51	12,91	87,09
50	0,297	105,04	16,50	29,41	70,59
80	0,177	69,55	10,93	40,34	59,66
100	0,149	26,33	4,14	44,48	55,52
200	0,074	65,70	10,32	54,80	45,20
325	0,044	43,64	6,86	61,66	38,34
> 325	FUNDO	244,12	38,34	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAG -02 Mse = 853,31 g

	11,9110 1911 111.			17150 0	.,0,015
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,47	0,05	0,05	99,95
20	0,84	0,76	0,09	0,14	99,86
50	0,297	2,36	0,28	0,42	99,58
80	0,177	5,30	0,62	1,04	98,96
100	0,149	2,89	0,34	1,38	98,62
200	0,074	11,48	1,35	2,73	97,27
325	0,044	13,55	1,59	4,32	95,68
> 325	FUNDO	816,50	95,68	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: SLI – 01

Mse = 683.79 g

HIZESTATE IN C	AÇAO DA AI	MOSIKA. S		MISC — U	33,17g
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	6,79	0,99	0,99	99,01
20	0,84	11,59	1,69	2,68	97,32
50	0,297	32,69	4,78	7,46	92,54
80	0,177	43,06	6,30	13,76	86,24
100	0,149	29,06	4,25	18,01	81,99
200	0,074	161,00	23,55	41,56	58,44
325	0,044	59,15	8,65	50,21	49,79
> 325	FUNDO	340,45	49,29	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -15 Mse = 797,08 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	28,65	3,59	3,59	96,41
20	0,84	57,21	7,17	10,76	89,24
50	0,297	110,20	13,83	24,59	75,41
80	0,177	49,19	6,17	30,76	69,24
100	0,149	17,12	2,15	32,91	67,09
200	0,074	52,10	6,54	39,45	60,55
325	0,044	34,13	4,28	43,73	56,27
> 325	FUNDO	448,48	56,27	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAG -05 Mse = 879.71 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	6,07	0,69	0,69	99,31
20	0,84	3,48	0,40	1,09	98,91
50	0,297	4,88	0,55	1,64	98,36
80	0,177	5,45	0,62	2,26	97,74
100	0,149	2,56	0,30	2,56	97,44
200	0,074	9,91	1,13	3,69	96,31
325	0,044	16,18	1,84	5,53	94,47
> 325	FUNDO	831,18	94,47	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB-11

Mse = 667.38 g

DELTINE	right Dri hi	HODRING. II	D 11	Tribe of	97,50 5
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	50,08	7,50	7,50	92,50
20	0,84	15,13	2,27	9,77	90,23
50	0,297	26,29	3,94	13,71	86,29
80	0,177	24,61	3,69	17,40	82,60
100	0,149	11,61	1,74	19,14	80,86
200	0,074	43,53	6,52	25,66	74,34
325	0,044	11,32	1,69	27,35	72,65
> 325	FUNDO	484,81	72,65	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAG – 07 Mse = 541,86 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	4,48	0,83	0,83	99,17
20	0,84	2,51	0,46	1,29	98,71
50	0,297	3,43	0,63	1,92	98,08
80	0,177	4,81	0,89	2,81	97,19
100	0,149	1,84	0,34	3,15	96,85
200	0,074	8,22	1,52	4,67	95,33
325	0,044	45,78	8,45	13,12	86,88
> 325	FUNDO	470,79	86,88	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: BT –16

Mse = 844.82 g	Mse	=	844	.82	ø
----------------	-----	---	-----	-----	---

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,54	0,06	0,06	99,94
20	0,84	2,46	0,29	0,35	99,65
50	0,297	65,57	7,76	8,11	91,89
80	0,177	69,4	8,21	16,32	83,68
100	0,149	18,84	2,23	18,55	81,45
200	0,074	48,62	5,76	24,31	75,69
325	0,044	31,49	3,73	28,04	71,96
> 325	FUNDO	607,90	71,96	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: SDI - 01 Mse = 670,47 g

IDENTIFIC	DENTIFICAÇÃO DA AMOSTRA. SD. VI			17136 0	10,175
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	354,04	52,80	52,80	47,20
20	0,84	23,88	3,56	56,36	43,64
50	0,297	18,89	2,82	59,18	40,82
80	0,177	11,64	1,74	60,92	39,04
100	0,149	6,07	0,91	61,83	_ 38,17
200	0,074	36,60	5,46	67,29	32,71
325	0,044	59,18	8,83	76,12	23,88
> 325	FUNDO _	160,17	23,88	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS -06 Mse = 1.049,69 g

PENEJRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,20	0,02	0,02	99,98
20	0,84	1,03	0,09	0,11	99,89
50	0,297	2,78	0,26	0,37	99,63
80	0,177	3,36	0,32	0,69	99,31
100	0,149	2,83	0,27	0,96	99,04
200	0,074	24,88	2,37	3,33	96,67
325	0,044	82,66	7,87	11,20	88,80
> 325	FUNDO	931,95	88,80	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAG -06 Mse = 919.91 g

	Transpire Division Line 00		TIESC ).	17,718	
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAI PASSANTE (%)
10	2,00	4,04	0,44	0,44	99,56
20	0,84	4,77	0,52	0,96	99,04
50	0,297	6,51	0,71	1,67	98,33
80	0,177	7,39	0,80	2,47	97,53
100	0,149	3,58	0,39	2,86	97,14
200	0,074	6,24	0,68	3,54	96,46
325	0,044	22,29	0,42	5,96	94,04
> 325	FUNDO	865,09	94,04	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: LAG-04 Mse = 753,86 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	93,21	12,36	12,36	87,64
20	0,84	12,08	1,60	13,96	86,04
50	0,297	14,74	1,96	15,92	84,08
80	0,177	62,99	8,36	24,28	75,72
100	0,149	78,85	10,46	34,74	65,26
200	0,074	197,47	26,19	60,93	39,07
325	0,044	72,16	9,57	70,50	29,50
> 325	FUNDO	222,36	29,50	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: ITB – 10

Mse = 719,70 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	54,41	7,56	7,56	92,44
20	0,84	37,66	5,23	12,79	87,21
50	0,297	77,30	10,74	23,53	76,47
80	0,177	34,00	4,72	28,25	71,75
100	0,149	10,89	1,51	29,76	70,24
200	0,074	25,28	3,51	33,27	66,73
325	0,044	18,08	2,51	35,78	64,22
> 325	FUNDO	462,08	64,22	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: IHS – 17

Mse = 852.26 g

IDENTIFIC	TITTEAÇÃO DA AMOSTRA: MIS-17			1413C - 032,20 g	
PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	165,21	19,38	19,38	80,62
20	0,84	66,34	7,78	27,16	72,84
50	0,297	99,88	11,72	38,88	61,12
80	0,177	53,65	6,30	45,18	54,82
100	0,149	16,02	1,88	47,06	52,94
200	0,074	49,00	5,75	52,81	47,19
325	0,044	32,65	3,83	56,64	43,36
> 325	FUNDO	369,51	43,36	100,00	0,00

IDENTIFICAÇÃO DA AMOSTRA: 1HS-11

Mse = 260,55 g

PENEIRA ABNT	ABERTURA (mm)	MATERIAL RETIDO (g)	MATERIAL RETIDO (%)	MATERIAL RETIDO ACUMULADO (%)	MATERIAL PASSANTE (%)
10	2,00	0,50	0,19	0,19	99,81
20	0,84	3,42	1,31_	1,50	98,50
50	0,297	6,91	2,65	4,15	95,85
80	0,177	3,24	1,24	5,39	94,61
100	0,149	1,35	0,52	5,91	94,09
200	0,074	7,34	2,82	8,73	91,27
325	0,044	12,63	4,85	13,58	86,42
> 325	FUNDO	225,16	86,42	100,00	0,00

TABELA 3.1

# LIMITE DE PLASTICIDADE (ATTERBERG) DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

	LIMITE DE	PLASTICIDADE (%)
AMOSTRAS	Resultados Obtidos	Dados da Literatura
IHS-01	20,00	Não Encontrado
IHS-02	15,40	Não Encontrado
IHS-03	17,20	Não Encontrado
IHS-04	17,80	Não Encontrado
IHS-05	19,57	Não Encontrado
IHS-06	17,80	Não Encontrado
IHS-07	23,60	Não Encontrado
IHS-08	20,80	Não Encontrado
IHS-09	22,80	Não Encontrado
IHS-10	17,20	Não Encontrado
IHS-11	14,60	Não Encontrado
IHS-12	22,60	Não Encontrado
IHS-13	24,60	Não Encontrado
IHS-14	20,00	Não Encontrado
IHS-15	24,40	Não Encontrado
IHS-16	18,60	Não Encontrado
IHS-17	24,80	Não Encontrado
ITB-01	18,20	Não Encontrado
ITB-02	22,22	Não Encontrado
ITB-03	21,60	Não Encontrado
ITB-04	22,22	Não Encontrado
ITB-05	16,40	Não Encontrado
ITB-06	30,00	Não Encontrado
ITB-07	17,50	Não Encontrado
ITB-08	18,80	Não Encontrado
ITB-09	ND	Não Encontrado
ITB-10	23,80	Não Encontrado
ITB-11	23,40	Não Encontrado
LAG-01	18,20	Não Encontrado
LAG-02	22,40	Não Encontrado

TABELA 3.1

# LIMITE DE PLASTICIDADE (ATTERBERG) DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

	LIMITE DE	PLASTICIDADE (%)
AMOSTRAS	Resultados Obtidos	Dados da Literatura
LAG-03	21,20	Não Encontrado
LAG-04	15,20	Não Encontrado
LAG-05	19,40	Não Encontrado
LAG-06	16,21	Não Encontrado
LAG-07	25,20	Não Encontrado
BQS-01	12,20	Não Encontrado
BQS-02	ND	Não Encontrado
CB-01	18,40	Não Encontrado
CB-02	21,20	Não Encontrado
BT-09	18,00	Não Encontrado
BT-16	20,00	Não Encontrado
SLI-01	18,20	Não Encontrado
SLI-03	14,60	Não Encontrado
EST-02	27,20	Não Encontrado
SDI-01	22,00	Não Encontrado
<del></del>		
· · · · · · · · · · · · · · · · · · ·		

plasticidade na faixa de 14,60% a 18,20%; g) as argilas coletadas nos municípios de: Estância (EST-01), Simão Dias(SDI-01) e Boquim (BQS-01) apresentaram respectivamente os seguintes limites de plasticidade: 27,20%, 22,00% e 12,20%; h) a comparação dos limites de plasticidade obtidos com as argilas descritas acima com dados da literatura não foi possível, uma vez que as argilas apresentaram composição mineralógica complexa, sendo constituídas provavelmente por misturas de diversos argilo minerais, juntando-se o fato de provavelmente apresentarem seus argilo minerais diferentes cátions saturantes, fatores esses que conduzem o limites de plasticidade variados. As amostras são caracterizadas como argilas plásticas como LP variando de 14 - 30%.

# 4.1.3 MASSA ESPECÍFICA REAL PELO MÉTODO DO PICNÔMETRO

Os resultados obtidos para a massa específica real pelo método do picnômetro com as amostras de argilas da Região Centro-Sul do Estado de Sergipe estão contidos na tabela 3.2

Após uma análise do conjunto de resultados para a massa específica real de argilas, observou-se o seguinte: a) as argilas plásticas coletadas no município de Itabaianinha (designadas por: IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-10, IHS-11, IHS-12, IHS-13, IHS-14, IHS-15, IHS-16, IHS-17) apresentaram massas específicas reais variando na faixa de 2,27 g/cm³ a 2,70 g/cm³; b) as argilas plásticas coletadas no município de Itabaiana (designadas por: ITB-01, ITB-02, ITB-03, ITB-04, ITB-05, ITB-06, ITB-07, ITB-08, ITB-09, ITB-10 e ITB-11) apresentaram massas específicas reais variando na faixa de 2,21 g/cm² a 2,62g/cm³; c) as argilas plásticas coletadas no município de Lagarto (designadas por LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07) apresentaram massas específicas reais variando na faixa de 2,38 g/cm³ a 2,70 g/cm³; d) as argilas coletadas no município de Campo do Brito (designadas por CB-01 e CB-02) apresentaram massas específicas reais de 2,33 g/cm³ e 2.67 g/cm³; e) as argilas plásticas coletadas no município de Tobias Barreto (designadas por BT-09 e BT-16) apresentaram massas específicas reais de 2,41 g/cm³ e 2,34 g/cm³; f) as argilas plásticas coletadas no município de Santa Luzia do Itanhy (SLI-01 e SLI-03) apresentaram massas específicas reais de 2,40 g/cm³ e 2,20 g/cm³; g) as argilas plásticas coletadas nos município de Estância (EST-01), Simão Dias (SDI-01) e Boquim (BQS-01) apresentaram respectivamente as seguintes massas específicas reais: 2,66 g/cm³, 2,64 g/cm³ e 2,63 g/cm³.

A comparação das massas específicas reais obtidas com as argilas plásticas descritas acima com dados de literatura não foi possível, pois segundo Grim, argilas que apresentam argilo-minerais que sofrem substituição isomórficas não apresentam valores fixos para massa específicas teóricas; quanto a faixa de massas específicas reais, nenhum dado foi encontrado na literatura. As amostras apresentaram massas específicas variando de 2,20 g/cm³ a 2,70 g/cm³.

TABELA 3.2

# MASSA ESPECÍFICA REAL DE ARGILAS DA REGIÃO CENTRO-SUL DO <u>ESTADO DE SERGIPE</u>

	MASSA ESPE	CIFICA REAL (g/cm
AMOSTRAS	Resultados Obtidos	Dados da Literatura
IHS-01	2,51	Não Encontrado
IHS-02	2,59	Não Encontrado
IHS-03	2,51	Não Encontrado
IHS-04	2,31	Não Encontrado
IHS-05	2,59	Não Encontrado
IHS-06	2,27	Não Encontrado
IHS-07	2,38	Não Encontrado
IHS-08	2,46	Não Encontrado
IHS-09	2,46	Não Encontrado
IHS-10	2,48	Não Encontrado
IHS-11	2,51	Não Encontrado
IHS-12	2,55	Não Encontrado
IHS-13	2,34	Não Encontrado
IHS-14	2,31	Não Encontrado
IHS-15	2,61	Não Encontrado
IHS-16	2,40	Não Encontrado
IHS-17	2,70	Não Encontrado
ITB-01	2,50	Não Encontrado
ITB-02	2,21	Não Encontrado
ITB-03	2,35	Não Encontrado
ITB-04	2,58	Não Encontrado
ITB-05	2,53	Não Encontrado
ITB-06	2,31	Não Encontrado
ITB-07	1,84	Não Encontrado
ITB-08	2,55	Não Encontrado
ITB-09	ND	Não Encontrado
ITB-10	2,60	Não Encontrado
ITB-11	2,62	Não Encontrado
LAG-01	2,46	Não Encontrado
LAG-02	2,64	Não Encontrado

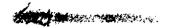





TABELA 3.2

# MASSA ESPECÍFICA REAL DE ARGILAS DA REGIÃO CENTRO-SUL DO <u>ESTADO DE SERGIPE</u>

	ESTADO DE SERGIPE	
		CIFICA (g/cm³)
AMOSTRAS	Resultados Obtidos	Dados da Literatura
LAG-03	2,40	Não Encontrado
LAG-04	2,62	Não Encontrado
LAG-05	2,69	Não Encontrado
LAG-06	2,38	Não Encontrado
LAG-07	2,70	Não Encontrado
BQS-01	2,63	Não Encontrado
BQS-02	ND	Não Encontrado
CB-01	2,33	Não Encontrado
CB-02	2,67	Não Encontrado
BT-09	2,41	Não Encontrado
BT-16	2,34	Não Encontrado
SLI-01	2,40	Não Encontrado
SLI-03	2,20	Não Encontrado
EST-02	2,66	Não Encontrado
SDI-01	2,64	Não Encontrado
<del> </del>		
<u></u>		
<del> </del>		· · · · · · · · · · · · · · · · · · ·
		<del>-</del>
<u> </u>		
		<u> </u>

.....

# 4.1.4 ANÁLISE GRANULOMÉTRICA PELO MÉTODO DO SEDÍGRAFO

Os resultados obtidos para a análise granulométrica por sedimentação segundo método do Sedígrafo (32) com as amostras de argilas da Região Centro-Sul do Estado de Sergipe, são apresentados em anexos nas Tabelas e, em curvas de distribuição granulométrica, nas Figuras 3.13 e 3.14.

Após uma análise dos resultados obtidos observa-se o seguinte: a) todas as amostras ensaiadas designadas pelos símbolos(IHS-11, ITB-01, LAG-02, BQS-01, EST-02, CB-02, SLI-01 e BT-16) apresentaram porcentagens de partículas diâmetro equivalente abaixo de 2 microns, superior a 50%; b) As frações coloidais das amostras ensaiadas, apresentaram porcentagens de partículas com diâmetro abaixo de 1 mícron, variando na faixa de 45,8% a 64,1%; c) As amostras apresentaram os seguintes diâmetros equivalentes médios ( $\emptyset_{med}$ ) e modais ( $\emptyset_{mo}$ ): IHS-11 ( $\emptyset_{med}$  = 1,94 µm e  $\emptyset_{mo}$  = 0,39 µm); ITB-01 ( $\emptyset_{med}$  = 0,27 µm e  $\emptyset_{mo}$  = 0,27 µm); LAG-02 ( $\emptyset_{med}$  = 0,74 µm e  $\emptyset_{mo}$  = 0,36 µm); BQS-01 ( $\emptyset_{med}$  = 0,36 µm e  $\emptyset_{mo}$  = 0,28 µm); EST-02 ( $\emptyset_{med}$  = 0,43 µm e  $\emptyset_{mo}$  = 0,18 µm); CB-02 ( $\emptyset_{med}$  = 0,94 µm e  $\emptyset_{mo}$  = 0,42 µm); SLI-01 ( $\emptyset_{med}$  = 0,58 µm e  $\emptyset_{mo}$  = 0,29 µm) e BT-16 ( $\emptyset_{med}$  = 1,17 µm e  $\emptyset_{mo}$  = 0,33 µm), d) A projeção de curvas de distribuição granulométrica são passíveis de estudo comparativo e análises com a distribuição granulométrica de algumas argilas cerâmicas brasileiras (conforme fig. 3.21).

# 4.1.5 ANÁLISE TERMOGRAVIMÉTRICA

As argilas da Região Centro-Sul do Estado de Sergipe, apresentaram termogramas (figs. 3.15 em anexo) com as seguintes características:

AMOSTRA IHS-01 – Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 400°C e 590°C grande perda de massa; c) entre 600°C e 900°C pequena perda de massa.

AMOSTRA IHS-02 – Apresentou : a) entre 20°C e 220°C nenhuma perda de massa; b) entre 220°C e 400°C pequena perda de massa; c) entre 400°C e 520°C pequena a média perda de massa d) entre 600°C e 900°C nenhuma perda de massa.

AMOSTRA IHS-03 – Apresentou: a) entre 20°C e 400°C quase nenhuma perda de massa; b) entre 400°C e 600°C grande perda de massa; c) entre 600°C e 900°C nenhuma perda de massa foi registrada.

### DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03 SAMPLE DIRECTORY / NUMBER: DATA1

PAGE 1

SAMPLE ID: ITB-01 SUBMITTER: TESE UFPB

OPERATOR: EUGÊNIO SAMPLE TYPE: ARGILA

LIQUID TYPE: Water ANALYSIS TEMP: 38.5 deg C BASELINE / FULL SCALE:

81 kilocounts/sec

UNIT NUMBER: 1 START 10:55:32 04/12/99 REPRT 12:07:17 04/12/99 TOT RUN TIME 1:11:52 SAM DENS: 2.5000 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6748 ср

STARTING DIAMETER:

50.00 µm

RUN TYPE: Standard

REYNOLDS NUMBER: 0.22 FULL SCALE MASSA %: 100

ENDING DIAMETER:

0.20 µm

MASS DISTRIBUTION

MEDIAN DIAMETER:

0.27 µm

MODAL DIAMETER: 0.27 μm

CU	MULATIVE	MASS	
	MASS	IN	
DIAMETER	FINER	INTERVAL	
(µm)	(%)	(%)	
50.00	95.9	4.1	
40.00	97.9	- 2.0	
30.00	95.8	2.1	
25.00	93.0	2.8	
20.00	90.8	2.2	
15.00	89.5	1.3	
10.00	86.3	3.2	
8.00	83.6	2.7	
6.00	81.2	2.5	
5.00	80.2	1.0	
4.00	77.8	2.4	
3.00	74.6	3.2	
2.00	69.6	5.0	
1.50	66.8	2.8	
1.00	63.9	2.9	
0.80	63.3	0.6	
0.60	60.8	2.5	
0.50	58.4	2.4	
0.40	56.3	2.2	
0.30	52.0	4.3	
0.20	44.4	7.6	

TAB. 3.2.1 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: ITB-01 /38 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO SAMPLE TYPE: ARGILA

LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C BASELINE/FULL SCALE: 93

93/ 81 kilocounts/sec

UNIT NUMBER: 1

START 10:55:32 04/12/99 REPRT 12:07:17 04/12/99 TOT RUN TIME 1:11:52 SAM DENS: 2.5000 g/cc 0.9929 g/cc LIQ DENS: 0.6748 cp LIQ VISC:

RUN TYPE: Standard

## CUMULATIVE MASS PERCENT FINER VS. DIAMETER

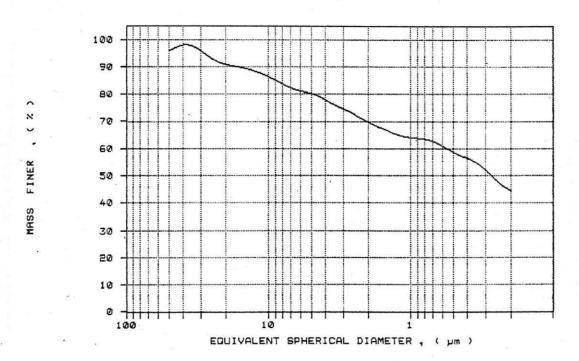



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

/38

SediGraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: ITB-01 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO

SAMPLE TYPE: ARGILA LIQUID TYPE: Water

, ( %/decade

ANALYSIS TEMP: 38.5 deg C

BASELINE/FULL SCALE: 93/ 81 kilocounts/sec

UNIT NUMBER: 1

START 10:55:32 04/12/99 REPRT 12:07:17 04/12/99 TOT RUN TIME 1:11:52

SAM DENS: 2.5000 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6748 cp

RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

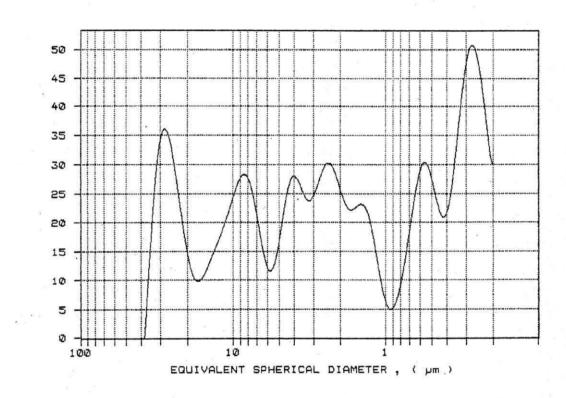



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

## DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03

SAMPLE DIRECTORY / NUMBER: DATA1

/37

SAMPLE ID: IHS-11 SUBMITTER: TESE UFPB

OPERATOR: EUGÊNIO SAMPLE TYPE: ARGILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C BASELINE / FULL SCALE:

93/

83 kilocounts/sec

STARTING DIAMETER:

50.00 μm

ENDING DIAMETER:

0.20 µm

PAGE 1

UNIT NUMBER: 1

START 09:23:23 04/12/99

REPRT 10:34:53 04/12/99

TOT RUN TIME 1:11:37

SAM DENS: 2.5100 g/cc

LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6750 cp

RUN TYPE: Standard

REYNOLDS NUMBER: 0.22 FULL SCALE MASSA %: 100

#### MASS DISTRIBUTION

MEDIAN DIAMETER:

1.94 µm

MODAL DIAMETER: 0.39 μm

CUMULATIVE		MASS IN
N	MASS	
DIAMETER	FINER	INTERVAL
(µm)	(%)	(%)
50.00	96.0	4.0
40.00	94.9	1.1
30.00	90.9	4.0
25.00	87.7	3.3
20.00	83.3	4.3
15.00	77.9	5.4
10.00	70.7	7.2
8.00	68.0	2.6
6.00	64.9	3.1
5.00	62.1	2.8
4.00	58.2	3.9
3.00	54.7	3.5
2.00	50.3	4.4
1.50	47.6	2.7
1.00	45.8	1.8
0.80	45.0	0.8
0.60	44.3	0.7
0.50	42.0	2.4
0.40	35.7	6.3
0.30	27.0	8.7
0.20	18.2	8.8

TAB. 3.2.2 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATA1 /37
SAMPLE ID: IHS-11
SUBMITTER: TESE UFPB
OPERATOR: EMILIO NETO
SAMPLE TYPE: ARGILA
LIGUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C BASELINE/FULL SCALE: 93/ 83 kilocounts/sec UNIT NUMBER: 1 START 09:23:23 04/12/99 REPRT 10:34:53 04/12/99 TOT RUN TIME 1:11:37 SAM DENS: 2.5100 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6750 cp RUN TYPE: Standard

### CUMULATIVE MASS PERCENT FINER VS. DIAMETER

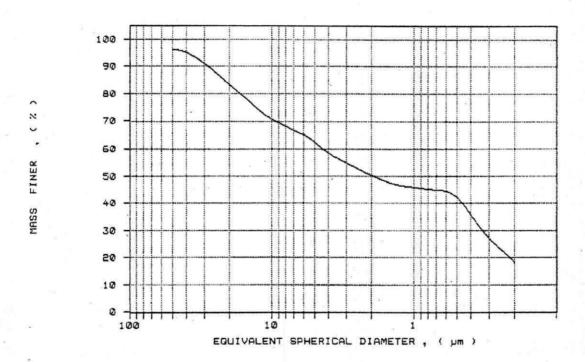



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

/37

SediGraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: IHS-11

SUBMITTER: TESE UFP8 OPERATOR: EMILIO NETO SAMPLE TYPE: ARGILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C BASELINE/FULL SCALE: 93/ 83 kilocounts/sec UNIT NUMBER: 1 START 09:23:23 04/12/99

REPRT 10:34:53 04/12/99 TOT RUN TIME SAM DENS: 2 1:11:37 2.5100 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6750 CP

RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

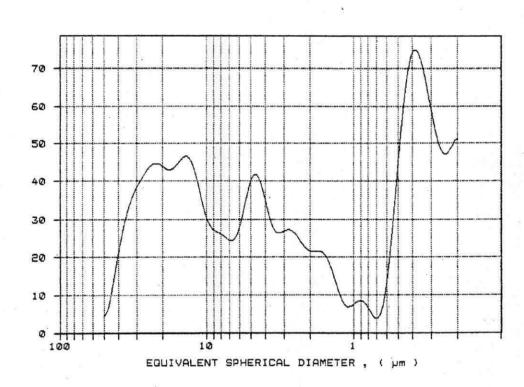



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

### DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03 SAMPLE DIRECTORY / NUMBER: DATA1

/29

PAGE 1 UNIT NUMBER: 1

SAMPLE ID: LAG-02 SUBMITTER: TESE UFPB OPERATOR: EUGÊNIO

SAMPLE TYPE: ARGILA LIQUID TYPE: Water

START 15:00:50 04/08/99 REPRT 16:08:45 04/08/99 TOT RUN TIME 1:05:14 SAM DENS: 2.6400 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6746 ср

ANALYSIS TEMP: 38.5 deg C BASELINE / FULL SCALE:

80 kilocounts/sec

RUN TYPE: Standard

STARTING DIAMETER: ENDING DIAMETER:

50.00 μm 0.20 µm REYNOLDS NUMBER: 0.24 FULL SCALE MASSA %: 100

MASS DISTRIBUTION

MEDIAN DIAMETER:

0.74 µm

MODAL DIAMETER: 0.36 μm

CUMULATIVE MASS		MASS IN
DIAMETER	FINER	INTERVAL
(mm)	(%)	(%)
50.00	101.0	- 1.0
40.00	96.7	4.4
30.00	93.5	3.2
25.00	92.7	0.8
20.00	91.7	1.0
15.00	89.6	2.1
10.00	87.4	2.2
8.00	86.0	1.4
6.00	84.7	1.4
5.00	82.8	1.8
4.00	78.8	4.0
3.00	73.2	5.6
2.00	65.8	7.5
1.50	61.8	4.0
1.00	54.1	7.7
0.80	50.9	3.2
0.60	46.6	4.4
0.50	41.3	5.3
0.40	31.6	9.7
0.30	16.8	14.8
0.20	4.5	12.2

TAB. 3.2.3 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: LAG-02 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO SAMPLE TYPE: ARGILA LIQUID TYPE: Water ANALYSIS TEMP: 38.5 deg C BASELINE/FULL SCALE: 93/ 80

kilocounts/sec

UNIT NUMBER: 1

START 15:00:50 04/08/99 REPRT 16:08:45 04/08/99 TOT RUN TIME 1:05:14 SAM DENS: 2.6400 g/cc 0.9929 LIQ DENS: g/cc LIG VISC: 0.6746 cp

RUN TYPE: Standard

### CUMULATIVE MASS PERCENT FINER VS. DIAMETER

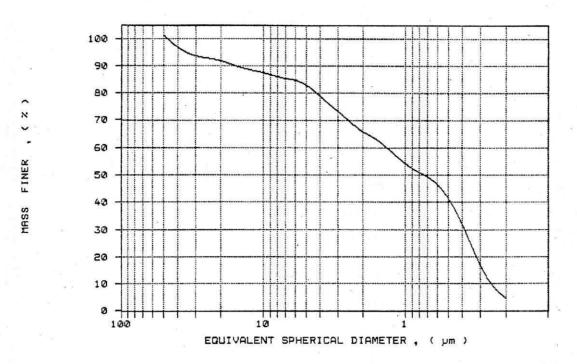



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

SediBraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1
SAMPLE ID: LAG-O2
SUBMITTER: TESE UFP8
OPERATOR: EMILIO NETO
SAMPLE TYPE: ARGILA
LIQUID TYPE: Water
ANALYSIS TEMP: 38.5 deg C

LIQUID TYPE: Water
ANALYSIS TEMP: 38.5 deg C
BASELINE/FULL SCALE: 93/ 80 kilocounts/sec

UNIT NUMBER: 1 START 15:00:50 04/08/99 REPRT 16:08:45 04/08/99 TOT RUN TIME 1:05:14 SAM DENS: 2.6400 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6746 cp RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

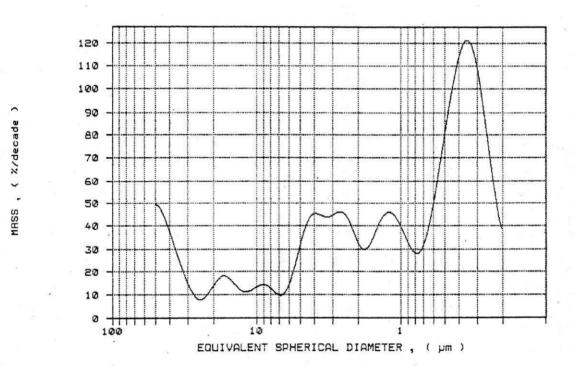



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

## DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03

SAMPLE DIRECTORY / NUMBER: DATA1

/34

SAMPLE ID: BQS-01 SUBMITTER: TESE UFPB OPERATOR: EUGÊNIO SAMPLE TYPE: ARGILA

LIQUID TYPE: Water ANALYSIS TEMP: 38.5 deg C

BASELINE / FULL SCALE:

93/ 82 kilocounts/sec

BASELINE / FULL SCALE:

STARTING DIAMETER: ENDING DIAMETER: 50.00 μm

0.20 μm

PAGE 1

UNIT NUMBER: 1 START 14:27:52 04/09/99 REPRT 15:36:08 04/09/99 TOT RUN TIME 1:05:34 SAM DENS: 2.6300 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6749 cp RUN TYPE: Standard

REYNOLDS NUMBER: 0.24 FULL SCALE MASSA %: 100

MASS DISTRIBUTION

MEDIAN DIAMETER:

0.36 µm

MODAL DIAMETER: 0.28 μm

CUMULATIVE MASS		MASS IN
DIAMETER	FINER	INTERVAL
(µm)	(%)	(%)
50.00	97.1	2.9
40.00	92.0	5.1
30.00	88.3	3.7
25.00	84.4	3.9
20.00	79.8	4.5
15.00	76.6	3.2
10.00	73.8	2.8
8.00	71.8	2.0
6.00	70.3	1.5
5.00	68.8	1.5
4.00	66.2	2.6
3.00	64.1	2.2
2.00	59.6	4.5
1.50	57.8	1.8
1.00	56.6	1.2
0.80	55.7	0.9
0.60	53.6	2.0
0.50	52.3	1.3
0.40	51.1	1.3
0.30	45.8	5.2
0.20	36.8	90.

TAB. 3.2.4 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: 80S-01 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO SAMPLE TYPE: ARGILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C BASELINE/FULL SCALE: 93.

93/ 82 kilocounts/sec

UNIT NUMBER: 1 START 14:27:52 04/09/99 REPRT 15:36:08 04/09/99 TOT RUN TIME 1:05:34 SAM DENS: 2.6300 g/cc LIQ DENS: 0.9929 9/cc

LIQ VISC: 0.6749 CP RUN TYPE: Standard

CUMULATIVE MASS PERCENT FINER VS. DIAMETER

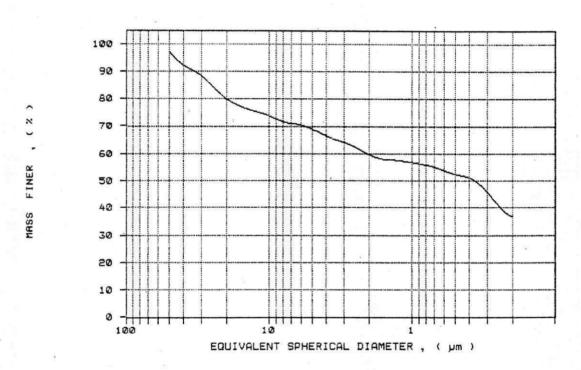



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

SediGraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1 /34
SAMPLE ID: BQS-01
SUBMITTER: TESE UFPB
OPERATOR: EMILIO NETO
SAMPLE TYPE: ARGILA
LIQUID TYPE: Water
ANALYSIS TEMP: 38.5 deg C
BASELINE/FULL SCALE: 93/ 82 kilocounts/sec

UNIT NUMBER: 1 START 14:27:52 04/09/99 REPRT 15:36:08 04/09/99 TOT RUN TIME 1:05:34 SAM DENS: 2.6300 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6749 cp RUN TYPE: Standard

MASS POPULATION VS. DIAMETER

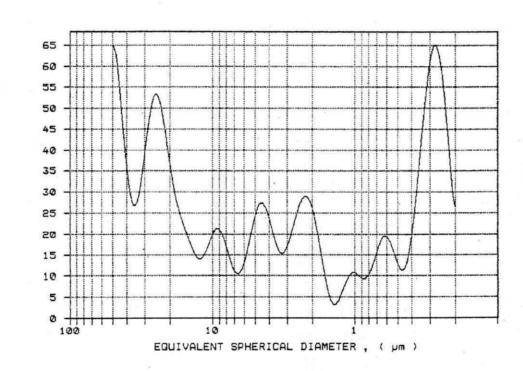



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

## DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03

SAMPLE DIRECTORY / NUMBER: DATA1

/28

SAMPLE ID: CB-02

SUBMITTER: TESE UFPB OPERATOR: EUGÊNIO

SAMPLE TYPE: ARGILA

LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

BASELINE / FULL SCALE:

0.30

0.20

93/ 82 kilocounts/sec

STARTING DIAMETER:

50.00 μm

ENDING DIAMETER:

0.20 µm

PAGE 1

UNIT NUMBER: 1

START 10:31:49 04/08/99

REPRT 11:38:41 04/08/99

TOT RUN TIME 1:04:09

SAM DENS: 2.6700 g/cc

LIQ DENS: 0.9929 g/cc

LIQ VISC: 0.6750 ср

RUN TYPE: Standard

REYNOLDS NUMBER: 0.25

FULL SCALE MASSA %: 100

#### MASS DISTRIBUTION

MEDIAN DIAMETER:

0.94 µm

MODAL DIAMETER: 0.42 µm

CUMULATIVE		MASS
DIAMETER	MASS FINER	IN INTERVAL
(µm)	(%)	(%)
50.00	101.0	- 1.0
40.00	98.3	2.8
30.00	94.6	3.7
25.00	91.3	3.3
20.00	87.9	3.4
15.00	88.4	- 0.5
10.00	85.7	2.8
8.00	83.3	2.3
6.00	79.5	3.8
5.00	75.3	4.2
4.00	71.1	4.2
3.00	65.2	5.8
2.00	57.4	7.9
1.50	54.1	3.2
1.00	50.5	3.7
0.80	48.0	2.4
0.60	36.6	11.4
0.50	21.2	15.4
0.40	- 2.4	23.7

TAB. 3.2.5 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

-30.8

-46.4

28.3

15.6

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATAL SAMPLE ID: C8-02 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO SAMPLE TYPE: AROILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

93/ 82 kilocounts/sec BASELINE/FULL SCALE:

UNIT NUMBER: 1

START 10:31:49 04/08/99 REPRT 11:38:41 04/08/99 1:04:09 TOT RUN TIME SAM DENS: 2.6700 g/cc 0.9929 LIQ DENS: 9/66 LIG VISC: 0.6750 CP

RUN TYPE: Standard

### CUMULATIVE MASS PERCENT FINER VS. DIAMETER

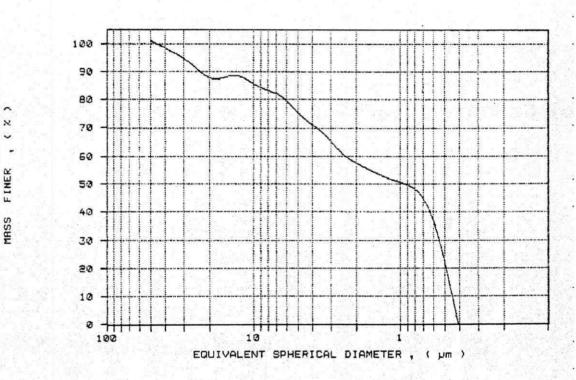



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

SediGraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1 158

SAMPLE ID: CB-02 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO SAMPLE TYPE: ARGILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C PASELINE/FULL SCALE: 93/

DASELINE/FULL SCALE:

82

UNIT NUMBER: 1

START 10:31:49 04/08/99 REPRT 11:38:41 04/08/99 TOT RUN TIME 1:04:09 2.6700 g/cc SAM DENS: LIG DENS: 0.9929 9/00 0.6750 LIQ VISC: RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

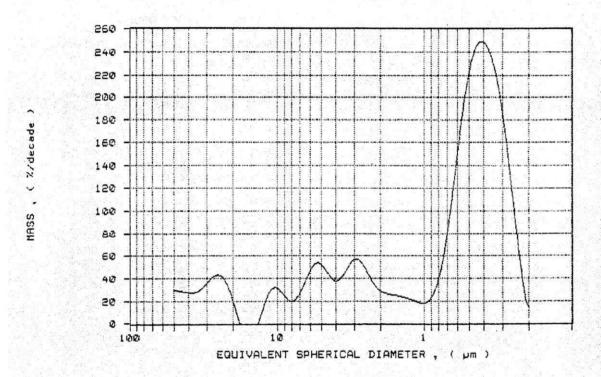



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

#### DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03 SAMPLE DIRECTORY / NUMBER: DATA1

/33

SAMPLE ID: BT-16 SUBMITTER: TESE UFPB

OPERATOR: EUGÊNIO SAMPLE TYPE: ARGILA

LIQUID TYPE: Water ANALYSIS TEMP: 38.5 deg C

BASELINE / FULL SCALE: 93/

84 kilocounts/sec

STARTING DIAMETER: ENDING DIAMETER:

50.00 μm

0.20 µm

PAGE 1

UNIT NUMBER: 1

START 11:48:24 04/09/99

REPRT 13:11:33 04/09/99

TOT RUN TIME 1:20:30

SAM DENS: 2.3400 g/cc

LIQ DENS: 0.9929 g/cc

LIQ VISC: 0.6752 ср

RUN TYPE: Standard

REYNOLDS NUMBER: 0.20 FULL SCALE MASSA %: 100

#### MASS DISTRIBUTION

MEDIAN DIAMETER:

1.17 µm

MODAL DIAMETER: 0.33 μm

CUMULATIVE MASS		MASS IN
DIAMETER	FINER	INTERVAL
(µm)	(%)	(%)
50.00	94.4	5.6
40.00	93.0	1.4
30.00	91.8	1.2
25.00	91.1	0.7
20.00	87.7	3.4
15.00	85.4	2.3
10.00	83.3	2.1
8.00	80.4	3.0
6.00	77.5	2.9
5.00	76.1	1.3
4.00	72.8	3.3
3.00	65.7	7.1
2.00	58.7	7.0
1.50	53.6	5.0
1.00	48.3	5.4
0.80	45.5	2.8
0.60	39.9	5.5
0.50	34.4	5.5
0.40	23.7	10.7
0.30	4.3	19.4
0.20	- 13.4	17.6

TAB. 3.2.6 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: BT-16 SUBMITTER: TESE UFFB OPERATOR: EMILIO NETO

SAMPLE TYPE: ARGILA LIQUID TYPE: Water ANALYSIS TEMP: 38.5 deg C

BASELINE/FULL SCALE: 93/ 84 kilocounts/sec UNIT NUMBER: 1 START 11:48:24 04/09/99 REPRT 13:11:33 04/09/99 TOT RUN TIME 1:20:30 SAM DENS: 2.3400 g/cc 0.9929 g/cc LIQ DENS-LIG VISC: 0.6752 CP RUN TYPE: Standard

#### CUMULATIVE MASS PERCENT FINER VS. DIAMETER

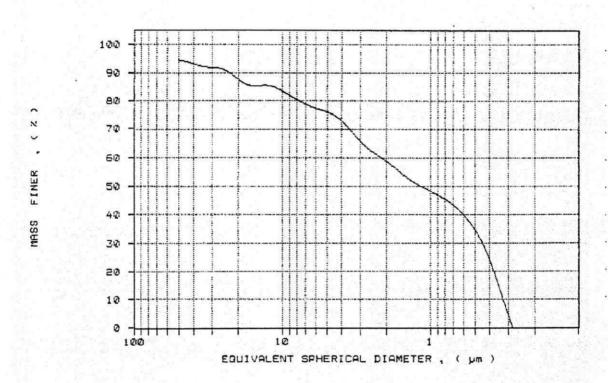



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

SediGraph S100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1 /3
SAMPLE ID: BT-16
SUBMITTER: TESE UFPB
OPERATOR: EMILIO NETO
SAMPLE TYPE: ARGILA
LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

BASELINE/FULL SCALE: 93/ 84 kilocounts/sec

UNIT NUMBER: 1 START 11:48:24 04/09/99 REPRT 13:11:33 04/09/99 TOT RUN TIME 1.20.30 SAM DENS: 2.3400 g/cc LIG DENS: 0.9929 g/cc LIG VISC: 0.6732 cp RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

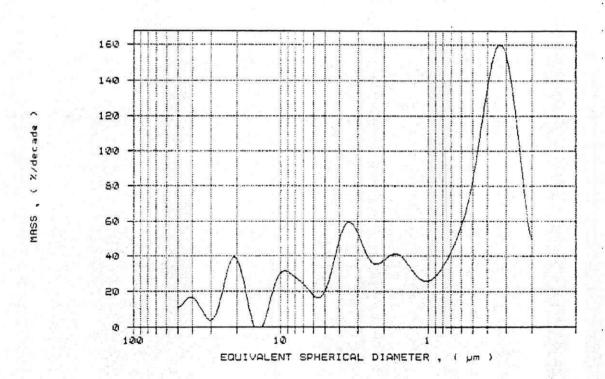



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

## DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03

/32

SAMPLE DIRECTORY / NUMBER: DATA1 SAMPLE ID: SLI-01 SUBMITTER: TESE UFPB OPERATOR: EUGÊNIO SAMPLE TYPE: ARGILA

LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

BASELINE / FULL SCALE: 93/

81 kilocounts/sec

STARTING DIAMETER: ENDING DIAMETER:

50.00 μm 0.20 µm PAGE 1

UNIT NUMBER: 1 START 10:09:32 04/09/99 REPRT 11:31:43 04/09/99 TOT RUN TIME 1:19:32 SAM DENS: 2.3500 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6747 RUN TYPE: Standard

REYNOLDS NUMBER: 0.20 FULL SCALE MASSA %: 100

#### MASS DISTRIBUTION

MEDIAN DIAMETER:

0.58 µm

MODAL DIAMETER: 0.29 μm

	CUMULATIVE MASS		MASS
			IN
	DIAMETER	FINER	INTERVAL
	(µm)	(%)	(%)
	50.00	97.1	2.9
	40.00	91.7	5.4
	30.00	87.2	4.5
	25.00	84.7	2.4
	20.00	82.4	2.4
	15.00	79.8	2.6
	10.00	75.3	4.5
	8.00	72.5	2.8
	6.00	70.8	1.7
	5.00	70.6	0.2
	4.00	69.7	0.9
	3.00	67.2	2.5
	2.00	62.5	4.7
	1.50	60.4	2.1
	1.00	56.0	4.4
	0.80	53.6	2.4
	0.60	50.4	3.2
	0.50	47.8	2.6
	0.40	43.2	4.7
	0.30	29.1	14.1
	0.20	8.6	20.5

TAB. 3.2.7 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

SediGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER DATA1 /32 SAMPLE ID: SLI-O1 SUBMITTER: TESE UFPB OPERATOR. EMILIO NETO SAMPLE TYPE: ARBILA LIGUID TYPE: Water

ANALYSIS TEMP: 38.5 des C

BASELINE/FULL SCALE: 93/ 81 1

LE: 93/ 81 kilocounts/sec

UNIT NUMBER: 1
START 10:09:32 04/09/99
REPRT 11:31:43 04/09/99
TOT RUN TIME 1:19:32
SAM DENS: 2.3500 g/cc
LIQ DENS: 0.9929 g/cc
LIQ VISC: 0.6747 cp
RUN TYPE: Standard

#### CUMULATIVE MASS PERCENT FINER VS. DIAMETER

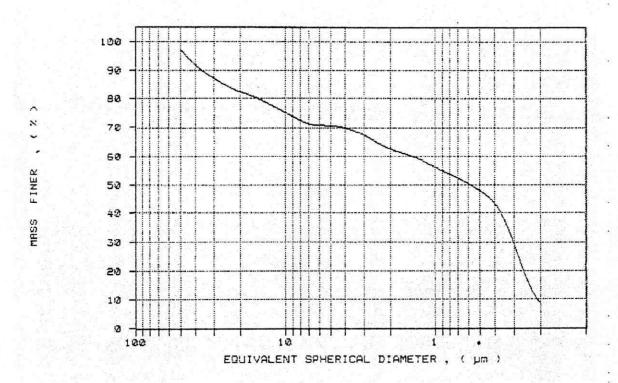



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

# DISTRIBUICAO GRANULOMETRICA

/38

SediGraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATA1 SAMPLE ID: SLI-O1 SUBMITTER: TESE UFPB OPERATOR: EMILIO NETO SAMPLE TYPE: ARGILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

BASELINE/FULL SCALE: 93/ 81 kilocounts/sec

UNIT NUMBER: 1 START 10:09:32 04/09/99 REPRT 11:31:43 04/09/99 TOT RUN TIME 1:19:32 SAM DENS: 2.3500 g/cc LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6747 cp RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

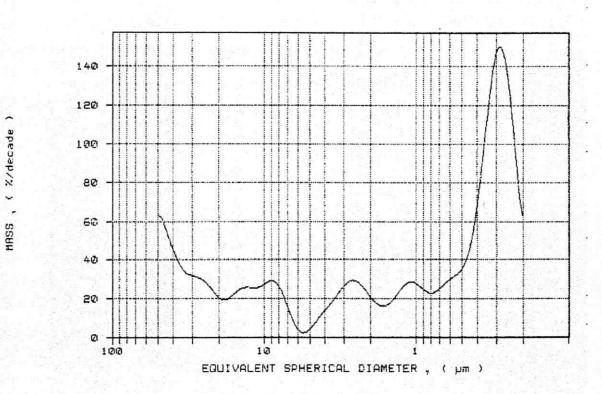



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

### DISTRIBUIÇÃO GRANULOMETRICA

Sedigraph 5100 V3.03

SAMPLE DIRECTORY / NUMBER: DATA1

/384

PAGE 1

SAMPLE ID: EST-02 SUBMITTER: TESE UFPB

OPERATOR: EUGÊNIO SAMPLE TYPE: ARGILA LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

BASELINE / FULL SCALE: 104/

UNIT NUMBER: 1 START 09:46:58 11/23/98 REPRT 11:10:27 11/23/98 TOT RUN TIME 1:23:38 SAM DENS: 2.5860 g/cc LIQ DENS: 0.9929 g/cc ср

LIQ VISC: 0.6747 RUN TYPE: Standard

STARTING DIAMETER:

kilocounts/sec

REYNOLDS NUMBER: 0.24 FULL SCALE MASSA %: 100

ENDING DIAMETER:

50.00 μm 0.18 µm

MASS DISTRIBUTION

MEDIAN DIAMETER:

0.43 µm

MODAL DIAMETER: 0.18 μm

CUMULATIVE MASS		MASS IN
DIAMETER	FINER	INTERVAL
(mm)	(%)	(%)
50.00	95.1	4.9
40.00	92.7	2.3
30.00	91.7	1.0
25.00	89.9	1.8
20.00	87.1	2.8
15.00	85.7	1.4
10.00	83.4	2.3
8.00	81.6	1.8
6.00	78.7	2.8
5.00	77.3	1.4
4.00	75.9	1.4
3.00	73.6	2.2
2.00	71.4	2.3
1.50	68.7	2.7
1.00	64.1	4.6
0.80	61.3	2.8
0.60	56.6	4.7
0.50	53.2	3.5
0.40	48.6	4.6
0.30	42.5	6.1
0.20	32.9	9.5

TAB. 3.2.8 - DISTRIBUIÇÃO GRANULOMÉTRICA EM SEDRÍGRAFO

#### DISTRIBUICAO GRANULOMETRICA

SadiGraph 5100 V3.03

PAGE 2

SAMPLE DIRECTORY/NUMBER: DATA1 /384

SAMPLE ID: EST-02

SUBMITTER: TRABALHO DE TESE-UFPB

OPERATOR: FABIO OLIVEIRA SAMPLE TYPE: ARGILA EST-02

LIQUID TYPE: Water

ANALYSIS TEMP: 38.5 deg C

BASELINE/FULL SCALE: 104/ 88 kilocounts/sec

UNIT NUMBER: 1

START 09:46:58 11/23/98
REPRT 11:10:27 11/23/98
TOT RUN TIME 1:23:38
SAM DENS: 2.5860 g/cc

LIQ DENS: 0.9929 g/cc LIQ VISC: 0.6747 cp RUN TYPE: Standard

## CUMULATIVE MASS PERCENT FINER VS. DIAMETER

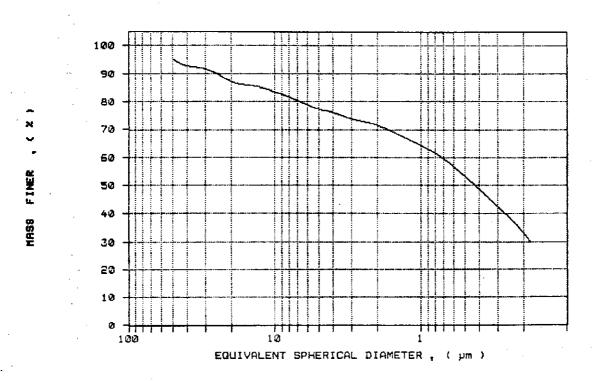



Fig. 3.13 - Distribuição Granulometrica Cumulative Mass Percent Finer vs. Diameter

#### DISTRIBUICAO GRANULOMETRICA

SediGraph 5100 V3.03

PAGE 3

SAMPLE DIRECTORY/NUMBER: DATAL

SAMPLE ID: EST-02 SUBMITTER: TRABALHO DE TESE-UFPB

OPERATOR: FABIO OLIVEIRA SAMPLE TYPE: ARGILA EST-D2 LIQUID TYPE: Water

, ( %/decade

ANALYSIS TEMP: 38.5 deg C

BASELINE/FULL SCALE: 104/ 88 kilocounts/sec UNIT NUMBER: 1 START 09:46:58 11/23/98 REPRT 11:10:27 11/23/98

TOT RUN TIME 1:23:38 SAM DENS: 2.5860 g/cc 0.9929 LIG DENS: g/cc LIQ VISC: 0.6747

RUN TYPE: Standard

#### MASS POPULATION VS. DIAMETER

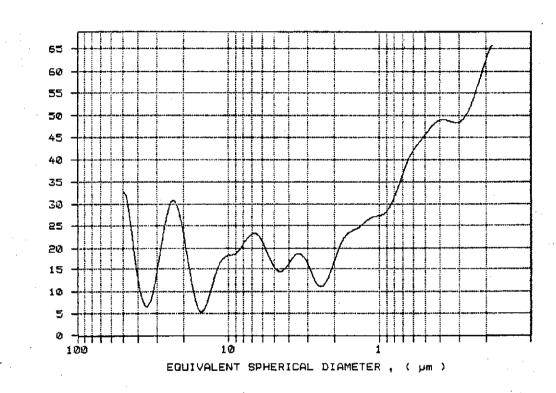



Fig. 3.14 - Distribuição Granulometrica Mass Population vs. Diameter

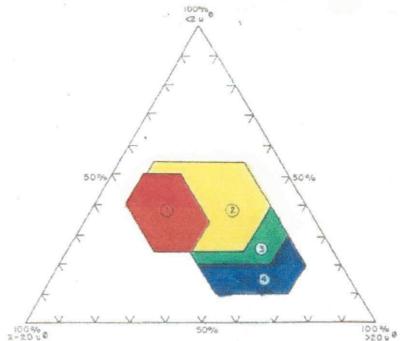
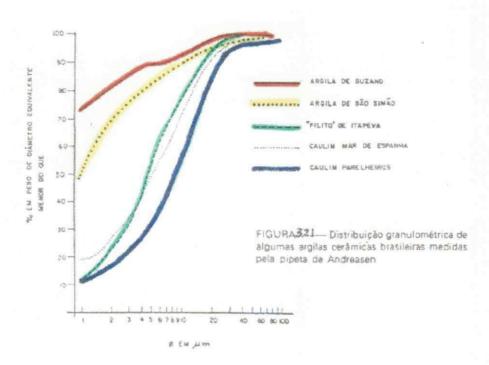
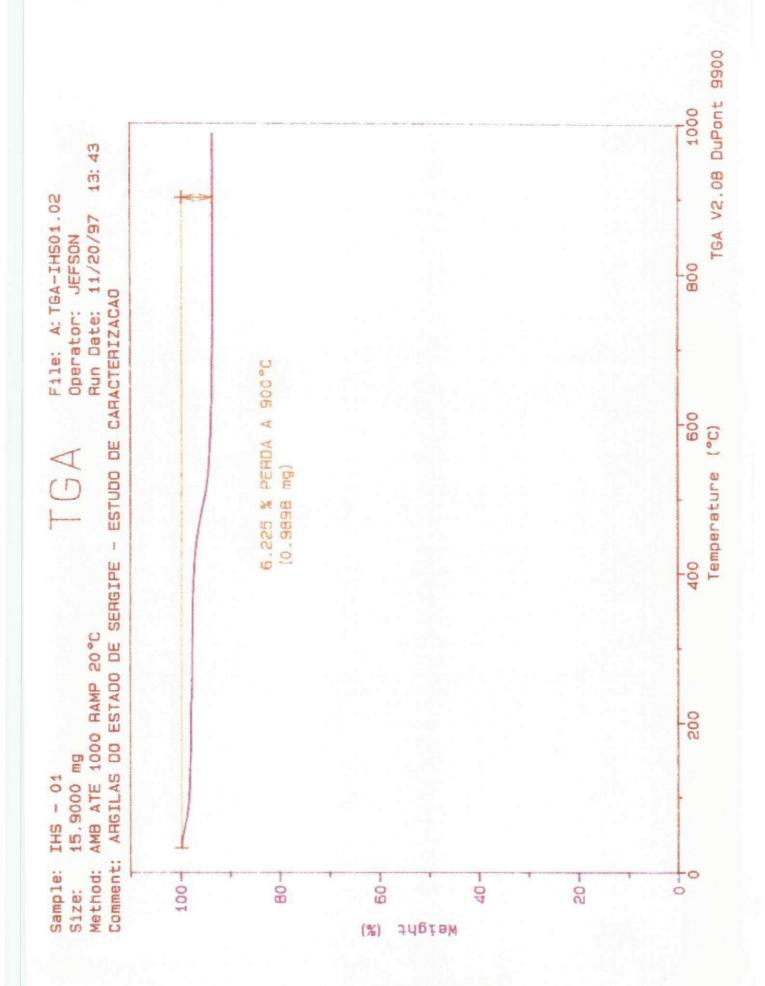





FIGURA 3.20... Arma de distribuição gradulatriética fatina para alguna perclatis de cerámica volunças (Heystek, 1984).






Sample: IHS - 02

Size: 21.9440 mg Method: AMB A 1000C RAMP 20°C/MIN File: A: TGA-IHS02.01

Operator: FRANCISCO NASCIMENTO

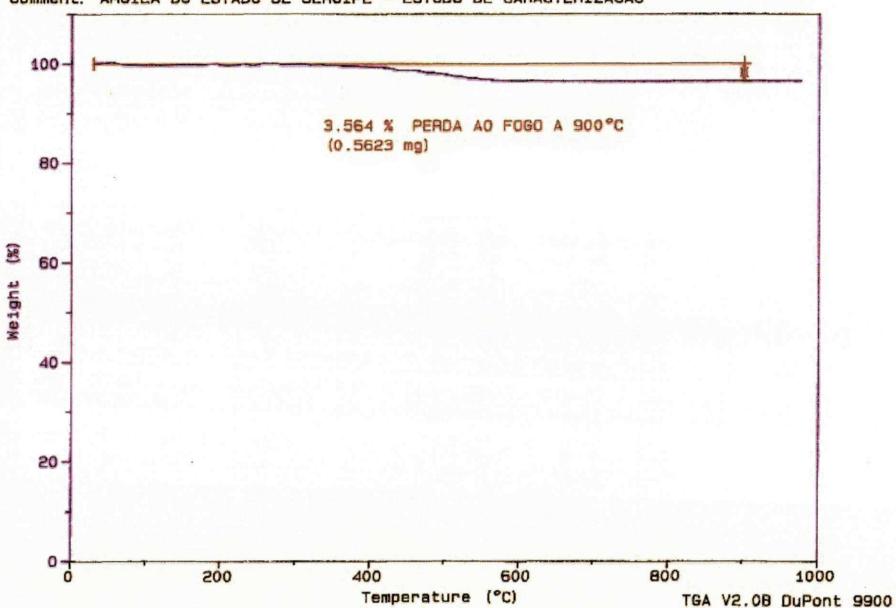
Run Date: 11/13/97 14:47

Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZACAO



10

Sample: IHS - 03 Size: 15.7754 mg

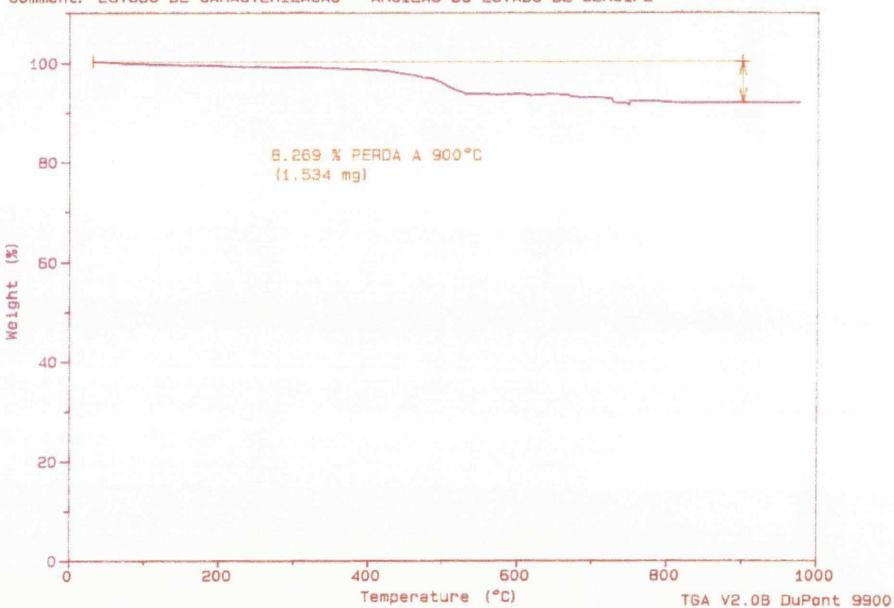

Method: AMB A 1000C RAMP 20°C/MIN

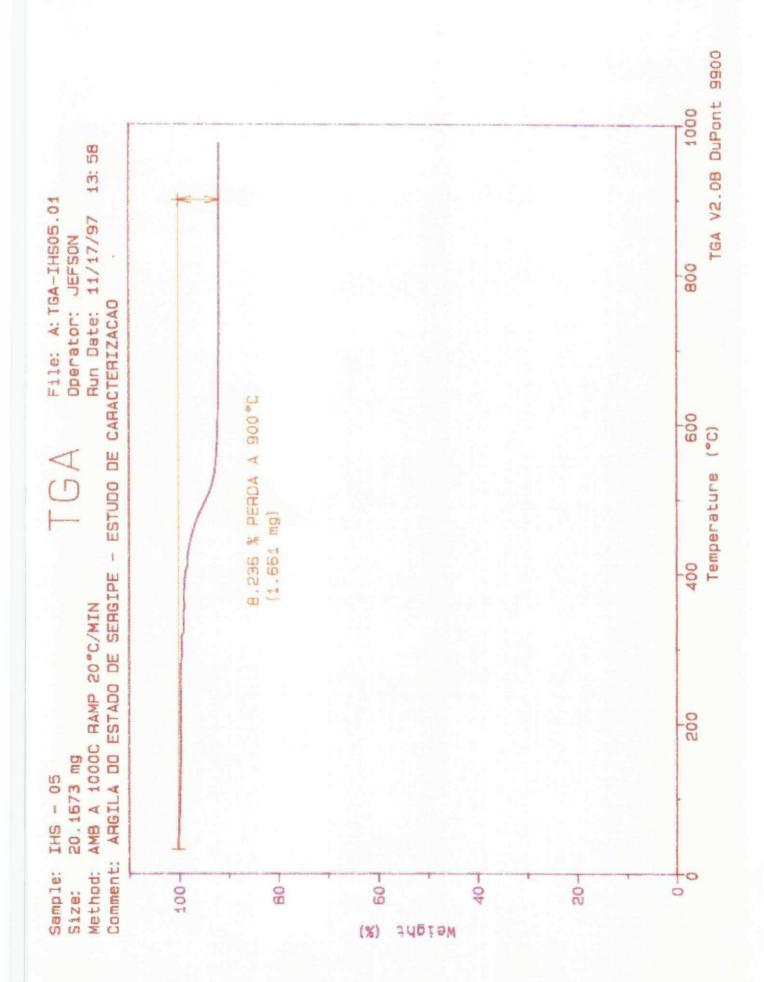
TGA

File: A: TGA-IHS03.01

Operator: FRANCISCO NASCIMENTO

Aun Date: 10/31/97 20:59





Sample: IHS-04 File: A: TGA-IHS-04.01

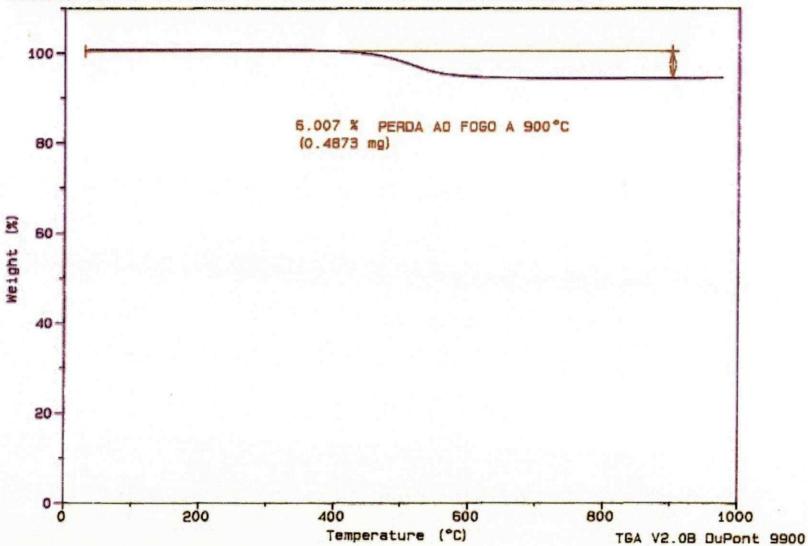
Size: 18.5540 mg | Operator: JEFSON

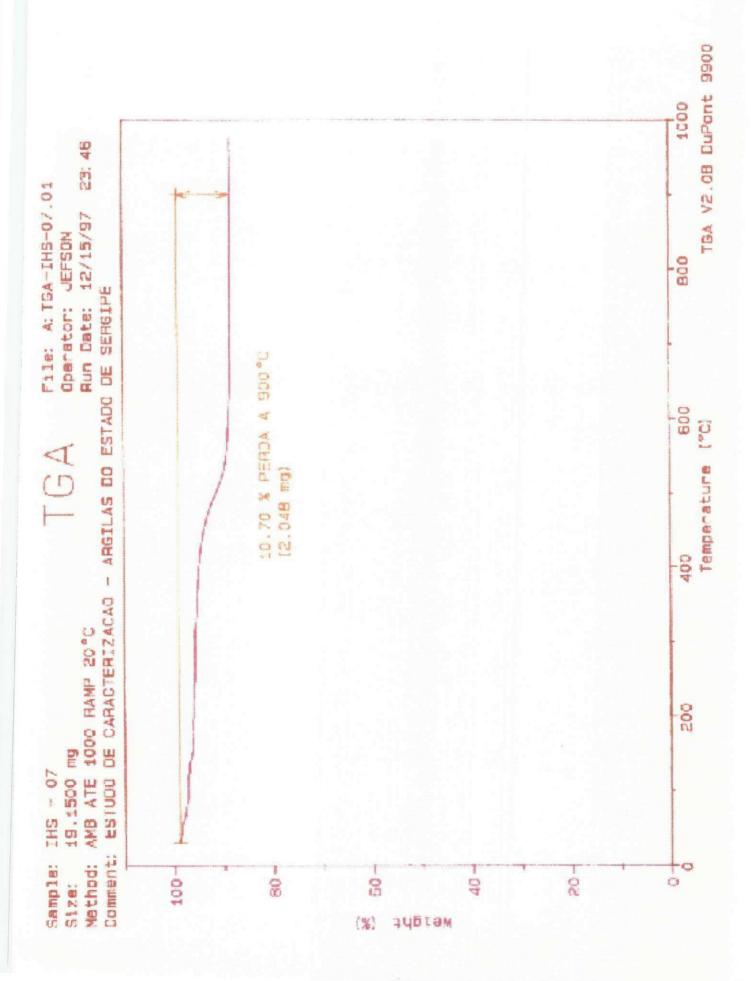
Method: AMB ATE 1000 RAMP 20°C Run Date: 12/15/97 18:09








Sample: IHS - 06


Size: 8.1129 mg

TGA File: A: TGA-IHSO6.01
Operator: FRANCISCO NASCIMENTO

Method: AMB A 1000C RAMP 20°C/MIN

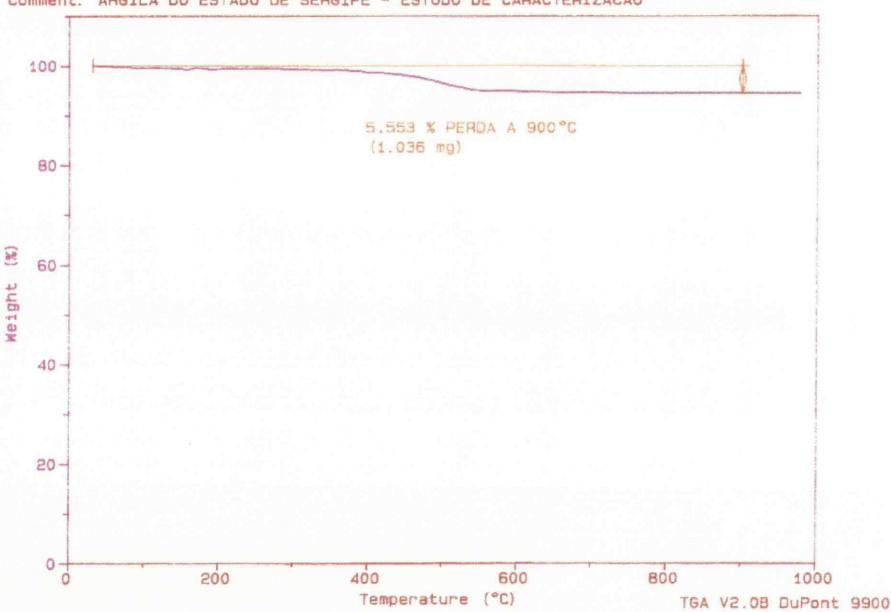
Aun Date: 10/31/97 15:38

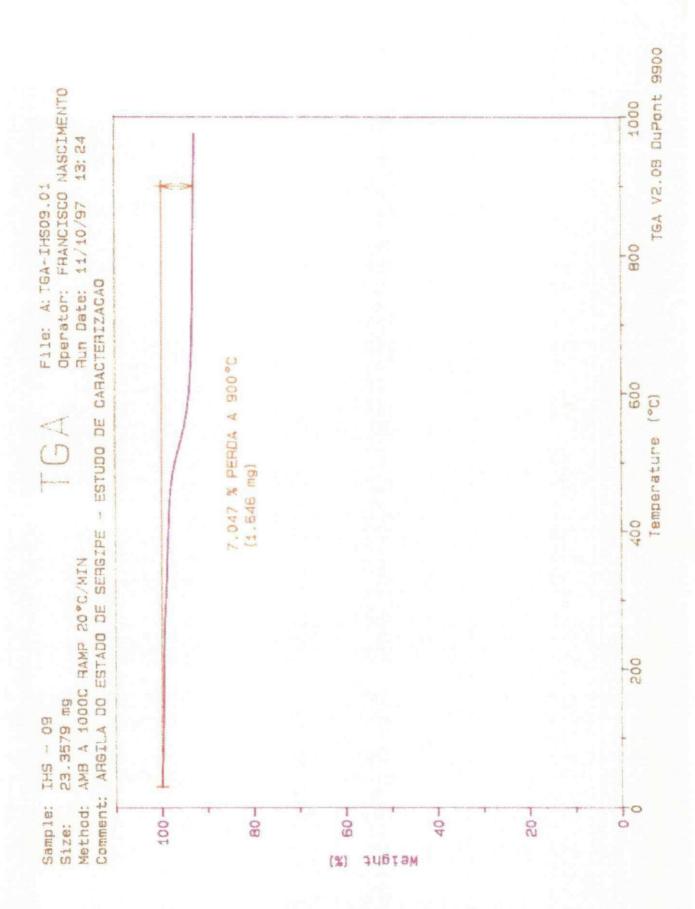




Sample: IHS - 08

Size:


18.6638 mg


Method: AMB A 1000C RAMP 20°C/MIN

File: A: TGA-IHS08.01

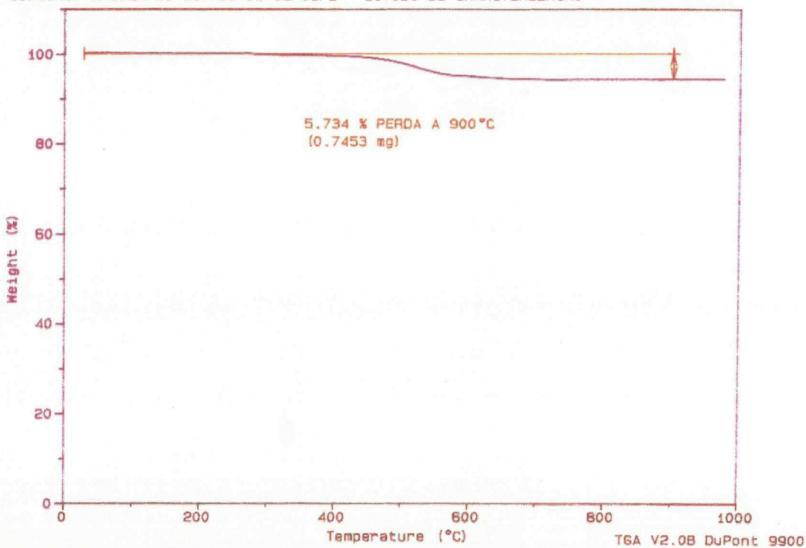
Operator: FRANCISCO NASCIMENTO

Aun Date: 11/18/97 13: 22





Sample: IHS - 10 Size: 12.9976 mg


Method: AMB A 1000C RAMP 20°C/MIN

TGA

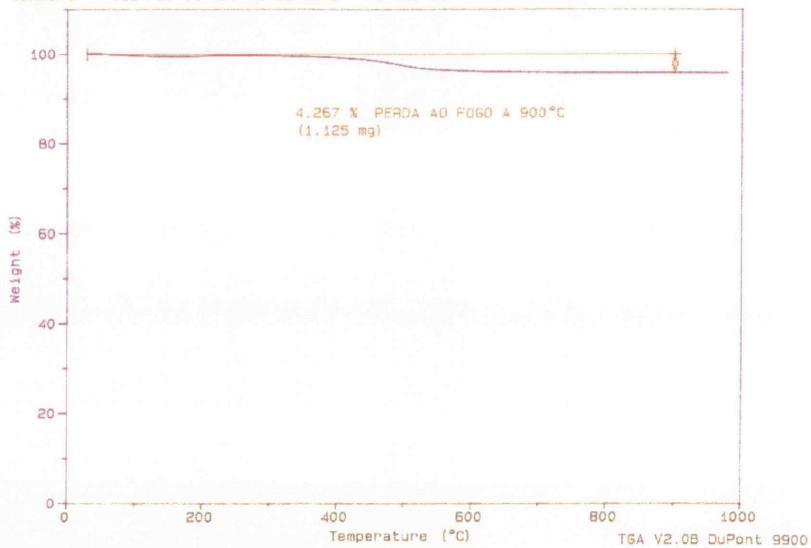
File: A: TGA-IHS10.01

Operator: FRANCISCO NASCIMENTO

Run Date: 11/14/97 11:54



Sample: IHS - 11 Size: 26.3600 mg


Method: AMB A 1000C RAMP 20°C/MIN

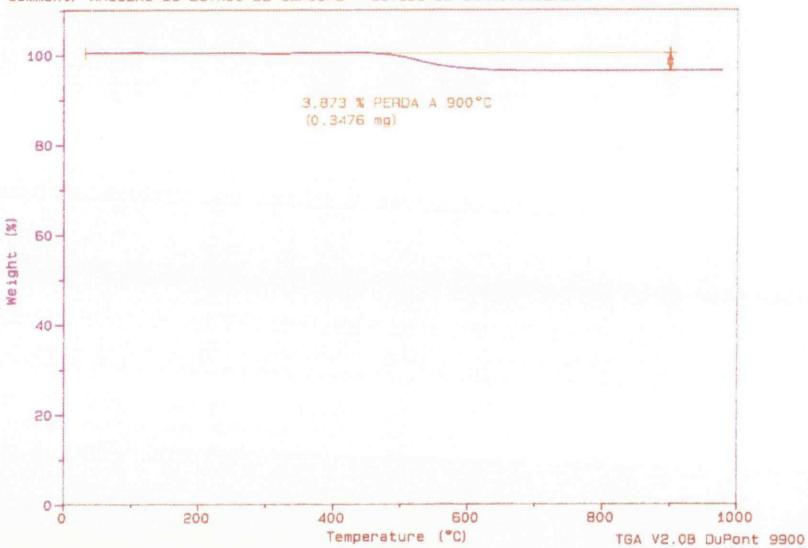
TGA

File: A: TGA-IHS11.01

Operator: FRANCISCO NASCIMENTO

Aun Date: 10/31/97 16:53




Sample: IHS - 12 Size: 8.9740 mg

Size: 8.9740 mg Method: AMB ATE 1000 RAMP 20°C TGA

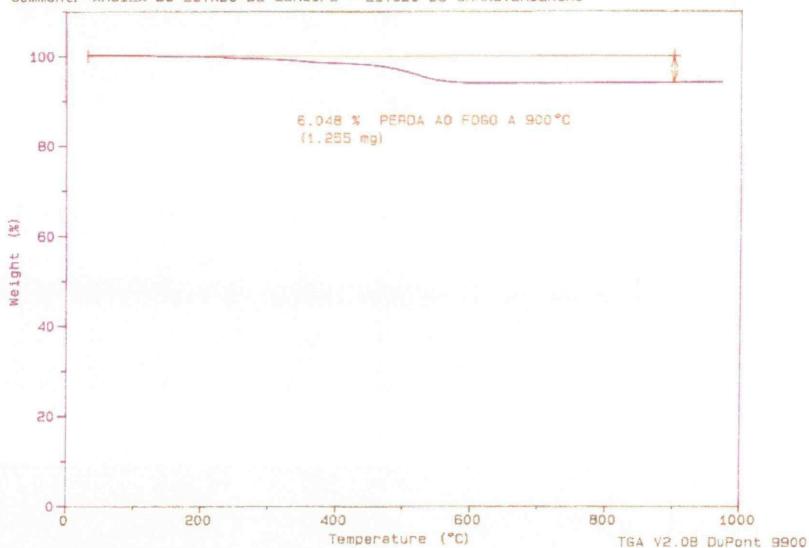
File: A: TGA-IHS12.01

Operator: FRANCISCO NASCIMENTO

Run Date: 11/19/97 13:39



Sample: IHS - 13


Size: 20.7582 mg

Method: AMB A 1000C RAMP 20°C/MIN

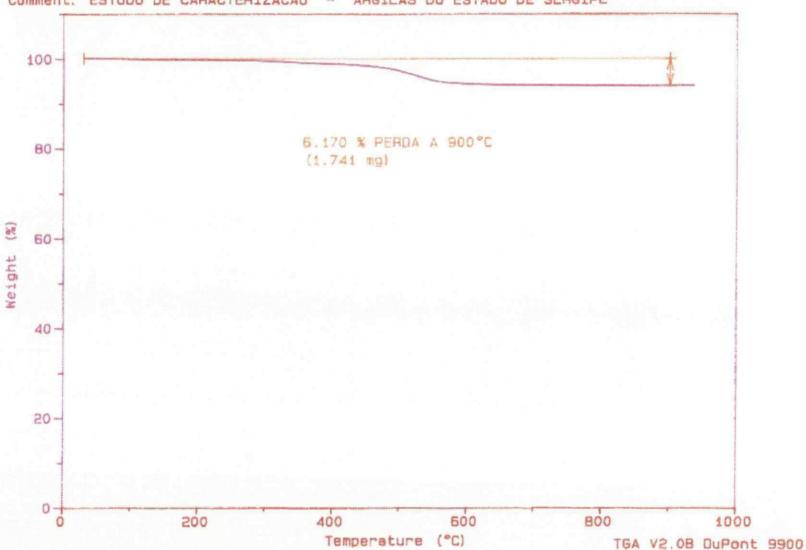
TGA File: A: TGA-IHS13.01

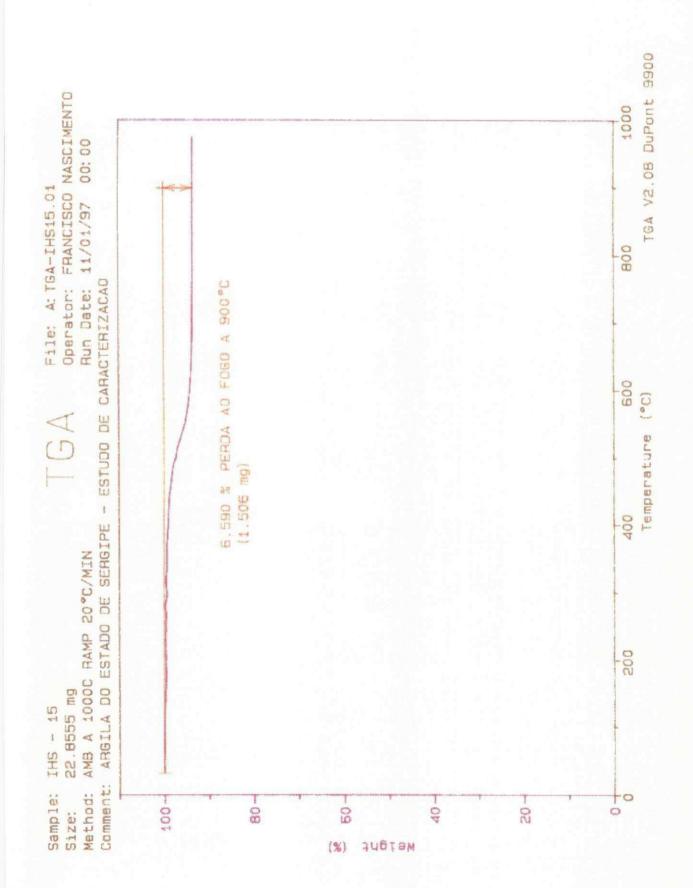
Operator: FRANCISCO NASCIMENTO

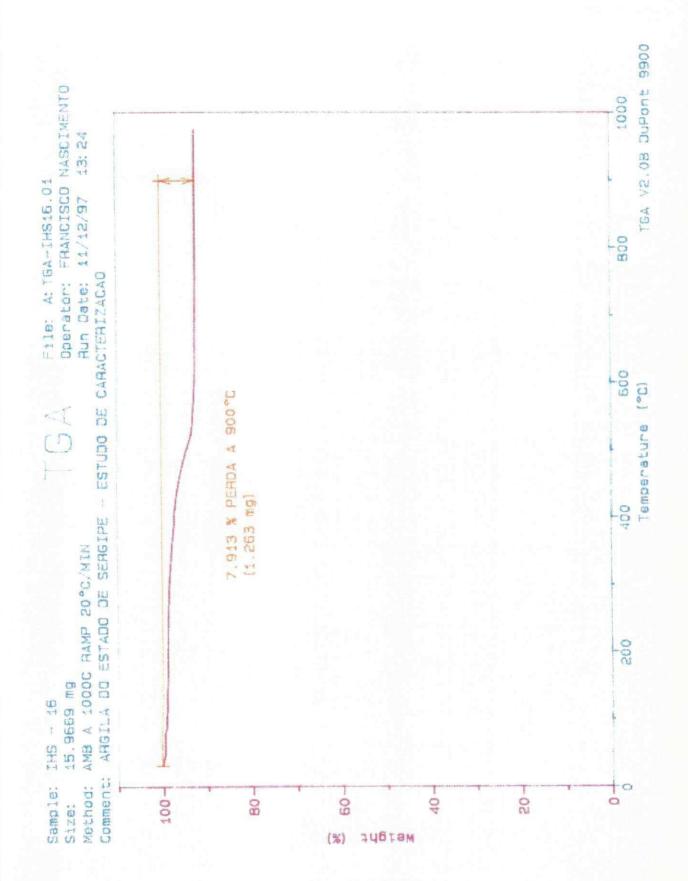
Aun Date: 10/31/97 19:39

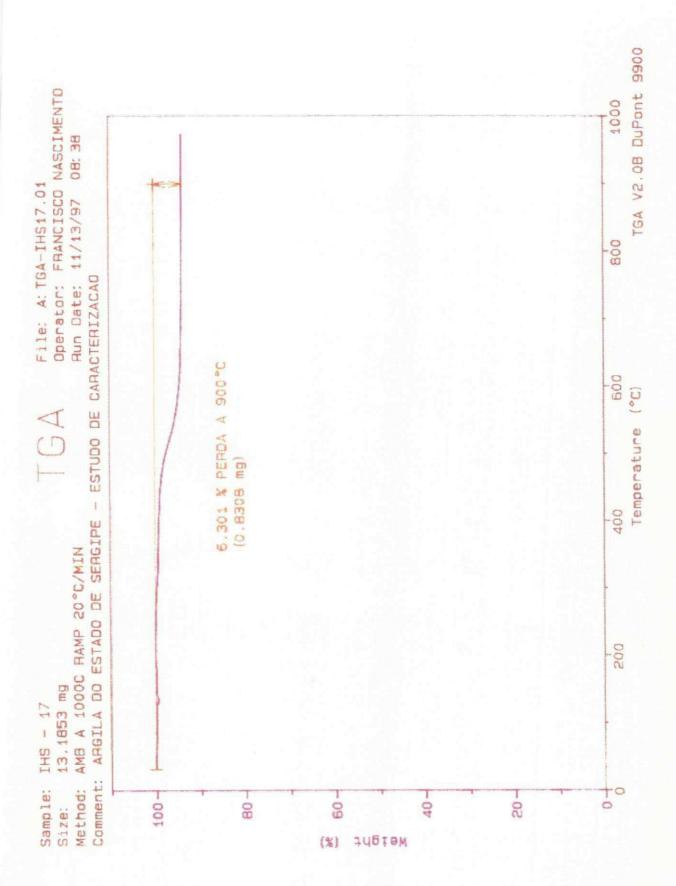


Sample: IHS-14


Size: 28.2250 mg


File: A: TGA-IHS-14.01


Operator: FRANCISCO NASCIMENTO

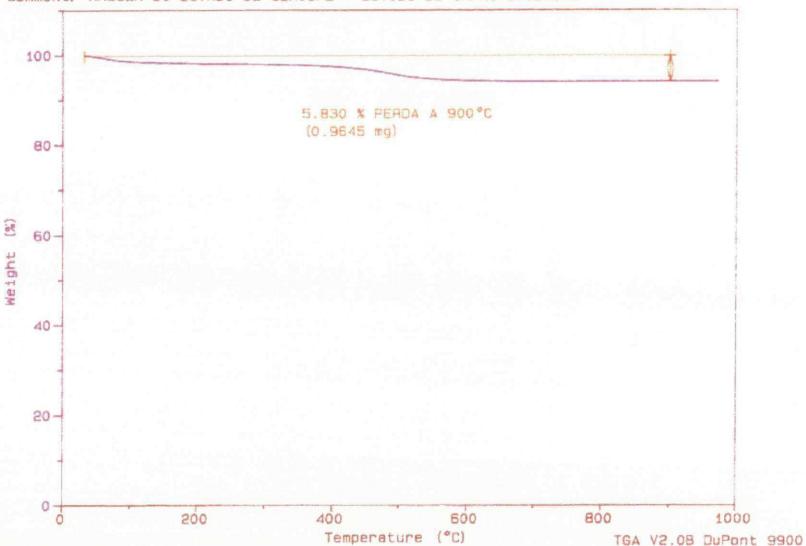

Method: AMB ATE 1000 RAMP 20°C Run Date: 02/04/98 09:55











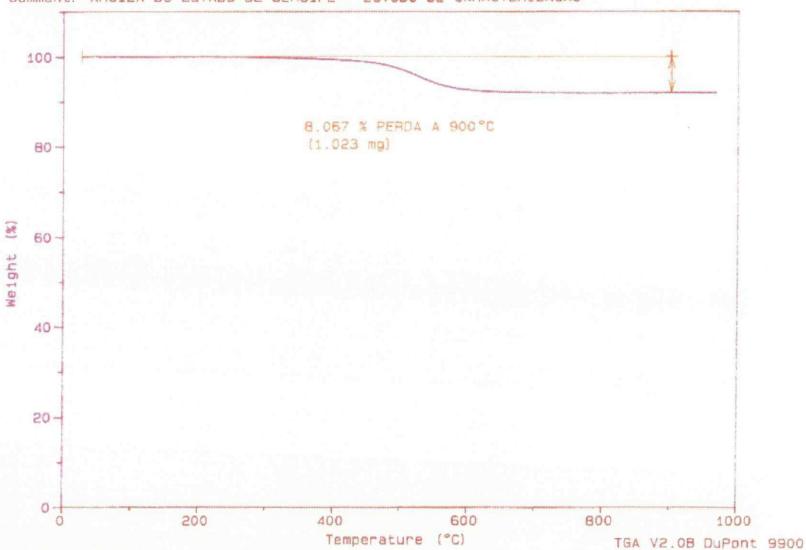

140

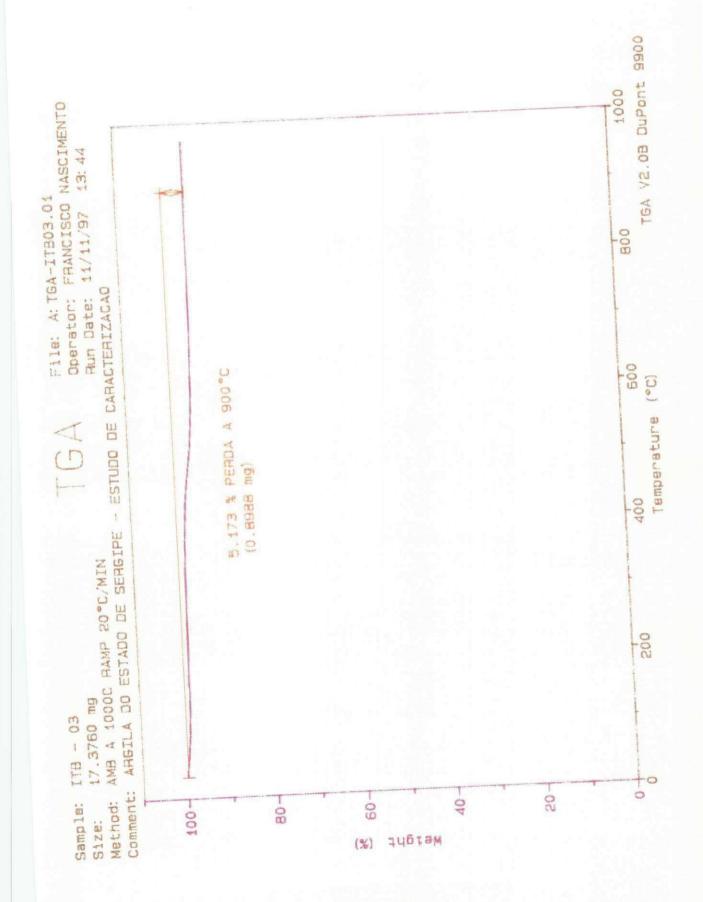
Sample: ITB - 01 Size: 16.5454 n T C A File: A: TGA-ITB01.01

Size: 16.5454 mg Method: AMB A 1000C RAMP 20°C/MIN Operator: FRANCISCO NASCIMENTO

Aun Date: 11/17/97 17:29




Size: 12.6752 mg


Method: AMB A 1000C RAMP 20°C/MIN

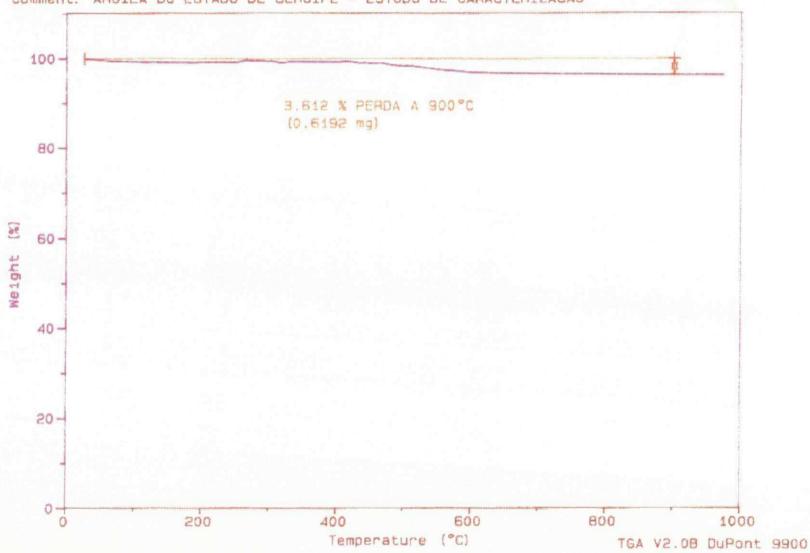
File: A: TGA-ITB02.01

Operator: FRANCISCO NASCIMENTO

Aun Date: 11/13/97 11:15






Size: 17.1450 mg

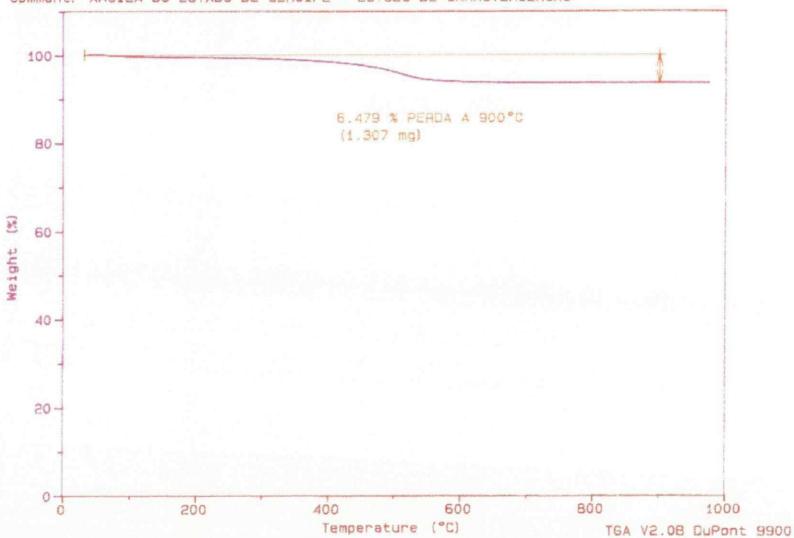
Method: AMB A 1000C RAMP 20°C/MIN

TC A File: A: TGA-ITB04.01

Operator: FRANCISCO NASCIMENTO

Run Date: 11/13/97 10:00



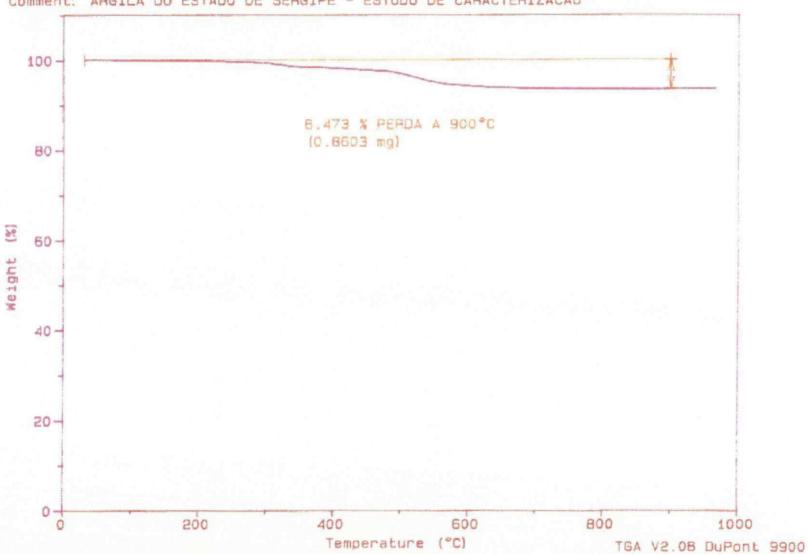

Size: 20.1721 mg

File: A: TGA-ITB05.01

Method: AMB A 1000C RAMP 20°C/MIN

Operator: FRANCISCO NASCIMENTO

Run Date: 11/14/97 09:02

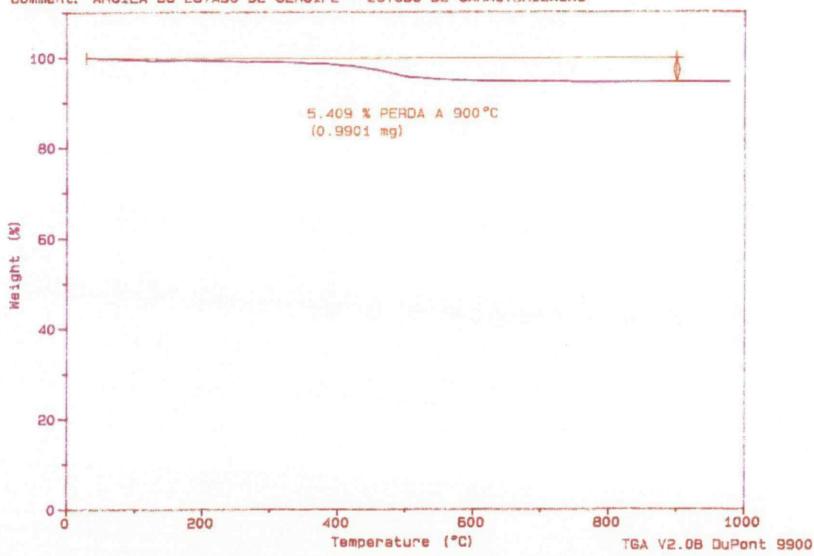


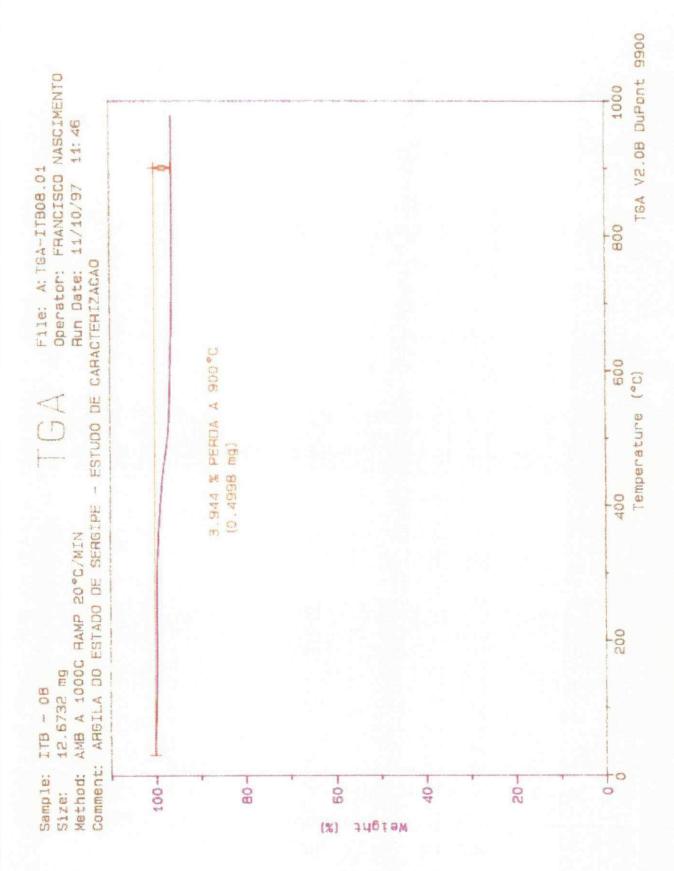

Size: 13.2902 mg Method: AMB A 1000C RAMP 20°C/MIN TGA

File: A: TGA-ITB06.01

Operator: FRANCISCO NASCIMENTO

Run Date: 11/13/97 13:35





TGA

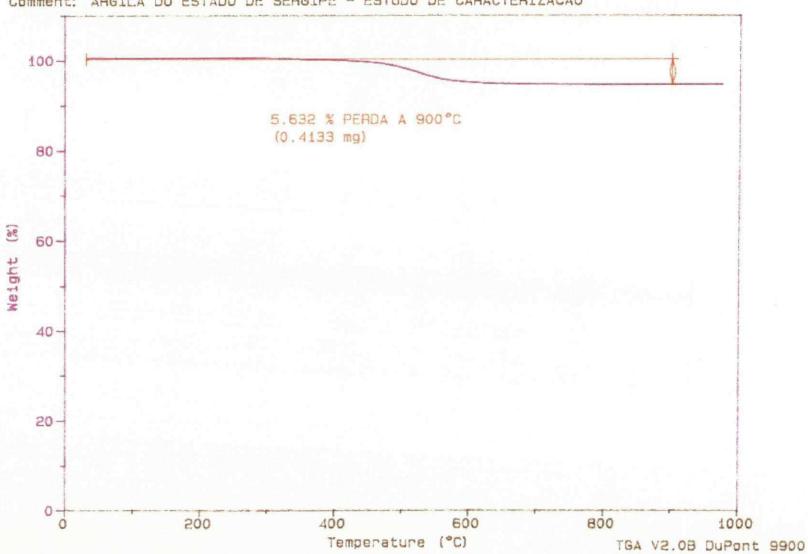
File: A: TGA-ITB07.01

Operator: FRANCISCO NASCIMENTO Size: 18.3039 mg Method: AMB A 1000C RAMP 20°C/MIN

Run Date: 11/12/97 14:52






Sample: ITB - 10 Size:

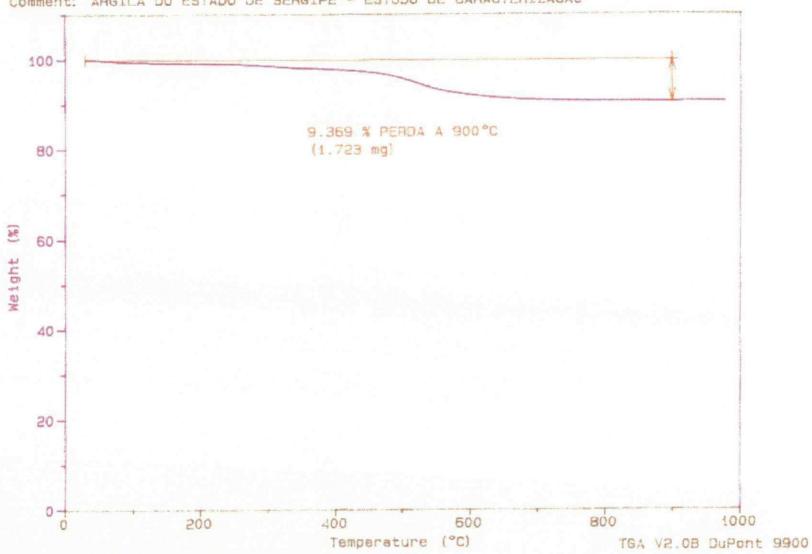
Method: AMB A 1000C HAMP 20°C/MIN

TGA 7.3381 mg

File: A: TGA-ITB10.01 Operator: FRANCISCO NASCIMENTO

Aun Date: 11/11/97 19:52




Sample: ITB - 11 Size: 18.3943 mg TGA

File: A: TGA-ITB11.01

Operator: FRANCISCO NASCIMENTO

Aun Date: 11/11/97 15:28

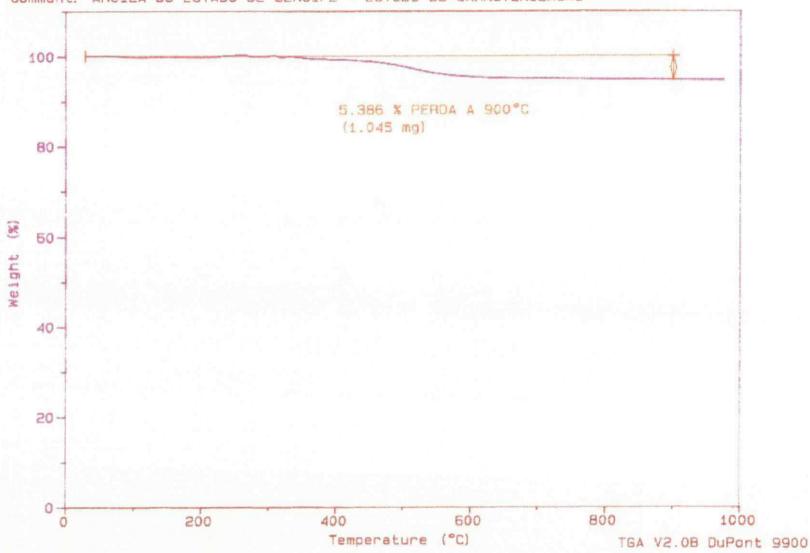
Method: AMB A 1000C RAMP 20°C/MIN Aun Date:
Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO



Operator: FRANCISCO NASCIMENTO 14.3027 mg Size: Run Date: 10/31/97 14:08 Method: AMB A 1000C HAMP 20°C/MIN Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO 100-5.597 % PERDA AO FOGO A 900°C 80 -(0.8005 mg) 60-Weight 40-20-800 1000 400 500 200 Temperature (°C) TGA V2.08 DuPont 9900

FILE, A. IDATLOTUI.UI

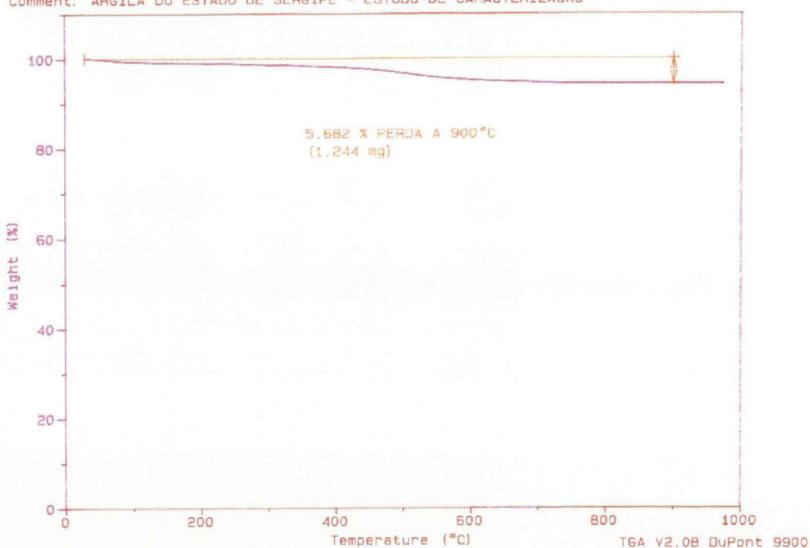
Sample: CB - 02


Size: 19.4069 mg

Method: AMB A 1000C RAMP 20°C/MIN

T C A File: A: TGA-CB02.01

Operator: FRANCISCO NASCIMENTO


Aun Date: 11/14/97 13:26



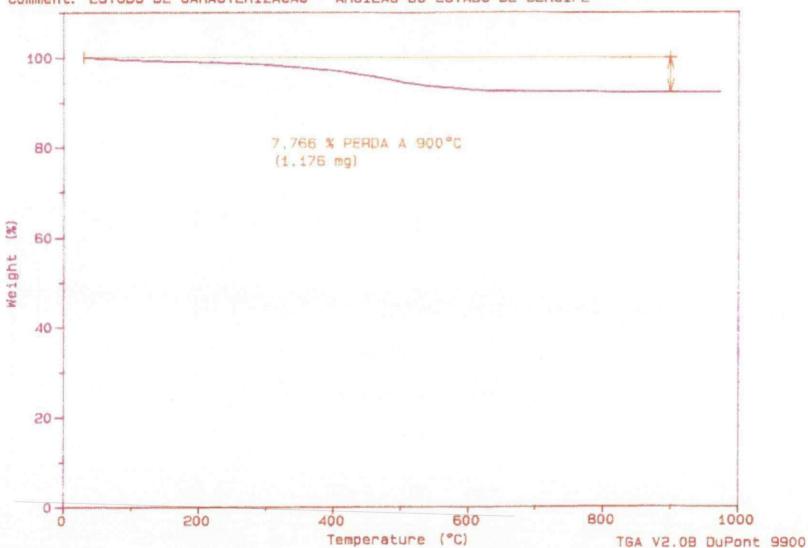
Sample: LAG - 01

T C A File: A: TGA-LAG01.01

Size: 21.8872 mg Operator: FRANCISCO NASCIMENTO Method: AMB A 1000C RAMP 20°C/MIN Run Date: 11/14/97 10:30



Sample: LAG - 02


F11e: A: TGA-LAG-02.01 Operator: JEFSON

Size: 15.1370 mg

Method: AMB ATE 1000 RAMP 20°C

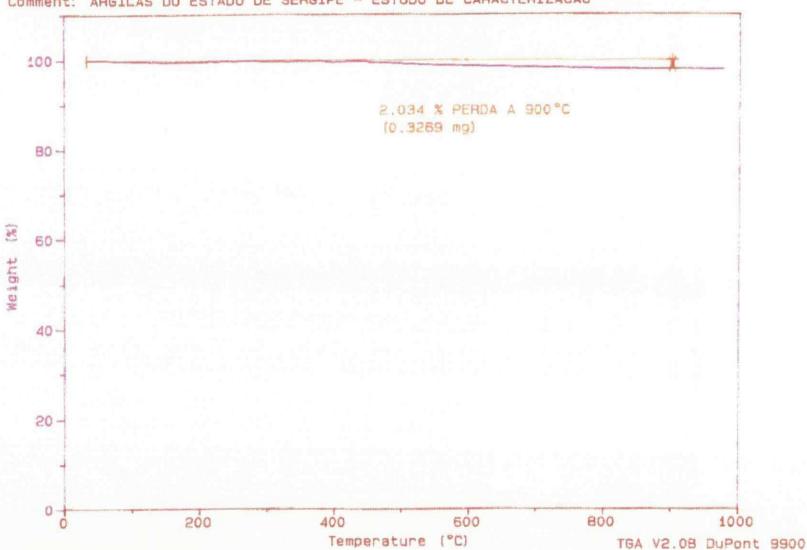
Aun Date: 12/15/97 19:32

Comment: ESTUDO DE CARACTERIZACAO - ARGILAS DO ESTADO DE SERGIPE



Sample: LAG - 03

Size: 16.0740 mg


Method: AMB ATE 1000 RAMP 20°C

TGA

File: A: TGA-LAG3.01 Operator: JEFSON

Aun Date: 11/20/97 10:28

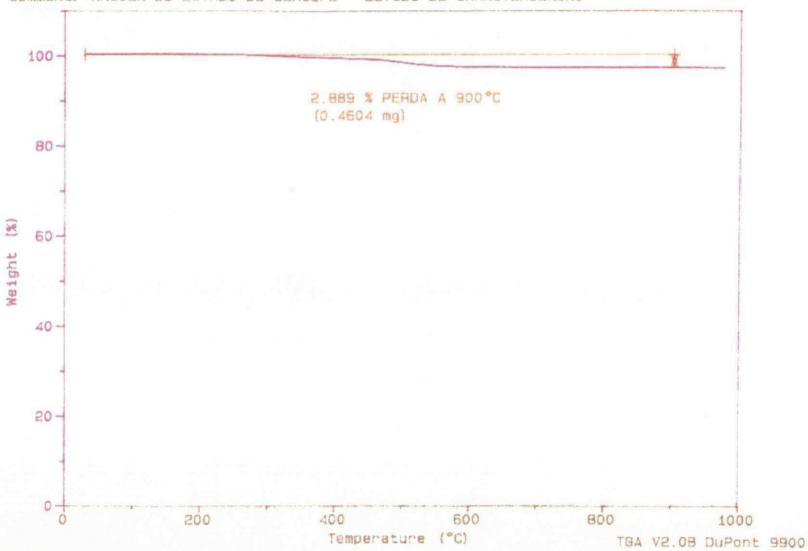
Comment: ARGILAS DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZACAO



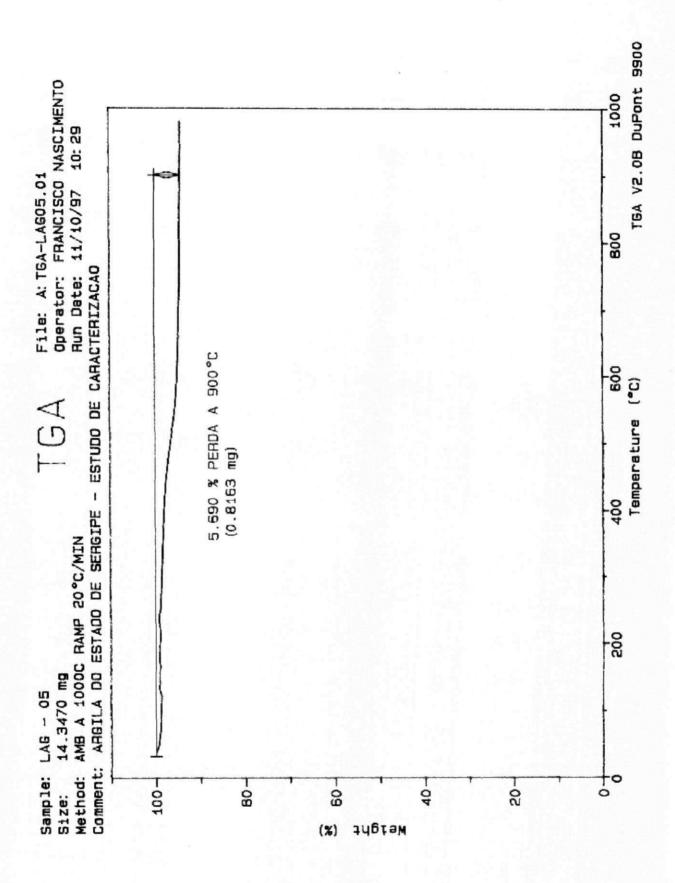
Sample: LAG - 04

Size: 15.9361 mg

Method: AMB A 1000C RAMP 20°C/MIN


TGA

File: A: TGA-LAG04.01


Operator: FRANCISCO NASCIMENTO

Aun Date: 11/10/97 14:53

Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO

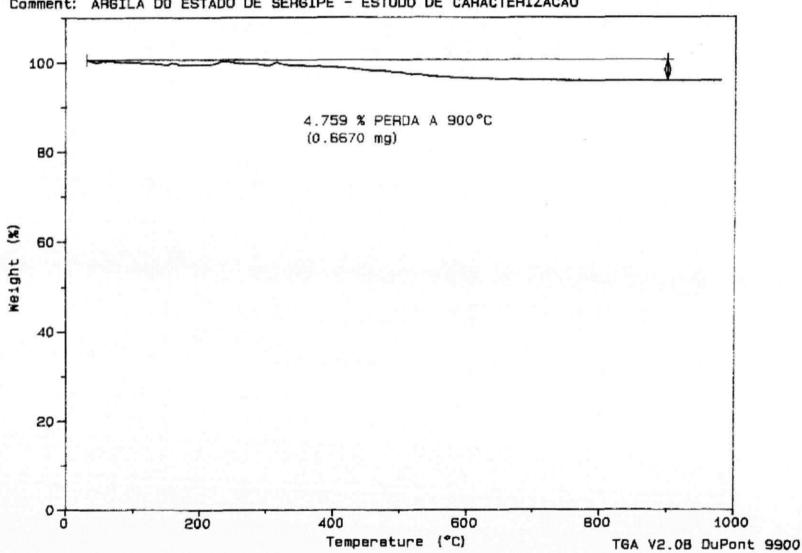


3



Sample: LAG- 06 Size:

Method: AMB A 1000C RAMP 20°C/MIN


TGA 14.0169 mg

F11e: A: TGA-LAG05.01

Operator: FRANCISCO NASCIMENTO

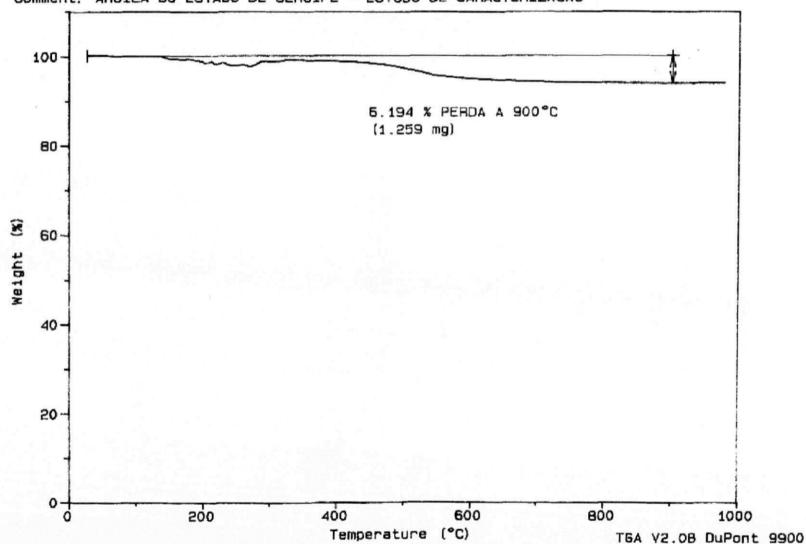
Aun Date: 11/18/97 11:27

Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO



Sample: LAG - 07 Size: 20.3280 mg

Method: AMB A 1000C RAMP 20°C/MIN

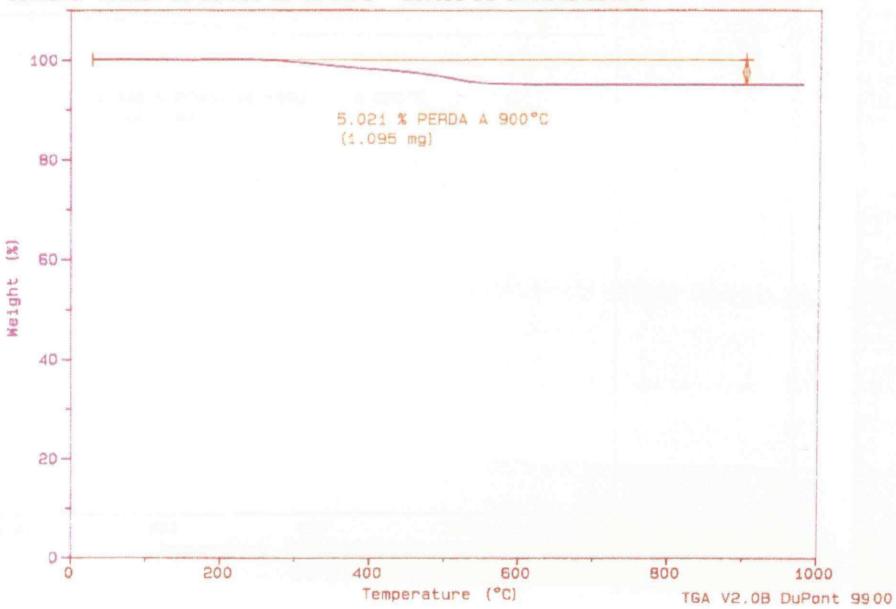

TGA

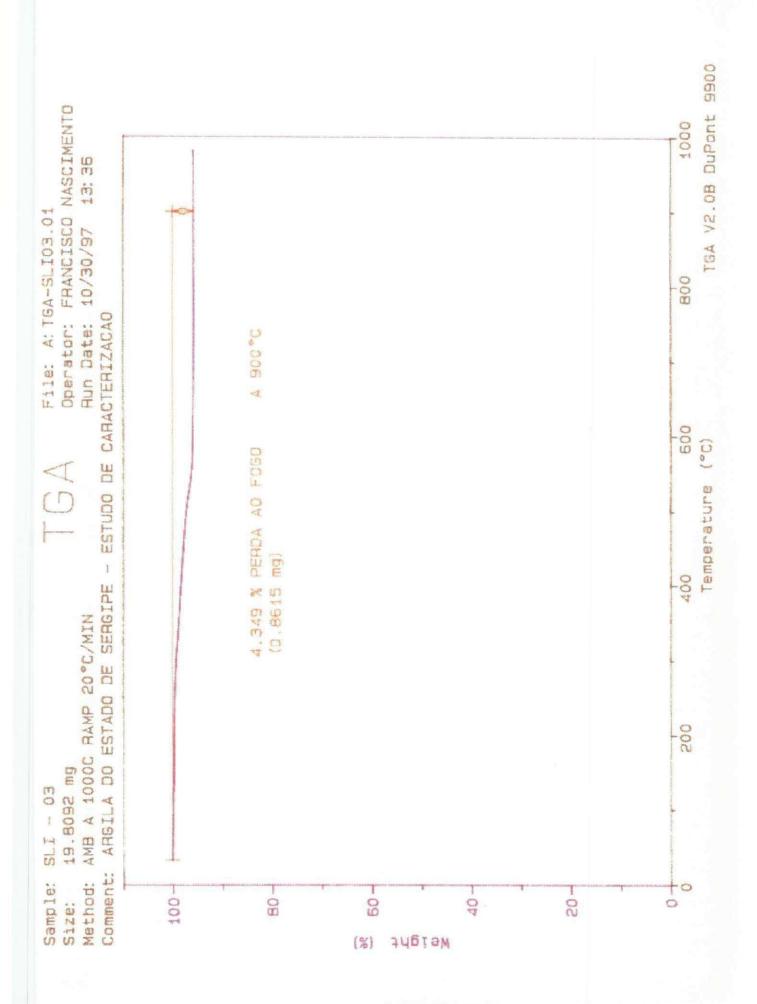
File: A: TGA-LAG07.01

Operator: FRANCISCO NASCIMENTO

Run Date: 11/14/97 14:45

Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZACAO





File: A: TGA-SLI01.01

Operator: FRANCISCO NASCIMENTO Size: 21.8083 mg Method: AMB A 1000C RAMP 20°C/MIN

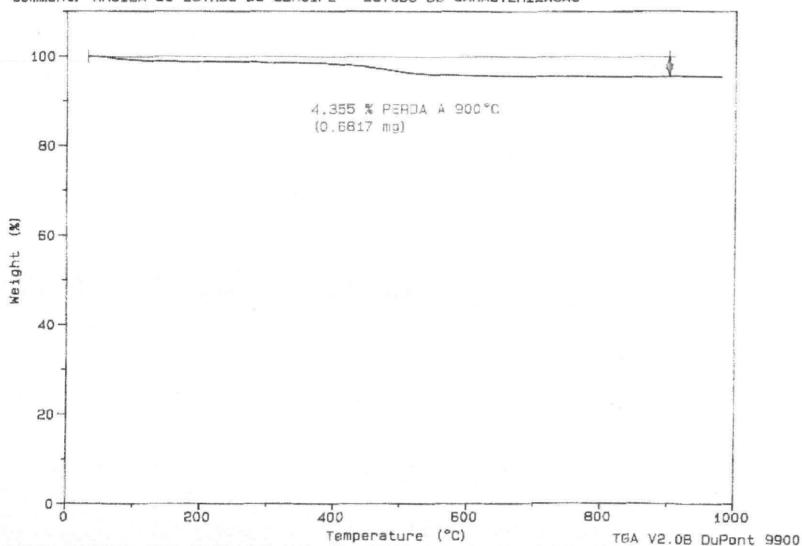
Run Date: 11/17/97 11:10

Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO





Sample: BT-09


Size: 15.6531 mg TGA

File: A: TGA-BT09.01 Operator: JEFSON

Method: AMB A 1000C RAMP 20°C/MIN

Aun Date: 11/18/97 15:04

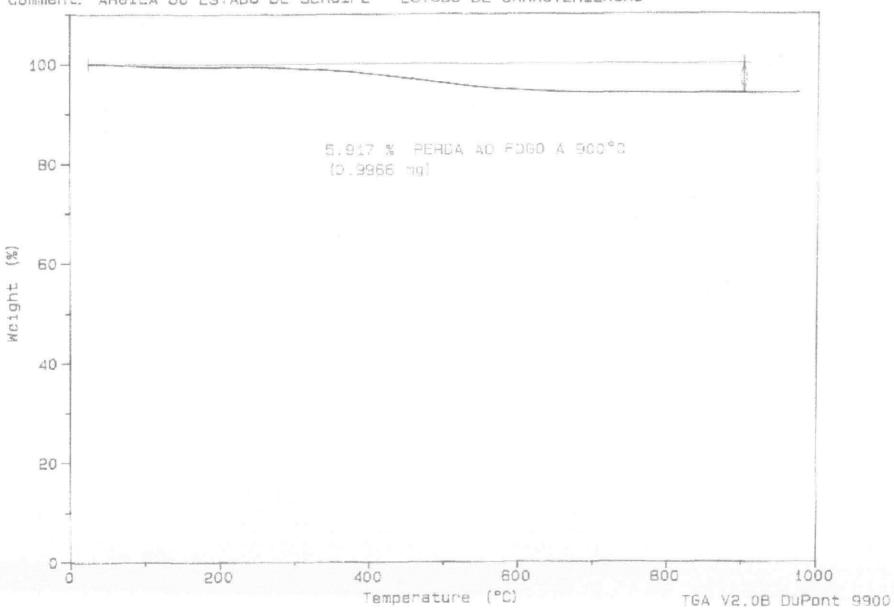
Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZACAO



Sample: BT - 16

Size: 16.8428 mg

Method: AMB A 1000C HAMP 20°C/MIN


TGA 5

File: A: TGA-BT-16.01

Operator: FRANCISCO NASCIMENTO

Hun Date: 10/30/97 14:52

Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO

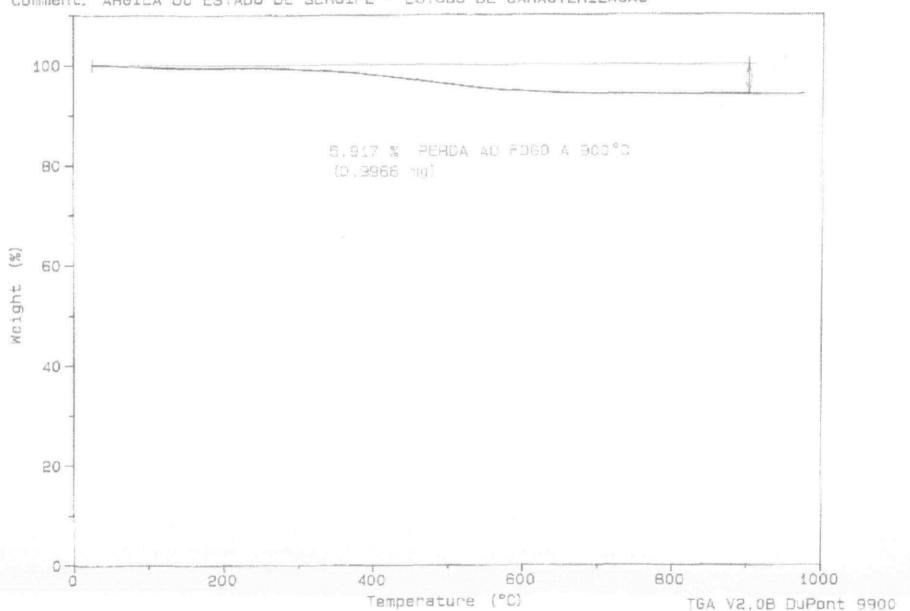


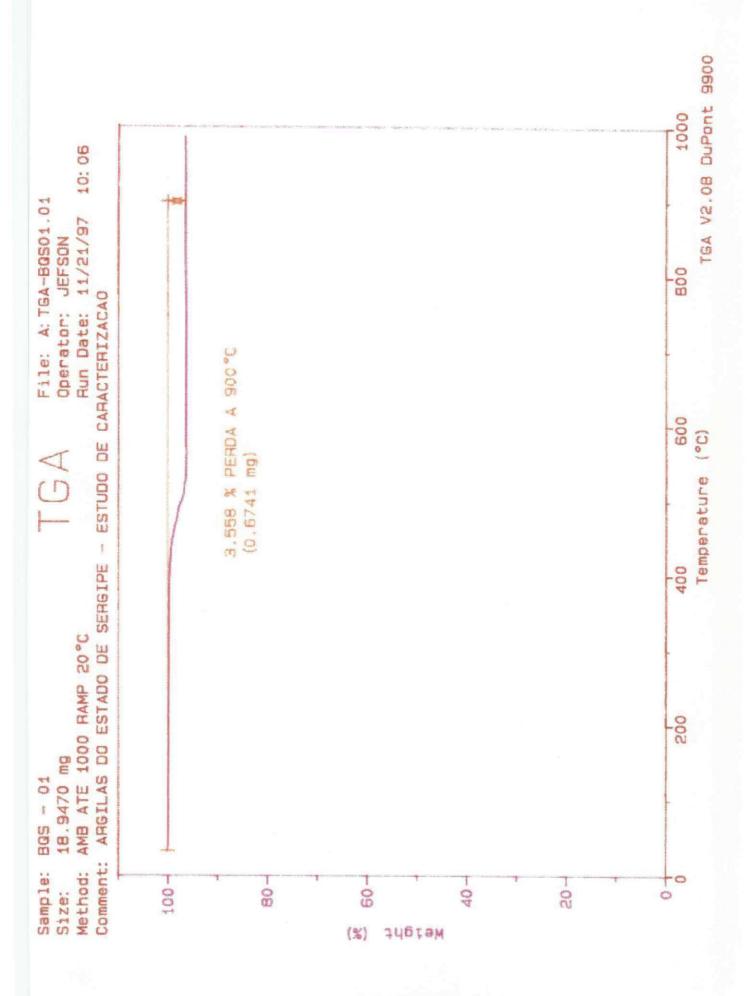
9

Sample: BT - 16

Size: 16.8428 mg

Method: AMB A 1000C HAMP 20°C/MIN


TGA


File: A: TGA-BT-16.01

Operator: FRANCISCO NASCIMENTO

Aun Date: 10/30/97 14:52

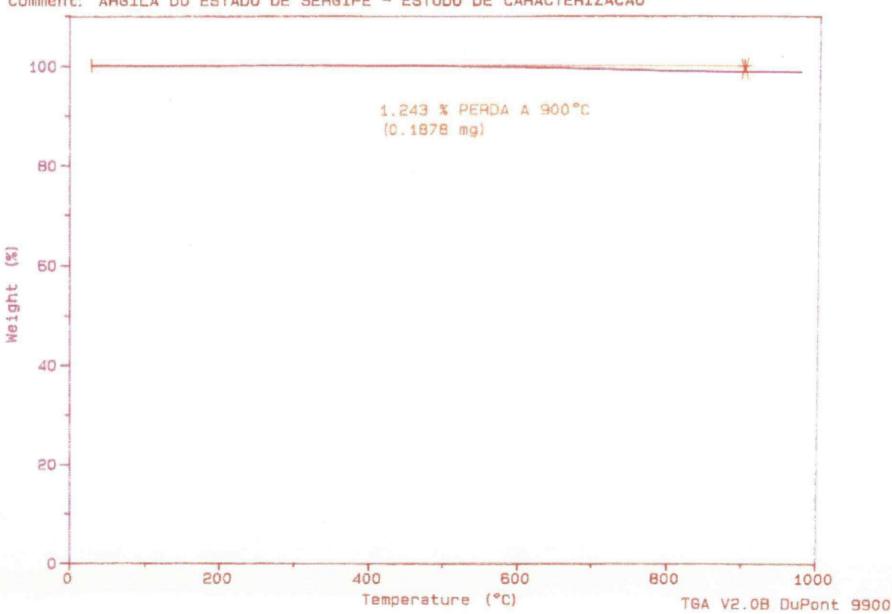
Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO





Sample: SDI - 01

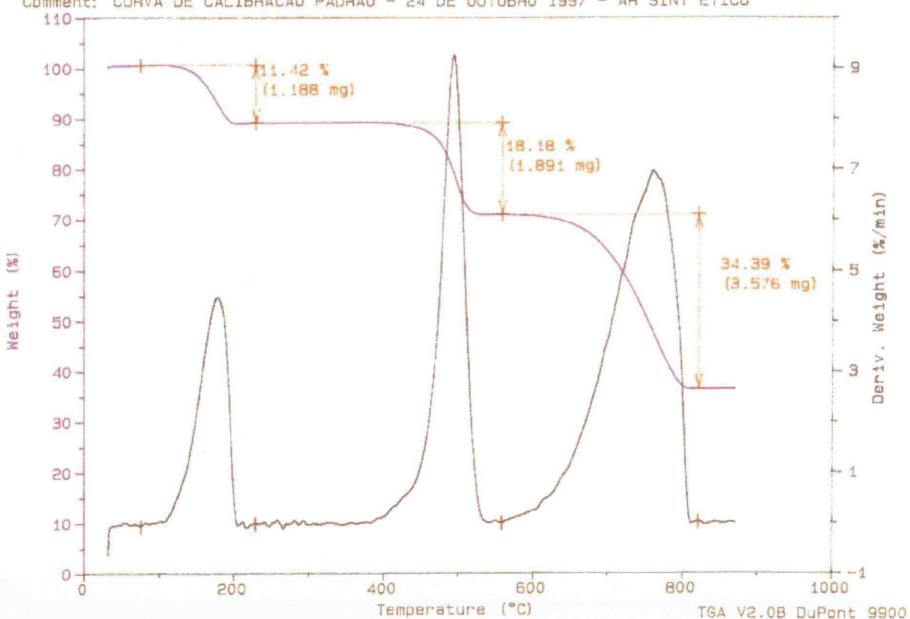
Size: 15.1055 mg


Method: AMB A 1000C RAMP 20°C/MIN

File: A: TGA-SDI01.01

Operator: FRANCISCO NASCIMENTO

Aun Date: 11/17/97 09:55


Comment: ARGILA DO ESTADO DE SERGIPE - ESTUDO DE CARACTERIZAÇÃO



Operator: FRANCISCO NASCIMENTO

Aun Date: 10/24/97 09:45

Comment: CURVA DE CALIBRACAO PADRAO - 24 DE OUTUBRO 1997 - AR SINT'ETICO



AMOSTRA IHS-04 – Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 400°C e 600°C grande perda de massa; c) entre 720°C e 750°C o termograma apresentou um pico de perda de massa d) entre 750°C e 900°C pequena perda de massa.

AMOSTRA IHS-05 – Apresentou: a) entre 20°C e 100°C nenhuma perda de massa; b) entre 100°C e 400°C pequena perda de massa; c) entre 400°C e 600°C grande perda de massa d) entre 600°C e 900°C nenhuma perda de massa foi registrada.

AMOSTRA IHS-06 - Apresentou: a) entre 20°C e 420°C nenhuma perda de massa; b) entre 420°C e 630°C grande perda de massa; c) entre 630°C e 900°C pequena perda de massa.

AMOSTRA IHS-07 – Apresentou: a) entre 20°C e 350°C pequena perda de massa; b) entre 350°C e 600°C grande perda de massa; c) entre 600°C e 900°C pequena perda de massa.

AMOSTRA IHS-08 – Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 400°C e 580°C grande perda de massa; c) entre 580°C e 900°C nenhuma perda de massa.

AMOSTRA IHS-09 – Apresentou: a) entre 20°C e 50°C nenhuma perda de massa; b) entre 50°C e 400°C pequena perda de massa; c) entre 400°C e 600°C grande perda de massa; d) entre 600°C e 900°C pequena perda de massa.

AMOSTRA IHS-10 – Apresentou: a) entre 20°C e 300°C nenhuma perda de massa; b) entre 300°C e 400°C pequena perda de massa; c) entre 400°C e 670°C grande perda de massa; d) entre 670°C a 900°C nenhuma perda de massa.

AMOSTRA IHS-11 – Apresentou: a) entre 20°C e 100°C nenhuma perda de massa; b) entre 100°C e 400°C pequena perda de massa; c) entre 400°C e 600°C grande perda de massa; d) entre 600°C e 900°C pequena perda de massa.

AMOSTRA IHS-12 – Apresentou: a) entre 20°C e 480°C nenhuma perda de massa; b) entre 480°C e 650°C grande perda de massa; c) entre 650°C e 900°C nenhuma perda de massa foi registrada.

AMOSTRA IHS-13 – Apresentou: a) entre 20°C e 210°C nenhuma perda de massa; b) entre 210°C e 400°C pequena perda de massa; c) entre 400°C e 550°C grande perda de massa; d) entre 550°C e 900°C nenhuma perda de massa.

AMOSTRA IHS-14 – Apresentou: a) entre 20°C e 220°C nenhuma perda de massa; b) entre 220°C e 450°C pequena perda de massa; c) entre 450°C e 580°C grande perda de massa; d) entre 580°C e 900°C pequena perda de massa.

AMOSTRA IHS-15 – Apresentou: a) entre 20°C e 150°C nenhuma perda de massa; b) entre 150°C e 400°C pequena perda de massa; c) entre 400°C e 650°C grande perda de massa; d) entre 650°C a 900°C pequena perda de massa.

AMOSTRA IHS-16 – Apresentou: a) entre 20°C e 300°C pequena perda de massa; b) entre 300°C e 550°C grande perda de massa; c) entre 550°C a 900°C pequena perda de massa.

AMOSTRA IHS-17 – Apresentou: a) entre 20°C e 130°C nenhuma perda de massa; b) entre 130°C e 150°C um pico com pequena perda de massa; c) entre 150°C e 300°C nenhuma perda de massa; d) entre 300°C e 420°C pequena perda de massa; e) entre 420°C e 610°C grande perda de massa; f) entre 610°C e 800°C pequena perda de massa; g) entre 800°C a 900°C nenhuma perda de massa.

AMOSTRA ITB-01 - Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 400°C e 650°C grande perda de massa; c) entre 650°C a 900°C nenhuma perda de massa foi registrada.

AMOSTRA ITB-02 – Apresentou: a) entre 20°C e 300°C nenhuma perda de massa; b) entre 300°C e 450°C pequena perda de massa; c) entre 450°C e 600°C grande perda de massa; d) entre 600°C e 900°C pequena perda de massa.

AMOSTRA ITB-03 – Apresentou: a) entre 20°C e 70°C nenhuma perda de massa; b) entre 70°C e 390°C pequena perda de massa; c) entre 390°C e 550°C grande perda de massa; d) entre 550°C e 900°C pequena perda de massa.

AMOSTRA ITB-04 – Apresentou: a) entre 20°C e 60°C nenhuma perda de massa; b) entre 60°C e 450°C pequena perda de massa; c) entre 450°C e 600°C grande perda de massa; d) entre 600°C e 730°C pequena perda de massa; e) entre 730°C a 900°C nenhuma perda de massa foi registrada.

AMOSTRA ITB-05 - Apresentou: a) entre 20°C e 100°C nenhuma perda de massa; b) entre 100°C e 400°C pequena perda de massa; c) entre 400°C e 580°C grande perda de massa; d) entre 580°C e 900°C nenhuma perda de massa foi registrada.

AMOSTRA ITB-06 – Apresentou: a) entre 20°C e 200°C nenhuma perda de massa; b) entre 200°C e 450°C pequena perda de massa; c) entre 450°C e 620°C grande perda de massa; d) entre 620°C e 720°C pequena perda de massa; e) entre 720°C a 900°C nenhuma perda de massa.

AMOSTRA ITB-07 – Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 400°C e 600°C grande perda de massa; c) entre 600°C a 900°C nenhuma perda de massa foi registrada.

AMOSTRA ITB-08 – Apresentou: a) entre 20°C e 100°C nenhuma perda de massa; b) entre 100°C e 400°C pequena perda de massa; c) entre 400°C e 560°C grande perda de massa; d) entre 560°C e 680°C pequena perda de massa; e) entre 680°C a 900°C nenhuma perda de massa.

AMOSTRA ITB-10 – Apresentou: a) entre 20°C e 410°C nenhuma perda de massa; b) entre 410°C e 600°C grande perda de massa; c) entre 600°C e 700°C pequena perda de massa; d) entre 700°C e 900°C nenhuma perda de massa.

AMOSTRA ITB-11 – Apresentou: a) entre 20°C e 80°C nenhuma perda de massa; b) entre 80°C e 400°C pequena perda de massa; c) entre 400°C e 600°C grande perda de massa; d) entre 600°C a 900°C pequena perda de massa.

AMOSTRA CB-01 — Apresentou: a) entre 20°C e 90°C nenhuma perda de massa; b) entre 90°C e 400°C pequena perda de massa; c) entre 400°C e 550°C grande perda de massa; d) entre 550°C a 900°C nenhuma perda de massa.

AMOSTRA CB-02 – Apresentou: a) entre 20°C e 320°C nenhuma perda de massa; b) entre 320°C e 440°C pequena perda de massa; c) entre 440°C e 600°C grande perda de massa; d) entre 600°C a 900°C nenhuma perda de massa.

AMOSTRA LAG-01 – Apresentou: a) entre 20°C e 60°C nenhuma perda de massa; b) entre 60°C e 400°C pequena perda de massa; c) entre 400°C e 590°C grande perda de massa; d) entre 590°C a 900°C pequena perda de massa.

AMOSTRA LAG-02 – Apresentou: a) entre 20°C e 60°C nenhuma perda de massa; b) entre 60°C e 350°C pequena perda de massa; c) entre 350°C e 570°C grande perda de massa; d) entre 570°C a 900°C pequena perda de massa.

AMOSTRA LAG-03 – Apresentou: a) entre 20°C e 450°C nenhuma perda de massa; b) entre 450°C e 900°C pequena perda de massa.

AMOSTRA LAG-04 – Apresentou: a) entre 20°C e 300°C nenhuma perda de massa; b) entre 300°C e 550°C pequena perda de massa; c) entre 550°C a 900°C nenhuma perda de massa.

AMOSTRA LAG-05 – Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 400°C e 550°C grande perda de massa; c) entre 550°C e 710°C pequena perda de massa; d) entre 710°C a 900°C nenhuma perda de massa foi registrada.

AMOSTRA LAG-06 – Apresentou: a) entre 20°C e 400°C pequena perda de massa; b) entre 450°C e 550°C grande perda de massa; c) entre 550°C a 900°C pequena perda de massa.

AMOSTRA LAG-07 – Apresentou: a) entre 20°C e 130°C nenhuma perda de massa; b) entre 130°C e 300°C apresentou um pico acentuado de perda de massa; c) entre 300°C e 450°C pequena perda de massa; d) entre 450°C e 600°C grande perda de massa; e) entre 600°C a 900°C pequena perda de massa.

AMOSTRA SLI-01 – Apresentou: a) entre 20°C e 270°C nenhuma perda de massa; b) entre 270°C e 550°C grande perda de massa; c) entre 550°C a 900°C nenhuma perda de massa.

AMOSTRA SLI-03 – Apresentou: a) entre 20°C e 200°C nenhuma perda de massa; b) entre 200°C e 300°C pequena perda de massa; c) entre 300°C e 550°C grande perda de massa; d) entre 550°C a 900°C nenhuma perda de massa.

AMOSTRA BT-09 – Apresentou: a) entre 20°C e 60°C nenhuma perda de massa; b) entre 60°C e 400°C pequena perda de massa; c) entre 400°C e 550°C grande perda de massa; d) entre 550°C a 900°C nenhuma perda de massa.

AMOSTRA BT-16 – Apresentou: a) entre 20°C e 90°C nenhuma perda de massa; b) entre 90°C e 350°C pequena perda de massa; c) entre 350°C e 580°C grande perda de massa; d) entre 580°C a 900°C pequena perda de massa.

AMOSTRA BOS-01 – Apresentou: a) entre 20°C e 370°C nenhuma perda de massa; b) entre 370°C e 425°C pequena perda de massa; c) entre 425°C e 540°C grande perda de massa; d) entre 540°C a 900°C nenhuma perda de massa foi registrada.

AMOSTRA EST-02 – Apresentou: a) entre 20°C e 500°C nenhuma perda de massa; b) entre 500°C e 600°C grande perda de massa; c) entre 600°C e 700°C pequena perda de massa; d) entre 700°C a 900°C nenhuma perda de massa.

AMOSTRA SDI-01 – Apresentou: a) entre 20°C e 600°C nenhuma perda de massa; b) entre 600°C a 900°C pequena perda de massa.

## 4.1.6 IDENTIFICAÇÃO MINERALÓGICA

#### - Composição Química

Os resultados obtidos para a composição química de argilas da Região Centro-Sul do Estado de Sergipe estão contidos na Tabela 3.4.

Em relação aos resultados obtidos para composição química das argilas verificou-se que as amostras de argilas designadas pelos símbolos: IHS-05, IHS-06, IHS-07, IHS-08, IHS-09, IHS-12, IHS-13, IHS-14, IHS-16, IHS-17, ITB-01, ITB-02, ITB-03, ITB-05, LAG-01, LAG-02, LAG-03, LAG-04, LAG-05, LAG-06, LAG-07, CB-01, CB-02, BT-16 e SLI-01 apresentaram composições químicas similares as de outras argilas brasileiras para cerâmica vermelha (2).

ANÁLISES QUÍMICAS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

TABELA 3.4

AMOSTRA	UMIDADE (%)	PERDAS AO	MATÉRIA	SiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	CaO (%)	MgO (%)	Na ₂ O (%)	K ₂ O (%)	TiO ₂ (%)	TOTAL
		FOGO (%)	ORGÂNICA (%)	,								
IHS-01	2,05	4,32	0,90	73,73	11,81	2,87	0,62	0,30	3,60	2,48	0,19	102,87
IHS-02	2,13	6,52	2,20	69,71	14,45	2,76	0,63	0,36	3,21	2,07	0,20	104,24
IHS-03	2,33	8,28	1,40	60,25	22,37	1,63	1,58	0,14	1,03	2,38	0,20	101,59
IHS-04	2,50	7,80	0,90	58,85	23,80	2,75	0,24	0,16	0,83	2,22	0,15	100,20
IHS-05	2,06	10,27	1,30	57,12	28,58	1,98	0,39	0,23	0,85	0,38	0,15	103,31
IHS-06	4,85	15,03	1,50	49,86	27,67	3,83	1,82	0,67	0,12	0,32	0,14	105,81
IHS-07	4,07	10,50	1,10	60,24	21,89	3,19	1,76	0,56	0,74	0,38	0,15	104,58
IHS-08	2,69	10,69	1,30	58,12	25,16	4,84	0,13	0,32	0,05	0,38	0,20	103,88
IHS-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
IHS-10	2,04	7,96	1,50	66,17	20,94	1,43	0,48	0,46	0,86	1,15	0,14	103,13
IHS-11	1,94	7,59	0,70	67,06	19,36	2,18	0,33	0,26	1,31	1,31	0,05	102,09
IHS-12	2,43	9,79	0,90	58,41	25,32	4,25	0,19	0,43	0,12	0,83	0,05	102,72
IHS-13	1,24	7,07	0,70	70,01	19,47	2,98	0,14	0,04	0,03	0,09	0,14	101,91
IHS-14	1,15	7,19	0,90	67,27	21,14	3,00	0,50	0,08	0,04	0,58	0,05	101,90
IHS-15	0,79	8,07	1,00	64,01	24,27	1,99	0,14	0,17	0,12	1,13	0,14	101,83
IHS-16	2,34	10,83	2,30	60,22	23,56	2,18	0,33	0,31	0,92	0,94	0,14	103,22
IHS-17	1,33	9,21	1,00	59,24	25,07	5,43	0,14	0,22	0,04	0,41	0,14	102,23
ITB-01	4,57	10,25	2,20	67,48	17,50	2,48	0,55	0,62	0,48	0,41	0,15	106,69

OBS.: ND - Não Determinado

^{*} Realizados na divisão de química inorgânica do Instituto de Tecnologia e Pesquisas de Sergipe (ITPS)

TABELA 3.4

# ANÁLISES QUÍMICAS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

AMOSTRA	UMIDADE (%)	PERDAS AO	MATÉRIA	SiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	CaO (%)	MgO (%)	Na ₂ O (%)	K ₂ O (%)	TiO ₂ (%)	TOTAL
		FOGO (%)	ORGÂNICA (%)									
ITB-02	1,28	10,31	1,10	59,94	26,53	2,64	0,14	0,10	0,03	0,11	0,15	102,33
ITB-03	3,98	9,32	1,80	63,56	19,52	3,16	1,54	0,91	1,19	0,50	0,25	105,98
ITB-04	1,94	6,60	1,50	65,74	21,77	2,84	0,19	0,62	0,73	1,07	0,10	103,10
ITB-05	1,94	8,70	2,00	74,03	13,22	2,92	0,28	0,23	0,20	0,12	0,30	103,10
ITB-06	1,48	8,83	0,90	58,91	22,23	4,72	1,54	0,36	0,13	2,25	0,20	101,55
ITB-07	2,71	7,92	1,60	69,30	14,63	2,22	0,33	0,39	1,46	1,90	0,24	102,70
ITB-08	2,91	7,11	2,70	72,26	12,35	1,97	0,63	0,49	1,93	1,78	0,24	104,37
ITB-09	1,04	8,45	1,00	62,12	22,84	2,39	0,16	0,36	0,27	2,73	0,20	101,56
ITB-10	2,42	9,33	1,00	49,84	28,67	5,66	0,19	0,35	0,58	1,73	0,49	100,26
ITB-11	3,98	9,97	1,40	61,25	18,81	2,51	0,70	0,70	3,24	2,31	0,25	105,12
LAG-01	3,27	8,96	2,90	63,60	22,34	2,62	0,39	0,62	0,32	0,73	0,30	106,05
LAG-02	2,79	10,55	3,90	63,95	21,37	1,94	0,25	0,49	0,28	0,52	0,20	106,24
LAG-03	1,46	4,48	1,10	70,02	20,47	1,99	0,19	0,60	0,82	0,76	0,30	102,19
LAG-04	0,83	4,39	1,60	79,95	11,58	2,92	0,19	0,16	0,04	0,44	0,25	102,35
LAG-05	2,83	8,94	2,70	63,51	21,86	3,38	0,28	0,56	0,32	0,72	0,25	105,35
LAG-06	2,72	8,28	3,10	68,27	18,59	2,42	0,25	0,56	0,54	0,74	0,30	105,77
LAG-07	1,19	8,16	1,20	60,57	25,78	3,38	0,14	0,49	0,05	0,98	0,25	101,49
BQS-01	0,87	9,02	1,00	80,53	8,80	0,94	0,14	0,03	0,09	0,07	0,30	101,79

^{*} Realizados na divisão de química inorgânica do Instituto de Tecnologia e Pesquisas de Sergipe (ITPS)

TABELA 3.4

# ANÁLISES QUÍMICAS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

AMOSTRA	UMIDADE (%)	PERDAS AO FOGO (%)	MATÉRIA ORGÂNICA (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	Fe ₂ O ₃ (%)	CaO (%)	MgO (%)	Na ₂ O (%)	K ₂ O (%)	TiO ₂ (%)	TOTAL
BQS-02	0,77	4,58	1,00	83,25	10,41	0,94	0,17	0,06	0,09	0,07	0,35	101,69
CB-01	4,60	11,04	2,00	64,56	18,93	2,33	0,52	0,69	0,96	0,66	0,14	106,43
CB-02	1,27	7,09	1,10	64,03	20,88	1,92	3,73	0,41	0,87	0,91	0,05	102,26
BT-09	2,89	8,40	1,80	69,23	16,53	1,77	0,55	0,56	2,13	0,56	0,05	104,47
BT-16	2,24	8,37	4,00	70,45	17,33	1,27	0,22	0,28	0,66	0,81	0,14	105,77
SLI-01	1,62	7,02	3,70	76,15	14,09	1,86	0,16	0,06	0,12	0,10	0,14	105,02
SLI-03	1,36	4,48	3,30	80,09	13,06	1,48	0,16	0,13	0,07	0,37	0,20	104,70
EST-02	1,36	9,04	7,30	62,11	25,67	1,13	0,16	0,30	0,07	1,10	0,25	108,49
SDI-01	1,13	3,98	0,90	69,99	16,98	2,24	0,16	0,79	2,01	3,00	0,14	101,32
		W-14-14	,									

^{*} Realizados na divisão de química inorgânica do Instituto de Tecnologia e Pesquisas de Sergipe (ITPS)

Entretanto, fazendo-se uma comparação com os valores de composição química teórico de caulinita (2), observa-se que os teores de sílica são superiores, e os teores de alumina são inferiores ao valor teórico calculado. As amostras apresentaram-se impuras, com teores de ferro variando na faixa de 1,27% a 5,43% e com baixo teores de alcalinos e alcalinos-terrosos (valores inferiores a 1,00%).

As amostras designadas pelos símbolos IHS-01, IHS-02, IHS-03, IHS-04, IHS-10, IHS-11, IHS-15, ITB-07, ITB-08, ITB-09, EST-02 e BT-09 quando comparadas com dados de literatura da referência (2), apresentaram composições químicas similares aos filitos cerâmicos brasileiros. Os teores de álcalis encontrados nessas amostras apresentaram valores na faixa de 1,31% a 3,60%. Os teores de ferro encontrados apresentaram valores pouco acima de 1%, o que provavelmente provocará cores escuras após a queima, tornando-as inutilizáveis em cerâmica branca.

As amostras designadas pelos símbolos ITB-04, ITB-06, ITB-10, ITB-11 e SDI-01 quando comparados com dados de literatura (referência 2), apresentaram composições químicas similares aos folhelhos argilosos brasileiros, caracterizando-se por apresentarem teores elevados de potássio e ferro.

As amostras designadas pelos símbolos SLI-03, BQS-01 e BQS-02 quando comparadas com dados de literatura (referência 7), apresentaram composições químicas similares as de argilas silicosas, caracterizando-se por apresentarem teores de silica (SiO₂) superiores a 80%, alumina em torno de 10% e baixa perda ao fogo.

#### - Análise racional calculada:

Não foi possível realizar a identificação mineralógica pela análise racional neste trabalho, tendo em vista, que as argilas objeto de estudo apresentaram composições muito complexa, para as quais os métodos químicas de análise racional não ofereciam resultados satisfatórios.

### - Ponto de fusão

Foram determinados os pontos de fusão para as argilas da Região Centro-Sul do Estado de Sergipe, através do emprego da fórmula de Schuen e pelo método do diagrama de fases (2), a partir dos dados da análise química.

Os resultados obtidos para a temperatura de fusão das argilas estão contidos na Tabela 3.5. Segundo Souza Santos, 1968, esse "ponto de fusão", dado pela fórmula de Schuen, é aproximadamente igual a refrataridade ou cone pirométrico Orton equivalente da argila, determinado pela norma técnica número 69 da ABNT. Não foram feitas análise comparativa dos resultados, em função da inexistência de dados em nosso literatura.

TABELA 3.5

# PONTOS DE FUSÃO CALCULADOS PELA FÓRMULA DE SCHUEN (2) E MÉTODO DO DIAGRAMA DE FASES DE ARGILAS DA REGIÃO CENTRO-SUL DO **ESTADO DE SERGIPE**

	TEMPERATURA	
AMOSTRAS	Formula Schuen (°C)	Método do Diagrama de Fases
IHS-01	1588	1675
IHS-02	1601	1695
IHS-03	1657	1750
IHS-04	1668	1760
IHS-05	1705	1800
IHS-06	1696	1805
IHS-07	1658	1750
IHS-08	1677	1775
IHS-09	ND	ND
IHS-10	1661	1745
IHS-11	1648	1730
IHS-12	1680	1775
IHS-13	1657	1735
IHS-14	1662	1750
IHS-15	1680	1775
IHS-16	1675	1775
IHS-17	1673	1776
ITB-01	1643	1725
ITB-02	1697	1780
ITB-03	1638	1740
ITB-04	1658	1755
ITB-05	1624	1685
ITB-06	1643	1730
ITB-07	1618	1720
ITB-08	1603	1675
ITB-09	1663	1758
ITB-10	1683	1810
ITB-11	1622	1735
LAG-01	1666	1760
LAG-02	1669	1765

TABELA 3.5 PONTOS DE FUSÃO CALCULADOS PELA FÓRMULA DE SCHUEN (2) E MÉTODO DO DIAGRAMA DE FASES DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

·· <del>-</del> · · · · · · · · · · · · · · · · · · ·	TEMPERATURA	A DE FUSÃO
AMOSTRAS	Fórmula Schuen (°C)	Método do Diagrama de Fases
LAG-03	1654	1745
LAG-04	1614	1670
LAG-05	1661	1762
LAG-06	1647	1735
LAG-07	1681	1772
BQS-01	1614	1635
BQS-02	1620	1660
CB-01	1648	1730
CB-02	1642	1740
BT-09	1632	1725
BT-16	1648	1725
SLI-01	1635	1675
SLI-03	1629	1670
EST-02	1692	1775
SDI-01	1614	1710
	<u> </u>	i i i i i i i i i i i i i i i i i i i

OBS.: - ND - Dado não determinado

## 4.2 ENSAIOS TECNOLÓGICOS

# 4.2.1 ENSAIO PRELIMINAR DE ARGILAS VISANDO SUA APLICAÇÃO CERÂMICA COM BASE NAS CORES APÓS SECAGEM E QUEIMA E NOS CARACTERÍSTICOS CERÂMICOS EM SEIS TEMPERATURAS

As cores dos corpos de prova, após secagem a 110°C e após queima a 700°C, 950°C, 1050°C, 1250°C e 1450°C, foram determinadas (Tabela 3.36) e comparadas com as cores das argilas industriais padrões brasileiras contidas na Tabela 4.0 (3) e os padrões Munsell (18), para efeito da determinação do uso provável num dos três grupos. Foi utilizado uma temperatura de queima de 700°C fora dos padrões usuais, com o objetivo de verificar se as propriedades físico- mecânicas são compatíveis com o uso em cerâmica vermelha com um menor consumo de energia na queima. As cores apresentadas após secagem a 110°C e após queima nas diversas temperaturas mencionadas, encontram-se nas Tabelas.

Os resultados obtidos com as argilas para os característicos cerâmicos determinados após secagem a 110°C (cor, umidade de moldagem, retração linear e tensão de ruptura a flexão) estão contidos nas Tabelas 3.6 a 3.35. Os resultados obtidos para as características cerâmicas após queima a 700°C, 950°C, 1050°C, 1250°C e 1450°C (cor, perda ao fogo, retração linear, absorção, porosidade aparente, massa específica aparente e tensão de ruptura a flexão) estão contidos na Tabelas 3.6 a 3.35. Os resultados da comparação dos característicos cerâmicos a 110°, 950°C, 1250°C e 1450°C estão contidos na Tabela 3.37 com as faixas de valores específicados para cada uma das características contida nas Figura 3.16 a 3.19.

Após análise dos resultados obtidos puderam ser feita as seguintes consideraçãoes.

## - <u>CLASSIFICAÇÃO COM BASE NA COR</u>

- a) Argilas para cerâmica vermelha geralmente apresentam, após queima a 950°C, a cor vermelha. Após queima a 1250°C a cor pode ser vermelha escura, marrom ou preta, sendo as duas últimas cores, indicativas de superqueima. Por superqueima entende-se os seguintes fatos:
  - a) mudança brusca da cor vermelha para marrom escura ou preta;
  - b) aparecimento de bolhas internas ou superficiais;
  - c) os corpos de prova aderem entre si e não podem ser separados;
- d) os corpos de prova incham ou expandem devido a formação de bolhas internas (bloating);
  - e) fusão total ou apenas parcial das arestas.

Das quarenta e cinco amostras objeto de estudo conseguiu-se conformação em apenas trinta, sendo necessário trinta e cinco corpos de prova por amostra para realização dos ensaios

TABELA 3.36 - CORES DIRETA DOS CORPOS DE PROVA DAS ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE EM DIFERENTES TEMPERATURAS DE QUEIMA

AMOSTRAS	SECA A	COR	APÓS	Α	QUEIMA	
	110°C	700°C	950°C	1050°C	1250°C	1450℃
1HS-01	Cinza Escuro	Marrom Alaranjado	Laranja	Marrom Avermelhado	Marrom Avermelhado	Marrom Escure
IHS-03	Мапот	Marrom Alaranjado	Laranja	Laranja Escuro	Vermelho Alaranjado	ND
IHS-04	Cinza	Bege Escuro	Bege	Bege	Bege	Bege Escuro
JHS-05	Cinza	Marrom Claro	Bege	Bege	Bege Escuro	ND
IHS-06	Cinza Escuro	Marrom Claro	Bege	Bege	Bege Escuro	ND
IHS-07	Marrom Escuro	Marrom Claro	Rosa Escuro	Marrom Claro	ND	ND
1HS-08	Cinza Claro	Marrom Alaranjado	Laranja	Laranja Escuro	Vermelho Alaranjado	ND
IHS-09	Vermelha	Marrom Avermelhado	Vermelha	Vermelha Alaranjado	Vermelho Escuro	ND
IHS-10	Marrom Acizentado	Marrom Alamnjado	Laranja	Marrom Escuro	ND	ND
ГНS-11	Marrom Claro	Bege	Bege	Laranja	Bege Escuro	ND
IHS-12	Marrom Claro	Marrom Claro	Laranja	Laranja Escuro	ND	ND
IHS-16	Cinza Escuro	Marrom Claro	Bege	Marrom Avermelhado	Marrom Escuro	ND
LAG-01	Cinza	Marrom Claro	Laranja	Marrom	Marrom Escuro	ND
	Esverdeado		,	Avermelhado		
LAG-02	Cinza Escuro	Bege Escuro	Laranja Escuro	Laranja Escuro	ND	ND
LAG-05	Marrom	Marrom Claro	Laranja	Marrom	Marrom Escuro	ND
	Acizentado		_	Avermelhado		
LAG-06	Marrom	Rosa Escuro	Laranja Escuro	Marrom	Marrom Escuro	ND
	Esverdeado			Avermelhado		
LAG-07	Rosa Escuro	Rosa Escuro	Laranja	Laranja	Marrom Avermelhado	ND
ITB-01	Marrom Escuro	Marrom Escuro	Laranja Escuro	Vermelho Escuro	ND	ND
ITB-03	Marrom Escuro	Marrom Alaranjado	Luranja	Marrom Avermelhado	Vermelho Escuro	ND
ITB-05	Cinza Escuro	Marrom Claro	Bege Escuro	Laranja	Marrom Escuro	ND
ITB-06	Vermelho Alaranjado	Laranja Escuro	Laranja	Laranja Escuro	Marrom Escuro	ND
ITB-07	Marrom	Marrom Claro	Laranja	Vermelha Alaranjado	Preto	ND
ITB-08	Marrom	Martom Claro	Laranja Escuro	Vermelho Escuro	ND	ND
ITB-10	Rosa Escuro	Laranja	Rosa Escuro	Rosa Escuro	Marrom Escuro	ND
ITB-11	Vermelho Escuro	Vermelho Alaranjado	Vermelho Alaranjado	Vermelho Escuro	ND	ND
BT-09	Cinza Escuro	Bege	Laranja	Marrom Claro	Marrom Escuro	ND
BT-16	Marrom Escuro	Bege	Bege	Bege	Bege Escuro	Bege Esciro
EST-02	Branço	Branco	Rosa Claro	Creme Claro	CIN	ND
CB-01	Cinza Escuro	Marrom Claro	Веде	Marrom Avermethado	Marrom Escuro	ND
CB-02	Creme	Rosa Escuro	Bege	Bege	Bege Escuro	Marrom Escur

#### TABELA 4.0

## CLASSIFICAÇÃO DE ARGILAS PARA FINS CERÂMICOS PELAS CORES NO ESTADO CRU E APÓS A QUEIMA EM VÁRIAS TEMPERATURAS (CEPED)

USO	CERÂMICO	CRU (SECO) A	950°C	1250°C	1450°C
		110°C			
Cerâmica	Vermelha	Vermelha, vermelha	Amarela, vermelha em	Vermelha clara, ver-	Cinza escura, marrom
		alaranjada, verde, vio-	diversas tonalidades	melha escura, marrom	escura e preta
		lácea, marrom clara,		clara, marrom escura e	
		marrom avermelhada,		preta	L
		preta, cinza averme-		X   (20)	
		lhada			
	Caulins	Branca, creme clara,	Branca, rosa clara, cre-	Branca, rosa clara, cre-	Branca, creme e cinza
		rosa clara, rosa escura	me clara	me clara, sem manchas	clara, sem manchas
Cerâmica				escuras	escuras
	Filitos	Branca, cinza esver-	Branca, rosa clara, rosa	Marrom, cinza, amar-	Cinza esverdeada,
Branca	Cerâmicos e	deada, creme clara,	escura, creme clara	ronada, cinza clara,	cinza clara, cinza
	Materiais	amarela clara		cinza escura, branca	escura e creme clara
	Fundentes				
	Argilas Plástica	Preta azulada, cinza	Branca, creme clara,	Branca, creme clara,	Branca, creme clara,
		clara, cinza escura,	cinza clara, amarela	cinza clara, amarela	cinza clara
		creme clara e branca			
Materiais	refratários Silico-	Brancos, cinza clara,	Branca, rosa clara, cre-	Branca, creme clara,	Branca, creme clara,
Alumino	sos e Aluminosos	cinza escura, preta	me clara, cinza clara	cinza clara, amarela	cinza clara, cinza
				clara	escura, marrom es-
					cura (*)

- Notas: 1) Dentro do grupo de Cerâmica Vermelha, algumas argilas que adquirem cor marrom escura ou preta a 1250C, pode, superqueimar com ou sem expansão nessa temperatura, fundido com perda de forma a 1450C: As argilas que expandem devem ser consideradas para ensaios de agregados leve (light weight agregate).
  - 2) Os filitos e materiais fundentes apresentam-se vitrificados a 1250C, fundindo e havendo perda de forma dos corpos da prova a 1450c.
- (*) Os corpos de prova podem trincar e empenar, mas não devem perder a forma original por fusão, especialmente das argilas

TABELA 3.6
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-01

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA ESCURO	5 Y R 4/1
110°C	UMIDADE DE MOLDAGEM (%)	25,09
	RETRAÇÃO LINEAR (%)	6,61
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	108,95
	COR: MARROM ALARANJADO	7.5 Y R 5/6
	PERDA DE FOGO (%)	4,93
	RETRAÇÃO LINEAR (%)	0,27
700°C	ABSORÇÃO (%)	11,81
	POROSIDADE APARENTE (%)	23,38
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,98
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	106,58
	COR: LARANJA	5 Y R 6/8
	PERDA AO FOGO (%)	6,23
	RETRAÇÃO LINEAR (%)	1,16
950°C	ABSORÇÃO (%)	9,75
	POROSIDADE APARENTE (%)	19,45
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,99
	TENSÃO DE RUPIURA A FLEXÃO (Kg/cm²)	249,13
	COR: MARROM AVERMELHADO	2.5 Y R 4/6
	PERDA AO FOGO (%)	6,40
	RETRAÇÃO LINEAR (%)	4,72
1050°C	ABSORÇÃO (%)	1,48
	POROSIDADE APARENTE (%)	2,55
	MASSA ESPECIFICA APARENTE (g/cm²)	1,73
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	118,14
	COR: MARROM AVERMELHADO	2.5 Y R 4/6
	PERDA AO FOGO (%)	6,48
	RETRAÇÃO LINEAR (%)	3,33
1250°C	ABSORÇÃO (%)	5,90
	POROSIDADE APARENTE (%)	13,10
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,62
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	126,20
	COR: MARROM ESCURO	2.5 Y R 5/6
	PERDA AO FOGO (%)	7,02
	RETRAÇÃO LINEAR (%)	5,70
1450°C	ABSORÇÃO (%)	0,50
- · · ·	POROSIDADE APARENTE (%)	1,20
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,65
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	248,40

OBS.: Os ensaios foram realizados em corpos de prova, com dimensões de 22,00 x 2,00 x 0,5 cm.

SQ = Superqueima com fusão e perda de forma.

TABELA 3.7
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-03

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM	7,5 Y R 4/2
110°C	UMIDADE DE MOLDAGEM (%)	19,29
	RETRAÇÃO LINEAR (%)	6,26
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	84,38
	COR: MARROM ALARANJADO	7.5 Y R 5/6
	PERDA DE FOGO (%)	4,65
	RETRAÇÃO LINEAR (%)	0,18
700°C	ABSORÇÃO (%)	13,29
	POROSIDADE APARENTE (%)	22,08
	MASSA ESPECIFICA APARENTE (g/cm²)	1,95
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	99,87
	COR: LARANJA	5 Y R 6/8
	PERDA AO FOGO (%)	5,02
	RETRAÇÃO LINEAR (%)	0,84
950°C	ABSORÇÃO (%)	12,68
	POROSIDADE APARENTE (%)	24,83
	MASSA ESPECIFICA APARENTE (g/cm²)	1,96
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	92,77
	COR: LARANJA ESCURO	2.5 Y R 5/8
	PERDA AO FOGO (%)	6,50
	RETRAÇÃO LINEAR (%)	0,23
1050°C	ABSORÇÃO (%)	10,80
	POROSIDADE APARENTE (%)	21,98
	MASSA ESPECIFICA APARENTE (g/cm²)	2,04
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	110,63
	COR: VERMELHO ALARANJADO	10 YR 5/8
	PERDA AO FOGO (%)	7,37
	RETRAÇÃO LINEAR (%)	2,30
1250°C	ABSORÇÃO (%)	7,20
	POROSIDADE APARENTE (%)	19,10
	MASSA ESPECIFICA APARENTE (g/cm²)	2,13
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	128,30
· · · · · · · · · · · · · · · · · · ·	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

TABELA 3.8 RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-04

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA	2.5 R 4/N
110°C	UMIDADE DE MOLDAGEM (%)	16,80
	RETRAÇÃO LINEAR (%)	2,46
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	83,73
,	COR: BEGE ESCURO	5 Y R 7/4
	PERDA DE FOXIO (%)	7,88
	RETRAÇÃO LINEAR (%)	0,65
700°C	ABSORÇÃO (%)	17,44
	POROSIDADE APARENTE (%)	31,24
	MASSA ESPECIFICA APARENTE (g/cm³)	1,79
	TENSÃO DE RUPTURA A FLEXÃO (Kg/em²)	102,24
	COR: BEGE	7.5 Y R 8/4
	PERDA AO FOGO (%)	8,08
	RETRAÇÃO LINEAR (%)	1,65
950°C	ABSORÇÃO (%)	16,38
	POROSIDADE APARENTE (%)	30,28
	MASSA ESPECIFICA APARENTE (g/cm³)	1,85
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	142,88
	COR: BEGE	1.0 Y R 7/6
	PERDA AO FOGO (%)	8,46
	RETRAÇÃO LINEAR (%)	6,95
1050°C	ABSORÇÃO (%)	5,06
	POROSIDADE APARENTE (%)	11,59
	MASSA ESPECIFICA APARENTE (g/cm²)	2,29
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	314,57
	COR: BEGE ESCURO	1.0 Y R 7/6
	PERDA AO FOGO (%)	9,35
	RETRAÇÃO LINEAR (%)	9,57
1250°C	ABSORÇÃO (%)	0,7
	POROSIDADE APARENTE (%)	1,6
	MASSA ESPECÍFICA APARENTE (g/em³)	2,44
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	372,90
	COR: BEGE ESCURO	10 YR 7/6
	PERDA AO FOGO (%)	9,56
	RETRAÇÃO LINEAR (%)	11,53
1450°C	ABSORÇÃO (%)	4,50
	POROSIDADE APARENTE (%)	11,50
	MASSA ESPECIFICA APARENTE (g/cm²)	2,35
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	306,60

TABELA 3,9
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-05

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA	2.5 R 4/N
110°C	UMIDADE DE MOLDAGEM (%)	21,17
	RETRAÇÃO LINEAR (%)	2,42
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	69,37
	COR: MARROM CLARO	7.5 YR 6/4
	PERDA DE FOGO (%)	7,80
	RETRAÇÃO LINEAR (%)	0,80
700°C	ABSORÇÃO (%)	17,25
	POROSIDADE APARENTE (%)	31,23
	MASSA ESPECIFICA APARENTE (g/cm²)	1,81
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	108,30
	COR: BEGE	10 Y R 7/4
	PERDA AO FOGO (%)	8,85
	RETRAÇÃO LINEAR (%)	2,10
950°C	ABSORÇÃO (%)	15,96
	POROSIDADE APARENTE (%)	29,83
	MASSA ESPECIFICA APARENTE (g/cm³)	1,87
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	115,73
<del></del>	COR: BEGE	10 Y R 7/6
	PERDA AO FOGO (%)	9,13
	RETRAÇÃO LINEAR (%)	8,83
1050°C	ABSORÇÃO (%)	0,99
	POROSIDADE APARENTE (%)	2,39
	MASSA ESPECIFICA APARENTE (g/on ³ )	2,45
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	373,35
	COR: BEGE ESCURO	10 Y R 7/6
	PERDA AO FOGO (%)	9,89
	RETRAÇÃO LINEAR (%)	9,58
1250°C	ABSORÇÃO (%)	0.60
1250 €	POROSIDADE APARENTE (%)	1,56
	MASSA ESPECIFICA APARENTE (g/em²)	2,44
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	332,00
	COR: BEGE ESCURO	5 Y R 5/8
	PERDA AO FOGO (%)	10,56
	RETRAÇÃO LINEAR (%)	12,36
1450°C	ABSORÇÃO (%)	0,07
1430°C	POROSIDADE APARENTE (%)	1,20
	MASSA ESPECIFICA APARENTE (g/cm²)	2,32
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	2,52
	TEMBRO DE ROFTORA A FERNAO (KWEIII )	230,00

11

TABELA 3.10
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-06

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA ESCURO	5 Y R 4/1
110°C	UMIDADE DE MOLDAGEM (%)	18,88
	RETRAÇÃO LINEAR (%)	3,30
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	103,52
·	COR: MARROM CLARO	7.5 Y R 6/4
	PERDA DE FOGO (%)	7,26
	RETRAÇÃO LINEAR (%)	0,55
700°C	ABSORÇÃO (%)	14,61
	POROSIDADE APARENTE (%)	27.64
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,89
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	155,35
•	COR: BEGE	10 YR 8/4
	PERDA AO FOGO (%)	7,95
	RETRAÇÃO LINEAR (%)	1.56
950°C	ABSORÇÃO (%)	13,83
	POROSIDADE APARENTE (%)	26,68
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,93
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	266,13
	COR: BEGE	7.5 Y R 7/6
	PERDA AO FOGO (%)	8,24
	RETRAÇÃO LINEAR (%)	7,26
1050°C	ABSORÇÃO (%)	1,48
	POROSIDADE APARENTE (%)	3,54
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,39
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	407,69
	COR: BEGE ESCURO	5 Y R 5/8
	PERDA AO FOGO (%)	9,35
	RETRAÇÃO LINEAR (%)	9,95
1250°C	ABSORÇÃO (%)	1,40
	POROSIDADE APARENTE (%)	2,90
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,23
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	288,00
	COR:	SQ)
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

TABELA 3.11
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-07

TEMPERATURA	PROPRIEDADES	RESULTADOS
110°C	COR: MARROM ESCURO	5 Y R 3/1
	UMIDADE DE MOLDAGEM (%)	22,61
	RETRAÇÃO LINEAR (%)	5.77
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	14,92
<b>70</b> 0°€	COR: MARROM CLARO	7.5 Y R 4/9
	PERDA DE FOGO (%)	4,61
	RETRAÇÃO LINEAR (%)	0,10
	ABSORÇÃO (%)	7,73
	POROSIDADE APARENTE (%)	15,91
	MASSA ESPECIFICA APARENTE (g/cm³)	2,06
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	144,54
	COR: ROSA ESCURO	5 Y R 6/6
	PERDA AO FOGO (%)	9,80
	RETRAÇÃO LINEAR (%)	2,97
950°C	ABSORÇÃO (%)	9,47
	POROSIDADE APARENTE (%)	17,59
	MASSA ESPECIFICA APARENTE (g/cm²)	1,86
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	196,70
W	COR: MARROM CLARO	2.5 Y R 5/6
	PERDA AO FOGO (%)	10,22
	RETRAÇÃO LINEAR (%)	5,50
1050°C	ABSORÇÃO (%)	13,17
	POROSIDADE APARENTE (%)	20,13
	MASSA ESPECIFICA APARENTE (g/cm³)	1,53
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	246,77
	COR:	SQ
	PERDA AO FOGO (%)	sQ
	RETRAÇÃO LINEAR (%)	SQ
1250°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
160 0	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm²)	sQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: SQ = Superqueimou com expansão, considerar para ensaio de agregado leve.

TABELA 3.12
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-08

TEMPERATURA	PROPRIEDADES	RESULTADOS
110°C	COR: CINZA CLARO	5 Y R 5/I
	UMIDADE DE MOLDAGEM (%)	19,74
	RETRAÇÃO LINEAR (%)	6,47
	TENSÃO DE RUPTURA A FLEXÃO (Kgi/cm²)	127,90
700°C	COR: MARROM ALARANJADO	7.5 Y R 5/6
	PERDA DE FOGO (%)	6,23
	RETRAÇÃO LINEAR (%)	0,37
	ABSORÇÃO (%)	12,46
	POROSIDADE APARENTE (%)	24,08
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,93
	TENSÃO DE RUPTURA A FLEXÃO (Kg/em²)	196,28
	COR: LARANJA	5 Y R 6/8
	PERDA AO FOGO (%)	6,30
	RETRAÇÃO LINEAR (%)	2,55
950°C	ABSORÇÃO (%)	7,38
	POROSIDADE APARENTE (%)	14,98
	MASSA ESPECIFICA APARENTE (g/cm³)	2,03
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	340,35
	COR: LARANJA ESCURO	5 Y R 5/8
	PERDA AO FOGO (%)	6,99
	RETRAÇÃO LINEAR (%)	2,50
1050°C	ABSORÇÃO (%)	3,16
	POROSIDADE APARENTE (%)	7,02
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,22
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	343,89
	COR: VERMELHO ALARANJADO	IO R 5/8
	PERDA AO FOGO (%)	7,50
	RETRAÇÃO LINEAR (%)	2,48
1250°C	ABSORÇÃO (%)	2,60
	POROSIDADE APARENTE (%)	1,10
	MASSA ESPECIFICA APARENTE (g/cm³)	2,44
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	289,80
	COR.	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou.

TABELA 3.13
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-09

TEMPERATURA	PROPRIEDADES	RESULTADOS
110°C	COR: VERMELHA	10 R 5/6
	UMIDADE DE MOLDAGEM (%)	24,45
	RETRAÇÃO LINEAR (%)	4,17
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	37,14
700°C	COR: MARROM AVERMELHADO	7.5 R 5/6
	PERDA DE FOGO (%)	2,26
	RETRAÇÃO LINEAR (%)	- 1,06
	ABSORÇÃO (%)	14,08
	POROSIDADE APARENTE (%)	26,30
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,87
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	63,29
	COR: VERMELHO	10 R 5/8
	PERDA AO FOGO (%)	7,71
	RETRAÇÃO LINEAR (%)	1,58
950°C	ABSORÇÃO (%)	18,36
, , , , , , , , , , , , , , , , , , ,	POROSIDADE APARENTE (%)	33,74
	MASSA ESPECIFICA APARENTE (g/cm²)	1,87
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	103,85
···································	COR: VERMELHO ALARANJADO	10 R 5/8
	PERDA AO FOGO (%)	7,79
	RETRAÇÃO LINEAR (%)	2,65
1050°C	ABSORÇÃO (%)	16,66
1000 €	POROSIDADE APARENTE (%)	31,50
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,89
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	122,52
	COR: VERMELHO ESCURO	2.5 YR 4/10
	PERDA AO FOGO (%)	8,25
	RETRAÇÃO LINEAR (%)	5,60
12500C	ABSORÇÃO (%)	1,30
1250°C	POROSIDADE APARÊNTE (%)	2,80
	MASSA ESPECIFICA APARENTE (g/cm²)	2,11
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	189,30
	COR:	SQ
	PERDA AO FOGO (%)	SQ SQ
	RETRAÇÃO LINEAR (%)	SQ SQ
4.4000	ABSORÇÃO (%)	SQ SQ
1450°C		
	POROSIDADE APARENTE (%)	SQ SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	\$Q

TABELA 3.14

RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-10

TEMPERATURA	PROPRIEDADES	RESULTADOS
110°C	COR: MARROM ACIZENTADO	7.5 YR 5/2
	UMIDADE DE MOLDAGEM (%)	19,34
	RETRAÇÃO LINEAR (%)	5,89
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	116,28
700°C	COR: MARROM ALARANJADO	7.5 Y R 5/6
	PERDA DE FOGO (%)	5,69
	RETRAÇÃO LINEAR (%)	0,31
	ABSORÇÃO (%)	11,35
	POROSIDADE APARENTE (%)	23,05
	MASSA ESPECIFICA APARENTE (g/cm²)	1,95
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	188,27
	COR: LARANJA	2.5 Y R 6/8
	PERDA AO FOGO (%)	5,88
	RETRAÇÃO LINEAR (%)	1,66
950°C	ABSORÇÃO (%)	9,26
	POROSIDADE APARENTE (%)	19,07
	MASSA ESPECIFICA APARENTE (g/cm³)	2,06
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	251,34
	COR: MARROM ESCURO	2.5 Y R 5/6
	PERDA AO FOGO (%)	5,97
	RETRAÇÃO LINEAR (%)	5,92
1050°C	ABSORÇÃO (%)	3,28
	POROSIDADE APARENTE (%)	7,61
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,32
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	364,64
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1250°C	ABSORÇÃO (%)	SQ
· -	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
1400 C	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou.

TABELA 3.15
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-11

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM CLARO	2.5 Y R 5/2
110°C	UMIDADE DE MOLDAGEM (%)	20,08
	RETRAÇÃO LINEAR (%)	4,54
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	71,55
	COR: BEGE	10 Y R 7/4
	PERDA DE FOGO (%)	4,17
	RETRAÇÃO LINEAR (%)	0,01
700°C	ABSORÇÃO (%)	34,69
	POROSIDADE APARENTE (%)	43,91
	MASSA ESPECIFICA APARENTE (g/cm²)	1,74
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	104,38
	COR: BEGE	7.5 Y R 7/6
	PERDA AO FOGO (%)	4,74
	RETRAÇÃO LINEAR (%)	0,91
950°C	ABSORÇÃO (%)	11,86
	POROSIDADE APARENTE (%)	23,27
	MASSA ESPECIFICA APARENTE (g/cm²)	1,96
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	170,48
	COR: LARANJA	2.5 Y R 618
	PERDA AO FOGO (%)	5,66
	RETRAÇÃO LINEAR (%)	5,47
1050°C	ABSORÇÃO (%)	4,09
	POROSIDADE APARENTE (%)	9,13
	MASSA ESPECIFICA APARENTE (g/cm³)	2,23
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	288,13
	COR: BEGE ESCURO	10 Y R 7/6
	PERDA AO FOGO (%)	6,37
	RETRAÇÃO LINEAR (%)	8,43
1250°C	ABSORÇÃO (%)	5,06
1200 0	POROSIDADE APARENTE (%)	4,30
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,44
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	323,00
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	sQ
1450°C	ABSORÇÃO (%)	SQ
1100 C	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ SQ

OBS.: Superqueimou.

TABELA 3.16
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-12

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM CLARO	2.5 YR 6/6
110°C	UMIDADE DE MOLDAGEM (%)	24,46
	RETRAÇÃO LINEAR (%)	3,90
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	42,08
	COR: MARROM CLARO	2.5 Y R 5/6
	PERDA DE FOGO (%)	4.30
	RETRAÇÃO LINEAR (%)	2,11
700°C	ABSORÇÃO (%)	16,06
	POROSIDADE APARENTE (%)	29,31
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,83
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	61,63
	COR: LARANJA	2.5 Y R 6/8
	PERDA AO FOGO (%)	7,71
	RETRAÇÃO LINEAR (%)	1,90
950°C	ABSORÇÃO (%)	17,43
	POROSIDADE APARENTE (%)	32,47
	MASSA ESPECIFICA APARENTE (g/cm³)	1,86
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	111,02
	COR: LARANJA ESCURO	2.5 Y R 5/8
	PERDA AO FOGO (%)	7,74
	RETRAÇÃO LINEAR (%)	3,47
1050°C	ABSORÇÃO (%)	14,89
	POROSIDADE APARENTE (%)	28,79
	MASSA ESPECIFICA APARENTE (g/cm²)	1,93
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	133,75
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1250°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	sQ sQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

TABELA 3.17
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA IHS-16

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA ESCURO	10 YR 4/2
110°C	UMIDADE DE MOLDAGEM (%)	20,77
	RETRAÇÃO LINEAR (%)	3,88
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	117,48
	COR: MARROM CLARO	7.5 YR 6/6
	PERDA DE FOGO (%)	7,19
	RETRAÇÃO LINEAR (%)	0,33
700°C	ABSORÇÃO (%)	14,82
	POROSIDADE APARENTE (%)	27,89
	MASSA ESPECIFICA APARENTE (g/cm²)	1,89
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	141,67
	COR: BEGE	7.5 Y R 7/8
	PERDA AO FOGO (%)	8,09
	RETRAÇÃO LINEAR (%)	2,00
950°C	ABSORÇÃO (%)	10,44
	POROSIDADE APARENTE (%)	20,72
	MASSA ESPECIFICA APARENTE (g/cm³)	1,99
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	360,96
· · · · · · · · · · · · · · · · · · ·	COR: MARROM AVERMELHADO	5 Y R 4/8
	PERDA AO FOGO (%)	8,09
	RETRAÇÃO LINEAR (%)	5,72
1050°C	ABSORÇÃO (%)	1,53
	POROSIDADE APARENTE (%)	3,41
ŕ	MASSA ESPECIFICA APARENTE (g/cm³)	2,20
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	314,09
	COR: MARROM ESCURO	2.5 Y R 5/6
	PERDA AO FOGO (%)	9,36
	RETRAÇÃO LINEAR (%)	7,66
1250°C	ABSORÇÃO (%)	0,60
	POROSIDADE APARENTE (%)	1,35
	MASSA ESPECIFICA APARENTE (g/cm³)	2,44
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	284,70
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
-	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou com expansão, considerar para ensaio de agregado leve.

TABELA 3.18

RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA EST-02

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: BRANCO	5 R P 9/2
11 <b>0°C</b>	UMIDADE DE MOLDAGEM (%)	28,07
	RETRAÇÃO LINEAR (%)	3,00
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/em²)	18,00
	COR: BRANCO	5 R P 9/2
	PERDA DE FOGO (%)	5,25
	RETRAÇÃO LINEAR (%)	0,88
700°C	ABSORÇÃO (%)	10,27
	POROSIDADE APARENTE (%)	20,08
	MASSA ESPECIFICA APARENTE (g/cm²)	1,55
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	62,27
	COR: RSA CLARO	10 R 9/2
	PERDA AO FOGO (%)	7,69
	RETRAÇÃO LINEAR (%)	1,43
950°C	ABSORÇÃO (%)	22,13
	POROSIDADE APARENTE (%)	36,51
	MASSA ESPECIFICA APARENTE (g/cm²)	1,65
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	119,57
	COR: CREME CLARO	7.5 Y R 9/2
	PERDA AO FOGO (%)	7,87
	RETRAÇÃO LINEAR (%)	4,46
1050°C	ABSORÇÃO (%)	15,93
	POROSIDADE APARENTE (%)	29,54
	MASSA ESPECIFICA APARENTE (g/cm³)	1,85
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	186,19
	COR:	ND
	PERDA AO FOGO (%)	ND
	RETRAÇÃO LINEAR (%)	ND
1250°C	ABSORÇÃO (%)	ND
3337 0	POROSIDADE APARENTE (%)	ND
	MASSA ESPECÍFICA APAREN'IE (g/cm²)	ND
	TENSCREMEPTURA A FLEXÃO (Kg/cm²)	ND
	COR	ND
	PERDA AO FOGO (%)	ND
	RETRAÇÃO LINEAR (%)	NI)
1450°C	ABSORÇÃO (%)	ND
	POROSIDADE APARENTE (%)	ND
	MASSA ESPECIFICA APARENTE (g/cm²)	ND
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	ND

OBS.: ND = Não determinado, por insuficiência de amostra.

TABELA 3.19
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA LAG-01

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA ESVERDEADO	2.5 Y 5/2
110°C	UMIDADE DE MOLDAGEM (%)	17,32
	RETRAÇÃO LINEAR (%)	5,52
	TENSÃO DE RUPTURA A FLEXÃO (Kgť/cm²)	90,07
	COR: MARROM CLARO	2.5 Y R 5/6
	PERDA DE FOGO (%)	0,22
	RETRAÇÃO LINEAR (%)	5,42
700°C	ABSORÇÃO (%)	7,07
	POROSIDADE APARENTE (%)	14.63
	MASSA ESPECIFICA APARENTE (g/cm²)	2,07
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	119,37
	COR: LARANJA	2.5 Y 6/8
	PERDA AO FOGO (%)	6,10
	RETRAÇÃO LINEAR (%)	2,06
950°C	ABSORÇÃO (%)	7,31
	POROSIDADE APARENTE (%)	15,29
	MASSA ESPECIFICA APARENTE (g/cm³)	2,09
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	438.13
	COR: MARROM AVERMELHADO	2.5 Y R 4/8
	PERDA AO FOGO (%)	6,29
	RETRAÇÃO LINEAR (%)	3,78
1050°C	ABSORÇÃO (%)	0,42
1000	POROSIDADE APARENTE (%)	0,74
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,77
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	346,52
	COR: MARROM ESCURO	2.5 Y R 5/6
	PERDA AO FOGO (%)	7,50
	RETRAÇÃO LINEAR (%)	4,88
1250°C	ABSORÇÃO (%)	0,66
1230 C	POROSIDADE APARENTE (%)	1,10
	MASSA ESPECIFICA APARENTE (g/cm²)	2,05
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	258,90
	COR:	sQ
	PERDA AO FOGO (%)	sQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
1450 C	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	TENSAO DE ROTTORA A PLEAMO (REMIT)	.30

OBS.: Superqueimou.

1.

**TABELA 3.20** RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA LAG-02

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA ESCURO	5 YR 4/1
110°C	UMIDADE DE MOLDAGEM (%)	20,09
	RETRAÇÃO LINEAR (%)	4,40
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	91,92
	COR: BEGE ESCURO	5 Y R 7/4
	PERDA DE FOGO (%)	7,53
	RETRAÇÃO LINEAR (%)	0,04
700°C	ABSORÇÃO (%)	17,55
	POROSIDADE APARENTE (%)	31,05
	MASSA ESPECIFICA APARENTE (g/cm²)	1,77
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	127,00
	COR: LARANJA ESCURO	5 Y R 7/8
	PERDA AO FOGO (%)	7,80
	RETRAÇÃO LINEAR (%)	2,35
950°C	ABSORÇÃO (%)	9,98
	POROSIDADE APARENTE (%)	19,12
	MASSA ESPECIFICA APARENTE (g/cm²)	1,92
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	181,71
	COR:	5 YR 5/8
	PERDA AO FOGO (%)	8,62
	RETRAÇÃO LINEAR (%)	5,37
1050°C	ABSORÇÃO (%)	2,62
	POROSIDADE APARENTE (%)	4,15
	MASSA ESPECIFICA APARENTE (g/cm³)	1,58
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	207,33
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1250°C	ABSORÇÃO (%)	SQ
1200 0	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	COR: MARROM ESCURO	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
CATO C	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou com expansão considerar para ensaio de agregado leve.

TABELA 3.21
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA LAG-05

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM ACIZENTADO	7.5 Y R 5/2
110°C	UMIDADE DE MOLDAGEM (%)	21,02
	RETRAÇÃO LINEAR (%)	5,22
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	114,00
	COR: MARROM CLARO	2.5 YR 5/6
	PERDA DE FCGO (%)	5,76
	RETRAÇÃO LINEAR (%)	- 0,30
700°C	ABSORÇÃO (%)	14,10
	POROSIDADE APARENTE (%)	27,20
	MASSA ESPECIFICA APARENTE (g/cm²)	1,93
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	2.5 Y R 6/8
	COR: LARANJA	6,83
	PERDA AO FOGO (%)	5,95
	RETRAÇÃO LINEAR (%)	8,54
950°C	ABSORÇÃO (%)	17,05
	POROSIDADE APARENTE (%)	2,00
	MASSA ESPECIFICA APARENTE (g/cm²)	338,01
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	10 R 4/6
	COR: MARROM AVERMELHADO	6,90
	PERDA AO FOGO (%)	6,64
	RETRAÇÃO LINEAR (%)	4,96
1050°C	ABSORÇÃO (%)	7,88
	POROSIDADE APARENTE (%)	1,67
	MASSA ESPECIFICA APARENTE (g/cm³)	232,54
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	2.5 Y R 4/10
	COR: MARROM ESCURO	7,56
	PERDA AO FOGO (%)	7,62
	RETRAÇÃO LINEAR (%)	1,20
1250°C	ABSORÇÃO (%)	0,51
	POROSIDADE APARENTE (%)	1,91
	MASSA ESPECIFICA APARENTE (g/cm²)	102,90
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou com expansão, considerar para ensaio de agregado leve.

Į,

**TABELA 3.22** RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA LAG-06

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM ESVERDEADO	7.5 Y R 5/2
110°C	UMIDADE DE MOLDAGEM (%)	15,81
	RETRAÇÃO LINEAR (%)	4,77
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	116,04
	COR: ROSA ESCURO	5 Y R 5/6
	PERDA DE FOGO (%)	4,53
	RETRAÇÃO LINEAR (%)	-0,38
700°C	ABSORÇÃO (%)	12,48
	POROSIDADE APARENIE (%)	24,40
	MASSA ESPECIFICA APARENTE (g/cm²)	1,96
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	90,34
	COR: LARANJA ESCURO	2.5 Y R 5/8
	PERDA AO FOGO (%)	5,50
	RETRAÇÃO LINEAR (%)	2,37
950°C	ABSORÇÃO (%)	6,47
	POROSIDADE APARENTE (%)	13,59
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,11
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	313,86
· -	COR: MARROM AVERMELHADO	2.5 Y R 4/8
	PERDA AO FOGO (%)	5,63
	RETRAÇÃO LINEAR (%)	5,50
1050°C	ABSORÇÃO (%)	3,14
	POROSIDADE APARENTE (%)	6,27
	MASSA ESPECIFICA APARENTE (g/cm³)	2,00
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	451,31
	COR: MARROM ESCURO	7.5 Y R 5/6
	PERDA AO FOGO (%)	6,23
	RETRAÇÃO LINEAR (%)	3,45
1250°C	ABSORÇÃO (%)	9,60
	POROSIDADE APARENTE (%)	20,20
	MASSA ESPECIFICA APARENTE (g/cm²)	2,10
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	210,70
<del></del>	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	sQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

TABELA 3.23
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA LAG-07

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: ROSA ESCURO	10 R 6/6
110°C	UMIDADE DE MOLDAGEM (%)	27,10
	RETRAÇÃO LINEAR (%)	2,88
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	14,91
	COR: ROSA ESCURO	10 R 6/8
	PERDA DE FOGO (%)	6,11
	RETRAÇÃO LINEAR (%)	-0,42
700°C	ABSORÇÃO (%)	23,20
	POROSIDADE APARENTE (%)	38,49
	MASSA ESPECIFICA APARENTE (g/cm²)	1,66
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	23,60
	COR: LARANJA	2.5 YR 6/10
	PERDA AO FOGO (%)	6,94
	RETRAÇÃO LINEAR (%)	2,85
950°C	ABSORÇÃO (%)	22,60
	POROSIDADE APARENTE (%)	38,02
	MASSA ESPECIFICA APARENTE (g/cm²)	1,68
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	132,18
	COR: LARANJA	2.5 Y R 6/8
	PERDA AO FOGO (%)	7,03
	RETRAÇÃO LINEAR (%)	4,28
1050°C	ABSORÇÃO (%)	14,56
	POROSIDADE APARENTE (%)	28,06
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,93
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	179,41
	COR: MARROM AVERMELHADO	2.5 Y R 4/8
	PERDA AO FOGO (%)	7,06
	RETRAÇÃO LINEAR (%)	5,20
1250°C	ABSORÇÃO (%)	13,70
	POROSIDADE APARENTE (%)	26,70
	MASSA ESPECIFICA APARENTE (g/cm³)	1,95
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	44,80
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	sQ

TABELA 3.24
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-01

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM ESCURO	5 Y R 3/1
110°C	UMIDADE DE MOLDAGEM (%)	18,86
	RETRAÇÃO LINEAR (%)	6,38
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	125,51
	COR: MARROM ESCURO	7,5 Y R 5/6
	PERDA DE FOGO (%)	3,61
	RETRAÇÃO LINEAR (%)	1,26
700°C	ABSORÇÃO (%)	10,06
	POROSIDADE APARENTE (%)	20,13
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,01
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	138,90
	COR: LARANJA ESCURO	2.5 YR 5/10
	PERDA AO FOGO (%)	6,33
	RETRAÇÃO LINEAR (%)	1,65
950°C	ABSORÇÃO (%)	9,32
	POROSIDADE APARENTE (%)	18,29
	MASSA ESPECIFICA APARENTE (g/cm²)	1,96
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	239,49
	COR: VERMELHO ESCURO	2.5 Y R 4/10
	PERDA AO FOGO (%)	6,56
	RETRAÇÃO LINEAR (%)	2,55
1050°C	ABSORÇÃO (%)	18,25
	POROSIDADE APARENTE (%)	27,87
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,53
	TENSÃO DE RUPIURA A FLEXÃO (Kg/em²)	146,33
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1250°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm²)	SQ
-	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	sQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ
OBS.: Superqueimo		

OBS.: Superqueimou

TABELA 3.25
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-03

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM ESCURO	7.5 Y R 4/2
110°C	UMIDADE DE MOLDAGEM (%)	20,06
	RETRAÇÃO LINEAR (%)	7,10
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	103,98
	COR: MARROM ALARANJADO	7.5 Y R 5/6
	PERDA DE FOGO (%)	5,85
	RETRAÇÃO LINEAR (%)	0,54
700°C	ABSORÇÃO (%)	17,84
	POROSIDADE APARENTE (%)	32,72
	MASSA ESPECIFICA APARENTE (g/cm²)	1,83
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	108,69
	COR: LARANJA	2.5 YR 6/8
	PERDA AO FOGO (%)	6,67
	RETRAÇÃO LINEAR (%)	1,10
950°C	ABSORÇÃO (%)	12,40
	POROSIDADE APARENTE (%)	23,58
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,90
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	138,12
	COR: MARROM AVERMELHADO	2.5 Y R 4/8
	PERDA AO FOGO (%)	6,70
	RETRAÇÃO LINEAR (%)	3,22
1050°C	ABSORÇÃÖ (%)	9,60
	POROSIDADE APARENTE (%)	19,33
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,03
	TENSÃO DE RUPTURA A FLEXÃO (Kg/em²)	164,54
	COR: VERMELHO ESCURO	2.5 Y R 4/10
	PERDA AO FOGO (%)	6,76
	RETRAÇÃO LINEAR (%)	4,06
1250°C	ABSORÇÃO (%)	10,09
1225 0	POROSIDADE APARENTE (%)	21,36
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,13
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	115,87
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
1430 €	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ SQ

OBS.: Superqueimou

TABELA 3.26
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-05

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: CINZA ESCURO	5 Y R 4/1
110°C	UMIDADE DE MOLDAGEM (%)	15,17
	RETRAÇÃO LINEAR (%)	3,96
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	70,95
	COR: MARROM CLARO	7.5 Y R 6/4
	PERDA DE FOCIO (%)	6,16
	RETRAÇÃO LINEAR (%)	0,09
700°C	ABSORÇÃO (%)	15,23
	POROSIDADE APARENTE (%)	28,35
	MASSA ESPECIFICA APARENTE (g/cm³)	1,86
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	47,11
	COR: BEGE ESCURO	5 Y R 7/8
	PERDA AO FOGO (%)	6,81
	RETRAÇÃO LINEAR (%)	1,36
950°C	ABSORÇÃO (%)	15,21
	POROSIDADE APARENTE (%)	28,62
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,88
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	102,68
	COR: LARANJA	5 Y R 6/8
	PERDA AO FOGO (%)	6,89
	RETRAÇÃO LINEAR (%)	2,01
1050°C	ABSORÇÃO (%)	14,84
	POROSIDADE APARENTE (%)	28,14
	MASSA ESPECIFICA APARENTE (g/cm³)	1,90
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	100,02
	COR: MARROM ESCURO	2.5 Y R 4/2
	PERDA AO FOGO (%)	8,50
,	RETRAÇÃO LINEAR (%)	7,60
1250°C	ABSORÇÃO (%)	8,40
	POROSIDADE APARENTE (%)	18,00
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,18
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	69,00
	COR:	sQ
	PERDA AO FOGO (%)	sQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

TABELA 3.27
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-06

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: VERMELHO ALARANJADO	10 R 5/8
110°C	UMIDADE DE MOLDAGEM (%)	30,72
	RETRAÇÃO LINEAR (%)	2,82
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	15,26
	COR: LARANJA ESCURO	2.5 Y R 5/10
	PERDA DE FOGO (%)	6,96
	RETRAÇÃO LINEAR (%)	3,74
700°C	ABSORÇÃO (%)	27,98
	POROSIDADE APARENTE (%)	43,90
	MASSA ESPECIFICA APARENTE (g/cm²)	1,57
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	15,07
	COR: LARANJA	2.5 Y R 6/8
	PERDA AO FOGO (%)	7,35
	RETRAÇÃO LINEAR (%)	3,70
950°C	ABSORÇÃO (%)	24,35
	POROSIDADE APARENTE (%)	39,87
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,64
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	82,48
	COR: LARANJA ESCURO	2.5 Y R 5/10
	PERDA AO FOGO (%)	7,39
	RETRAÇÃO LINEAR (%)	6,95
1050°C	ABSORÇÃO (%)	12,89
	POROSIDADE APARENTE (%)	26,45
	MASSA ESPECIFICA APARENTE (g/cm³)	2,05
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	134,84
	COR: MARROM ESCURO	2.5 Y R 4/2
	PERDA AO FOGO (%)	8,01
	RETRAÇÃO LINEAR (%)	7,73
1250°C	ABSORÇÃO (%)	13,00
	POROSIDADE APARENTE (%)	25,00
	MASSA ESPECIFICA APARENTE (g/cm²)	2,00
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	147,80
	COR:	ND
	PERDA AO FOGO (%)	ND
	RETRAÇÃO LINEAR (%)	ND
1450°C	ABSORÇÃO (%)	ND
. <del>-</del>	POROSIDADE APARENTE (%)	ND
	MASSA ESPECÍFICA APARENTE (g/cm²)	ND
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	ND

OBS.: ND = Não Determinado

TABELA 3.28

RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-07

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: MARROM	7.5 Y R 4/2
110°C	UMIDADE DE MOLDAGEM (%)	21,49
	RETRAÇÃO LINEAR (%)	5,72
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm³)	128,12
	COR: MARROM CLARO	7.5 YR 6/6
	PERDA DE FOGO (%)	5,09
	RETRAÇÃO LINEAR (%)	0,02
700°C	ABSORÇÃO (%)	12,63
	POROSIDADE APARENTE (%)	24,98
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,98
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	105,94
	COR: LARANJA	5 Y R 6/8
	PERDA AO FOGO (%)	6,42
	RETRAÇÃO LINEAR (%)	1,24
950°C	ABSORÇÃO (%)	9,82
	POROSIDADE APARENTE (%)	19,56
	MASSA ESPECIFICA APARENTE (g/cm²)	1,99
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	269,86
	COR: VERMELHO ALARANJADO	2.5 Y R 4/10
	PERDA AO FOGO (%)	6,47
	RETRAÇÃO LINEAR (%)	3,56
1050°C	ABSORÇÃO (%)	5,50
	POROSIDADE APARENTE (%)	11,39
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,07
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	251,82
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1250°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECÍFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	sQ
	COR:	SQ
	PERDA AO FOJO (%)	SQ
	RETRAÇÃO LINEAR (%)	sQ
1450°C	ABSORÇÃO (%)	SQ
-	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm²)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

**TABELA 3.29** RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-08

TEMPERATURA	PROPRIEDADES	RESULTADOS						
	COR: MARROM	7.5 Y R 4/2						
110°C	UMIDADE DE MOLDAGEM (%)	17,61						
	RETRAÇÃO LINEAR (%)	6,81						
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	110,25						
	COR: MARROM CLARO	7.5 Y R 6/4						
	PERDA DE FOGO (%)	4,70						
	RETRAÇÃO LINEAR (%)	- 0,13						
700°C	ABSORÇÃO (%)	12,73						
	POROSIDADE APARENTE (%)	24,21						
	MASSA ESPECIFICA APARENTE (g/cm³)	1,90						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	65,31						
	COR: LARANJA ESCURO	2.5 Y R 5/8						
	PERDA AO FOGO (%)	5,45						
	RETRAÇÃO LINEAR (%)	1,40						
950°C	ABSORÇÃO (%)	12,21						
	POROSIDADE APARENTE (%)	23,76						
	MASSA ESPECIFICA APARENTE (g/cm²)	1,95						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	127,34						
	COR: VERMELHOESCURO	2.5 Y R 4/10						
	PERDA AO FOGO (%)	5,61						
	RETRAÇÃO LINEAR (%)	2,11						
1050°C	ABSORÇÃO (%)	12,86						
	POROSIDADE APARENTE (%)	24,96						
	MASSA ESPECIFICA APARENTE (g/cm³)	1,94						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	142,09						
	COR:	sQ						
	PERDA AO FOGO (%)	SQ						
	RETRAÇÃO LINEAR (%)	sQ						
1250°C	ABSORÇÃO (%)	SQ						
	POROSIDADE APARENTE (%)	SQ						
	MASSA ESPECÍFICA APARENTE (g/cm³)	SQ						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ						
	COR:	SQ						
	PERDA AO FOGO (%)	SQ						
	RETRAÇÃO LINEAR (%)	SQ						
1450°C	ABSORÇÃO (%)	SQ						
ē	POROSIDADE APARENTE (%)	SQ						
	MASSA ESPECIFICA APARENTE (g/cm³)	sQ						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ						

OBS.: Superqueimou

**TABELA 3.30** RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-10

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR: ROSA ESCURO	2.5 Y R 7/6
110°C	UMIDADE DE MOLDAGEM (%)	20,66
	RETRAÇÃO LINEAR (%)	3,06
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	14,38
	COR: LARANJA	2.5 Y R 6/8
	PERDA DE FOGO (%)	6,78
	RETRAÇÃO LINEAR (%)	- 0,06
700°C	ABSORÇÃO (%)	21,54
	POROSIDADE APARENTE (%)	36,46
	MASSA ESPECIFICA APARENTE (g/cm²)	1,69
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	29,44
** W. H. T.	COR: ROSA ESCURO	2.5 Y R 7/6
	PERDA AO FOGO (%)	7,13
	RETRAÇÃO LINEAR (%)	0,52
950°C	ABSORÇÃO (%)	20,49
	POROSIDADE APARENTE (%)	35,66
	MASSA ESPECÍFICA APARENTE (g/cm²)	1,74
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	64,12
	COR: ROSA ESCURO	2.5 Y R 7/6
	PERDA AO FOGO (%)	7,91
	RETRAÇÃO LINEAR (%)	3,42
1050°C	ABSORÇÃO (%)	15,88
	POROSIDADE APARENTE (%)	29,83
	MASSA ESPECIFICA APARENTE (g/cm³)	1,88
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	113,18
-	COR: MARROM ESCURO	2.5 Y R 4/2
	PERDA AO FOGO (%)	9,0
	RETRAÇÃO LINEAR (%)	6,70
1250°C	ABSORÇÃO (%)	0,50
	POROSIDADE APARENTE (%)	1,20
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,12
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	202,40
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou com fusão e perda de forma.

TABELA 3.31
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA ITB-11

TEMPERATURA	PROPRIEDADES	RESULTADOS						
	COR: VERMELIO ESCURO	10 R 4/6						
110°C	UMIDADE DE MOLDAGEM (%)	21,65						
	RETRAÇÃO LINEAR (%)	4,99						
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm ⁻ )	74,33						
	COR: VERMELHO ALARANJADO	10 R 48						
	PERDA DE FOGO (%)	9,53						
	RETRAÇÃO LINEAR (%)	0,81						
700°C	ABSORÇÃO (%)	18,52						
	POROSIDADE APARENTE (%)	34,15						
	MASSA ESPECIFICA APARENTE (g/cm²)	1,84						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	121,93						
	COR: VERMELHO ALARANJADO	10 R 5-8						
	PERDA AO FOGO (%)	10,11						
	RETRAÇÃO LINEAR (%)	2,45						
950°C	ABSORÇÃO (%)	16,27						
	POROSIDADE APARENTE (%)	31,70						
	MASSA ESPECIFICA APARENTE (g/cm²)	1,95						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	161,66						
	COR: VERMELHO ALARANJADO	10 R 5/8						
	PERDA AO FOGO (%)	10,12						
	RETRAÇÃO LINEAR (%)	5,51						
1050°C	ABSORÇÃO (%)	9,61						
	POROSIDADE APARENTE (%)	21,04						
	MASSA ESPECIFICA APARENTE (g/cm²)	2,19						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	247,65						
· · · · · · · · · · · · · · · · · · ·	COR: VERMELHO ESCURO	2.5 YR 5/10						
	PERDA AO FOGO (%)	12,09						
	RETRAÇÃO LINEAR (%)	8,57						
1250°C	ABSORÇÃO (%)	4,40						
	POROSIDADE APARENTE (%)	1,00						
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,44						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	308,91						
	COR:	SQ						
	PERDA AO FOGO (%)	SQ						
	RETRAÇÃO LINEAR (%)	SQ						
1450°C	ABSORÇÃO (%)	SQ						
	POROSIDADE APARENTE (%)	SQ						
	MASSA ESPECIFICA APARENTE (g/cm²)	sQ						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	\$Q						

1.1

TABELA 3.32
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA BT-09

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR. CINZA ESCURO	5 Y R 4/1
110°C	UMIDADE DE MOLDAGEM (%)	16,69
	RETRAÇÃO LINEAR (%)	6,65
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	89,66
	COR: BEGE	10 Y R 7/4
	PERDA DE FOGO (%)	4,53
	RETRAÇÃO LINEAR (%)	- 0,05
700°C	ABSORÇÃO (%)	12,19
	POROSIDADE APARENTE (%)	23,12
	MASSA ESPECIFICA APARENTE (g/cm²)	1,90
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	82,33
	COR: LARANJA	2.5 Y R 6/8
	PERDA AO FOGO (%)	5,42
	RETRAÇÃO LINEAR (%)	2,79
9 <b>50</b> °C	ABSORÇÃO (%)	7,70
	POROSIDADE APARENTE (%)	16,09
	MASSA ESPECÍFICA APARENTE (g/cm²)	2,12
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	187,41
	COR: MARROM CLARA	2.5 Y R 4/10
	PERDA AO FOGO (%)	5,44
	RETRAÇÃO LINEAR (%)	0,18
1050°C	ABSORÇÃO (%)	6,32
	PÖROSIDADE APARENTE (%)	13,60
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,15
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	245,31
	COR: MARROM ESCURA	2.5 Y R 4/2
	PERDA AO FOGO (%)	6,03
	RETRAÇÃO LINEAR (%)	1,87
1250°C	ABSORÇÃO (%)	0,70
	POROSIDADE APARENTE (%)	1,75
	MASSA ESPECÍFICA APARENTE (g/cm³)	2,39
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	288,00
	COR:	SQ
	PERDA AO FOGO (%)	SQ
	RETRAÇÃO LINEAR (%)	SQ
1450°C	ABSORÇÃO (%)	SQ
	POROSIDADE APARENTE (%)	SQ
	MASSA ESPECIFICA APARENTE (g/cm³)	SQ
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	SQ

OBS.: Superqueimou

**TABELA 3.33** RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA BT-16

TEMPERATURA	PROPRIEDADES	RESULTADOS
	COR. MARROM ESCURO	5 Y R 3/1
110°C	UMIDADE DE MOLDAGEM (%)	20,29
	RETRAÇÃO LINEAR (%)	3,50
	TENSÃO DE RUPTURA A FLEXÃO (Kgi/cm²)	75,02
	COR: BEGE	7.5 Y R 8/6
	PERDA DE FOGO (%)	5,06
	RETRAÇÃO LINEAR (%)	0,65
700°C	ABSORÇÃO (%)	16,33
	POROSIDADE APARENTE (%)	29,07
	MASSA ESPECIFICA APARENTE (g/cm³)	1,79
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	82,03
	COR: BEGE	7.5 Y R 8/6
	PERDA AO FOGO (%)	6,98
	RETRAÇÃO LINEAR (%)	0,83
950°C	ABSORÇÃO (%)	17,21
	POROSIDADE APARENTE (%)	30,96
	MASSA ESPECIFICA APARENTE (g/cm²)	1,80
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	99,60
	COR: BEGE	7.5 Y R 7/6
	PERDA AO FOGO (%)	7,10
	RETRAÇÃO LINEAR (%)	3,52
1050°C	ABSORÇÃO (%)	12,25
	POROSIDADE APARENTE (%)	23,91
	MASSA ESPECIFICA APARENTE (g/cm³)	1,95
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	142,00
<u></u>	COR: BEGE ESCURO	10 Y R 8/6
	PERDA AO FOGO (%)	9,35
	RETRAÇÃO LINEAR (%)	4,06
1250°C	ABSORÇÃO (%)	12,98
	POROSIDADE APARENTE (%)	24,02
	MASSA ESPECIFICA APARENTE (g/cm²)	1,97
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	163,54
	COR: BEGE ESCURO	10 Y R 8/6
	PERDA AO FOGO (%)	9,56
	RETRAÇÃO LINEAR (%)	4,15
1450°C	ABSORÇÃO (%)	13,00
	POROSIDADE APARENTE (%)	25,63
	MASSA ESPECIFICA APARENTE (g/cm²)	2,01
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	144,76

TABELA 3.34
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA CB-01

TEMPERATURA								
3	COR: CINZA ESCURO	10 Y R 4/1						
110°C	UMIDADE DE MOLDAGEM (%)	23,56						
	RETRAÇÃO LINEAR (%)	6.56						
	TENSÃO DE RUPTURA A FLEXÃO (Kgt/cm²)	183,46						
	COR: MARROM CLARO	7.5 Y R 6/6						
	PERDA DE FOGO (%)	6,07						
	RETRAÇÃO LINEAR (%)	0,20						
700°C	ABSORÇÃO (%)	13,52						
	POROSIDADE APARENTE (%)	25,52						
	MASSA ESPECIFICA APARENTE (g/cm³)	1,89						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	179,11						
	COR: BEGE	7.5 Y R 7/6						
	PERDA AO FOGO (%)	7,16						
	RETRAÇÃO LINEAR (%)	1,25						
950°C	ABSORÇÃO (%)	10,27						
	POROSIDADE APARENTE (%)	19.64						
	MASSA ESPECIFICA APARENTE (g/cm²)	1,91						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	329,60						
	COR: MARROM AVERMELHADO	2.5 Y R 3/8						
	PERDA AO FOGO (%)	7,26						
	RETRAÇÃO LINEAR (%)	5,30						
1050°C	ABSORÇÃO (%)	16,28						
	POROSIDADE APARENTE (%)	21,95						
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,36						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	168,68						
	COR: MARROM ESCURO	2.5 Y R 6/6						
	PERDA AO FOGO (%)	9,36						
	RETRAÇÃO LINEAR (%)	8,57						
1250°C	ABSORÇÃO (%)	4,4						
1200 0	POROSIDADE APARENTE (%)	9,9						
	MASSA ESPECÍFICA APARENTE (g/cm³)	1,97						
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	127,09						
	COR:	SQ						
	PERDA AO FOGO (%)	SQ						
	RETRAÇÃO LINEAR (%)	SQ						
1450°C	ABSORÇÃO (%)	SQ						
1100 C	POROSIDADE APARENTE (%)	SQ						
	MASSA ESPECÍFICA APARENTE (g/cm²)	SQ						
	TENSÃO DE RUPTURA À FLEXÃO (Kg/em²)	SQ SQ						

TABELA 3.35
RESULTADOS DE ENSAIOS FÍSICOS-MECÂNICOS EM CORPOS DE PROVA MOLDADOS POR EXTRUSÃO NA AMOSTRA CB-02

TEMPERATURA	PROPRIEDADES	RESULTADOS
, , , , , , , , , , , , , , , , , , ,	COR: CREME	7.5 Y R 6/4
110°C	UMIDADE DE MOLDAGEM (%)	17,86
	RETRAÇÃO LINEAR (%)	3,78
	TENSÃO DE RUPTURA A FLEXÃO (Kgf/cm²)	24,68
	COR: ROSA ESCURO	5 Y R 6/6
	PERDA DE FOGO (%)	5,66
	RETRAÇÃO LINEAR (%)	- 0,24
700°C	ABSORÇÃO (%)	18,54
	POROSIDADE APARENTE (%)	32,92
	MASSA ESPECIFICA APARENTE (g/cm²)	1,78
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	43,58
	COR: BEGE	5 Y R 7/8
	PERDA AO FOGO (%)	6,19
	RETRAÇÃO LINEAR (%)	0,24
950°C	ABSORÇÃO (%)	18,00
	POROSIDADE APARENTE (%)	32,32
	MASSA ESPECIFICA APARENTE (g/cm²)	1,80
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	88,54
	COR: BEGE	5 Y R 7/8
	PERDA AO FOGO (%)	6,33
	RETRAÇÃO LINEAR (%)	1,29
1050°C	ABSORÇÃO (%)	12,43
	POROSIDADE APARENTE (%)	24,28
	MASSA ESPECIFICA APARENTE (g/cm³)	1,95
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	142,14
	COR: BEGE ESCURO	5 Y R 7/8
	PERDA AO FOGO (%)	7,42
	RETRAÇÃO LINEAR (%)	1,86
1250°C	ABSORÇÃO (%)	14,02
	POROSIDADE APARENTE (%)	26,31
	MASSA ESPECIFICA APARENTE (g/cm³)	1,99
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	156,07
. <del></del>	COR: MARROM ESCURO	2.5 Y R 6/6
	PERDA AO FOGO (%)	9,02
	RETRAÇÃO LINEAR (%)	2,56
1450°C	ABSORÇÃO (%)	12,91
_	POROSIDADE APARENTE (%)	24,03
	MASSA ESPECÍFICA APARENTE (g/em²)	2,00
	TENSÃO DE RUPTURA A FLEXÃO (Kg/cm²)	147,55

TABELA 3.37 - CLASSIFICAÇÃO DAS ARGILAS DA REGIÃO CENTRO-SUL NOS SUB-GRUPOS CERAMICOS COM BASE NAS FAIXAS DE VARIAÇÕES DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS (3)

Amostra	Grupo Cerámico	Tipo	°C	700	950	°C			12	50°C			145	50°C		Usos				
	Provável	Cerâmico	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	Prováveis
	Cerâmica Branca	Filito	S	I	N	S	S	1	1	S	S	N	N	N	S	N	N	N	N	-
}		Plástica Refrat.	S	1	I	N	N	ī	N	N	S	N	N	N	N	N	N	I	N	-
IHS-01	Cerâmica Vermelha	Tijolos	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Tijolos
		Telhas	И	N	N	N	N	N	N	N	N	N	N	И	N	N	И	N	N	Telhas
		Ladrilhos	N	N	N	N	N	N	N	N	Ν	S	N	N	N	N	N	N	N	-
IHS-03	Cerâmica Vermelha	Tijolos	S	N	И	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
		Telhas	s	N	N	N	N	N	N	N	N	N	N	N	N	sQ	sQ	SQ	SQ	Telhas
		Ladrilhos	s	N	И	N	N	N	N	N	N	S	N	N	N	sQ	sQ	SQ	SQ	-
	Cerâmica Branca	Caulim	S	ī	I	1	I	Ī	ī	S	S	1	1	S	S	1	N	N	N	•
		Filito	S	N	N	S	N	1	N	E	N	N	N	И	И	$ \mathbf{s} $	S	S	И	-
		Plástica Refrat.	S	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Plástica Refratária
HS-04																				
	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	N	N	N	N	S	S	N	N	Tijolos
		Telhas	S	N	N	N	N	N	N	N	N	N	N	N	N	S	S	N	И	Telhas
		Ladrilhos	S	N	N	N	N	N	N	N	N	N	N	N	N	S	S	N	N	Ladrilhos
	Cerâmica Branca	Caulim	S	I	I	S	S	I	Ī	S	S	1	I	S	S	1	1	N	N	-
		Filito	N	1	N	S	S	1	N	S	S	N	N	N	И	N	N	S	1	-
		Plástica Refrat.	S	N	N	N	N	N	N	N	И	1	N	И	И	И	И	N	N	Plástica Refratária
IHS-05															-					
	Cerâmica Vermelha	Tijolos	N	N	N	N	N	N	N	N	N	N	N	N	N	И	N	N	N	Tijolos
į		Telhas	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Telhas
		Ladrilhos	N	N	N	N	N	N	N	N	N	N	N	N	И	N	N	N	N	Ladrilhos
IHS-06	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Tijolos
		Telhas	S	N	N	N	N	N	N	N	И	N	N	N	N	N	N	N	N	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	S	N	N	N	SQ	SQ	SQ	SQ	-

RL - Retração Linear

- COMPARAÇÃO C/ A FAIXA DE VARIAÇÃO DO CARACTERÍSTICO CERÂMICO DAS ARGILAS PADRÕES BRASILEIRAS

TR - Tensão de Ruptura

N - Valor normal dentro da faixa específica

AA - Absorção de Água

S - Valor superior a faixa específica

PA - Porosidade Aparente

I - Valor inferior a faixa específica

ME - Massa Específica

ND - Dado não determinado

SQ - Super-Queima

TABELA 3.37 - CLASSIFICAÇÃO DAS ARGILAS DA REGIÃO CENTRO-SUL NOS SUB-GRUPOS CERÂMICOS COM BASE NAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS (3)

Amostra	Grupo Cerâmico	Tipo	°C	700	°C			950	950 °C				50°C		Usos					
	Provável	Cerâmico	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	Provávels
IHS-07 (*)	Ceramica Vermelha	Tijolos	N	N	N	N	N	N	N	N	И	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
ĺ		Telhas	N	N	И	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	•
1HS-08	Ceramica Vermelha	Tijolos	s	Ñ	N	N	N	N	N	N	S	N	Ň	N	N	SQ	SQ	SQ	SQ	Tijolos
ļ		Telhas	s	N	N	N	N	N	N	N	S	N	И	N	N	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	N	N	И	N	N	N	N	s	s	N	И	N	SQ	SQ	SQ	SQ	
IHS-09	Cerâmica Vermelha	Tijolos	N	N	N	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
		Telhas	N	N	N	N	N	N	И	N	N	N	N	И	N	SQ	SQ	SQ	SQ	Telhas
ļ.		Ladrilhos	N	N	N	N	N	N	N	N	N	S	N	N	N	sQ	SQ	SQ	SQ	•
IHS-10	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	И	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
		Telhas	s	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	-
DHS-11	Cerâmica Vermelha	Tijolos	s	S	S	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
		Telhas	s	S	s	И	N	N	И	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	s	s	N	N	И	И	N	N	s	N	N	N	SQ	SQ	SQ	SQ	-
IHS-12	Cerâmica Vermelha	Tijolos	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
j		Telhas	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
ł		Ladrilhos	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	sQ	SQ	SQ	-
IHS-16 (*)	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	S	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
ļ		Telhas	s	N	N	N	N	N	N	N	S	N	N	N	N	SQ	sQ	SQ	SQ	Telhas
1		Ladrilhos	s	N	N	N	N	N	N	N	s	N	N	N	N	SQ	SQ	SQ	SQ	Ladrilhos

RL - Retração Linear

- COMPARAÇÃO C/ A FAIXA DE VARIAÇÃO DO CARACTERÍSTICO CERÂMICO DAS ARGILAS PADRÕES BRASILEIRAS

TR - Tensão de Ruptura

AA - Absorção de Água

PA - Porosidade Aparente

•

ME - Massa Específica

N - Valor normal dentro da faixa específica

S - Valor superior a faixa específica

I - Valor inferior a faixa específica

ND - Dado não determinado

SQ - Super-Queima

TABELA 3.37 - CLASSIFICAÇÃO DAS ARGILAS DA REGIÃO CENTRO-SUL NOS SUB-GRUPOS CERÂMICOS COM BASE NAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS (3)

Amostra Grupo Cerâmico Ti			°C	700	°C			950	°C			12	50°C			145	0°C	Usos		
	Provável	Cerâmico	TR	ĀĀ	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	Prováveis
	Cerâmica Branca	Caulim	S	1	ī	N	N	N	N	N	S	ND	ND	ND	ND	ND	ND	ND	ND	-
		Filito	N	N	N	N	S	N	N	N	s	ND	ND	ND	CIN	ND	ND	ND	ND	-
EST-02		Plástica Refrat.	N	N	N	N	N	N	N	N	N	ND	ND	ND	ND	ND	ND	ND	ND	-
<u> </u>	Cerâmica Vermelha	Tijolos	I	N	N	I	N	N	N	N	N	ND	ND	ND	ND	ND	ND	ND	ND	•
1		Telhas	I	N	N	1	t	N	N	N	I	ND	ND	ND	ND	ND	ND	ND	ND	-
		Ladrilhos	I	N	N	ì	ı	N	N	N	I	ND	ND	ND	ND	ND	ND	ND	ND	-
LAG-01	Cerâmica Vermelha	Tijolos	N	N	N	N	N	Ñ	N	N	S	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
i		Telhas	N	N	N	N	N	N	N	И	S	N	N	N	N	SQ	sQ	SQ	SQ	Telhas
j		Ladrilhos	N	N	N	N	N	N	N	N	S	N	N	N	N	SQ	SQ	SQ	SQ	Ladrilhos
LAG-02 (*)	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
i		Telhas	S	N	N	N	N	N	N	N	И	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	-
LAG-05 (*)	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	S	N	1	N	N	SQ	SQ	SQ	SQ	Tijolos
1		Telhas	S	И	N	N	N	N	N	N	S	N	I	N	N	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	S	N	N	Ν	N	N	N	N	S	S	I	N	N	SQ	sQ	SQ	SQ	-
LAG-06 (*)	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	S	N	N	N	N	SQ	SQ	SQ	SQ	-
1		Telhas	S	N	N	N	N	N	N	N	S	N	N	N	N	SQ	SQ	SQ	SQ	-
·		Ladrilhos	s	N	N	N	N	N	N	N	S	S	N	N	N	SQ	SQ	SQ	SQ	•
LAG-07	Cerâmica Vermelha	Tijolos	Ī	N	N	N	1	N	N	N	N	N	N	N	S	SQ	SQ	SQ	SQ	Tijolos
i		Telhas	I	N	N	N	I	N	N	N	N	N	N	N	S	SQ	sQ	SQ	SQ	Telhas
		Ladrithos	I	N	N	И	I	N	N	N	N	s	N	N	S	SQ	SQ	SQ	SQ	Ladrilhos

RL - Retração Linear

- COMPARAÇÃO C/ A FAIXA DE VARIAÇÃO DO CARACTERÍSTICO CERÂMICO DAS ARGILAS PADRÕES BRASILEIRAS

TR - Tensão de Ruptura

N - Valor normal dentro da faixa específica

AA - Absorção de Água

S - Valor superior a faixa específica

PA - Porosidade Aparente

I - Valor inferior a faixa específica

ME - Massa Específica

ND - Dado não determinado

SQ - Super-Queima

TABELA 3.37 - CLASSIFICAÇÃO DAS ARGILAS DA REGIÃO CENTRO-SUL NOS SUB-GRUPOS CERÂMICOS COM BASE NAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS (3)

Amostra	Grupo Cerâmico	Tipo	°C	700 °C 950 °C		1250°C 1450°C							•	Usos						
	Provável	Cerâmico	TR	AA	PA	ME	TR	ĀĀ	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	Prováveis
ITB-01	Cerâmica Vermelha	Tijotos	S	N	N	N	N	N	N	Ν	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
		Telhas	s	N	N	N	N	И	N	И	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	S	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	•
ITB-03	Cerámica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
-		Telhas	S	N	N	N	N	Ν	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	s	N	N	N	sQ	SQ	SQ	SQ	-
ITB-05	Cerâmica Vermetha	Tijolos	S	N	N	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
		Telhas	S	N	N	N	N	N	Ν	И	N	N	N	N	N	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	s	N	N	N	SQ	SQ	SQ	SQ	•
ITB-06	Cerâmica Vermelha	Tijolos	N	S	S	I	I	N	N	N	N	N	N	N	N	ND	ND	ND	ND	Tijolos
		Telhas	N	s	S	I	1	N	N	N	N	N	N	И	N	ND	ND	ND	ND	Telhas
		Ladrilhos	N	s	s	I	1	N	N	N	N	s	И	N	N	ND	ND	ND	ND	•
ITB-07	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
		Telhas	S	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	S	N	N	N	N	s	N	N	N	SQ	SQ	sQ	SQ	SQ	SQ	SQ	SQ	•
I'I'B-08	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Tijolos
		Telhas	s	N	N	N	И	N	N	И	N	SQ	SQ	SQ	SQ	SQ	SQ	SQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	S	N	N	N	SQ	SQ	sQ	SQ	SQ	SQ	SQ	SQ	-
ITB-10	Cerâmica Vermelha	Tijolos	1	И	N	N	N	N	Ñ	Ν	N	N	N	N	N	SQ	SQ	SQ	SQ	*
}		Telhas	I	N	N	N	И	N	N	N	I	N	N	N	N	sQ	SQ	SQ	SQ	-
		Ladrilhos	1	N	N	N	N	s	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	-

RL - Retração Linear

- COMPARAÇÃO C/ A FAIXA DE VARIAÇÃO DO CARACTERÍSTICO CERÂMICO DAS ARGILAS PADRÕES BRASILEIRAS

TR - Tensão de Ruptura

AA - Absorção de Água

PA - Porosidade Aparente

ME - Massa Especifica

N - Valor normal dentro da faixa específica

S - Valor superior a faixa específica

I - Valor inferior a faixa específica

ND - Dado não determinado

SQ - Super-Queima

TABELA 3,37 - CLASSIFICAÇÃO DAS ARGILAS DA REGIÃO CENTRO-SUL NOS SUB-GRUPOS CERÂMICOS COM BASE NAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS (3)

Amostra	Grupo Cerâmico Provável	Tipo	°C	700 °C			950 °C			12 50°C				145	0°C			Usos		
		Cerâmico	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	AA	PA	ME	TR	Prováveis
ITB-11	Cerâmica Vermelha	Tijolos	s	N	N	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
İ		Telhas	s	N	N	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	Telhas
Ì		Ladrilhos	s	N	N	N	N	N	N	N	N	s	N	N	N	sQ	SQ	SQ	SQ	•
BT-09	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	N	N	N	Ñ	SQ	SQ	SQ	SQ	Tijolos
		Telhas	s	N	N	N	N	N	N	N	Ν	N	N	И	N	SQ	SQ	sQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	N	N	N	N	SQ	SQ	SQ	SQ	-
	Cerâmica Branca	Filito	S	N	N	S	N	N	N	S	N	S	S	I	N	S	S	N	I	•
		Plástica Refrat.	N	И	N	N	N	N	N	s	Ν	S	s	I	N	s	S	N	I	-
BT-16																		Į		
	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	N	N	N	N	N	S	S	N	I	Tijolos
		Telhas	s	N	N	N	N	N	N	N	N	N	N	N	N	S	S	N	I	Telhas
		Ladrilhos	s	N	N	N	N	N	N	N	N	S	N	N	N	s	s	N	I	•
CB-01	Cerâmica Vermelha	Tijolos	S	N	N	N	N	N	N	N	S	N	N	N	N	SQ	SQ	SQ	SQ	Tijolos
		Telhas	S	N	N	N	N	N	N	N	S	N	N	N	N	SQ	SQ	sQ	SQ	Telhas
		Ladrilhos	s	N	N	N	N	S	N	N	S	S	N	И	N	SQ	SQ	SQ	SQ	-
	Cerâmica Branca	Filito	N	1	Ν	S	N	1	N	S	N	S	S	S	S	S	S	N	I	-
		Plástica Refrat.	s	N	N	И	N	И	N	N	N	N	N	N	N	N	N	N	И	Plástica Refrat.
CB-02																				
	Cerâmica Vermelha	Tijolos	N	N	N	И	1	N	N	N	N	N	N	N	N	S	S	N	I	Tijolos
		Telhas	1	N	N	N	I	N	N	N	N	N	N	N	N	s	s	N	I	-
		Ladrilhos	N	N	N	N	ı	N	N	N	N	S	N	И	N	s	S	N	I	-

RL - Retração Linear

- COMPARAÇÃO C/ A FAIXA DE VARIAÇÃO DO CARACTERÍSTICO CERÂMICO DAS ARGILAS PADRÕES BRASILEIRAS

TR - Tensão de Ruptura

AA - Absorção de Água

PA - Porosidade Aparente

ME - Massa Especifica

N - Valor normal dentro da faixa específica

S - Valor superior a faixa específica

I - Valor inferior a faixa específica

NI) - Dado não determinado

SQ - Super-Queima

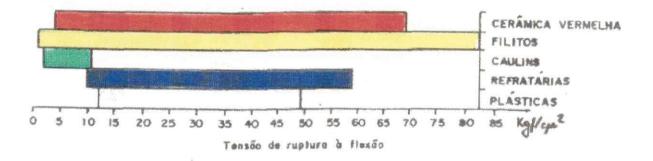
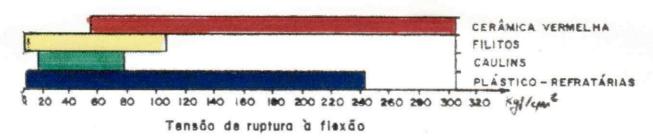
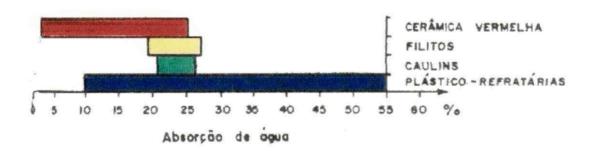
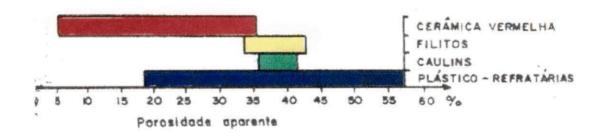






FIG.316- GRÁFICO DA FAIXA DE VARIAÇÃO DA TENSÃO DE RUPTURA À FLEXÃO DAS ARGILAS PADRÕES BRASILEIRAS APÓS A SECAGEM A 110°C.(3)







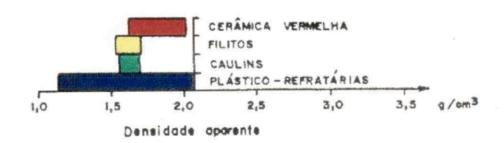
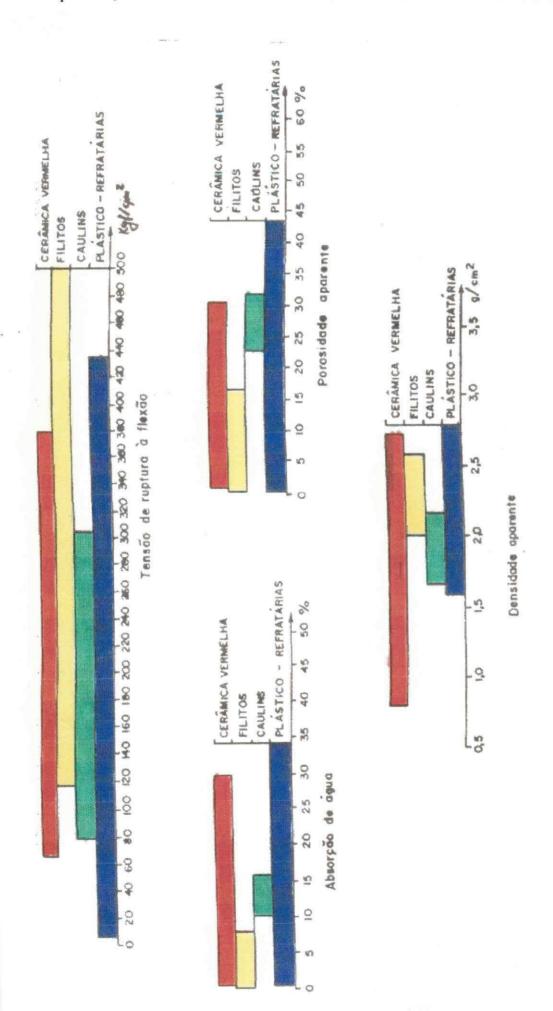
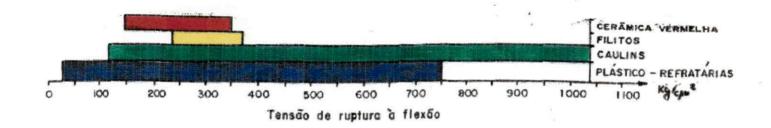





FIG. 3.17 - GRÁFICOS DAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS APÓS QUEIMA A 950° (3)



CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS APÓS QUEIMA A 1250º (3) FIG. 3.18 - GRÁFICOS DAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS





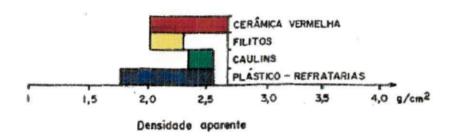



FIG. 3.19— GRÁFICOS DAS FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS APÓS QUEIMA A 1450° (3).

físico-mecânicos. Conseguiu-se conformação, nas amostras designadas pelos símbolos: IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, LAG-07, ITB-01, ITB-03, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, CB-01, CB-02, BT-09, BT-16 e EST-02.

Todas as amostras apresentaram cores características para uso em cerâmica vermelha no estado cru (seco a 110°C), exceto a amostra EST-02 que apresentou-se branca. Para as queimas a 700°C, 950°C e 1050°C, obteve-se as mesmas características anteriores, ou seja, do estado seco a 110°C. Após queima a 1250°C, as amostras IHS-07, IHS-10, IHS-12, LAG-02, ITB-01, ITB-08 e ITB-11 superqueimaram e, as amostras IHS-06, IHS-08, IHS-09, IHS-11, IHS-16, LAG-05, LAG-06, LAG-07, ITB-03, ITB-05, ITB-06, ITB-07, ITB-10, BT-09, CB-01 apresentaram indícios de superqueima e, após queima a 1450°C as amostras IHS-01, IHS-04, IHS-05, BT-16 e CB-02 apresentaram indícios de superqueima.

#### b) ARGILAS PARA CERÂMICA BRANCA

As argilas para cerâmica branca apresentam após secagem a 110°C e queima a 950°C cores branca, creme, rosa, cinza, em tonalidades claras. Após queima a 1250°C que é a temperatura aproximada de queima dos produtos de cerâmica branca, as argilas devem apresentarem cores brancas, contudo são toleráveis cores como cinza clara e creme clara dada a tendência atual para massas ligeiramente escuras em lugar do branco tradicional. Após queima a 1450°C as cores podem ser branca, creme, cinza ou marrom com variação de tonalidade. Das amostras estudadas, as argilas IHS-01, IHS-02, IHS-03, IHS-04, IHS-06, IHS-10, IHS-11, IHS-16, ITB-03, ITB-05, ITB-10, CB-01 e EST-02, apresentaram cores claras ou brancas a 950°C. Após queima a 1250°C, as amostras IHS-04, IHS-05 e EST-02 apresentaram cores claras e as demais cores escuras. Após queima a 1450°C, a argila IHS-04 apresentou cor bege claro, as demais apresentam cores escuras e superqueima.

#### c) <u>ARGILAS PARA FABRICAÇÃO DE MATERIAIS REFRATÁRIOS</u>

As argilas desse grupo apresentaram cores claras a 950°C, 1250°C e 1450°C. As amostras estudadas, designadas pelos símbolos IHS=01, IHS=04, IHS=05, BT=16 e CB=02 apresentaram cores características de materiais com usos prováveis para a fabricação de refratários sílico-aluminosos.

# - CLASSIFICAÇÃO COM BASE NOS RESULTADOS DE LABORATÓRIO DOS CARACTERÍSTICOS CERÂMICOS. EM COMPARAÇÃO COM AS ARGILAS PADRÕES BRASILEIRAS

A seguir são considerados os resultados obtidos para os característicos cerâmicos após secagem e queima.

- Argilas para cerâmica vermelha - As amostras IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, ITB-01, ITB-03, ITB-05, ITB-07, ITB-08, ITB-10, ITB-11, BT-09, BT-16, CB-01 e CB-02 apresentaram característicos cerâmicos adequados para uso em cerâmica vermelha, sendo que algumas dessas amostras apresentaram características superiores a faixa considerada, como é o caso das amostras IHS-01, IHS-02, IHS-03, IHS-04, IHS-06, IHS-08, IHS-10, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, ITB-01, ITB-03, ITB-07, ITB-08, ITB-11, BT-09, BT-16, CB-01 (para tensões de rupturas à 110°C) e as amostras IHS-08, IHS-16, LAG-01, LAG-05, LAG-06, CB-01 (para tensões de ruptura à 950°C). Algumas amostras queimadas a 700°C (tomando-se como comparação os característicos cerâmicos de queima a 950°C), apresentaram características inadequadas quanto ao uso em cerâmica vermelha para essa temperatura de queima, são elas: ITB-06 e ITB-10 (tensão de ruptura a flexão inferior ao mínimo padronizado e absorção de água superior ao limite máximo específico).

- <u>Argilas para materiais refratários</u> - As amostras IHS-01, IHS-04, IHS-05, BT-16 e CB-02 apresentaram característicos cerâmicos adequados para prováveis usos na fabricação de materiais refratários. Como os corpos de prova feitos com estas argilas, suportaram sem deformações os ensaios de queima na temperatura de 1450°C, elas podem ser indicadas para um estudo específico sobre argilas refratárias.

- <u>Argilas para cerâmica branca</u> - As argilas para emprego em cerâmica branca não é possível proceder de maneira idêntica como a utilizada para classificar uma argila para cerâmica vermelha, devido a falta de especificações para padronizar os ensaios tecnológicos visto que, cada industria possui uma massa padrão e geralmente utiliza uma série de métodos de ensaios particulares que serve de base para caracterização das argilas e para sua aplicação em massa cerâmica, estabelecendo os seus próprios valores-limites para as características da massa que definem o processo utilizado industrialmente.

Contudo, as amostras que queimaram com cores claras (IHS-04, IHS-05, IHS-06, BT-16 e EST-02), possuem característicos cerâmicos de argilas que podem provavelmente ser utilizadas como matéria prima para a indústria de cerâmica branca, como argilas essencialmente plástica.

### 4.2.2 ENSAIOS COMPLETO DE ARGILAS PARA CERÂMICA VERMELHA

Os valores encontrados para os característicos cerâmicos dos corpos de prova, secos a 110°C e após queima, encontram-se nas Tabelas 3.6 a 3.35.

Os valores encontrados foram comparados com os valores limites estabelecidos pela coordenação de materiais cerâmicos do CEPED, que estão contidos na Tabela 4.4 podendo-se estabelecer as considerações que se seguem sobre as argilas estudadas.

TABELA 4.1

## FAIXAS DE VARIAÇÃO DOS CARACTERÍSTICOS CERÂMICOS DAS ARGILAS PADRÕES BRASILEIRAS APÓS QUEIMA EM DIVERSAS TEMPERATURAS

C	CERÂMI	CA VER	MELHA		ARGIL	A PLÁS	TICA RE	FRATAF	RIA
QUEIMAS	110°C	950°C	1250°C	1450°C	QUEIMAS	110°C	950°C	1250°C	1450°C
TENSÃO DE	3 - 70	50 - 305	60 - 380	150 - 350	TENSÃO DE	10 - 60	2 - 245	5 - 430	25 - 750
RUPTURA					RUPTURA				
Kgf/cm ²		}			Kgf/cm ²			ĺ	
ABSORÇÃO DE	•	3 - 25	0 - 30	0 - 2,5	ABSORÇÃO	-	10 - 55	1 - 35	0 - 20
ÁGUA %			<u> </u>		DE ÁGUA %				
POROSIDADE	-	5 - 42	1 - 30	0 - 3,0	POROSIDADE	-	19 - 60	1 - 53	1 - 38
APARENTE %					APARENTE %				
MASSA	-	1,6 - 2,4	0,8 - 2,8	2 - 2,7	MASSA	-	1,2 - 2,2	1,6 - 2,8	1,7 - 2,6
ESPECÍFICA					ESPECÍFICA				
APARENTE					APARENTE				
g/cm³					g/cm³				
CA	ULINS	PRIMÁI	RIOS		FILITOS				
QUEIMAS	110°C	950°C	1250°C	1450°C	QUEIMAS	110°C	950°C	1250°C	1450°C
TENSÃO DE	1 - 11	18 - 80	80 - 300	120 - 1000	TENSÃO DE	10 - 60	2 - 265	5 - 430	25 - 750
RUPTURA					RUPTURA				
Kgf/cm ²					Kgf/cm ²				
ABSORÇÃO DE	-	20 - 26	10-16	0,2 - 3	ABSORÇÃO	•	10 - 55	1 - 35	0 - 20
ÁGUA %					DE ÁGUA %				
POROSIDADE	-	36 - 42	22- 32	2 - 13	POROSIDADE	-	19 - 60	1 - 53	1 - 38
APARENTE %			ļ		APARENTE				
			1		%				
MASSA	-	1,5 - 1,7	1,6 - 2,2	2,3 - 2,6	MASSA	-	1,2 - 2,2	1,6 - 2,8	1,7 - 2,6
ESPECÍFICA					ESPECÍFICA				
APARENTE					APARENTE				
g/cm³		1			g/cm ³	Ì	ŀ		ļ

TABELA 4.4

### VALORES-LIMITES RECOMENDADOS PARA QUE UMA MASSA CERÂMICA POSSA SER UTILIZADA NA FABRICAÇÃO DE TIJOLOS, TELHAS E LADRILHOS DE PISO

Massa Cerâmica	Para tijolos de	Para tijolos	Para telhas	Para ladrilhos e
(Extrudada e Prensada)	alvenaria	furados		piso vermelhos
Tensão de Ruptura de	15 Kgf/cm ²	25 Kgf/cm ²	30 Kgf/cm ²	-
Massa Seca a 110°C				
(mínima)			•	
Tensão de Ruptura da	20 Kgf/cm ²	55 Kgf/cm ²	65 Kgf/cm ²	-
Massa após a queima			Ì	
(mínima)				
Absorção de água após	-	25,0%	20,0%	Abaixo de 1,0%
a queima (máxima)			†	
Cor após a queima	Vermelha	Vermelha	Vermelha	Vermelha sem
				manchas pretas

AMOSTRA IHS-01 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (em 700°C e 950°C) utilizando o processo de moldagem por extrusão. Poderá ser utilizado provavelmente em fabricação de ladrilhos de piso (1250°C).

AMOSTRA IHS-03 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (em 700°C e 950°C).

AMOSTRA IHS-04 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (em 700°C e 950°C). Também poderá ser provavelmente utilizada na fabricação de ladrilhos de piso (1250°C).

AMOSTRA IHS-05 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (em 700°C e 950°C). Também poderá ser provavelmente utilizada na fabricação de ladrilhos de piso (1050°C e 1250°C).

AMOSTRA IHS-06 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (em 700°C e 950°C). Também poderá ser provavelmente utilizada na fabricação de ladrilhos de piso (1250°C).

AMOSTRA IHS-07- Inadequada para uso em cerâmica vermelha. Essa amostra superqueimou (1250°C) com expansão, logo, deverá ser verificada através de ensaios sua utilização para fabricação de agregados leves.

AMOSTRA IHS-08 - Essa amostra terá seu uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA IHS-09 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA IHS-10 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA IHS-11 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (900°C).

AMOSTRA IHS-12 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA IHS-16 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C). Também poderá ser provavelmente utilizada na fabricação de ladrilhos de piso (1250°C). Após queima 1250°C apresentou expansão, devendo ser considerada para ensaios de agregados leve.

AMOSTRA EST-02 - Essa amostra é inadequada para uso provável em cerâmica vermelha.

AMOSTRA LAG-01 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C). Também poderá ser provavelmente utilizada na fabricação de ladrilhos de piso (1050°C e 1250°C).

AMOSTRA LAG-02 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (950°C). Após queima 1250°C apresentou expansão piroplástica, devendo ser considerada através de ensaios sua utilização na fabricação de agregados leve.

AMOSTRA LAG-05 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (950°C). Para queima a 1250°C apresentou expansão, devendo ser considerada através de ensaios seu provável uso na fabricação de agregados leve.

AMOSTRA LAG-06 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (950°C). Para queima a 1250°C apresentou expansão piroplástica, devendo ser considerada através de ensaios seu provável uso na fabricação de agregados leve.

AMOSTRA LAG-07 - Essa amostra é inadequada para uso em cerâmica vermelha.

AMOSTRA ITB-01 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados (700°C e 950°C), telhas e manilhas (700°C e 950°C).

AMOSTRA ITB-03 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA ITB-05 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C). Essa amostra apresentou após queima em 700°C quase nenhuma retração.

AMOSTRA ITB-06 - Essa amostra é inadequada para uso em cerâmica vermelha.

AMOSTRA ITB-07 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA ITB-08 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (950°C).

AMOSTRA ITB-10 - Essa amostra é inadequada para uso em cerâmica vermelha.

AMOSTRA ITB-11 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA BT-09 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (950°C). Também poderá ser provavelmente utilizada na fabricação de ladrilhos de piso (1050°C).

AMOSTRA BT-16 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA CB-01 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (700°C e 950°C).

AMOSTRA CB-02 - Essa amostra terá uso provável em fabricação de tijolos de alvenaria e furados, telhas e manilhas (950°C).

### Conclusões

#### 5. CONCLUSÕES

Os resultados obtidos permitiram concluir que:

#### 5.1 COM RELAÇÃO A ANÁLISE GRANULOMÉTRICA EM PENEIRAS

As amostras podem ser classificadas como de média a dificil desagregação e apresentam pequena quantidade de material grosso(retido na peneira nº 10) e grande quantidades de finos, com exceção da amostra SDI-01.

#### 5.2 COM RELAÇÃO AO LIMITE DE PLASTICIDADE

As amostras são caracterizadas como argitas plásticas com limites de plasticidade (LP) variando na faixa de 14% - 30%.

#### 5.3 COM RELAÇÃO A MASSA ESPECÍFICA REAL

As amostras apresentam massas específicas reais variando na faixa de 2,20 g/cm³ - 2,70 g/cm³.

## 5.4 <u>COM RELAÇÃO A ANÁLISE GRANULOMÉTRICA PELO MÉTODO DO SEDÍGRAFO</u>

- a) As argilas IHS-11, BT-16 e CB-02 enquadram-se nas áreas de distribuição granulométrica ótima para os diversos tipos de produtos acabados de cerâmica vermelha (conforme fig. 3.20 diagrama Heystek. 1964 (2);
- b) O método de ensaio do Sedígrafo, permite calcular a área específica (AE), a partir do diâmetro médio (dm) e massa específica (ρ) segundo a equação (2):

$$dm = 6$$

p.AE

Equação 2 - Determinação do diâmetro médio, referência (2)

- c) De todas as amostras ensaiadas, a argila ITB-01 mostra ser a mais homogênea, visto que seu diâmetro médio e igual ao modal.
- d) Como pode ser observado nos gráficos mas % x diâmetro (µm) a maioria das amostras ensaiadas apresentaram mais da metade do peso das partículas com um diâmetro equivalente abaixo de um mícron. Essa observação é importante tendo em vista que a porção mais ativa da argila está na fração mais fina (especialmente abaixo de 1 mícron) devido a enorme área específica.

#### COM RELAÇÃO A ANÁLISE TERMOGRAVIMÉTRICA

- a) Quase toda perda de massa ocorre em temperatura próxima a 450°C;
- b) As amostras IHS-01; IHS-07, IHS-16, ITB-01, TIB-03, CB-01 e LAG-05 apresentaram uma declividade acentuada nas curvas de perda de massa na faixa 100°C a 230°C evidenciando elevados teores de água de equilíbrio, após secagem;
- c) As argilas têm muitas impurezas que se decompõem individualmente durante o aquecimento, as quais diminuem os efeitos nas temperaturas mais baixas e reduzem a temperatura de formação da fase vítrea (7);
- d) A amostra SDI-01, somente apresentou perda de massa em temperatura superior a 600°C, caracterizando provavelmente a presença de impurezas do tipo CaCO₃ e MgCO₃ cujas decomposições ocorrem em temperaturas superiores a esta;
- e) Devido a total inexistência de dados na literatura nacional, nenhuma conclusão resultante de análise comparativa dos resultados pode ser tirada, esperando-se que determinações sistemáticas de análise termogravimétricas de argilas brasileiras em futuros estudos sejam realizadas possibilitando assim um melhor conhecimento de nossas argilas.
- f) De uma maneira geral, a perda ao fogo é, devido: as águas intercalada, de coordenação e zeolítica, à água de hidroxilas dos argilominerais, aos hidróxidos existentes. Tais como Al (OH)₃ e Fe(OH), aos componentes voláteis de matéria orgânica, sulfetos, sulfatos e carbonatos quando presentes.
- g) O erro relativo da aparelhagem foi de 0,92%, determinado a partir de uma substância com termofase conhecida, no caso específico usou-se o oxalato de cálcio (ver termograma em anexo). Portanto, o erro apresentado na aferição do equipamento esta dentro da faixa de tolerância para o método, concluindo que o resultado foi satisfatório.

#### 5.6 COM RELAÇÃO A IDENTIFICAÇÃO MINERALÓGICA

- a) O método de identificação mineralógica de argilas por análise química fornece informações para a avaliação de seus usos específicos. No entanto essa informação deve ser usada em combinação com as propriedades físicas para uma completa avaliação do uso tecnológico em cerâmica;
- b) A soma dos elementos químicos constituintes das amostras foram superiores a 100%, este fato deve-se: a variações experimentais, aos arredondamentos e ao ferro sempre expresso como ferro trivalente:
- c) De uma maneira genérica, as amostras ensaiadas por análise química apresentaram valores de perda ao fogo superiores aos determinados por análise termogravimétrica. A quantidade de silica, assim como a alumina é bastante variável dentro de uma mesma região. O

teor de Fe₂O₃ não foi superior a 5,66% em todas as amostras estudadas. Os alcalinos aparecem em pequena quantidade na maioria das amostras, e o teor de Na₂O na maioria das vezes foi superior ao K₂O, o que leva a crer terem originado de feldspatos. Os alcalinos terrosos, MgO e CaO, raramente estão presentes, com exceção das amostras IHS-03, IHS-07, ITB-03, ITB-06 e CB-02 que apresentaram teores de CaO variando na faixa de 1,54% a 3,73%. A porcentagem máxima de TiO₂ encontrada foi de 0,49%. Portanto, do ponto de vista químico, os materiais estudados se caracterizam por uma composição silico-aluminosa, pobre em alcalis e ferro;

d) As temperaturas de fusão calculada pela fórmula de Schuen apresentaram valores mais conservadores, quando comparadas com as determinadas pelo método do Diagrama de Fases. E fazendo uma comparação com a queima obtido em temperatura de 1450°C (ensaios físicomecânico) verificou-se que algumas amostras atingiram o ponto de fusão em temperaturas inferiores, isso provavelmente ocorre, devido ao fato das análise não serem completas, o que dificulta formar uma idéia dos constituintes menores ou impurezas presentes, os quais reduzem a temperatura de formação da fase vítrea.

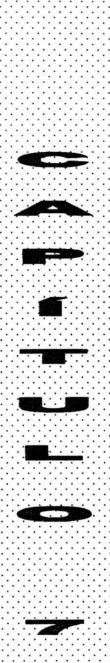
## 5.7 COM RELAÇÃO AOS ENSAIOS PRELIMINARES COM BASE NAS CORES E NOS CARACTERÍSTICOS CERÂMICOS APÓS QUEIMA:

- 5.7.1 Em relação a classificação obtida através das cores tem-se:
- a) cerâmica vermelha IHS-01, IHS-02, IHS-03, IHS-04, IHS-05, IHS-06, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, LAG-07, ITB-01, ITB-03, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, BT-09, CB-01 e CB-02.
- b) cerâmica branca IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-10, IHS-11, IHS-16, ITB-03, ITB-05, ITB-10, CB-01 e EST-02.
  - c) material refratário IHS-01, IHS-04, IHS-05, BT-16 e CB-02.
  - 5.7.2 Em relação a classificação obtida através dos característicos cerâmicos tem-se:
- a) As amostras de argilas IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, ITB-01, ITB-03, ITB-05, ITB-07, ITB-08, ITB-10, ITB-11, BT-09, BT-16, CB-01 e CB-02 apresentaram características cerâmicas que indicam sua provável adequabilidade para uso em Cerâmica Vermelha;
- b) Todas as amostras acima descritas, com exceção das amostras ITB-06 e ITB-10, apresentaram característicos cerâmicos adequados para cerâmica vermelha quando queimados a 700°C:
- c) As amostras IHS-04, IHS-05, IHS-06, BT-16 e EST-02 possuem característicos cerâmicos que podem provavelmente serem utilizadas como matéria prima para a indústria cerâmica branca:

- d) Os corpos de prova feitos com as amostras IHS-01, IHS-04, IHS-05, BT-16 e CB-02 suportaram sem deformações os ensaios de queima na temperatura de 1450°C, indicando sua provável adequabilidade para uso na confecção de materiais refratários;
- e) Tomando como base os característicos cerâmicos concluiu-se que a amostra IHS-01 é classificada como "Filito Cerâmico" e as amostras BT-16, IHS-01, IHS-04, IHS-05, IHS-08 e CB-02 são classificadas como "Argilas Plástica Refratárias;
- f) A amostra IHS-01 segundo a classificação pode ser enquadrada em dois grupos cerâmicos, consequentemente poderá ter dois usos distintos.

#### 5.8 <u>COM RELAÇÃO AOS ENSAIOS COMPLETOS DE ARGILAS PARA CERÂMICA</u> VERMELHA

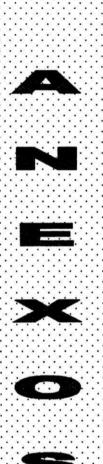
- a) Argilas para tijolos de alvenaria IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, ITB-01, ITB-03, ITB-05, ITB-07, ITB-08, ITB-11, BT-09, BT-16, CB-01 e CB-02.
- b) Argilas para tijolos furados IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, ITB-01, ITB-03, ITB-05, ITB-07, ITB-08, ITB-11, BT-09, BT-16, CB-01 e CB-02.
- c) Argilas para telhas e manilhas IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, LAG-01, LAG-02, LAG-05, LAG-06, ITB-01, ITB-03, ITB-05, ITB-07, ITB-08, ITB-11, BT-09, BT-16, CB-01 e CB-02.
- d) Argilas para ladrilhos de piso IHS-01, IHS-04, IHS-05, IHS-06, IHS-16, LAG-01, e BT-09.
- e) Argilas para usos prováveis em fabricação de agregados leves IHS-07, IHS-16, LAG-02, LAG-05 e LAG-06.


As argilas classificadas como provavelmente adequadas para agregados leves, devem serem submetidas a ensaios complementares completos visando este tipo de aplicação.

## Sugestões para Trabalhos Futuros

#### 6. SUGESTÕES PARA TRABALHOS FUTUROS

Ao concluir este trabalho, sugere-se a realização de futuras pesquisas, tais como:


- identificação dos grupos de argilominerais predominantes nas amostras obtidas de campo, para correlacioná-los com a geologia do local e sua formação;
- correlacionar o produto final com a composição mineralógica e propriedades da massa argilosa, de modo a direcionar a indústria cerâmica para a produção de determinados tipo de produtos;
- estudar um plano de exploração de jazidas mais racional e com menores danos ao meio ambiente;
- estudar a mistura de diferentes solos, não só da mesma jazida, mas também de jazidas diferentes, de modo a determinar a melhor composição de mistura na qualidade do produto.



- 1. GRIM, R. E., (1962). Applied Clay Mineralogy, Editora McGraw Hill Book Company, New York.
- 2. SANTOS, P.S., (1975). Tecnologia de Argilas, Editora Edgard Blucher Ltda, São Paulo, Volume I e II.
- 3. OCORRÊNCIAS DE ARGILAS., (1976). Conselho do Desenvolvimento de Sergipe (CONDESE), SUDENE, Aracaju.
- FERREIRA, H.C., (1972). Caracterização e Aplicações Industriais de Argilas, Caulins e Feldspatos do Nordeste Brasileiro (Estados da Paraíba e Rio Grande do Norte. Tese de Doutorado, DEQ-EPUSP, 352 p.
- MARANHÃO, R.J.L., (1983). Introdução à Pesquisa Mineral, BNB-ETENE (Escritório Técnico de Estudos Econômicos do Nordeste), 2ª Edição, Fortaleza, p. 15-327.
- 6. POSSA, M.V., Luz A.B. (1984). Amostragem para processamento Mineral, DNPM CETEM (Centro de Tecnologia Mineral), Série Tecnologia Mineral nº 30, Brasília, p 1-12.
- 7. NORTON, F.H. (1973). Introdução a Tecnologia Cerâmica, Editora Edgard Bhucher Ltda, São Paulo.
- 8. WSTMAN, A.E.R.; Hugill, H.R., (1930). The Packing of Particles, J. Am. Ceram. Soc., 13, 767.
- 9. TÉCNICAS E MÉTODOS 12., (1981). Métodos de análise química adotados para a certificação de amostras padrão de calcário, IPT, São Paulo.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1984).
   NBR-7181 Análise Granulométrica.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1964).
   NBR-7180 Determinação do Limite de Plasticidade.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1984).
   NBR-6221 Determinação da Massa Específica Real (Método do Picnometro).
- 13. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1997) NBR-6220 - Determinação da Massa Específica Aparente, Absorção de Água e Porosidade Aparente.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1997).
   NBR-13.818 Determinação da Tensão de Ruptura a Flexão, anexo C.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.
   MB-318. Determinação do módulo de ruptura de argilas, argamassas, concretos e cimentos refratários.
- 16. RIES, H., (1927). Clays, Their Ocurrence, Properties and Uses, New York.

- 17. SOUZA, J.V.; SANTOS, P.S. (1964). Ensaios preliminares de argilas visando a utilização cerâmica, cerâmica 11.
- 18. MUNSELL, (1958). Munsell Book of Color, Oposite Hue Edition, Munsell Color Company Inc., Baltimore Maryland.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.
   MB-233 Determinação da unidade de argamassa, argilas, cimentos e concretos refratários.
- 20. Berg. E.A.T., (1966). Alguns característicos cerâmicos e mineralógicos de argilas do Estado do Paraná, cerâmica 12, p. 47-48, 107.
- 21. GOODEN, E.L., SMITH, C.M., (1940). Measuring average particle diameter of powders, Ing. Eng. Chem. Anal., 12, p-79.
- 22 FERREIRA, H.C., (1972). Ensaios de laboratório e especificações para argilas brasileiras, visando usos industriais. Dissertação de Mestrado, DEC EPUSP, São Paulo.
- 23. BRADLEY, W.F.; GRIM, R.E., (1951). High temperature thermal effects of clay and related materials, Ames. Mineral, 36, p-182.
- 24. BARZAGHI, L.; SALGE, A. (1948). Argilas para materiais de construção, Anais Associação Brasileira de Química 7, p-38.
- 25. GRIM, R.E. (1963). Comportamento térmico das argilas, cerâmica 9 (35), 36.
- 26. BENNETT, H.; HAWLEY, W.G. (1958). Methods of silicates analysis, Bret. Ceram. Society, Stoke-on-Trent.
- 27. MORO, S.L.; SANTINI, P. (1966). A análise química e outros ensaios químicos utilizados para o estudo de argilas, cerâmica 12 (47/48), p.203.
- 28. SANTINI, P.; MORO, S.L. (1967). Métodos de análises químicas adotados no IPT, Publicação 771 do Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1997)
   NBR-13817 Placas Cerâmicas para revestimento, classificação.
- 30. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1997).
  NBR-13818 Placas cerâmicas para revestimento, especificações e métodos de ensaio, anexos A, B e C.
- 31. A.S.T.M, Standard Method for Particle Size Distribution By X-Ray Monitoring of Gravity Sedimentation, Designation: C 958-81.
- 32. OPERATOR'S MANUAL (1998). 951 Thermogravimetric Analyzer (TGA), Du Pont Company, Instrument Systems, Concord Plaza, Quillen Bnilding, Wilmington.
- 33. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS.MB-233 Determinação da umidade de argamassa, argilas, cimento e concreto refratários.

- 34. JUNIOR, A.A.; ZAMBOTO, F.B.; JUNIOR, F.P. (1985). Estudo da Viabilidade de utilização de uma solução aquosa de álcool polivinílico (PVA), como meio de suspensão na determinação da distribuição granulométrica de materiais particulados pesados, cerâmica nº 204, vol. XXXIII, p 15-18.
- 35. BOLDRINI, J.L., [ET AL], (1980). Algebra Linear, Hasper e Row do Brasil.
- 36. SPIEGEL, M.R., (1969). Probabilidade e Estatística, Coleção Schann, Editora Livros Técnicos S.A., Rio de Janeiro.
- 37. CORREA, W.L.P., (1985). Caracterização química e mineralógica das argilas da Bacia Alto Tietê. Contribuição a Geologia e a Aplicação Tecnológica. Part I: Geologia Cerâmica, 31 (188).
- 38. OLPHEN, H.V., (1962). An introduction to clay colloid chemistry. First Edition, Interscience Pub. 1.962, vol. 1, pág. 350.
- 39. ESPECIFICAÇÃO TÉCNICA PETROBRAS ES-11-293-432-NMS-04 TIJOLOR REFRATÁRIO E ISOLANTES PARA ZONA DE RADIAÇÃO DO 101-B E CALDEIRAS AUXILIAR.
- 40. DAPPLES, E.B., (1959). Basic Geology Science and Engineering, John Willey e Sons, Inc., New York.
- 41. MAKENZIE, R.C., (1959). The classifications and nomenclature of clay minerals, clay miner. Bull, 4, 52.
- 42. FERREIRA, H.C., CHEN, T.J., ZANDONADI, A.R.E SOUZA SANTOS, P., Correlações entre áreas específicas determinadas por diversos métodos, de caulins do Nordeste Brasileiro (Estados da Paraíba e do Rio Grande do Norte).
- 43. GRIM, R.E., (1963). Propriedades de argilas, cerâmica 9, (35), 6.
- 44. ASSOCIAÇÃO INTERNATIONAL POUR L'ÉTUDE DES ARGILES, Clays and Clay Mineral (1966), vol. 14, N.31.
- 45. ALEXANDRE, J. (1997). Caracterização geológica geotécnica das argilas cerâmicas do município de Campos de Goytacazes Tese de Mestrado. CCT UENF.
- 46. ANGELIRI, F.B., (1945). Considerações sobre a plasticidade das argilas na fabricação de manilhas, Anais ABQ 5, 21.
- 47. SANTOS, P.S., (1966). Argilas para fabricação de agregados leve, cerâmica 12 (47 48), 281.
- 48. SOUZA, J.V., (1966). Estudo de algumas argilas e caulins do Recôncavo do Estado da Bahia, Cerâmica 12 (47-48), 23.
- 49. SOUZA, J.V.; SANTOS, P.S., (1964). Ensaios preliminares de argilas visando a utilização, Cerâmica 10 (38), 2.



**TABELAS** 

TABELA 3.3

# UMIDADE NATURAL E UMIDADE DE PREPARAÇÃO DAS AMOSTRAS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

AMOSTRAS	UMIDADE NATURAL	UMIDADE DE CONFORMAÇÃO	
	(%)	(°⁄ó)	
IHS-01	15,43	25.09	
IHS-02	10,96	NC	
IHS-03	11,12	19.29	
IHS-04	17,64	16,80	
IHS-05	19,08	21,17	
IHS-06	14,23	18.88	
IHS-07	30,72	22.61	
IHS-08	18,41	19,74	
IHS-09	18,38	24,45	
IHS-10	20,38	19,34	
IHS-11	17,21	20,08	
IHS-12	21,21	24,46	
IHS-13	33,43	NC	
IHS-14	18,16	NC	
IHS-15	19,44	NC	
IHS-16	16,59	20,77	
IHS-17	21,10	NC	
ITB-01	28,75	18,86	
ITB-02	21,51	NC	
ITB-03	22,24	20,06	
ITB-04	20,18	NC	
ITB-05	18,59	15,17	
ITB-06	21,80	30,72	
ITB-07	24,15	21,49	
ITB-08	32,28	17,61	
ITB-09	ND	ND	
ITB-10	17,16	20,66	
ITB-11	25,12	21,65	
LAG-01	15,23	17,32	
LAG-02	16,59	20,09	

TABELA 3.3

#### UMIDADE NATURAL E UMIDADE DE PREPARAÇÃO DAS AMOSTRAS DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

UMIDADE NATURAL	UMIDADE DE CONFORMAÇÃO	
(%)	(°ó)	
22,56	NC	
13,20	NC	
16,49	21,02	
21,00	15.81	
26,92	27.10	
8,20	NC	
3,80	ND	
21,05	23,56	
22,83	17.86	
17,41	16,69	
20,41	20,29	
17,21	NC	
9,53	NC	
24,52	28,07	
9,33	NC	
	(%)  22,56  13,20  16,49  21,00  26,92  8,20  3,80  21,05  22,83  17,41  20,41  17,21  9,53  24,52	

OBS.: NC - O material não conseguiu conformação

TABELA 4.5 - GRUPO DE ABSORÇÃO DE ÁGUA, SEGUNDO NBR-13.818

GRUPOS	ABSORÇÃO DE ÁGUA (%)	
Ia	$0 < Abs \le 0,5$	
Ib	$0.5 < Abs \le 3.0$	
IIa	$3.0 < Abs \le 6.0$	
IIb	$6.0 < Abs \le 10.0$	
III	Abs acima de 10,0	

TABELA 4.6 - CODIFICAÇÃO DOS GRUPOS DE ABSORÇÃO DE ÁGUA EM FUNÇÃO DOS MÉTODOS DE FABRICAÇÃO, SEGUNDO A NBR-13.818

Abs (%)	MÉTODO	D E	FABRICAÇÃO	
	EXTRUDADO (A)	PRENSADO (B)	OUTROS	
Abs ≤ 0,5	AI	Bla	CI	
0,5 < Abs ≤ 3		BIb		
3 < Abs ≤ 6	Alla	BIIa	CIIa	
6 < Abs ≤ 10	AIIb	BIIb	СПР	
Abs > 10	AIII	BIII	CIII	

TABELA 4.7 - USO RECOMENDADO DE REVESTIMENTOS CERÂMICOS EM FUNÇÃO DO GRAU DE ABSORÇÃO DE ÁGUA

GRUPO	GRAU DE	MÓDULO DE	USO RECOMENDADO
	ABSORÇÃO	RUPTURA	
I	0-3 %	50-30 MPa	Pisos, paredes, piscina e
			saunas
IIa	3-6 %	35-22 MPa	Pisos, paredes e piscinas
IIb	6-10 %	22-15 MPa	Pisos e paredes
Ш	> 10 %	< 15 MPa	Paredes













**FIGURAS** 

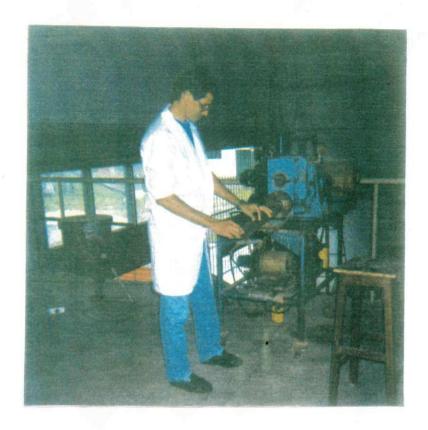



Fig. 3.23 - Maromba a vácuo de laboratório, marca bonfante



Fig. 3.24 - Máquina universal de ensaios acoplado a um reometro capilar, Modelo Instron

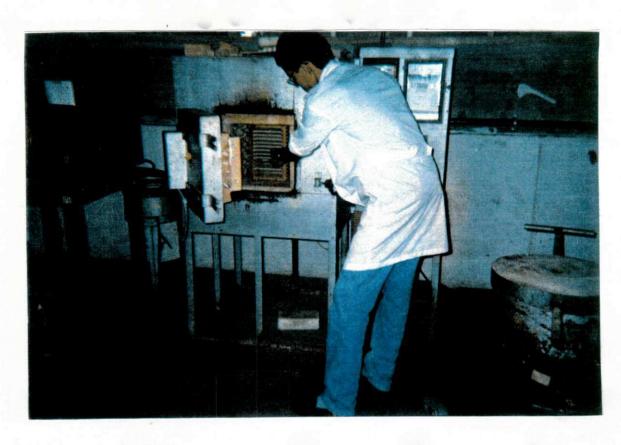



Fig. 3.25 - Queima dos corpos de prova em forno elétrico



Fig. 3.26 - Inundação de jazidas em decorrência de um processo de lavra predatório



Fig. 3.27 - Corpos de Prova



Fig. 3.28 - Domo de Itabaiana - Povoado Batula

CORRELAÇÕES LINEARES PELO MÉ-TODO DOS MÍNIMOS QUADRADOS

# CORRELAÇÕES LINEARES PELO MÉTODO DOS MÍNIMOS QUADRADOS ENTRE PERDAS AO FOGO DE ARGILAS DETERMINADAS POR DIVERSOS MÉTODOS

Na Tabela 5.0 estão contidos os resultados obtidos na determinação da perda ao fogo de 30 amostras de argilas da Região Centro-Sul do Estado de Sergipe (IHS-01, IHS-03, IHS-04, IHS-05, IHS-06, IHS-07, IHS-08, IHS-09, IHS-10, IHS-11, IHS-12, IHS-16, EST-02, LAG-01, LAG-05, LAG-06, LAG-07, ITB-01, ITB-03, ITB-05, ITB-06, ITB-07, ITB-08, ITB-10, ITB-11, BT-09, BT-16, CB-01 e CB-02) pelos métodos de ATG, análise química e ensaios físico - mecânicos em corpos de prova moldados por extrusão. O método ATG é considerado, na atualidade, como mais preciso para essas determinações.

Tendo em vista o elevado custo das determinações das perdas ao fogo pelo método ATG, além do fato de somente existirem no Brasil alguns poucos aparelhos para essas determinações, procurou-se correlacionar linearmente, através do método dos mínimos quadrados, (26 e 27) os resultados obtidos através dos métodos de análise química e ensaios físicos em corpos de prova. Os métodos relativos pouco dispendiosos é de fácil execução poderão ser utilizados por instituições de pesquisa, indústria e outras, em substituição ao método de ATG, com o grau de precisão dado pelos coeficientes de correlação obtidos.

Os dados obtidos através das correlações lineares pelo método dos mínimos quadrados, são os seguintes: coeficiente angular (a₀), coeficiente linear (a₁) e coeficiente de correlação (r).

Os resultados obtidos estão contidos na Tabela 5.1.

#### TABELA 5.1

# REGRESSÕES LINEARES PELO MÉTODO DOS MÍNIMOS QUADRADOS DE PERDAS AO FOGO DE ARGILAS DA REGIÃO CENTRO-SUL DO ESTADO DE SERGIPE

REGRE	SSÕES	PARÂME	TROS	E EQUAÇOES	COEFICIENTE
Variável X	Variável Y	$\mathbf{a}_0$	a _l	EQUAÇÕES	DE CORRELA- ÇÃO
TGA	Análise Química	5,93	0,51	y = 5,93 + 0,51.x	0,36
TGA	Ensaio físico em corpos de prova	2,75	0,70	y = 2,75 + 0,70.x	0,84