Capítulo 80

VIABILIDADE DA CINÉTICA DA ESTABILIZAÇÃO DOS CONTAMINANTES PRESENTES NO LODO DE CURTUME APÓS E/S

Fernanda Siqueira Lima¹ Adriana Valéria Arruda Guimarães² André Luiz Fiquene de Brito³ Ana Cristina Silva Muniz⁴ Poliana Pinheiro da Silva⁵

1,2,3,4,5 Tecnologia Química e Ambiental – LABGER - Universidade Federal de Campina Grande – Campina Grande - PB, Brasil, fsl_nanda@hotmail.com adri.valeriauepb@hotmail.com; andre.fiquene@ufcg.edu.br anamuniz252@gmail.com; poli_anapinheiro@hotmail.com

Introdução

No cenário das indústrias químicas, as indústrias de curtume têm grande participação em impactar o meio ambiente. De acordo com Ramos et al. (2009) a técnica de estabilização por solidificação (E/S) é uma das formas mais viável de tratamento e disposição dos resíduos sólidos industriais.

O processo de E/S além de solidificar, por meios químicos, o resíduo perigoso ainda promove a insolubilização, imobilização, encapsulamento, destruição ou interação com os contaminantes presentes no resíduo utilizado (RAMOS et al., 2009).

De acordo Spence e Shi (2005), no processo de E/S ocorrem reações químicas entre o resíduo perigoso e os aglomerantes ou ainda, a retenção de natureza física. No caso da retenção, esta ocorre de forma limitada levando em consideração: a diminuição da área de superfície exposta ao meio ambiente e o isolamento dos contaminantes presentes no resíduo (BRITO & SOARES, 2009).

Para Guimarães (2017) e Andrade et al. (2014) a eficiência do tratamento de resíduos perigosos por processos de E/S pode ser verificada mediante o estudo da velocidade de decaimento cinético dos contaminantes.

Nos processos de lixiviação de resíduos sólidos estabilizados a taxa de dissolução dos contaminantes está relacionada à reação de Primeira Ordem. Neste caso, é importante ressaltar que a concentração, tanto do agente quelante quanto do cimento, é controlado cineticamente pelo processo de dissolução. Tem-se, portanto, que a taxa de dissolução é proporcional à quantidade de contaminante (GUIMARÃES, 2017). O objetivo principal do trabalho foi realizar o tratamento do lodo de curtume visando sua utilização de acordo com as rotas de disposição de resíduos tratados por E/S.

Material e Métodos

A pesquisa foi desenvolvida no Laboratório de Gestão Ambiental e Tratamento de Resíduos (LABGER), pertencente à UAEQ, localizado no CCT Campus I da UFCG. Foram realizadas as etapas de caracterização e classificação do lodo e dos aglomerantes, planejamento experimental utilizando como fatores o tempo de cura (7, 28 e 90 dias) e percentagem de resíduo (5%, 15% e 25%). Também foi realizado a preparação dos corpos de provas, a avaliação do material E/S de acordo com o critério integridade/ durabilidade e imobilização dos contaminantes, a análise de variância, a otimização do processo de tratamento aplicado ao lodo de curtume e a eficiência e o balanço de massa no material estabilizado.

Resultados e Discussão

Inicialmente, caracterizou-se os sólidos totais e suas frações e a DQO dos constituintes das matrizes conforme consta na Tabela 1. Analisando a Tabela 1 observou-se que, a alta concentração de DQO presente no lodo de curtume deve-se, sobretudo, a constituição química das peles e couros, o que necessita de uma alta concentração de agente oxidante para degradar a matéria carbonácea.

Tabela 1. Valores dos sólidos totais e suas frações e das concentrações de DQO nos extratos lixiviado e solubilizado dos constituintes das matrizes cimentíceas

	ST	STF*	STV*	U	pН	DQ01	DQ0 ²	DQ0¹	DQO ²
Constituintes		%)			(mg	;.L ^{.1})	(mg.l	κg ⁻¹)
Cimento/Cimpor	98,2	98,9	1,1	1,81	8,2	1010	150	20200	600
Areia	99,8	99,4	0,6	0,23	8,3	7311	436,9	146220	1747
$Lodo^1$	98,2	84,7	15,3	1,74	7,2	5308	317,2	106160	1269

Legenda: 1: Lodo de curtume; ST: Sólidos Totais; STF: Sólidos Totais Fixos; STV: Sólidos Totais Voláteis; U: Umidade; DQO: Demanda Química de Oxigênio. *Valor em função do teor de ST; 1: DQO do Extrato Lixiviado; 2: DQO do Extrato Solubilizado.

Na Tabela 2 encontra-se os valores para a análise de variância referente ao parâmetro RC.

Tabela 2. ANOVA para o ensaio de RC

Fonte	g.l	SQ	MQ	Valor de f _{cal}	Valor de f _{tab}	Valor de p	Nível de Significância
Modelo	8	20,5459	2,5684	41,09	3,63	0,000	Significativo
Linear	4	18,5475	4,6369	72,14	4,26	0,000	Significativo
TC (d)	2	9,0214	4,5110	76,20	4,26	0,000	Significativo
% Lodo	2	9,5260	4,7630	7,99	3,63	0,000	Significativo
Interação	4	1,9984	0,4996			0,005	Significativo
Erro Puro	9	0,5625	0,0625			0,005	Significativo
Total	17	21,1085					
$R^2 = 97,33$	Rmax ² =94,97	R = 0.89					

Legenda: g.l: grau de liberdade; SQ: soma quadrática; MQ: média quadrática; TC: tempo de cura; %: porcentagem de lodo.

De acordo com a ANOVA o coeficiente de determinação (R²) do modelo foi ajustado em 97,33%. Isso implica dizer que, aproximadamente, 97% dos dados são explicados pelo modelo. A porcentagem máxima explicável (Rmax²) foi de 95% e o coeficiente de correlação (R) foi de 0,89. Já de acordo com o coeficiente de correlação verificou-se de fato que, tanto a variável tempo de cura quanto porcentagem de lodo apresentaram direção linear.

Na Tabela 3 encontra-se os valores da ANOVA para o ensaio de CAA. Na Tabela 3 a ANOVA mostrou que ao nível de 95% de significância apenas o fator interação não apresentou efeito significativo. Com relação ao coeficiente de determinação (R^2) o modelo adotado explica 87,81%, tendo em vista que a porcentagem máxima explicável ($Rmax^2$) e o coeficiente de correlação (R) foram respectivamente, 76,97% e 0,51%.

Tabela 3. ANOVA para o ensaio Capacidade de Absorção de Água (%CAA)

Fonte	g.l	SQ	MQ	Valor	Valor	Valor	Nível de
ronte				de f _{cal}	de f _{tab}	de p	Significância
Modelo	8	231,611	28,951	15,72	3,63	0,003	Significativo
Linear	4	224,658	56,164	25,45	4,26	0,000	Significativo
TC (d)	2	181,858	90,929	5,99	4,26	0,000	Significativo
% Lodo	2	42,800	21,400	0,49	3,63	0,022	Significativo
Interação	4	6,953	1,738			0,746	Não Significativo
Erro Puro	9	32,153	3,573				-
Total	17	203,76					
$R^2 = 87.81$	Rmax ² =76,97	R = 0.51					

Legenda: g.l: grau de liberdade; SQ: soma quadrática; MQ: média quadrática; Sig: significativo; NSignificativo: não significativoTC: tempo de cura; %: porcentagem de lodo.

Na Tabela 4 encontra-se à análise de variância (ANOVA) para o ensaio de U/S.

Tabela 4. ANOVA para o ensaio Umidificação/Secagem (U/S)

Fonte	g.l	SQ	MQ	Valor de f _{cal}	Valor de f _{tab}	Valor de p	Nível de Significância
Modelo	8	21,574	2,6967	16,63	3,63	0,001	Significativo
Linear	4	16,207	4,0518	29,73	4,26	0,000	Significativo
TC (d)	2	14,484	7,2418	3,54	4,26	0,000	Significativo
% Lodo	2	1,723	0,8616	5,51	3,63	0,044	Significativo
Interação	4	5,367	1,3417			0,016	Significativo
Erro Puro	9	2,192	9,22				
Total	17	23,766					
$R^2 = 90,78$	Rmax ² =92,09	R = 0.63					

Legenda: g.l: grau de liberdade; SQ: soma quadrática; MQ: média quadrática; Sig: significativo; TC: tempo de cura; %: porcentagem de lodo.

Com relação ao coeficiente de determinação (R²) o modelo adotado explica aproximadamente 90,78% dos dados. Desconsiderando o erro puro, a porcentagem máxima explicável (Rmax²) do modelo é, no máximo de 92,09% e o coeficiente de correlação (R) foi, respectivamente, 83% e 0,63%.

Na Tabela 5 encontram-se os valores da velocidade de decaimento cinético de DQO nos extratos lixiviado e solubilizado do material estabilizado. Observou-se na Tabela 5, que ao fixar 5% de lodo de curtume nos tempos de cura de 7, 28 e 90 dias, constatou-se que o melhor resultado para a velocidade de decaimento cinético para DQO do extrato lixiviado foi de 0,52200-1 atribuído à média dos tratamentos T1 e T10. E ao comparar a combinação de 5% com 28 e 90 dias, verificou-se uma diminuição da velocidade de decaimento de DQO lixiviada de 0,42837d-1 para 0,34678d-1 correspondendo a uma eficiência do processo, respectivamente, de 17,94% e 35,55%.

Tabela 5. Velocidade de decaimento cinético da DQO nos extratos lixiviados e solubilizados

% de RSI	TC (diag)	DQO (Lix) ⁽¹⁾	DQO (Sol) ⁽²⁾
% de RSI	TC (dias)	k (d	[·1 _] (3)
5	7	0,52200	0,16278
5	28	0,42837	0,13090
5	90	0,34687	0,04693
15	7	0,09498	0,04069
15	28	0,07224	0,02071
15	90	0,04761	0,00691
25	7	0,03444	0,00761
25	28	0,02853	0,00691
25	90	0,01422	0,00162

Legenda: RSI: Resíduo sólido industrial; TC: tempo de cura; DQO 1: demanda química de oxigênio lixiviada; DQO 2: demanda química de oxigênio solubilizada; (3) k: velocidade de decaimento cinético.

Nesse sentido, a redução do valor da velocidade de decaimento cinético (k) para DQO no extrato solubilizado também sofreu influência do tempo de cura quanto e do percentual de lodo de curtume.

Conclusão

Os resultados mostraram que o tratamento de estabilização por solidificação aplicado ao lodo de curtume, resultou em material cujos critérios integridade/durabilidade e imobilização dos contaminantes foram aprovados, podendo dessa forma ser utilizado de acordo com as rotas de disposição de resíduos estabilizados. E quanto à redução da velocidade de decaimento dos contaminantes, o melhor desempenho foi atribuído aos tratamentos combinando 5% de lodo de curtume com tempo de cura de 28 e 90 dias. Dessa forma, foi possível avaliar de forma eficiente o tratamento do lodo de curtume levando em consideração a melhor porcentagem de lodo bem como, o melhor tempo de cura.