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JOSÉ ALDO SILVA DA COSTA

EVALUATING THE IMPACT OF REFACTORINGS ON THE CODE

COMPREHENSION OF NOVICES WITH EYE TRACKING

CAMPINA GRANDE - PB

2023
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Resumo

A compreensão do código é fundamental para a manutenção e evolução do software, porém,

pode ser prejudicada por problemas estruturais no código. Para resolver os problemas es-

truturais no código e torná-lo mais fácil de ler e entender, os desenvolvedores costumam

usar refatoramentos. Um refatoramento é uma técnica disciplinada de reestruturação do

código que visa melhorar sua estrutura interna preservando seu comportamento. No entanto,

o estado-da-arte sobre o entendimento do impacto de refatoramentos na compreensão do

código necessita de resultados conclusivos e detalhes quantitativos/qualitativos sobre como

e o porquê de possı́veis correlações. Enquanto alguns estudos encontraram um impacto di-

vergente de refatoramentos na compreensão do código, outro descobriu que certos refatora-

mentos levaram à introdução de mais problemas estruturais. Com o objetivo de investigar o

impacto das refatoramentos na compreensão do código, realizamos três estudos controlados

com rastreio ocular: o primeiro sobre o impacto de átomos de confusão clarificados com 32

novatos em Python, o segundo sobre o impacto do refatoramento Extrair Método com 32 no-

vatos em Java, e o terceiro sobre o impacto das anotações #ifdef com 64 majoritariamente

novatos na linguagem C. Além de usar vários critérios como tempo, número de tentativas

e opiniões, medimos o esforço visual dos sujeitos com rastreamento ocular por meio da

duração da fixação, contagem de fixações e contagem de regressões. Em nossos resultados,

a versão de código clarificada de um dos átomos reduziu o tempo em 38,6% e o número

de tentativas de resposta em 28%. Além disso, observamos 47,3% menos regressões hori-

zontais na região do átomo facilitando sua leitura. O uso do refatoramento Extrair Método

apresentou uma redução significativa no tempo de duas tarefas, que variou de 70% a 78,8%.

Observamos um aumento na acurácia de três tarefas, que variou de 20% a 34,4%. Os su-

jeitos resolveram essas tarefas com o Extrair Método voltando visualmente no código com

74,4% a 84,6 % menos frequência comparado ao Inline Método. No contexto das anotações

#ifdef, um dos refatoramentos adiciona uma variável extra e duas linhas extras de código,

o que é apenas um pequeno impacto na métrica Linhas de Código (LOC), mas apresentou

reduções na região modificada em 46,9% no tempo, 44,7% na duração da fixação, 48,4% na

contagem de fixação e 60,5% na contagem de regressões. Esses resultados contribuem para
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conscientizar educadores sobre certos refatoramentos e seu potencial para facilitar ou difi-

cultar a compreensão de código de novatos em Python, Java e C. Praticantes e designers de

linguagem de programação devem ser mais cuidadosos ao usar ou propor refatoramentos que

possam prejudicar a capacidade dos novatos de entender o código. Para os pesquisadores,

esses resultados mostram o potencial das métricas visuais para revelar um impacto de refa-

toramentos que não podem ser capturados por métricas estáticas de código.

Palavras-chave: Refatoramentos; Compreensão de Código; Rastreio Ocular.
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Abstract

Code comprehension is crucial for software maintenance and evolution, however, it can be

hindered by structural problems in the code. To address the structural problems in the code

and make it easier to read and understand, developers often use refactorings. Refactoring is

a disciplined technique for restructuring the code that aims to improve its internal structure

preserving its behavior. However, the state-of-the-art on understanding the impact of refac-

torings on code comprehension lacks conclusive results and quantitative/qualitative details

on how and why of possible correlations. While some studies found a divergent impact of

refactorings on code comprehension, another found that certain refactorings led to the intro-

duction of more structural problems. Aiming to further investigate the impact of refactorings

on code comprehension, we conduct three controlled studies with eye tracking: the first one

on the impact of clarified atoms of confusion with 32 novices in Python, the second one

on the impact of Extract Method refactoring with 32 novices in Java, and the third one on

the impact of #ifdef annotations with 64 majoritarily novices in the C language. Besides

using multiple criteria such as time, the number of attempts, and opinions, we measured the

visual effort of the subjects with eye tracking through fixation duration, fixations count, and

regressions count. In our results, the clarified version of the code with an atom reduced the

time to the extent of 38.6% and the number of answer attempts by 28%. In addition, we

observed 47.3% fewer horizontal regressions count in the atom region, making its reading

easier. The use of the Extract Method refactoring presented a significant reduction in the

time of two tasks, which varied from 70% to 78.8%. We observed an increase in the accu-

racy of three tasks, which varied from 20% to 34.4%. The subjects solved these tasks with

the Extract Method going back visually in the code 74.4% to 84.6% less often compared to

the Inline Method. In the context of #ifdef annotations, one of the refactorings adds one

extra variable and two extra lines of code, which is only a small impact on the metric Lines

of Code (LOC), but it presented reductions in the modified region by 46.9% in the time,

44.7% in the fixation duration, 48.4% in the fixation count, and 60.5% in the regressions

count. These results raise educators’ awareness about certain refactorings and their potential

to ease or hinder the code comprehension for novices in Python, Java, and C. Practitioners

and language designers should be more careful when using or proposing refactorings that

vi



could possibly impair the novices’ abilities to understand the code. For researchers, these

results show the potential of visual metrics to reveal an impact of refactorings that cannot be

captured by static code metrics.

Keywords: Refactorings; Code Comprehension; Eye Tracking.
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Fixing our eyes on Jesus, the pioneer and perfecter of faith. For the joy set before Him He

endured the cross, scorning its shame, and sat down at the right hand of the throne of God.

Hb. 12:2
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Chapter 1

Introduction

Code comprehension is crucial for software maintenance and evolution processes. How-

ever, it can be hindered by structural problems in the code. To address these structural

problems and make the code easier to read and understand, developers often use refac-

torings. Refactoring can be understood as the process of improving the code structure

to make it easier to understand, evolve, and maintain. It consists of a disciplined tech-

nique for transforming the internal structure without changing its observable behavior [40;

86]. Each transformation, or refactoring, consists of a small change in the code and a se-

quence of transformations can produce a significant amount of restructuring.

Fowler [40] proposed a catalog of refactorings that became popular for addressing a set

of indicators of structural problems in the code called code smells. For instance, the more

lines we find in a method, the harder it is to understand what the method does. In that case,

we should apply the Extract Method refactoring, which helps isolate independent parts of

code, make code less duplicated, and more readable and easier to understand.

Other catalogs of refactorings have been proposed by other researchers to deal with

other smelly scenarios. Developers often use preprocessor directives, such as #ifdef and

#endif, to make a block of source optional or conditional, with the purpose of tailoring

software systems to different hardware platforms, operating systems, and application scenar-

ios. However, the directive can have a negative impact on code understanding and maintain-

ability. Medeiros et al. [75] proposed a catalog of refactorings to improve the code, making

it easier to understand, evolve, and maintain.

Gopstein et al. [48] presented a catalog of atoms of confusion for the C language. Atoms

1
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of confusion are the smallest units of code that can cause confusion in the developers when

they read the code, making them misinterpret the code behavior. Gopstein et al. [48] pro-

posed clarified alternatives for the confusing units. They compared the code containing

atoms likely to cause confusion (obfuscated code) to functionally equivalent code hypoth-

esized to be less confusing (clarified code). They experimentally showed that obfuscated

code increased confusion among the subjects, largely composed of students, and the pro-

posed clarified versions made the code easier to understand.

1.1 Problem

The understanding of the impact of refactorings on code comprehension lacks conclusive re-

sults. In this section, we explain the research gaps in the three aforementioned scenarios that

deal with code transformations aiming to improve code comprehension. We present them in

perspective from the smallest units, atoms of confusion (Section 1.1.1), going through big-

ger units, Extract Method refactoring (Section 1.1.2), and more complex units, configurable

systems (Section 1.1.3).

1.1.1 Atoms of confusion

Often a developer reads the source code written by another developer, trying to understand

its behavior. However, the developer’s interpretation of a piece of code can differ from

that of the one who wrote the code due to tiny patterns that can cause misunderstandings.

These tiny patterns can obfuscate the code and confuse developers causing them to misjudge

its behavior. The tiny patterns are called atoms of confusion [48; 49; 66] when there are

functionally equivalent alternatives that lead to better performance.

Atoms of confusion are prevalent in open-source projects in C language. Investigating the

presence of atoms of confusion in 50 C open-source software projects, Medeiros et al. [73]

found more than 109,000 occurrences of 11 out of 12 atoms considered in their study. Some

of these projects, such as Apache, OpenSSL, and Python comprise more than 200,000 lines.

Atoms of confusion also occur in other programming languages, such as Python, one

of the most used languages nowadays.1 For instance, in Figure 1.1(a), we illustrate a Con-

1https://madnight.github.io/githut/#/pull requests/2021/4
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ditional Expression found in the SwiftShader project for Python language and adapted to a

complete code snippet. Iterating over a list of elements, in Line 4, num receives the value

of elem if elem is equals to three; otherwise, num receives one. If the implications of

the study of Gopstein et al. [48] for C language are sustainable for Python as well, the

Conditional Expression in Line 4 impairs the code understanding of undergraduate students

because the assignment depends on the value of a variable, which can confuse the student

about the behavior of the code. Thus, the code in Figure 1.3(a) can be obfuscated by the

presence of the atom.

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4  num = elem if elem == 3 else 1
5 print(num)

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4  if (elem == 3):
5   num = elem
6  else:
7   num = 1
8 print(num)

(a)
(b)

Figure 1.1: Code adapted from SwiftShader with (a) obfuscated code containing the atom

Conditional Expression, and (b) the clarified version of the code.

To clarify this source of confusion, Medeiros et al. [73] proposed an alternative solution

which we adapted for Python and presented in Figure 1.3(b). In it, the line that contains

the atom becomes four lines of code and the variable num is used twice, depending on the

condition of the if statement in line 4. Besides proposing a clarified version of the code

that contains the atom of confusion, Medeiros et al. [73] also investigated the subjective

perception of experienced developers regarding the atom for the C language. Based on the

answers of the developers, the code with the atom did not influence the understanding of the

subjects negatively. In addition, the developers accepted pull requests with both obfuscated

and clarified versions.

Langhout and Aniche [66] derived a set of atoms of confusion based on the work of

Gopstein et al. [48], however, for Java language and performed a two-phase experiment with

students investigating accuracy and perception. Out of 14 atoms, four presented results that

were distinct from those presented in the study of Gopstein et al. [48]. One of these atoms



1.1 Problem 4

that presented distinct results was the Conditional Operator.

In a more recent qualitative study, Gopstein et al. [47] raised a serious concern. They

pointed out that studies based only on the accuracy may be under-reporting the amount of

code misunderstandings. For instance, using a qualitative research approach, they found

that, even for subjects that evaluated a program in a correct manner, there was still significant

confusion unnoticed in the program. The accuracy only tells us the outcome of programmers’

performance, but not how or why they behaved that way. We need to investigate this using

other perspectives combined with accuracy.

The structural transformation applied to Figure 1.1(a) turning it into Figure 1.1(b) aimed

at making the code clearer to understand while preserving its behavior. We consider such

transformation as refactoring in the sense it can be characterized as behavior-preserving code

transformations aiming to improve the code [40]. Thus, when we refer to the clarified code

version, we have in mind a refactored version aiming to clarify the code.

To contribute to the debate, we need more empirical evidence from a finer-grained per-

spective to better understand which atoms of confusion can affect the code comprehension

and to what extent they do so. Since atoms are fine-grained code elements, coarser-grained

approaches to assess code comprehension may be insufficient to capture their impact. A

prior study showed the potential of eye tracking to investigate the effect of small-grained

code changes on the code comprehension [30]. An eye tracker makes it possible to record

the eye movements of human subjects and assess their visual attention [91]. The eye tracking

data allowed researchers to mainly assess visual attention and effort by investigating where

the subject is fixating, the duration of their fixations, and how the fixations switched from

one location to another [99; 100; 16].

For instance, we simplified a sequence of fixations performed by two subjects in Fig-

ure 1.2. Each red circle represents a fixation that varies in size according to its duration. The

sequence and direction of fixations are depicted in chronological order with a number inside.

In the obfuscated version (Figure 1.2(a)), the subject makes eight fixations with six within

the line of the atom (Line 4). In the clarified version (Figure 1.2(b)), the subject makes five

fixations, with four of them within the atom region (Lines 4–7). Thus, the subject fixates

more times and for a longer time in obfuscated version. In addition, the subject regresses

visually in the code more times in obfuscated version. In obfuscated version, she goes back
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three times in code, twice vertically examining the list, and one time horizontally to possibly

inspect a variable. In the clarified version, the subject goes back only once to the list, making

a vertical regression between lines. By examining their behavior at this small-grained level,

we can see nuances not observed by previous works. Thus, besides measuring time and

number of attempts, we investigate the effects of atoms of confusion on visual effort through

fixation duration, fixations count, and regressions count.

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4  num = elem if elem == 3 else 1
5 print(num)

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4  if (elem == 3):
5   num = elem
6  else:
7   num = 1
8 print(num)

(a)
(b)

84

1 2 63 75
3

1 2

5

4

Figure 1.2: Code with eye gaze patterns for (a) obfuscated code containing the atom Condi-

tional Expression, and (b) the clarified version of the code.

Previous studies have investigated the impact of atoms of confusion on code comprehen-

sion using multiple criteria such as time, answer correctness, and opinions. They compare

obfuscated code to functionally equivalent code hypothesized to be less confusing (clarified

code) [48]. For instance, Gopstein et al. [48] presented a catalog of atoms of confusion for

the C language and experimentally showed that obfuscated code increased confusion by re-

ducing the subjects’ accuracy in comparison to their accuracy when analyzing clarified code.

Besides showing that atoms are often found in the C real projects, Medeiros et al. [73] inves-

tigated the developers’ opinions regarding the atoms of confusion. The subjects perceived

obfuscated code to be more confusing. Combining accuracy and opinions, Langhout and

Aniche [66] found that developers made more mistakes and perceived obfuscated code to be

more confusing and less readable in the Java language. Combining different perspectives can

give insights into the impact of atoms of confusion on code comprehension that a single per-

spective cannot. The subjects’ answer correctness in an experiment can tell us the outcome

of developers’ performance but fail to show how or why they behaved in a certain way [47].

We need to observe the phenomenon from a combination of perspectives to understand better
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how it impacts code comprehension.

Oliveira et al. [33] performed a controlled experiment including students and profession-

als that compared the obfuscated and clarified versions of the code with atom Conditional

Operator. However, Oliveira et al. [33] investigated the objective performance of the devel-

opers solving tasks with both versions using an eye tracker. Their study did not find differ-

ences between the two versions regarding time, answer correctness, and visual attention in

the main area of interest in their study, agreeing with the developers’ perception according

to Medeiros et al. [73]. However, Oliveira et al. [33] did not consider the fixation duration,

fixations count, and regressions count to measure the extent of the impact of the atom on the

visual effort of the subjects. Neither investigated how the atom affected the way the subjects

read the code by distinguishing between horizontal and vertical visual transitions for all the

subjects, which could give more insights into code reading.

1.1.2 Extract Method

Refactorings such as Extract and Inline Method are among the most commonly used [79;

56]. While the Extract Method takes a clump of code and turns it into its own method, the

Inline Method is essentially the opposite, taking a method call and replacing it with the body

of the code. Developers use Extract and Inline Method mainly to improve the code structure

and then make the code clearer, more comprehensible, and easier to read [107].

According to Fowler [40], short methods with names that show their intention lead to

clearer, more understandable, and easier-to-read code. However, it still needs more em-

pirical evidence to better understand the impact of these practices, because under certain

perspectives, extracting a method might have harmful effects instead. For instance, Cedrim

et al. [19] used code metrics such as Lines of Code, Coupling Between Objects, and Cy-

clomatic Complexity to evaluate several refactorings. They found that the Extract Method

increases the number of smells in the code, suggesting that the Extract Method refactoring

might have a negative impact on code quality. They also found that the number of smells

remained the same after applying Inline Method, making it neutral.

The Extract Method is considered the “Swiss army knife of refactorings” [107]. Ac-

cording to the developers’ opinions, the three most common motivations were to make code

reusable, introduce alternative method signatures, and improve code readability. However,
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there might be circumstances when extracting a method can instead hamper the code read-

ability, and the Inline Method becomes a better alternative [40].

However, the notion of improving code readability is not always clear. Despite coding

guidelines and standards found in the literature, we lack a better understanding of what

circumstances developers should opt for inlining or extracting a method. Guidelines and

standards can often be subjective, vague, and based on personal preferences, which can

differ from the subjective preferences and performance of the developers.

For instance, in Figure 1.3, we depict two iterative programs to find the factorial of a

number adapted from Geeksforgeeks.2 On the left-hand side, in Figure 1.3(a), we have the

inlined method version and on the right-hand side, in Figure 1.3(b), the version with the ex-

tracted method. While both print the same output, to ease code understanding, the extracted

method version adds three more lines of code and uses a name that shows the intention of the

method. However, making such code change might introduce side effects. From a quantita-

tive perspective using static code metrics, Cedrim et al. [19] show that extracting a method

can actually increase the number of code smells.

1  public class Main{    
2    public static void main(String[] args){ 
3      int num = 5; 
4      int result = 1;
5      for (int i = 2; i <= num; i++){
6        result = result * i;
7      }
8      System.out.println(result); 
9    } 
10 }

1  public class Main{ 
2    static int calculateFactorial(int num){ 
3      int result = 1; 
4      for (int i = 2; i <= num; i++) {
5        result = result * i;
6      }
7      return result; 
8    }   
9    public static void main(String[] args){ 
10     int num = 5; 
11     System.out.println(
           calculateFactorial(num)); 
12   } 
13 }(a)

(b)

Figure 1.3: (a) Inline Method version of the code that calculates the factorial of a number,

and (b) the Extract Method version of the code.

Nonetheless, code metrics can be insufficient to capture differences in small-grained

code changes, such as in Figure 1.3. Previous works compared distinct code styles mea-

suring time and answer correctness [48; 70; 95; 76], while the opinions and preferences of

the developers can help researchers understand the impact of these code changes on the de-

velopers’ perceptions [72; 39]. Prior studies used eye tracking to investigate the effect of

2https://www.geeksforgeeks.org/program-for-factorial-of-a-number/
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small-grained changes on code comprehension [30; 33; 77]. Eye tracking allows recording

the eye movements to assess visual effort [91] through eye fixations, duration of fixations,

and regressions [99; 100; 16].

For instance, in Figure 1.4, we depict an example of a sequence of fixations of two

subjects. Red circles represent fixations varying in size according to their duration. In the

Inline Method version (Figure 1.4(a)), the subject fixated in eight different locations, seven

within Lines 4–8. In the Extract Method version (Figure 1.4(b)), the subject fixated in five

distinct locations, with three of them within Lines 2–8 and one in Line 11. The subject

fixated more and for a longer time in the Inline Method version and regresses visually more

times, one vertically from Line 8 to 6 and one time horizontally within Line 6. In the Extract

Method version, the subject regresses once, between Lines 11 to 2. Examining their visual

behavior at this small-grained level, we can see nuances not observed in previous works,

such as the visual effort required by the transformation in terms of how subjects fixate their

eyes on the code, and how it impacts the code reading, in terms of vertically or horizontal

eye movements in the code.

1  public class Main{ 
2    static int calculateFactorial(int num){ 
3      int result = 1; 
4      for (int i = 2; i <= num; i++) {
5        result = result * i;
6      }
7      return result; 
8    }   
9    public static void main(String[] args){ 
10     int num = 5; 
11     System.out.println(
           calculateFactorial(num)); 
12   } 
13 }(a)

(b)
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1  public class Main{    
2    public static void main(String[] args){ 
3      int num = 5; 
4      int result = 1;
5      for (int i = 2; i <= num; i++){
6        result = result * i;
7      }
8      System.out.println(result); 
9    } 
10 }

Figure 1.4: Code with eye gaze patterns for (a) the Inline Method version of the code that

calculates the factorial of a number, and (b) the Extract Method version of the code.

Despite these results, we lack empirical studies that consider other perspectives, such as

the human factor. Opinions and code metrics solely analyzed fail to capture the extent of the

impact of fine-grained refactorings in the code comprehension of human subjects. We need

more controlled experiments involving human subjects to better understand how it impacts

code comprehension.
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1.1.3 #ifdef annotations

The C preprocessor is widely used in practice, such as in Linux, and provides mecha-

nisms to implement variability through conditional compilation [34]. Conditional compi-

lation allows developers to conditionally include selected blocks of source code by anno-

tating the code using directives, such as #ifdef. There are two types of annotations,

undisciplined (or incomplete), and disciplined (or complete) [69]. Disciplined annota-

tions are preprocessor directives that enclose only whole statements while undisciplined

annotations do not, for example, wrapping only an opening bracket of a statement but

not the closing one [45] as shown in Figure 1.5. Both achieve the same purpose but they

differ in terms of whether they align with the syntactic structure of the code. Accord-

ing to Liebig et al. [69], undisciplined annotations are ill-formed annotations in which

the number of #ifdef and #endif statements does not match, and they can produce

syntax errors when removed, such wrapping the opening bracket without the closing one.

According to Schulze et at. [95], undisciplined annotations include arbitrary annotations

of code fragments, for instance, a single function parameter, and are difficult to refac-

tor using tool support. We aligned our definition with these previous studies [69; 45;

95]. Based on this definition, Liebig et al. [69] analyzed 40 software projects with over

30 million lines of C code regarding the discipline of their annotations. They found that 84%

of all annotations are disciplined.

Despite the relevance and prevalence of conditional compilation in practice, existing ev-

idence confirms that comprehending code with #ifdef directives is far from trivial [109;

70; 75; 72]. Code with either disciplined or undisciplined annotations may affect program

comprehension. However, empirical knowledge on the influence of the annotation discipline

is still scarce. Medeiros et al. [75] proposed a catalog of refactorings to convert undisci-

plined annotations to disciplined ones. The refactorings were evaluated with respect to the

preference of 246 developers regarding disciplined or undisciplined annotated code. For

certain refactorings, developers showed a preference for the disciplined version, while for

others, both disciplined and undisciplined versions had similar rates of preference. Al-

though there are a few other studies in the literature, there is no consensus yet on whether

undisciplined annotations should be refactored to become disciplined in practice [70;

95]. For instance, Malaquias et al. [70] conducted an experiment comparing undisciplined
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annotations and their refactored version to make them disciplined. They found that undisci-

plined annotations are more time-consuming and error-prone. In contrast, Schulze et al. [95]

found no differences between using disciplined and undisciplined annotations regarding task

completion time and accuracy. Fenske et al. [39] conducted a survey study with 521 de-

velopers regarding annotations in the C language and found that their perception and their

performance are different.

For instance, in Figure 1.5(a), we present a code snippet containing an undisciplined

annotation. The annotation starts at Line 1 and wraps only the if statement in Lines 2

and 4 with their opening brackets but without the closing ones. Figure 1.5(b) presents the

same code snippet but using a disciplined annotation. Liebig et al. [69] have shown that

both kinds of annotations are present in a number of configurable systems. A number of

refactorings has been proposed to change disciplined and undisciplined annotations [75;

45]. For instance, there is a refactoring [75] that allows us to convert the code snippet

presented in Figure 1.5(a) to Figure 1.5(b).

1 #ifdef OPENSSL_SYS_VMS
2 if (access() != 0) {
3 #else
4 if (outdir != 0) {
5 #endif 
6 // Lines of code here.. 
7 }

(a)

1 int test;
2 #ifdef OPENSSL_SYS_VMS 
3 test = access() != 0; 
4 #else
5 test = outdir != 0; 
6 #endif
7 if (test){ 
8 // Lines of code here.. 
9 }

(b)

Figure 1.5: Code snippets adapted from OpenSSL with disciplined and undisciplined anno-

tations.

Despite studies and discussions, it is difficult to reliably tell whether disciplined or undis-

ciplined annotations improve code comprehension. For instance, both code snippets pre-

sented in Listing 1.5(a) and Listing 1.5(b) have almost the same values for code metrics such

as Lines of Code (LOCs). Malaquias et al. [70] recommended avoiding undisciplined anno-

tations because they are more time-consuming and error-prone. Schulze et al. [95] concluded
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that there is no difference between disciplined and undisciplined annotations regarding time

and accuracy. Fenske et al. [39] concluded that there is a difference between developers’

perception and performance regarding annotations in C language.

Overall, in the research community, there is no consensus on whether developers should

use disciplined annotations. Previous studies are either strictly based on developers’ opin-

ions or on a limited set of conventional metrics related to code comprehension, such as time

and accuracy. There are not always observable differences in applying fine-grained refactor-

ings using conventional metrics, and the use of #ifdef directives is often employed in a

fine-grained program context (i.e., attached to one or a few statements). Opinions and con-

ventional measures may not reveal important nuances in the comprehension of disciplined

versus undisciplined annotated code, which may also help to better explain the benefits and

drawbacks of annotation discipline. Therefore, there is a need to perform additional con-

trolled experiments that also enable the analysis of complementary indicators about what the

developer is doing while trying to comprehend annotated code.

Research Problem: the state-of-the-art on understanding the impact of refactorings on

code comprehension lacks conclusive results and qualitative/quantitative details on how

and why of possible correlations. Our research problem is considered in the scope of the

refactorings for atoms of confusion, Extract/Inline Method, and configurable systems in

the context of novice programmers, with eye tracking.

1.2 Solution

In this work, we evaluate how different behavior-preserving code changes impact code com-

prehension of novice programmers from the perspective of controlled experiments. Our

empirical research strategy uses a mixed-method, comprising three controlled experiments,

interviews, and qualitative analysis, as seen in Figure 1.6. The usual approach to studying

code comprehension has been the use of controlled experiments, in which one can measure

the differences between treatments to sheds light on factors that affect comprehension [38].

Interviews and qualitative data analysis can be useful to support quantitative data and better

understand the roles each factor can play in experiments involving human subjects.

Thus, our experiments consider distinct factors such as the human factor and different
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granularities/complexities (atoms, Extract Method, configurable systems). In addition, it

extends the usual coarse-grained dependent variables (time, accuracy, and opinions) with

finer-grained ones (fixation time, fixation count, regressions count). Moreover, our analysis

of the experiment results triangulates quantitative data with other obtained data from the

interview and qualitative analysis.
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Figure 1.6: Overview of the methods employed in the controlled experiments.

In our controlled experiments, we use an eye tracking camera. An eye tracking camera

is an equipment that tracks eye movements while someone looks at a stimuli [52]. It has

been used in various fields, including source code reading and comprehension [29; 15; 116].

The data captured by the camera allow researchers to access where, when, and for how

long a subject looks at a screen, and the eye tracking metrics evaluate how much subjects

fixate and how they switch between distinct areas [82; 15; 99]. We can infer how much

visual attention is given to specific elements on a screen along with the visual effort [29;

28; 8]. When the reader fixates more, and for a longer time, it can be associated with more

attention to the stimuli [16], more time to understand code phrases [8], more attention to

complicated code [28].

The visual effort combined with time and number of attempts can contribute to a better

understanding of the novices’ code comprehension. Eye tracking allows us to investigate 1)

how much time the subjects spent in specific refactored code regions, i.e., line or lines of the

code that contain an atom of confusion, an extraction of a method, a method call, a method

inlining, or #ifdef annotations; 2) to what extent refactoring can impact visual metrics;

and 3) how refactoring impacts the code reading with the visual regressions.

In our first experiment, we conduct a controlled experiment with eye tracking to evaluate

the impact of six atoms of confusion on code comprehension. We evaluate to what extent
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the obfuscated code containing atoms of confusion and the functionally equivalent clarified

versions of the code impacted the time, the number of answer submissions, and visual effort.

In our second experiment, we evaluate the extent of the effects of Extract and Inline

Method refactorings on code comprehension with eye tracking. Our definition of Extract

Method takes a clump of code and turns it into its own method with a name that shows its

intention, while preserving the behavior of the code, in the context of software evolution.

We address code comprehension from the human subject perspective by triangulating the

metrics of objective performance with subjective perceptions.

In our third experiment, we investigate how three fine-grained refactorings to discipline

#ifdef annotations affect code comprehension. In particular, in addition to time and ac-

curacy, we investigate the impact of these annotations on the visual effort by measuring the

fixation duration, fixation count, and regressions count.

1.3 Evaluation

To investigate the impact of atoms of confusion, we report an eye tracking controlled exper-

iment that evaluates how six atoms affect the code comprehension of 32 novices in Python.

We consider as novices in Python undergraduate students who know how to program but

have little experience with Python. We compare programs containing six atoms of con-

fusion with functionally equivalent clarified versions aiming to observe how and to what

extent they influence the performance of the subjects regarding time, number of attempts,

and visual effort. We measure visual effort with three eye tracking metrics, namely, fix-

ation duration, fixations count, and regressions count. Fixations and saccades-based met-

rics are among the most popular metrics employed in eye tracking studies and are easier

to capture and understand. Other more elaborate metrics such as blinks or pupil dilation

require more sophisticated equipment. Time and answer correctness have been employed

before to measure effects on code comprehension [70; 95]. In addition, the visual effort has

been measured before with fixation duration, fixations count, and regressions count [16; 8;

99]. We analyze these metrics in the whole code as well as in the main Area of Interest

(AOI). The AOI defines the region of the code that contains the atom or its correspond-

ing clarifying version. In this study, we selected the six atoms that occur in real projects:
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Multiple Variable Assignment, True or False Evaluation, Conditional Expression, Operator

Precedence, Implicit Predicate, and Augmented Operator. Each program containing one of

these obfuscating atoms has a functionally equivalent clarified version to be compared.

To investigate the impact of Extract Method refactoring, we conduct a controlled experi-

ment with 32 novices in Java and measure their objective performance with time, number of

attempts, and visual effort in both the entire code as well as in the AOI. We measure visual

effort with fixation duration, fixations count, and regressions count. In the reading domain,

fixations refer to the eyes focusing on certain spots when we read, while regressions refer

to skipping back in the text to re-read a word or sentence. We interview the novices re-

garding their perceptions of the difficulties of the programs and analyze the qualitative data

using the method of grounded theory. We select eight tasks from introductory programming

courses: Sum Numbers, Calculate Next Prime, Return Highest Grade, Calculate Factorial,

Count Multiples of Three, Calculate Area of Square, Check If Even, and Count Number of

Digits. For each task, we compare two functionally equivalent versions of programs, one

with a method inlined, and the other with the method extracted.

To investigate the impact of #ifdef annotations, we conduct a controlled experiment

with 64 human subjects majoritarily novices. We consider all the subjects who know how

to program but have little experience in C programming language “novices”. The aim is

to observe how disciplined annotations influence their performance on six tasks involving

code comprehension in terms of time, accuracy, fixation duration, fixation count, and regres-

sions count. Effects on code comprehension have been previously studied based on time

and accuracy [70; 95]. Fixation duration, fixation count, and regressions count have been

associated before with visual attention and effort in code comprehension scenario [16; 8;

99]. We measure these metrics in the code region in which both code versions differ af-

ter applying the refactorings, referred to as main AOI. For this study, we selected the three

refactorings most preferred by developers to discipline annotations according to Medeiros

et al. [75]. The three refactorings differ in various ways: Refactoring 1 〈wrapping function

call〉 duplicates a token in a function call to wrap only entire statements with preproces-

sor directives. Refactoring 2 〈undisciplined if conditions〉 resolves undisciplined directives

surrounding boolean expressions by defining a fresh variable to maintain the statement’s

conditions. Refactoring 3 〈alternative if statements〉 uses an alternative if statement also
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defining a fresh variable to keep the statement’s condition.

1.4 Conclusions

We found that the clarified version of the code containing the atom Operator Precedence

reduced the time spent in the AOI and in the entire code to the extent of 38.6% and 20.1%,

respectively. The metrics for the visual effort were also impacted to a considerable extent.

The fixation duration in the AOI and fixations count was reduced as well. The most impacted

metric was the regressions count in the AOI, with a reduction by 50%. These results can be

associated with less visual effort. In addition, the number of attempts was reduced by 28.3%.

On the other hand, the clarified version of the code containing Multiple Variable Assignment

increased the time and the regressions count. We did not observe consistent reductions for

the other atoms, however, they revealed other interesting nuances. We discuss more details

in Chapter 3.

We found a reduction with the Extract Method for two tasks that varied from 70% to

78.8% in the time in the AOI, from 73.6% to 78.9% in the fixation duration, from 67.7%

to 75.8% in the fixations count, and from 74.4% to 84.6% in the regressions count. For

three tasks, the reduction varied from 20% to 34.4% in the number of attempts. These

results might indicate more productivity and less visual effort. On the other hand, with the

Extract method, there was an increase in the time in the AOI for three tasks that varied

from 108.4% to 166.9%, from 73.1% to 130.1% in the fixation duration, from 137.1% to

194.2% in the fixations count, and from 100% to 200% in the regressions count. These

results might indicate less productivity and more visual effort. In the interview, after coding

the subjects’ answers, we learned that extracting a method in the code favors the formulation

of the hypotheses about the behavior of the code. We discuss more details in Chapter 4.

In our study, after applying Wrapping Function Call or Alternative if Statements, the

total time spent in the AOI, fixation duration, fixation count, and regressions count were

statistically significantly reduced. After applying Alternative if Statements, the number of

incorrect attempts to solve the task, before submitting a correct answer, is reduced. However,

no differences were observed in the number of attempts after applying the other refactorings.

Even though for R2 we observed a statically significant increase in time in the AOI, it did not
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result in statically significant differences in fixation duration, fixation count, and regressions

count, therefore, the same amount of visual effort has been observed for this refactoring.

Notably, our study setup reveals some nuances otherwise undetected by conventional code

metrics. For instance, one of the refactorings adds one extra variable and two extra lines

of code, which is only a small impact on the metric LOC, but it associated with reductions

in AOI of 46.9% in the time, 44.7% in the fixation duration, 48.4% in the fixation count,

and 60.5% in the regressions count. Overall, our results indicate that when a novice applies

Wrapping Function Call or Alternative if Statements, she solves the task faster and with less

visual effort. In addition, applying Alternative if Statements associated with improvements

in the accuracy of her answers. We discuss more details in Chapter 5.

1.5 Summary of contributions

In summary, this work makes the following key contributions:

• We present a controlled experiment using eye tracking with novices in Python pro-

gramming language to evaluate the impact of clarifying atoms of confusion on code

comprehension (Chapter 3);

• We present a controlled experiment using eye tracking with novices in Java program-

ming language to evaluate the impact of Extract Method on code comprehension

(Chapter 4);

• We present a controlled experiment using eye tracking with novices in the C program-

ming language to evaluate three refactorings that discipline #ifdef annotations in C

programs (Chapter 5).

As a result of this work, we had the following contributions:

• An article [30] accepted for publication in the Empirical Software Engineering journal

presenting the results of Chapter 5;

• We collaborated on an eye tracking study to investigate the effects of the presence

of the atoms of confusion on time, accuracy, and focus of attention of developers,

accepted for publication at Brazilian Symposium on Software Engineering [33];
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• We collaborated in the investigation of the social representations of confusing code

among two distinct communities of developers from the Brazilian software industry,

accepted for publication at International Workshop on Cooperative and Human As-

pects of Software Engineering. [32];

• An article submitted to the Empirical Software Engineering journal presenting the

results of Chapter 3, from which we received a major revision, made the required

changes, submitted again, and for the time being, is under revision;

• An article to submit to IEEE Transactions on Software Engineering journal presenting

the results of Chapter 4, from which we received a major revision, made the required

changes submitted again, and for the time being, is under revision;

• We worked together in the investigation of a Multivocal Literature Review on test

smells submitted to IEEE Transactions on Software Engineering journal.

1.6 Organization

This dissertation is organized as follows: In Chapter 2, we present the background with

concepts for understanding this dissertation. In Chapter 3, we present an eye tracking study

with novices in Python programming language to evaluate the impact of atoms of confusion

on code comprehension. In Chapter 4, we present an eye tracking study with novices in

Java programming language to evaluate the Extract Method refactoring. In Chapter 5, we

present an eye tracking study with novices in C programming language to evaluate three

refactorings that discipline #ifdef annotations in C programs. In Chapter 6, we present

the related work. And finally, in Chapter 7, we present the conclusions and future work.



Chapter 2

Background

In this chapter, we present the background to understand this work. In Section 2.1, we

present an overview of refactoring code. In Section 2.2, we present an overview on the

atoms of confusion. In Section 2.3, we present an overview of the configurable systems. In

Section 2.4, we present an overview of code comprehension, and in Section 2.5, we present

important concepts related to eye tracking approach.

2.1 Refactoring Code

We present the definition of refactoring in Section 2.1.1, examples in Section 2.1.2, and

we describe how approaches evaluate the improvements in the design of the code in Sec-

tion 2.1.3.

2.1.1 Definition

Refactoring can be understood as the process of changing a software system with the

purpose of improving its internal structure without changing its external behaviour [40;

86]. It is characterized by code transformations with the purpose of improving the code

design, making it easier to understand, evolve, and maintain. These transformations may

involve several code changes such as renaming identifiers so that they could be more mean-

ingful and easier to understand, and changing excessively long methods with Extract Method

so that it becomes easier to figure out what the method does. Fowler [40] proposed a cata-

18
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log of refactorings that became popular and commonly employed involving rename, Extract

Method, move method, and others. Improving the code design involves making software

easier to change and find bugs. This makes subsequent design iterations easier and makes

the software more reusable [86].

2.1.2 Extract Method Refactoring

To extract a method, the developer creates a new method, and names it after the intention of

the method. Then she copies the extracted code from the source method into the new target

method. We have an example in Figure 2.1(a) converted to Figure 2.1(b), which exemplifies

an Extract Method applied. In Figure 2.1(a), we have a code snippet that has the variables

assignments, computes the smallest number of an array, and prints the output. However,

the core that computes the smallest number of the array can be extracted with a descriptive

name such as getSmallestNumber in Figure 2.1(b), which improves the code design.

According to a prior study [107], developers extract a piece of code into a separate method to

make the original method easier to understand, thus Figure 2.1(b) is better that Figure 2.1(a).

public class Main {

    static int getSmallestNumber(int[] numbers) {

        int n = numbers[0];

        for(int i=1; i < numbers.length; i++) {

            if(numbers[i] < n) {

                n = numbers[i];

            }

        }

        return n;

    }

    public static void main(String[] args) {

        int [] numbers = {2,1,3};

        int output = getSmallestNumber(numbers);      

        System.out.println(output);

    }

}

public class Main {

    public static void main(String[] args) {

        int [] numbers = {2,1,3};

        int n = numbers[0];

        for(int i=1; i < numbers.length; i++){

     if(numbers[i] < n){

         n = numbers[i];

     }

 }

        System.out.println(n);

    }

}

(a) (b)

Figure 2.1: Example of the Extract Method refactoring.

2.1.3 Improving the Design of Existing Code

Several factors are involved in the quality of the design of the code. These factors can be

directly measured, in terms of internal quality attributes or indirectly measured, in terms
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of external quality attributes. Internal quality attributes are measured through code metrics

such as the number of LOCs, coupling, and cohesion, while understandability exemplifies

an external quality attribute.

In a previous study [20], the effects of refactorings to improve software structural quality

have been evaluated using software metrics. In using metrics, a study revealed that either

neutral or negative effects of software refactoring are much more frequent than positive ef-

fects [19]. Software metrics provide a means to extract quantitative measurable information

about the structure of the code and some popular metrics used to measure the observable ef-

fects of refactorings on code structure are the number of LOCs [22], McCabe’s Cyclomatic

Complexity [71], and coupling metrics [62]. However, using these conventional metrics to

evaluate the effects of fine-grained refactorings on the code may be challenging. There are

not always observable differences in these metrics after applying small transformations [19],

such as adding one extra line of code or adding new fresh variables.

For instance, consider the Figure 2.1(a) compared to Figure 2.1(b). Both versions present

the same values for Cyclomatic Complexity and coupling. However, the refactored version

in Figure 2.1(b) adds four extra LOCs and one extra variable. In this snippet, refactoring

could negatively affect the time it takes a developer to read the code with the addition of

more lines. On the other hand, it has the advantage of code reuse since the new method can

be used in other parts of the code. In addition, with a descriptive name, it can improve one’s

capacity to understand the code. In such case, the sole use of code metrics cannot reveal the

nuances involved in the external quality attributes, such as the extent of the impact of the

refactoring on code comprehension.

To capture additional dimensions, there are also qualitative studies that use surveys to

investigate the developers’ perception regarding the effects of refactorings on the code [85;

63; 75]. The quantitative and qualitative approaches to evaluate refactorings have been used

in the context of single programs and in configurable systems, where we have several con-

figuration options. In the next section, we discuss this topic in more detail.
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2.2 Atoms of Confusion

When writing code, developers communicate their intent to other developers. The correct

interpretation of their intent is crucial for the software maintenance and evolution pro-

cesses. This interpretation occurs through a process of code comprehension, in which

a developer reads the source code, often written by another developer, and understands

its behavior. However, the developer’s interpretation of a piece of code can often dif-

fer from that of the one who wrote the code due to tiny patterns that can cause mis-

understandings. These tiny patterns that can obfuscate the code and confuse develop-

ers causing them to misjudge the code’s behavior are called atoms of confusion [48; 49;

66] when it has been experimentally shown there are functionally equivalent alternatives

that lead to better performance. Castor gives a more complete definition of atoms of con-

fusion, mentioning four characteristics needed for a pattern to be considered as an atom of

confusion [18]: 1) precisely identifiable; 2) likely to cause confusion; 3) capable of being

exchanged for another less confusing pattern that does the same thing; 4) not divisible.

Gopstein et al. [48] cataloged a set of atoms of confusion as a result of empirical studies to

validate atom candidates. The candidates were extracted from the International Obfuscated

C Code Contest, a list of 19 potential atoms. The authors tested how well subjects could hand

trace those atoms compared to functionally equivalent code snippets with the obfuscations

removed. From the initial set of candidates, 15 were confirmed to be significantly confusing

to our subjects. We have some examples in Table 2.1.

While many of these atoms have been shown to confuse developers, a prior study has

shown that they are prevalent in real-world software [49]. The study mined several popular

open-source C and C++ projects looking for instances of the 15 atoms of confusion cata-

loged. Atoms of confusion are prevalent in real projects. There are over 3.6 million atoms

in 14 popular open-source C/C++ projects, appearing on average once every 23 lines. These

projects include git, vim, Linux, among others.
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Atoms Description Obfuscated Clarified

Multiple Variable Assign-

ment

We can assign the same value to

multiple variables by using = con-

secutively

a = b = 1
b = 1

a = b

True or False Evaluation Directly checking whether some-

thing is True versus checking

whether its negation is False

(not a ==

b)

(a != b)

Conditional Expression Also called “ternary operator”, an

if statement can be written in one

line with conditional expression

a = b if b

== c else d

if (b == c):

a = b

else:

a = d

Operator Precedence The precedence of the operators in-

fluences the outcome. Depending

on the order, we might have differ-

ent results

a and b or

c

(a and b) or c

Implicit Predicate An expression that does not pro-

duce a bool is used as a predicate

(a % b) (a % b != 0)

Augmented Operator A single operator adds a value to a

variable and updates it

a += 1 a = a + 1

Preprocessor in Statement Preprocessor directives must stand

alone on their own line

int V1 = 1

#define M1 1

+1;

#define M1 1

int V1 = 1 + 1;

Post-

Increment/Decrement

Confusion arises because the value

of the expression is different from

the resultant value of the variable

V1 = V2++; V1 = V2; V2 += 1;

Table 2.1: Atoms of confusion.
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2.3 Configurable Systems

Costumers are often demanding customized software products with more diverse features.

On the other hand, developers are under the pressure of time and cost constraints to meet

such demands. In this scenario, the Software Product Line (SPL) engineering approach

becomes helpful for improving the software development process. This approach presents

the advantage of reusing existing software components to reduce the cost and time while

increasing its diversification [23; 89; 117].

This idea of reuse in software products emerged from the automobile industry [89]. Over-

all, customers were content with standard cars. However, not all wanted the same kind of

car for any purpose. For instance, some people drive alone; others have big families. Some

people drive in the city, others in the countryside. They had distinct needs and demanded

individualized products tailored to their own needs. Thus, companies started to introduce

common platforms for their different types of cars by planning beforehand which compo-

nents would be used in different car types. They could provide customized cars with distinct

features by reusing common components at reasonable costs.

Similarly, in the context of software development, a key concept in SPL engineering con-

sists of variability [117]. Variability can be considered as the ability to change or customize a

system [118]. Individual systems are considered variations of a common theme and must be

made explicit and systematically managed. Thus, a configuration is a process of binding the

optional features of a system to produce a specific software system or variation [27]. We can

configure the system by selecting and deselecting features and producing a new variation.

Therefore, as a result of this process, the systems can be configured to tailor to the users’

needs.

The differences between variant products can be described in terms of their features. A

feature is a user-visible characteristic of a software system [24]. It can also be understood as

a way to abstract from customers’ requirements; thus, one particular feature may meet more

than one requirement, and one requirement may apply to several features [118]. In practice,

implementing variability can pose challenges to the developers for adding complexity. Given

that the growth of variations as a function of the number of features is exponential, ensuring

that all product variants meet given properties is a non-trivial issue [75].
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In practice, developers mostly implement variability using a preprocessor. A preproces-

sor is a system that processes the input data and produces an output used as an input to the

compiler [1]. Before the compilation, part of the compiler performs a set of operations over

the source code, which is the preprocessing. These operations may include dealing with

macros, which are abbreviations of longer constructions, dealing with the inclusion of files,

and language extensions [1]. The C Preprocessor (CPP) is the most common example of a

preprocessor, which we discuss in more detail in the next section.

2.3.1 The C Preprocessor

The CPP is widely used in practice to handle portability and variability in the C program

families [109]. A family of programs can be understood as individual programs with exten-

sive characteristics in common such as variants of the same program [87]. The CPP is used

to implement the individual variants in several open-source projects such as Linux operating

system, Apache web server, and Dia drawing software.

Some of the reasons for such popularity among developers can be explained because

the CPP is simple and flexible. In it, developers annotate the code with simple and intuitive

preprocessor directives which manipulate the source code before compilation occurs.

These directives include file inclusion (#include), macro definition (#define), macro

substitution and conditional compilation (#if, #ifdef, #ifndef, #elif, #else or

#endif) [37]. In this study, we focus on the conditional compilation.
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1 int main() {

2 #ifdef M1

3 int x;

4 #endif

5

6 #ifdef M2

7 int y;

8 #endif

9

10 #ifdef M3

11 int z;

12 #endif

13 }

Listing 2.1: Code

snippet before preprocessing

with configurations.

1 int main() {

2

3 int x;

4

5

6

7 int y;

8

9

10

11 int z;

12

13 }

Listing 2.2: Code snippet

after preprocessing with all

configurations enabled.

1 int main() {

2

3 int x;

4

5

6

7 int y;

8

9

10

11

12

13 }

Listing 2.3: Code processed

with M1 and M2 enabled and

M3 disabled.

Conditional compilation annotations allow the developers to work with one source code,

but they can define separate code branches, which are included or excluded from the final

compilation depending on the value of conditions evaluated by the preprocessor [44]. The

annotations are not part of the C language and they need to be evaluated and removed after

the preprocessing. For instance, consider the Listing 2.1 as an example of a configurable

system with #ifdef annotations [13]. In Listing 2.1, we present the source code before

preprocessing with three macros, M1, M2, and M3. Each macro is a condition to be evaluated

and can be included if enabled and excluded if disabled. In Listing 2.2, all the variables are

declared which means that all the macros were enabled. In Listing 2.3, variable z was not

declared since M3 was disabled.

2.3.2 Undisciplined Annotations

Despite the benefits of CPP to deal with portability and variability, its usage has been

criticized in academia and has been even considered harmful [109]. Studies observe

that the use of CPP can cause problems such as the occurrence of syntactic and seman-

tic errors during the generation of variant products [65; 61], the pollution of the code
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due to scattered and tangled #ifdef annotations also known as “#ifdef hell” [109;

75], and the decrease in maintainability and in ability to evolve the system [36; 34].

In particular, the use of undisciplined annotations has the potential to aggravate these

problems. Undisciplined annotations are preprocessor directives that encompass only parts

of the statements [45], which leads to problems such as annotating an opening bracket

without the closing one [34]. We define disciplined and undisciplined annotations based

on the following definition: disciplined annotations are annotations on certain syntactic

code structures, such as entire functions and statements, whereas undisciplined annotations

are annotations of individual tokens or brackets that do not align with underlying code

structure [69]. Thus, we consider undisciplined annotations as annotations that do not wrap

entire statements. For instance, consider the Listing 2.4. The #ifdef encompasses the if

statement and the opening bracket but does not encompass the closing one. In this sense, the

areas of the code with this type of annotation appear as bad smells, which are candidates for

a bad design.

1 #ifdef OPENSSL_SYS_VMS

2 if (access() != 0) {

3 #else

4 if (outdir != 0) {

5 #endif

6 // Lines of code here..

7 }

Listing 2.4: Example of undisciplined

annotations wrapping parts of statements.

Consider Listing 2.5. In this example, the preprocessor usage occurs within single state-

ments. A single statement can be understood as a statement that contains no compound

blocks. Some examples include variable initializations, function calls, and return statements.

In the example, the annotations wrap only parts of the function call.
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1 mfp = open(mf_fname

2 #ifdef UNIX

3 , 600

4 #else

5 , IWRITE

6 #endif

7 );

Listing 2.5: Example of undisciplined

annotations in single statements.

A prior study performed an empirical study on 41 C program families and found that

almost 90% of syntax errors occur in undisciplined annotations [74]. Thus, maintaining

and evolving a system in the presence of conditional compilation plus using undisciplined

annotations can be a challenge for the developers. Undisciplined annotations have shown

a negative influence on comprehension and maintenance of annotated code in a controlled

experiment [70]. Since reuse is at the core of configurable systems, the design of the code

has to be improved in such a way that the code is easy to read, maintain, and evolve. In the

next section, we give an overview of refactoring undisciplined annotations.

2.3.3 Refactoring Undisciplined Annotations

Studies have proposed catalogs of fine-grained refactorings to convert from undisciplined

annotations to disciplined ones [45; 75]. They are fine-grained in the sense that they involve

simple and small code transformations. For instance, to remove the undisciplined annota-

tions presented in Listing 2.4, Medeiros et al. [75] proposed a fine-grained refactoring that

uses an alternative if statement and defines a fresh variable test that receives the eval-

uation of COND 1 or COND 2 depending on whether macro EXP is defined or not. It adds

two extra lines of code to remove the undisciplined annotations. The template of the pro-

posed refactoring can be seen in Listing 2.6 and Listing 2.7. This refactoring can be applied

whenever the left-hand side of the template matches a piece of C code. In this context,

a matching consists of an assignment of all meta-variables highlighted in capital letters to

concrete values in the C code.
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1 #ifdef EXP

2 if (COND_1) {

3 #else

4 if (COND_2) {

5 #endif

6 STMTS

7 }

Listing 2.6: Code with undisciplined

annotations before refactoring.

1 int test;

2 #ifdef EXP

3 test = COND_1;

4 #else

5 test = COND_2;

6 #endif

7 if (test) {

8 STMTS

9 }

Listing 2.7: After refactoring, the

annotations in the code of Listing 2.5

becomes disciplined.

2.4 Code Comprehension

Understanding code is a crucial activity in maintaining and evolving any system. On average,

a maintenance developer spends 50—60% of her time with understanding source code [110].

From the code comprehension perspective, studies have argued that the preprocessor usage

leads to more complicated code which is considered difficult to understand [37; 65; 109;

34]. Since the preprocessor directives are usually intermingled in the code, the developers

can face difficulties in determining the scope of each conditional definition [42]. Reading

and understanding source code are difficult because every time someone enters a conditional

compilation section she has to stop and determine under what circumstances that code will

be selected for compilation [88].

Code comprehension can be described by two main models, namely top-down and

bottom-up processes. Other models may comprise a mix of these two models. In the top-

down model, developers try to comprehend the code by first formulating hypotheses about

the purpose of the code. Then, the developers examine the details and refine the hypothesis

by developing other hypotheses. These other hypotheses are refined further until developers

have low-level comprehension of the code [119]. In this refinement process, developers use

beacons which are key defined as lines, fragments, or elements that help them [120]. The

bottom-up model is used by developers who have insufficient knowledge about the code,

so they cannot use beacons. Thus, they start to understand the code by examining first its
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details, such as the singular statements or control constructs [105]. Statements that semanti-

cally belong together are grouped into chunks of higher-level abstractions. These chunks are

integrated into larger chunks in a process that repeats until the developer has the comprehen-

sion of the whole code. Developers can also use both models when trying to comprehend

the code. They use a more top-down comprehension process when they are familiar with the

application domain and bottom-up comprehension when unfamiliar with it [96].

Investigating code comprehension is not a trivial task given the number of factors that

have to be considered, in particular, in controlled experiments. Numerous studies have been

conducted to investigate how developers understand source code, and controlled experiments

are central to these investigations [105]. In these experiments, human subjects are asked to

solve a programming task on a given source code. These tasks are designed so that, to solve

it, the developers have first to understand the code. Thus, the effort and success in performing

the task are a proxy to estimate the difficulties in code comprehension [38]. Therefore, the

code, task, metrics, and human subjects are factors that play important roles in these studies,

and they have to be carefully considered [38; 14].

To measure code comprehension, studies involving human subjects mainly measure the

correctness or accuracy of the subjects’ answers. Particularly, subjects are asked to provide

information about the code, for instance, predict the output of the code, identify code ele-

ments, or explain a high-level functionality. They can also be asked to act on the code, such

as modifying it. This metric relates to an objective perspective of the performance of the

developers, which contrasts with a more subjective perception that comprises personal opin-

ions and preferences [39]. Usually, studies investigate the preferences of the developers for

a certain code snippet over another, rate their comprehension, rate their confidence in their

answer, and their difficulties [84]. In addition to these two metrics, studies also investigate

how much time is needed to complete the task or read the code. These metrics have not been

used exclusively. Indeed, studies have combined them to investigate code comprehension.

More recently, new approaches to measuring code comprehension have gained attention.

They can provide additional indicators of the visual and mental effort of the developers while

solving code tasks. These approaches mainly include metrics related to eye and brain activ-

ities as indicators of difficulties in performing tasks [41; 38; 105]. For instance, functional

magnetic resonance imaging (fMRI) allowed researchers to observe which brain regions got
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activated when subjects performed defined tasks, such as understanding source code, and

associated these different regions with different cognitive processes [106]. In the literature,

visual attention can trigger cognitive processes that are required to perform tasks [60]. In

addition, it is also a proxy for visual effort, a subset of cognitive effort, measured as the

amount of visual attention allocated to parts of a visual stimulus [99]. Eye tracking metrics

have been used to investigate code comprehension through visual effort. Given the scope of

this work, in the next section, we discuss in more detail the particularities of the eye tracking

approach.

2.5 Eye Tracking

Eye tracking involves assessing a subject’s visual attention by recording eye movements [90].

The eye movements show where a subject is looking, the duration, and the eye gaze sequence

in which her visual attention switches from one location to another [99]. Eye movements are

essential to cognitive processes. The eye movements focus the subject’s visual attention

on the parts of a visual stimulus that are processed by the brain, triggering the cognitive

processes that are required to perform tasks [60].

Visual attention works as a proxy for visual effort, which is a subset of cognitive ef-

fort, measured as the amount of visual attention allocated to parts of a visual stimulus [99].

Researchers can use eye trackers how a certain stimulus can impact the subjects’ visual atten-

tion. In the code comprehension context, for instance, a visual stimulus could be a piece of

code that the developer has to solve. While focusing her visual attention on specific parts of

the code, and putting effort to understand it, the necessary cognitive processes are triggered,

for instance, thinking about what it does and how, remembering identifiers and assigned val-

ues, or judging the behavior of the code. Thus, an eye tracker allows us to measure the visual

effort involved in comprehending the code.

The terminology of eye tracking includes four main categories of metrics [90]:

• Fixation: the eye remains stable focusing on part of a stimulus for a period of time

(Figure 2.2(a)). It is based on the idea that, as soon as a subject sees a word or a text in

the code, she tries to interpret it, and fixates her attention on it until she comprehends

it [60];
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• Saccade: continuous and rapid eye movements occurring when the subject switches

from one fixation to another (Figure 2.2(b));

• Pupil dilation: when a pupil dilates, it allows more light to get into the eye in low

light conditions (Figure 2.2(c)). It can also be affected by the cognitive effort required

by the stimulus;

• Scanpath: a series of fixations in chronological order that represents the switches in

the eye movements (Figure 2.2(d)).

(a) fixations (b) saccades

saccade

(c) pupil dilation (d) scanpath

constricted
pupil

normal 
pupil

dilated
pupil

21

34

Figure 2.2: Eye tracking terminology.

The research community investigates eye movements with respect to specific areas in

the visual stimulus called Areas of Interest (AOI). For instance, lines of code with the an-

notations as depicted in Figure 2.3. It could also include specific constructs, the body of a

certain method, and an area of the code that contains a bug. These areas can be relevant to

the researcher to formulate or refine hypotheses depending on how developers interact with

them. For instance, observing whether converting from undisciplined to disciplined annota-

tions impacts the metrics in the AOI, or renaming a method to observe whether it alleviates

or increases the visual effort of the developer in that area. The AOI could cover the whole

method extracted or a region where the candidate atom, which can allow us to observe how

the fixations in the area can be impacted.

2.5.1 Metrics

We can divide eye tracking metrics according to the four mentioned categories: metrics

based on fixations, metrics based on saccades, metrics based on scanpaths, and metrics of

pupil size and blink rate [99]. With respect to metrics based on fixations, we commonly find

the following metrics:
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AOI WHOLE 
CODE

void main(void) {
  int status;
  int value_A = 0;
  int value_B = 20;
  #ifdef MACRO
    if(value_A > 0)
  #else
    if(value_B > 10)
  #endif 
    status = 0;
  else 
    status = 1;
  printf("%d",  status);
}

Figure 2.3: Example of AOI in a program.

• Fixations count: the total number of fixations in the AOI or in the whole stimulus (see

Figure 2.4(b));

• Fixation duration: sum of the duration of all the fixations on an AOI or the stimulus

(see Figure 2.4(c));

Fixation count and fixation duration have been used before to find the AOIs that attract

more attention [29], including studies in the software engineering field [99]. A higher num-

ber of fixations devoted to a stimulus, such as an image on the computer screen, may indicate

that the search for relevant information is not efficient [46]. In comprehension tasks, for in-

stance, a higher fixation rate on a specific AOI may indicate that the subject shows a great

interest in its content or it may also indicate effort or difficulties in understanding [57]. To

distinguish between interest and difficulties, researchers usually perform a triangulation with

qualitative interviews to better understand the motivations.

With respect to metrics based on saccades, we can mention the commonly employed

following metrics:

• Saccades count: the total number of saccades in the AOI or in the whole stimulus (see

Figure 2.4(d));

• Saccades duration: the duration of the saccade consists of the time one spends while

not fixating; she is gazing between two fixations (see Figure 2.4(e));
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#ifdef OPENSSL_SYS_VMS
if (access() != 0) {
#else
if (outdir != 0) {
#endif  
// Lines of code here.. 
}

200ms

300ms

200ms

100ms

(a) fixations and saccades 
plotted over the code

(b) fixations count: 
five fixations

(c) fixation duration: 
800ms

(d) saccades count:
three saccades

(e) saccades duration:
320ms

100ms

120ms
100ms

(f) saccades amplitude:
150pixels

50pixels

60pixels
40pixels

#ifdef OPENSSL_SYS_VMS
if (access() != 0) {
#else
if (outdir != 0) {
#endif  
// Lines of code here.. 
}

1

3

2
4

(g) regressions count:
one vertical regression

Figure 2.4: Example of eye tracking metrics based on fixations, saccades, and scanpath.
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• Saccades amplitude: relates to the distance in pixels between two fixations (see Fig-

ure 2.4(f));

• Regressions count: the number of backward saccades of any length over the stimu-

lus [15] (see Figure 2.4(g)).

Overall, more saccades can be associated with more visual searching [46], thus, a certain

stimulus that requires more saccades to be analyzed can be associated with a less efficient

search behavior. Besides, while examining the text, careful inspection of the stimulus re-

sulted in shorter saccadic amplitudes [114]. Difficulties in reading texts can be inferred by

the saccadic regression behavior. For instance, studies reported that as the text becomes con-

ceptually more difficult, the frequency of regressions increases as well [91]. In the field of

code comprehension, regressions may be an indicator of measuring visual effort [99].

With respect to metrics based on scanpaths, we can mention the commonly employed

following metrics:

• Attention Switching Frequency: when we divide the stimulus, such as an image, into

several areas of interest, we can compute the number of times one switches or jumps

from one area to another;

• Edit Distance: computes the minimum editing cost of transforming one scanpath into

another with the operations insertion, deletion, and substitution using the Levenshtein

algorithm;

• ScanMatch: computes the similarity between two scanpaths;

• Linearity: describes how linear (top-to-bottom and left-to-right) is the searching strat-

egy employed by the subject.

We can compare scanpaths to find patterns and study the subjects’ visual strategies while

solving the task [15]. The edit distance has been used to indicate the similarity among

subjects’ viewing or reading strategies [98]. In addition, for source code, the linearity of the

scanpath has been evaluated with respect to how similar subjects read code to text and how

similar they read to execution order following the code control flow [15].

With respect to metrics based on pupil dilation and eye blinks, we can mention the com-

monly employed following metrics:
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• Blink rate: the rate of eye blinks while the subject is looking at the AOI or at the

whole stimulus;

• Pupil size: the physical diameter of the pupil is usually given in millimeters.

The blink rate correlates with visual demand. When more attention is needed, eye blinks

are inhibited and delayed to a moment when the demand is reduced [112; 31]. Lower blink

rates have been associated with higher workload or attention [41]. In addition, increased ef-

fort and heavier cognitive workloads given task difficulty are related to larger pupil sizes [6].

2.5.2 Visualization Techniques

Eye tracking experiments can generate a large amount of data in terms of fixations and sac-

cades which increases according to the number of subjects. All these data can be analyzed

by statistical methods with the support of visualization techniques. While statistical analysis

provides a quantitative perspective of the results, visualization techniques allow researchers

to analyze different levels and aspects of the data in an exploratory and qualitative manner.

This manner comprises an analysis of temporal evolution of the position of data points, distri-

bution of attention, scanpath analysis, or spatio-temporal structure of eye tracking data [10].

Since eye tracking studies cover a wide range of distinct areas, we concentrate on pre-

senting the visualizations most employed in studies that relate to code comprehension and

their aspects. In this context, we can mention gaze plots and heatmaps.

Gaze plots: provide a static view of the eye-gaze data and show the time sequence of

looking using the locations, orders, and duration of fixations on stimuli [100]. Sharafi et

al. [100] provides two examples of gaze plots which can be seen in Figure 2.5, which present

fixations in red circles. In Figure 2.5, the size of circles remains the same but the size of the

circle can increase according to the duration of the fixations. Longer fixations are represented

by larger circles.

Heatmaps: Heatmaps can be defined as two-dimensional graphical representations of

data where the values of a variable are shown as colors and are used to determine the amount

of interest generated by various elements of the stimulus, thus, distribution of visual atten-

tion [11]. They represent the intensity of a measure, for instance, fixations, through col-

ors [100]. Their usage is compelling because the interpretation is intuitive, since the amount
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Figure 2.5: Visualization of fixations. The size of fixations varies according to their duration.

of heat is proportional to the level of the represented variable, and because heatmaps show

the data directly over the stimulus, so they are easy to read [11]. They can be used for only

one subject or aggregate several subjects. For instance, in Figure 2.6, we present an example

of a heatmap. It is based on 16 novices aggregated who solved the same task before applying

a refactoring. In Figure 2.6, the subjects solve the task before the refactoring is applied.In

code comprehension studies, they have been used to show the distribution of attention over

the stimuli.

Figure 2.6: Visualization of the distribution of attention on a program.

Visualizing saccades: The eye movement from one fixation to another is called a sac-

cade [93; 90]. We can map the chronological sequence of saccades between the code lines to

visualize and better understand the dynamics of eye movements between distinct elements

of code before and after applying the refactoring. A graph can help us visualize such dy-

namics with a node representing a line of code and an edge representing a saccade such as

in Figure 2.7. In it, the edge weight represents how frequently the subjects made the same

saccades from one specific line to another while performing the same task. The intensity of
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the colors varies according to the weight. The more intense the color, the heavier the weight,

which implies the more frequently they made the same saccade.

 void main(void) {

   int output;

   int value_A = 0;

   int value_B = 0;

   #ifdef MACRO

     if(value_A == 1)

   #else

     if(value_B == 0)

   #endif

      output = 1;

   else

      output = 0;

   printf("%d", output);

 }
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Figure 2.7: Visualization of saccades in a graph on a program.



Chapter 3

Study I: Refactoring Atoms of Confusion

In this chapter, we compare programs obfuscated by the atoms with functionally equiva-

lent clarified versions to investigate the impact of clarified programs on code comprehen-

sion. This chapter is organized as follows: Section 3.1 presents the study definition, and

Section 3.2 presents the study methodology. Section 3.3 presents the obtained results and

discussion. Section 3.4 discusses the threats to validity, and finally, Section 3.5 presents the

conclusion.

The transformations applied to the obfuscated code are structural transformations aim-

ing to make them clearer to understand while preserving its behavior. We consider those

code clarifications as refactorings in the sense that they can be characterized as behavior-

preserving code transformations aiming to improve the code in certain aspects [40], such as

code comprehension. However, instead of focusing on the transformation process, we focus

on the results of the transformations. Thus, in this chapter, when we refer to the clarified

code version, we have in mind a refactored version aiming to clarify the code.

3.1 Study Definition

In this section, we present the definition of our study following the Goal-Question-Metrics

approach [5]. We compare programs containing obfuscating atoms with functionally equiv-

alent clarified versions of these programs for the purpose of understanding how the clarified

programs associate with improvements with respect to code comprehension from the point

of view of novices in Python programming language in the context of tasks adapted from

38
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introductory programming courses.

We address five research questions (RQs). Our null hypothesis for each RQ is that there

is no difference between the obfuscated and clarified programs with respect to the collected

metric.

• RQ1: To what extent do the atoms affect task completion time?

To answer this question, following prior studies [48; 33], we measure how much time

it takes for the subject to specify the correct output of the task. In addition, we measure

how much time the subject spends in specific areas of the code.

• RQ2: To what extent do the atoms affect task the number of attempts?

To answer this question, also following prior studies [48; 33], we measure the number

of attempts by counting the number of attempts made by the subject until answering

the task correctly.

• RQ3: To what extent do the atoms affect fixation duration?

To answer this question, we measure the duration of each fixation found in the captured

data of the novices. In the code comprehension scenario, fixations with high duration

have been associated with an increased level of attention [16].

• RQ4: To what extent do the atoms affect fixations count?

To answer this question, we count all fixations found in the captured data of the

novices. A high number of fixations has been associated with a longer time to pro-

cess and understand code phrases [8], more attention to complex code [28], and more

visual effort to recall identifiers’ names [101].

• RQ5: To what extent do the atoms affect regressions count?

Regressions in the context of natural language reading may indicate that the reader

did not understand what they read [91]. In the programming context, regressions have

been used to assess the linearity of code reading [15]. In an imperative programming

language, text lines may be read left-to-right, top-to-bottom, similarly to natural lan-

guage. However, there are constructs, such as loops, that require the reader to read
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bottom-to-top at some points. To make the comparison fair, both obfuscated and clar-

ified versions of the code have loops that iterate over the same number of elements.

Thus, to measure regressions, we compute the number of saccades with a direction

opposed to the writing system, which can happen from a line of code to a previous

one, or within the same line. We compute the number summing all regressions across

all attempts. To compare the programs, we compute the median number of regressions

on each program.

3.2 Methodology

In this section, we present the methodology of our study. We present the pilot study (Sec-

tion 3.2.1), experiment phases (Section 3.2.2), subjects (Section 3.2.3), treatments (Sec-

tion 3.2.4), evaluated atoms of confusion (Section 3.2.5), programs (Section 3.2.6), eye

tracking system (Section 3.2.7), fixation and saccades instrumentation (Section 3.2.8), and

finally the analysis (Section 3.2.9).

3.2.1 Pilot Study

Before conducting the actual experiment, we conducted pilot studies with five human sub-

jects. The purpose was to refine the material, such as forms and programs, and evaluate the

experiment setup and design. We do not consider these five subjects in the analysis of the

results.

Our study material comprises a set of programs, a form for characterizing the subjects,

and questions for a semi-structured interview. To evaluate our set of programs, we tested

complete code snippets from introductory programming courses. We validated the level of

difficulty of the programs, code font size, font style, spaces between the lines of code, and

indentation. In addition, we estimated the average time of each task, which allowed us to set

a proper time limit for them. We found that each of our programs usually took less than two

minutes to be solved. We also refined the questions from the forms.

Since our subjects are native Brazilians, we designed our programs and the vocabulary

to be in the Brazilian Portuguese language, thus, avoiding problems in code comprehension

given the lack of knowledge of words in English, for instance. We evaluated a limited vocab-
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ulary of words to name the variables in the programs. The identifiers were carefully selected,

discussed by the researchers, and designed to convey some but not all of the information. For

instance, we used words such as elements and items which are general terms for lists of

elements; value, result, and total for receiving the result of operations and printing

the output; in addition, we used two abbreviated words such as elem and cont to specify

an element and a counter, which are commonly employed in the context of teaching intro-

ductory programming languages. In specific programs, we also used words such as grade,

bonus, average, and final to convey meaning in the specific context.

While previous empirical studies used variables with meaningless single-letter

names [48; 47; 66], we opted for names that conveyed some but not all the information.

Meaningless names can make the code intrinsically harder to understand and, therefore,

differences are likely to be accentuated. However, in real code reading tasks, developers

are usually, though not always, faced with variable names that use real words and have a

meaning for them [67]. Therefore, following this approach is arguably closer to a practical

scenario.

Through the conduction of the pilot studies, we learned that, when studying in the context

of novices, we should provide the tasks in their mother tongue, otherwise comprehension

would be hampered by natural language barriers. In addition, we should evaluate tasks with

different levels of difficulty, which allows us to have a better set of tasks. Finally, we should

ask the subjects questions about the programs, identifiers’ names, and other suggestions to

refine the tasks.

The pilot studies allowed us to evaluate and refine our experiment design, which consists

of four phases: (1) Tutorial, (2) Warm-up, (3) Task, and (4) Qualitative Interview. We then

estimated an average of around 60 minutes for each subject to complete all phases. Next, we

describe these phases in detail.

3.2.2 Experiment Phases

As the subject enters the room, we introduce ourselves and explain the main idea of the

study, what data we are going to capture and for what reasons. We asked each subject to fill

out a consent form, agreeing to participate in the study and giving the researchers permission

to use the data for academic purposes only. The access to the collected data was restricted
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to the researchers and the identity of the subjects was kept in anonymity. In addition, the

subjects filled another form with questions related to programming background experience

for the characterization purpose.

In phase one, we present a tutorial with explanations regarding the execution of the ex-

periment. All subjects reported being familiar with Python language, thus, we present some

snippets to make sure they were familiar with them. We instruct the subjects on how to sit

properly on the chair in front of the camera and how to perform the task. In addition, we

explain that the subject can quit at any time and does not need to provide any reasons for do-

ing that. Once the subject is seated comfortably in front of the camera, we explain how the

camera calibration process works and we proceed with a calibration of the camera on each

subject’s eye. In the camera calibration process, the subject looks at specific locations on the

screen indicated by the camera software, and the same software indicates when calibration

is successfully done. For some subjects, we had to re-calibrate the camera until we gained

confidence that the data captured by the camera was reliable.

In phase two, we simulate the execution of the experiment with a simple warm-up task.

While solving the task, we demonstrate how the subjects can specify its output, how the

subject can close their eyes for two seconds before and after solving the task, how we signal

the correct and incorrect answer, and how we signal the time limit. The idea is that the

subject can be comfortable with the experiment setup and equipment.

In phase three, we run the actual experiment with twelve programs, six of them contain-

ing a distinct obfuscating atom each, and six functionally equivalent clarified programs. To

avoid learning effects, we use a Latin Square design [12] for the experiment. We explain this

in more detail in Section 3.2.4.

In phase four, we end the experiment with a semi-structured interview. The goal is to

obtain qualitative feedback on how the subjects examined the programs along with their

subjective impressions. We go through each of the twelve programs and ask three questions:

(1) How difficult was it to find the output: very easy, easy, neutral, difficult, or very difficult?

(2) How did you find the output? (3) What were the difficulties you had, if any?

The coronavirus pandemic made the running of eye tracking experiments more challeng-

ing. It is worth mentioning that the health and safety of our subjects are of utmost importance

to us. We started running the experiment only after the end of the social distancing measures
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in the country and during a time when the infections were decreasing, and the number of vac-

cinated people was increasing. All subjects had at least one dose of a COVID-19 vaccine.

Still, we arranged an environment with fresh air and all subjects had Personal Protective

Equipment (PPE) and disinfecting supplies such as hand sanitizers and face masks. Since

we had one subject at a time, we limited the number of people in the environment to only

two.

In addition to taking care of the environmental condition for the health of the subjects,

we were also careful with environmental aspects to reduce noise in the data. For instance,

we did not use a swivel chair because, in previous pilot studies, subjects tended to move,

which reduced the precision of the eye tracking equipment. Despite the measures we have

taken, obtaining perfect data is virtually impossible, given camera limitations. Thus, we

as researchers have discussed the collected data, plotted, interpreted, and performed data

correction by slightly shifting chunks of fixations in the y-axis. We discuss in more detail this

strategy in the threats to validity section (see Section 3.4.1). The dataset generated during

the current study is available on a repository within a replication package also containing

forms, programs, fixation data, data correction strategy, and other materials [59].

3.2.3 Subjects

Our study included 32 undergraduate students that we call “novices”. On average, our sub-

jects had 20 months of experience with programming languages, which mainly included

Python, Java, JavaScript, C, and C++. However, only in Python, the language in which the

programs were written, they had on average seven months of experience. Thus, we refer to

our subjects as novices in Python language. They were recruited from three distinct univer-

sities in Brazil, invited mainly through e-mails or text messages. All subjects were Brazilian

Portuguese speakers enrolled in academic universities.

For the sample size, we followed Cohen’s effect types and suggested conventional values

to estimate a large effect size of 0.8 [26] and based on a related work on atoms of confusion

that estimated the nominal power of 0.8 [48]. We computed the number of subjects necessary

to have a minimal power of 0.8 with a significant level of 0.05 using the T-test sample size

computation. Our analysis revealed that we need 26 subjects in two samples to have a min-

imal power of 0.8 with a significant level of 0.05. Alternatively, since we have 32 subjects
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instead of 26, our study can also detect a moderate effect size of 0.5 with a power of 0.5 with

a significant level of 0.05.

3.2.4 Treatments

Each subject has the task of examining 12 programs (P1–P12). To avoid that the same subject

takes a program in obfuscated and clarified versions, causing learning effects, we have de-

signed 24 distinct programs divided in two sets of programs (SP1 and SP2), each containing

12 programs. A subject takes six obfuscated programs (O) of the first set, for instance, SP1,

and six clarified programs (C) of the second set, SP2, as seen in Figure 3.1. Both sets SP1 and

SP2 have the same atoms, however, instantiated in distinct programs with distinct outputs.

The obfuscated programs are our baseline group, and the clarified are the treatment group.

P1
Multiple Var. 
Assignment

P2
True/False 
Evaluation

P3
Conditional 
Expression

P4
Operator 

Precedence

P5
Implicit 

Predicate

P6
Augmented 

Operator

C

2

Set of 
Programs

1

P1
Multiple Var. 
Assignment

P2
True/False 
Evaluation

P3
Conditional 
Expression

P4
Operator 

Precedence

P5
Implicit 

Predicate

P6
Augmented 

Operator

OSet of 
Programs

1

P7
Multiple Var. 
Assignment

P8
True/False 
Evaluation

P9
Conditional 
Expression

P10
Operator 

Precedence

P11
Implicit 

Predicate

P12
Augmented 

Operator

OSet of 
Programs

2

P7
Multiple Var. 
Assignment

P8
True/False 
Evaluation

P9
Conditional 
Expression

P10
Operator 

Precedence

P11
Implicit 

Predicate

P12
Augmented 

Operator

CSet of 
Programs

2

1

Figure 3.1: Structure of a latin square. Subject1 takes six programs (P1–P6) which are clar-

ified versions (C) of the programs containing each of the atoms. These programs are from

Set of Programs 1 (SP1). Subject1 also takes six programs (P7–P12) from the Set of Pro-

grams 2 (SP2) comprising the obfuscated code (O) containing the atoms. Subject2 takes the

complement to that.

For instance, consider Figure 3.2, which depicts how the atom Multiple Variable As-
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signment (A1) is evaluated in the programs P1 and P7 of the set of programs SP1 and SP2,

respectively. The first subject examines the program P1, which is the clarified version of a

program containing A1, present in the set of programs SP1 (P1 - A1 - SP1 - C). The same

subject examines another program, P7, which contains the obfuscating atom A1, present in

the set SP2 (P7 - A1 - SP2 - O), which prints a distinct output from that one in SP1 to reduce

learning effects. A similar idea applies to the second subject. The second subject examines

P1 containing the obfuscating atom A1 present in SP1 (P1 - A1 - SP1 - O) and then the same

subject examines another program, P7, which is the clarified version of a program containing

A1, present in SP2 (P7 - A1 - SP2 - C). It is important to mention that being in the same set,

the programs P1 - A1 - SP1 - O prints the same output of P1 - A1 - SP1 - C, however, the first

program contains the obfuscating atom and the second is a clarified version of the obfuscated

program. Both programs are examined by distinct subjects as well. In all the programs, the

subjects had the task of specifying the correct output in an open-ended fashion, which means

that each subject has to read the entire code and find the output without being presented with

multiple options.

1

nota = 3
final = nota 
bonus = 6
if (bonus > final):
  temporario = final
  final = bonus
  bonus = temporario
print(final)

P1 - A1 - SP1- C
nota = media = 4
final = 5
if (final > nota):
  media = nota + 3
print(media)

P7 - A1 - SP2- O

final = nota = 3
bonus = 6
if (bonus > final):
  temporario = final
 final = bonus
 bonus = temporario
print(final)

P1 - A1 - SP1- O
media = 4
nota = media
final = 5
if (final > nota):
  media = nota + 3
print(media)

P7 - A1 - SP2- C

2

P 7
--P 12

P 1
--P 6

P 7
--P 12

P 1
--P 6

Figure 3.2: The structure of the programs P1 and P7, whether obfuscated or clarified, from

SP1 and SP2. We present all the programs with the obfuscating atoms and the clarified

versions of the programs from SP1 and SP2 in our supplementary material.
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3.2.5 Evaluated Atoms of Confusion

We evaluated six atoms of confusion, which are summarized in Table 3.1. We selected four

of them, namely Multiple Variable Assignment, Conditional Expression, Operator Prece-

dence, and Implicit Predicate from a popular catalog of atoms for C that was proposed by

Gopstein [48; 49], and further adapted to Java [66; 78]. We selected atoms that varied in their

characteristics, which we found relevant for our investigation purpose, could be adapted for

Python, and that were found in real projects. Gopstein et al. [48] studied the prevalence of

the atoms of confusion in 14 large and significant open-source projects. The four selected

atoms in our study that were based on their work are among the seven most found atoms in

the evaluated projects.
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Atoms Description Obfuscated Clarified

Multiple Variable As-

signment

We can assign the same value

to multiple variables by using

= consecutively

a = b = 1
b = 1

a = b

True or False Evalua-

tion

Directly checking whether

something is True versus

checking whether its negation

is False

(not a == b) (a != b)

Conditional Expression Sometimes called “ternary

operator”, an if statement

can be written in one line with

conditional expression

a = b if b == c else d

if (b == c):

a = b

else:

a = d

Operator Precedence The precedence of the oper-

ators influences the outcome.

Depending on the order, we

might have different results

a and b or c (a and b) or c

Implicit Predicate An expression that does not

produce a bool is used as a

predicate

(a % b) (a % b != 0)

Augmented Operator A single operator adds a value

to a variable and updates it

a += 1 a = a + 1

Table 3.1: Atoms evaluated in this study.

In their catalog, Gopstein et al. [48] exemplify Multiple Variable Assignment as V1 =

V2 = 3. This atom was originally named Assignment as Value. Nevertheless, in Python,

assignments are not expressions, and this pattern has different semantics. It means that the

same value is assigned to multiple variables. Due to the syntactic similarity and semantic

difference, we use it as an atom and name it Multiple Variable Assignment.

In addition to those four atoms, we selected two other patterns that are found in style

guides for Python language, namely True or False Evaluation1 and Augmented Operator.2

1https://google.github.io/styleguide/pyguide.html
2https://www.python.org/dev/peps/pep-0577/
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While planning the experiment, we came up with distinct atom candidates that had the po-

tential to cause confusion. We gave preference to candidates that were commonly used in

practice, comprising distinct characteristics, and that we had alternative ways to write them.

However, the pilot tests were crucial to determining what candidates would be more likely to

cause confusion. We aimed to understand how our approach to evaluating those four atoms

of confusion could possibly be applied to evaluate these two atom candidates. In general, we

conducted pilot tests to arrive at these particular six atoms through refinements, investigation

of feasibility, and discussions.

3.2.6 Programs

We selected code snippets by manually analyzing code repositories of programming activi-

ties for introductory programming students. We mainly targeted GeeksForGeeks3 and Leet-

code4, which are popular code bases with programming activities for practicing and coding

interviews. Given that we focused on novices, we selected easy, small, and complete prob-

lems and adapted them to the camera constraints. We present an example of our programs

for each atom of confusion in Figure 3.3.

A prior systematic literature review on code comprehension conducted by Oliveira et

al. [84] revealed that 70% of the studies in this domain involves asking subjects to provide

information about the code, such as predicting the output. Following this commonly adopted

methodology, we provided a code snippet to the subjects and asked them to specify the

correct output. We are aware of the existence of other types of tasks in code maintenance

and evolution, such as adding a functionality, refactoring the code, and fixing bugs. However,

we based this study on the assumption that the subject will need at least to know the output

of the code or the state of the variables to perform these other activities.

We used programs with less than ten lines of code to fit completely on the screen. All

the programs are free of syntactic errors. We used simple constructions that commonly

occur in many programming languages. We made sure that each program contains exactly

either one or zero instances of one atom, whether obfuscated or clarified, respectively. Each

program prints only one correct output given a set of possible outputs. We avoided letting

3https://www.geeksforgeeks.org/
4https://leetcode.com/
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the programs present only two possible outputs, even though, given the logic of the code,

the code containing the Conditional Expression (Figure 3.3(c)) and Operator Precedence

(Figure 3.3(d)) do that. We made sure that each version of the program, obfuscated and

clarified, from the same set of programs, presented the same output. For instance, the right-

hand side and left-hand side of Figure 3.3(a). It is important to stress that, due to the use of a

Latin Square design, no subject was presented with the clear and obfuscated versions of the

same program. The programs followed Consolas font style, font size 16, line spacing of 1.5

inches, and eight white spaces of indentation.

3.2.7 Eye Tracking System

We used the Tobii Eye Tracker 4C in our experiment with a sample rate of 90 Hz. The

calibration of the eye tracker followed the standard procedure of the device driver: while

calibrating, the subject is asked to look at five points appearing one at a time randomly,

twice, then, at the final stage, eight points appear for checking the calibration, three to the

left, two in the middle, and three to the right. The eye tracker was mounted on a laptop

screen with a resolution of 1366 x 720 pixels, a width of 30.9 cm, and a height of 17.4 cm,

at a distance of 50-60 cm from the subject. The code tasks were displayed as an image

in the full-screen mode but no Integrated Development Environment (IDE) was used, nor

number for the lines. From this distance, we compute an accuracy error of 0.7 degrees

which translates to 0.6 lines of inaccuracy on the screen, considering the font size we

used and the line spacing. The line spacing was tested in the pilot study to be sufficiently

large so we could overcome the eye tracker accuracy limitations. For processing the gaze

data, we implemented a script in Python, which allowed us to analyze and collect the metrics.

3.2.8 Fixation and Saccades Instrumentation

During a fixation, our visual attention is focused on a specific area of the stimulus and triggers

cognitive processes [60]. Thus, a fixation can be understood as the stabilization of the eye on

part of a stimulus for a period of time, and the rapid eye movements between two fixations

are called saccades [93; 55]. The visual stimulus can be any object, for instance, a piece
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Conditional Expression

(a) SP1 - Obfuscated and clarified version

Multiple Variable Assignment

(b) SP2 - Obfuscated and clarified version

True or False Evaluation

(c) SP1 - Obfuscated and clarified version

Augmented Operator

(d) SP1 - Obfuscated and clarified version

Operator Precedence

(e) SP2 - Obfuscated and clarified version

Implicit Predicate

(f) SP1 - Obfuscated and clarified version

elementos = [60, 30, 40]

limite = 50

total = 0

for elem in elementos:

    if (elem < limite):

        total = total + 1

print(total)

elementos = [7, 4, 3]

resultado = 0

for elem in elementos:

    if (elem == 3):

        resultado = elem

    else:

        resultado = 10

print(resultado)

valor = 0

cont = 1

while (cont <= 4):

    if (not cont == 3):

        valor = valor + 1

    cont = cont + 1

print(valor)

valor = 0

cont = 1

while (cont <= 4):

    if (cont != 3):

        valor = valor + 1

    cont = cont + 1

print(valor)

final = nota = 3

bonus = 6

if (bonus > final):

    temporario = final

    final = bonus

    bonus = temporario

print(final)

nota = 3

final = nota 

bonus = 6

if (bonus > final):

    temporario = final

    final = bonus

    bonus = temporario

print(final)

elementos = [60, 30, 40]

limite = 50

total = 0

for elem in elementos:

    if (elem < limite):

        total += 1

print(total)

elementos = [7, 4, 3]

resultado = 0

for elem in elementos:

    resultado = elem if elem == 3 else 10

print(resultado)

pontos = 15

if (False and True or True):

    media = pontos/3

else:

    media = 0

print(media)

pontos = 15

if ((False and True) or True):

    media = pontos/3

else:

    media = 0

print(media)

elementos = [7, 12, 10]

valor = 0

for elem in elementos:

    if (elem % 5 != 0):

        valor = valor + 1

print(valor)

elementos = [7, 12, 10]

valor = 0

for elem in elementos:

    if (elem % 5):

        valor = valor + 1

print(valor)

Figure 3.3: Examples of programs from set of programs SP1 and SP2 with obfuscated (left-

hand side) versions of the code containing the atoms Multiple Variable Assignment, True

or False Evaluation, Conditional Expression, Operator Precedence, Implicit Predicate, and

Augmented Operator, and their respective clarified (right-hand side) versions. Shaded areas

represent the AOIs, which are the code lines in which both obfuscated and clarified versions

differ.
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of source code, over which the subject performs a task, and whose visual perception by the

subject triggers cognitive processes and actions, such as edit of a statement in a source code

file [100].

There is no standardized threshold in the literature to specify the exact period of time for

a fixation because duration usually depends on the processing demands of the task. How-

ever, we have some guidelines popular among eye tracking researchers. Salvucci and Gold-

berg [93] define a fixation as the eye being stable for a period of time between 100 and

200 ms, while according to Rayner [91], our eyes remain relatively still during fixations

for about 200–300 ms when reading natural language text. Thus, after analyzing our pro-

grams, we used 200 ms as our threshold. Eye tracking researchers usually use an algorithm

to classify gaze samples into fixations based on this threshold.

In this study, we used a Dispersion-Based algorithm to classify the fixations. In particular,

we used the Dispersion-Threshold Identification (I-DT) [93]. We also classified gaze samples

as belonging to a fixation if the samples are located within a spatial region of approximately

0.5 degrees [81]. This region corresponded to 25 pixels on our screen.

3.2.9 Analysis of the Results

From the total of 384 programs, the subjects solved 329, which corresponds to 85.6% of

the programs. This set of solved programs includes programs that were solved either in the

first attempt or after many attempts, however, both were solved within the time limit. We

based our analysis only on these solved programs within the time limit. From this total, 160

programs were obfuscated and 169 were clarified.

Due to technical issues with the camera, we missed the data for two programs. They

consist of only 0.5% of the data. Since they were not associated with correct or incorrect

answers, and as a requirement of the statistical analysis based on the Latin Square design,

we decided to impute them. Aiming to impute missing data for two programs, we used

the Multivariate Imputation by Chained Equations (MICE) method implemented as a mice

package in R for multiple imputations namely Predictive Mean Matching (PMM). The PMM

method uses the predictive mean matching [58] to impute univariate missing data. This

method performs better when the data sample size is sufficiently large [64], which was our

case.
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Once we had collected our data, we performed a statistical analysis to test our null hy-

potheses. We determine a significance level of 0.05, which means 5% risk of concluding

that there is a difference when there is no actual difference. Whenever our p-value is equal

or inferior to 0.05, we reject the null hypothesis that there was no difference between the

median of the treatments.

We used statistical tests to compare two groups regarding the time, number of attempts,

and visual metrics. The obfuscated programs are the control group, and the clarified pro-

grams are our treatment group. Following a practical guide on eye tracking studies [100],

to test if data were normally distributed, we used Shapiro-Wilk Test [97]. For the normally

distributed data, we performed the parametric t test for the two independent samples. The t

test can be used to verify whether there is a statistically significant difference between two

groups [104; 100]. However, before performing the t test, we verified whether the vari-

ances of the two groups were equal [104]. For the data that do not follow a normal distri-

bution and that could not be normalized, we used the non-parametric test Mann-Whitney,

also known as the Wilcoxon test, which can be applied to this specific situations [104;

100]. The mean value in the data might not be appropriate to characterize the fixations

because the central tendency might depend on some very high values [43]. Thus, we based

on the median as a measure of central tendency. To compare the six levels of atoms (six

groups), we used ANOVA for normal data and Kruskal–Wallis for non-normal data. We

used the post-hoc Dunn’s Test with p-values adjusted with the Bonferroni method to identify

which groups differed.

We adopted the following methodology to identify code reading patterns in our data: we

identified a set of regions in the code, such as variable definition, loop condition, if condition,

and others. Then, we defined these regions in pixels on the images of the tasks. We defined

the regions inside the code according to a previous guideline [55]. Our hypothesis drove

the regions; their positioning was precisely defined with 10 pixels to the right, left, top,

and bottom, considering the camera limitations so that we could have a margin between the

regions and avoid overlapping. In addition, we defined the white-space as a region so that we

could be aware of any threat to validity given the camera limitations. Using the chronological

order of the fixations and their positions, we identified a sequence of visited regions for each

subject. We then built a big picture of the sequences by simplifying repeated transitions from
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one region to the same region. We make the sequences and the images of the tasks with the

regions identified available in our supplementary material [59].

3.3 Results and Discussion

In this section, we present and discuss our results for each atom. We present the Multiple

Variable Assignment (Section 3.3.1), True or False Evaluation (Section 3.3.2), Conditional

Expression (Section 3.3.3), Operator Precedence (Section 3.3.4), Implicit Predicate (Sec-

tion 3.3.5), and Augmented Operator (Section 3.3.6). We also present the coding of the

subjects’ answers (Section 3.3.7) and other analysis (Section 3.3.8).

3.3.1 Multiple Variable Assignment

In Figure 3.4, we depict the obfuscating atom Multiple Variable Assignment on the left-hand

side and the clarified version on the right-hand side. They differ in that the clarified version

has two lines of code in the AOI, and one variable is repeated. In Table 3.2, we consider

two perspectives of the metrics, one examining only the AOI and the other examining the

whole code. While the time in the code, for instance, consists of the time one requires to

examine and solve the task regardless of the fixations made, the time in AOI consists of

examining only the region of the atom. As shown in Table 3.2, the subjects spent 30.1%

more time and 60% more visual regressions in the AOI with the clarified version of the code

containing Multiple Variable Assignment. In addition, they exhibit 38.4% more fixations,

and the duration of the fixations is 22.9% higher in the clarified.

Obfuscated Clarified
final = nota = 3 nota = 3

final = nota 

Figure 3.4: Obfuscating atom Multiple Variable Assignment and clarified version.

The clarified version has one more element to observe and one line to go back, which

can explain the need for more time, more fixations, and more regressions examining. To

better understand it, we investigated distinguishing between a regression to a previous line,

vertical regression, and a regression within the same line, or horizontal regression. We
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In the AOI In the Code

Atoms Metrics O C
PD
% PV ES O C

PD
% PV ES

Time (sec) 8.3 10.9 ↑30.1 0.03 0.31 41.1 44.3 ↑7.6 0.85 n/a

Attempts n/a n/a n/a n/a n/a 1.19 1.07 ↓10.0 0.16 n/a

Multiple Fix. Duration (sec) 4.2 5.1 ↑22.9 0.15 n/a 19.4 18.2 ↓6.1 0.93 n/a

Variable Fix. Count 13.0 18.0 ↑38.4 0.17 n/a 59.5 59.5 0.0 0.86 n/a

Assignment Reg. Count 2.5 4.0 ↑60.0 0.04 0.29 26.0 25.0 ↓3.8 0.67 n/a

Horiz. Reg. Count 2.5 2.0 ↓20.0 0.98 n/a 11.5 10.0 ↓13.0 0.95 n/a

Vert. Reg. Count 0.0 2.0 ↑Inf 0.000 – 14.0 14.5 ↓3.5 0.42 n/a

Time (sec) 20.3 16.3 ↓19.6 0.24 n/a 61.2 55.9 ↓8.5 0.93 n/a

Attempts n/a n/a n/a n/a n/a 1.25 1.37 ↑9.6 0.36 n/a

True or Fix. Duration (sec) 10.1 10.6 ↓4.7 0.47 n/a 35.4 27.0 ↓23.7 0.81 n/a

False Fix. Count 30.5 28.0 ↓8.2 0.22 n/a 92.0 79.0 ↓14.1 0.77 n/a

Evaluation Reg. Count 9.5 5.0 ↓47.3 0.03 -0.34 41.5 35.0 ↓15.6 0.74 n/a

Horiz. Reg. Count 9.5 5.0 ↓47.3 0.03 – 23.5 15.0 ↓36.1 0.58 n/a

Vert. Reg. Count 0.0 0.0 n/a n/a n/a 17 16.0 ↓5.8 0.87 n/a

Time (sec) 30.7 32.1 ↓4.3 0.84 n/a 71.6 62.7 ↓12.3 0.24 n/a

Attempts n/a n/a n/a n/a n/a 1.22 1.14 ↓8.8 0.46 n/a

Conditional Fix. Duration (sec) 18.9 14.0 ↓25.5 0.44 n/a 34.3 26.9 ↓21.5 0.18 n/a

Expression Fix. Count 59.0 41.0 ↓30.5 0.33 n/a 107.0 78.0 ↓27.1 0.21 n/a

Reg. Count 15.0 14.0 ↓6.6 0.71 n/a 43.0 35.0 ↓18.6 0.38 n/a

Horiz. Reg. Count 14.0 8.0 ↓42.8 0.01 – 26.0 14.0 ↓46.8 0.02 –

Vert. Reg. Count 0.0 6.0 ↑Inf 0.000 – 17.0 21.0 ↑23.5 0.45 n/a

Time (sec) 20.2 12.4 ↓38.6 0.009 -0.37 43.5 34.7 ↓20.1 0.04 0.29

Attempts n/a n/a n/a n/a n/a 1.62 1.16 ↓28.3 2x10−4 -0.46

Operator Fix. Duration (sec) 11.0 7.3 ↓34.1 0.02 -0.33 19.9 17.1 ↓14.1 0.08 n/a

Precedence Fix. Count 32.5 22.0 ↓32.3 0.02 -0.32 57.5 49.0 ↓14.7 0.07 n/a

Reg. Count 10.0 5.0 ↓50.0 0.02 -0.33 25.0 19.0 ↓24.0 0.06 n/a

Horiz. Reg. Count 10.0 5.0 ↓50.0 0.02 – 14.0 10.0 ↓28.5 0.04 –

Vert. Reg. Count 0.0 0.0 n/a n/a n/a 11.5 9.0 ↓21.7 0.09 n/a

Time (sec) 26.4 17.3 ↓34.4 0.29 n/a 71.2 47.6 ↓33.1 0.10 n/a

Attempts n/a n/a n/a n/a n/a 1.42 1.18 ↓16.9 0.16 n/a

Implicit Fix. Duration (sec) 16.1 11.0 ↓31.5 0.42 n/a 35.1 25.9 ↓26.2 0.33 n/a

Predicate Fix. Count 43.0 29.0 ↓32.5 0.45 n/a 86.0 64.5 ↓25.0 0.28 n/a

Reg. Count 10.0 8.0 ↓20.0 0.88 n/a 40.0 28.5 ↓28.7 0.26 n/a

Horiz. Reg. Count 10.0 8.0 ↓20.0 0.88 n/a 22.0 14.5 ↓34.0 0.44 n/a

Vert. Reg. Count 0.0 0.0 n/a n/a n/a 21.0 12.0 ↓42.8 0.13 n/a

Time (sec) 7.2 5.9 ↓17.6 0.18 n/a 45.7 36.5 ↓20.0 0.30 n/a

Attempts n/a n/a n/a n/a n/a 1.13 1.20 ↑6.1 0.69 n/a

Augmented Fix. Duration (sec) 4.4 2.8 ↓35.4 0.09 n/a 20.4 16.4 ↓19.3 0.29 n/a

Operator Fix. Count 11.5 8.0 ↓30.4 0.22 n/a 58.5 47.5 ↓18.8 0.41 n/a

Reg. Count 2.0 1.0 ↓50.0 0.36 n/a 24.0 17.0 ↓29.1 0.31 n/a

Horiz. Reg. Count 2.0 1.0 ↓50.0 0.36 n/a 9.0 6.0 ↓33.3 0.08 n/a

Vert. Reg. Count 0.0 0.0 n/a n/a n/a 13.0 11.0 ↓15.3 0.71 n/a

Table 3.2: Results for all metrics for all atoms. O = obfuscated code; C = clarified code; PD

= percentage difference; PV = p-value; ES = effect size (Cliff’s delta). Columns O and C are

based on the median as a measure of central tendency, except for attempts, which are based

on the mean.



3.3 Results and Discussion 55

found that, while the subjects regress less horizontally, they make more vertical regressions

with the Multiple Variable Assignment (see Table 3.2).

The clarified version presented slightly more vertical regressions in the code and fewer

horizontal ones when considering the two sets of programs. In Figure 3.5, we depict an

example of the distribution of the regressions for two subjects who examine a program of

SP1. We selected subjects whose patterns hold for all subjects. One takes the code with

the atom Multiple Variable Assignment, and the other takes its respective clarified version

of the code. In the graph, each edge represents a regression with a direction to a previous

line of code or the same line. Each node represents a line of code. The grayscale intensity

of the edge represents the number of times such regression was repeated. Adding one more

line might explain such increase in the vertical regressions. The reduction in the number of

horizontal regressions in the AOI might be because, in the clarified version, we have two

lines, but they are shorter compared to the obfuscated version.

Obfuscated Clarified

7

6

4

5

1

2

8

3

6

final = nota = 3

bonus = 6

if (bonus > final):

  temporario = final

  final = bonus

  bonus = temporario

print(final)

nota = 3

final = nota 

bonus = 6

if (bonus > final):

  temporario = final

  final = bonus

  bonus = temporario

print(final)

5

4

1
Regressions count

3

7

2
2 3 4 5 6 7 81

Figure 3.5: Two subjects visually regressing horizontally and vertically while examining the

code, one with the code containing the obfuscating atom Multiple Variable Assignment and

the other with the clarified version of the code.

To deepen our analysis and look for reading patterns in our programs, among our

subjects, we identified a set of Regions (R) in the code as in Figure 3.6. The colors

distinguish between distinct regions and are identified by codes such as R1, R2, and so

forth. Since each program has its control flow, we expect to find sequential patterns within

the sequence of regions read in a specific order. We analyzed the chronological order of the
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regions fixated by the subjects. For the Multiple Variable Assignment, we observed that

the sequence R3 → R4 in the clarified is made 25% more times than the same sequence

R1 → R2 in the clarified version. Still, 52% of subjects in both versions do the reverse

sequence, going from the R4 → R3 and R1 → R2. The association and understanding of this

pair of variables, R1 receiving R2 in the obfuscated, depends on the value assigned in R3;

therefore, one can understand the whole expression going forward or backward. However,

breaking this multiple assignments into two lines made it difficult to associate R1 to R3.

The sequence R3 → R1, for example, in the obfuscated, happens 68% more than expected,

while in the clarified one, it occurs 112% more.

Figure 3.6: Set of regions inside the code version with Multiple Variable Assignment atom

and in the code with the clarified version of code.

In the clarified version, the subjects go back and forth between the two lines to observe

the same variable. Of the subjects, 50% make R1 → R4 16 times, while 50% go back mak-

ing R4 → R2 12 times. This can indicate confusion, given that the subjects have difficulty

associating the same variable between different lines or that they need to remember the as-

signed value. Of the two subjects who failed to solve the task, on average, they go back and

forth between R1 and R4 6 times. The transition R3 → R4 in the clarified is expected to

be performed at least once by each subject. But we found that 68% of subjects exhibit it

for 209% more than expected. Subjects may forget or make incorrect associations with the

variable R3, which is used five times in the code, and in one of them, the variable is updated.

When the task requires more use of temporary memory, it is necessary for subjects to go

back in code to refresh their memory. On average, 52% of subjects return from the lines that
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later use R3 to it.

We used a five-point scale to assess the opinions of the subjects concerning how diffi-

cult they perceived the programs to be solved. We asked the subjects to rate each program

individually whether they found it very easy, easy, neutral, difficult, or very difficult. In

Figure 3.7, we compare their perceptions with obfuscated and clarified versions of the code

containing the evaluated atoms.

Figure 3.7: Perception of difficulties with obfuscated code containing the evaluated atoms

and their clarified version.

The subjects perceive the obfuscated and clarified versions of the code as similar in terms

of difficulty, according to Figure 3.7(a). The figure shows that 9.4% of the subjects found the

obfuscated version difficult to be solved, while 6.3% had that opinion about the clarified ver-

sion. At the same time, 25% considered the obfuscated version to be very easy, whereas for

the clarified version 18.8% had the same opinion. However, from the quantitative perspec-

tive, the subjects need 30.1% more time and make 60% more regressions with the clarified

version. It indicates a discrepancy between how subjects subjectively perceive the difficulty

of the task and their performance on it. Such disagreement can be explained by the fact

that self-evaluation of difficulties can be an intrinsically difficult activity. Not all subjects

might be aware of their own effort while performing a task, such as going back and forth in

the code or remembering the variables’ intermediate states. In this scenario, we triangulate

the subjective feedback with the other perspectives to better comprehend the phenomena of
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comprehension. Regarding the difference in time in the AOI and Code, we observed that,

in the clarified version, the subjects mentioned difficulties with memorizing variables and

difficulties with swapping values in the if condition. This might indicate that repeating the

variable in the atom region may influence both their opinions and the variables’ associations

in the swapping region code outside AOI.

We conducted semi-structured interviews mainly to identify the subject’s difficulties,

better interpret the results, and perform minor sanity tests. In the obfuscated version, the

subjects mentioned the issues: “first line is confusing”, “first line caused me trouble”,

“first line is hard”, “many variable assignments”, and “beginning strange”. In the

clarified version, the subjects mentioned: “many variables” and “if is confusing”. As

a takeaway, in the obfuscated version, the sources of confusion concentrate in the first

line with the atom, while in the clarified version, they concentrate in the number of variables.

In our study, in the clarified version of code with Multiple Variable Assignment, there is

an increase in the time in the AOI and in the number of vertical regressions between the

two lines. While in obfuscated, subjectively, the sources of confusion concentrate in the

first line with the atom, while in the clarified version, they concentrate on the number of

variables.

3.3.2 True or False Evaluation

In Figure 3.8, we depict the obfuscating atom True or False Evaluation on the left-hand side

and the clarified version on the right-hand side. The clarified version removes the not oper-

ator and replaces the equality operator (“==”) by a not equals (“!=”) operator. In Table 3.2,

the subjects spent 19.6% less time and 47.3% fewer visual regressions in the AOI with the

clarified version of the code containing True or False Evaluation. They also exhibited slight

reductions by 4.7% and 8.2% in the fixations count and fixation duration in the clarified.

We found a positive correlation between time in the AOI and the number of attempts for the

clarified version, which means increases in time were associated with more attempts.

The clarified version reduced the median number of horizontal regressions in the AOI

and the number of entries and exits from the AOI. For instance, the obfuscated version of the

program has 50% more horizontal regressions in the code than the clarified one. Within the
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Obfuscated
if (not cont == 3):

Clarified
if (cont != 3):

Figure 3.8: Obfuscating atom True or False Evaluation and clarified version.

AOI, the obfuscated version has almost twice as many horizontal regressions. In Figure 3.9,

we depict an example of the distribution of the regressions of two subjects on a program of

SP2 with the code containing the True or False Evaluation and the clarified version. Besides

having more elements to observe horizontally, in the obfuscated version, the subjects have

to check whether the right-hand side and the left-hand side are equal and then apply the

not operator. A interpretation for the same-line regressions for non-AOI lines in only the

obfuscated is that the variable in the AOI depends on the repetitive control structure of the

loop before, and it affects the incrementing variable outside the AOI after. If the AOI is

confusing, one can also make more same-line regressions in regions outside the AOI.

Obfuscated Clarified

7

6

1

2

1

2

6

7

4

3

5

valor = 0

cont = 1

while (cont <= 4):

  if (cont != 3):

    valor = valor + 1

  cont = cont + 1

print(valor)

valor = 0

cont = 1

while (cont <= 4):

  if (not cont == 3):

    valor = valor + 1

  cont = cont + 1

print(valor)

3

4

5

Regressions count

2 3 4 5 6 7 81

Figure 3.9: Two subjects visually regressing horizontally and vertically in the code, one with

the obfuscated and the other with the clarified version of the code containing the atom True

or False Evaluation.

The subjects present a similar number of transitions between the AOI and the rest of

the code for the obfuscated code containing the True or False Evaluation and the clarified

version. While regressions are represented as downward arrows, a transition describes

eye movements in both forward and backward directions. They are depicted only in the

transition graphs because we aimed to examine how many times the subjects enter and exit

the AOI. The median number of times the subjects visually enter the AOI is the same for

both versions. Nevertheless, in the clarified version, the subjects transition more with the
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upper part of the code. In Figure 3.10, we give an example of these transitions with two

subjects who examine a program of SP2 with True or False Evaluation, one subject in each

version. To convey the concept more concisely, the transitions between the lower part of

the code and the upper part of the code are not present in the graph. In the obfuscated

version, the subjects reported difficulties with the operator not, and the subject seems to

visit more the lower part to make sense of it. In the clarified version, the subjects mentioned

the increment and the loop, and they seem to visit the upper part with the while statement

more times.

Obfuscated

if (not cont == 3):

5-7

Clarified

if (cont != 3):

5-7

1-3

4

1-3

4

Regressions count

2 3 4 5 6 7 81

# MORE CODE

# MORE CODE

# MORE CODE

# MORE CODE

Figure 3.10: Two subjects visually entering and exiting the AOI in the code, one with the

obfuscated code containing the True or False Evaluation and the other with the clarified

version of the code.

In Figure 3.11, we depict the True or False Evaluation atom and its clarified version.

We observed that for the obfuscated program, the addition of the particle not changes the

visual dynamics, from computing to expressions, and possibly the way of understanding. In

obfuscated, 87% of subjects go linearly R3 → R4, R4 → R5, and R5 → R6, which is more

linear. While some subjects mentioned having difficulties understating R4, none mentioned

making wrong associations regarding the order of precedence. The sequence R5 → R6 is

expected to occur three times in the loop, but it occurs 109% more in the obfuscated. As

the operator is equality, the subject can do the inverse, R6 → R5, which was observed in

87% of the subjects. However, this pattern is 76% higher than expected. In the clarified,

the sequence R4 → R5 is seen by 93% of the subjects 44 times. This pattern is intuitive for

subjects when they remember the value of the variable to be compared. As this value varies

according to the increment inside the loop, the subject must be aware of these updates in the

variable and how it interacts with other parts.

The subjects reported the same difficulties with both obfuscated and clarified versions.
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Figure 3.11: Set of regions inside the code version with True or False Evaluation atom and

in the code with the clarified version of code.

Consider the True or False Evaluation in Figure 3.7(b). In it, 25% of the subjects found the

code with the obfuscated version difficult or very difficult, while with the clarified version,

25% of the subjects found the code difficult (0% very difficult). However, from a quantitative

perspective, the subjects tend to perform better with the clarified version, spending less time

and making fewer regressions in the AOI and in the whole code.

In the obfuscated version, the subjects mainly mentioned the following issues: “difficul-

ties with not”, “not made it complicated”, “didn’t understand not”, “not is strange”,

“if complex”, and “not is confusing”. For the clarified version, they mentioned:

“increment confusing”, “difficulties with if”, and “confused the loop”. As a takeaway, in

the obfuscated version, the sources of confusion are more concentrated in not, while in the

clarified version, the sources are more diverse.

In our study, in the clarified version of code with True or False Evaluation, there is a

reduction in the number of horizontal regressions in the AOI. The other metrics were not

affected as much. In the obfuscated version, subjectively, the sources of confusion are

more concentrated in not, while in the clarified version, the sources are more diverse.

3.3.3 Conditional Expression

In Figure 3.12, we depict the obfuscating atom Conditional Expression on the left-hand side

and the clarified version on the right-hand side. They differ in that the clarified version



3.3 Results and Discussion 62

has three more lines of code in the AOI than the obfuscated version and more elements,

such as the repetition of one variable. However, with the clarified, we observed reductions

in the duration of the fixations by 25.5%, 30% in the fixations count, and 42.8% in the

horizontal regressions count. On the other hand, we observe an increase in the average

number of vertical regressions from zero to six. We depict an example of a program of SP1

in Figure 3.13. In the obfuscated version, the regressions of the subject are more concentrated

horizontally within the same line that contains the atom, while in the clarified version, the

regressions of the subject are distributed over more lines vertically.

Obfuscated

resultado = elem if elem == 3 else 10

Clarified

if (elem == 3):
  resultado = elem
else:
  resultado = 10

Figure 3.12: Obfuscating atom Conditional Expression and clarified version.

Obfuscated Clarified
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elementos = [7, 4, 3]

resultado = 0

for elem in elementos:

  resultado = elem if 
  elem == 3 else 10

print(resultado)
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elementos = [7, 4, 3]

resultado = 0

for elem in elementos:

  if (elem == 3):

    resultado = elem

  else:

    resultado = 10

print(resultado)
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Regressions count
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Figure 3.13: Two subjects visually regressing horizontally and vertically in the code, one

with the obfuscated code containing the Conditional Expression and the other with the clar-

ified version of the code.

We observed that all the subjects made the sequence R3 → R4 in the obfuscated, while

the sequence with the same elements R3 → R5 in the clarified was made by only half of the

subjects. Adopting a linear strategy, we expect the subjects to make the sequence R3 → R4

one time and return to it only when the if condition is tested as true. But we noticed that, in

the obfuscated, they exhibited this pattern 162% more than expected. The type of structure

adopted in the obfuscated version disfavors the type of linear reading since the subject tends



3.3 Results and Discussion 63

to perform the pattern of observing the R4 more than expected. In the clarified, however,

81% of the subjects exhibited the linear reading sequence R3 → R4 → R5. The sequence

R3 → R4 is seen by all subject in the clarified occurring 81% more than expected, since

the loop repeats three times. Therefore, despite the subjects exhibiting similar behaviors in

both versions, in general, the structure of the obfuscated version shows more indicative of

confusion.

The obfuscated version was associated with more programs that were not solved. With

the obfuscated, seven programs were not solved, while in the clarified, only two. For in-

stance, concerning the program in Figure 3.14, a subject who could not solve it, exhibited

the sequence R5 → R4 600% more than expected. This behavior of returning several times,

may indicate that the type of structure adopted in the obfuscated version can confuse the

subject, making him/her return unnecessarily repetitively. Similarly, the sequence R3 → R4

is made 200% more than expected.

Figure 3.14: Set of regions inside the code version with Conditional Expression atom and in

the code with the clarified version of code.

One of the reasons why we have larger differences in the code than AOI can be that, the

clarified version makes the subjects go fewer times to the outside of the AOI. For instance,

in Conditional Expression, in clarified, the subjects go 22% fewer times to the top where we

have the variables declared.

The subjects perceive the obfuscated version as more difficult to understand. In Fig-
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ure 3.7(c), 46.9% of the subjects found the code with the obfuscated version difficult or very

difficult to be understood, whereas only 25% found the clarified version difficult. Quanti-

tatively, we observed that there is an alignment between perception or difficulty and actual

results. The subjects needed more time and exhibit more visual effort with the obfuscated

version.

The main issues mentioned by the subjects for the obfuscated version were: “conditional

expression is confusing”, “more time to validate if conditional”, “if conditional is com-

plicated”, “unsure about if conditional”, “didn’t understand the list”, “didn’t remember

if conditional”, and “if difficult and I prefer another style”. For the clarified version, they

mentioned: “for loop”, “if condition is difficult”, “difficulties with elem”, “remember

cont variable”, and “indentation confusing”, “else difficult”. As a takeaway, in the ob-

fuscated version, confusion sources are more concentrated in the conditional expression. In

the clarified version, the sources are more concentrated in variables and the condition of the

if statement.

In our study, in the clarified version of code with Conditional Expression, there is an

increase in the number of vertical regressions in the AOI. The other metrics were not

affected as much. In the obfuscated, subjectively, confusion sources are more concen-

trated in the conditional expression. In the clarified, they concentrate on variables and

the condition of the conditional.

3.3.4 Operator Precedence

In Figure 3.15, we depict the obfuscating atom Operator Precedence on the left-hand side,

and the clarified version on the right-hand side. The only change in the clarified version

consists of the addition of two parentheses with the intention of clarifying the precedence of

the boolean operators. With the clarified, we observed reductions in the time in the AOI by

38.6%, in the number of attempts by 28.3%, in the duration of the fixations by 34.1%, 32.3%

in the fixations count, and 50% in the horizontal regressions count. We found a positive

correlation between time in the AOI and the number of attempts for the obfuscated version,

with increases in time associating with more attempts.

Knowing the order of precedence of the operators is essential to correctly solve the code

since the wrong order yields a wrong output. For instance, (False and True) or
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Obfuscated Clarified
if ((False and True) or True):if (False and True or True):

Figure 3.15: Obfuscating atom Operator Precedence and clarified version.

True when correctly interpreted according to Figure 3.16, right-hand side, prints True,

while False and (True or True), evaluated wrongly, prints False. The lower

number of attempts with the clarified version combined with the reduced number of fixations

and regressions, as well as fixation duration, suggests that the clarified version is improved

by the addition of the parenthesis.

Eye tracking allows us to see the impact of adding the parenthesis at a fine-grained level.

We observe that the clarified version reduced the median number of horizontal regressions

by 28% in the code, possibly freeing the subjects from the need to go back and forth in the

statement trying to figure out the right order of the boolean operators. That becomes more

emphasized in the reduction of regressions in the AOI, by 47%. In Figure 3.16, we give an

example of this reduction with two subjects who examine the program of SP1 containing

Operator Precedence, one subject in each version. In the obfuscated version, the regressions

within the same line in the if statement are more intense, including more regressions to the

previous line, compared to the clarified version.

Obfuscated Clarified

6

4

6

4

3

2 2

5

pontos = 15

if (False and 
True or True):

  media = pontos/3

else:

  media = 0

print(media)

pontos = 15

if ((False and 
True) or True):

  media = pontos/3

else:

  media = 0

print(media)

3

5

1 1 Regressions count

1 2 4 6 8 10 12

Figure 3.16: Two subjects visually regressing horizontally and vertically in the code, one

with the obfuscated code containing the Operator Precedence and the other with the clarified

version of the code.

In the obfuscated version, we observed that 75% of the subjects make the linear sequence

R2 → R3 → R4 in both versions, however, the subjects made the sequence R2 → R3 16%

more times than in the clarified, while they made the sequence R2 → R3 30% more times.
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When subjects reach the end of the entire expression, they are expected to enter the true

condition R4 as a result of correct comprehension. However, in the obfuscated version, this

expected transition is 43% smaller than in the clarified version, which can indicate that,

due to the lack of understanding of priority, subjects tend to get back on the line to try to

understand again. We observed that in the obfuscated version, 68% of the subjects returned

from R4 → R3, while in the clarified version, 62%. However, the number of regressions

between R4 → R3 is 52% higher in the obfuscated version, which may indicate a wrong

association because of priority. In addition, in the obfuscated, two subjects go from R4 →

R7, which is moving to the incorrect condition. Both only got the programs solved in the

second attempt and presented time in the AOI above the average.

Figure 3.17: Set of regions inside the code version with Operator Precedence atom and in

the code with the clarified version of code.

The subjects perceived the obfuscated version as more difficult to solve. In Figure 3.7(d),

we observe clear differences for the Operator Precedence. In it, 34.4% of the subjects found

the code with the obfuscated version difficult or very difficult to be solved while 12.5% found

the code difficult in the clarified version. From the quantitative perspective, with clarified

version, the subjects spent less time and have less visual effort in the AOI and the whole

code. In addition, they make fewer attempts to solve the programs. Thus, we observe an

alignment between their perception of difficulties and their objective performance.

In the obfuscated version, the subjects mainly mentioned the following issues: “order of

precedence”, “if difficult”, “misunderstood if”, “if difficult to validate”, “ misunder-

stood and with or”, “I missed parentheses”, “precedence”, “order confusing”, “boolean

difficult”, “didn’t remember and or”. In clarified version, they mentioned: “confused true



3.3 Results and Discussion 67

and false”, “validate and with or difficult”, “validation complicated”. As a takeaway,

in the obfuscated version, sources of confusion are more concentrated in if condition, while

in clarified version, still in if condition, however, less often.

In our study, in the clarified version of code with Operator Precedence, there were re-

ductions in the time in the AOI, attempts, duration of fixations, fixations count, and hor-

izontal regressions count. In the obfuscated version, subjectively, sources of confusion

are more concentrated in if condition, while in clarified version, still in if condition,

however, less often.

3.3.5 Implicit Predicate

In Figure 3.18, we depict the obfuscating atom Implicit Predicate on the left-hand side, and

the clarified version on the right-hand. The obfuscated version assumes that the expression

in the condition of the if statement can be used as a predicate. The change in the clarified

version consists of making the condition explicit, by adding a comparison with zero. With

the clarified, we observed reductions in the time in the AOI by 34.1%, 16.9% in the attempts,

31.5% in the duration of the fixations, 32.5% in the fixations count, and 20% in the horizontal

regressions count.

if (elem % 5): if (elem % 5 != 0):

Obfuscated Clarified

Figure 3.18: Obfuscating atom Implicit Predicate and clarified version.

The subjects perceive the obfuscated version as more difficult to solve. According to

Figure 3.7(e), 50% of the subjects found the code with the obfuscated version difficult or

very difficult to be solved while only 21.9% had the same opinion about the clarified version.

From the quantitative perspective, with the clarified version, the subjects spend less time and

have less visual effort in the AOI and in the whole code. Also, fixation duration, fixations

count, and regressions count are reduced with the clarified version. The perception of the

difficulties of the subjects is aligned with their objective performance.

This comparison was associated with reductions in horizontal regressions in the AOI,

vertical regression in the code, and in the number of times needed to enter the AOI. The

clarified version reduced the median number of horizontal and vertical regressions in the
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code by 34% and 42% respectively. The reductions in the AOI reached 20%. In Figure 3.19,

we give an example of these reductions with two subjects who examine the program of SP1

containing the Implicit Predicate, one subject in each version. The subject seems to go back

more times in the code to decipher the missing information with the implicit predicate. This

is supported by the reduction in the number of times they exit from the AOI to the upper part

of the code.

Obfuscated Clarified
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elementos = [7, 12, 10]

valor = 0

for elem in elementos:

  if (elem % 5):

    valor = valor + 1

print(valor)

elementos = [7, 12, 10]

valor = 0

for elem in elementos:

  if (elem % 5 != 0):

    valor = valor + 1

print(valor)

Figure 3.19: Two subjects visually regressing horizontally and vertically in the code, one

with the obfuscated code containing the Implicit Predicate and the other with the clarified

version of the code.

According to the program flow, in the obfuscated version, subjects are expected to eval-

uate the expression R4 → R5 in Figure 3.20 at most three times, once for each iteration in

the loop. However, we observed that subjects make this transition 116% more times than

expected, which may indicate more effort to understand. It is possible to arrive at the result

by performing the R5 → R4 regression. However, subjects regress 68% more than expected.

We observed a frequent back-and-forth. Furthermore, in obfuscated subjects look specif-

ically at the region containing the module 489% more times than expected, which might

indicate difficulty with this region. In the clarified version, adding the predicate explicitly

splits the reading effort between three regions: R5, R6, and R7. With the explicit predicate,

50% of the subjects performed R5 → R6 → R7 linearly. The module region is seen on

average 205% more than expected while the explicit predicate region R6, with 112% more

than expected. Both versions demonstrated diverse reading patterns, but the addition of the

explicit predicate divides the effort by making it lower compared to the implicit predicate.

In obfuscated version, the subjects mainly mentioned the following issues: “if is com-

plicated, “if is difficult”, “% symbol confusing”, “modulo”, “% made it difficult”, “diffi-
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Figure 3.20: Set of regions inside the code version with Implicit Predicate atom and in the

code with the clarified version of code.

culties with modulo”, “unsure about % part”, “% 5”, “didn’t understand %”, “if confus-

ing”, “if hard to validate”, “difficult because of %”. In clarified version, they mentioned:

“difficulties with % and !=”, “modulo”, “while and if together is difficult”, “increment-

ing”, “!= 0 confusing”, “counter in while difficult”, “confused %”, “if takes more time

to understand”. As a takeaway, in the obfuscated version, the sources of confusion are more

concentrated in the condition of the if statement, while in the clarified version, still in the

if statement but with more diverse sources. Along with the performance data, it indicates

that both versions are similarly confusing.

In our study, in the clarified version, we did not observe a significant impact on the

metrics evaluated. In the obfuscated version, subjectively, the sources of confusion are

more concentrated in the condition of the if statement, while in the clarified version,

still in the if statement but with more diverse sources.

3.3.6 Augmented Operator

In Figure 3.21, we depict the Augmented Operator. This atom was considered easy to un-

derstand by most of the subjects. As indicated in Figure 3.7(f), for the obfuscated version,

6.3% of the subjects found the code difficult to be solved, while with the clarified version,

the percentage was 3.1%. From the quantitative perspective, with the clarified version, the

subjects spend less time and have less visual effort in the AOI and the whole code. The

reductions with the clarified version in the fixation duration, fixations count, and regressions
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count are noticeable, and the perception of difficulties of the subjects is aligned with their

objective performance.

valor *= 10 valor = valor * 10

Obfuscated Clarified

Figure 3.21: Obfuscating atom Augmented Operator and clarified version.

To make the expression shorter, the combination of the arithmetic operator with the as-

signment operator can confuse the subject about what receives the result of the operation.

When the subjects have to pay more attention to the augmented operator or look more often

at the assigned variable can give evidence of the effort in the understanding. In the obfus-

cated version, we observed that the region that contains the assignment symbol next to the

operator with the assigned value is seen 51% more times than the same region in the clari-

fied. Interestingly, to solve the program, only 43% of the subjects visited R5 in Figure 3.22

while in the obfuscated version, it was 93%. The structure without the augmented operator

may alleviate the effort of looking at the same variable every time on the same line.

Figure 3.22: Set of regions inside the code version with Augmented Operator atom and in

the code with the clarified version of code.

In obfuscated version, the subjects mainly mentioned the following issues: “line with

total is strange”, “ elem variable and limit”, “*= symbol is strange”, “element vari-

ables is confusing”, “didn’t recognize *= symbol”, “for and elem are difficult”. In clari-

fied version, they mentioned: “for and elem”, “confused values”, “difficulties with elem

variable”, “didn’t understand the list”, “lost myself in the values”. As a takeaway, in the
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obfuscated version, the sources of confusion are more concentrated in the lack of knowledge

of the *= symbol, while in the clarified version, the sources were concentrated in the values.

The clarified version aims to clarify the operation for updating an integer variable by

repeating the same variable even if it becomes more verbose. It is worth remembering that,

in Python, we can update a variable by adding and assigning (+=), multiplying and assigning

(*=), and using other operators. In our programs, we used these two operators. Thus, the

clarified version has more elements to be observed by the subject. However, instead of

increasing the visual effort, it is reduced, and the reduction in the number of regressions in

the AOI is even more noticeable.

The clarified version in the two sets of programs reduced the median number of horizon-

tal and vertical regressions in the code by 15% and 33%, respectively. In AOI, the obfuscated

version presented twice the number of regressions. The subjects make fewer transitions be-

tween the AOI and the rest of the code in the clarified version containing the Augmented

Operator. The subjects entered the AOI slightly fewer times with the clarified version than

the obfuscated one. In Figure 3.23, we give an example of these reductions. In the obfus-

cated version, in the example, the transitions between the AOI and the rest of the code are

more intense than in the clarified version. Most of the difference in the number of transitions

occurs between AOI and the upper part of the code. Since we have a loop that iterates over

three elements, we expect the number of entries and exits to be three. It seems that using

syntactic sugar in the obfuscated version leads the subjects to turn to the upper part more

times, at least for the multiply and assign operator, as reported by the subjects.

valor *= 10

6

valor = valor * 10

6

1-4

5

1-4

5

Regressions count

2 3 4 5 6 7 81

Obfuscated Clarified

# MORE CODE

# MORE CODE

# MORE CODE

# MORE CODE

Figure 3.23: Two subjects visually entering and exiting the AOI in the code, one with the

obfuscated code containing the Augmented Operator and the other with the clarified version

of the code.
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In our study, in the clarified version, we did not observe a significant impact on the

metrics evaluated. In the obfuscated version, subjectively, the sources of confusion are

more concentrated in the lack of knowledge of the *= symbol, while in the clarified

version, the sources were concentrated in the values.

3.3.7 Coding Subjects’ Answers

We used the method of grounded theory proposed by Strauss and Corbin [113] to analyze our

qualitative data. A tentative explanation for most of the quantitative results is the presence

of certain obfuscating atoms. However, by employing the grounded theory, we aim to under-

stand and discuss whether we have qualitative evidence to support this theory in our study or

whether the qualitative evidence reveals other alternative potential sources of confusion.

Grounded theory aims at coding and categorizing to describe a phenomenon found in the

data, avoiding preconceived theories to focus on only the data. We used the following steps.

First, during the interview, we ask questions to the subjects, break their answers into smaller

chunks of data, and identify the major idea by assigning it a code that emerged from their

answers. Thus, we perform coding in the first step. Second, we read all the codes and search

for opportunities to group them into higher-level concepts. Third, we identify categories by

discussing how similar the concepts were according to their properties. Fourth, we derive a

theory through an inductive approach. All these steps can be seen in Table 3.3. We make all

these steps available with more detail in our replication package [59].
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Code

Step

Concepts

Step

Category

Step

Theory

Step

Many assignments in one line

complicates

Single line assignments

Code Style

Sources of

Confusion

Got confused in indentation Indentation

if inside loop is difficult nesting structures
Control

Flow
Evaluating if takes longer Conditional structure

Few iteractions over loop Repetition structure

Not used to ternary Knowledge of Idiom
Knowledge

for in Pyhton in strange Knowledge of Lan-

guage

Simple calculations Math calculation
Mathematics

Difficulties with of the division division calculation

Incrementing is difficult Increment

Memory

Load

I got lost in the iteration Iteration

Index of the loop confuses Index of loop

Trouble in memorizing the vari-

ables

Memorization of Val-

ues

Too many variables Amount of Variables

Difficulties in swapping the vari-

ables

Swapping Variables

Unnecessary variable Temporary Variable

Difficulties with modulo and

arithmetic operators

Combination of Opera-

tors

Operators

Found modulo operator confus-

ing

Arithmetic Operator

Found boolean operator complex Relational Operator

Confused true and false Logical Operators

Difficulties with Precedence Operator Precedence

I had no difficulties No difficulties No difficulties

Table 3.3: Steps of the coding process of the subjects’ answers.
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In coding, we coded the answers of the subjects. We focused on synthesizing what

phenomenon is described by the subject. Our codes ranged from a single word to short

sequences of words. We had a set of 142 codes across 384 answers. Our codes included

issues such as “I was confused with if ternary”, “confusion with the rest of the division”, and

“trouble in memorizing the variables’ assignments”. More details can be seen in Table 3.3.

We focused on abstracting, connecting, and grouping multiple codes in the concept step.

We found 22 concepts that emerged from the codes. For instance, we grouped “trouble in

memorizing the variables’ assignments” and “it was difficult to remember the value of the

variable” in the same underlying concept, which is “memorization of values”.

In the category step, we group the concepts into more abstract categories. Our concepts

were included in seven broad categories: code style, control/repetition structures, knowl-

edge, mathematics, memory load, operators, and no difficulties. Code style comprised con-

cepts such as indentation or multiple assignments in the same line; control flow comprised

both conditional structures, repetition structures, and their combination nested; knowledge

comprised both knowledges of programming language and idiom. More details can be seen

in Table 3.3.

In the theory step, a research question emerged from the data: what are the potential

sources of confusion found in the data? Nevertheless, since the subjects reported mostly the

difficulties found when examining the code, we expected to find a theory related to this.

As main lessons learned in our programs, we found various sources playing important

roles in the confusion of the novices. Regarding the flow category, we found 31 codes related

to the three concepts: conditional structures, repetition structures, and their combination.

Most of the atoms we evaluated have control flow which can explain why this category is so

broad. However, difficulties were associated more frequently with the obfuscated code ver-

sions in this category, especially in the atom Conditional Operator. For instance, we found

six codes associating its obfuscated version with more complication, confusion, difficulties,

and more time. Even though it did not affect the number of attempts, three subjects men-

tioned “It takes longer to validate the if statement”. Indeed, we observed that the subjects

fixated on a longer duration in the AOI, which affects time, and presented more horizontal

regressions.

Regarding the memory load category, we found 36 codes related to seven concepts, com-
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prising memorization of values, iterating over loops, and swapping variables, among others.

We carefully designed the tasks to have a few variables that iterate over a short list to avoid

memory load effects. The clarified version of Multiple Variable Assignments was the main

atom related to the concepts associated with the number of variables. The clarified version

repeats one variable and breaks the assignment into two lines. The subjects mentioned that

“There are too many variables” and we observed more visual horizontal regressions associ-

ated with these specific programs. We did not observe an impact in the number of attempts,

but the clarified version might indicate that short-term memory can be affected.

Regarding the operators’ category, we found 29 codes related to five concepts comprising

arithmetic, relational, and logical operators, their combination, and precedence. The obfus-

cating atom Operator Precedence did not specify in which order the subjects should evaluate

the expression. We had 21 answers related to difficulties in identifying the correct order or

the ease of using parenthesis. Six subjects need two attempts to solve the programs and

present more horizontal regressions. One subject that needed one more attempt mentioned

‘‘I evaluated from left to right, then I realized that I should examine the operator AND first”.

3.3.8 Other Analyses

All atoms. We analyze all atoms combined in Table 3.4. The idea of combining all atoms

follows the Latin Square design methodology. We assign two subjects to each square. Each

subject solves six programs obfuscated by the atoms from one set of programs, and six clar-

ified programs from another set of programs. We can combine the atoms in two ways. We

can perform combinations of the individual atoms, but not pairing the subjects in the squares,

and we can combine the atoms by pairing the subjects. In the former, if we have a reduction

in time in code for all six individual atoms, we will have a reduction across all atoms as well.

However, in the latter one, which we used, we can better control for differences among the

subjects and we may have slight increases in the combination. Combined, the differences

were not so evident except for the number of horizontal and vertical regressions in the AOI

clarified. The results revealed that, across all atoms, the average number of horizontal re-

gressions reduced by 31.6% while the average number of vertical reduced from zero to 6.5.

For Multiple Variable Assignment, True or False Evaluation, and Conditional Expression,

we have shorter lines of code in the clarified version, however, for the Operator Precedence,
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Implicit Predicate, and Augmented Operator, even with more elements, we observed reduc-

tions.

In the AOI In the Code

Atoms Metrics O C
PD
% PV ES O C

PD
% PV ES

Time (sec) 83.5 81.4 ↓2.5 0.67 n/a 268.4 267.5 ↓0.3 0.70 n/a

Attempts n/a n/a n/a n/a n/a 6.53 6.25 ↓4.2 0.29 n/a

Fix. Duration (sec) 50.9 45.8 ↓10.0 0.32 n/a 124.5 128.1 ↑2.8 0.77 n/a

All atoms Fix. Count 143.5 127.5 ↓11.4 0.46 n/a 367.0 392.5 ↑6.9 0.86 n/a

Reg. Count 39.5 34.5 ↓12.6 0.35 n/a 159.0 164.0 ↑3.1 0.89 n/a

Horiz. Reg. Count 39.5 27.0 ↓31.6 0.03 – 84.5 69.5 ↑17.7 0.34 n/a

Vert. Reg. Count 0.0 6.5 ↑Inf 3x10−11 – 73.0 87.0 ↑19.1 0.37 n/a

Table 3.4: Results for all metrics for all atoms. O = obfuscated code; C = clarified code; PD

= percentage difference; PV = p-value; ES = effect size (Cliff’s delta). Columns O and C are

based on the median as a measure of central tendency, except for attempts, which are based

on the mean.

In Table 3.5, we present each of the null-hypotheses with its respective confirmation

or rejection. The two most sensitive metrics were the regressions count, which showed

significant differences in three out of six atoms, followed by time, which showed differences

in two atoms. The most noticeable effect size was observed for the code containing the

Operator Precedence with respect to the clarified version in RQ2 (Cliff’s delta of -46). The

other effects observed for clarified versions of the code containing the Multiple Variable

Assignment, True or False Evaluation, and Operator Precedence were also noticeable, but

to a smaller degree.

Atoms Time Attempts Fix. Duration Fix. Count Reg. Count

Multiple Var. Assignment Reject Reject

True or False Evaluation Reject

Operator Precedence Reject Reject Reject Reject Reject

Table 3.5: Summary of the rejection of the null hypothesis in isolated atoms in the AOIs.

Null-Hypothesis consists of no difference between control and treatment groups with respect

to the mentioned metric.

As shown in Table 3.5, we found consistent reductions in the time, number of attempts,



3.3 Results and Discussion 77

and visual metrics only for the clarified version of the code with Operator Precedence and

partially increases the Multiple Variable Assignment. However, we did not observe such

differences for the other four atoms in our study, which might indicate that both versions

in their cases are similarly confusing or similarly understandable. According to Gopstein et

al. [48], measuring time and answer correctness, in the C language, the atoms Assignment as

Value, Conditional Operator, Operator Precedence, and Implicit Predicate cause confusion.

However, our study added a new perspective of visual metrics, which complements time and

answer correctness. The new atom added in our study, the True or False Evaluation, did not

affect time and number of attempts consistently, such as Operator Precedence. However, we

found evidence for the reductions in the number of visual regressions within the line of code

containing the atom. We need more studies with other demographic groups and more atoms.

Possible explanations for the lack of consistent differences across our metrics can be

because we varied the programming language or the demographic group. For instance, the

syntax for the Conditional Operator in the C language includes the symbol “?:”, which led

to 31% more errors than if statements. In the syntax of Python, the Conditional Operator

includes the test of a condition in a single line with the if-else. In Python syntax, we did

not observe an impact in the number of attempts, which can be easier to understand than C’s

syntax. These differences can shed light on the differences in the results. In addition, since

we focused on novices, we had to resort to simple programs, which can also explain the lack

of differences in the number of attempts.

Interaction of the atoms. We tested the interaction of the atoms by defining them as

independent variables with the six levels. We found statistically significant differences in

time spent in the AOI for the obfuscated (p-value ¡ 8x10−11) and clarified (p-value 1x10−12)

versions, according to atom types. The post-hoc test revealed that the time the subjects spent

in the AOI obfuscated by Multiple Variable Assignment was significantly lower than in the

AOIs of the other atoms, except for Augmented Operator. Similarly, the time in the Multiple

Variable Assignment clarified was significantly lower than in the AOIs of the other atoms

except for Operator Precedence and Implicit Predicate. The time in the AOI of the code ob-

fuscated by Augmented Operator was significantly lower than in the other atoms, except for

Multiple Variable Assignment, while in the clarified, the time was lower than any other AOI

evaluated. In addition, for the clarified version, the time in the AOI with Condition Expres-
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sion was higher than any other atom. These results indicate more difficulties with Condition

Expression and fewer difficulties with Multiple Variable Assignment and Augmented Oper-

ator. We performed the same analysis on fixation duration, fixations count, and regressions

count and observed similar results.

Concerning the number of attempts, we found statistically significant differences for the

obfuscated (p-value ¡ 0.003) but not for the clarified version, according to atom types. The

Operator Precedence with the obfuscated version presented a significantly lower number

of attempts than every other atom. These results indicate more difficulties with Operator

Precedence.

Sets of programs. As an additional analysis, we compared the two distinct programs

with the same atoms instantiated, trying to find possible differences. The clarified ver-

sions presented the most relevant differences for the Operator Precedence. For instance, the

novices spent 41% less time in the AOI and 33% fewer regressions examining if True or

(True and False) compared to if (False and True) or False. The expla-

nation might be that, since the priority is at the beginning of the expression, it can help the

novices to make sense of it faster and not need to go back many times. For the Implicit

Predicate, we observed the the novices spent 39% less and regressed 42% fewer times in

if (elem % 5 != 0) compared to if (elem % 4 != 0). A possible explanation

might be that it is easier to compare with odd numbers since the rest is different from zero.

For the Augmented Operator, the novices spent 55% less time in the AOI, fixated 58%

less, and made 200% fewer regressions examining total += 1 compared to valor *=

10. A possible explanation might be that “+=” operator is seen more frequently than “*=”

for novices or that multiplication might be more complex and requires more memory than

the sum operation. For the clarified version, the novices spent 40% less time in the AOI,

fixated 51% less, and made 50% fewer regressions examining valor = valor * 10

compared to total = total + 1.

3.4 Threats to Validity

Here we describe potential issues and threats to the validity of our study: internal validity

(Section 3.4.1), external validity (Section 3.4.2), and construct validity (Section 3.4.3).
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3.4.1 Internal Validity

We performed the experiment in four different locations to gather more subjects and have a

variety of subjects from distinct higher-education institutions. However, different locations

may influence the visual attention of the subjects. We carefully arranged the rooms to have

similar conditions to mitigate this threat. For instance, they were quiet rooms with minimum

distractions, similar temperatures, and artificial light sources. In future work, we aim to keep

track of which subject performed over which location so we can bind possible differences.

Despite our best efforts, the presence of a researcher in the room may have unintention-

ally influenced the visual attention or performance of the subjects since they were aware of

being observed. To mitigate this threat, we put effort into letting the subjects feel comfort-

able with the researcher’s presence. In addition, we avoided any interaction with the subjects

while they were examining the programs so that they could be concentrated.

The eye tracker equipment has limitations, such as calibrating the eyes of the subjects.

We carefully calibrate and even re-calibrate when necessary. However, we still saw a need for

an adjustment in the gaze points. We adopted the following strategy. We selected programs

with a long horizontal line of code, specifically with lines that the subjects mentioned they

were looking at in the interviews. Then we systematically analyzed whether the fixations

plotted and heatmaps were on white spaces close to that long line, which could suggest a need

for an adjustment. For certain subjects, the heatmap revealed a red color over a blank area

not touching the code. Similarly, the plot of the fixation points sometimes revealed points

over blank areas. A small adjustment was sufficient for these cases to get the data corrected.

The error for these cases was systematic, meaning all the fixations for a particular program

received the same adjustment. The adjustment in the points influences its interpretation.

In recurring meetings, we discussed these adjustments by going systematically through the

data for each subject. Thus, to mitigate the threat of working with uncalibrated equipment we

generated another threat. However, we decided that the threat of adjusting the points would

be preferable to analyze the data with points not touching the code, given the uncalibrated

equipment. It is important to mention that the median number of pixels used to correct the

fixations in y-coordinate was 30 pixels, which translated to 0.6 lines of inaccuracy on the

screen, and the maximum value was 80 pixels. For the x-coordinate, following this strategy,

we did not need to adjust the x-coordinate. We made the generated fixations and adjustment
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strategy available in our replication package [59].

In pilot studies, we observed that a swivel chair could impair data collection by the cam-

era or negatively affect the captured data. To mitigate this threat, we used chairs without

swiveling capability in all rooms we used to conduct the experiment.

The total time we allocated for each subject was one hour and assigned them 12 pro-

grams, which may have influenced the visual effort. To minimize this threat, we designed

simple and short programs with only one atom instantiated and put a time limit of two min-

utes. Given the simplicity of the programs, most subjects solved them before the time limit.

Since our programs consist of non-minimal snippets, in the sense that they do not contain

only the atom region, the extra lines of the code might introduce working memory as a con-

founding factor. However, with eye tracking, it is possible to measure and compare time and

visual effort only in the atom region. In addition, both programs, in obfuscated and clarified

versions with the same atom, had the same extra lines of code to make the comparison fair.

All the subjects had the option to keep making attempts until getting the correct output.

We then compared the number of attempts until they answered correctly. However, following

this strategy, if one makes wrong attempts, she could make more fixations or even longer

ones, with more regressions. Alternatively, we collected the eye tracking data separately for

each attempt made so that we could compare only the first one. We performed an analysis

based only on the data from the first attempt, but we found similar results.

Using the Latin Square design, we blocked the set of programs to control noise. Besides

performing combinations of the programs in the squares, we analyzed the programs with the

atoms individually. The analysis of individual programs in the set of programs violates the

design. The extent of such violation does not have an estimated impact. However, to better

understand the effects of the atoms, analyzing them combined and individually can give a

more nuanced and complete understanding of their effects.

3.4.2 External Validity

We resorted to small programs with less than 10 lines of code aiming at fitting the code onto

the screen. This approach may restrict generalization to larger programs. However, previous

work on the same subject has resorted to code snippets with a similar number of lines [48;

84]. If we find differences in small code snippets, we expect that larger snippets may tend
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to show greater differences. Nevertheless, we need to conduct other studies with larger code

snippets to provide empirical evidence for those expectations.

In our study, we focused on novices in Python. Thus, we cannot generalize our results

to more experienced developers in Python. Novices have also been the subject of other eye

tracking studies on code comprehension [15]. In the future, we intend to explore the same

topic of this study with experienced developers.

Since we have focused on atoms in Python programming language, we cannot generalize

our findings to other programming languages. To mitigate this threat, in our programs, we

used constructions that are common in other languages, and most of our subjects reported

some experience with other languages. In addition, since our subjects were Brazilian Por-

tuguese native speakers, our programs were designed to contain identifiers in their mother

tongue.

Our programs were designed to have only one output, which was a numeric value. All

subjects had to solve the task by specifying the correct output aloud after reading the code.

The results for this type of task may not generalize to other types, such as finding a bug,

fixing a syntax problem, or adding a feature. In addition, since the font style may influence

the attention of the subject, to minimize a possible threat, we consistently used the same font

style and size for the programs, no syntax highlighting, and no bold font.

The number of atoms instantiated in a program may influence the performance and visual

effort of the subjects. To minimize threats related to the number of atoms, we consistently

used only one atom in each program.

3.4.3 Construct Validity

Time and answer correctness metrics are often employed to assess the phenomenon of code

comprehension [95; 70] and in particular, to investigate atoms of confusion [48; 33]. With

respect to eye tracking methodology, other studies have employed similar metrics to measure

visual-related aspects [77; 103; 7]. Other works have combined time, answer correctness,

and visual effort [102; 33; 30]. In particular, fixation duration and fixations count have been

used as a measure of visual effort [102; 8]. According to Sharafi et al. [99], metrics based

on saccades, such as number of saccades or saccades duration are metrics whose definitions

are identical to the ones based on fixations. Thus, we decided to explore eye movement
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regressions since they have been explored and associated with visual effort [99].

Inviting people to participate in eye tracking studies may influence the decisions of the

subjects regarding their visual behavior. For instance, we have to make them aware that their

eyes are being tracked, which may influence where or how much they look at some regions

of the code. To minimize this threat, we did not make the subjects aware of the precise goals

of the study to avoid hypothesis guessing.

3.5 Conclusions

In this chapter, we report on a controlled experiment with eye tracking to evaluate the impact

of six atoms of confusion on code comprehension. We evaluated to what extent the obfus-

cated code containing atoms of confusion and the functionally equivalent clarified versions

of the code impacted the time, number of attempts, and visual effort of 32 novices in Python.

Our results revealed impacts to a considerable extent with the evaluated atoms in the

code. The clarified version of the code containing the Operator Precedence reduced the time

in the AOI and in the entire code by 38.6% and 20.1%, respectively. The fixation duration

in the AOI, the fixations count, and the regressions count reduced to the extent of 34.1%,

32.3%, and 50%, respectively. The clarified version of the code containing the True or False

Evaluation particularly reduced the regressions count in the AOI to the extent of 47.3%.

However, the clarified version of the code containing the atom Multiple Variable Assignment

increased the time in the AOI and the regressions count by 30.1% and 60%, respectively.

With respect to the number of attempts, the Operator Precedence reduced by 28.3% in the

number of attempts. We found reductions in the time in the AOI, the fixation duration, the

fixations count, and the regressions count with the clarified version of the code containing the

Conditional Expression, Implicit Predicate, and Augmented Operator, however, to a lesser

extent. In general, we observed a substantial impact of the obfuscated and clarified code on

the subjects’ abilities to understand the code even in small and simple programs. Hence, with

larger and more complex code snippets, we expect the impact to be even greater. However,

we need to conduct more studies. In addition, the fact that it was still possible to detect

some differences even using more meaningful names than in previous studies supports the

evidence of the impact of these atoms.
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With eye tracking, we investigated how much time the subjects spent in a specific region

of the code that contained the atoms of confusion and their clarifying versions, to what extent

the atoms impacted the fixation duration, fixations count, and regressions count, and how the

atoms impacted the way the subjects read the code. Thus, our findings contribute with some

relevant implications. For the education community, our study contributes with raising con-

cerns regarding teaching methods that may hinder code comprehension for Python novices.

Educators should be careful when preparing the teaching material for introductory courses,

avoiding using code snippets with atoms that can confuse the novices. For instance, the

subjects in our study needed 28.3% more attempts to solve the code containing the Opera-

tor Precedence, which associated with a negative impact on their abilities to understand the

code. For Python novices, the positive impact of most of the clarified versions of the code

containing the atoms in the time in the AOI and fixation duration, fixations count, and re-

gressions count may indicate improvements in their productivity, understanding, and visual

effort.

For the research community, our study setup exploring the visual effort dimension con-

tributes with nuances not observed by previous works. For instance, in the analysis of the

visual data for code containing the Multiple Variable Assignment, we perceived that the use

of multiple assignments within the same line impacted the way the subjects read the code.

The code with Multiple Variable Assignment allowed the subjects to read the assignments

in a more direct manner, with 60% fewer regressions in the AOI. When the assignments are

split between two lines, to make the code clearer, the subjects tended to make more vertical

regressions and to keep coming back to those lines, transitioning between those lines and

the lines of code that later use them. Hopefully, this will encourage researchers to consider

eye tracking as a promising alternative to evaluate atoms of confusion. Other dimensions

such as mapping neural activities with Functional Magnetic Resonance Imaging (fMRI) or

tracking all the subjects’ activity during the experiments could possibly reveal other nuances

and allow us to dive deeper into how this atom impacts difficulty beyond visual effort. This

can be a future direction for research. For practitioners and for language designers, the use

of syntactic sugar in the language syntax has to be done considering whether the pattern will

impair the novices’ abilities to understand the code. Some languages have abolished con-

structs because they can create obstacles for novices. For example, C-style for loops were
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removed from Swift [92] because, among other things, they offer “a steep learning curve

from users arriving from non C-like languages”.

In future work, we aim to evaluate other types of atoms proposed by Gopstein et al. [48].

Cedrim et al. [19] studied the influence of refactorings on code smells and found that their

majority are neutral, and some refactorings even lead to new smells in the code. We aim to

explore this topic with the perspective of eye tracking. In addition, we aim at conducting

more experiments with experienced developers in Python, with a larger number of subjects,

explore other programming languages, programs with variables names that have no meaning

at all, other types of tasks such as finding a bug and investigate a higher number of atoms

instantiated in a single task. Finally, we intend to add other eye tracking metrics based on

saccades, blink rate, pupil dilation, and explore code reading patterns based on the gaze tran-

sitions. As future work, we also envision proposing heuristics or building a model whereby a

programmer receives an arbitrary source code to read, and we use eye tracking data to extract

which elements were atom candidates or at least confusing regions.



Chapter 4

Study II: Extract Method Refactoring

In this chapter, we present a controlled study to evaluate the impact of the Extract Method

on code comprehension from the perspective of the eye tracking metrics with novices in

Java. It is worth mentioning that this study was conducted after the experiment evaluat-

ing atoms of confusion and included other subjects. This chapter is organized as follows:

Section 4.1 presents the study definition, and Section 4.2 presents the study methodology.

Section 4.3 presents the obtained results, and Section 4.4 discusses a qualitative interview

with the novices. Section 4.5 discusses the threats to validity, and Section 4.6 presents the

conclusion.

4.1 Study Definition

In this section, we present the definition of our study according to the Goal-Question-Metrics

approach [5]. We compare programs with Inline Method with functionally equivalent Ex-

tract Method version programs for the purpose of understanding how inlining and extracting

methods associate with improvements with respect to code comprehension from the point

of view of novices in the Java programming language in the context of tasks adapted from

introductory programming courses.

We address five research questions (RQs). For each RQ, our null hypothesis is that there

is no difference between the Inline Method and Extract Method versions of the programs

with respect to the collected metric.

RQ1: To what extent does the Extract Method refactoring affect task completion time?

85
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Following prior studies [48; 33], to answer this question, we measure how much time the

subject spends in the whole program to specify the correct output, in addition to the time in

specific areas of the code.

RQ2: To what extent does the Extract Method refactoring affect the number of at-

tempts? To answer this question, we measure the number of attempts made by the subject

until specifying the correct output of the program.

RQ3: To what extent does the Extract Method refactoring affect fixation duration? Fix-

ations with increased duration have been associated with more attention to the stimuli [16].

To answer this question, we measure the duration of each fixation in the programs.

RQ4: To what extent does the Extract Method refactoring affect fixation count? An

increased number of fixations has been associated with more time to understand code

phrases [8], more attention to complicated code [28], and more visual effort to recall iden-

tifiers’ names [101]. To answer this question, we count the number of fixations in the pro-

grams.

RQ5: To what extent does the Extract Method refactoring affect regressions count?

When a reader does not understand what she reads in natural language, she makes eye re-

gressions [91]. Likewise, the regression rate has been used for programming tasks to measure

the linearity of code reading [15]. In imperative programming languages, developers may

read code lines following the fashion left-to-right, top-to-bottom, similarly to natural lan-

guage, except for loops, which require the reader to read bottom-to-top at some points. To

answer this question, we compute the number of regressive eye movements with a direction

opposed to the writing system, right-to-left, and bottom-to-top. To make the comparison

fair, both Inline and Extract Method versions have loops that iterate over the same number

of elements.

4.2 Methodology

In this section, we present our methodology. We present the pilot study (Section 4.2.1), ex-

periment phases (Section 4.2.2), subjects (Section 4.2.3), treatments (Section 4.2.4), eval-

uated refactorings (Section 4.2.5), programs (Section 4.2.6), eye tracking system (Sec-

tion 4.2.7), fixation and saccades instrumentation (Section 4.2.8), and finally the analysis
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(Section 4.2.9).

4.2.1 Pilot Study

Before the actual experiment, we conducted pilot studies with six human subjects. We aimed

to refine our experiment material and evaluate the experiment setup and design. We do not

consider these subjects in the analysis of the results.

Our experiment material includes programs, a subject characterization form, and a ques-

tionnaire for a semi-structured interview. To evaluate our programs, we tested complete code

snippets from introductory programming courses with distinct levels of difficulty. We tested

the code font size, font style, line spacing, and indentation. We also evaluated the questions

from the form and questionnaire.

Our subjects comprise native Brazilians. We designed the vocabulary of the programs

to be in Brazilian Portuguese to avoid obstacles in language comprehension. The identifiers

and methods’ names were carefully selected and discussed by the researchers. We used

names such as result and counter for receiving the result of operations and counting;

in addition, we used the abbreviated word num to designate a number.

For methods names, we used lessons learned from previous studies and guidelines [40;

3; 17; 68; 4; 53]. They systematize the use of capitalization, size of identifiers, number of

words, the meaningfulness of name, use of verbs, among other aspects. We used methods

named to show their intention, which were selected to the best of our abilities. This approach

is arguably closer to a practical scenario. In addition, we refined the names of the methods in

the pilot study, testing how capable the names were in showing the intention of the method.

We discussed the methods’ names to find the most appropriate ones.

After experiment refinement, we organized it into five phases: (1) Characterization, (2)

Tutorial, (3) Warm-up, (4) Task, and (5) Qualitative Interview. We estimated an average of

60 minutes for each subject to complete all phases. Next, we describe these phases in detail.

4.2.2 Experiment Phases

In phase one, as the subject enters the room, we explain the study, what data we will capture,

and how we aim to use the data. Each subject voluntarily fills out a consent form, agreeing



4.2 Methodology 88

to participate and being aware that their identity was anonymous. Then they filled out a

characterization form with questions related to programming experience.

In phase two, we present a tutorial explaining the execution of the experiment. We in-

struct the subjects on how to sit properly in front of the eye tracker and how to perform the

tasks. We then proceed with a calibration of the camera on the subject’s eyes. During the

camera calibration, each subject should look at specific locations on the screen that the cam-

era software indicates. The camera software also reports when the calibration is successful.

In phase three, each subject warms up for the experiment by solving a simpler program.

During the warming up, we demonstrate how to specify the output out loud, instructing them

to close their eyes for two seconds before and after solving the program and how we signal

the correct and incorrect answer. After warming up, the subjects should be more comfortable

with the experiment setup and equipment.

In phase four, we run the actual experiment with eight programs, four with the Inline

Method version and four with the Extract Method version. To avoid learning effects, we use

a Latin Square design [12], which we explain in more detail in Section 4.2.4.

In phase five, we end the experiment with a semi-structured interview. We investigate

how the subjects examined the programs and what were their subjective impressions. We go

through each program and ask three questions: (1) How difficult was it to find the output:

very easy, easy, neutral, difficult, or very difficult? (2) How did you find the output? (3)

What were the difficulties you had, if any?

We started running the experiment after the end of the social distancing measures in

the country when the coronavirus infections were decreasing, and the number of vaccinated

people was increasing. For the safety of everyone involved, all the researchers had hand

sanitizers and face masks. We limited the number of people in the environment to only one

subject at a time.

We arranged the environment of the experiment to reduce noise in the data. We used

a fixed chair which increased the precision of the eye tracker equipment in pilot studies.

However, given the camera limitations, obtaining perfect data is virtually impossible. To

mitigate it, we as researchers plotted, discussed, and performed data correction by slightly

shifting chunks of fixations in the y-axis. We discuss this strategy in detail in the threats

to validity section (see Section 4.5.1). A replication package of the experiment material is
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available on our website [108].

4.2.3 Subjects

We recruited 32 undergraduate students that we refer as “novices”. They reported having 30

months of experience with programming languages in general, which mainly included Java,

Python, JavaScript, C, and C++. However, only in Java, they had on average 12 months

of experience. They were recruited from two distinct universities in two cities in Brazil,

invited mainly in person or through text messages. They were Brazilian Portuguese speakers

enrolled in academic universities.

We computed the minimal number of subjects necessary to have a minimal power of 0.8

with a significant level of 0.05 using the T-test sample size computation. We found that we

need 26 subjects in two samples to have a minimal power of 0.8 with a significant level of

0.05. Alternatively, because we have 32 subjects, our study can also detect a moderate effect

size of 0.5 with a power of 0.5 with a significant level of 0.05.

4.2.4 Treatments

Each subject examined eight programs (P1–P8). To avoid learning effects, we designed 16

distinct programs divided into two Sets of Programs (SP1 and SP2). One subject examines

four programs with Inline Method (I) of the set SP1, and four programs with Extract Method

(E) of set SP2, as seen in Figure 4.1. Another subject examines four programs with Extract

Method version (E) of the set SP1, and four programs with Inline Method version (I) of set

SP2.

Being in the same set SP1 but with different refactorings, both programs P1 print the same

output. Both programs are examined by distinct subjects as well. We designed the programs

with Inline Method version to be our baseline group, and the ones with the Extract Method

version to be the treatment group. In all the programs, the subject has the task of specifying

the correct output but without multiple answer options. For instance, given the input in the

program, the subject has the task to calculate the factorial, calculate the next prime, among

others.
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Figure 4.1: Structure of the experiment in terms of experimental units divided into 16

squares. Subject1 takes four programs (P1–P4) with the Extract Method (E) of Sum Num-

bers (P1), Calculate Next Prime (P2), Return Highest Grade (P3), Calculate Factorial (P4).

These programs are from set of programs 1 (SP1). Subject1 also takes four programs (P5–P8)

from the set of programs 2 (SP2) comprising the Inline Method (I) of Count Multiples of

Three (P5), and Calculate Area of Square (P6), Check If Even (P7), and Count Number of

Digits (P8). Subject2 takes the complement to that. “Output” describes a task in which the

subject has to specify the correct output.
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4.2.5 Evaluated Refactorings

We selected and evaluated two refactorings, namely Extract Method and Inline Method.

These refactorings are among the most common refactorings used in practice [19; 80;

107]. To perform the Extract Method refactoring, the following mechanics can be used:

the developer creates a new method, and names it after the intention of the method. Then she

copies the extracted code from the source method into the new target method [40].

To perform the Inline Method refactoring, the following mechanics can be used: the

developer finds a call to the method and replaces it with the content of the method, and then

deletes the method [40]. Inline Method is essentially the opposite of the Extract Method. It

may vary from one line to multiple lines of code. The main motivation reported by developers

to apply the Inline Method is to eliminate unnecessary or too trivial methods [107].

4.2.6 Programs

We selected code snippets by manually analyzing code repositories of introductory program-

ming assignments. We selected and designed programs that varied in size and complexity

so that we could have a better understanding of code comprehension. We included simple

and small programs, such as to calculate an area of a square, and more complex ones, such

as to compute the next prime. We present our programs for each refactoring in Figure 4.2.

The main sources of tasks were GeekForGeeks1 and Leetcode2, which are popular for learn-

ing and practicing programming. We selected assignments with small and complete code

snippets which we adapted for camera constraints. In the experiment, for each program, a

subject had to specify the correct output in an open-ended fashion, meaning that no answer

options were provided. Providing information about the code, such as finding the output, is

a methodology employed by 70% of the studies in the domain of code comprehension [84].

The evaluated programs had 6–18 lines of code, with a median number of 12 lines. We

restricted the number of lines to fit completely on the screen. It is worth mentioning that

having programs that fit completely on the screen is beneficial due to the fatigue caused by

the use of eye tracking setup. All the used programs were free of syntactic errors. The

programs followed Consolas font style, font size 11, line spacing of 1.5 inches, and eight

1https://www.geeksforgeeks.org/
2https://leetcode.com/
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(a) Sum numbers from one to num - Inlined and Extracted version

(b) Calculate next prime - Inlined and Extracted version

(c) Return highest grade from list - Inlined and Extracted version

(d) Calculate factorial - Inlined and Extracted version

(e) Count multiples of three from list - Inlined and Extracted version

(f) Calculate area of square - Inlined and Extracted version

(g) Check if even - Inlined and Extracted version

(h) Count number of digits - Inlined and Extracted version

public class Main{    
  public static void main(String[] args){ 
    int num = 5; 
    int resultado = 1;
    for (int i = 2; i <= num; i++){
      resultado = resultado * i;
    }
    System.out.println(resultado); 
  } 
}

public class Main{
  public static void main(String[] args){
    int[] notas = {7,8,9};
    int resultado = notas[0];
    for (int i = 1; i < notas.length; i++){          
      if (notas[i] > resultado) {
        resultado = notas[i];
      }
    }
    System.out.println(resultado);
  }
}

public class Main{
  public static void main(String[] args){
    int num = 5;
    num = num + 1;
    for (int i = 2; i < num; i++){
      if (num % i == 0){
        num = num + 1;
        i = 2;
      } else {
        continue;
      }
    }       
    System.out.println(num);
  }
}

public class Main{
  public static void main(String[] args){
    int num = 3;
    int resultado = (num * (num + 1)) / 2;
    System.out.println(resultado);
  }
}

public class Main{
  static int somaNumerosDeUmAteNum(int num){
    return (num * (num + 1)) / 2;
  }
  public static void main(String[] args){
    int num = 3;
    int resultado = somaNumerosDeUmAteNum(num);
    System.out.println(resultado);
  }
}

public class Main{
  static int calculaProximoPrimo(int num){
    num = num + 1;
    for (int i = 2; i < num; i++){
      if (num % i == 0) {
        num = num + 1;
        i = 2;
      } else {
        continue;
      }
    }
    return num;
  }
  public static void main(String[] args){
    int num = 5;
    System.out.println(
        calculaProximoPrimo(num));
  } 
}

public class Main{
  static int retornaMaiorNotaDaLista(
                            int[] notas){
    int resultado = notas[0];
    for (int i = 1; i < notas.length; i++){          
      if (notas[i] > resultado){
        resultado = notas[i];
      }
    }
    return resultado;
  }
  public static void main(String[] args){
    int[] notas = {7,8,9};
    System.out.println(
        retornaMaiorNotaDaLista(notas));
  }
}

public class Main{ 
  static int calculaFatorial(int num){ 
    int resultado = 1; 
    for (int i = 2; i <= num; i++){
      resultado = resultado * i;
    }
    return resultado; 
  }   
  public static void main(String[] args){ 
    int num = 5; 
    System.out.println(calculaFatorial(num)); 
  } 
}

public class Main{    
  public static void main(String[] args){ 
    int[] numeros = {3,4,6}; 
    int contador = 0;
    for (int i = 0; i < numeros.length; i++){
      if (numeros[i] % 3 == 0){
        contador = contador + 1;                
      }
    }
    System.out.println(contador); 
  } 
}

public class Main{
  public static void main(String[] args){ 
    int num = 345; 
    int contador = 0; 
    while (num != 0) { 
      num = num / 10; 
      contador = contador + 1; 
    } 
    System.out.print(contador); 
  }
}

public class Main{
  static int contaMultiplosDeTresDaLista(
                              int[] numeros){
    int contador = 0;
    for (int i = 0; i < numeros.length; i++){
      if (numeros[i] % 3 == 0) {
        contador = contador + 1;                
      }
    }
    return contador;
  }  
  public static void main(String[] args){ 
    int[] numeros = {3,4,6}; 
    System.out.println(
        contaMultiplosDeTresDaLista(numeros)); 
  } 
}

public class Main{
  static int calculaAreaDoQuadrado(int lado){
    return lado * lado; 
  } 
  public static void main (String[] args){ 
    int lado = 10; 
    int area = calculaAreaDoQuadrado(lado);     
    System.out.println(area); 
  }
}

public class Main{
  static boolean checaSeEhPar(int numero){
    return numero % 2 == 0; 
  } 
  public static void main (String[] args){ 
    int num = 3; 
    int contador = 0;
    for (int i = 1; i <= num; i++){
      if (checaSeEhPar(i)) {
        contador = contador + 1;                
      }
    }
    System.out.println(contador); 
  }
}

public class Main{
  static int contaNumeroDeDigitos(int num){ 
    int contador = 0; 
    while (num != 0) { 
      num = num / 10; 
      contador = contador + 1; 
    } 
    return contador; 
  } 
  public static void main(String[] args){ 
    int num = 345; 
    System.out.print(
        contaNumeroDeDigitos(num)); 
  }
}

public class Main{
  public static void main(String[] args){
    int lado = 10;
    int area = lado * lado;
    System.out.println(area);
  }
}

public class Main{
  public static void main(String[] args){
    int num = 3; 
    int contador = 0;
    for (int i = 1; i <= num; i++){
      if (i % 2 == 0) {
        contador = contador + 1;                
      }
    }
    System.out.println(contador); 
  }
}

Figure 4.2: Programs evaluated in our study: Sum Numbers, Calculate Next Prime, Return

Highest Grade, Calculate Factorial, Count Multiples of Three, Calculate Area of Square,

Check If Even, and Count Number of Digits. Shaded areas represent the AOIs, which are the

code lines in which both inlined and extracted versions differ.
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white spaces of indentation. Even though written in the Java language, we used simple

constructions that commonly occur in many programming languages. We made sure that

each program with the inlined method contained exactly one method in its scope, the Java

main method. Each program with the extracted method contained exactly two methods, the

Java main method, and the extracted method. Both inlined and extracted versions of the

same task, presented the same output. However, due to the use of a Latin Square design, no

subject was exposed to inlined and extracted versions of the same task. To bring diversity to

the programs, we used different styles such as assigning the methods’ call to a variable and

printing the variable or calling the methods in the print statement.

4.2.7 Eye Tracking System

We used the Tobii Eye Tracker 4C in our experiment which has a sample rate of 90 Hz. The

calibration of the eye tracker followed the standard procedure of the device driver with five

points. The eye tracker was mounted on a laptop screen with a resolution of 1366 x 720 pix-

els, a width of 30.9 cm, and a height of 17.4 cm, at a distance of 50-60 cm from the subject.

We displayed the code tasks as an image in the full-screen mode, but no Integrated Develop-

ment Environment (IDE) was used, nor number for the lines. We computed an accuracy error

of 0.7 degrees which translates to 0.6 lines of inaccuracy on the screen, considering the font

size we used and the line spacing. We tested the line spacing in the pilot study. We designed

it to be sufficiently large so we could overcome the eye tracker accuracy limitations. For

processing the gaze data, we implemented a script in Python, which allowed us to analyze

and collect the metrics.

4.2.8 Fixation and Saccades Instrumentation

Fixation can be understood as the stabilization of the eye on part of a visual stimulus for a

period of time, and the rapid eye movements between two fixations are called saccades [93;

55]. As we fixate our eyes, we trigger cognitive processes [60]. In the code comprehension

scenario, source code can work as a visual stimulus over which the subject performs the task

of reading to specify the output.

In the literature, there is no standardized threshold of time for a fixation because it de-
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pends on the processing demands of the task. However, popular guidelines among eye track-

ing researchers indicate a threshold between 100 and 300 ms [93; 91]. Thus, after analyzing

our programs, we used 200 ms as our threshold.

We used a Dispersion-Based algorithm to classify the fixations. Particularly, we used

the Dispersion-Threshold Identification (I-DT) [93]. As its parameters, we classified gaze

samples as belonging to a fixation if the samples are located within a spatial region of ap-

proximately 0.5 degrees [81], which corresponded to 25 pixels in our screen.

4.2.9 Analysis of the Results

From a total of 256 possible observations (32 subjects × 8 programs), the subjects solved a

set of 248 (96.9%) of them. This set includes programs that were solved either in the first

submission or after many submissions. We imputed missing data for eight (3.1%) programs

using the Multivariate Imputation by Chained Equations (MICE) method. This method is

available in the Mice R package for multiple imputations namely Predictive Mean Matching

(PMM). The PMM method uses the predictive mean matching [58] and performs better when

the data sample size is sufficiently large [64], which was our case.

We performed statistical analysis to test the null hypotheses of our RQs using a signif-

icance level of 0.05. It means that we have a 5% risk of finding a difference when there is

no actual difference. For p-values equal or inferior to 0.05, we reject the null hypothesis that

there was no difference between the median of the treatments.

We used Shapiro-Wilk Test [97] to test the distribution of the data. When normally

distributed, we verify whether the variances of the two groups compared were equal [104].

Then we performed the parametric t test for the two independent samples to verify whether

there is a statistically significant difference between the two groups [104; 100]. When the

data do not follow a normal distribution and we could not normalize it, we used the non-

parametric test Mann-Whitney, also known as the Wilcoxon test, which can be applied to

these specific situations [104; 100]. In the scenario of fixations, the mean value might not

be appropriate since it can be dependent on some very high values [43]. In our analysis, we

used the median as a measure of central tendency.
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4.3 Results

In Sections 4.3.1–4.3.5, we address our research questions. In these sections, when we

mention a statistically significant difference, it means we rejected the null hypothesis for the

mentioned metric.

4.3.1 RQ1: To what extent does the Extract Method refactoring affect

task completion time?

We consider two measures of time, the time the subjects spent examining the AOI and the

time examining the complete code. The AOI comprises only the lines of code in which

both versions differ (method extracted) and provide a finer-grained analysis than the whole

code. They are shown in Table 4.1, columns “In AOI” and “In Code”, respectively. With the

Extract Method refactoring, the subjects spent 78.8% less time in the AOI to calculate the

Factorial and 70% less time to determine the Highest Grade of a list. On the other hand, the

subjects spent 146.2% more time in the AOI to Sum Numbers from one to N, 166.9% more

time to calculate the Area of Square, and 108.4% to analyze a number and Check If Even.

We observed statistically significant differences for these cases.

In the complete code, the task to calculate the Factorial required 72.8% less time. On the

other hand, the tasks Sum Numbers, Area of Square, and Check if Even presented increases

in time by 93.9%, 94.4%, and 28.3, respectively. We also perform combinations of the time

spent from both perspectives. The idea of combining all programs follows the Latin Square

design [12]. Each subject in each square solves four programs with the Extract Method

and four with Inline Method. We then combine the time for all programs with the Extract

Method and compare it with the Inline Method. However, this combination did not present

statistically significant differences.

We used Cliff’s Delta [25] to yield the effect size. The effect size of 0.2 suggests a small

effect, 0.5 a medium effect, and 0.8 a large effect [26]. The negative sign implies that the

values of the treatment group (Extracted Method versions) are greater than the control group

(Inlined Method version). For the time, the effects varied from -0.47 to 0.93 meaning that

the impact on those tasks was noticeable.
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Table 4.1: Results for time spent in AOI and in Code (RQ1). I = Inline Method; E = Extract

Method; PD = percentage difference; PV = p-value; ES = Cliff’s Delta effect size. Columns

I and E are based on the median as a measure of central tendency.

Tasks In AOI In Code

I
sec

E
sec

PD
% PV ES

I
sec

E
sec

PD
% PV ES

Sum Numbers 8.8 21.6 ↑146.2 0.0001 0.75 15.9 30.9 ↑93.9 0.005 0.57

Next Prime 121.2 53.9 ↓55.5 0.06 n/a 132.6 61.6 ↓53.5 0.06 n/a

Highest Grade 77.7 23.7 ↓70.0 0.01 -0.50 92.6 32.3 ↓65.0 0.09 n/a

Factorial 62.2 13.1 ↓78.8 0.02 -0.47 81.3 22.1 ↓72.8 0.01 -0.51

Multiples of Three 24.6 37.5 ↑52.4 0.22 n/a 39.2 49.0 ↑24.9 0.18 n/a

Area of Square 2.5 6.9 ↑166.9 0.0000 0.93 7.7 14.9 ↑94.4 0.008 0.53

Check If Even 4.7 9.8 ↑108.4 0.0009 0.66 28.3 36.3 ↑28.3 0.03 0.42

Number of Digits 34.5 26.0 ↓24.7 0.25 n/a 66.4 38.2 ↓42.4 0.12 n/a

All Programs 127.5 111.2 ↓12.8 0.21 n/a 191.8 177.5 ↓7.4 0.14 n/a

Finding 1: In our study, the subjects exhibit a reduction in the time spent in the AOI

with the Extract Method refactoring to determine the Highest Grade and to calculate the

Factorial. However, for the tasks to Sum Numbers from one to N, to calculate the Area

of Square, and Check if Even, the time in the AOI increased.

4.3.2 RQ2: To what extent does the Extract Method refactoring affect

the number of attempts?

Since the programs are somewhat simple, the median number of answer submissions does

not provide useful information. Thus, we decided to use the mean instead. As seen in

Table 4.2, with the Extract Method refactoring, the average number of submissions until

getting the task solved reduced by 34.4% to determine the Highest Grade of a list, followed

by 20% to determine the Multiples of Three, and 23.8% to calculate the Number of Digits.

We observed statistically significant differences for these cases. The combination presented

a reduction by 8.9% in the number of answer submissions, which was also significantly

different.
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Table 4.2: Results for number of attempts of the answers (RQ2). I = Inline Method; E =

Extract Method; PD = percentage difference; PV = p-value; ES = Cliff’s Delta effect size.

Columns I and E are based on the mean as a measure of central tendency.

Tasks Submissions

I E
PD
% PV ES

Sum Numbers 1.00 1.31 ↑31.2 0.07 n/a

Next Prime 1.44 1.44 0.0 n/a n/a

Highest Grade 1.81 1.19 ↓34.4 0.01 -0.42

Factorial 1.56 1.31 ↓16.0 0.30 n/a

Multiples of Three 1.25 1.00 ↓20.0 0.03 -0.25

Area of Square 1.00 1.00 0.0 n/a n/a

Check If Even 1.06 1.25 ↑17.6 0.15 n/a

Number of Digits 1.31 1.00 ↓23.8 0.03 -0.25

All Programs 5.2 4.7 ↓8.9 0.03 -0.27

Finding 2: In our study, the subjects submit fewer answers to solve the tasks to deter-

mine the Highest Grade from a list, the Multiples of Three, and the Number of Digits.

4.3.3 RQ3: To what extent does the Extract Method refactoring affect

fixation duration?

For the visual metrics, we also distinguish between fixations in the AOI and in the complete

code. With the Extract Method refactoring, the fixation duration was reduced by 78.9%

in the AOI to calculate the Factorial, followed by 73.6% to determine the Highest Grade.

On the other hand, the fixation duration increased by 130.1% in the AOI to Sum Numbers,

followed by 121.1% to calculate the Area of Square, and 73.1% to Check If Even. These

cases presented statistically significant differences.

In the complete code, the fixation duration was reduced by 74.5% to calculate the Facto-

rial, followed by 65.8% to determine the Highest Grade, and 55.9% to determine the Number

of Digits, and 53% to determine the Next Prime. On the other hand, the fixation duration in-

creased by 110.5% to Sum Numbers. The combination did not present statistically significant
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differences.

Table 4.3: Results for fixation duration in AOI and in Code (RQ3). I = Inline Method; E

= Extract Method; PD = percentage difference; PV = p-value; ES = Cliff’s Delta effect size.

Columns I and E are based on the median as a measure of central tendency.

Tasks In AOI In Code

I
sec

E
sec

PD
% PV ES

I
sec

E
sec

PD
% PV ES

Sum Numbers 6.2 14.2 ↑130.1 0.002 0.60 8.7 18.4 ↑110.5 0.007 0.53

Next Prime 63.7 35.3 ↓44.5 0.11 n/a 65.6 30.2 ↓53.9 0.04 -0.39

Highest Grade 45.1 11.8 ↓73.6 0.01 -0.42 47.1 16.3 ↓65.8 0.04 -0.53

Factorial 40.2 8.4 ↓78.9 0.003 -0.64 46.0 11.7 ↓74.5 0.03 -0.51

Multiples of Three 11.7 19.9 ↑69.1 0.38 n/a 18.1 28.9 ↑60.0 0.29 n/a

Area of Square 1.4 3.0 ↑121.1 0.001 0.65 4.1 6.5 ↑59.8 0.08 n/a

Check If Even 2.9 5.0 ↑73.1 0.02 0.46 14.5 19.6 ↑35.1 0.06 n/a

Number of Digits 21.6 14.5 ↓32.7 0.21 n/a 40.5 17.8 ↓55.9 0.04 -0.38

All Programs 70.9 59.2 ↓16.4 0.18 n/a 102.4 84.5 ↓17.4 0.09 n/a

Finding 3: In our study, the subjects exhibit a reduction in the fixation duration in the

AOI with the Extract Method refactoring to determine the Highest Grade and to calculate

the Factorial. However, for the tasks to Sum Numbers from one to N, to calculate the

Area of Square, and Check if Even, the fixation duration in the AOI increased.

4.3.4 RQ4: To what extent does the Extract Method refactoring affect

fixations count?

With the Extract Method refactoring, the fixations count was reduced by 75.8% in the AOI

to calculate the Factorial, followed by 67.7% to determine the Highest Grade. However, the

fixations count increased by 194.2% in the AOI to Sum Numbers, followed by 138.8% to

calculate the Area of Square, and 137.1% to Check if Even. For all these cases, we observed

statistically significant differences.

In the complete code, the fixations count was reduced by 74.3% to calculate the Factorial,

followed by 69.8% to determine the Highest Grade. However, the fixations count increased
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by 102.1% to Sum Numbers and 44.8% to Check if Even. The combination did not present

statistically significant differences.

Table 4.4: Results for fixations count in AOI and in Code (RQ4). I = Inline Method; E =

Extract Method; PD = percentage difference; PV = p-value; ES = Cliff’s Delta effect size.

Columns I and E are based on the median as a measure of central tendency.

Tasks In AOI In Code

I E
PD
% PV ES I E

PD
% PV ES

Sum Numbers 17.5 51.5 ↑194.2 0.004 0.62 23.5 47.5 ↑102.1 0.003 0.56

Next Prime 186.0 108.0 ↓41.9 0.19 n/a 191.5 111.0 ↓42.0 0.17 n/a

Highest Grade 141.5 45.6 ↓67.7 0.008 -0.53 166.0 50.0 ↓69.8 0.008 -0.51

Factorial 141.0 34.0 ↓75.8 0.02 -0.44 156.0 40.0 ↓74.3 0.03 -0.40

Multiples of Three 38.5 62.5 ↑62.3 0.37 n/a 47.5 80.5 ↑69.4 0.26 n/a

Area of Square 4.6 11.0 ↑138.8 0.004 0.59 12.0 20.0 ↑66.6 0.07 n/a

Check If Even 8.5 20.1 ↑137.1 0.003 0.58 39.0 56.5 ↑44.8 0.04 0.42

Number of Digits 96.4 49.0 ↓49.2 0.16 n/a 99.0 49.0 ↓50.5 0.06 n/a

All Programs 252.0 189.5 ↓24.8 0.26 n/a 288.0 282.5 ↓1.9 0.24 n/a

Finding 4: In our study, the subjects exhibit a reduction in the fixations count in the AOI

with the Extract Method refactoring to determine the Highest Grade and to calculate the

Factorial. However, for the tasks to Sum Numbers from one to N, to calculate the Area

of Square, and to Check if Even, the fixations count in the AOI increased.

4.3.5 RQ5: To what extent does the Extract Method refactoring affect

regressions count?

With the Extract Method refactoring, the regressions count was reduced by 84.6% in the AOI

to calculate the Factorial, followed by 74.4% to determine the Highest Grade. However, the

regressions count increased by 200% in the AOI to Check if Even, followed by 108.3% to

Sum Numbers. For all these cases, we observed statistically significant differences.

In the complete code, the regressions count was reduced by 78% to calculate the Fac-

torial, followed by 74.6% to determine the Highest Grade. However, the regressions count



4.4 Discussion 100

increased by 89.4% to Sum Numbers. The combination did not present statistically signifi-

cant differences.

Table 4.5: Results for regressions count in AOI and in Code (RQ5). I = Inline Method; E

= Extract Method; PD = percentage difference; PV = p-value; ES = Cliff’s Delta effect size.

Columns I and E are based on the median as a measure of central tendency.

Tasks In AOI In Code

I E
PD
% PV ES I E

PD
% PV ES

Sum Numbers 6.0 12.5 ↑108.3 0.005 0.57 9.5 18.0 ↑89.4 0.01 0.52

Next Prime 80.5 41.0 ↓49.0 0.09 n/a 84.5 44.0 ↓47.9 0.08 n/a

Highest Grade 43.0 11.0 ↓74.4 0.01 -0.50 75.0 19.0 ↓74.6 0.01 -0.53

Factorial 52.0 8.0 ↓84.6 0.003 -0.67 70.5 15.5 ↓78.0 0.01 -0.49

Multiples of Three 13.5 19.0 ↑40.7 0.39 n/a 21.5 28.5 ↑32.5 0.53 n/a

Area of Square 1.0 2.0 ↑100.0 0.05 n/a 5.0 7.0 ↑40.0 0.10 n/a

Check If Even 1.0 3.0 ↑200.0 0.03 0.43 18.5 24.5 ↑32.4 0.14 n/a

Number of Digits 21.0 13.0 ↓38.0 0.14 n/a 46.0 21.5 ↓53.2 0.06 n/a

All Programs 75.0 54.0 ↓28.0 0.10 n/a 125.5 114.0 ↓9.16 0.09 n/a

Finding 5: In our study, the subjects exhibit a reduction in the regressions count in

the AOI with the Extract Method refactoring to determine the Highest Grade and to

calculate the Factorial. However, for the tasks to Sum Numbers from one to N and to

Check if Even, the regressions count in the AOI increased.

4.4 Discussion

In this section, we discuss the interview with the subjects (Section 4.4.1), the perception of

difficulties of the programs (Section 4.4.2), the positive impact of the Extract Method refac-

toring (Section 4.4.3), the negative impact of the Extract Method refactoring (Section 4.4.4),

and a discussion on gaze transitions and heatmaps (Section 4.4.5).
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4.4.1 Interview with the subjects

To analyze the qualitative data, aiming to support our quantitative results, we used the method

of grounded theory proposed by Strauss and Corbin [113]. Grounded theory describes a

phenomenon found in the data without preconceived theories. We used the following steps.

First, we conduct a semi-structured interview with the subjects, break their answers into

smaller chunks of data, and assign each chunk a code that emerges from it. We perform

the coding in the first step. Second, we analyze all the codes and search for opportunities

to group them into higher-level concepts. Third, we group similar concepts searching for

opportunities to form higher-level categories. Fourth, we derive a theory through an inductive

approach. All these steps are in Table 4.6 and are available in our material [108].

Code

Step

Concept

Step

Category

Step

Theory

Step

Didn’t pay attention to the function Lack of attention
Attention

Code com-

prehension

factors

Didn’t see the equals operator Missed details

Familiarity with factorial Knowledge of Domain

KnowledgeNot used to this iteration Knowledge of Iterator

Confused the variable type Knowledge of Language

Difficulties with modulo Decision structure

Control

Flow

Difficulties with the repetition Loop structure

Loop with decision is difficult Nesting

Going back and forth takes time Reading flow

Had to read line by line Linear reading

The name helped to infer Meaningfulness
Names

Didn’t understand the name Lack of clearness

Confused in the multiplication Math operation
Mathematics

Confused the order of the operations Precedence order

Difficulties in remembering the values short-term memory Memory load

No difficulties No difficulties No difficulties

Table 4.6: Coding process of the subjects’ answers.

In the code step, we found a set of 35 codes across 256 answers. The issues included
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“Didn’t pay attention to the function”, “Difficulties with the repetition”, and “The name

helped to infer”. We added more details in Table 4.6 and the complete process in our supple-

mentary material [108].

In the concept step, we connected and grouped multiple codes. We found 16 concepts

that emerged from the codes. For instance, we grouped “Names were suggestive” and “The

name helped infer” in the same underlying concept, which is “Meaningfulness”.

In the category step, seven main categories emerged from the concepts, namely, “Atten-

tion”, “Knowledge”, “Control Flow”, “Names”, “Mathematics”, “Memory load”, and “No

difficulties”. In the theory step, a broad question emerged: what are the factors related to

code comprehension found in the data? We did not set a research question a priori. Since

the subjects reported mostly their difficulties and strategies when examining the code, we

expected to find a theory related to this.

As the main lessons learned, we found a variety of factors playing important roles in

the code comprehension of the subjects. Most of the subjects’ answers (44) were related to

the presence or the lack of suggestive methods’ names. While interviewing the subjects, we

observed a trend related to names in the data and asked the subjects why or how the names

were important. The subjects mentioned that the names were suggestive and helped them

infer the code behavior. The methods’ names helped them to formulate a hypothesis about

what the method does. One subject mentioned “The name gives me a hint, but I check if

the code does what it says”. Another subject said ”To solve the task, I used only the name

of the method and the input, otherwise it would take longer”. Thus, the extracted method

seemed to favor an up-bottom fashion code reading with hypothesis formulation and test of

the hypothesis.

Another lesson was that the subjects tend to check if the method does what it says. While

in three tasks, the subjects mentioned not needing to check the method, in 22 tasks, the

subjects checked the method. Some of the reasons were “Checked the code to see if the body

matches the name”, ”You cannot always trust the code others wrote”, and “To check if there

is some kind of trick”. Associating this feedback with eye tracking metrics, the strategy of

formulating and testing hypothesis seemed to reduce time and visual effort.

On the hand, inlining the method favored a bottom-up fashion reading with no previous

formulation of a hypothesis. In the category of Control Flow, we have concepts of decision
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and repetition structures, with nesting and linear reading behaviors. In them, the subjects

mentioned having difficulties with 31 tasks of which 25 had no extracted method. One

subject mentioned “Since I had no method to help me, I had to read the code line by line”.

A more careful code examination may lead to more time and visual effort since the subjects

have to fixate on more parts of the code.

The subjects reported difficulties in the category of Mathematics, namely math operations

and precedence order. From 24 tasks, 16 had no method extracted. Since no hypotheses

could be inferred from a name, the subjects had to formulate it from a more careful code

examination, which seemed to be hampered by the operations. The most common difficulties

were “confusion in the math operation”, particularly in the task to count the number of digits,

in both extracted and inlined versions. This might explain the lack of statistical differences

in the time and visual effort.

4.4.2 Subjective perception of difficulties

To investigate the perceptions of the subjects on the difficulties of the programs, we used a

five-point scale. The subjects rated each program individually, whether they found it very

easy, easy, neutral, difficult, or very difficult to solve. We compare their perceived difficulties

between Inline and Extract Method in Figure 4.3.

Overall, the subjects perceived the tasks with the Extract Method easier to solve than

those with the Inline Method. For the tasks to determine the Highest Grade, to calculate the

Factorial, and to determine the Number of Digits, the differences were more evident.

4.4.3 A positive impact of the Extract Method refactoring

The subjects perceived the Extract Method versions of the four tasks Next Prime, High-

est Grade, Factorial, Multiples of Three, and Number of Digits easier to solve in terms of

difficulty, according to Figure 4.3(b), (c), (d), (e), and (h). With the Extract Method, the

perception of difficulties (difficult or very difficult) for the Next Prime reduced from 18.7%

to 12.5%, for the Highest Grade reduced from 12.5% to zero, for the Factorial reduced

from 25% to 6.2%, and for the Number of Digits reduced from 31.2% to 6.2%. The per-

ception for Multiples of Three remained the same. From the quantitative perspective, with
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Figure 4.3: Perception of difficulties of the subjects with Inline Method and Extract Method

of the tasks.

the Extract Method, the subjects needed from 70% to 78.8% more time, from 20% to 34.4%

fewer submissions, fixation duration reduced from 73.6% to 78.9%, fixations count reduced

from 67.7% to 75.8%, and regressions count reduced from 74.4% to 84.6%. It indicates

an agreement between how subjects subjectively perceive the difficulty of the task and their

performance on it. The tasks Multiples of Three and Number of Digits presented significant

reductions in the number of attempts while Number of Digits and Next Prime in the fixation

duration in the code.

It is important to mention that the obtained results are conservative and differences could

potentially be positively higher for larger methods. On the other hand, we only examined

the uses of the Extract Method in simple scenarios. One might use the Extract Method

refactoring in more complex methods, usually in scenarios where a comment would need to

explain part of that method. We discuss the threats related to this in Section 4.5.2.

In the tasks with the Inline Method, the subjects mainly mentioned the issues: “diffi-

culties with for loop and if together”, “trouble with control variable”, “confusion with

iterator”, “math operation”, “integer division”, and “modulo”. In the tasks with Extract
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Method, the subjects mainly mentioned: “name helped but checked the method”,“didn’t re-

member factorial” and “difficulties with the math involved”, “integer division”, “suggestive

name”, and “method checking”. As a takeaway, in the Inline Method version, compre-

hension effort concentrates more on lower-level specific constructs, such as conditional and

repetition structure, modulo, and math operations, while in the Extract Method version, sim-

ilar difficulties are reported but it concentrates more on higher level components, such as the

names, methods, and remembering concepts such as what a factorial does.

4.4.4 A negative impact of the Extract Method refactoring

The subjects perceived the Extract Method version of the task Sum Numbers easier to solve,

while the tasks to calculate Area of Square, and Check If Even were less easy to solve,

according to Figure 4.3. With the Extract Method, the perception of difficulties (difficult

or very difficult) for Sum Numbers reduced from 6.2% to zero, for the Area of Square, the

perception was the same, while for the Check If Even, it increased from zero to 6.2%. From

the quantitative perspective, the subjects needed from 108.4% to 166.9% more time with the

Extract Method, fixation duration increased from 73.1% to 130.1%, fixations count increased

from 137.1% to 194.2%, and regressions count increased from 100% to 200%. It indicates a

disagreement between how subjects perceive the difficulty of the task and their performance

on the task to Sum Numbers.

In general, these tasks suggest that the Extracted Method impairs the subjects’ perfor-

mance. One possible explanation might be that, for small programs, extracting a method

adds more elements and lines to be observed, which can influence the visual attention and

effort of the subjects. In the Extracted Method versions, the attention of the subjects is redi-

rected to another location of the code, because of the change in the control flow. In that way,

extracting a method can influence where the subjects fixate their attention, which can lead to

more effort.

In the tasks with Inline Method, the subjects mainly mentioned the issues: “difficulties

with multiplication”, and “order of operations”, “attention to parenthesis”, “attention to

for loop”. In the tasks with Extract Method, the subjects mainly mentioned: “difficul-

ties with multiplication”, and “order of operations”, “attention to for loop”, “suggestive

name”, and “method easy to check”. As a takeaway, in the Inline Method version, com-
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prehension effort concentrates mainly on math operations and repetition structure. In the

Extract Method version, the subjects presented similar difficulties. Even though the subjects

reported that the name was suggestive, they analyze the method’s body to check whether it

matches the name.

4.4.5 Gaze Transitions and Heatmaps

To identify patterns in the eye gaze transitions in our data, we defined each line of code as

a small region that could be analyzed independently. These regions were defined in pixels

on the images of the tasks according to a previous guideline [55]. Their positioning was

precisely defined considering the camera limitations so that we could have a margin between

the regions, and the regions did not overlap. In addition, we defined the white-space as a

region so that we could be aware of any threat to validity given the camera limitations. Using

the chronological order of the fixations and their positions, we identified a sequence of visited

regions for each subject. We then built a big picture of the sequences by simplifying repeated

transitions to go from one region to the same region. We make the sequences and the images

of the tasks with the regions identified available in our supplementary material [108].

With the method extracted, the code has more lines, and more elements to observe and go

back into the code. To better understand how this impacts the visual effort, we distinguished

between a regression to a previous line, or vertical regression, and a regression within the

same line, or horizontal regression. With the Extract Method, the subjects make fewer re-

gressions horizontally and vertically in the tasks Next Prime, Highest Grade, and Factorial

tasks. It implies that the subject can solve the tasks with the Extract Method without go-

ing back visually in the code so often as in the Inline Method. For Multiples of Three, and

Number of Digits, we did not observe significant differences.

Highest Grade

In Figure 4.4, we built two graphs to depict the distribution of the regressions for two sub-

jects who examine a program to determine the Highest Grade. In the example, we selected

two subjects whose individual results for the time, attempts, and visual metrics are coherent

with the median results for all subjects. One subject examined the program with the inlined
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version and the other examined the extracted method version. In the graph, each edge rep-

resents a regression with a direction to a previous line of code or to the same line (self-loop

edge). Each node represents a line of code. The grayscale intensity of the edge represents

the number of times such regression was repeated.

Comparing the examples, we observe that in the inlined version, the subject goes back

more times, especially in the lines where the variables were assigned values, and in the loop

followed by the decision control. In the extracted version, we observed regressions between

the call of the method and the method. Those regressions were expected because the method

was located before the call in the code. However, the subject makes fewer regressions while

examining the body of the method.

public class Main {

  public static void main(String[] args) {

    int[] notas = {7,8,9};

    int resultado = notas[0];

    for (int i = 1; i < notas.length; i++) {          

      if (notas[i] > resultado) {

        resultado = notas[i];

      }

    }

    System.out.println(resultado);

  }

}

Inlined

Extracted

7

4

5

1

2

8

6

4

1

3

7

12

11

9

10

8

12

11

9

10

15

14

13

6

2

3

5

Regressions count

2 4 6 8 10 12 14

public class Main {

  static int retornaMaiorNotaDaLista(int[] notas) {

    int resultado = notas[0];

    for (int i = 1; i < notas.length; i++) {          

      if (notas[i] > resultado) {

        resultado = notas[i];

      }

    }

    return resultado;

  }

  public static void main(String[] args) {

    int[] notas = {7,8,9};

    System.out.println(retornaMaiorNotaDaLista(notas));

  }

}

Figure 4.4: Eye movement regressions for the inlined and extracted method versions to de-

termine the Highest Grade.
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Factorial

Consider the task to determine the Factorial in Figure 4.5. In the inlined version, the sub-

jects make 91 switches between distinct regions on average, while in the extracted version,

with the addition of three lines, the subjects make 59 switches, a 54% reduction. A common

sequence for both versions is to go back and forth between the for control statement and the

iterator inside the control, R5 and R6 (inlined), and R4 and R5 (extracted). For instance, in

the inlined version, 100% of subjects do R5→R6 on average 11 times, and 93% do R6→R5

going back on average 12.8 times. Even though the loop only iterates four times, the sub-

jects visually regress three times the expected. In the extracted version, 81% of subjects do

R4→R5 on average 8 times, and 66% do R5→R4 back on average 10 times. In addition, the

subjects examine R3 in the inlined version, where the variable is assigned, on average, 68%

more times than R10 in the extracted version. Providing the subject with an idea of what

the code is about, the subjects seem to check the calculation in the method’s body with less

visual effort.

R2R1R0 R6R5R4 R7R3 R8 R9 R10

R2R1R0 R6R5R4 R7R3 R8 R9 R10
R11 R12 R13

public class Main {    
        public static void main(String[] args) { 
                int num = 5; 
                int resultado = 1;
                for (int i = 2; i <= num; i++) {
                        resultado = resultado * i;
                }
                System.out.println(resultado); 
        } 
}

public class Main { 
        static int calculaFatorial(int num) { 
                int resultado = 1; 
                for (int i = 2; i <= num; i++) {
                        resultado = resultado * i;
                }
                return resultado; 
        }   
        public static void main(String[] args) { 
                int num = 5; 
                System.out.println(calculaFatorial(num)); 
        } 
}

Inline version

Extract version

Figure 4.5: Set of regions of the inlined and extracted method code versions to determine the

Factorial of a number.
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Extracting the method was associated with an easier interpretation of the calculation that

takes place within the method and this is reflected in the 16% reduction in the number of

attempts. Five subjects mentioned difficulties with the multiplication operation in the inlined

version, either by accumulating the iteration value or by the repetition structure itself, and

two could not solve it. One of them exhibited repetitive visual behavior R5→R6 and R6→R5

for 37 times reporting inattentiveness in the loop stop condition. In the inlined version, three

subjects mentioned that the name helped. However, domain knowledge is important. Two

subjects reported difficulty for not knowing or remembering what a factorial would be in the

extracted, which seemed to affect their visual effort. For instance, one of them who gave

up the task exhibited the behavior of looking R10→R9 four times going up to the R3 or R4

method. When the subject has domain knowledge associating the name, extracted version

led to less effort to compute the result.

Multiples of Three

Consider the task to count the Multiples of Three in Figure 4.6. In the inlined version,

the subjects make 38 switches between distinct regions on average, while in the extracted

version, with the addition of three lines, the subjects make 46 switches, an increase of 27%.

A common sequence for both versions is to go back and forth between the for control

statement and the decision control, R5 and R6 (inlined), and R4 and R5 (extracted). For

instance, in the inlined version, 93% of subjects do R5→R6 an average of 3.2 times and

87% do R6→R5 coming back an average of 2.7 times. In the extracted version, 87% of

subjects do R4→R5 an average of 2.7 times and 75% do R5→R4 returning an average of 2.9

times. As the loop has three iterations, the round-trip average is close to what was expected

in both versions. However, some differences were noticeable. For instance, in extracted

version, subjects resort less to the array. The frequency with which they examined the array

region in inlined is on average 7.5 times, while in extracted, 5.7, that is, 24% less. In inlined,

50% of the time, the subjects go back from the R5 or R6 regions. In extracted version, 50%

of the time, the subjects go from the R11 or R13 region.
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R2R1R0 R6R5R4 R7R3 R8 R9 R10 R11 R12

R2R1R0 R6R5R4 R7R3 R8 R9 R10 R11 R12
R13 R14 R15

public class Main {    
        public static void main(String[] args) { 
                int[] numeros = {3,4,6}; 
                int contador = 0;
                for (int i = 0; i < numeros.length; i++) {
                        if (numeros[i] % 3 == 0) {
                                contador = contador + 1;                
                        }
                }
                System.out.println(contador); 
        } 
}

public class Main {
        static int contaMultiplosDeTresDaLista(int[] numeros) {
                int contador = 0;
                for (int i = 0; i < numeros.length; i++) {
                        if (numeros[i] % 3 == 0) {
                                contador = contador + 1;                
                        }
                }
                return contador;
        }  
        public static void main(String[] args) { 
                int[] numeros = {3,4,6}; 
                System.out.println(contaMultiplosDeTresDaLista(numeros)); 
        }
}

Inline version

Extract version

Figure 4.6: Set of regions of the inlined and extracted method code versions to count the

Multiples of Three of a list.

The subjects’ responses can help us understand this behavior. For instance, in inlined,

two subjects mentioned “difficulties with examining line by line because there is no function”,

while in extracted, 12 subjects mentioned that the name helped them to infer what the answer

was and 9 of them mentioned checking the function to see if it was doing what they inferred

by the name. One subject mentioned: “The name gave me a hint by I checked to see if

the method’s body corresponded to the name”. We observed a reduction in the number of

attempts with extracted by 20%. In four subjects who needed more attempts in the inlined,

they examined the array 13 times, majoritarily, returning from R6 where they check if it is

divisible by three.

With the Extract Method, the subjects make more regressions horizontally and vertically

in the code in both tasks. The horizontal regressions may relate to longer lines because of

the methods’ names. Specifically, in the task to Sum Numbers from one to N, subjects tend

to go back and forth inside the method to check the math operation involving multiplication.

The vertical regressions in the tasks may relate to going back and forth between caller and

method.
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Sum Numbers

In Figure 4.7, we depict heatmaps for two programs, one with the inlined version and the

other with the extracted version. Heatmaps provide a visual representation of the eye fixation

data. The intensity of color varies according to the number of fixations, and their duration

and heatmaps are useful for a big picture of visual attention. In the inlined version, the

color is less intense, meaning fewer fixations with less duration. In the extracted version,

two regions are more intense. The subjects make 16 switches between distinct regions on

average, while in the extracted version, the subjects make 34 switches, which is an increase

of 112%.

Inline version

Extract version

Figure 4.7: Heatmap of the inlined and extracted method code versions of Sum Numbers

from one to N.

Three subjects mentioned difficulties in the order of arithmetic operations, while one

mentioned difficulties associating an operation in return. A subject that took four tries to

resolve mentioned the return as difficult. When dealing with an unknown formula, the inlined

version may be better because it is more direct instead of taking this calculation to another

region of the code and returning the result through a return. Not everyone is familiar with
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the formula for the sum of the first n positive integers. We designed that way to evaluate

whether it gives different results compared to a more familiar formula, such as calculating

the area of the square. In both cases, the impact was negative for the time and visual effort,

except for the number of attempts. While calculating the area of the square, the number of

attempts remained the same; to sum the numbers, there was an increase by 31.2%.

4.5 Threats to Validity

In this section, we describe the internal validity (Section 4.5.1), external validity (Sec-

tion 4.5.2), and construct validity (Section 4.5.3).

4.5.1 Internal validity

We conducted the controlled experiment in two different locations for diversification pur-

poses, which may have influenced the visual attention of the subjects. To mitigate it, we

carefully arranged the rooms to have similar light, temperature, and quiet conditions.

The presence of a researcher in the room may have unintentionally influenced the visual

attention or performance of the subjects. To mitigate it, we let the subjects feel comfortable

and avoided any interaction while they were examining the programs.

The eye tracker equipment has limitations. Even after carefully calibrating and re-

calibrating it, we still needed an adjustment in the gaze points. The heatmap and plot of

fixations revealed a red color for specific subjects and fixations over a blank area not touch-

ing the code. For these specific subjects, a small adjustment was sufficient to adjust it. All

the fixations for a particular program received the same adjustment. The adjustment in the

y-coordinate was in a median of 12.5 pixels. We did not adjust the x-coordinate. The ad-

justment in the points may influence their interpretation. We discussed these adjustments for

each subject. However, we decided that the threat of adjusting the points would be prefer-

able to the threat of analyzing the data with points not touching the code. The fixations and

adjustment strategy are available in our replication package [108].

In pilot studies, a swivel chair impaired data points collected by the camera. To mitigate

it, we used chairs without swiveling capability in the controlled experiment. We allocated

one hour for each subject and assigned them 10 programs, which may have influenced the
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visual effort. To minimize it, we designed simple and short programs.

With the Latin Square design, we blocked the set of programs to control noise. We

analyzed the programs combined in the squares and individually. The analysis of individual

programs may violate the design. However, analyzing them combined and individually can

give a more nuanced and complete understanding of the effects of the refactorings.

4.5.2 External validity

We focused on novices in Java, which may restrict generalization to more experienced de-

velopers in Java. Other eye tracking studies have also focused on novices to understand code

comprehension [15]. In the future, we intend to focus on experienced developers.

We focused on Java, which may restrict generalization to other programming languages.

To mitigate it, we used constructions commonly employed in other languages. Most of our

subjects reported some experience with other languages. Our programs were designed to

contain identifiers in Portuguese, given that the subject were Brazilians.

We assigned the subjects a task to specify the correct output of the program, which was

a numeric value. They answered the output aloud after reading the code with no syntax

highlighting. This task may not generalize to other tasks, such as finding a bug or adding a

feature.

We resorted to small programs aiming at fitting the code onto the screen, which may re-

strict generalization to larger programs. Thus, our results are conservative since we examined

the uses of the Extract Method in simple scenarios. Developers might use the Extract Method

refactoring in more complex methods, usually where a comment would be needed to explain

part of that method. However, larger and more complex methods would require more lines

of code, would take more time in the experiment, and could make the subjects more tired.

These factors pose a challenge for controlled eye tracking studies in code comprehension.

Nevertheless, we need studies with larger code snippets. The number of methods in the

program may influence the visual effort of the subjects. To minimize threats related to this,

we consistently used only one method extracted in the program except for the main method.

The names of methods in the program may influence the comprehension and visual effort

of the subjects. Confusing names can hamper comprehension and require more effort. To

minimize this threat, we used lessons from previous studies and guidelines, refined the names
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through a pilot study, and discussed the names. In addition, in our approach, the original

method (version to be refactored) does not give hints about the goal of the code. One might

argue that, in a real scenario, both the original method and the extracted method would have

meaningful names, which would work as beacons and give hints to the developer about what

the extracted method would do. This can be mitigated by the fact that we focus on novices,

and beacons might not be so efficient in this context.

4.5.3 Construct validity

Code comprehension has often been measured through time and answer correctness [84].

Time, answer correctness, and visual effort have also been combined to investigate code

comprehension [102; 33; 30; 77]. In particular, the visual effort has been measured before

with fixation duration and fixation count [102; 8]. In addition, eye movement regressions

have been associated with visual effort [99].

When we invite the subjects, we have to make them aware that their eyes are being

tracked. This may influence where or how much they look at some regions of the code. To

minimize this threat, we did not inform them about the precise goals of the study to avoid

hypothesis guessing.

4.6 Conclusions

We report on a controlled experiment with eye tracking to evaluate the extent of the impact

of the Extract Method on code comprehension. We compared the Extract and Inline Method

versions of eight tasks measuring their impact on the time, the number of attempts, and the

visual effort of 32 novices in Java. We triangulated the metrics of the objective performance

with the subjective perceptions of the subjects.

With the Extract Method, there was a significant improvement in the time of two tasks,

varying from 70% to 78.8%, and in the number of attempts of three tasks, varying from

20% to 34.4%. Improvements in the visual effort were observed for two tasks, varying from

73.6% to 78.9% in the duration of the fixations, from 67.7% to 75.8% in the fixations count,

and from 74.4% to 84.6% in the regressions count. Negative effects were also observed.

The time of three tasks increased, varying from 108.4% to 166.9%. The visual effort of two
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tasks also increased, varying from 73.1% to 130.1% in the fixation duration, from 137.1%

to 194.2% in the fixations count, and from 100% to 200% in the regressions count. While

the eye tracking data are more sensitive to fine-grained changes in small snippets, such as

the impact of adding one line, we have to be aware that in large code sources, extracting a

method can actually reduce the number of lines of code. Thus, we cannot generalize these

results to larger code sources. In the interview, the subjects found the tasks with the Extract

Method easier to solve. In our data, for smaller snippets, the perception of developers may

not always agree with their performance.

Our study contributes to raising educators’ awareness about the Extract Method and its

potential to ease or hinder code comprehension for novices in Java. Introductory courses

should be more selective in choosing programs that do not negatively impact visual effort.

For the researchers, our results show the potential of visual metrics to reveal an impact of

refactorings that static code metrics cannot capture. For instance, a simple task to calculate

the Area of Square exhibited 166.9% more time in the AOI and 138.8% more visual regres-

sions. When we moved the calculation to somewhere else in the code, the subjects tended to

keep coming back to those lines interrupting the flow. Other approaches, such as functional

Magnetic Resonance Imaging (fMRI) during the experiments, could reveal other nuances.

This impact revealed through eye tracking may raise the need for tools to assist the novices

when applying the Extract Method.

In future work, we aim to evaluate other refactorings from Fowler’s catalog [40]. We aim

to conduct more controlled experiments with experienced developers, other programming

languages, other types of tasks, and larger code.



Chapter 5

Study III: Refactoring Configurable

Systems

In this chapter, we present an eye tracking study with novices to evaluate refactorings for

disciplining #ifdef annotations. This chapter is organized as follows: Section 5.1 presents

the study definition, and Section 5.2 presents the study methodology. Section 5.3 presents

the obtained results, and Section 5.4 discusses a qualitative interview with the novices. Sec-

tion 5.5 discusses the threats to validity.

5.1 Study Definition

In this section, we present the study definition following the Goal-Question-Metrics ap-

proach [5]. We analyze three refactorings for C programs that discipline #ifdef anno-

tations for the purpose of understanding whether disciplined annotations associate with

improvements with respect to code comprehension from the point of view of novices in

the C programming language in the context of tasks extracted from real projects.

With this goal in mind, we address the following research questions:

• RQ1: To what extent do disciplined annotations affect task completion time? To

answer this question, we measure the total time duration novices need to solve a “spec-

ify the correct output” task with three evaluated refactorings. In addition, we measure

the time the subjects spend in specific regions in the task. Our null hypothesis (H1) is

116
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that there is no difference between disciplined and undisciplined annotations regarding

time.

• RQ2: To what extent do disciplined annotations affect the number of attempts?

To answer this question, we measure the number of answers novices submit until solv-

ing the task with three evaluated refactorings. Our null hypothesis (H2) is that there is

no difference between disciplined and undisciplined annotations regarding the number

of answer submissions.

• RQ3: To what extent do disciplined annotations affect fixation duration? In

the code domain, longer fixations have been associated with a substantial increase in

demands of attentiveness [16]. Crosby et al. [28] have shown that there is a correspon-

dence between fixations and attention focus, suggesting the validity of immediacy and

eye-mind theory, also in the code domain. The results of those studies imply that longer

fixations indicate more attention and consequently more visual effort. To answer this

question, we measure the fixation duration of the novices while solving the task with

three evaluated refactorings. Our null hypothesis (H3) is that there is no difference

between disciplined and undisciplined annotations regarding fixation duration.

• RQ4: To what extent do disciplined annotations affect fixations count? Another

fixation-based metric, the fixation count ignores the fixation duration and considers

only the total number of fixations in a particular area. This metric is also associated

with cognitive and visual effort. For instance, a higher number of fixations indicates

longer processing time to understand code phrases [8], more attention to complex

code [28], and more visual effort to recall the name of identifiers [101]. To answer

this question, we measure the fixation count of the novices while solving the task with

three evaluated refactorings. Our null hypothesis (H4) is that there is no difference

between disciplined and undisciplined annotations regarding fixation count.

• RQ5: To what extent do disciplined annotations affect regressions count? Regard-

ing eye tracking metrics, we may have backward eye movements of any length over

the stimuli called regressions [15]. According to Sharafi et al. [99], regressions can be

used to measure visual effort. The linearity of natural language and code reading has
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been measured before using the regression rate in code domain [15]. To answer this

question, we measure the total number of regressions. Considering that the code writ-

ing follows a writing system represented by a left-to-right and top-to-bottom pattern,

to measure regressions, we compute the number of gaze transitions with direction op-

posed to the writing system, from right to left and bottom to top. Our null hypothesis

(H5) is that there is no difference between disciplined and undisciplined annotations

regarding regressions count.

5.2 Methodology

In this section, we present the methodology of our study. We present the pilot study (Sec-

tion 5.2.1), experiment phases (Section 5.2.2), subjects (Section 5.2.3), treatments (Sec-

tion 5.2.4), evaluated refactorings (Section 5.2.5), tasks (Section 5.2.6), eye tracking instru-

mentation (Section 5.2.7), and finally the analysis (Section 5.2.8).

5.2.1 Pilot Study

Before conducting the actual experiment (see Section 5.2.2), we conducted a pilot study

with four subjects aiming at evaluating the experiment design, tasks to be used, and setup

of the eye tracker. In the pilot study, we could test, adjust, and validate the material used,

such as background form, code font size, font style, spaces between the lines of code, and

indentation. We also adjusted environment settings, lights, and chair. For instance, fixing the

chair allowed us to improve data capturing, eliminate noise, and improve data quality. We

do not take the results of the pilot study into account in the analysis.

The pilot study allowed us to refine our experiment design, which consists of five phases:

(1) Questionnaire, (2) Tutorial, (3) Warm-up, (4) Tasks, and (5) Interview. We then estimated

an average of around 50 minutes for each subject to complete all phases. Next, we describe

these phases in detail.
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5.2.2 Experiment Phases

First, we chose a quiet room to minimize distractions and with typical indoor fluorescent

bulbs for the experiment. As the subjects entered the room, we explained what data are cap-

tured by the camera. We then asked him/her to fill out a consent form and another form with

questions related to programming background experience, experience with C language, and

implementing variability with #ifdef annotations. We provided the subjects with chairs

without wheels, leaning or swivel capability positioned 45–60 cm distant from the screen.

In the experiment environment, we stayed close to the subject, but we did not encourage

conversation while the subject was performing a task. Second, we presented a tutorial on

variability implementation explaining how #ifdef annotations work and on basic concepts

of conditional compilation. In addition, we explained basic concepts of the C programming

language. We did not mention the words “disciplined” or “undisciplined” to the subjects.

Third, we illustrated the nature of the experiment through a simple warm-up task in which

we asked the subjects to specify the output given the input. This task was not considered in

the analysis of the experiment. We used the eye-tracking camera in the warm-up task so that

the subjects got comfortable with the equipment and the study setup. We asked the subject

to close their eyes for two seconds before and after solving the task. This allowed us to

know exactly when the task started and ended by observing the timestamp. We asked the

subjects to verbally provide the output of the code, which is an approach adopted by other

studies as well [102; 103; 54]. We provided real-time feedback by emitting a distinct sound

corresponding to whether the answer was correct. If the answer was incorrect, subjects could

choose to keep trying to submit more answers until getting the correct one, if they felt free to

do so. They also had the option of quitting at any time without having to provide any reasons

for that.

Fourth, we ran the actual experiment with six tasks. We used the Latin Square ap-

proach [12] to ensure that every subject was exposed to each treatment only once and to

ensure that the same subject answered the same task only once, avoiding a learning effect.

Thus, we randomly assigned subjects to treatments in the cells of each square as depicted

in Figure 5.1. The comparison in further analysis occurs across the squares by gathering all

subjects who answered the same task.

Fifth, once a subject finished all the tasks, we conducted a semi-structured interview to
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ST1 = Set of Tasks from Project 1 ST2 = Set of Tasks from Project 2

ST2
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Figure 5.1: Design of experiment with Latin Squares with 64 subjects with projects P1, P2,

P3, and P4. U and D refer to undisciplined and disciplined annotation tasks, respectively .

obtain qualitative feedback on how they approached the tasks. We asked the subjects three

questions:

• How did you find the output? What strategy did you use?

• How difficult was it to find the output: very easy, easy, neuter, difficult, or very diffi-

cult?

• What were the difficulties, if any?

When answering the third question, we asked the subjects to point out the code locations

where they had difficulties. This strategy helped us to collect qualitative feedback, and we

could observe whether their difficulties matched the fixation duration, the fixation count, and

the regressions count.

In some cases, we had to calibrate the camera twice or thrice until we gained confidence

that the data captured by the camera could be reliable/useful or that we could get the data

corrected. Camera calibration consists of an automatic procedure in which the subject is

asked to look at specific locations on the screen and, during that, the camera’s integrated

system customizes captured data according to each subject’s eye characteristics. The camera

indicates when calibration is successfully done.

In addition, we were careful with environmental aspects and the swivel function of the

chair, so that subjects’ eyes could remain calibrated, and the data could not suffer from

external noise. Despite these measures, it was still difficult to obtain perfect data given
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camera limitations and some subjects’ aspects. Thus, we had to perform data correction by

slightly shifting chunks of fixations up or down. We discuss this strategy and its effects in

the threat to validity section (see Section 5.5.1). We provide a replication package with the

data collected, tasks, and other materials [2].

5.2.3 Subjects

We performed the study with 64 subjects. In total, we had 42 undergraduates, 11 MSc.

students, 8 PhD. students, and 3 postdocs. Regarding the experience with programming lan-

guages, 40 subjects reported having experience with C for less than six months. In addition,

14 reported one year or less, 9 from one year to three years, and 1 with more than three

years. Regarding their experience, we consider “novices” all the subjects who know how

to program but have little experience specifically with C programming language, which cor-

responds to all subjects in the study except for 10. All subjects reported having experience

with another programming language, such as Java. On a scale from very inexperienced (1) to

very experienced (5), the median answer was experienced (4). We asked about Java because

it is a common practice to teach Java in computer science courses where the study was con-

ducted, however, it could be any other procedural language. Subjects were invited mainly

through e-mails and text messages that suggested them to respond by communicating their

availability. In addition, we also met some subjects in person and invited them.

5.2.4 Treatments

We expose each subject to three disciplined (D) and three undisciplined (U) annotated tasks

as seen in Figure 5.2, which results in six tasks (T1-T6) for each subject. The same subject

does not solve the same disciplined and undisciplined annotated task to avoid a learning ef-

fect. For that, we have two projects (P1 and P2) that comprehend similar but distinct tasks

with the same refactorings instantiated or, in other words, a distinct version of the same task

with similar structure but involving distinct variables, arithmetic operations, and outputs. We

consider this study as within-subjects in the sense that the same subject is exposed to both

treatments but does not solve the same task in both disciplined and undisciplined annota-

tions [21]. In Figure 5.3, we present an example of the distribution of the subjects, tasks, and
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refactorings according to the projects.

T1 R1 P1 Specify the Output

UT2 R2 P1 Specify the Output

T3 R3 P1 Specify the Output

T4 R1 P2 Specify the Output

DT5 R2 P2 Specify the Output

T6 R3 P2 Specify the Output

U D

D U

ST1 ST2

T1 R1 P1 Specify the Output

DT2 R2 P1 Specify the Output

T3 R3 P1 Specify the Output

T4 R1 P2 Specify the Output

UT5 R2 P2 Specify the Output

T6 R3 P2 Specify the Output

1

2

Figure 5.2: Structure of the experiment in terms of experimental units of the study. There

are six tasks (T1–T6) distributed in two sets of tasks (ST1 and ST2), with R1 〈wrapping

function call〉, R2 〈undisciplined if conditions〉, and R3 〈alternative if statements〉, and

two projects (P1 and P2).

In total, 32 subjects solved three tasks with disciplined annotations from three distinct

refactorings of P1, and three tasks with undisciplined annotations from P2. Thus, each subject

solves two distinct tasks, one without applying the refactoring (undisciplined version), and

another with the refactoring applied (disciplined version). In addition, 32 subjects solved six

tasks with three refactorings, three with undisciplined and three with disciplined annotations,

but from P3 and P4. In all of them, the subjects had the task of specifying the correct output.

We present an open-ended question so that the subject could read the entire code and find the

output for themselves. The undisciplined versions are our baseline group, and the disciplined

ones are the treatment group.

5.2.5 Evaluated Refactorings

In Figure 5.4, we present three refactorings to discipline annotations proposed by Medeiros

et al. [75] and evaluated in our study. Each refactoring is a unidirectional transformation

that consists of two templates of C code snippets: the left-hand side and the right-hand side.

The left-hand side defines a template of C code that contains undisciplined preprocessor

usage. The right-hand side is a corresponding template for the refactored code removing

undisciplined preprocessor usage. We can apply a refactoring whenever the left-hand side

template is matched by a piece of C code and when it satisfies the preconditions (→). A
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int function(value_A, value_B) 

{

  int total = 0;

  total = (value_A*value_B);

  total = total/2;

  return total;

}

#define MACRO

void main(void) {

  int value;

  value = function(2

  #ifdef MACRO

  , 10

  #else

  , 20

  #endif

  );

  printf("%d", value);

}

int function(value_A, value_B) 

{

  int result = 0;

  result = (value_B-value_A);

  result = result + 20;

  return result;

}

#define MACRO

void main(void) {

  int output;

  output = function(3

  #ifdef MACRO

  , 15

  #else

  , 11

  #endif

  );

  printf("%d", output);

}

int function(value_A, value_B) 

{

  int total = 0;

  total = (value_A*value_B);

  total = total/2;

  return total;

}

#define MACRO

void main(void) {

  int value;

  #ifdef MACRO

    value = function(2, 10);

  #else

    value = function(2, 20);

  #endif

  printf("%d", value);

}

#define MACRO

void main(void) {

  int status, total = 0;

  int extra = 0;

  total = 10;

  if(total > 9

  #ifdef MACRO

    && extra == 1

  #endif

  )

    status = 1;

  else

    status = 0;

  printf("%d", status);

}

#define MACRO

void main(void) {

  int value, result = 0;

  int minimum = 1;

  result = (3 * 4)/2;

  if(result < 10

  #ifdef MACRO

    && minimum == 2

  #endif

  )

    value = 0;

  else

    value = 1;

  printf("%d", value);

}

#define MACRO

void main(void) {

  int status, total = 0;

  int extra = 0;

  total = 10;

  int test = (total > 9);

  #ifdef MACRO
    test = (test == 1) && (extra 

== 1);

  #endif

  if(test == 1)

    status = 1;

  else

    status = 0;

  printf("%d",  status);

}

#define MACRO

void main(void) {

  int value, result = 0;

  int minimum = 1;

  result = (3 * 4)/2;

  int test = (result < 10);

  #ifdef MACRO
    test = (test == 1) && (minimum 

== 2);

  #endif

  if(test == 1)

    value = 0;

  else

    value = 1;

  printf("%d",  value);

}

void main(void) {

  int output;

  int value_A = 0;

  int value_B = 0;

  #ifdef MACRO

    if(value_A == 1)

  #else

    if(value_B == 0)

  #endif

    output = 1;

  else

    output = 0;

  printf("%d",  output);

}

void main(void) {

  int status;

  int value_A = 0;

  int value_B = 0;

  #ifdef MACRO

    if(value_A != 0)

  #else

    if(value_B != 1)

  #endif

    status = 0;

  else

    status = 1;

  printf("%d",  status);

}

void main(void) {

  int output;

  int value_A = 0;

  int value_B = 0;

  int test;

  #ifdef MACRO

    test = (value_A == 1);

  #else

    test = (value_B == 0);

  #endif

  if(test == 1)

    output = 1;

  else

    output = 0;

  printf("%d",  output);

}

void main(void) {

  int status;

  int value_A = 0;

  int value_B = 0;

  int test;

  #ifdef MACRO

    test = (value_A != 0);

  #else

    test = (value_B != 1);

  #endif

  if(test == 1)

    status = 0;

  else

    status = 1;

  printf("%d",  status);

}

int function(value_A, value_B) 

{

  int result = 0;

  result = (value_B-value_A);

  result = result + 20;

  return result;

}

#define MACRO

void main(void) {

  int output;

  #ifdef MACRO

    output = function(3, 15);

  #else

    output = function(3, 11);

  #endif

  printf("%d", output);

}

U
T1 - R1 - P1 T2 - R2 - P1 T3 - R3 - P1

D
T1 - R1 - P1 T2 - R2 - P1 T3 - R3 - P1

D
T4 - R1 - P2 T5 - R2 - P2 T6 - R3 - P2

U
T4 - R1 - P2 T5 - R2 - P2 T6 - R3 - P2

1

2

Figure 5.3: Distribution of subjects, tasks, and refactorings in two projects of the study. The

structure of the tasks (T1–T6) in projects P1 and P2, before and after applying the refactoring,

is similar but involves distinct elements. R1, R2, and R3 refer to Refactoring 1 (Undisci-

plined returns), Refactoring 2 (Undisciplined if conditions), and Refactoring 3 (Alternative

if statements).
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matching is an assignment of all meta-variables in the left-hand side and right-hand side

templates to concrete values from the source code. We highlight meta-variables using capital

letters, and we use the symbol ⊕ to represent arbitrary binary operators. Any element not

mentioned in both C code snippets remains unchanged, so the refactoring templates only

show the differences among pieces of code.

(a) (b)

(c)

Figure 5.4: Refactorings R1, R2, and R3 to discipline #ifdef annotations evaluated in this

study.

Medeiros et al. [75] surveyed 246 developers to access their preference regarding

disciplined or undisciplined annotated code. We selected the top three refactorings that

developers most preferred to discipline annotations. Moreover, Medeiros et al. [75] showed

that there are more than 2,200 opportunities to apply the three refactorings in 57 out of

63 code repositories, and 27 out of 63 projects contain possibilities of applying all three

refactorings, reaching up to 2,101 opportunities. Furthermore, the three selected refactorings

show a relevant acceptance in practice. For instance, Medeiros et al. [75] submitted six

patches using R1 and all patches were accepted; five patches were submitted using R2,

and 80% of them were accepted; five patches were submitted using R3, and 80% of them

were accepted. In addition, Malaquias et al. [70] submitted 31 patches using R2, and 61.2%
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were accepted; 63 patches using R3 and 63.4% were accepted. We preferred to focus on

evaluating a limited, well-studied set of three refactoring types to gain more confidence

about the results instead of evaluating more refactoring types.

5.2.6 Tasks

The code snippets were selected as a result of mining code repositories for commits that

showed an opportunity to apply the evaluated refactorings [75]. Thus, all tasks have a tem-

plate associated with real projects, which means an assignment of the meta-variables in the

tasks to concrete values in the source code in the projects. For instance, R1 was applied to

a task with a template associated with Vim’s source code, R2 was applied to a task with a

template associated with Libpng’s source code, and R3 was applied to a task with template

associated with OpenSSL. Malaquias et al. [70] have also used similar tasks in their study. We

decided to use simple constructions commonly occurring in many programming languages.

The difference in lines of code between both disciplined and undisciplined versions is two

lines for R1 and R3. R2 remains with the same number of lines of code. Even though R1

in Figure 5.4(a) involves undisciplined returns, according to Medeiros et al. [75], the return

statement is only an example. They handle other statements with subexpressions in the same

way, such as a function call as we have used.

There are several types of maintenance tasks, such as applying refactorings, fixing bugs,

and adding functionality. Our study focused on a type of task that focuses on code compre-

hension. We assume that to add functionality, refactor code, and fix bugs, developers will

need to at least understand the code. For this reason and for time constraints, we only fo-

cused on this type of task. The tasks also involved answering open-ended questions, which

subjects could answer by saying out loud the resulting output without any multiple choices.

Moreover, a systematic literature review on code comprehension conducted by Oliveira

et al. [84] revealed that the majority of the studies (70%) involve asking subjects to provide

information about a program, such as to specify the output. In addition, 83% of the retrieved

studies use correctness as a response variable, and 50% use time and correctness together. We

then followed a commonly adopted approach, being aligned with the literature. Following

Bloom’s taxonomy described in their work [84], “understanding” consists of one level of the
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Refactoring 1: < wrapping function call >
Undisciplined Disciplined

`
`

AOI

AOI Activated

AOI Deactivated

AOI
AOI Activated

AOI Deactivated

int function(value_A, value_B) {
        int total = 0;
        total = (value_A*value_B);
        total = total/2; 
        return total;
}
#define MACRO
void main(void) {
        int value;
        value = function(2
        #ifdef MACRO
                , 10
        #else 
                , 20
        #endif 
        );
        printf("%d", value);
}

int function(value_A, value_B) {
        int total = 0;
        total = (value_A*value_B);
        total = total/2; 
        return total;
}
#define MACRO
void main(void) {
        int value;
        #ifdef MACRO
                value = function(2, 10);
        #else 
                value = function(2, 20);
        #endif 
        printf("%d", value);
}

(a) R1 - P1 - Undisciplined to disciplined annotations

AOI

AOI Deactivated

AOI Activated

Refactoring 2: < undisciplined if conditions >
Undisciplined Disciplined

AOI

AOI Deactivated

AOI Activated

#define MACRO
void main(void) {
        int value, result = 0;
        int minimum = 1;
        result = (3 * 4)/2;
        if(result < 10
        #ifdef MACRO
                && minimum == 2
        #endif 
        )
                value = 0;
        else
                value = 1;
        printf("%d", value);
}

#define MACRO
void main(void) {
        int value, result = 0;
        int minimum = 1;
        result = (3 * 4)/2;
      int test = (result < 10);

     #ifdef MACRO

                test = (test == 1) && (minimum == 2);

     #endif

     if(test == 1)

                value = 0;

     else

                value = 1;

     printf("%d",  value);

}

(b) R2 - P2 - Undisciplined to disciplined annotations

Undisciplined Disciplined

Refactoring 3: < alternative if statements >

AOI

AOI Deactivated

AOI Activated

AOI

AOI Deactivated

AOI Activated

AOI Activated
AOI Activated

AOI Deactivated

AOI Deactivated

void main(void) {
        int status;
        int value_A = 0;
        int value_B = 20;
        #ifdef MACRO
                if(value_A > 0)
        #else
                if(value_B > 10)
        #endif 
                status = 0;
        else 
                status = 1;
        printf("%d",  status);
}

void main(void) {
        int status;
        int value_A = 0;
        int value_B = 20;
        int test;
        #ifdef MACRO
                test = (value_A > 0);
        #else
                test = (value_B > 10);
        #endif 
        if(test == 1)
                status = 0;
        else 
                status = 1;
        printf("%d",  status);
}

(c) R3 - P4 - Undisciplined to disciplined annotations

Figure 5.5: Examples of six tasks from projects P1, P2, and P4, before and after applying R1,

R2, and R3.
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dimension of interpretation. Most activities such as code trace and inspections performed by

subjects occur at the “understanding” level followed by the “analysis” level. Therefore, we

align with them in the sense that, to evaluate code comprehension, we elaborated code tasks

to be inspected and traced for providing the correct output.

In general, we used tasks with less than 20 lines to fit the screen size. The eye tracker was

mounted on a laptop screen with a resolution of 1366 x 720 pixels, a width of 30.9 cm, and a

height of 17.4 cm, at a distance of 50-60 cm from the subject. The code tasks were displayed

as an image in the full-screen mode, but no Integrated Development Environment (IDE) was

used, nor number for the lines. All the products of the configurable system could be compiled

with no syntactic errors. We had tasks with macro enabled and tasks with macro disabled,

and they presented distinct outputs depending on whether macro was defined or not. For

instance, when the macro is defined, the macro region gets activated and the statement inside

the macro is exercised. When the macro is not defined, the macro region is not activated.

We made sure that each task of the same refactoring and same project, whether disciplined

or undisciplined version, presented the same output. Program style followed Consolas font

style, font size 18, no spaces between lines, and eight white spaces of indentation with four

white spaces from y-axis.

In Figure 5.5, we present three undisciplined annotated tasks and their refactored ver-

sions. For instance, in Figure 5.5(a), AOI defines the area in which both code versions differ.

It encompasses two sub-areas, namely, AOI Activated and AOI Deactivated. The main dis-

tinction between these two sub-areas relies on the fact that, when macro is enabled, only

one sub-area of the AOI gets exercised, which is the AOI Activated, because it contains a

statement that is activated only when macro is enabled. When macro is disabled, only one

sub-area gets activated, which is the AOI Activated. This approach allows us to measure

time and fixations inside those areas. For instance, we can observe how much time subjects

spend looking at the activated area when macro is enabled, how many times they fixate on

it and for how long. Accordingly, we can do that for the deactivated area when subjects are

looking at the opposite statement when macro is enabled.
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5.2.7 Fixation Instrumentation

Fixations can be defined as the stabilization of the eye on part of a stimulus for a period of

time [93; 55]. The duration threshold typically depends on the tasks processing demands.

According to Salvucci and Goldberg [93], the duration threshold can be between 100 and

200 ms, while according to Rayner [91], our eyes remain relatively still during fixations for

about 200–300 ms. Commonly applied in practice, we applied the Dispersion-Threshold

Identification (I-DT) algorithm to classify gaze samples into fixations [93]. It classifies gaze

samples as belonging to a fixation if the samples are located within a spatial region of ap-

proximately 0.5 degrees [81]. The I-DT algorithm requires two parameters: the dispersion

threshold and the duration threshold [81]. We used a dispersion threshold of approximately

0.5 degrees, which corresponded to 25 pixels in our screen. For the duration threshold, we

used 200 ms based on the study of Salvucci and Goldberg [93]. The classification of data

points into relevant eye movements reduces the amount of eye tracking data to process and

allows the researcher to focus on the measures relevant to the research question.

5.2.8 Analysis

Of all 64 subjects, resulting in 384 tasks, one subject opted for not completing two out of

six tasks and another opted for not completing one out of six tasks, resulting in three tasks

not being completed, which corresponds to less than 1% of the total of tasks. We included

those two subjects and we used Multivariate Imputation by Chained Equations (MICE) im-

plemented as a mice package in R for a multiple imputation method namely Predictive Mean

Matching (PMM) for the three tasks. The PMM method imputes univariate missing data

using predictive mean matching [58]. This approach performs better when the sample size

is sufficiently large [64], which was our case.

After data collection, we performed a statistical analysis to test our null hypotheses. In

our analysis, when the p-value was inferior to 0.05, we rejected the null hypothesis that

there was no difference between the median of the treatments and conclude that a significant

difference did exist. We tested data distribution for normality using Shapiro-Wilk’s test [97].

Whenever the data were normally distributed or we could normalize it, we performed the

parametric t test for two independent samples. The t test consists of an analysis method
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to test two groups to see if there is a statistically significant difference between them [104;

100]. Before performing the t test, we tested whether the data satisfied another condition

besides normality of distribution of the data, which is whether the variances of the two groups

were equal [104]. For the data that could not be normalized, we used the non-parametric test

Mann-Whitney, also known as Wilcoxon test, which compares two independent groups of

samples that do not follow a normal distribution [104; 100]. In addition, since the mean

value might not be appropriate to characterize values of fixation duration or count because

the description of the central tendency might be dependent on some very high values [43],

we computed and based our analysis on the median. Both the analysis of the individual and

combined refactorings were analyzed using the median as a measure of central tendency.

We also used Cliff’s Delta [25] to yield the effect size. Since in most cases our data

does not follow a normal distribution, Cohen’s effect size would not be appropriate. Cohen

has made widely accepted suggestions on what constitutes small and large effects [26]. For

instance, according to Cohen’s description, the effect size of 0.2 suggests a small effect, 0.5

a medium effect, and 0.8 a large effect. The negative sign of the effects implies that the

values of the treatment group (disciplined annotations) are greater than the control group

(undisciplined annotations).

5.3 Results

In Sections 5.3.1–5.3.5, we present the results for our research questions. In each of these

sections, when we mention statistically significant differences, we mean that we can reject

the null hypothesis for the research question being analyzed. In Section 5.3.6, we summarize

the results for all research questions.

5.3.1 RQ1: To what extent do disciplined annotations affect task com-

pletion time?

After applying R1 〈wrapping function call〉 or R3 〈alternative if statements〉, novices exhib-

ited faster task completion (see Table 5.1). We observed statistically significant reductions

by 23.8% and 46.9% in the time they spent in AOI, respectively. Thus, they spend less



5.3 Results 130

time in AOI in Figure 5.5(a) and Figure 5.5(c) after applying R1 or R3. After applying R3,

we observed a statistically significant reduction by 42.4% in the time they spent in the whole

code. The application of R3 was associated with a reduction in the time novices spent in both

activated and deactivated areas by 51.1% and 59.4%, respectively. They spend less time in

AOI Activated and AOI Deactivated areas in Figure 5.5(b), both right and left-hand sides.

On the other hand, we observed a statistically significant increase by 47.6% in time novices

spent in AOI after applying R2 〈undisciplined if conditions〉, which means that they spent

more time in AOI in Figure 5.5(b), right-hand side. It is also associated with a slowdown in

their task completion by increasing the time they spent on the whole code by 24.6% with R2

applied. Thus, applying R1 or R3 is associated with improvements in task completion time

for novices. However, after applying R2, we cannot observe the same effect.

Medeiros et al. [75] found that 27 out of 63 projects evaluated contain possibilities of

applying all three refactorings together. Combining all refactorings follows the Latin Square

methodology. We assign two subjects to each square and each subject solves three undis-

ciplined and three disciplined versions. We can combine the refactorings in two ways. We

can perform combinations of the individual refactorings, but not pairing the subjects in the

squares, and we can combine the refactorings by pairing the subjects.

After applying R1, R2, and R3, in combination, the novices exhibited faster task

completion (see Table 5.1). We observed a statistically significant reduction by 20% in the

time they spent in AOI after applying R1, R2, and R3 combined. Combined, the application

of refactorings is also associated with a reduction in the time they spent in the whole code

by 12.5%. Thus, applying R1, R2, and R3 combined is associated with improvements in

task completion time for novices.

We also analyzed the time outside AOI and we found a statistically significant difference

only after applying R3. Since R3 showed differences in time both inside and outside AOI, we

analyzed the whole code. After applying R3, we observed a statistically significant reduction

in time spent in the whole code. Therefore, we focus on presenting first the analysis of the

AOI followed by the analysis of the whole code.
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Table 5.1: Summarizing the results for time completion (RQ1). Bold font represents statis-

tically significant differences. U = undisciplined annotations; D = disciplined annotations;

PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on

the median as a measure of central tendency.

Task In Code In AOI In Activated Areas In Deactivated Areas

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

R1 34.1 32.5 ↓5.2 0.14 n/a 12.7 9.7 ↓23.8 0.004 -0.29 1.9 2.7 ↑42.0 0.08 0.29 1.7 2.0 ↑11.8 0.24 n/a

R2 41.3 51.4 ↑24.6 0.01 0.23 25.2 36.9 ↑47.6 0.01 0.24 3.4 3.1 ↓8.4 0.65 n/a 1.7 1.4 ↓16.5 0.41 n/a

R3 39.4 22.5 ↓42.4 10-5 -0.44 29.1 15.4 ↓46.9 10-5 -0.44 6.3 3.1 ↓51.1 7x10-7 -0.49 3.1 1.2 ↓59.4 2x10-9 -0.60

All 38.1 33.7 ↓12.5 0.01 -0.14 20.6 16.9 ↓20.0 0.02 -0.13 3.4 3.0 ↓13.7 0.18 n/a 2.2 1.6 ↓23.4 0.001 -0.18

Finding 1: In our study, after applying R1 or R3 in isolation, the novices exhibit faster

task completion. Faster task completion is also exhibited by the novices after applying

R1, R2, and R3 in combination.

5.3.2 RQ2: To what extent do disciplined annotations affect the number

of attempts?

After applying R3, novices provide more correct answers. Although the median number of

submissions remained the same, we realize that, by observing the box-plot in Figure 5.6(c),

the data is less spread when R3 was applied, which can explain the observed differences.

While they both present the same median number of submissions, after applying R3 (see

Table 5.2), the mean number of submissions decreased from 1.25 to 1.20. It means that,

on average, they need 1.2 attempts to solve the task. Thus, applying R3 associated with

improvements in the attempts of the answers submitted by the novices. Combined, we did

not find differences in attempts after applying R1, R2, and R3.

Finding 2: In our study, after applying R3 in isolation, the novices provide more correct

answers. No differences were observed after applying R1, R2, and R3 in combination.
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Table 5.2: Summarizing the results for attempts (RQ2). Bold font represents statistically

significant differences. U = undisciplined annotations; D = disciplined annotations; PD =

percentage difference; PV = p-value; ES = effect size. Columns U and D are based on the

median as a measure of central tendency.

Task Submissions

U D
PD
% PV ES

R1 1.0 1.0 n/a 0.37 n/a

R2 1.0 1.0 n/a 0.18 n/a

R3 1.0 1.0 n/a 0.03 -0.15

All 1.0 1.0 n/a 0.43 n/a

5.3.3 RQ3: To what extent do disciplined annotations affect fixation

duration?

After applying R1 or R3, novices exhibit a reduction in the fixation duration in AOI (see

Table 5.3). We observed statistically significant reductions by 25% and 44.7% in the duration

of the fixations in AOI after applying R1 and R3, respectively. This correlation implies that

novices make shorter fixations in AOI in Figure 5.5(a) and Figure 5.5(c) after applying R1

or R3. In the whole code, novices also exhibit a reduction in the fixation duration after

applying R3. We observed a statistically significant reduction by 37.2% in the duration of

the fixations. Thus, applying R1 or R3 associated with a reduction in the fixation duration in

the AOI for novices.

After applying R1, R2, and R3, novices also exhibit a reduction in the fixation duration

in AOI. We observed a statistically significant reduction by 28.5% in the duration of the

fixations in AOI after applying R1, R2, and R3. Combined, the application of refactorings

also associated with a reduction in the duration of the fixations in the whole code by 20.8%.

Thus, applying them combined associated with a reduction in the fixation duration both in

the AOI and in the whole code for novices.
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Table 5.3: Summarizing the results for duration of fixations (RQ3). Bold font represents sta-

tistically significant differences. U = undisciplined annotations; D = disciplined annotations;

PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on

the median as a measure of central tendency.

Task In Code In AOI In Activated Areas In Deactivated Areas

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

U
(sec)

D
(sec)

PD
% PV ES

R1 15.8 14.8 ↓11.2 0.15 n/a 6.3 4.7 ↓25.0 4x10-3 -0.27 1.0 1.4 ↑39.8 0.17 n/a 0.8 0.9 ↑17.4 0.70 n/a

R2 23.6 28.6 ↑22.6 0.20 n/a 16.0 20.6 ↑28.2 0.20 n/a 1.9 1.7 ↓7.2 0.75 n/a 0.9 1.0 ↑8.4 0.29 n/a

R3 19.6 12.3 ↓37.2 10-4 -0.41 15.4 8.5 ↓44.7 6x10-5 -0.42 3.7 1.7 ↓53.2 6x10-6 -0.46 1.9 0.6 ↓65.6 10-8 -0.57

All 20.2 16.1 ↓20.8 0.01 -0.15 12.2 8.6 ↓28.5 10-3 -0.16 1.8 1.5 ↓16.4 0.02 -0.13 1.1 0.7 ↓31.5 10-3 -0.18

Finding 3: In our study, after applying R1 or R3 in isolation, the novices exhibit a

reduction in the fixation duration in the AOI. A reduction in the fixation duration in the

AOI is also exhibited by the novices after applying R1, R2, and R3 in combination.

5.3.4 RQ4: To what extent do disciplined annotations affect fixation

count?

After applying R1 or R3, novices exhibit a reduction in the fixation count in AOI (see Ta-

ble 5.4). We observed statistically significant reductions by 17.5% and 48.4% in the number

of the fixations in AOI after applying R1 and R3, respectively. This correlation implies that

novices make fewer fixations in AOI in Figure 5.5(a) and Figure 5.5(c) after applying R1 or

R3. In the whole code, novices also exhibit a reduction in the fixation count after applying

R3. We observed a statistically significant reduction by 39.1% in the number of the fixa-

tions. Thus, applying R1 or R3 associated with a reduction in the fixation count in the AOI

for novices.

After applying R1, R2, and R3, novices also exhibit a reduction in the fixation count in

AOI. We observed a statistically significant reduction by 26.7% in the number of fixations

in AOI after applying R1, R2, and R3. Combined, the application of refactorings also

associated with a reduction in the number of fixations in the whole code by 22.4%. Thus,

applying them combined associated with a reduction in the fixation count both in the AOI
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Table 5.4: Summarizing the results for fixation count (RQ4). Bold font represents statistically

significant differences. U = undisciplined annotations; D = disciplined annotations; PD =

percentage difference; PV = p-value; ES = effect size. Columns U and D are based on the

median as a measure of central tendency.

Task In Code In AOI In Activated Areas In Deactivated Areas

U D
PD
% PV ES U D

PD
% PV ES U D

PD
% PV ES U D

PD
% PV ES

R1 49.0 45.0 ↓11.2 0.12 n/a 20.0 16.5 ↓25.0 0.004 -0.28 3.0 4.0 ↑39.8 0.03 -0.14 3.0 3.5 ↑17.4 0.48 n/a

R2 68.5 85.0 ↑24.0 0.15 n/a 46.0 59.0 ↑28.2 0.12 n/a 5.5 4.5 ↓7.2 0.14 n/a 3.0 2.5 ↑8.42 0.83 n/a

R3 60.0 36.5 ↓37.2 5x10-5 -0.42 47.5 24.5 ↓44.7 10-5 -0.43 11.0 5.0 ↓53.2 6x10-7 0.24 6.0 2.0 ↓65.6 5x10-9 -0.09

All 61.5 48.0 ↓20.8 9x10-3 -0.15 34.5 25.5 ↓28.5 4x10-3 -0.16 6.0 5.0 ↓16.4 0.03 0.05 4.0 2.5 ↓31.5 10-3 -0.05

and in the whole code for novices.

Finding 4: In our study, after applying R1 or R3 in isolation, the novices exhibit a

reduction in the fixation count in the AOI. A reduction in the fixation count in the AOI

is also exhibited by the novices after applying R1, R2, and R3 in combination.

5.3.5 RQ5: To what extent do disciplined annotations affect regressions

count?

Since we are interested in transitions, we focused this analysis on the AOI, which comprises

a few lines of code together, and on the whole code, comprising all lines of code together,

leaving out activated and deactivated areas. Notice that our tasks follow the left-to-right and

top-to-bottom writing system and have no loops. Thus, a regression is a saccade with an

opposed direction in this writing system. After applying R1 or R3, novices exhibit a reduc-

tion in the regressions count in AOI (see Table 5.5). We observed statistically significant

reductions by 33.3% and 60.5% in the number of regressions in AOI after applying R1 and

R3, respectively. It associates with improvements in the number of regressions in the AOI

in Figure 5.5(a) after applying R1, and in Figure 5.5(c) after applying R3. In other words,

the novices read the code 33.3% and 60.5% more often against the writing system before

R1 and R3 were applied, respectively. In the whole code, novices also exhibit a reduction
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Table 5.5: Summarizing the results for regressions count (RQ5). Bold font represents statis-

tically significant differences. U = undisciplined annotations; D = disciplined annotations;

PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on

the median as a measure of central tendency.

Task In Code In AOI

U D
PD
% PV ES U D

PD
% PV ES

R1 21.0 18.0 ↓14.2 0.09 n/a 6.0 4.0 ↓33.3 6x10-4 -0.34

R2 30.0 36.0 ↑20.0 0.25 n/a 18.0 20.0 ↑11.1 0.20 n/a

R3 26.0 13.0 ↓50.0 9x10-6 -0.46 19.0 7.5 ↓60.5 10-6 -0.49

All 25.0 19.0 ↓24.0 10-3 -0.18 12.5 8.0 ↓36.0 4x10-4 -0.20

in the regressions count after applying R3. We observed a statistically significant reduction

by 50% in the number of regressions. Thus, applying R3 associated with alleviating the

need of going back to the same or to previous lines of the code in AOI for novices from the

regressions count perspective.

After applying R1, R2, and R3, novices exhibit a reduction in the regressions count

in the AOI. We observed a statistically significant reduction by 36% in the number the

regressions in the AOI after applying R1, R2, and R3. Combined, the application of the

refactorings also associated with a reduction in the number of regressions in the whole code

by 24%. Thus, applying them combined associated with alleviating the need of going back

to the same or to previous lines of code in the whole code.

Finding 5: In our study, after applying R1 or R3 in isolation, the novices exhibit a

reduction in the regressions count in the AOI. A reduction in the regressions count in

the AOI is also exhibited by the novices after applying R1, R2, and R3 in combination.
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Table 5.6: Summary of the null-hypotheses’ statuses in isolated refactorings in the AOIs.

RQs Refact. Null-Hypothesis p-value Status Effect size

RQ1 R1 No difference in time between treatments < 0.05 Rejected Small

RQ2 R1 No difference in attempts between treatments > 0.05 Not Rejected —

RQ3 R1 No difference in fixation duration between treatments < 0.05 Rejected Small

RQ4 R1 No difference in fixation count between treatments < 0.05 Rejected Small

RQ5 R1 No difference in regressions count between treatments < 0.05 Rejected Small

RQ1 R2 No difference in time between treatments < 0.05 Rejected Small

RQ2 R2 No difference in attempts between treatments > 0.05 Not Rejected —

RQ3 R2 No difference in fixation duration between treatments > 0.05 Not Rejected —

RQ4 R2 No difference in fixation count between treatments > 0.05 Not Rejected —

RQ5 R2 No difference in regressions count between treatments > 0.05 Not Rejected —

RQ1 R3 No difference in time between treatments < 0.05 Rejected Medium

RQ2 R3 No difference in attempts between treatments < 0.05 Rejected Small

RQ3 R3 No difference in fixation duration between treatments < 0.05 Rejected Medium

RQ4 R3 No difference in fixation count between treatments < 0.05 Rejected Medium

RQ5 R3 No difference in regressions count between treatments < 0.05 Rejected Medium

5.3.6 Summary

In Table 5.6, we present the confirmation/rejection of the original null-hypotheses. Fig-

ures 5.6(a)–(c) summarize total time in the AOI, number of answer submissions, fixation

duration in the AOI, fixation count in the AOI, and regressions count in the AOI for R1, R2,

and R3, respectively, for P1–P4 combined. Figure 5.6(d) summarizes the results for the men-

tioned metrics, however, from a combined perspective, instead of analyzing each refactoring

individually.

The greatest effects were observed after applying R3. For instance, the effect size for R3

in RQ1, RQ3, RQ4, RQ5 is close to medium in AOI (Cliff’s delta ranges from -0.42 to -0.49).

In other words, the effects of applying R3 are noticeable. The effects after applying R1 were

also noticeable but to a smaller degree.

After applying the refactorings R1, R2, and R3, we have an addition of 40.6%, 57.3%,

and 37.7% in the median number of characters in AOI, respectively. After applying the refac-
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(a) Comparing Statistics for R1
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(b) Comparing Statistics for R2
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(c) Comparing Statistics for R3
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(d) Comparing Statistics for R1, R2, and R3 Combined

Figure 5.6: Comparison between: Disciplined (D) and Undisciplined (U) annotations for R1,

R2, and R3 from an isolated and combined perspective involving P1–P4 together.
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torings, all tasks from all projects had more characters. Even with more characters, we ob-

served that applying R1 or R3 statistically significantly reduced the time, fixations duration,

and fixations count in AOI. In addition, after applying R3, there is a statistically significant

increase in the number of correct answers submitted. We did not observe differences in these

metrics after R2 was applied.

5.4 Discussion of the Interview

In this section, we discuss the qualitative interview with the novices. Besides analyzing their

performance in solving code comprehension tasks, we analyze how the answers provided in

the interview can help us to validate, understand quantitative results, and complement our

discussion on the research questions. In the interview, we asked the subjects to describe 1)

their approach used to solve the tasks, 2) their perception of how difficult the tasks were,

and 3) what difficulties they had if any. The subjects provided a general approach used in all

solved tasks and they were free to share any particular approach used in any specific situation.

The same applied to the difficulties, where they were encouraged to point out in the code any

area where they had difficulties with the task. With this qualitative feedback, we aimed to

better understand how time, attempts, fixation duration, fixation count and regressions count

could be better explained through a triangulation of the data.

Based on Corbin and Strauss [113], we adopted the following approach to qualitatively

code the interview: In Step 1, we analyzed each whole sentence spoken by the subject during

the interview and taking note of the major idea conveyed by this sentence, giving a name to

it. In Step 2, we read these names searching for opportunities to group them into distinct cat-

egories. In Step 3, we categorized the names by discussing how similar they were according

to their properties, for instance, “#ifdef” and “directive” could be in the same category,

since both refer to “#ifdef.” In Step 4, we searched for opportunities to link the categories.

Given the lack of clear connections between the categories in Step 4, we did not delve deep

into them on how they could be used to interpret our results. Thus, we based our results and

interpretation on the resulting categories.

When answering the first question, with respect to the used strategy to solve the tasks,

we observed that the most common approach adopted consisted of first checking whether the
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macro was defined in the program (37 subjects). In addition, 13 subjects mentioned looking

at #ifdef directives, and, by doing so, 6 subjects mentioned that they could ignore unnec-

essary parts of the code. This relates to what we call activated and deactivated areas, where,

given a macro declared, only one part of the AOI (activated area) gets exercised. Moreover,

16 subjects mentioned also first looking at the function that was on the top of the code, 8

subjects mentioned starting to read the code from the beginning, and 9 subjects mentioned

reading the code in a top-down fashion. Furthermore, 9 subjects mentioned a sequential

reading pattern, whereas 7 subjects mentioned looking at the end of the code, specifically

to the output, and 2 subjects mentioned a bottom-up fashion. Regardless of the order in

which they were mentioned, subjects mentioned looking at key parts such as variables (14

subjects) and their assigned values (7 subjects). To summarize, the most frequent terms such

as macro, function, variables, and #ifdef worked as key elements that guided them in the

execution flow of the code. Their influence on time, fixation duration, fixation count, and

regressions count should be taken in consideration when investigating code comprehension

in the presence of disciplined and undisciplined annotations.

Regarding the second question of the interview, 78% of the subjects found the tasks very

easy or easy to solve on a scale of five options, namely, very easy, easy, neuter, difficult, and

very difficult. Since the tasks were somewhat simple, these results were not surprising and

confirmed the results we had in our RQ2, regarding the number of submissions, which did

not present much variation. Even though the majority mentioned that the tasks were easy,

they also mentioned having difficulties with some specific tasks.

Regarding our third question of the interview related to their possible difficulties, the

most frequent ones related to specific code elements were the following: if inside #ifdef

(18 subjects), boolean expressions (11 subjects), broken lines (9 subjects), confusion regard-

ing the interaction between commands from directives and language constructs (7 subjects),

and confusion with #ifdef directives specifically (5 subjects). These terms were men-

tioned when referring to R1 〈wrapping function call〉, R2 〈undisciplined if conditions〉, and

R3 〈alternative if statements〉 in all projects. Other more general terms were frequently

evoked. For instance, 11 subjects mentioned that they had difficulties resulting from the fact

that they did not pay as much attention as they should, skipping important details, and 9

subjects mentioned confusion disregarding a certain pattern specifically.
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According to RQ1, after applying R1 or R3, novices were able to complete tasks faster.

Approaches used to solve the tasks and difficulties reported in the interview may shed light

on some of the reasons underlying these results. For instance, “broken lines” was reported by

the novices as a factor that caused them to face difficulties in completing the tasks. However,

by applying R1, the method’s parameters that were separated or broken became wrapped

as depicted in Figure 5.5(a), which may have helped them to solve tasks faster. On subject

mentioned “I had difficulties in completing the reasoning because of the broken condition”.

Another subject mentioned “When the directive breaks the code, it becomes more difficult”.

Similarly, the subjects reported difficulties in reasoning about if inside #ifdef and about

the interaction between commands from directives and language constructs such as if and

#ifdef, #endif and else. However, by applying R3, the if statement is moved from

the #ifdef body as in Figure 5.5(c), which may have contributed to faster task completion.

According to RQ2, after applying R3, novices provided more correct answers. Even

though after applying R3 we have the same median number of submitted answers, whether

correct or incorrect, we observe that the data seem more scattered in the box-plot regarding

the number of submissions in Figure 5.6(c). Separating an if statement with #ifdef an-

notations and placing else close to the #else seemed to confuse the subjects. Separating

these terms by adding an alternative if statement, subjects seemed less confused about the

correct output.

According to RQ3 and RQ4, after applying R1 or R3, novices exhibited alleviated at-

tention in AOI and in the whole code by reducing both the number of fixations and their

duration. These reductions imply less effort in jumping from one place to another in the

code, which translates to less visual effort. For instance, subjects mentioned difficulties in

dealing with if statement inside #ifdef, from which we may infer an effort jumping back

and forth between those code elements, which translates to a higher number of fixations.

They also mentioned confusion with else and #else. One subject mentioned that ´´it is

difficult to look and tell to whom belongs the else”, which may have contributed with more

fixations, but also longer ones focusing on those elements specifically to make sense of them.

Applying R3 separates the if body from the #ifdef body, which may have impacted the

way they concentrated their attention on the AOI. Similarly, after applying R1, the parame-

ters of the function that were separate become wrapped, which impacts the number of jumps
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from distinct parts of the same statement distributed over distinct lines.

With respect to R3, we observed more pronounced results, with medium effect sizes for

four out of five tests. Based on quantitative results supported by the answers of the subjects

in the interview, the interaction between if and #ifdef, #endif and else might have

higher effects. One subject mentioned “confused else statement with #else statement”.

This confusion impacts the attention of the subjects, making them look at these statements

for a longer time and with more effort.

With respect to R2, we opted for the use of the declaration (text == 1) to compare

boolean values to True or False given that, for a novice, it might be simpler to understand

instead of making it implicit. With these decisions, we aimed to facilitate the understanding

in both undisciplined and disciplined versions. However, it might have an additional impact

on the visual behavior, since it adds more elements to pay attention, to compare, and to go

back, which can explain why we did not observe clear differences. Another reason might be

that, in the refactored version, we have more variables. One subject mentioned having “dif-

ficulties with boolean results such as test”. The addition of more elements might indicate

more effort in remembering or making sense of their role in the program. In addition, the

disciplined version allows one to interpret the code in a more indirect way, which can make

it more difficult to understand. This approach was proposed in the catalog to discipline the

annotation which passes the result of the boolean expression to a new variable.

Heatmaps

To complement the analysis and discussion of the qualitative interview, we also investigated

the heatmaps for each refactoring, which relate to the attention and visual effort of the sub-

jects. In the heatmaps, the shades of color used represent the relative concentration of gaze

points in one area, thus, an area with dark red color reveals a high concentration of fixations,

and the longer they are, the darker it gets. To ease the comparison, we have adjusted the

colors of the heatmaps by controlling the lightness and saturation of red, thus, normalizing

their intensity, and putting the data of the subjects on the same scale. In Figure 5.7, we

present two examples of heatmaps. They are based on 16 novices aggregated who solved the

same task before and after applying R3 from P1. On the left-hand side in Figure 5.7(a), the

subjects solve the task before R3 is applied. On the right-hand side in Figure 5.7(b), other



5.4 Discussion of the Interview 142

subjects solve the task after R3 is applied.

(a) R3 - P1 - Undisciplined (b) R3 - P1 - Disciplined

Figure 5.7: Comparison between disciplined and undisciplined annotations of R3, P1, in-

dicating distribution and concentration of attention of all subjects who performed it in an

aggregated way.

After applying R1 or R2, we could not see clear differences through a visual and manual

analysis of the heatmaps. For instance, consider Figure 5.8. In Figure 5.8(a), the fixations

are concentrated over two main regions, which are similar to Figure 5.8(b), in the sense that,

the subjects pay attention to the correct declarations since the macro was enabled.
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(a) R1 - P2 - Undisciplined (b) R1 - P2 - Disciplined

Figure 5.8: Comparison between disciplined and undisciplined annotations of R1, P2, in-

dicating distribution and concentration of attention of all subjects who performed it in an

aggregated way.

In Figure 5.9(a), the fixations are concentrated over one main region, where the macro is

enabled. In Figure 5.9(b), the fixations are more spread over one main broader region, with

basically the same intensity of color. We have more elements to look at and be analyzed

which might explain why the region is broader.

(a) R2 - P1 - Undisciplined (b) R2 - P1 - Disciplined

Figure 5.9: Comparison between disciplined and undisciplined annotations of R2, P1, in-

dicating distribution and concentration of attention of all subjects who performed it in an

aggregated way.
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However, for R3, we observed clear differences between before and after applying the

refactoring for all tasks, individually and aggregated, for all subjects. For instance, in the

heatmap in Figure 5.7(a), in the AOI before applying R3, the colors are darker, which implies

more concentrated and longer fixations, especially over #ifdef, #else, and #endif. In

future work, we intend to explore the heatmaps in more depth.

5.4.1 Analyzing the Saccades

The movement of the eyes from one fixation to another is called a saccade [93; 90]. In this

sense, they can be useful by pointing to the directions of the fixations in the order in which

they occurred. Thus, we mapped the chronological sequences of saccade between the code

lines of the tasks performed in order to visualize and better understand the dynamics of the

saccade between distinct elements of code before and after applying the refactoring. Then,

we built a graph with each node representing a line of code and each edge representing a

unidirectional saccade. We present two examples of saccades in Figure 5.10 for all subjects

who performed the same task. On the left-hand side in Figure 5.10(a), the subjects solve the

task before R3 is applied. On the right-hand side in Figure 5.10(b), subjects solve the task

after R3 is applied.

 void main(void) {

   int output;

   int value_A = 0;

   int value_B = 0;

   #ifdef MACRO

     if(value_A == 1)

   #else

     if(value_B == 0)

   #endif

      output = 1;

   else

      output = 0;

   printf("%d", output);

 }
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void main(void) {

  int output;

  int value_A = 0;

  int value_B = 0;

  int test;

  #ifdef MACRO

    test = (value_A == 1);

  #else

    test = (value_B == 0);

  #endif

  if(test == 1)

    output = 1;

  else

    output = 0;

  printf("%d",  output);

}
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Figure 5.10: Comparison of Graphs with saccades for R3 for P1. The saccades correspond

to 16 subjects who performed the same tasks.
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The edge weight is based on the idea that many subjects can make the same saccades from

one specific line to another while performing the same task, which means that they follow

a pattern. We considered only saccades made by at least 1/3 of the subjects for the purpose

of simplifying the number of saccades in the graph, making the visualization of the saccades

less polluted. We tested with a lower threshold, but the graph visualization became polluted.

This strategy also allows us to find patterns since it considers only repetitive saccades across

distinct subjects. In Figure 5.10, we observe the gaze saccades for subjects who performed

R3 for P1. Each graph represents 16 subjects who performed the same task. For instance,

consider the edge from node 1 to node 2 in Figure 5.11 which is the same node 1 and node

2 in the task in Figure 5.10(a). This edge has a weight 0.56. The edge weight consists of the

sum of all the same saccades of all subjects who performed it (total of 9 saccades) divided

by the total number of subjects who performed the task (16 subjects). So, in this example,

six subjects performed at least one saccade each, which satisfied the threshold condition for

1/3 of the subjects. In addition, subjects 4, 7, and 12 performed the same saccades twice.

The edges on the right-hand side of the node in Figure 5.10 represent a progression or a

saccade going forward. There are also saccades from one node to itself. The saccades on the

left-hand side of the node represent the regressions, which are the saccades going backward.
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Figure 5.11: Edge weight computation from node 1 to node 2 from all subjects in the task

before R3 is applied in Figure 5.10(a). The subjects in darker shades represent all subjects

who performed the saccade. The number of arrows from node 1 to node 2 represents the

number of saccades.

To analyze and compare the graphs in Figure 5.10, we focus on their complexity. Visu-

ally, the graph on the left-hand side looks more complex with a higher number of saccades

and heavier weights on the edges. After applying R3, the number of saccades was reduced

in Figure 5.10. In Figure 5.10(a), we observe considerably more regressions. For instance,
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before applying R3, there are 25 regressions, whereas there are 8 regressions after applying

R3. We thus recommend applying R3 to reduce the complexity of the graph.

For R1 in Figure 5.12 and R2 Figure 5.13, we did not observe clear differences. In

Figure 5.12(b), the saccades seem more concentrated over two regions without so many

connections between them as seen in Figure 5.12(a). In Figure 5.13(b), the saccades do not

seem to exhibit distinct patterns over the regions compared to in Figure 5.13(a).
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  return total;
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#define MACRO

void main(void) {

  int value;

  #ifdef MACRO

    value = function(2, 10);

  #else
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Figure 5.12: Comparison of Graphs with saccades for R1 for P1. The saccades correspond

to 16 subjects who performed the same tasks.
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}
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Figure 5.13: Comparison of Graphs with saccades for R2 for P2. The saccades correspond

to 16 subjects who performed the same tasks.

5.5 Threats to Validity

We discuss potential threats to validity: internal validity (Section 5.5.1), external validity

(Section 5.5.2), and construct validity (Section 5.5.3).

5.5.1 Internal Validity

The environmental location may have influenced the subjects’ attention. Given the difficul-

ties in getting more people, we performed the experiment in seven different rooms. However,

these environments were similar in terms of being quiet places with minimum distraction and

similar lighting and temperatures.

The author’s presence may have unintentionally influenced the data because subjects may

have felt being observed. The author may also have influenced the subjects to achieve certain

outcomes. To mitigate these threats, the author minimized the interaction with the subjects

to let them feel free to act and be concentrated on the tasks.

Our camera has limitations. Even carefully calibrating and re-calibrating it, we observed

that the fixation data needed some adjustments, which is a threat resulting from the equip-
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ment. For instance, we saw parts of the heatmaps with red color over a blank area not

touching the code, but a small adjustment was sufficient to correct these cases. These small

errors were systematic meaning that all the fixations for the task needed the same adjustment.

Right after solving the tasks, we plotted a heatmap of one task, and only when necessary,

we shifted the sample points and showed it to the subjects in order to verify whether it best

matched their visual intent. In addition, we later discussed this strategy. To minimize the

threat of the equipment, we performed a correction of the eye tracking data in some cases,

which generated another threat. The correction may influence the position of the gaze points,

which may influence our interpretations. We chose to correct the data of some subjects be-

cause data pointing to a blank area of the code would influence our interpretations leading

to misunderstandings. It is worth mentioning that the median number of pixels that we have

used to correct the fixations in y-coordinate was 10 pixels and the maximum value was 70

pixels. We did not correct x-coordinate. In addition, the generated fixations are available in

our replication package [2].

A chair with swiveling capabilities can impair the camera of collecting data or reduce the

camera’s accuracy. To reduce this threat, we used chairs without swiveling capability. Given

the difficulties in arranging the setup in some locations, seven subjects used still chairs with

swiveling capabilities.

The duration of the experiment may have influenced the visual effort of the subjects. The

six tasks for each subject plus one for warming up have to be taken in consideration. To

minimize this threat, we have designed simple tasks so that they could also be solved faster.

The maximum amount of time a subject spent on a task was 5 min and 2 seconds, and the

median time for all the tasks of all subjects was 36 seconds.

We gave the option to the subjects to keep trying until they answered correctly, but they

had the option of quitting at any time without having to provide any reasons for that. We thus

compared the number of trials until they answered correctly. However, using this approach,

if a subject gives an incorrect answer on the first attempt, she can make more fixations or

even longer ones, with more regressions. An alternative approach would be conducting the

study such that these metrics were analyzed before they kept trying over and over. However,

in our study, this threat is minimized by the fact that 77.6% of the 384 tasks were answered

correctly on the first try.
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From the total of 384 tasks, three of them were not answered, which corresponds to less

than 1%. We used PMM method that imputes missing data using predictive mean match-

ing [58]. Regarding the reliability of this method, PMM generally performed better when

the sample size was sufficiently large [64], which we have confidence in our sample with

more than 99% of the data.

Following the Latin Square experiment design, we have blocked the set of tasks to con-

trol noise. In addition to performing an analysis under a combined perspective of the tasks

in all evaluated refactorings, we analyzed the refactorings from an individual perspective.

The extent of the impact of such violation of the Latin Square design is not estimated. How-

ever, analyzing the data from both perspectives, combined and individual, provides a more

nuanced and complete approach to understanding the effects of the evaluated refactorings.

5.5.2 External Validity

We had to resort to small tasks for the purpose of fitting the code snippet of each task onto

the screen without compromising the accuracy of the data. This may restrict the capacity of

generalizing to more complex or larger tasks. However, even in more simple code snippets,

we have shown several opportunities to apply the evaluated refactorings. In addition, all our

tasks have a template associated with real projects. Medeiros et al. [75] found that 27 out of

63 C real projects contain possibilities of applying the three evaluated refactorings together.

However, we need to conduct more studies with more complex tasks to provide evidence

regarding those tasks.

Since the majority of subjects in our study were novices in the C programming language,

we cannot generalize our results to more experienced developers in C. Other studies have

also investigated code comprehension from the perspective of novices as well, revealing an

interesting field to be explored [15]. We had a total of 64 subjects in our study, out of

which only 10 were experienced subjects. For our analysis and reporting results, we did

not filter out these 10 experienced subjects. To ensure that this does not affect the validity

of our results, we did a separate analysis where we compared the results of considering all

64 subjects to the results of considering only the 54 novice subjects. We found that the

results from both groups of 64 (all subjects) and 54 (only novices) subjects are the same.

In the future, we need to conduct further studies with more experienced subjects to better
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understand if there are any differences compared to novices.

We have used code snippets written in the C language, which may restrict the gener-

alization capacity to other languages. To limit this threat, we have used constructions that

commonly occur in other languages, and all the subjects reported some experience with other

languages, which minimized the effect of syntax constructions.

We have performed a “specify the correct output” type of task, in which the subject reads

the code and says out loud the correct answer. Thus, it may not generalize to other types of

tasks, such as finding bugs or adding features. The font size or font style may have influenced

the subject’s attention. To reduce this threat, we chose a common font style as well as a size

that fitted the screen. All snippets were displayed in the same font size, black colored, and no

bold font. The number of macros may also have influenced the visual effort of the subjects, in

which they had to reason about enabled and disabled macros to understand which conditions

were valid. To minimize this threat, we used only one macro in all the tasks.

5.5.3 Construct Validity

Eye tracking metrics similar to the ones employed in our study have been used in other

studies for both similar and distinct purposes [77; 15; 103; 7]. For the purpose of

investigating code comprehension, time and attempts have been used in isolation [95;

70] and in combination with visual effort [102]. The visual effort has been measured before

by separate eye-tracking-based metrics such as fixation duration and fixation count [102;

8]. In addition to fixation-based metrics, regressions have been associated with visual ef-

fort [99].

We tried to not influence our subjects’ decisions on where to look or for how long, but

we may have done so nevertheless, which is a side effect of inviting people to participate in

an eye tracking study. We did not inform the subjects about the precise goals of the study to

avoid hypothesis guessing, but we informed them that their eyes were being tracked, which

may have influenced where or how much they looked at some regions of the code.
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5.6 Conclusions

In this chapter, we reported on a controlled experiment using an eye tracker camera with

64 subjects who were majoritarily novices in the C language to evaluate the influence of

three refactorings that discipline #ifdef annotations. There is no consensus on whether

developers should use exclusively disciplined annotations. Thus, this study with eye track-

ing contributes to filling these knowledge gaps showing that even small changes such as

adding one or two lines of code, fine-grained refactorings to discipline #ifdef annotations

associate with differences in code comprehension, and visual effort.

In our results, applying R1 〈wrapping function call〉 or R3 〈alternative if statements〉

associated with improvements in the time and visual effort. In addition, applying R3, specif-

ically, associated with improvements in the accuracy. We do not observe statistically signifi-

cant improvements in time, accuracy, and visual effort in our code comprehension tasks after

applying R2 〈undisciplined if conditions〉, in isolation. Instead, we observed an increase in

time for R2 in both AOIs and the whole code. We also found that applying R1, R2, and R3 in

a composite perspective associated with reductions in the total time and visual effort. There

are a number of opportunities to apply them in a composite manner in real projects [75].

As future work, we aim to evaluate other refactorings proposed by Medeiros et al. [75].

We aim at performing experiments considering more participants, experienced developers,

other types of tasks that add functionalities to the code and fix bugs, a higher number of

macros, and other types of annotations. We also intend to explore larger source code files,

which can be studied with eye tracking with the addition of a proper tool such as iTrace [50].

This tool allows scrolling or navigation of the content overcoming the limitation of short code

snippets for the tasks. Finally, we will consider other eye tracking metrics, such number of

blinks, scans, and other metrics based on gaze transitions.



Chapter 6

Related Work

In this chapter, we provide an overview of the related work. In Section 6.1 we present the

works related to atoms of confusion, in Section 6.2 we present the works related to Extract

Method refactoring, and in Section In Section 6.3, we present the works related to #ifdefs

annotations.

6.1 Atoms of Confusion

Gopstein et al. [48] introduced the term “atom of confusion” as the smallest code pattern

that can cause misunderstanding in the programmer. They proposed a set of 15 atoms they

extracted from the International Obfuscated C Code Contest. They hypothesized that these

atoms could cause programmers to misunderstand code. They performed two empirical ex-

periments, one with 73 subjects and the other with 43 mostly students, aiming to find which

atoms caused confusion and how much confusion they could reduce by clarifying the atoms.

They measured the time it took for programmers to answer correctly and the accuracy of

their answers. They found that small C code snippets including atoms of confusion are more

difficult to understand than their functionally equivalent clarified versions. Extending their

prior work, Gopstein et al. [49] investigated the prevalence of atoms of confusion in the real-

world setting. They performed a study involving 14 open-source projects in the C language

and found that atoms of confusion are prevalent in real and successful projects. In addition,

the presence of these atoms has a correlation with bug-fixing commits and long code com-

ments. We performed a controlled experiment to observe the impact of the obfuscated code

152
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containing atoms of confusion and the clarified code on the novices’ code comprehension.

However, we focused on Python programming language and, besides time and accuracy, we

investigated the eye tracking metrics. In addition, we were more conservative in our pro-

grams than in their studies, using more meaningful names for the variables. This approach

arguably closer to a practical scenario.

In a more recent work, Gopstein et al. [47] performed a study with 14 human subjects,

including both professionals and students, aiming to better understand and scrutinize their

prior studies on atoms of confusion. According to them, the precision and accuracy can only

tell the outcome of programmers’ performance, but not how or why programmers behaved

in a certain way. They used a think-aloud methodology to collect data and then performed a

qualitative analysis. They found that correct hand-evaluations do not imply understanding,

which means that a subject can answer correctly and still be confused. Similarly, incorrect

evaluations do not imply misunderstanding. With the sole use of the accuracy, these sources

of confusion would otherwise go unnoticed. Going beyond accuracy, we used an eye tracker

to assess the visual effort of the subjects. Eye tracking allowed us to better understand

their visual behavior while solving the tasks, which could give insights into how or why

programmers behaved in a certain way. In addition, we also performed a qualitative interview

to get personal feedback.

Medeiros et al. [73] conducted an investigation to better understand the relevance and

prevalence of atoms of confusion in C open-source projects. They used a mixed research

method approach, which comprised mining repositories of 50 C open-source projects fol-

lowed by a survey with 97 developers with experience in the C language. They found that

atoms of confusion are indeed prevalent in open-source projects, with more than 109K oc-

currences of the 12 atoms. In addition, according to developers’ opinions, only some atoms

are perceived to cause misunderstandings. Instead of basing on the opinions of experienced

developers in C, we conducted a controlled experiment to quantitatively and qualitatively as-

sess the performance of the human subjects who were novices in Python. In addition to time

and accuracy, we collect eye tracking metrics to have a better understanding of the effect of

the atoms. To complement our quantitative data, additionally, we perform interviews to get

feedback from the subjects.

Yeh et al. [121] conducted an experiment using an EEG device to measure the cogni-
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tive load of the developers as they attempted to predict the output of C code snippets. They

aimed to observe whether particular patterns within the code snippet induced higher levels

of cognitive load. They found that particular patterns indeed affect the developers’ cogni-

tive processes. Still, in the domain of physiological data, we focused on changes in eye

movements instead of brain activity. Eye movements have also been used to investigate cog-

nitive load, however, we explored in more depth the visual effort regarding atoms in Python

language.

Langhout and Aniche [66] replicated the work of Gopstein et al. [48], however, in the

Java programming language. After deriving a set of atoms of confusion for Java, they per-

formed an experiment with 132 computer science novices. They found that atoms of confu-

sion can cause confusion among novice software developers. Extending this idea, Mendes et

al. [78] proposed a tool named BOHR (The Atoms of Confusion Hunter) to detect atoms of

confusion in Java systems. The tool was able to detect eight out of 13 types of atoms pointed

out as confusing by Langhout and Aniche [66]. We also investigated the potential of atoms

to negatively influence the code comprehension of novices. However, we did so in Python

language and from the perspective of the eye tracking measures.

Castor [18] proposed a structured definition of atoms of confusion, examined factors

that make them confusing, and presented a preliminary catalog of atoms of confusion for

the Swift programming language. Based on the prior studies [48; 49], Castor defined an

atom as precisely identifiable, likely to cause confusion, replaceable by another pattern

that is less like to cause confusion, and indivisible. He also identified sources that make

atoms confusing such as little-known and less common constructs, which include Condi-

tional Operator and Assignment as Value. We used the definition already proposed [48;

49] and investigated empirically the effects of obfuscated and clarified programs on code

comprehension in Python language.

Schröter et al. [94] conducted a literature review to investigate how researchers address

code comprehension in their studies. Among their findings, they found that the source code

and program behavior are the mostly addressed parts of code comprehension in their em-

pirical studies. Our work consists of an empirical study that comprises a comparison of

programs following distinct styles.

Stefik and Siebert [111] studied the influence of programming language syntax on the
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novices’ comprehension. As their tasks, the novices had to rate the intuitiveness of several

programming language constructs. Among the findings of the study, syntactic choices made

in commercial programming languages are more intuitive to novices than others, and varia-

tions in syntax influence novice accuracy rates when they are starting to program. We also

explored the context of novices, however, we considered just one language, and we used

objective metrics while novices solved the code task.

Obaidellah et al. [82] conducted a systematic mapping study on eye tracking experiments

focusing on code scenario. They found that the main areas of research include program

comprehension and debugging, non-code comprehension, collaborative programming, and

requirements traceability research. In addition, they found that most of the subjects in the

experiments were students and faculty members from institutions. In our controlled experi-

ment, we focus on code comprehension involving novices.

6.2 Extract Method

Cedrim et al. [19] studied the impact of refactorings, such as Extract and Inline Method, on

code smells through static code metrics. They performed a longitudinal study observing how

refactorings impacted 13 types of code smells along the version histories of 23 projects. They

found that 57% of the refactorings, including the Inline Method, was neutral in the sense that

they did not reduce the occurrences of smells, and 33.3%, including the Extract Method,

were negative, meaning that they induced the introduction of new smells instead. We studied

the impact of Extract Method from a dynamic perspective. We consider the human visual

effort of novices in Java through a controlled experiment. In our study, the Extract Method

presented positive results in four tasks and negative results in two tasks.

Hora and Robbes [56] conducted a study to characterize the Extract Method refactoring.

They mined 124 Java systems and investigated 70K instances of the Extract Method focusing

on the aspects magnitude, content, transformation, size, and degree. They found that (i) the

Extract Method is the third most frequent refactoring; (ii) Extracted Methods concentrate

on operations related to the creation, validation, and setup; (iii) methods that are targets of

the extractions are 2.2x longer than the average ones, and they are reduced by one statement

after the extraction; and (iv) single method extraction represents most of the cases. We also
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investigated the Extract Method, however, focusing on the extent of its impact on the code

comprehension of novices in Java.

Silva et al. [107] investigated why developers refactor their code. They monitored Java

projects to detect recently applied refactorings and asked the developers their reasons to

refactor the code. They found the Extract Method to be the most frequently applied. The

three most common reasons were to reuse code, introduce an alternative method signature,

and improve readability. We performed a controlled experiment on the impact of two refac-

torings and interview the subjects on their perceptions. Their answers helped us to better

understand the code comprehension factors that affect their understanding of the tasks.

Sharafi et al. [103] studied the impact of two code styles on code comprehension, namely,

camel case and underscore. They measured time, accuracy, and visual effort of the subjects

through eye tracking. They found significantly less time and lower visual effort with the

underscore style. Sharafi et al. [101] investigated the same two styles on code comprehen-

sion, however, measuring the impact of the subjects’ gender on the time, accuracy, and visual

effort. Overall, no differences were observed. In our study, we compared two code styles

with similar metrics—time, number of attempts, and visual effort—however in a different

context.

6.3 #ifdef Annotations

Medeiros et al. [75] conducted a survey with 246 experienced developers to access their

perception of the proposed refactorings. The majority of the developers reported having at

least five years of experience with C preprocessors. They sent a questionnaire to the subjects

with six templates presented as pairs: on the left-hand side, they presented the original code

from a real C project and, on the right-hand side, the refactored version of the original code.

They asked the subjects which version they preferred, whether the original or the refactored

one. Among the refactorings, they evaluated R1 〈wrapping function call〉, R2 〈undisciplined

if conditions〉, and R3 〈alternative if statements〉 of our study. In their study, the rate of

preferences for R1, R2, and R3 were 90.3%, 70.4%, and 64.8%, respectively. In contrast, in

our work, we have focused on novices rather than on experienced developers. The majority

of the subjects reported having one year or less of experience with C programming language.
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In addition, we have conducted a controlled experiment in which the novices had to solve a

set of proposed tasks. We investigated eye tracking metrics to evaluate R1, R2, and R3 with

respect to time, accuracy, fixation duration, fixation count, and regressions count.

Our study and the one conducted by Medeiros et al. [75] are distinct in the following

characteristics: research questions, the experience of the developers, tasks used, empirical

method, metrics, and threats to validity. These differences are summarized in Table 6.1. The

differences shown in Table 6.1 may explain the differences in the conclusions. However, we

need to conduct further studies to better understand the reasons for some differences.

Table 6.1: Summarizing the comparison between the study conducted by Medeiros et al. and

our study.

Medeiros et al. [75] Our study

Common

RQs

— —

Distinct

RQs

What is the number of possibilities to apply

the refactorings in practice?

To what extent do disciplined annotations

affect task completion time?

What opinion do developers have on the

catalog of refactorings in practice?

To what extent do disciplined annotations

affect task accuracy?

Do the refactorings of the catalog preserve

program behavior?

To what extent do disciplined annotations

affect visual effort?

Common

Findings

Developers prefer applying R1 Applying R1 associated with improve-

ments in time and visual effort

Developers prefer applying R3 Applying R3 associated with improve-

ments in time, accuracy, and visual effort

Distinct

Findings

Developers prefer applying R2 Applying R2 did not associate with im-

provements in time, accuracy, or visual ef-

fort

Experience Experienced developers in C programming

language

Novices in C programming language

Tasks Non-executable code templates Executable code snippets

Empirical

Method

Online survey with subjects not being ob-

served

Controlled experiment with subjects being

observed

Metrics Subjective opinions and preferences Objective metrics: time, accuracy, fixation

duration, fixation count, and regressions

count
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Threats

to

Validity

Simple code snippets, incompleteness of

catalog, programming language, some

undisciplined directives different from the

practice

Environment location, camera limitations,

chair setup, time for the experiment, an-

swers’ submission, simple tasks, develop-

ers’ experience, programming language,

type of task, eye tracking metrics’ repre-

sentativeness

In addition to the survey, Medeiros et al. [75], submitted patches with the evaluated

refactorings. Six patches using R1 were submitted, and all patches were accepted. Five

patches were submitted using R2 and 80% of them were accepted, and five patches were

submitted using R3 and 80% of them were accepted. These results indicate a higher rate of

acceptance of R1. Applying R1 or R3 in isolation associated with improvements in time and

visual effort in our study.

Medeiros et al. [72] interviewed 40 developers with at least five years of experience

and conducted a survey with 202 developers with different levels of experience regarding

conditional directives usage, to understand common problems with the C preprocessor such

as code understanding, maintainability, and error proneness. Developers affirmed that they

checked only a few configurations of the source code when they were testing their implemen-

tations. The study showed that C preprocessor had problems, such as faults, inconsistencies,

code quality, and incomplete testing, making it a “hell.” The survey and interview focused

on the perception of the developers, which included experienced subjects. Differently, we

conducted an eye tracking study and focused on analyzing the performance, code compre-

hension, and visual attention of novices. From this perspective, even in simple tasks, we

observed that novices had difficulties comprehending code with undisciplined annotations,

mentioning terms such as broken lines, statements, and syntax. We observed that tasks were

easier to comprehend using the disciplined version by the correlation with the improvements

in accuracy after applying R3.

Fenske et al. [39] have conducted a controlled study involving both an experiment and

questionnaires with 521 experienced developers to understand the impact of refactoring C

preprocessor directives. The evaluated refactorings were called discipline directive, extract

alternative function, and unify compile-time and runtime-time variability. They evaluate

coarse-grained transformations converting from undisciplined to disciplined annotations in-

stead of evaluating a single fine-grained transformation, such as the ones we evaluated in our

work (see Figure 5.5). Their comprehension tasks are distinct from ours comprising larger
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snippets with more directives. In addition, multiple choices are presented to the subjects.

For instance, among multiple statements about the code, the subjects had to select the cor-

rect one. Moreover, the subjects had to configure their selection so that a certain line would

be executed. They mainly investigated how the perception of the developers aligned with

their objective of comprehension performance. According to their results, comprehension

performance worsened in terms of correctness when the subjects worked on code with refac-

tored directives. However, in their perception, the refactored code was more comprehensible

and easier to work. In contrast, we have presented smaller snippets with one directive to the

subjects. We have configured the directive by enabling or disabling the macro. Then, we

asked the subjects an open-ended question regarding the correct output of the snippet. In

addition, we have performed a controlled experiment using eye tracking with novices. In our

results, we recommend applying R1 or R3 for novices.

Thus, our study and the one conducted by Fenske et al. [75] are distinct in the following

characteristics: experience of the developers, tasks used, answer submissions method, em-

pirical method, and metrics. These differences are summarized in Table 6.2 and may explain

the differences in the conclusions. However, we need to conduct further studies to better

understand the reasons for some differences.

Table 6.2: Summarizing the comparison between the study conducted by Fenske et al. and

our study.

Fenske et al. [39] Our study

Experience Experienced developers in C programming

language

Novices in C programming language

Tasks Larger snippets with more directives Short snippets with one #ifdef

Answer

submission

Multiple options Open-ended without multiple options

Empirical

Method

Online survey and experiment Controlled experiment

Metrics Subjective preferences, time, and accuracy Objective metrics: time, accuracy, fixation

duration, fixation count, and regressions

count

Schulze et al. [95] conducted a controlled experiment to analyze the effect of disciplined

and undisciplined annotations on program comprehension. The subjects were undergradu-
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ates with less programming experience than experienced developers. The study addressed

this topic by measuring correctness and response time for solving a set of tasks. The results

of the study did not reveal any statistically significant differences between disciplined and

undisciplined annotations from a program comprehension perspective. In addition to time

and accuracy, but distinctly from their study, we have measured the fixation duration, fixation

count, and regressions count, which allowed us to access the subject’s visual effort in solving

tasks. The eye tracker allowed us to understand code comprehension from the analysis of

these additional dimensions. Furthermore, similar to their study, the majority of the subjects

of our study consisted of undergraduates. Differently from their results, we have shown sta-

tistically significant differences for the evaluated refactorings with disciplined annotations,

indicating that the composition of refactorings evaluated associated with improvements in

time, fixation duration, fixation count, and regressions count.

Malaquias et al. [70] compared undisciplined and disciplined annotations by investigat-

ing the influence of disciplined annotations on maintenance tasks. They performed the study

with undergraduates with three to five semesters of experience with programming. Their re-

sults showed that undisciplined annotations are more time-consuming and error-prone, dis-

agreeing with Schulze et al. [95]. For R1 or R3, the results of Malaquias et al. [70] align with

ours in the sense that disciplined annotations associate with improvements in task comple-

tion time. In addition, disciplined annotations associate with improvements in accuracy after

applying R3 in the context of novices. For the composition of three evaluated refactorings,

their results also align with ours for the time, fixation duration, fixation count and regressions

count perspective. Regarding accuracy, we did not reject the null hypothesis for the number

of submissions. Notice that our tasks are simple. In our study with an eye tracker camera,

we are able to explore other dimensions besides time and accuracy, and quantify developer’s

difficulties by measuring time in specific areas, as well as effort with visual attention.

Melo et al. [76] presented a controlled experiment predominantly with graduate students.

All subjects had Java programming experience, and several of them had industrial experi-

ence. They aimed to quantify the impact of variability on the time and accuracy in finding

bugs in configurable systems. They only considered disciplined annotations. By exploring

these dimensions, they found that the time of bug finding decreases linearly with the degree

of variability. In addition, it is harder to identify the exact set of affected configurations than
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finding the bug in the first place. They mentioned difficulties in reasoning about several con-

figurations. In our study, we explore time, accuracy, and other additional dimensions, but in

another type of task. We did not present many configuration options, only one macro enabled

and disabled, and simple tasks. Even in simple tasks, we observed that it became easier to

find the correct output after applying R3, removing undisciplined annotations. In the quali-

tative feedback, novices mentioned difficulties in reasoning about broken statements, which

were removed by applying refactorings.

Aiming to understand how developers debug code in the presence of code variability,

Melo et al. [77] carried out an experiment by using an eye tracker predominantly with grad-

uate students. All subjects had Java programming experience, and several of them had in-

dustrial experience. The main results indicate that variability increases debugging time for

code fragments with variability. Besides performing a distinct type of task, so-called “find

the bug,” they have focused only on disciplined annotations. They observed that variabil-

ity prolongs the initial scan in the task of finding defects. We focused on refactorings to

discipline annotations to understand how novices specify the correct output. We put extra

effort into minimizing potential threats regarding eye tracker camera usage. For instance, we

systematized the program style with fewer lines and larger size, for easy reproducibility, and

avoided chairs with swiveling capability, which showed potential to impact data quality.

The use of an eye tracker camera has been traditionally applied in the context of cogni-

tive psychology for the purpose of studying the reading and information processing at the

cognitive level [90]. For instance, using an eye tracker, Crosby and Stelovsky [29] observed

differences between reading source code and reading prose. However, they did not investi-

gate refactorings. We analyzed how disciplined annotations affect the way novices read and

comprehend code.

In the programming language context, eye tracking allowed researchers to understand a

variety of tasks, such as code comprehension and code debugging [82]. For instance, Sharafi

et al. [103] investigated the influence of identifier styles (camel case and underscore) on the

speed and accuracy of comprehending source code. No differences regarding accuracy were

observed in this context. Nevertheless, results indicate a significant improvement in time and

lower visual effort with the underscore style. In our study, we considered similar metrics—

time, accuracy, fixation duration and fixation count—but in another context. Binkley et al. [8]
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also studied the influence of identifier styles on code reading and comprehension. With an

eye tracker, they found that camel case shows to be more advantageous. Likewise, we per-

form a comparison between two types of code styles, namely disciplined and undisciplined

annotations, aiming to find which one is more advantageous. However, to analyze visual ef-

fort, in addition to regressions count, we explored fixation duration and fixation count inside

AOI, in the whole code, and in specific areas such as activated and deactivated ones.

Turner et al. [115] presented a study to analyze the effect of the choice of the program-

ming language, namely C++ and Python, on code comprehension. The metrics they used

consisted of accuracy, time, and visual effort. The former metric concerns the rate one looks

at buggy lines. In our work, we also cover accuracy, time, and visual effort, which we relate

to fixation duration, fixation count, and regressions count. Binkley et al. [9] studied the ef-

fect of identifier length on the ability of programmers to recall. Their results suggested that

longer names reduce correctness and take more time to recall from memory. In our domain,

the eye tracking metrics gave us additional insights. Table 6.3 summarizes these works.

Table 6.3: Related works. In column “Eye,” we refer to whether eye tracking was used or

not. In column “Ann.” we specify the annotations in which U refers to Undisciplined and D

refers to Disciplined. In column “Exp.” we specify whether the subjects were experienced

or not, in which “Yes” refers to experienced and “No” refers to not experienced. In column

Goal, the symbol (∗) refers to a survey while (†) refers to a controlled experiment.

Study Eye Ann. Exp. Metrics Goal Finding

Medeiros

et al. [72]
No — Yes — Access developers’ per-

ception on C preproces-

sor usage (∗)

Despite the criticism of

C preprocessor, they use

it nonetheless

Schulze

et al. [95]
No U,

D

No Time and accuracy Analyze the effect of

annotations on program

comprehension (†)

No differences between

disciplined and undisci-

plined annotations

Malaquias

et al. [70]
No U,

D

No Time and accuracy Analyze whether anno-

tation influences mainte-

nance tasks (†)

Undisciplined an-

notations are more

time-consuming and

error prone

Melo et

al. [77]
Yes D Yes Time, accuracy, fixa-

tions and saccades

Study how developers

debug with variability

(†)

Debugging time in-

creases with variability

Melo et

al. [76]
No D Yes Time and accuracy Analyze the impact of

variability on metrics (†)

Time of bug finding de-

creases with the degree

of variability
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Ours Yes U,

D

No Time, accuracy, fix-

ation duration, fixa-

tion count, and re-

gressions count

Evaluate whether R1,

R2, and R3 affect com-

prehension and visual

attention (†)

Applying R1 or R3 re-

duce time, fixation dura-

tion and count.



Chapter 7

Conclusions

This dissertation addressed knowledge gaps in the understanding of the impact of refactor-

ings on code comprehension with eye tracking (Chapter 1); provided a background on the

underlying subject (Chapter 2); presented a controlled experiment on the impact of clarified

atoms of confusion with 32 novices in Python (Chapter 3), a controlled experiment on the

impact of Extract Method refactoring with 32 novices in Java (Chapter 4), and a controlled

experiment on the impact of #ifdef annotations with 64 majoritarialy novices in the C

language (Chapter 5); and a relationship with related works (Chapter 6).

We learned that code comprehension consists of a complex and nuanced phenomenon,

and several factors and details have to be considered. Controlled experiments are central

to understanding this phenomenon and usually investigate several factors, such as the code,

tasks, metrics, and subjects. Particularly, one has to select a set of suitable metrics to mea-

sure the code understanding, and in this field, time and accuracy are commonly employed.

Despite being easy to assess, their potential is limited. For instance, they cannot provide

information about processes happening during the execution of the task, whether from the

visual or brain perspective of the developer. In this work, we have explored the potential of

adding eye tracking metrics to reveal nuances and provide insights distinct from other code

metrics approaches.

In the context of novices dealing with undisciplined #ifdef annotations, the sole use

of time and accuracy makes it difficult to evaluate whether the code comprehension has

improved after applying fine-grained transformations. However, with an eye tracker, besides

the effects on time and accuracy, we observed that the developers have a reduced visual
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effort. One refactoring added one extra variable and two extra lines of code, which is only

a small impact on the LOCs, but it presented reductions in the modified region by 46.9%

in the time, 44.7% in the fixation duration, 48.4% in the fixation count, and 60.5% in the

regressions count. These results have the potential to provide more insights and deepen the

discussion on the advantages or disadvantages of disciplining annotations.

Our results revealed an impact of the atoms to a considerable extent. The clarified version

of the code containing the Operator Precedence reduced the time in the AOI by 38.6%. In

the visual metrics, the number of regressions was reduced to the extent of 50%. On the other

hand, the clarified version of the code containing the atom Multiple Variable Assignment

increased the number of regressions reaching the extent of 60%. Thus, even in small and

simple programs, we observed a considerable impact of the obfuscated and clarified on the

code comprehension. Concerning the Extract Method version, we observed reductions in the

time of two tasks, which reached the extent of 78.8%. For three tasks, the subjects attempt

34.4% less to solve the tasks. Moreover, they solved them without going back 84.6% less

often in the code. However, negative effects were also observed for some tasks, reaching an

increase to the extent of 200% in the visual metrics.

Besides providing insights into the visual effort, we discuss code comprehension from a

distinct perspective. With an eye tracker, we approach comprehension by triangulating time,

attempts, and visual effort. We can infer potential areas with bottlenecks in the code tasks

by adding eye tracking. For instance, when the novices spend more time in the code written

in a certain style and make more attempts, we can triangulate this information with the areas

of interest in the code to observe where they most fixated, for how long, and where they

usually go back in the code. These observations, supported by the interviews, can help us

identify the code areas in which the novices faced difficulties, find reading patterns, and give

us useful insights into how certain patterns can affect the developers in the comprehension

of the code. These insights could provide a meaningful strategy to integrate an eye tracker

into a computer so that we can track the eyes of the developers while they observe the code

in an Integrated Development Environment (IDE). This strategy can provide the developer

with immediate feedback on achieving more productivity.

With an eye tracker, our study revealed an impact of the refactorings that could not be

captured by static code metrics, such as:
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• How much time the subjects spent in the area of interest – time spent specifically in

the region that contains the atom, extracted method, or #ifdef. No other tool or

approach can allow us to measure how much time a subject spends in specific regions

of the code while reading the entire code. For instance, we found that the clarified

version of the code containing Operator Precedence reduced the time spent in the AOI

by 38.6%. On the other hand, the Multiple Var. Assignment increased the time in AOI

by 30.1%.

• How many times subjects fixate in the code and/or an area of interest – the num-

ber of fixations specifically in the region that contains the atom, extracted method, or

#ifdef.

• For how long the subjects fixate in the code and/or an area of interest – the duration of

the fixations performed while focusing specifically in the region that contains the atom,

extracted method, or #ifdef. The longer the fixation, the more time processing the

information, which relates to code comprehension.

• How many times the subjects need to go back in the code and/or an area of interest –

the number of eye movement regressions performed in the code or specifically in the

region that contains the atom, extracted method, or #ifdef.

• Study how and measure the extent of the impact of clarified atoms, extracted methods,

and disciplined #ifdef annotations on the visual effort – previous works have mea-

sured the impact on time and accuracy, but none of them could measure to what extent

the atoms impacted the fixation duration, fixations count, and regressions count. For

instance, with the clarified version of the atom Operator Precedence, the fixation dura-

tion in the AOI was reduced by 34.1% while the fixations count was reduced by 32.3%.

The clarified version of the code containing the True or False Evaluation was associ-

ated with reductions in the regressions count by 47.3%. On the other hand, the clarified

version of the code containing the Multiple Variable Assignment was associated with

an increase of 60% in the number of regressions.

• Study how and measure the extent of the impact of clarified atoms, extracted methods,

and disciplined #ifdef annotations on the code reading. In the clarified version of
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the code containing the Multiple Var. Assignment: Splitting the assignments between

two lines leads the subjects to make 60% more regressions inside the area of interest,

38.4% more fixations with 22.9% more duration. In addition, subjects make more eye

movement transitions between the two split lines containing the assignments and the

lines of code that later use them.

Additional contributions of this dissertation include a set of learned lessons that work as

a framework for conducting eye tracking studies in the context of behavior-preserving code

changes on the code comprehension of novice programmers. These lessons include knowl-

edge about the design of programs such as the size and style, the use of specific eye tracking

metrics, and parameters for the fixations detection, among others. In addition, we contribute

with visualizations for the visual effort in terms of transitions between code regions and

horizontal/vertical regressions in the code.

7.1 Future Work

In this section, we present other empirical studies to be performed after the final defense

of this dissertation. We aim to conduct studies on code comprehension similar to the

ones presented here but on distinct scenarios, namely, with experienced developers (Sec-

tion 7.1.1), with a higher number of code changes (Section 7.1.2), with other types of tasks

(Section 7.1.3), with other types of metrics (Section 7.1.4), and more reading patterns (Sec-

tion 7.1.5).

7.1.1 Experienced Developers

We aim to investigate the same behavior-preserving code transformations presented in the

three chapters for the purpose of understanding whether the clarified atoms, extracted meth-

ods, and disciplined #ifdef annotations improve the code comprehension from the point of

view of experienced developers.

When solving the same tasks, we may expect to see distinct results from the ones obtained

in our study with novices. Experienced developers may exhibit less completion time, higher

accuracy, and less visual effort when compared to novices in the context. However, we aim
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to contribute by investigating the extent of those possible differences.

7.1.2 Higher Number of Code Changes

We have investigated the use of disciplined annotations with only one macro, whether enable

or disabled. However, increasing the number of macros, we expect the increase the complex-

ity of the task, once the subjects have to reason about how multiple macros can interact with

one another. For instance, in Figure 7.1(a) we have three macros. If all macros get defined,

all the code blocks get activated. But we can define just some of them resulting in more pos-

sibilities. The more possibilities we have, the higher the impact on the code comprehension

we can expect.

#define M1
#define M2
#define M3
int main() {

#ifdef M1 
   int x; 
#endif

#ifdef M2 
   int y; 
#endif

#ifdef M3 
   int z; 
#endif
}

public class Main {
  static int m1(int num) {
    //code here..
    return num
  }
  static int m2(int num) {
    //code here..
    return num
  }
  static int m3(int num) {
    //code here..
    return num
  }
  public static void main

(String[] args) {
    int number = 3;
    int a = m1(number) 
    int b = m2(number) 
    int c = m3(number);
  }
}

itens = 5
total = 0

price = itens * 10 if itens == 5 
else itens * 2

if (price % 2):
  value = price
else:
  value = price * 2

if(False or True and True):
total = value

print(total)

(a) Three macros 
enabled

(b) Three methods extracted

(c) Three atoms of confusion

Figure 7.1: Programs with more than one code change.

In addition, we have investigated code comprehension using only one method extracted

and one atom of confusion in each program. We aim to investigate the impact of the com-

bination of more code changes such as more method extractions (Figure 7.1(b)) and more

atoms of confusion (Figure 7.1(c)). We aim to investigate it from the perspective or novices

as well as experienced subjects in programming.

Increasing the number of code changes requires using larger code. We intend to explore

the iTrace [50], a tool that allows scrolling or navigation of the content overcoming the
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limitation of short code snippets in eye tracking. In addition, to overcome the limitations of

static images of code, we intend to use iTrace-Atom tool [35]. The tool allows tracking

gaze and editing information over source code, accompanied by gazel (gaze edit evolu-

tion), a Python data processing library to analyze the data collected by iTrace-Atom.

7.1.3 Other Types of Tasks

We investigated code comprehension based on tasks in which the subjects had to read the

code and specify its correct output. However, we are aware that there are other types of

maintenance tasks, such as finding bugs, fixing bugs, and adding a functionality to the code.

In this way, we aim to investigate the clarified atoms, extracted methods, and disciplined

#ifdef annotations presented in the three chapters to improve code comprehension from the

point of view of novices in the context of tasks extracted from real projects. However, the

accuracy is based not on specifying the correct output, but on finding the bug or adding the

functionality correctly.

The type of task may have an influence on visual effort. For instance, on a task where the

subject has to find the bug, we might expect a more thorough search looking specifically for

undeclared variables, missing elements, or other uncommon patterns. We aim to investigate

if there is any impact and the extent of that possible impact.

7.1.4 Other Metrics

We resorted to the most popular metrics in eye tracking to investigate comprehension, how-

ever, with the appropriate equipment, we could investigate other visual metrics such as pupil

dilation or blink rate. Eye blinks can be distinguished into three types: reflexive, voluntary,

and endogenous. Reflexive blinks can occur in a response to external stimuli, are designed to

protect the eye, and are involuntary. Voluntary blinks are blinks invoked voluntarily. Blinks

that occur in absence of any physical stimulus or intent are called endogenous blinks [112].

The endogenous blinks are influenced by perceptual and information processing. When

more visual attention is required by a task, the endogenous eye blinks are inhibited and

delayed to a moment where the visual demand is reduced [112; 31]. For instance, during

reading, short bursts or individual blinks are likely to occur at the attention breaks such as at
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the end of a sentence or the end of a line [51]. Another study demonstrated that spontaneous

blinks were significantly reduced during a stimulus-processing period of high attention and

were facilitated immediately after the end of the stimulus [83].

We aim to investigate how the clarified atoms, extracted methods, and disciplined #ifdef

annotations affect the number of endogenous blinks. This might indicate that certain types of

behavior-preserving code changes may be associated with more visual demands. Since tasks

that take longer to solve correlate with more blinks, we normalize by computing the number

of blinks per minute, which makes a fair comparison between the types of annotations.

We have other eye tracking metrics to indicate visual effort such as the ones based on

the saccades. For instance, the number of saccades and saccade duration are metrics whose

definitions are identical to the corresponding fixations-based metrics and have similar inter-

pretations in relation to the visual effort [99]. Thus, we opted for the use of fixations-based

metrics in the studies. The average saccade amplitude could be promising to reveal nuances

in the extraction of a method, for instance. It indicates the angular distance that the eye

travels by summing the distances between consecutive fixations. However, average saccade

amplitude must be used with care, because the amplitude is completely dependent on the

size of the stimulus and of its elements [99]. In the method extraction scenario, It can reveal

how the change of focus between the original method and the extracted impacts the ampli-

tude of the saccades, which is a relevant nuance to be investigated. However, we need better

understand what we can learn from this.

7.1.5 Reading Patterns

We have investigated reading patterns in our data to complement the quantitative analysis

of the performance of the subjects. We used the chronological order of the fixations and

their positions to identifying a sequence of visited regions for each program of each subject.

Based on the sequences of visited regions, we mined and manually unidentified common

sequences. However, we need to better understand whether or how these patterns can be

used to characterize the subjects’ experience, whether we can compare reading patterns, and

how they can be generalized.
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Ferreira, Luiz Carvalho, and Baldoino Fonseca. Discipline matters: Refactoring of

preprocessor directives in the #ifdef hell. IEEE Transactions on Software Engineering,

44(5):453–469, 2018.

[76] Jean Melo, Claus Brabrand, and Andrzej Wasowski. How Does the Degree of Vari-

ability Affect Bug Finding? In Proceedings of the International Conference on

Software Engineering, ICSE’16, pages 679–690. ACM, 2016.

[77] Jean Melo, Fabricio Batista Narcizo, Dan Witzner Hansen, Claus Brabrand, and An-

drzej Wasowski. Variability Through the Eyes of the Programmer. In Proceedings

of the International Conference on Program Comprehension, ICPC’17, pages 34–44,

Piscataway, NJ, USA, 2017. IEEE Press.

[78] Wendell Mendes, Windson Viana, and Lincoln Rocha. BOHR - Uma Ferramenta
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[89] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product line engi-

neering: foundations, principles and techniques. Springer Science & Business Media,

2005.

[90] Keith Rayner. Eye movements in reading and information processing. Psychological

bulletin, 85(3):618, 1978.

[91] Keith Rayner. Eye Movements in Reading and Information Processing: 20 Years of

Research. Psychological bulletin, 124(3):372, 1998.

[92] Erica Sadun and Doug Gregor. Remove c-style for-loops with condi-

tions and incrementers. Swift Programming Language Evolution, proposal

SE-0007, “At https://github.com/apple/swift-evolution/blob/

main/proposals/0007-remove-c-style-for-loops.md”.

[93] Dario Salvucci and Joseph Goldberg. Identifying Fixations and Saccades in Eye-

tracking Protocols. In Proceedings of the Symposium on Eye Tracking Research &

Applications, ETRA’00, pages 71–78, 2000.
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Leich, Gunter Saake, and André Brechmann. Understanding understanding source



BIBLIOGRAPHY 183

code with functional magnetic resonance imaging. In Proceedings of the International

Conference on Software Engineering, ICSE’14, pages 378–389. ACM, 2014.

[107] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why We Refactor? Con-

fessions of GitHub Contributors. In Proceedings of the International Symposium on

Foundations of Software Engineering, FSE’16, page 858–870, New York, NY, USA,

2016. Association for Computing Machinery.
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Objetivo Secundário: (i) Identificar qual tipo de anotações proporciona ao desenvolvedor identificar mais

saídas corretas, encontrar mais erros, e apontar mais defeitos; (ii) Investigar qual dos tipos de anotações

proporciona ao desenvolvedor identificar mais fraquezas no código; (iii) Apontar
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quais os refatoramentos que proporcionam ao desenvolvedor realizar mais tarefas de evolução em menor

tempo e com maior acurácia; (iv) Averiguar que tipo de anotações proporciona mais produtividade na adição

de novas funcionalidades no código.

Riscos: O pesquisador informa que como os participantes resolverão problemas de programação, os

mesmos podem eventualmente sentir cansaço, estresse ou aborrecimento ao se deparar com dificuldades.

Para minimizar esses riscos, os participantes poderão, a qualquer momento, desistir de um determinado

problema ou até de participar do estudo. Em casos de dúvidas ou dificuldades, um dos pesquisadores

estará disponível para ajudar a minimizá-los. Além disso, o pesquisador se compromete a utilizar códigos

simples nos experimentos. Esse aspecto diminui o esforço do participante na compreensão da tarefa. São

códigos pequenos, com estilo de fontes legíveis de tamanhos relativamente grandes o que minimiza

desconfortos. Pequenas pausas são realizadas entre cada tarefa também. Além disso, será utilizada uma

câmera de rastreamento ocular (Tobii eye tracker 4C) remota, acoplada a um computador. A câmera é

desenvolvida para jogadores com o intuito de prover uma experiência imersiva e comercializável em larga

escala. Portanto, os riscos ou desconforto promovido pela câmera já são minimizados para o público de

jogadores. Mas além destes, serão tomados cuidados adicionais. Quanto à montagem do equipamento,

acontece antes do estudo e o participante não tem contato físico com a câmera, que fica posicionada à uma

distância de 50cm-100cm. A câmera emite um raio infravermelho que se projeta sobre os olhos do

participante e permite computar onde está o foco visual do participante. Luzes vermelhas na câmera podem

causar desconforto, contudo, a câmera não será posicionada em frente dos olhos do participante. A câmera

é posicionada abaixo do foco visual, em uma região periférica, e os participantes serão orientados a não

olhar diretamente para a câmera. De acordo com o fabricante, existem pessoas que possuem epilepsia

fotossensível e são suscetíveis a ataques epiléticos ou perda de consciência quando expostas a alguns

tipos de luzes piscando ou padrões de luz no seu dia-a-dia. Isso pode acontecer mesmo que a pessoa não

tenha histórico médico de epilepsia ou nunca tenha tido crises epilépticas. Isso pode acontecer com telas de

TV, alguns jogos de fliperama e lâmpadas fluorescentes tremeluzentes. Essas pessoas podem sofrer uma

convulsão enquanto assistem a certas imagens ou padrões em um monitor, ou mesmo quando expostas às

fontes de luz de um rastreador ocular. De acordo com o fabricante, estima-se que cerca de 3-5% das

pessoas com epilepsia tenham esse tipo de epilepsia fotossensível. Muitas pessoas com
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epilepsia fotossensível experimentam uma "aura" ou sentem sensações estranhas antes da ocorrência da

convulsão. Para evitar que isso ocorra, os pesquisadores se comprometem a ser muito cautelosos em

perguntar ao participante se tem ou já teve algum histórico médico de epilepsia ou já passou por qualquer

tipo de situação parecida com as descritas acima no seu dia-a-dia envolvendo uso de TVs, imagens de

computador, ou luzes piscantes. Se o participante mencionar que sim, por precaução, não participará do

estudo. Para aqueles que realizarem o estudo, ou seja, não apresentam histórico de epilepsia, serão

questionados se estão sentindo sensações estranhas durante o estudo por causa da luz emitida. Caso isso

ocorra, por razões de segurança, será removido do estudo.

Benefícios: Este trabalho beneficia diretamente a pesquisadores na academia, bem como a

desenvolvedores que trabalham em empresas de programação ou startups. Para os pesquisadores, uma

metodologia que utiliza métricas baseadas no olhar podem revelar nuances e fornecer insights distintos de

outras métricas para transformações refinadas. Por exemplo, para transformações de granularidade fina, é

difícil avaliar se a redução de uma linha de código extra ou a adição de uma variável extra realmente

melhora a qualidade do código. No entanto, com métricas baseadas no olhar, observamos se os

desenvolvedores fazem menos varreduras no código, quais trechos exigem mais atenção, ou quais

construções são mais complexas. Essa metodologia tem o potencial de aprofundar a discussão sobre as

vantagens de anotações disciplinares e adicionar uma nova perspectiva de análise além do tempo e da

precisão utilizada em estudos anteriores. Vale a pena salientar que os resultados deste trabalho também

podem contribuir para confirmar ou descartar a necessidade da proposição de novos refatoramentos para

lidar com o uso indisciplinado de #ifdefs, bem como da avaliação de cada um deles na prática para entender

qual versão (disciplinada vs. indisciplinada) é melhor. Essa pesquisa também tem potencial de beneficiar

desenvolvedores para que sejam mais produtivos, e dessa forma, beneficiar empresas para que gastem

menos recursos financeiros em atividades de evolução de código. Através da análise de métricas como

varreduras no código, varreduras em áreas específicas do código, frequência de entradas nessas áreas,

tempo para primeira varredura, temos meios para inferir padrões de leitura de código, o que pode nos

fornecer informações úteis sobre como os desenvolvedores compreendem o código. Esses insights podem

fornecer uma estratégia interessante para integrar um rastreador ocular em uma ferramenta IDE (Integrated

Development Environment) para fornecer feedback ao desenvolvedor sobre como obter mais produtividade.

Os
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participantes da pesquisa também poderão ser beneficiados com uma experiência prática na resolução de

problemas no âmbito da computação. Eles serão apresentados aos meios tecnológicos utilizados, bem

como conceitos de compilação condicional, o que pode contribuir para sua prática de escrita e evolução de

código-fonte no seu cotidiano.

De acordo com a RESOLUÇÃO Nº 466, DE 12 DE DEZEMBRO DE 2012, item V – DOS RISCOS E

BENEFÍCIOS; Toda pesquisa com seres humanos envolve risco em tipos e gradações variados. Quanto

maiores e mais evidentes os riscos, maiores devem ser os cuidados para minimizá-los e a proteção

oferecida pelo Sistema CEP/CONEP aos participantes. Devem ser analisadas possibilidades de danos

imediatos ou posteriores, no plano individual ou coletivo. A análise de risco é componente imprescindível à

análise ética, dela decorrendo o plano de monitoramento que deve ser oferecido pelo Sistema CEP/CONEP

em cada caso específico.

A pesquisa realizará um estudo com programadores que serão expostos a certas atividades e observados

através da câmera, mais especificamente os seus movimentos oculares serão observados. Com este estudo

os pesquisadores pretendem encontrar evidências para afirmar se anotações disciplinadas promovem uma

maior produtividade, acurácia, e compreensão de código em evolução de software quando comparada com

anotações não disciplinadas. Trata-se de pesquisa relevante para a sociedade mas que precisa satisfazer

todas as exigências dos CEPs acerca da documentação a ser apresentada.

Comentários e Considerações sobre a Pesquisa:

O pesquisador apresentou todos os documentos de apresentação obrigatória:

1- Folha de Rosto;

2- Declaração de divulgação dos resultados;

3- Termo de compromisso dos pesquisadores;

4- Termo de Consentimento Livre e Esclarecido – TCLE;

5- Termos de anuência das instituições;

6- Instrumentos de coleta;

7- Projeto completo;

8- Informações Básicas do Projeto de Pesquisa.

Considerações sobre os Termos de apresentação obrigatória:

Todos os documentos obrigatórios foram apresentados e estão de acordo com o esperado por
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este CEP. Por esta razão sou de parecer favorável à realização desta pesquisa, salvo melhor juízo deste

comitê.

Considerações Finais a critério do CEP:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

Informações Básicas
do Projeto

PB_INFORMAÇÕES_BÁSICAS_DO_P
ROJETO_1431425.pdf

10/10/2019
16:36:28

Aceito

TCLE / Termos de
Assentimento /
Justificativa de
Ausência

TCLE_Termo.pdf 10/10/2019
16:35:47

José Aldo Silva da
Costa

Aceito

Outros TERMO_DE_ANUENCIA_INSTITUCIO
NAL_COPARTICIPANTE_UEPB.pdf

25/09/2019
10:01:29

José Aldo Silva da
Costa

Aceito

Outros DECLARACAO_DE_CONCORDANCIA_
COM_PROJETO_DE_PESQUISA.pdf

25/09/2019
09:57:40

José Aldo Silva da
Costa

Aceito

Projeto Detalhado /
Brochura
Investigador

PROJETO_DETALHADO.pdf 25/09/2019
09:54:21

José Aldo Silva da
Costa

Aceito

Outros TERMO_DE_ANUENCIA_INSTITUCIO
NAL_COPARTICIPANTE_UFAL.pdf

25/09/2019
09:48:40

José Aldo Silva da
Costa

Aceito

Outros TERMO_DE_ANUENCIA_INSTITUCIO
NAL.pdf

25/09/2019
09:38:29

José Aldo Silva da
Costa

Aceito

Outros DECLARACAO_DE_PESQUISA_NAO_I
NICIADA.pdf

16/09/2019
21:30:20

José Aldo Silva da
Costa

Aceito

Outros DECLARACAO_DE_DIVULGACAO.pdf 16/09/2019
21:29:51

José Aldo Silva da
Costa

Aceito

Outros DECLARACAO_DE_ANEXO_DOS_RE
SULTADOS.pdf

16/09/2019
21:28:05

José Aldo Silva da
Costa

Aceito

Declaração de
Pesquisadores

TERMO_DE_COMPROMISSO_DO_OR
IENTADOR.pdf

16/09/2019
21:16:48

José Aldo Silva da
Costa

Aceito

Declaração de
Pesquisadores

DECLARACAO_DO_PESQUISADOR_R
ESPONSAVEL.pdf

16/09/2019
21:15:39

José Aldo Silva da
Costa

Aceito

Orçamento ORCAMENTO.pdf 16/09/2019
21:12:32

José Aldo Silva da
Costa

Aceito

Cronograma CRONOGRAMA.pdf 16/09/2019
21:11:16

José Aldo Silva da
Costa

Aceito

Folha de Rosto folhaDeRosto.pdf 16/09/2019
20:50:47

José Aldo Silva da
Costa

Aceito
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DADOS DO PARECER

Trata-se de um estudo com a finalidade de elaboração de Tese de Doutorado em Ciências da Computação

da Universidade Federal de Campina Grande - PB.

Lê-se:

 Contexto

Durante a evolução de um software, os desenvolvedores executam várias alterações de código para lidar

com mudanças nos requisitos e melhorar a manutenção do software. Essas alterações de código são

frequentemente associadas à introdução de smells [1] que degradam a estrutura e a qualidade do código [2]

[3], ou ainda à introdução de fraquezas que podem tornar um determinado software vulnerável [21]. Uma

técnica comum usada para melhorar a qualidade do código consiste no refatoramento, que pode ser

definida como uma transformação para melhorar a estrutura do código, preservando seu comportamento

observável [2] [4]. As pesquisas apontam para várias métricas disponíveis que são usadas para avaliar o

quanto a estrutura e a qualidade do código podem ser afetadas pela aplicação de refatoramentos [5] [6]. Por

exemplo, algumas dessas métricas são linhas de código (LOC) [7], acoplamento entre objetos (CBO),

relacionadas ao número de casamentos com outras classes e falta de

coesão nos métodos (LCOM), relacionadas à coesão de uma classe [8].

 Problema

No entanto, para refatoramentos de código de granularidade fina, estudos anteriores não
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identificaram muitas diferenças usando métricas como as mencionadas previamente [9] [10]. Por exemplo,

de acordo com um estudo anterior, a maioria dos refatoramentos estudados são neutros, no sentido de que

o número absoluto de smells permanece o mesmo após a aplicação do refatoramento [10]. No contexto da

variabilidade com #ifdefs, encontramos um cenário semelhante no sentido de que não há consenso se

anotações indisciplinadas devem ser refatoradas para se tornarem disciplinadas [11] [12]. Malaquias et al.

[11] realizaram um experimento comparando anotações indisciplinadas e suas versões refatoradas para

torná-las disciplinadas. No estudo,

eles descobriram que anotações indisciplinadas tomam mais tempo e são mais propensas a erros. Em outro

experimento controlado, Schulze et al. [12] analisaram o efeito de anotações disciplinadas e não

disciplinadas na compreensão do programa. No entanto, eles não encontraram diferenças entre anotações

disciplinadas e indisciplinadas em relação ao tempo e à precisão. No que diz respeito às fraquezas

introduzidas no código, Muniz et al. [24] identificaram que ocorrem mais fraquezas dentro de anotações

#ifdefs do que fora dela, porém o estudou não investigou como o tipo de anotação pode afetar o tempo ou

precisão com que desenvolvedores as encontram.

Solução

Neste sentido, objetivamos realizar uma análise quanti-qualitativa avaliando refatoramentos de código com

granularidade fina em relação à sua capacidade de melhorar a qualidade e compreensão do código. Será

avaliado refatoramentos para resolver anotações indisciplinados, por exemplo, anotações que abrangem um

colchete de abertura, mas não abrangem aquele que o fecha. Ainda no contexto de variabilidade, também

objetivamos investigar avaliar a dificuldade dos desenvolvedores de encontrarem fraquezas no código.

 Avaliação

Deste modo, será realizado um experimento controlado usando rastreamento ocular com

sujeitos humanos, com o objetivo de observar como o código disciplinado afeta o tempo, a precisão e o

número de varreduras nos refatoramentos de códigos de granularidade fina. Além disso, mediremos

também o tempo gasto em regiões de código modificadas, as quais denominamos Área de Interesse (AOI),

bem como o número de vezes que as pessoas entram nessas regiões. Assim, objetivamos usar evidências

estatísticas para apoiar nossas suposições e validar nossas hipóteses.
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Lê-se:

Esta pesquisa tem como objetivo principal analisar programas em linguagem C com #ifdefs usando

rastreamento ocular com o objetivo de avaliar a qualidade de refatoramentos, dificuldade de se encontrar

defeitos em anotações indisciplinadas ou disciplinadas, e dificuldade de se encontrar fraquezas no código.

Para tal, medimos tempo, quantidade de varreduras, e número de tentativas na execução de tarefas de

evolução de software do ponto de vista dos desenvolvedores no contexto da compreensão do código.

Objetivo da Pesquisa:

Os riscos previstos aos participantes da pesquisa estão claramente definidos e a forma como minimizá-los.

Quanto aos benefícios previstos para a pesquisa serão:

Este trabalho beneficia diretamente a pesquisadores na academia, bem como a desenvolvedores que

trabalham em empresas de programação ou startups. Para os pesquisadores, uma metodologia que utiliza

métricas baseadas no olhar podem revelar nuances e fornecer insights distintos de outras métricas para

transformações refinadas. Por exemplo, para transformações de granularidade fina, é difícil avaliar se a

redução de uma linha de código extra ou a adição de uma variável extra realmente melhora a qualidade do

código. No entanto, com métricas baseadas no olhar, observamos se os desenvolvedores fazem menos

varreduras no código, quais trechos exigem mais atenção, ou quais construções são mais complexas. Essa

metodologia tem o potencial de aprofundar a discussão sobre as vantagens de anotações disciplinares e

adicionar uma nova perspectiva de análise além do tempo e da precisão utilizada em estudos anteriores [12]

[13]. Vale a pena salientar que os resultados deste trabalho também podem contribuir para confirmar ou

descartar a necessidade da proposição de

novos refatoramentos para lidar com o uso indisciplinado de #ifdefs, bem como da avaliação de cada um

deles na prática para entender qual versão (disciplinada vs. indisciplinada) é melhor Essa pesquisa também

tem potencial de beneficiar desenvolvedores para que sejam mais produtivos, e dessa forma, beneficiar

empresas para que gastem menos recursos financeiros em atividades de evolução de código. Através da

análise de métricas como varreduras no código, varreduras em áreas específicas do código, frequência de

entradas nessas áreas, tempo para primeira varredura, temos meios para inferir padrões de leitura de

código, o
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que pode nos fornecer informações úteis sobre como os desenvolvedores compreendem o

código. Esses insights podem fornecer uma estratégia interessante para integrar um rastreador ocular em

uma ferramenta IDE (Integrated Development Environment) para fornecer feedback ao desenvolvedor sobre

como obter mais produtividade.

Os participantes da pesquisa também poderão ser beneficiados com uma experiência

prática na resolução de problemas no âmbito da computação. Eles serão apresentados aos meios

tecnológicos utilizados, bem como conceitos de compilação condicional, o que pode contribuir para sua

prática de escrita e evolução de código-fonte no seu cotidiano.

A pesquisa está bem fundamentada, com metodologia claramente definida e atende à Resolução 466/2012

e suas complementares do CONEP/ 2012.

Comentários e Considerações sobre a Pesquisa:

Todos os termos encontram-se devidamente anexados.

Considerações sobre os Termos de apresentação obrigatória:

Recomenda-se Envio do Relatório quando da realização do estudo.

Recomendações:

Somos de parecer favorável à realização do estudo.

Conclusões ou Pendências e Lista de Inadequações:

Considerações Finais a critério do CEP:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

TCLE / Termos de
Assentimento /
Justificativa de
Ausência

TCLE_Termo.pdf 10/10/2019
16:35:47

José Aldo Silva da
Costa

Aceito

Outros TERMO_DE_ANUENCIA_INSTITUCIO
NAL_COPARTICIPANTE_UEPB.pdf

25/09/2019
10:01:29

José Aldo Silva da
Costa

Aceito
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