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Abstract

In this thesis we study the existence of solutions for a class of semilinear Schrodinger equations

of the form

—Au+V(r)u= f(z,u), &RV,

where N > 2 the potential V' is a 1-periodic continuous function. In dimension N > 3, we
assume that 0 lies in a spectral gap of the Schrodinger operator S = —A+V and the nonlinearity
is from concave and convex type. In dimension N = 2, we assume that 0 lies in a spectral gap
or on the boundary of a spectral gap of & and we deal with nonlinearities having exponential
growth in the Trudinger-Moser sense. We treat the case where f(z,t) is periodic as well as the
nonperiodic one. The proofs relies on variational setting, by using linking-type theorems, some

Trudinger-Moser inequalities and concentration-compactness principles.

Keywords: Schrédinger Operator, Periodic Potential, Spectral Theory, Linking Theorem, Sub-
linear Growth, Critical Growth, Trudinger-Moser Inequality.
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Resumo

Nesta tese estudamos existéncia de solugoes para uma classe de equagoes de Schrodinger semi-

lineares da forma

—Au+V(r)u= f(z,u), &RV,

onde N > 2, o potencial V' é continuo e 1-periédico. Em dimensao N > 3, assumimos que 0
localiza-se em algum gap espectral do operador de Schrodinger S = —A 4+ V e lidamos com
nao linearidades do tipo concavo-convexo. Em dimensao N = 2, supomos que 0 localiza-se em
algum gap espectral ou fronteira de algum gap do operador S e as nao linearidades possuem
crescimento exponencial no sentido de Trudinger-Moser. Abordamos os casos em que f(z,t)
é periddica e nao periddica. Nossa abordagem é variacional, utilizamos teoremas de linking,

desigualdades do tipo Trudinger-Moser e principios de concentragao de compacidade.

Palavras-chave: Operador de Schrodinger, Potencial Periodico, Teoria Espectral, Teorema de

Linking, Crescimento Sublinear, Crescimento Critico, Desigualdade Trudinger-Moser.
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Notation

We select here some notations used throughout the work.

Spaces
LP(Q) = {¢ : Q@ = R, pis Lebesgue mensurable with [, [¢(z)[Pdz < oo}, 1 < p < o0;
L>(Q) ={¢: Q@ = R, ¢is bounded and Lebesgue mensurable};

LP

loc

denotes the characteristic function of K;

(Q) ={p : Q = R, opxx € LP(Q)for every compact set K contained in )}, where yg

HP(RY) denotes the usual Sobolev space of p-weak derivatives;
C(Q) denotes the space of continuous real functions in Q C R¥;

For an integer k& > 1, C*(2) denotes the space of k-times continuously differentiable real

functions in Q c RY;
C>*(Q) = ﬂkck(Q);

C°(€2) denotes the space of infinitely differentiable real functions whose support is compact
in Q c RY;

C'(X,Y) denotes the continuous functions space between X and Y

E’ denotes the topological dual of the Banach space E.

Norms

For 1 < p < oo, the standard norm in LP(RY) is denoted by || - ||,

Other Notation

|A] denotes the Lebesgue measure of a set A C RY;

X1



supp(p) denotes the support of function ¢;

C, ¢4, Cy, (5, ... denote positive constants possibly different;
C'(s) denotes constant which depends of s;

on(1) denotes a sequence which converges to 0 as n — oo;

ft)

f(t) =0(g(t)) as t — 0, if and only if, lir% o) < C for some constant C' > 0;
—Vg

— denotes weak convergence in a normed space;

— denotes strong convergence in a normed space;

— denotes continuous embedding;

(-, ) denotes the duality pairing between E and E’.
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Introduction

In this thesis we study the existence and multiplicity of weak solutions for a class of nonlinear

Schrodinger equations of the form
~Au+V(z)u= f(z,u), xRN,

where N > 2 and V € C(R",R) is a 1-periodic continuous function. We assume that zero lies
in a spectral gap or zero is an end point of the continuous spectrum of the Schrodinger operator
S =—-A+Vin L}RY). We treat nonlinearities having polynomial growth in RY, N > 3, or
exponential growth in R? in the Trudinger-Moser sense.

In the last decades, Schrodinger’s equation has been subject of intense study, see for instance
[13,33,54-56] and references therein. There are two closely related variants, precisely, the time
dependent and time independent one. We quote that the time dependent semilinear Schrodinger
equation is given by

2
m%—f = —;—mAm + V(@) — flz,¢), xeRY, (1)
where m and £ are positive constants, 1 : Rt x RYN — C, V e C(RY,R), and f € C(RN xC,C).

If we assume that f(x,tz) = f(z,t)z, t € R, z € C, with |z| = 1 for some function f €

C(RY xR, R) and we look for standing wave solutions to equation (1), i.e., solutions of the form

i€t

ot x) = e mo(x), (2)

where & is some real constant and v : RY — R, then applying (2) into (1) we obtain

2

_ﬁ_AU + (V(z) = Ev(x) = f(x,v), = €RY,

2m

which is a real elliptic equation for v, the so-called time independent Schrédinger equation. In
mathematics, it is not uncommon to normalize A = 1 and m = 1/2, therefore we can written

the time independent semilinear Schrodinger equation as follows
—Au+V(r)u= f(z,u), =RV, (3)

where v : RY — R, V € C(R",R) and f : RN x R — R. Equation (3) has been extensively

studied by means of many methods, among others, topological, numerical and variational. Par-



ticularly when it comes to variational method, critical point theory has been applied to various
problems in differential equations. Here we apply variational tools in some classes of (3) where
the potential V : RY — R is a continuous and I-periodic function and the nonlinearity f(z,t)
satisfies weaker growth conditions than those previously treated by others authors. We ap-
ply linking theorems to obtain nontrivial critical points for the energy functional associated to
equation (3), denoted by ® and defined in an appropriated Banach space E.

The location of 0 with respect to the spectrum of the Schrodinger operator S = —A+V is an
indispensable point to observe which type of geometry has the energy functional ® associated to
equation (3). If the spectrum of the operator S = —A + V lies in positive axis, then mountain-
pass type theorems has been applied (see [22]) to study equation (3) under different conditions
on f(z,t). Here, we suppose the presence of negative spectrum. In our class of potentials, the
spectrum is purely continuous, bounded from below and is the union of disjoint closed intervals
[56, Theorem XIII.100]. Intervals free of spectrum are called spectral gaps, these gaps appear due
to the periodicity of the potential, as is well known in solid states physics [7]. In the present work
we obtain some existence results for equation (3) when 0 lies in a spectral gap (see Chapters 11
and III) or on the boundary of a spectral gap (see Chapter IV). In both cases the null function
u = 0 is a saddle point. Thus, ® is strongly indefinite and linking theorems are applied. We
mention the papers [34,58,71] where the authors assumed 0 in a spectral gap of the operator
S = —A 4 V. Our results extend these previous. As far as we know, few papers deal with the
case where 0 lies on the boundary of the spectrum. We mention [9,59,75,76]. The polynomial
growth in the Sobolev sense is a common factor in all these papers. In this case we establish
existence results for nonlinearities having exponential growth.

Relative to the negative and positive parts of the spectrum, the spectral theory provide us
a decomposition E = E~ @ ET where the quadratic part of ® is negative definite in E~ and
positive definite in E. Each one infinite dimensional due to the nature of the spectrum, see
Remark 1.2.13. V. Benci and P. Rabinowitz [12] firstly proved the linking theorems with both
spaces infinite dimensional. An abstract result that extends the linking theorem of [12] is due
to W. Kryszewski and A. Szulkin [36] where a new degree of Leray-Schauder type is defined by
using a suitable topology. This topology has been applied for new generalized linking theorems
[37, 46, 60,68, 75, 76]. We apply the linking theorems obtained in [37] and [60] for our main
existence results involving (3).

Since we deal with equations involving functions defined in the whole space, there is a possible
loss of compactness. In general, the cause is the invariance of RY by the non-compact groups
of translations. To overcome this issue, some convergence results are established as well as
concentration-compactness principles are applied.

Let us now describe the content of this thesis, divided into four chapters.

In Chapter I we present a short history about the Schrodinger equation and some facts about
the periodic case. We briefly discuss the spectral theory applied, necessary for our development.
Two main features run through this spectral section: 0 lies in a spectral gap of the Schrodinger

operator S = —A + V or on the boundary of a spectral gap. Furthermore, we establish basic



properties of Banach spaces which are domains of energy functional associated with (3). In the
last section of Chapter I we present the results of the linking-type used.

In Chapter IT we study the existence of solutions for a class of semilinear Schrodinger equa-
tions (3) where 0 lies in a spectral gap of the operator S = —A + V and the nonlinearity f(z,t)
is a sum of a sublinear and a superlinear term. The combined effect of concave and convex
nonlinearities was initially studied by A. Ambrosetti, H. Brezis and G. Cerami [5] on bounded
domains. We refer [10,11, 73] for related results. In this case we assume that the superlinear
term satisfies a near condition to (AR) (see below) and a first solution is obtained by means
of Ekeland’s variational principle. We get a second solution applying a linking-theorem that
provides a Cerami sequence for ®. Its boundedness will be obtained with a restriction in the
sublinear power.

The equation studied in this chapter has the form
—Au+V(z)u = h(z)g(u) + k(z)f(v), xRN, (C)

where N > 3, the nonlinearities g(¢) and f(¢) have sublinear and superlinear growth, respectively,
and h(z), k(z) are weight functions. If we denote the spectrum of S = —A + V by o(S), the

following condition on V' is assumed

(Vo) V € C(RY,R) is 1-periodic in z;, j = 1,2, ..., N, and

A = suplo(S) N (—00,0)] < 0 < A :=inf[o(S) N (0, 00)].

We suppose the following assumptions on ¢(t) and h(x):

(go) g(t) is continuous and there are 1 < ¢ < 2 and C4,Cy > 0 such that

lg(t)] < Ci]t]*™! and G(t) > Cult]?, ViteR;

(hg) h(z) is nonnegative and h € L7 (RY) for some (2_5% <o <3

We impose the following assumptions on f(t) and k(z):
(fo) there are Cp > 0 and 2 < p < 2* such that |f(t)| < Co(Jt| + [t[P~1) for all ¢ € R;
(f1) 2F(t) < f(t)t for all t € R, where F(t) = fot f(s)ds;
(ko) k() is nonnegative and k € L>®(RY).

Our first result for equation (C) can be summarized as follows:

Theorem 0.0.1. Suppose that (Vo), (g0), (ho), (fo) — (f1) and (ko) hold. If h(z) is nontrivial

then equation (C) admits a nontrivial weak solution ug with negative energy.

To obtain another nontrivial solution for (C), we suppose the following additional hypotheses
on f(t) and k(x):



(f2) f(t) =o(t) as t — 0;
(f3) there exists u > p such that 0 < pF(t) < tf(t) for all ¢t # 0;

(f1) there exists 0 < 6 < p such that liIl'tn iOan(t)|t]_9
—

~

(ko) k(x) > 0in RY and k € L=(RY) N L*(RY) for some x > and 2 < p < 2*.

2= )N+2

In this case, our multiplicity result is summarized as follows.

Theorem 0.0.2 (Subcritical Case). Assume (Vo), (g0), (ho), (fo), (f2) — (fa) and (ko). If
I<qg<p/lp—1)<2<p<2 and 0 < |h|, is sufficiently small then equation (C) admits two

nontrivial weak solutions, ug with negative energy and another uy with positive energy.

Next, we deal with (C) in the critical case. More precisely, we consider the problem
—Au+ V(x)u = h(2)g(u) + k(z)|ul* 2u, =RV, (Ce)
In this situation, we replace condition (EO) by the assumption

(k1) k€ C(RY R), k(x) > 0 in RN and there exists v > 0 such that

limsup |z|"k(z) < oo.
|z|—o0

We also establish the existence of two nontrivial solutions, as follows:

Theorem 0.0.3 (Critical Case). Assume (Vp), (90), (ho) and (k1). If1 < g < 2*/(2*—=1), N >4

and 0 < |||, is sufficiently small then equation (C.) admits two nontrivial weak solutions.

In Chapter III we establish two existence results for the equation
—Au+V(2)u = flz,u), =cR? (Py)

where f(z,t) has subcritical exponential growth in the Trudinger-Moser sense, i.e., for any 5 > 0

|/ (x, 1)]

\t|—>oo ebt?

=0, uniformly in z € R?. (4)

We assume that 0 lies in a spectral gap of the operator S = —A + V defined in L?(R?). The
Theorems presented in this chapter refer to nonlinearities f(x,t) periodic and nonperiodic.
It is well known that the classical Ambrosetti and Rabinowitz [6] superlinear condition,

namely, there exists © > 2 such that

0<OF(x,t) <tf(zx,t), VxcR}® t#0, (AR)

is quite natural to ensure that (PS) sequences are bounded. Furthermore, it can contribute to

show that the energy functional ® has geometric properties required in critical point theorems.

4



Many efforts has been made to avoid this assumption [39,41,47,60]. In this direction, in the
papers [65,76] the authors supposed the following super-quadratic condition

flz.t)

t— T is stricly increasing on (—o0,0) U (0,00), uniformly inz € RY. (5)

The condition (5) was refined in [39] and weaker in [58]. In our results involving nonlinearities
with exponential growth, the linking theorem applied produces a (PS) sequence for each func-
tional considered. We assume a consequence of growth condition (5), see condition (f3) below,
as expected, important for boundedness of (P.S) sequences obtained.

Precisely, we assume that

(Vo) V € C(R* R) is 1-periodic in z;, j = 1,2, and

A = suplo(S) N (—o00,0)] < 0 < A :=inf[o(S) N (0, 00)].
Setting F'(z,t) = fot f(z, s)ds, we suppose that f is continuous, satisfies (4) and the following
conditions:
(fo) there are § > 0 and 0 < v < A such that |f(z,t)] < ~v|¢| for any [t| < ¢ and = € R?;
(f1) 2F(x,t) > M2 for any x € R% ¢t € R and

F(z,t)
t2

— 400 as t* — oo, uniformlyin z € R?

(f2) f(x,t) is locally bounded in the variable ¢, that is, for any bounded interval J C R, there
exists C' > 0 such that |f(z,t)] < C for every (z,t) € R* x J;

(f3) there exists W € L'(R?) such that for all r € [0, 1] it holds
2(F(z,t +8) — F(x,t)) > (2rs — (r — 1)) f(x,t) — W(z), Vze€R? stcR.

Now, our first existence result for equation (Py) can be summarized as follows.

Theorem 0.0.4. Assume (Vo) and (fo) — (f3). If f(z,t) is 1-periodic and satisfies (4) then

equation (Py) admits a nontrivial weak solution.
In the case where the nonlinearity f(z,t) is nonperiodic, in addition we will assume that

(fa) there exist ag > 0, Ry > 0 and h € L*'(Bg,) such that

|F(z,t)| < h(z)e®”, Ve B,teR

In this case, our second existence result is the following:



Theorem 0.0.5. Assume (Vy) and (fo) — (f1). If f(x,t) satisfies (4) then equation (Pys) admits

a nontrivial weak solution.

Finally, Chapter IV is devoted to study a class of semilinear Schrédinger equations
—Au+V(2)u=g(z,u), x¢cR? (Py)

where 0 is a right boundary point of the spectrum of the Schrodinger operator § = —A + V.
We define the domain of our energy functional as completeness of E with respect to an adequate
norm. In fact, a Banach space denoted by (E,, | - |lq) and such that H' C E, C E. In order
to the energy functional be well-defined we obtain a Trudinger-Moser inequality in the space E,
by using Schwartz symmetrization, among other results. This case is more delicate because £,
is not a Hilbert space and we lost some embeddings.

We assume that the potential V' (z) satisfies:
(Vo) V € C(R* R) is 1-periodic in z;, j = 1,2;
(V1) 0 € o(S) and there exists b > 0 such that o(S) N (0,b) = 0.

We assume that the nonlinearity g(z,t) has exponential subcritical growth at infinity,

_g(a,t)
l
|t\1—1>noo eht?

=0 forall g>0, (6)

and satisfies:

(go) There are a > 0 and ¢ > 2 such that

2G(x,t) > alt|? forall z € R? t € R, where G(,t) := / g(x, s)ds;
0

(1) g € C(R? x R,R) is 1-periodic in z; for j = 1,2;
(g2) g(x,t) = O(|t|" 1) as t — 0 uniformly in x € R? where ¢ > 2 is given in (go);

(93) g(x,t) is continuous and locally bounded in the variable ¢, that is, for any bounded interval
J C R, there exists C' > 0 such that |g(x,t)| < C for every (z,t) € R? x J;

(g94) There exists W € L'(R?) such that for all z € R? s,t € R and r € [0, 1] it holds

2(G(z,t +8) — G(x,t) > (2rs — (r — 1)*)g(x,t) — W(x).

Our main result of existence of solution for problem (P,) under the above hypotheses can be

summarized as follows.

Theorem 0.0.6. Assume (Vo) — (V1) and (g0) — (94). If g(x,t) satisfies (6) then the problem
(Py) has a nontrivial weak solution. Moreover, if M denotes the collection of the solutions of
(Py), then there is a ground state solution, i.e., a solution of (P,) that minimizes the energy

functional over M. Furthermore, uw € C*(R?) and u(z) — 0 as |z| = oo.



Chapter 1
Preliminary Results

Our basic preliminaries, concepts and some results for subsequent chapters are presented.
For more details, we refer [26,27,50, 56, 64].

1.1 On the Schrodinger Equation

In 1926, the Austrian theoretical physicist Erwin Schrodinger (1887-1961) published four
works in the Annalen der Physik journal in which he laid the foundations of Wave Quantum
Mechanics. The Schrodinger equation, formulated to describe the quantum state of a system,
is celebrated as one of the most important achievements in 20th Century physics. An original
interpretation of the physical meaning of the wave function. A consistent theory of microscopic
phenomena is the quantum mechanics developed by E. Schrodinger, W. Heisenberg, M. Born,
P. Jordan, N. Bohr, W. Pauli, P. Dirac and other scientists.

1.2 The Spectrum of the Periodic Schrodinger Operator

In pure mathematics, the Schrodinger equation is one of the basic equations studied in the
field of partial differential equations, and has applications in spectral theory, geometry, integrable
systems, among others. There are actually many generalizations and variants of the Schrodinger
equation. The Schrodinger equation with periodic potential appears in a natural way, e.g., in
the quantum theory of solids [56]. This equation has been studied extensively in recent years
and substantial advances have been made both in the theory and in applications.

In this section we present the Schrodinger operator which will be used in the next chapters.
The potential V : RY — R is assumed to be continuous and 1-periodic, i.e., V(z+T) = V(z), for
all T € ZV. Hereafter we denote by S = —A+V the self-adjoint operator defined in L?(R") with
domain H?(RY) and V' (z) under the above conditions. Precisely, defined via Fourier transform.

By the Plancherel Theorem (see for instance [31]), the Fourier transform @, of ¢, is a unitary
isomorphism on L?*(RY). Considering the Sobolev space H*(RY) = {1 € L*(RY), (1 + |p|?) b e
L*(RM)}, we can define the operator D = —A in L*(RY) acting in H*(R"™) by the identity
(=A4) (p) = P4 (p)-



Let f: RN — R be a measurable function and let D(M;) := {¢ € L*(RY), fi € L*(RN)}.

Then, the multiplication operator,

My : D(My) — L*(RY),  M(¥)(p) = f(p)i(p),

is a self-adjoint operator. As the Fourier transform is a unitary operator, we conclude that
(—A, H*(RY)) is a self-adjoint operator. Furthermore, since the potential V'(z) is a bounded
real function, the multiplication operator My is also self-adjoint. Having disposed of this, we
can see that § = —A + V defined in L?(RY) with domain H?(R") is a self-adjoint operator.

For more details we refer the reader to [55].

1.2.1 Elements of Spectral Theory

The literature on spectral theory is very extensive. Listed below are only the basic concepts,
properties, as well as some references containing the most fundamental results related to the
problems studied in the present work.

Let E be a Hilbert space and let S : D(S) C E — E be a linear operator, where D(S)
denotes the domain of S. We denote by R(S) the range of the operator S.

Definition 1.2.1. We say that z € C belongs to the resolvent set of S if there exists the operator

R. = (S — zId)™' which is bounded and D(R,) = E. The complement of the resolvent set is
called the spectrum, o(S), of S.

The spectrum of an operator is in fact the disjoint union of sets, which are defined below.

Definition 1.2.2. The point (or discrete) spectrum of S, 0,(S), consists of all z € C such that
R. = (S — zId)™! does not emist.

Definition 1.2.3. If R(S — zId) is dense in E and if S — zId has an unbounded inverse, then

z is said to belong to the continuous (or essential) spectrum of S, o.(S).

Definition 1.2.4. If R(S — zId) is not dense in E but S — zId has an inverse, bounded or

unbounded, then z is said to belong to the residual spectrum of S, o.(S).
Thus we have the following decomposition o(S) = 0,(5) U o.(S) U g,(95).

Definition 1.2.5. The complex number z is called an approximate eigenvalue of S if, for any
e > 0, there exists u € D(S) such that ||u|]| =1 and ||(S — zId)u|| < e. We denote by o,(S) the

set of all approrimate eigenvalues of S and call this set the approzimate spectrum of S.
Below, we have a characterization of this set.
Proposition 1.2.6. z € 0,(5) if only if S — zId does not have a bounded inverse.

As consequence of the above proposition and definitions of ¢,(S) and o.(S) we obtain
[0,(S) Ua.(9)] C a.(S) Ca(S). (1.1)
Now we collect some properties of the spectrum of a self-adjoint operator.
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Proposition 1.2.7. Let S : E — E be a self-adjoint operator. Then o(T) C R and o,.(T) = (.

The set O(S) = {(Su,u) : u € D(S), ||u|| = 1} of complex numbers is called the numerical
range of the operator S. Thus, this is a subset of real numbers in the case when S is self-adjoint.
Moreover, an interval indeed due to its convexity (see [27]). Another interesting fact is the

following result.

Proposition 1.2.8 ([27]). Let S be a self-adjoint operator defined in E. Then ©(S) is bounded

from below if and only if o(S) is bounded from below. Moreover, the lower bounds are equal, i.e.,
inf{A: A € O(S)} =inf{A: A € o(9)}.

With this we can see that the spectrum of the operator S = —A+V defined in L*(RY) with
domain H2(RY) is bounded from below. Let Ay > 0 such that V(z) + Xy > 0, Vo € RY. For
any u € H?(R™) \ {0}, we have

(Su,u)y = / (IVul® + V(z)u?) dz > —Xollulf3.
RN
Thus we obtain
O(S) = {(Su,u)y : u € H*RN), ||lulla = 1} € (=X, 00) and so o(S) C (=, 0).

Furthermore, one can shows that the periodic Schrodinger operator S has no eigenvalues, in
other words, that 0,(S) = 0. A more complete answer about the spectrum of S is given by the
following theorem (see [26], [56]).

Theorem 1.2.9. Let S = —A+V the periodic Schradinger operator defined in Section 1.2. Then

o(8S) is purely continuous, bounded from below and is the union of disjoint closed intervals.

We recall that open intervals free of spectrum are called spectral gaps.
Let P : E — E be an orthogonal projector, that is, P is self-adjoint and P? = P.

Definition 1.2.10. A family of orthogonal projectors {E(N\) : E — E}aer, in a Hilbert space E,

is called a resolution of the identity if it satisfies the following conditions:
(1) EN)E(p) = E(min{A, u});

(17) E(—o00) =0 and E(+o00) = Id, where E(£oo)u := lim EN)u, Yu € E;

A—Fo0

(1ii) EAN+0) =E(N), where EA+0)u:= lim E(p)u, Vue E.

B, >

The next result can be found for instance in [50].

Lemma 1.2.11. Let {E(N) : E — E}cr be a resolution of the identity. Then, for all X € R,
the operators

EA+0)= lim &E(u) and EA—-0)= lim E(u),

B, p>A p=A, p<A

are well defined when considering the limit for the strong convergence topology.

9



We can see that the condition (i) it holds if and only if A — (£(\)u,u) is non decreasing
for each u € E. Moreover, for all u,v € E, the function A — (E£(N)u,v) is a function of
bounded variation. The family {E(A)}aer is also called decomposition of identity, spectral family
or spectral resolution. Associate to a spectral family of projectors in a Hilbert space E we have

a self-adjoint operator defined in E. The converse is true. For more details, see e.g. [50].

Theorem 1.2.12. Any self-adjoint operator S : E — E in a Hilbert space E admits a spectral

resolution such that
(Su,v) = / MENu,v),  Su= / M(EN),
R R

where in the right hand we have integrals in the Riemann-Stieltjes sense.

Let I = (A1, A2) an interval. By using condition (¢) in Definition 1.2.10, we will denote by
E(I) the spectral projector £(I) = E(A2) — E(A1).

Remark 1.2.13. We observe that the continuous spectrum consists of all non-isolated points of
o(S) and eigenvalues of infinite multiplicity. Let E(I) be the spectral projector associated with

an interval I C R, an equivalent definition for continuous spectrum is given by:

A€o (S) & dimEN—e A N+e)E =00,Ve>0.

1.2.2 Zero in a Spectral Gap
Assuming that 0 lies in a spectral gap of the Schrodinger operator S = —A + V defined in
L*(RY), more precisely, under the hypothesis

(Vo) V € C(R* R) is 1-periodic in x;, j = 1,2, and

A= sup[o(S) N (—00,0)] <0< A :=inf[o(S) N (0,00)],

we will find a Banach space (F, || - ||) on which the energy functional associated to equation (3),
® : F — R given by

P(u) := /11@2 (IVul® + V(z)u?) dv — 2 /11@2 F(z,u)dz,

is well defined. In order to define the space E we consider the self-adjoint operator S = —A+V
defined in L?(R") acting in D(S) = H?(RY). Let {E£()\) : L*(RY) — L*(RY)}\er be the spectral
family of S, and |S|*/2 be the square root of |S|. Setting U = Id—&(0)—&(—0) we can see that U
is unitary and commutes with S, |S| and |S|'/2. Moreover S = U|S| is the polar decomposition
of the operator S (see [35], p. 358).

Let us denote by E := D(|S|'/?) the domain of |S|'/2. Tt is well known that £(A\)E C E for
all A € R. Furthermore, defining

E :=E&(0)E, ET:=(Id— E&(0))E,
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(u,v) == (|S]"%u, |S|"*v)y, Yu,v € E,and |jul = v/(u,u),
where (-, -)s is the usual inner product in L?(R"), we have the following results (see e.g. [9,68]).
Lemma 1.2.14. Assume (Vp). For anyu™ € E~, ut € E™, it holds (u™,u")y = (u™,u™) = 0.
Moreover,
(Su,u)s = —lull* < Mullz, Yue E” (1.2)
and
(Su,u)s = Jul > Aljul, Vue E*. (13)

Proof. Let us first observe that if v € E, then v € ET if only if £(0)u = 0. For v~ € E~ and
ut € ET, there are &, u" € E such that u= = £(0)a~ and u™ = [Id — £(0)]u". Therefore,

and
|S[2u™, |8 Put),

(

(|SIV2e(0)a™, [S[V2[1d — £(0)]a*).
(|S1"2a~, £(0)[1d — E(O)]|S[*a*)
0

(w™,u")

Now, we have

| = (Sumu ), = / pd(€ (),

= [ it o,

< A ([E(0) = E(—00)]u,u™)
= Mu"||3, Vu €E.

2

Similarly, we see that for all u™ € E™, one has

[t = (Su™,u")y = /Rud(sw)utuﬂz

- /Am pd([E (1) — E0)]u™, u’),

> A([E(+00) — E(0)]u™,ut),

= Allu* 3.

Lemma 1.2.15. Assume (V). Then E = E~ @ ET and || - || is equivalent to || - || on E.
Proof. Since £(+00) = Id, it follows that for u € E,

u=E(0)u+ [E(+00) — E(0)]u.
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This together with the previous lemma shows that £ = E~ @ E™.
Let uw € C°(RY) and Ay > 0 such that V(z) + A\g > 0 for all z € RY. Setting V,, =
sup |V (z)|, we have

zC€RN

lull* = (IS]u, u),
= ((S + Ao)Uu,u)y — Ao Uu, u),
< U(S + X0)2[|211(S + Ao)Zull2 + Nol|tdul |2 ull2
< (S + Xo)2ull3 + Aollul3

< (20 + Voo [[ull-

The proof is completed by showing that ||ul/z: < C|lu||, for some constant C' > 0. For
u~ € E~ we apply the inequality (1.2) as follows

w170 < ((S+ X + 1)u_,u_)2
< (UISIVPu, |S[Y2um), + (Mo + Dlu |13
< ISI"2u[I5 = (Ao + 1)/AfJu”|?

< (1 - X()\O + 1)) =12

If ut € B, using (1.3) we get

lut |3 < ((S + o+ 1)u+,u+)2
< (UISIY?ut, ISP ut), + (Ao + DJut |3
< NSIM2u™ 13 + (Ao + 1) /Al

A+X+1
= () e

This finishes the proof. [

We have £ = E~ @ Et where the bilinear form B : F x £ — R,
B(u,v) = / (VuVv + V(z)uv) dr,
RN

is negative definite and positive definite respectively. This decomposition corresponding to
negative part and positive part of the spectrum in real axis. The spaces E~ and E* are S-
invariants. Moreover, by the previous results, if u € F~ and v € ET, then u and v are both
orthogonal with respect to (-,:)2 and (-,-). Now, by definition, |S|lu = Su if v € ET and
|S|u = —Suifu e E~. Thus, [S|: E — FE is a positive self-adjoint operator. Therefore, we can

define the square root of |S|, which is also a self-adjoint operator. The equality of operators can
2
be verified (|3|%> w=|S|u, Yu € D(S).
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With this, we obtain

B(u,v) = /]RN (VuVo + V(z)uv) dx
Su,v)y
Su” + Sut,v)y

= (

= (

= (Su™,v)y + (Su~,v),
(ISJu™ v )2 = (|Slu™,v7),
= (

= (

= (

[Slput, [S[2v7)s = (I8]7u, |S[207)s
ut o) = (um,07)

ut,v) — (u,v).

In particular,
B(u,u) = [[u*]* = [Ju”|*. (1.4)

Thus, if u € F, we have

®u) = 5 (1P = ) = [ Flawde

N | —

1.2.3 Zero on the Boundary of a Spectral Gap

In the Chapter IV we treat the case where 0 is a right endpoint of the spectrum of the
Schrodinger operator S. This location causes a loss of completeness in the space E~. We can

see this statement proceeds by virtue the following result.

Proposition 1.2.16. Suppose that 0 € o(S) and there exists b > 0 such that o(S) N (0,b) = 0.

Then norm || - || is not equivalent to H'-norm on E~.

Proof. Since 0 € o(S) and o(S) = 0.(S) = 0,(S), taking ¢ = 1/n in Definition 1.2.5, we
obtain a sequence (u,) C L*RM) N E~ such that ||u,|z = 1 and ||Su,||s — 0. Therefore,
since H'(RY) — L*(RY) with continuous embedding, there does not exists C' > 0 satisfying
lu=||gr < Cllu”|| for all u= € E~. This completes the proof. O

1.3 The Weak-Strong Topology

In this section we use the same terminology from [9]. Let E be a separable Hilbert space
endowed with inner product (-,-) and the associated norm || - ||. Let £~ be a closed subspace of
E and let Et := (E~)Y. On E we define a new norm

= 1
||u||T::maX{z:2]€ (e, u )|,||u+||}, u=u +ut € E=FE ®ET,

k=1

where B = {e1, es,€3,...} is a complete orthonormal system in E~.
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For reasons that will become clear later, the topology induced by || - ||, will be called the

weak-strong topology. A first indication is the following.

Proposition 1.3.1. If (u,) C E~ is bounded, then
|lup —ull, =0 < w,—u in E.

Proof. Suppose that there exists C' > 0 such that [|u,| < C for all n € N and ||u,, — u||, — 0.
Let v =3 " arer € E~ and let € > 0 be given. We define vg = Y7 . arer and we take
K > 0 sufficiently large such that ||vg|| < e/4C. Then,

|(vie, un, — u)| <20 v || < €/2.
Now, by taking ng € N large enough that ||u, — ul|, <e/(2 max 2| |) for n > ng, we obtain

K

Z ag(ex, u, — u)

k=1

(v — v, uy —u)| =

f1
k
< max 2oy ;?1 ok | (er, tn — )]

<e/2,

for n > ng. Therefore we conclude that |(v,u, — u)| < ¢ for all n > ny, ie., u, — u in E~.
Conversely, if u,, = w in E~ then there is a constant C' > 0 such that ||u| < C and ||u,|| < C, for
all n € N. For any ¢ > 0, we take K > 0, ng € N such that 1/2% < ¢/4C and |(ey, un, —u)| < /2
for 1 <k < K, n > ngy. Thus we obtain

o0

1
|un — ull; = YA (e, un — u)|
2
k=1
| =1
=3 sl =)l Y il un )
k=1 k=K+1
e L1 = 2C
S5yt X o
k=1 k=K+1
<€ n €
-2 2
This finishes the proof. O

In other words, the above proposition says that on bounded subsets of £~ the topology
induced by || - ||, is equivalent to the weak topology of E~. In the next chapters we will make
use of this topology. In each case, specifying the context in which it is being applied, i.e., the

domain of the energy functional.
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1.4 Kryszewski-Szulkin’s Linking Theorem

In this section we present the linking-theorem proved by W. Kryszewski and A. Szulkin [36]

which makes use of the weak-strong topology.

Theorem 1.4.1. Let E be a Hilbert space and suppose that ® € C'(E,R) satisfies the following
hypotheses:

(1) V& is weakly sequentially continuous and there exists a closed separable subspace Y such that

® is T-upper semicontinuous, where T is the weak-strong topology on E =Y ®Y*;
(ii) there are constants n >0, p > 0 such that ®|S,NY+ >n;

(ii1) there are zo € Sy NYL and R > p such that ®|0Qr < 0, where Qp :=={u =y +s2:y €
Y, flull < R, s > 0}.

Then there exists a sequence (uy) such that V& — 0 and ®(u,) — ¢ for some c € [n,supg, ®|.

Remark 1.4.2. In Chapter II we will apply a generalization of this theorem obtained by G. Li
and A. Szulkin [37]. In chapters III and IV we use a variant obtained by M. Schechter and W.
Zou [60].

15



Chapter 2

On a Schrodinger Equation with
Periodic Potential Involving Concave

and Convex Nonlinearities

2.1 Introduction and Main Results

This Chapter is concerned to the existence and multiplicity of nontrivial solutions for the

following nonlinear stationary Schrodinger equation
—Au+V(z)u = h(z)g(u) + k(z) f(u), =RV, (©)

where N > 3, the potential V(z) € C(RY,R) is 1-periodic, 0 lies in a spectral gap from the
spectrum of the Schrédinger operator S = —A+V, the nonlinearities g(¢) and f(¢) are sublinear
and superlinear, respectively, and h(z), k(x) are weight functions satisfying suitable hypotheses.
The results obtained in this chapter are the subjects of the paper [45].

The equation (C) with V(x) periodic has been extensively studied in the past years, see
for instance [9,11,19,22,36, 37,49, 60,68, 75] and references therein. Problems with combined
nonlinearities in bounded domains were first investigated by A. Ambrosetti, H. Brezis an G.
Cerami [5] (see also G. Tarantello [69]). Afterwards, many authors have derive a wide number
of existence and multiplicity results for elliptic problems involving concave and convex terms
in bounded domains, see [5,11,30] and references therein. In unbounded domains we refer the
works [4,8,15,18,41,70] where the authors have studied the existence of solutions in RY for
some semilinear elliptic equations related to problem (C). Our main aim in this chapter is to
consider nonlinearities concave and convex with critical growth. Finally, we refer the reader to
the works [19, 20, 60] where the authors have studied problem (C) with periodic potential and
periodic nonlinearities with critical growth. Note that, in our hypotheses we are not assuming
periodicity conditions on the nonlinearities.

In order to introduce our hypotheses on the potential V(x), let us denote by o(S) the
spectrum of the Schrodinger operator S = —A+V defined in L?*(RY). When V() is continuous
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and periodic, it is well known that ¢(S) is purely continuous, bounded from below and the union
of disjoint closed intervals (see [56], Theorem XIII.100). Here, we focus our study in the case

where 0 lies in a spectral gap of S. Precisely, we assume the following condition on V'(z):

(Vo) V € C(RY,R) is 1-periodic in z;, j = 1,2,..., N, and

A :=suplo(S) N (—o0,0)] < 0 < A :=inf[o(S) N (0, 00)].

Setting G (¢ fo s)ds, we suppose the following assumptions on ¢(¢) and h(z):

(go) g(t) is continuous and there are 1 < ¢ < 2 and C4, Cy > 0 such that

g < Cift]*™" and  G(t) = Coft]?, ViteR;

(ho) h(x) is nonnegative and h € L°(RY) for some (2_;)% <o < 227(1'

We impose the following assumptions on f(t) and k(z):
(fo) there are Cp > 0 and 2 < p < 2* such that | f(¢)| < Co(|t| + [t[P~1) for all ¢ € R;
(f1) 2F(t) < f(t)t for all t € R, where F(t) = [ f(
(ko) k(z) is nonnegative and k € L>®(RY).

Our first result for equation (C) can be summarized as follows:

Theorem 2.1.1. Suppose that (Vo), (g0), (ho), (fo) — (f1) and (ko) hold. If h(z) is nontrivial

then equation (C) admits a nontrivial weak solution uy with negative energy.

In order to obtain another nontrivial solution for (C), we suppose the following additional
hypotheses on f(t) and k(x):

(f2) [(t) = o(t) as t = O;
(f3) there exists p > p such that 0 < pF(t) < tf(t) for all t # 0;

(f1) there exists 0 < 6 < p such that lirtn ioan(t)\t]’e > 0;
—

~

(ko) k(x) >0 in RY and k € L®(RY) N L*(RY) for some x > and 2 < p < 2%

2= )N+2
In this case, our multiplicity result is summarized as follows.

Theorem 2.1.2 (Subcritical Case). Assume (Vo), (g0), (ho), (fo), (f2) — (fa) and (ko). If
l<qg<p/lp—1)<2<p<2and 0 < ||h|, is sufficiently small then equation (C) admits two

nontrivial weak solutions, ug with negative energy and another uy with positive energy.
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Next, we deal with (C) in the critical case. More precisely, we consider the problem
—Au+ V(x)u = h(2)g(u) + k(z)|ul* u, xRN, (Ce)

In this situation, we replace condition (/]{?0) by the assumption

(k1) k € C(RY R), k(x) > 0 in RN and there exists v > 0 such that

limsup |z|"k(z) < oo.
|z|—o00

We also establish the existence of two nontrivial solutions, as follows:

Theorem 2.1.3 (Critical Case). Assume (Vp), (90), (ho) and (k1). If1 < q < 2*/(2*=1), N > 4

and 0 < ||k, is sufficiently small then equation (C.) admits two nontrivial weak solutions.

Remark 2.1.4. An example of nonlinearity g(t) satisfying hypothesis (go) is given by G(t) =
(arctg(t) + m)|t|?. Indeed, note that G(t) > 7|t|?/2 and

t|9 + q(arctg(t) + m)[t|7 >t

g(t) = G'(t) =

1+1t2
Thus |g(t)| < [¢|7[|¢]/(1 + t2) + 3wq/2] < C|t|7 1. A standard example is g(t) = |t|7>t.

Remark 2.1.5. In Theorem 2.1.3 we assume that f(t) = [t|*> ~2t for the sake of simplicity. How-

ever, our proof of Theorem 2.1.3 holds if we suppose a more general nonlinearity f(t) satisfying

(fo), (f2), (f3) and
(Ja) F(t) > %m?*, for all t € R,

In particular, under the hypotheses of Theorem 2.1.3, problem (C) admits two nontrivial weak
solutions if f(t) = [t|* 72t + C|t|P~%t with C >0 and 2 < p < 2*.

Usually, there are at least two ways to get critical points of the energy functional ® associated
to (C), namely, the Ekeland Variational Principle and the minimax approach. Since we are
supposing that the potential V(x) is periodic and satisfies (Vp), the quadratic form B(u,u) :=
Jan[IVul?+V (z)u?]dz is no longer a norm. In fact, this quadratic form is strongly indefinite (see
[9,68] and references therein) in a subspace of infinite dimension and hence the usual Linking
Theorem can not be applied directly. Moreover, roughly speaking, since the Sobolev embedding
HY(RY) — LP(RY), for 2 < p < 2*, is not compact, Palais-Smale condition is not valid in
general. To overcome these difficulties, we use a version of the Linking Theorem due to G. Li
and A. Szulkin [37] to obtain a Cerami sequence at the minimax level. Next, by using some
convergence results in combination with the Concentration-Compactness Principle of Lions, we
prove that the weak limit of the Cerami sequence is a nontrivial solution of (C). We quote here
that the invariance of the energy functional ® with respect to the Z"-action on H*(RY), given
by (T * u)(z) = u(T + z) with T € Z" and v € H*(RY), plays an important role in order to
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obtain nontrivial weak solutions in many papers, see for instance [19,60]. This fact is true if h(z)
and k(z) are both periodic. To the authors knowledge, there seems to have very little progress
on the existence and multiplicity of solutions for equation (C) with V' (z) periodic and h(z), k(z)
nonperiodic.

The present Chapter is organized as follows: In Section 2, in order to apply the varia-
tional framework, we use spectral theory to obtain a suitable domain for the energy functional
associated to the problem. In Section 3, we present the proof of Theorems 2.1.1 by using mini-
mization arguments. In Section 4, we establish the geometry for the energy functional required
by the Linking Theorem and we prove Theorem 2.1.2. Finally, in Section 5, by applying the
Concentration-Compactness Principle, we prove Theorem 2.1.3.

Throughout this Chapter H!(RY) denotes the Sobolev space endowed with the inner product

(u,v) = / (VuVo +w)dr, u,v € H'(RY),
RN

and the associated norm is represented by || - ||z1. As before, we use || - [[, to denote the norm
of the Lebesgue space LP(RY), 1 < p < 0o, and (-, ), to represent the inner product in L*(RY).
The symbols C,C;, + = 0,1,2,... will denote various constants.

2.2 Variational Setting

In this section, in order to develop a variational approach to study the existence of nontrivial
solutions for equation (C), a key step is to identify a suitable function space setting. First, we
observe that from (fy), there are Cy, Cy > 0 such that

|[F(t)| < Ci]t]? + Coft]P, VteR. (2.1)

Under the hypothesis (V) we will find a Hilbert space E on which the energy functional associ-
ated to (C), ® : E — R given by

d(u) = %/}RN (IVul®> + V(z)u?) do — /

RN

h(x)G(u)dx —/ k(z)F(u)dz,

RN

is well defined. In order to define the space E, we recall that the domain of the self-adjoint
operator § = —A +V defined in L2(RY) is D(S) = H?(RY). Let {£()\) : L*(R?) — L*(R?)}rer
be the spectral family of S, and |S|'/? be the square root of |S|. Setting U = Id — £(0) — £(—0)
we can see that U is unitary and commutes with S, |S| and |S|'/2. Moreover S = U|S| is the
polar decomposition of the operator S (see [35], p. 358).

Next, let us denote by E := D(|S|*/?) the domain of the operator |S|'/2. It is well known
that E(A\)E C E for all A € R. Furthermore, defining

E~ = &(0)E, E*:=(Id— &(0))E,
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(u,v) == (|8, |S|"*v)y, Vu,v € E and |jul| := v/(u,u),
we have the following result (see Chapter I).

Lemma 2.2.1. Assume (V). Then E = E~ & E*, the norm || - || is equivalent to || - ||gn on E

and (ut,u™) = (ut,u")y =0 for any u=u" +ut € E. Moreover,
(Su,u)e = —[lul* < Aljullz, Vue E” (2.2)

and
(Su,u)y = Jul® > Alul}, Vue E*, (2.3)

where A < 0 < A are defined in hypothesis (Vp).

Remark 2.2.2. It follows from Lemma 2.2.1 that ||ul|* = ||u™||* + ||u™||* and the embedding
E < L"(RY) is continuous for any 2 < r < 2.

In view of Lemma 2.2.1, (go), (ho), (ko) and (2.1) we see that the functional ® is well defined

on E and (see (1.4)) can be rewritten as

O(u) = % ([ = [Ju™]?) = /RN h(x)G(u)dx — /RN k(z)F(u)dx, Yué€E.

Furthermore, combining Remark 2.2.2, (go), (ho), (fo), (ko) and standard arguments we have
that ® € C'(E,R) and

(@ (u),v) = (u,v) — (u",v) — /RN h(x)g(u)vdr — /RN k(z)f(u)vde, Vu,v € E.

Thus, critical points of ® correspond to weak solutions of (C).

2.3 Solution Via Minimization

In this section we will prove the existence of a solution via local minimization arguments.

Before proceeding with the proof of Theorem 2.1.1, we need some auxiliary results.

Lemma 2.3.1. Assume (go), (ho), (ko) and (fo). Then, for any p > 0 it holds

—00 < ¢, = inf ®(u) <0,
uchb,

where B, = {u € E : ||u]| < p}.

Proof. Using assumptions (go), (ho) and (ko) together with (2.1) and Remark 2.2.2, for u € B,

we get

/RN h()G (u)dz + / k(x)F(u)dz < Cil|hllo[[ul]? + Collklloc|[ull* + Cs[lf ]| o ull”-

RN
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Hence,
1

®(u) 2 =5 [lu”|* = Callull’ = Csllull* = Cllull”
1
> —50° = Cap® = Csp” = Cop”

and therefore ¢, = inf, .5 ®(u) > —oco. On the other hand, using the fact that G(t) > C1[t[?
together with (2.1), for any uy € E\{0} fixed and t > 0 we see that

D (tug) < %||uar||2 - /]RN h(x)G(tug)dx —/ k(x)F(tug)dx

]RN
<20y — Cst? + Cyt? + Cst?

=9 [t*7Y(Cy + Cy) + 77905 — C5] .
Consequently, ®(tuy) < 0 for ¢ > 0 sufficiently small and this completes the proof. m

To carry forward, we establish the following convergence results.

Lemma 2.3.2. Suppose that (hg), (go), (ko) and (fy) hold. Then the functionals defined by

Ji(u) = / h(z)G(u)dz and Jo(u) = / h(z)g(u)udx
RN RN
are weakly continuous on E. Moreover, if u, — u weakly in E then

/]RN k(z) f(u,)vde — k(x)f(u)vde, YveFE and (2.4)

and
/IRN h(z)g(u,)vde — h(x)g(u)vdz, ¥ v € E. (2.5)

RN

Proof. Consider a sequence (u,) C F such that u, — v in E. For any R > 0 fixed, we have

[ (utm) — i () s/

Br

h(z)|G(u,) — G(u)|dx + /|>R h(z)|G(u,) — G(u)|dx

=: I1(n) + Ix(n).

By the Lebesgue Dominate Convergence Theorem and the compact embedding £ <— L"(Bg),
1 <r < 2* we have I1(n) = 0,(1). Since (u,) C E is bounded and h € L7(R"), it follows by
the Hélder inequality and the continuous embedding E — L"(RY), 2 < r < 2%, that

sorsa( [ wora) [(fprs) "+ (] o)
< Cy (/QM |h(x)|"dx> 1/0.

Choosing R > 0 sufficiently large we see that Iy(n) = 0,(1). Therefore J; is weakly continuous.

A similar argument proves that J, is weakly continuous. Now, we will prove (2.4). By density
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we can assume that v € C°(RY). If we denote Q = supp(v) then f(u,)v — f(u)v almost every-
where in Q. Moreover, from (fy) and since, up to a subsequence, |u,| < x, almost everywhere
in Q, with x, € L"(Q) for 1 <r < 2*, it follows that

| f (un)v] < Crlup|v] + Colun [P |v| < ¢, almost everywhere in Q2 € RY,

where ¢, € L'(Q). Hence, by applying the Lebesgue Dominate Convergence Theorem we obtain

the desired result. Similarly, we can prove (2.5). O

Proof of Theorem 2.1.1: Invoking the Ekeland Variational Principle, we obtain a minimizing

sequence (u,) in B, such that
P(u,) = ¢, and P (u,) — 0.

Since ||u,|| < p, going to a subsequence if necessary, we can assume that u, — wuy weakly in
E and u,(x) — up(x) for almost every in x € RY, for some ug € E. By Lemma 2.3.2, uq is a
critical point of @, i.e., ®'(up) = 0. Furthermore, we claim that ¢, = ®(ug). In fact, observe
that

Blun) — 5@ () w) + [

RN

h(z) {G(un) _9 (“;)“”] d = /R k@) [f <“;)“" - F(un)] da.

This, together with Lemma 2.3.2, (f;) and the Fatou Lemma imply

¢, + /R hia) [G(uo) 9 (“;”“‘“} do > /]R k() [@ - F(uo)] dz.

Consequently,

D(ug) > ¢, > —/

RN

h(z) [G(uo) 7 (“3)“0} dx + /R k() {F(w)) - m} dx

= (uo) — 5 (¥ (uo), o),

which shows that ¢, = ®(ug) and this completes the proof of Theorem 2.1.1.

2.4 Linking Geometry

In this section, in order to find a second nontrivial critical point for the functional &, we use
a Linking Theorem due to G. Li and A. Szulkin [37] (see also [36,75] for related results). Let £
be a real Hilbert space and ® € C'(E,R). Recall that a sequence (u,) C F is called a Cerami

sequence for @ at the level ¢ ((C).-sequence for short) if

O(u,) = ¢ and (14 ||u,]])® (u,) — 0. (2.6)
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Suppose that £ = E~ @ ET and E~ is separable. For each u = v~ + u™, we can write
U = ch(u’)ek,
k=1
where B = {ej,es,...} is dense in E~. Thus, we can define a new norm in £ by setting

= Jes(u)]
||u||7:max{||u+||72 [
k=1

where || -] is the norm in E. One can see that ||- || defines a norm in E and satisfies ||ul|, < [Ju]|
for any u € E (see [36]). For R > p >0 and ug € ET\ {0}, we define

S,={ut € E":|u"||=p} and Qr={u=u +suj:s>0,u” € E- and |ul| < R}.

Next, we consider the following class of applications:

(

h:[0,1] x Qp — E, h is T-continuous. For any (s, ug) € [0,1] x Qp, )
there is a 7-neighborhood U, 4, such that

{u—h(s,u): (s,u) € Uspue) N ([0,1] X Qr)} C Efin,

20, u) = u, ®(h(s,u)) < max{P(u),-1},¥ s €[0,1] and Vu € Q.

where Ey;, denotes various finite-dimensional subspaces of 2 whose exact dimensions are irrel-
evant and depend on (g, ug). Notice that I' # ) since I € T', where I(s,u) = u for all s € [0,1].

The Linking Theorem proved in [37] makes use of the class I' and it is stated as follows:

Theorem 2.4.1. Let E = E~ ® E™ be a separable Hilbert space with E~ orthogonal to E and
d: EF — R given by

D) = 5 (Ju |~ - [?) — (u).

Suppose that

(i) v € CYE,R) is bounded from below, weakly sequentially lower semicontinuous and v is

weakly sequentially continuous;
(id) there exist up € E*\ {0}, n >0 and R > p > 0 such that ®|s, > n and ®|sq, < 0.

Then there ezists a (C).,-sequence for ® at the level

c1 = inf sup ®(h(1,u)). (2.7)

hel’ uEQR

Moreover, c; > 1.

In what follows, the linking structure for the functional ® associated to (C), required in

Theorem 2.4.1, will be proved by deriving some lemmas. Precisely, we will apply Theorem 2.4.1
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for the functional ¢ : E — R given by

() = /R h() Gl + / k(2) F(u)dz.

RN

Lemma 2.4.2. Assume (hy), (ko), (g90), (fo) and (f3). Then the functional ¥ is bounded below,

weakly sequentially lower semicontinuous and )" is weakly sequentially continuous on E.

Proof. Clearly we have ¢(u) > 0 for all u € E and hence it is bounded below. Furthermore,
v is weakly sequentially lower semicontinuous by the Fatou Lemma. Now we prove the last
statement. Let (u,) C E be such that u,, — u weakly in F. Invoking Lemma 2.3.2, we get
(W' (up),v) — (Y'(u),v) for all v € E. Therefore, ¢ is weakly sequentially continuous on E. [J

Lemma 2.4.3. Suppose (Vy), (ho), (g0), (ko), (fo) and (f2). If |||l is small enough, then there

exist positive constants 1y and pg such that
O(ut)y>mny forall ut e ET with |uT| = po.

Proof. By conditions (go) and (hg), the Holder inequality and the continuous embedding E <
L7'9(RY) we have

/ h(2)G (™ )de < 00/ W)t 9dz < Collhll a7, Yt € B
RN RN

Moreover, by (ko), (fo) and (fo) we get
1
/ k(x)F(uT)dr < =||u™||? + Cyllut|?, VYut e ET
v 4
for some constant Cy > 0. Thus, for any ut € ET with ||ut| = p, we have

B(ut) = %IWHQ - /RN h(2)G(ut)dz — /RN k(z) F(u*)dz

> 1% = Collbllop® — Crp?
= p’ E - Cm‘”} — Collhllop".
Therefore we can fix p = pg so that fy :=1/4 — Cy pg_Q > 0 to conclude that
Q(ut) Zmo it ], < M,

where M = 5opg_q/(200) and 1o = 50P(2)/2' =

Lemma 2.4.4. Assume (Vo), (ho), (g0), (ko) and (f3). Fized ui € Et with ||ul| = 1, there
exists R > 0 such that
P(u) <0, Yu€ IQg, (2.8)

24



where
Qr={u=u +sul :s>0, u” € B and |u |*+s* < R*}.

Proof. Tf s = 0 then from (hg), (g0), (ko) and (f3) we get

O(u) = —1||u_||2 —/ h(z)G(u™)dx —/ k(x)F(u™)dz <0.
2 RN RN
Thus, in what follows we assume that s > 0. Observe that u = u™ +sug € Qg with s > 0 if and
only if |[u~||? 4+ s* = R% Arguing by contradiction, suppose that there are sequences R, — oo
and u, = u, + s,us € OQp, such that ®(u,) > 0, for all n € N. If v,, := u, /R, = v,, + S,ug,
we have || ||* + 82 = 1. Thus, there are renamed subsequences such that s, — § in R and

v, — v =v" +3uj in E. Since

1 1., o G(uy) F(uy)
O<§<I>(un):§[sn—||vn||]—/ ) dx—/RNk;(x) i,

n RN n n

we infer that Flu,) ) .
U
< n @2 12— _ 1< 9
0< /RN k;(:z:)—R% dr < Q[Sn ( s =5, 5 = C, (2.9)

which implies that 52 > 1/2 and consequently v # 0. Thus, there exists A C RY with positive
measure such that v # 0 in A. Since F(t)/t> — oo as t? — oo and k(z) > 0 we have

F F
/ k(z) (un)da: > / k(z) (un)vidx — 00 as n — oo,
RN R A "

n u?’L

and this contradicts (2.9). O

2.5 (Ce) Sequence

The aim of this section is to show that Cerami sequences for ® are bounded.
Lemma 2.5.1. Assume 1 < q¢<p/(p—1). Every (C).-sequence (u,) C E is bounded in E.
Proof. Indeed, from (2.6) we get
Bun) = gl 2 = oz Pl = [ W@)G)de = [ K@)Pn)de = e+ on(1)
and

1

38 ). ) = S = o) = 5 [ b@gtun)unde =5 [ k@) (w)unds = o,(0).

This, together with the fact that |G(u) — g(u)u/2| < C|ul? imply that

/RN k() {f(ug)un _ F(un)} de = /RN h(z) {G(un) — %g(un)un:| dz + ¢+ 0(1)

< Cl[llo[lunll* + ¢ + on(1).

(2.10)
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By (f3) there exists Cy > 0 such that F'(t) > Cy|t|* for |[t| > 1. Since p > p, for |t| > 1 it follows
that F'(t) > C1]t|[P. On the other hand, by using (f4) there exists Cy > 0 such that if |¢| < 1 then
F(t) > Cot|? > Cot|P. Therefore, F(t) > C|t| for all t € R where C' = min{C}, C5}. Thus,

fot

p ~
— > - > p
-~ F() (2 ) F(t) > Ciltp, VieR

Since k(z) > 0, the above inequality in combination with (2.10) give us

/ k() un [Pdz < O un]|? + Co. (2.11)
RN
On the other hand, since (®'(u,), (u,; —u,;)) = 0,(1) we infer that
= [ hdgtun)af = w)dn [ ke fun) ) )+ 0n(1)
RN RN
= [ n@g(w) e~ wds+ [ k) f) 20

RN

RN

F—w,)dzr + 0,(1).
Using that f(t)t > 0, we obtain

[l |]? < /RN h(z)g(un)(2u) — uy)dz + Q/R k(z) f(un)utdz + o,(1). (2.12)

N

Now, we observe that
| gt 2t = wa)do < Cllun,
RN

and by (fo), (f2), for any € > 0 there exists C' > 0 such that |f(¢)| < e|t| + C|¢[P~!. From this,
by (2.11) and since k € L=®(R"), we obtain

+ (r=1)/p|,, |P~1 1/py,,+ +
2 [ ) fwulde <0 [ ) k@) utlds + < [ K@l

(p—1)/p 1/p
sc(/ k<x>|un|pda:) (/ k<x>|u;:|pdx) T el ltnlla e
RN RN

< C(Ch[unl| + Co) PP K| | + €]l & oo [[n ]|

This together with (2.12) imply that
ln ]l < Cs(e) (Chlunl|? + Co) P77 Jfug || + Ca(e) lfunl |,

for ¢ > 0 sufficiently small. Since 1 < ¢ < p/(p — 1) the last inequality implies that (u,) is
bounded in £ and the proof is complete. O]

2.6 Nontrivial Solution (Subcritical Case)

In the sequel, we establish some convergence results and we prove Theorem 2.1.2.
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Lemma 2.6.1. Assume (hg), (go), (EO), (fo), (f2) and 2 < p < 2*. Let (u,) C E be such that
u, — 0 in E. Then, the following limits hold:

(1) lim h(z)g(up)ude = 0;

n—oo RN

(i7) lim k() f(un)u,tdz = 0.

n—oo RN

Proof. To prove item (i), we use the compact embedding £ < LI (RY), with r € [1,2*), to
infer that for any R > 0 fixed

/RN W)g(un)ude = /B ' h(w)g(un)u,, dz + / h(w)g(u,)u; dz

|z|=R

= o0,(1) + / h(x)g(u,)u! dx.
lz|>R
Since (uy,) is bounded in E, by using the Holder inequality we get

[ n@ltwuildr< [ bl ulds
jo[>R

e[>R
— [ ) )
|z[>R

(g-1)/ 1/
< C (|10l o ezmlluall D) (W0l o quizm 1w 1)

< C”h”L"ﬂz\ZR) —0 as R—

and item (i) is proved. With respect item (ii), since | f(t)| < g|t| + C|t|P~' and (u,) is bounded
in E. one has
[ E@lfullde<e [ k@l +C [ k@l ulds
RN RN RN
<eCy+o,(1)+ / E(2) |un [P~ ! |de
2| >R
< C 1 kf D (p—1)/p ]{? +||p 1/p
< eCr+ 0a(1) + (Ikllze(oizm lun ) (&l 2 ol et 1P)
S 801 + 0n<1) -+ C”kHL”(II\ZR)

Hence, choosing R > 0 large enough we obtain the desired result and the proof is complete. []
We also will need the following convergence results.

Lemma 2.6.2. Assume (EO), (fo) and 2 < p < 2*. Then, the functionals

Ly(u) = /R K@) F@)dr and Ly(u) = /R k(2) f(u)uda

N

are weakly continuous on E.
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Proof. Consider a sequence (u,) C E such that u, — v in E. For any R > 0 fixed, we have

[F(@)[|F(un) = F(u)|dz + / k(@) |F (un) = F(u)|dz

|z|>R

ILy(u) — Ln(u)] < /

=: I1(n) + Iz(n).

By the compact embedding F < L7 (RY), with r € [2,2*) and Lebesgue Dominate Convergence

loc

Theorem, we have I1(n) = 0,(1). Since (u,) C F is bounded in F and k € L*(R"), it follows
by the Holder inequality that

oz ([ ors) ([ o) (L )|
=G (/mlzR |k(m)|ndm) W'

Choosing R > 0 sufficiently large we get that I3(n) = 0,(1) and therefore L, is weakly continuous.

Similar arguments prove that L, is also weakly continuous on E and the proof is complete. [
Finalizing the proof of Theorem 2.1.2: Combining Lemmas 3.3.3, 3.3.6, 3.3.7 and Theorem 2.4.1,
we obtain a sequence (u,) C F such that

®(u,) =1 and (14 ||u,|))®'(u,) — 0, (2.13)

where ¢; is defined in (2.7). By Lemma 2.5.1, it follows that (u,) is bounded in E and passing
to a subsequence we may assume that w, — w; weakly in . By Lemma 2.3.2 we have that

®’(u1) = 0. Furthermore, invoking again Lemmas 2.3.2 and 2.6.2 we conclude that

0<c¢ = lim {(I)(un) — %(fb’(un),un)}

n—o0

= B fou MO {% - G<un>} det im | k() [f it _ F(un)} di

_ /RN hz) {% _ G(ul)l dr + /RN k(x) [% - F(’ul)} dx
= O(uy) — %(@’(ul),m) = O(uy),

i.e., the proof of Theorem 2.1.2 is finished.

2.7 Nontrivial Solution (Critical Case)

In this section, we present the proof of Theorem 2.1.3. We will apply a basic estimate and a

convergence result. For e > 0 and x € RY let us consider the modified Talenti function [67]

Onthr ()22
(108(2:) = (52 + ‘x|2)(N72)/27
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where Oy = [N(N — 2)]¥=2/4 and +, € CF(RN,[0,1]) with ¢ = 1if |z| < 7/2, ¥, = 0 if
|z| > r, for some r > 0. For € > 0, we also consider Z. := E~ @ Ryt and

2
E\{0} |ju

D) .
2%

The energy functional associated to problem (C.) is given by

1 _ 1 .
o) = (a2 = o) = [ h)Glds - 5 [ k@)l de
RN RN
Since h(z)G(t) > 0, it follows that

1

_1 +112 _ — 112 __/ 2%
= eI = 1lwl7] = 5 N k() ul” d.

O(u) < Ii(u) :
Arguing as in the proof of Proposition 4.2 in [19], we have the following estimate:

Lemma 2.7.1 (Minimax Estimate). If N > 4 then there exists g > 0 such that

SAUZ
sup [1(u) < ¢ i= —————.
weZeg N||k|| 272

From this estimate, we obtain the following lemma:

Lemma 2.7.2. Let (u,) C E be a (C).-sequence for ® such that u, — u in E, with 0 < ¢ < ¢*.

Then,
/ k() |un
RN

Proof. Since (u,) is bounded in E, we can assume that

Q*dZE—)/ k(x)|ul* da. (2.14)
RN

|Vu,|> = p and  |u,|* = v weakly in MT(RY),

where M*(RY) denotes the positive Radon measures over RY. Invoking the Concentration-
Compactness Principle due to Lions [38][Lemma I.1], we obtain a countable set J, (z;);e; C RY

and (1) jes, (¥j)jes C [0,00) such that

. 2
v=|ul* + Zl/j(sxj and  pu > |Vul* + Zﬂjdxj with ;> Sv, (2.15)

jed jed

where d,; denotes the Dirac measure concentrated at z;. We claim that v; = 0 for all j € J. In
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fact, combining (2.15) and Lemma 2.3.2 we get

> L kw4 [ ol [ ) [T @] a5
1

k(xj)v; + — E(x)|u* do —

where in the last inequality we have used that |g(t)t/2— G(t)| < C|t|? and the Holder inequality.
On the other hand, for e > 0 and j € J we set ¢.;(z) := ¥((x — z;)/e), x € RY, where
¥ € C(RN) is such that ¢ = 1 in B1(0), ¢ = 0 in RN \ By(0) and |Ve)| < 2, with 0 < ¢ < 1.
We observe that 9. ju, € E and (¢ ju,) is bounded in E. Thus, we obtain

/RN [V (un)V (Yo jun) + V(z)uep. j]dr — /RN h(x)g(wn)une jde — /RN k:(:v)|un|2*¢£,jd1: = 0,(1).

This together with the definitions of p and v imply that

/RN [VuVy. ; + V()u*y. jlde — /RN h(2)G (u)e jdx — /

RN

k(x). ;dv + / Ve jdp = 0.
RN
Now, taking the limit as ¢ — 0 we see that p(z;) < k(x;)v;. Since p; < p(z;) we have
2
Svi" < py < play) < k(xj)vg, Ve

If v; # 0 for some j € J, the last inequality yields

SN/Q
LCHING

v; Z
Since the function k(z) is continuous and bounded, from (2.16) we get

SN/Q
NH/fII NSRS N/

which is a contradiction if ||h||, is sufficiently small. Therefore, v; = 0 for all j € .J which implies
that v = 0. Thus, by (2.15) we obtain |u,|?" — |u[*" in MT(RY). Consequently,

u* dz — C||ho|lul

2%

u, —u in L} (RY). (2.17)

Now, we observe that

oo

Since (uy,) is bounded, choosing R > 0 sufficiently large and using the convergence in (2.17), we

da

— |u

< Ikl / laal? = [l de + S
R

22 R(|Un|2* + [u*")dz
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obtain (2.14) and this completes the proof. [

Proof of Theorem 2.1.3: Considering () with uar = ¢, We see that ¢, € Qr C Z,,. Thus,
by Lemma 2.7.1

SN/2
1 < P(pey) < sup I1(u) < ¢ = —————. (2.18
T ueze, ) NkE272 )

By Theorem 2.4.1, there exists a Cerami sequence (u,) C E for ® at the level ¢; > 0. By
Lemma 2.5.1, (u,) is bounded in E. Thus, passing to a subsequence, we can assume that
up, — up in E. Invoking Lemma 2.3.2, we see that ®'(u;) = 0. On the other hand, combining

estimate (2.18) with Lemma 2.7.2 and Lemma 2.3.2 we conclude that

0<c; = lim [Q)(un) — %@’(un), un>}

n—o0

“tim [ h) {M - G<un)] do + lim % /R @) da

n—oo JpN 2 n— 0o

_ /]R h(a) [9“‘;)“1 - G(m)] dx + % N k()| da

= ®(uy) — %@)’(uﬂ,l&l) = ®(uy),

and the proof of Theorem 2.1.3 is complete.
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Chapter 3

On a Periodic Schrodinger Equation
Involving Periodic and Nonperiodic

Nonlinearities in R?

3.1 Introduction and Main Results

In this Chapter we study the equation
—~Au+V(2)u = flz,u), =cR? (Py)

where f(z,t) has exponential growth in the sense of Trudinger-Moser inequality and zero lies in
a spectral gap of the Schrodinger operator S. This is the content of the paper [43].

In order to introduce our hypotheses, let us denote by o(S) be the spectrum of the operator
S = —A + V defined in L?(R?). Precisely, we assume that

(Vo) V € C(R* R) is 1—periodic in x;, j = 1,2, and

A :=sup[o(S) N (—o0,0)] <0< A :=inf[o(S) N (0,00)].

As we will see in the next section, under the assumption (V4) the quadratic form B(u,v) =
Jo2(VuVv + V(z)uv)dz is strongly indefinite, i.e., H'(R?) can be split as a direct sum into
two infinite dimensional subspaces H'(R?) = E~ @ E* corresponding to the decomposition of
o(S) N (=00, A) and o(S) N (A, 00). After the Linking Theorem proved by Kryzewski-Szulking
in [36], many authors have improved and used this result to obtain critical points of strongly
indefinite functionals, see for instance [23,60,65,78] and references therein.

The main purpose in this work is to prove the existence of nontrivial weak solutions to (Py)
considering zero in a spectral gap of the spectrum of S = —A + V and f(x,t) with subcritical
exponential growth in R?. Precisely, for any 3 > 0

|f(z, 1)

‘1|im 57— =0, uniformly in 2 € R?. (3.1)
tl—oo €
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Setting F(x,t) = fot f(z, s)ds, we suppose that f is continuous and satisfies the following

assumptions:
(fo) there are § > 0 and 0 < v < A such that |f(z,t)] < ~|¢| for any [t| < ¢ and = € R?;
(f1) 2F(x,t) > M\? for any x € R?, t € R and

F(x,t)
t2

— 400 as t* — oo, uniformlyin z € R%
(f2) f(z,t) is locally bounded in the variable ¢, that is, for any bounded interval J C R, there
exists C' > 0 such that |f(z,t)] < C for every (z,t) € R* x J;

(f3) there exists W € L'(R?) such that for all r € [0, 1] it holds

2(F(x,t+s) — F(x,t)) > (2rs — (r — 1)) f(z,t) — W(z), VYV €R? stecR.

Before stating the main results, we make some remarks on hypothesis (f3).

Remark 3.1.1. Hypothesis (f3) appears in a series of paper (see [59,65] and references therein).
Taking r = 0 and s = —t ( respectively, s = rw —t ) in (f3) we obtain H(x,t) = tf(z,t) —
2F (z,t) > —W(x) for all x € R?, t € R; and for any r € [0, 1]

2[F(z,t) — F(z,rw)] — ((r* + Dt — 2r*w) f(z,t) < W(z), VzcR? t,wecR. (3.2)

Furthermore, choosingt =1 = 0 in (f3) we get 2F (x,s) > =W (z) for any v € R? s € R.
Now, our first existence result for equation (Py) can be summarized as follows.

Theorem 3.1.2. Assume (Vp) and (fo) — (fs). If f(x,t) is 1—periodic and satisfies (3.1) then

equation (Py) admits a nontrivial weak solution.

A typical example of a nonlinearity f(z,t) satisfying the hypotheses of Theorem 3.1.2 is
f(z,t) :== a(x)t +b(z)[tP2t(e — 1), z€R?* teR,

where a, b are continuous and periodic functions satisfying A < a < |a| <+, b > 0 in R

We quote that there are few existence results for the Schrodinger equation (Py) in the two
dimensional case when the potential V' is periodic. In [24] do O-Ruf have studied equation (Py)
when V' is periodic and f(x,t) satisfies the Ambrosetti-Rabinowitz condition by using an ap-
proach developed by Pankov-Pfliiger [51] and Pankov [49] based on an approximation technique
of periodic functions and applying the generalized linking theorem due to P. Rabinowitz [53]. As
we will see, under the above hypotheses, every Palais-Smale sequence associated with the energy
functional is bounded. Furthermore, by the periodicity of V' and f(x,t) the energy functional is
invariant with respect to the Z*-action on H'(R?) given by (T x u)(x) = u(T + z) with T € Z?
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and u € H'(R?). Consequently, we conclude that the weak limit of this sequence is a nontrivial
weak solution of (Py) up to translations.

In the case where the nonlinearity f(z,t) is nonperiodic, in addition we will assume that:

(fa) there exist ag > 0, Ry > 0 and h € L'(Bg,) such that

|F(z,t)| < h(z)e™”, Ve B,teR

In this case, our second existence result is the following:

Theorem 3.1.3. Assume (Vo) and (fo)—(f1). If f(x,t) satisfies (3.1) then equation (Py) admits

a nontrivial weak solution.

Remark 3.1.4. A typical example of a nonlinearity satisfying the hypotheses of Theorem 3.1.3
18
f(z,t) == a(x)t +b(x)|t|P*t(e' — 1), z€R* tER,

where A < a < |a| <, 0 <be L®(R?) with a,b € L'(BS).

We mention that Theorem 3.1.3 extends some recent results obtained by M. Schechter [58]
where the author studied equation (Py) with the nonlinearity f(x,¢) having subcritical polyno-
mial growth.

This chapter is organized as follows. In Section 2, we use spectral theory to obtain a suitable
domain for the energy functional in order to use the variational framework. In Section 3, we
establish the geometry for the energy functional required in the linking-theorem to obtain a
(PS) sequence. In Section 4 we demonstrate the Theorem 3.1.2. We conclude the chapter in

section 5, where we present the proof of Theorem 3.1.3.

3.2 Variational Setting

In this section, in order to develop a variational approach to study the existence of solutions
for equation (Py), a key step is to identify a suitable function space setting. First we observe
that from (3.1), (fo) and (f3), for any 8 > 0 and g > 2 there exists C; > 0 such that

21F ()] < y|t] + Ch|t]9(e” — 1), VzeR%teR. (3.3)

Under the hypothesis (V5) we will find a function space E on which the energy functional
associated to (Py), @ : E — R given by

O (u) = /}R2(|VU|2 + V(z)u?)dz — 2 /}R2 F(z,u)dx,

is well defined. In order to define the space E we consider the self-adjoint operator S = —A+V
defined in L*(R?) acting in D(S) = H*(R?). Let {£()\) : L*(R?) — L*(R?)} er be the spectral
family of S, and |S|'/2 be the square root of |S|. Setting U = Id—&(0)—&(—0) we can see that U
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is unitary and commutes with S, |S| and |S|'/2. Moreover S = U|S| is the polar decomposition
of the operator S (see [35], p. 358).

Let us denote by E := D(|S|'/?) the domain of |S|'/2. It is well known that E(A\)E C E for
all A € R. Furthermore, defining

E-:=E&(0)E, ET:=(Id— E(0))E,

(u,v) == (|S]*%u,|S[V*v)y, Yu,v e E, and |ju| = /(u,u),

where (-, ) is the usual inner product in L?(R?), we have the following result (see for instance
[9,68]).

Lemma 3.2.1. Assume (V). Then E = E~ ® E*, || - || is equivalent to || - ||g» on E and for

any u=u" +ut € E, it holds (u™,u™) = (u~,u")y = 0. Moreover,
(Su,u)e = —[lul* < Aljullz, Vue E” (3.4)

and
(Su,u)s = ||u||2 > A||u|]§, Yue ET. (3.5)

Remark 3.2.2. It follows from Lemma 3.2.1 that ||ul]?> = ||u~||*+ ||u™||? and for any p € [2,00)
the embedding E — LP(R?) is continuous.

The classical Trudinger-Moser inequality asserts that for any u € H'(R?) and 3 > 0 it holds
(e —1) € L*(R?). Afterward, a uniform inequality has been established by Cao [17] (see also
[57]). Namely, if v € H*(R?) with ||ul|g1rzy < M and SM? < 47, then there exists a constant
C =C(p, M) > 0 such that

/ (¢ _ 1)dz < C(8, M). (3.6)
R2
Since the norms || - || g2 and || - || are equivalent on E, as a byproduct of (3.6) and the elementary
inequality

(e —1)" < (" —1), VteR, B>0,r>1, (3.7)

we have the following result.

Lemma 3.2.3. Ifu € FE with ||ul]| < M and 8 > 0. Then there exists C = C (3,0, M) > 0 such

that
[ul® (™ = 1)da < Cllull’,
R2
for any B(vM)? < 4w, where v := sup M

Combining Lemmas 3.2.1 and 3.2.3 we see that the functional ® is well defined and can be

written as

B(u) = [Jut|2 — u-|? - 2/ Fz,u)dz, VucE.
RQ
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Furthermore, using Remark 3.2.2 together with Lemma 3.2.3 and standard arguments we have
that @ € C'(E,R) and

§<@/(U),U> = (ut,v) - (u,v) — g f(z,u)vdz, Yu,v € E.

Thus, critical points of ® correspond to weak solutions of (Py).

3.3 Linking Geometry

In this section, in order to find critical points of the functional & we use a variant weak
linking theorem due to Schechter-Zou [60]. Since E = E~ @ ET and E~ is separable, for each

u = Z cx(u™)eg

k=1

u=u" +u" we have

where B = {ej,eq,...} is a complete orthonormal system in E~. Thus, we can define a new

norm in E by setting

()]
HuHT:maX{||u+||, E o , YueE.
k=1

We can see that |lul|, < ||u]| for any u € E (see [36]). For R > p > 0 and uf € E*\ {0} we
define

Qr={u=u" +suf :s>0,u” € E7,|Ju| <R}, S,:={u"€E":|u"|=p}

For a functional ® € C'(E,R) defined in a Banach space (E, || -||) we consider

(

h:10,1] x Qr — E, h is T-continuous. For any (so, uo) € [0,1] x Qg, )
there is a 7-neighborhood Uy, 4y) such that
{u—h(s,u): (s,u) € Usyuo) N ([0,1] x Qr)} C Efin,
(20, u) = u, ®(h(s,u)) < P(u),Vu e Qr

Ve

where we use Ey;,, to denote various finite-dimensional subspace of 2 whose exact dimension are

irrelevant and depend on (sg, ug). We observe that T" # ) since Id € T.

Theorem 3.3.1. (See [60]) Let E be a Hilbert space with norm || - || and ®, : E — R a family
of Cl-functionals of the form.:

Assume that

(@) I(u) >0,V ueFE and &, := ;
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(0) I(u) +[J(u)] = 400 as [lul| = oo;

(c) @, is T-upper semicontinuous, maps bounded sets into bounded sets and @2& 15 weakly se-

quentially continuous on E;

(d) sup®, <0<inf®,, Vuell,2].
3QR SP

Then for almost all u € [1,2], there exists a sequence (u,) C E such that
sgp [unll <00, @, (up) =0 and @,(un) = cy,

where

Cp = }lgﬁuseuc_?p}% ®,(h(1,u)).

Furthermore, ¢, € [iglf ®,,sup ®,] and is nondecreasing in .
L Qr

In what follows, we derive in some lemmas the linking structure of ®, required in Theo-

rem 3.3.1. Precisely, we apply Theorem 3.3.1 with
) = o[ and Ja) = [P +2 [ Foude,
R2

which clearly satisfies (a) in Theorem 3.3.1.

Lemma 3.3.2. Assume (f1) and (fs). Let (u,) C E be such that ||u,| — oo and v,(z) =
Un(2)/||tn]| — v(z) almost everywhere in R?. The following hold:

F
(7) ]fvgéOthen/ Mdyc—>oo as n — 0o.

r2 lunl?

F(z,up
(13) If v =0 then liminf/ (x—’u)dx > 0.
R2

n [ [

Proof. If v # 0 then there exists A C R? with positive measure such that v # 0 in A. Since
2F (z,t) > =W (x), F(x,t)/t* = 00 as t* — oo and W € L*(R?) we have

/ F(x,un)dxz/F(x,un)vgdx_lf Mdm—}o@ as n — o0.
R2 A R

[[un® uy 2 Jr2va llunll?

In case that v = 0, using that 2F(x,t) > —W (z) we infer that

/MdIZ—E/ de—)O as n — oo,
R2 2 Jr

[[un |2 2 [[unl?
completing the proof. O

Lemma 3.3.3. Assume (f1) and (f3). Then the functional ®, satisfies the hypothesis (b) in
Theorem 3.5.1.
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Proof. Since 2F (x,t) > —W (z) for all z € R? and t € R, for any u € E we have

TW%hKMZHUW”HW\P—/’W@WMZHWP—C“%+w as [|ul] = +o0.
R2

To carry forward, we establish an auxiliary convergence result.

Lemma 3.3.4. Assume (fy), (f2) and (3.1). Then for any sequence (u,) C E such that u, — u

in E we have
f(x,u,)pdx —>/ flx,u)pdx  for any ¢ € E.
R2

R2
Proof. Initially we consider ¢ € C§°(R?) and let © be the support of ¢. Since the embedding
E — L"(Q) is compact for any r > 1 it follows that u,, — w strongly in L"(Q) and u,(x) — u(x)
a.e. in 2. In particular, f(z,u,)p — f(x,u)p a.e. in Q. From (fy), (f2) and (3.1) for any 8 > 0
and 0 > 2 we have

|Flz, t)] < Alt|+ Cult)’(e® — 1), VzeR? teR. (3.8)

Thus, using the Hélder inequality together with inequality (3.7) we get
Va0 (6-1)/0
/Q|f(55vun)90|d5€ < unl[o@ Il o @) + Crllunll Lo (/]1@2 | (77T — 1>d9‘5) :
Since (u,) is bounded in E, we can choose § > 0 sufficiently small and apply Lemma 3.2.3 to

1/6
/ (@ un)gldz < C ( / Iun|9dx) |
Q Q

On the other hand, there exists ¢ € L'(Q) such that |u,| < |¢| in . Thus, for each € > 0, we
find a mensurable set A C 2 with |A| > 0 sufficiently small such that

1/6
/ |f (2, up)plde < C (/ |w|9da:) <e.
A A

Therefore, (f(x,u,)p), is uniformly integrable and by applying the Vitali Theorem we have

obtain

[z, uy)pdx —>/ f(z,u)pdr for any ¢ € Cg°(R?). (3.9)
R? R?

On the other hand, using that C§°(R?) is dense in F, for any € > 0 and v € F there exists ¢ €
C5°(R?) such that ||[v — || < e. Using (3.8), (3.9) together with Lemma 3.2.3 and Remark 3.2.2
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we obtain

(Flavmn) = Selde < [ 1fw)w=olde+ [ 107 (m) = flau)elds
+ [ 1@ -l

< Ii(n)+0,(1) 4+ Clle — |

R2|

To estimate I;(n), we use (3.8) with § = 2 to obtain

1/2
) < sllwlallo = gl + Cillo = el [ Tl (% = 1yae)
R

Since (u,) is bounded in E, in view of (3.1), we can choose § > 0 sufficiently small and apply
Lemma 3.2.3 together with the Sobolev embedding £ < L?*(R?) to obtain I;(n) < Che, from

where we obtain the desired result. O

Lemma 3.3.5. Assume (fy), (f2) and (3.1). Then for any p € [1,2] the functional ®,, is T-upper
semicontinuous and maps bounded sets into bounded sets. Furthermore, @L 15 weakly sequentially

continuous.

Proof. Let (u,) C E be such that ||u, —ul|, — 0. Since ||u, —u" ||, < ||u,—ul|; and |Juf —u™|| <

U, — ull; we have that ||lu, —u~ ||, — 0 and ||u — uT|| — 0. In particular, (u_) is 7-bounded.
n n n

Hence up to a subsequence, u,, — u~ in E~ (see Proposition 1.3.1 ). Thus, [|u~|| < liminf ||u,, ||

and |lu™| = lim ||| . Since 2F(z,t) > —W (x) by the Fatou’s Lemma

/ F(z,u)dr < lim inf/ F(z,uy,)dz
R? R?

n

and consequently

Buu) = P = P =2 [ Flau)da

> lim sup (u||u:||2 i~ 2 | F<x,un>daz)
n R2

= limsup ®,(u,),

proving that ®, is 7-upper semicontinuous. Now consider a bounded sequence (u,) C E. In-
voking (3.3) together with the embedding E — L?*(R?) and Lemma 3.2.3 we obtain

o [ 1Pl u)de < 7/ fup [2d + 01/ lup (P — 1)dz < C
R2 R2

R2

Therefore, |®,(u,)| < 3[Juyl* + 2 [go |F (2, uy)|de < C. Finally, suppose that u,, — u in E.
Then for any ¢ € E, (u},¢) — (ut, ) and (u,,, ) — (u~, ). Now, by Lemma 3.3.4 we obtain
(@), (un), ) = (P, (u), ¢) for any ¢ € E and this completes the proof. O
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Lemma 3.3.6. Assume (Vy), (fo) and (f2). There are positive constants n and p such that, for
any p € [1,2],

Q,(ut)>n foral u"eET with |ut|=np.
Proof. Let p > 0 and 8 > 0 such that 8(vp®) < 4w. If ¢ > 2 and ||ju™|| = p, by Lemma 3.2.3 we

have

|u+\‘1(«5ﬁ(“+)2 — l)dx < Cpf.
R2

This together with inequalities (3.3) and (3.5) imply that
2/ F(x,ut)dz < ~yllu™|)3 + C’l/ lut 9P’ — 1)da < L o2+ Copt.
R2 R2 A
Thus, for any > 1 we conclude that
Buu%) =l [P =2 [ Float)de = (1= 3) = Capt.
R2

Since ¢ > 2 and 0 < v < A, choosing ||u™|| = p sufficiently small we obtain the desired result. [

The following result is necessary to conclude the Linking geometry.

Lemma 3.3.7. Assume (Vi), (f1) and (f3). Fized ug € ET with ||uf|| = 1, there exists
R > p > 0 such that for all p € [1,2],

Q,(u) <0, VuedQrg,

where
Qr:={u=u +suf :|u ||+ <R’ u € E,s>0}.

Proof. We first observe that if s = 0 then from (f;) and (3.4) we get
() = —[lu”||* = 2/ F(z,u”)de < —[lu”||* = Alu”[3 0.
R2

Thus, in what follows we assume that s > 0. Observe that u = u™ +sug € Qg with s > 0 if and
only if ||u™||* + s> = R?. Arguing by contradiction, suppose that there are sequences R,, — 0o,
i € [1,2], up = u, +Spug € OQp, such that @, (u,) > 0,Vn € N. If v, :=u, /R, = v, +3,u],
we have ||v; ||> + 82 = 1. Thus, there are renamed subsequences such that g, — p, 5, — § and
v, = v =v" +3uj in E. Since

1 - N F(z,uy,)
0 < o) = % = o P =2 [ 55"

2
n R2 Rn

it follows that

F(z,uy, . .
2/ de<unsi—(1—si) <C.
g2 B3

Then by, (i) of Lemma 3.3.2 v = 0. Using again Lemma 3.3.2 we obtain that 0 < us? — (1 — 5?),

which implies that § > 0 and consequently v # 0 and this is a contradiction.
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3.4 Nontrivial Solution (Periodic Case)

Before proceeding with the proof of Theorem 3.1.2, we establish some preliminary results.
Since the norms ||- ||z and || - || are equivalent on E, as a direct consequence of the concentration

compactness principle of Lions [38] (see also [74,75]) we have the following result.

Lemma 3.4.1. Let r > 0 and (u,) C E a bounded sequence such that

sup / lu,|*dz — 0 as n — oo,
yeR? J B(y,r)

where B(y,r) C R? denotes the open ball with center y and radius v > 0. Then u, — 0 in
LP(R?) for any p > 2.

The lemma below will be used to prove the boundedness of a special sequence that will be

crucial in the proof of Theorem 3.1.2, see Lemma 3.4.4 below.

Lemma 3.4.2. Assume (f3). Ifu=u" +u" € E and r € [0, 1] then
/ [2F(z,u) — 2F (z,ru®) — ((r* + Du — 2r°u™) f(z,u)] dzv < O,
R2

where the constant C independent of u and r.
Proof. Taking w = v and t = u in (3.2) we get

2F (z,u) — 2F (z,ru™) — ((r* + L)u — 2r*u™) f(z,u) < W(2).

Now, the result follows by integrating the last inequality and using that W € L'(R?). O

Lemma 3.4.3. Assume (f3). Let (pu,) C [1,2] and u, = u, +u} € E such that

CID;m (up) — 0 and <<I>Ln (tn), un) = 0,(1).

Then for all r € [0,1], there is a constant C independent of n, p, and r such that
Cp, (i) + 77|y 1 = @y, (wn) < C o+ on(1)r* gy .
Proof. Note that

R, (T ) + 12 g * = @y, (1) = pin(r? = Dl [ + (7% + 1)y |

(3.10)
+ 2/ [F(z,u,) — F(z,ru))] dz.
R2
Taking ¢ = (r* + 1)u, — (r* — Du,t = (r* + 1)u, — 2r%u; as a test function we obtain
0% = DI+ (4 Dl P = = [ (07 4 D = 20%0) fa,ua)do
2 (3.11)

— (@, (un), (r* + Du, — 2r2u)).
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Combining (3.10), (3.11) and using the previous lemma we get

D, (rut) + r?|uy ||? = @, () = /}R2 [2F (z,u,) — 2F (z,rw)) — (% + Duy, — 2r%w)) f(z, u,)] da

/ 2 2, +
— <®un(“n)> (r* 4+ Du, — 2r7u,)
< C o0, (1)r?Juf |,

which completes the proof. O]

Lemma 3.4.4. Suppose that f(-,t) is 1-periodic, (Vo), (fo)—(f3) and (3.1) hold. Let (u,,) C [1,2]
and (u,) C E such that

D, (un)| < C, 0 @, (up) =0 and (P, (un),un) = 0n(1).

Then, (uy) has a bounded subsequence in E.

Proof. Suppose by contradiction that R, = ||lu,|| — oo and define v, = u,/R,. Then v} =
ur /R, and |lv;|] < 1. Passing to a subsequence we may assume that v, — v and v} — v™

weakly in E. Moreover, v;f — v in L2 (R?), v} (z) — v"(z) a.e. in R?. We have two cases to

loc

consider:

Case 1: (v;[) is vanishing, i.e., there exists r > 0 such that

lim sup / lvF|?dx = 0.
B(yr)

n—-4o0o yER2

According to Lemma 3.4.1 we have that |lv;}|, — 0 for any ¢ > 2 because (v;") is bounded in
E. Since |®,, (u,)| < C, by Lemma 3.4.3 we see that

Cp, () + 1l [ < C 4 0n(1)rg [l 1.
Taking r,, = s/R,, with s > 0 fixed we get
D, (sv) + $2v |7 < C +o0,(1)s% (3.12)
On the other hand,

@y, (svy) + 8% 1F = pns® o |7 + °[lvy |1* — 2/ F(z, svy)dx
R2

> 5% — 2/ F(x,sv])dx.
R2
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Now using (3.5) and applying the Hélder inequality together with Lemma 3.2.3 we obtain

~ 0 2 o (¢=1)/q
2 [ Flosodie < 1ot ol ([ i@ s 00 - )
R2 A R2

< %52 + Cys%0,(1),

for 8 > 0 sufficiently small. Consequently,

@, (s05) + 5oz P> (1= 1) 8% = Casto (1),

which contradicts inequality (3.12) if s and n are sufficiently large.

Case 2: (v)) is non-vanishing, i.e.,there is a sequence (y,) C Z? such that
/ lv|2de > a > 0. (3.13)
B(ynr)

Defining u;, () := un(x—yn) and wy(z) = w, (x)/||u, || we see that [Jug, || = [lun[|,[[wa]l = [lva] = 1
and wy,(x) = v,(z —y,). Thus, passing to a subsequence we can assume that w, — w, w} — w*
(R?) and a.e. in R?. From (3.13) we have

/ lw|?dr > 2 0,
B(0,r) 2

which implies that w™ # 0 and so w # 0. According to Lemma 3.3.2

F !
/(x%u;)dm—)oo as n — oo.
R |[upl

in E, strongly in L?

loc

Since V and f(-,t) are 1—periodic we have @, (u,) = ®,, (u},). Thus,

F(z,ul) O (ul)
2 [ Elde — | = o I - oy < C.
e lun? e " [[u, 12
Now, taking n — oo we obtain a contradiction and this complete the proof. O

Proof of Theorem 3.1.2: By applying Theorem 3.3.1, there exists a sequence (u,) C (1,2],
with p, — 1, such that it is possible to find a sequence (u”,) C E verifying

| <oo, @, (up)—0 and @, (u;,) =y, as m— +o0

sup ||y, |
where
Cpp 1= }1115 uselt_?pR ®,. (h(1,u)).

From this, for each n € N, there exists m,, € N such that

n 1 n n
Dy (U,) =l <~ (@, () 0, )| <

m Moy,

, VnéeN.

SRS
S|

and ||, (up,,)] <

mn
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In what follows, we denote uy;, by u,, hence we can rewritten the above limits of the following
way

1 /

1
|(I)Mn(un) - C,un| S ﬁa |<q)un(un)7un>‘ S —

1
- and ||, (u,)| < - Vn € N.

Since 0 < ¢1 < ¢, < ¢ for all n € N, without loss of generality we can assume that

According to Lemma 3.4.4, after a renamed subsequence u,, — u weakly in E, u,, — u strongly

T4
in L,

(R?) for ¢ > 2 and a.e. in R?. Since for any p € F

on(1) = 50, (1)) = it ) = (w0) = [ flaua)ide (3.14)

taking the limit and using Lemma 3.3.4 we get ®'(u) = 0. We claim that u # 0. Indeed, from
(3.1), (fo), (f2),(3.5), the Holder inequality and Lemma 3.2.3 we get

(¢=1)/q
o wutds < T 1P+ Gl ([ onlte'e0% - 1o
R2

B2 (3.15)
g
< it 12+ Calfit o
Then, choosing ¢ = ! in (3.14) and using (3.15), we obtain
palli P = [ i+ o,(1) < Tt |+ oty + on(),
R2
which implies that
2
(1= 1) ot < Cullt s + 0a(1): (3.16)
On the other hand, by (3.4), (f1), Lemma 3.2.1 and (3.5) we have
c _ A
0<% < 0l < il P+ Mgl = Aol < (2= 1) B, (347

If, for r > 0 fixed,

sup / lut|’dz — 0 as n — oo,
yeR? J B(y,r)

then by Lemma 3.4.1 we get that w, — 0 in L¢(R?). From (3.16)-(3.17) we get a contradiction.
Consequently, there exists a sequence (y,) C Z? such that

/ lut?dz > a > 0.
B(yn,r)

Thus, using that V| f(-,t) are periodic and defining w,,(x) := u,(z + y,) we have

sup ||w,|| < oo, 0<
n
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and
/ lwl|?dr > a >0, VYneN. (3.18)
B(yn,)

By the continuity of the projection map, we may assume that w — w' in E*. Furthermore,
(R?) together with (3.18) we have that wt # 0.

Consequently w is a nontrivial critical point of ®. O

using the compact embedding Et « L?

loc

3.5 Nontrivial Solution (Nonperiodic Case)

This section is devoted to the proof of Theorem 3.1.3. We quote that in this section the
nonlinearity f(z,t) is not assumed to be periodic and therefore we cannot use the Lions Lemma.
Before to present the proof of Theorem 3.1.3, we establish some auxiliary results. We start with

the following convergence lemma (see [78] for related results).

Lemma 3.5.1. Assume hypotheses (3.1) and (fs). Then the functional L(u) = [5, F(z,u)dx is

weakly continuous on E for f > 0 small.

Proof. By condition (3.1), given ¢ > 0 there exists r > 0 such that for all 5 > 0
[Fz,0)] <e(e™ —1), VzeR? [f=>r

Now considering the continuous function w, : R — R defined by

r, t>r
we(t) =<t Jt|<r
—-r, < -,
we see that
|F(x,t) — F(z,w,(t)] < 2e(e® —1), VaeR? |t|>r (3.19)

Let u, — u in E. According to definition of w, we have

| L(un) = L(w)| < / |F (2, un) = F(, w,(un))|d

|ty |>7

+ . |F(x, w,(uy,)) — F(z,w,.(u))|dx

+/ |F(z,w,(u)) — F(x,u)|dx
[u|>r
= ]1 -+ [2 + 13.

Since (u,) C E is bounded, using estimate (3.19) together with Lemma 3.2.3, for 8 > 0 small
we obtain

I < 25/ (7 —1)dx < £C,
]R2
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for some C' > 0. An analogous estimate holds to 3. To estimate I, we observe that F'(z,w,(u,))—
F(z,w,(u)) = 0 a.e. in R? and

I, = . |F (2, w,(uy,)) — F(z,w,(u))|dx

< /|$SRO |F (2, w,(u,)) — F(z,w,(u))|dz —|—/ |F (2, w,(un)) — F(z, w,(u))|dz.

|1“>R0

(3.20)

Now, observe that the first integral in the right-hand side of (3.20) converges to zero in view

1
loc

of the compact embedding £ — L
|w,(t)] <7 by (f1) we see that

(R?). To estimate the second integral in (3.20), since

2

|F (2, w,(un) — F(z,w,(u)] < 2h(z)e™” =C(r)h(z), VteR, zec Bg .

Since h € Ll(Bf%) the result follows by applying the Lebesgue Dominate Convergence Theorem.
[

Remark 3.5.2. An analogous argument can be used to show that the functional L:E—>R

given by L(u) = Joe [ (2, w)udz is weakly continuous.

Proposition 3.5.3. Suppose (Vo) and (fo) — (fs) are satisfied. For any p € [1,2], there are
sequences () C [1,2], pn — p and (u,) C E '\ {0} such that

0<c <Py, (up) =cp, <o and @, (u,) =0,

where c1, ¢y are the minimax levels defined in Theorem 3.53.1 with p =1 and p = 2, respectively.

Proof. For almost everywhere p € [1,2], in view of Lemmas 3.3.3, 3.3.6, 3.3.7, 3.3.5 we can apply
Theorem 3.3.1 to obtain a sequence (u,) C F such that

sup [lun || < oo, @, (u,) =0 and @,(u,) = c, > 0.
For any v € E we have

%(@L(un),w = p(uf,v) — (u,,v) — | flr,un)vde =0 as n— .

n
R2

Passing to a subsequence we may assume that w, — wu, weakly in F, u, — u, strongly in
LL (R?) and a.e. in R?. Therefore,

loc

%(@L(uu),v) = u(u:,v) — (u,,v) — /R2 f(z,u,)vdr =0, VveeE,

ie., @ (u,)=0. Let H(x,t) = tf(x,t) — 2F(x,t). Since [ H(z,u,)dr = ®,(uy) — (P, (), un)
and (u,) is bounded, it follows that [ H(z,u,)dz — ¢,. On the other hand, according to
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Lemma 3.5.1 and Remark 3.5.2, [ H(z,u,)dx — [ H(x,u,)dz. Therefore,

P, (u,) = H(x,u,)dx =1lim | H(z,u,)=c, >c >0,

R2 noJRr2

which implies that u, # 0. From the first step, for any p € [1,2] there are sequences ju, — p
and (u,,) C E\ {0} such that &, (u,,) = ¢,, and & (u,,) = 0. Thus the result follows by
taking u,, = u,, and n € N sufficiently large such that ®, (u,,) > n > 0. O

Lemma 3.5.4. Assume (Vp), (fi) — (fa) and (3.1). Let 1 < p, < 2 and (u,) C E such that
D, (un)| < C and @), (un) = 0. Then (u,) has a bounded subsequence in E.

Proof. Suppose by contradiction that R, = ||lu,|| — oo and define v, = u,/R,. Then v} =
uf /R, and |lv;f|| < 1. Passing to a subsequence we may assume that v, — v and v — o™

weakly in E. Moreover, v, — v and v;7 — v" in L (R?), v (z) — v (z) a.e in R?. Now we

consider two cases.
Case 1: Assume that v™ # 0. In this case, v # 0 and invoking Lema 3.2.3 we see that

F(z,uy)
—de—%{—oo as n — +oo.
R ||un

On the other hand, we have

F(x,u, D, (un
2/ (w,u )diﬂﬁunHU:sz— Mn(u ) <C
R2

[[un? lun]> =

which is a contradiction.

Case 2: Assume that v* = 0. For s > 0 fixed define 7, := s/R, — 0. Since |®, (u,)| < C, by

Lemma 3.4.3 we conclude that
@, (ratiy) + 1 flug [P < €
Now, using Lemma 3.5.1 together with the fact that p, > 1 we infer that

C" > @y, (raw}) + rllug 7 = pas®log 1 + s*[lvy |I* = 2/]1@2 F(z, svy)dz

> 52 —2/ F(x, sv))dx
R2

— §%

Thus, we have a contradiction if s > 0 is sufficiently large and this concludes the proof. O]

Proof of Theorem 3.1.3: Consider a sequence (u,,) C (1,2] such that p, — 1. According to
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Proposition 3.5.3, there exists a sequence (u,) C E such that

0<n<®, (u,) =cu, and @ (u,)=0.

+

By Lemma 3.5.4, after a renamed subsequence u,, — u, uX — u* weakly in E, strongly in

LI (R?) and a.e. in R?. Since for any ¢ € C5°(R?)

loc

0= 5@, () = ol 0) = (a7 0) = [ fo ),

taking the limit and using Lemma 3.3.4 we obtain ®'(u) = 0. Proceeding as in the proof of

Proposition 3.5.3 we see that u # 0 and this completes the proof. O
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Chapter 4

A Semilinear Schrodinger Equation
with Zero on the Boundary of the

Spectrum and Exponential Growth

4.1 Introduction and Main Result

Chapter IV is devoted to existence of weak solution for the following semilinear Schrodinger
equation

—~Au+V(2)u = g(z,u), xcR? (Py)

where 0 is a right boundary point of the spectrum of Schrodinger operator S = —A + V' and
g(x,t) has exponential growth. We emphasize that this work is the content of the paper [44].
Further investigations and developments for equation (P,) have been carried out depending on
the location of 0 with respect to o(S). Let us remember them:

Casel : If 0 < inf o(S). In this case, Coti-Zelati and Rabinowitz [22] proved that (P,) has
infinitely many solutions provided that the nonlinear term g(x,t) satisfies some suitable growth
condition as the well known Ambrosetti-Rabinowitz condition.

Case2 : If 0 lies in a gap of the spectrum o(S). When the primitive of g(x,t) is strictly
convex Alama and Li [1], [2], Buffoni et al. [16] and Jeanjean [34] found solutions using a
reduction method to solve the problem by applying the mountain-pass theorem. Troestler and
Willem [71] proved that (P,) has a nontrivial solution without the convexity hypothesis on G,
they require assumptions on g(z,t) which implies that the associated functional ® is of class
C?. Under conditions weaker than those, W. Kryszewski and A. Szulkin [36] proved and applied
a generalized linking theorem which requires the construction of a new degree theory in order
to handle the lack of compactness in this problem. This approach has been simplified by A.
Pankov and K. Pfliiger in [51] by using the approximation technique with periodic functions. In
the papers [58] and [60] the authors established a variant and generalized weak linking theorem
and obtained solution for the Schrédinger equation (P,) when the nonlinearity has subcritical

and critical growth with respect to Sobolev’s embeddings. See also [40,43] for related results.
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Case3 : If 0 lies in the interior of o(S). There exist only some bifurcation results [29,63].
Cased : 1f 0 is a boundary point of a gap of o(S). Bartsch and Ding [9] obtained a nontrivial
solution to (P,) assuming that 0 is a right endpoint of o(S), among others, the (AR) condition

and the lower bound estimate:

(go) There are a > 0 and g > 2 such that

2G(x,t) > alt|? forall zcR*tcR.

In [75] Willem and Zou relaxed condition (AR), developed the so-called monotonicity trick
for strongly indefinite problems and established weak linking results. Recently M. Yang et al.
[76] obtain a nontrivial weak solution for problem (7P,) replacing condition (AR) by a general
super-quadratic condition, to namely (see [65])

9(z, 1)

t— TN is strictly increasing on (—o0,0) U (0, 00). (4.1)

We observe that assumption (4.1) implies the statement
2G (x,t + 8) — 2G(z,t) — (2rs — (r — 1)*t)g(z,t) > 0, Vo € R?, s,t € R,r € [0,1]. (4.2)

We point out that M. Schechter [59] assumed the conditions (go) and (4.2) and proved the
existence of ground state solution. In all those papers with zero on the boundary of ¢(S) dealt
only with polynomial subcritical case. To the authors’ knowledge, there are few papers treating
problem (P,) with V periodic, 0 ¢ o(S) and g(x,t) has exponential growth (see for instance
[3,24]). Thus, our result generalize many works in the line of the papers [46, 59, 60, 68] for
nonlinearity involving exponential growth and 0 € o(S).

In the sequel, throughout this Chapter, we assume that the potential V' satisfies:
(Vo) V :R? = R is a continuous and 1-periodic function;

(V1) 0 € o(S) and there exists b > 0 such that o(S) N (0,b) = (), where o(S) denotes the
spectrum of the operator § = —A + V in L?(R?).

In addition to condition (go) we assume that g(x,t) has exponential subcritical growth at
infinity,
t

t}—oo  €Pt?

=0 forall B>0, (4.3)
and satisfies:

(1) g € C(R? x R,R) and is 1-periodic in z; for j = 1,2.

(g2) g(z,t) = O(Jt|7!) as t — 0 uniformly in # € R?, where ¢ > 2 is given in (go).

(93) g(x,t) is locally bounded in the variable ¢, that is, for any bounded interval J C R, there
exists C' > 0 such that |g(z,t)| < C for every (z,t) € R? x J.
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(g94) There exists W € L'(R?) such that for all x € R?, s,t € R and r € [0, 1] it holds

2(G(z,t +5) — G(x,t)) — (2rs — (r — 1)*t)g(x, t) > —W ().

Remark 4.1.1. Toking r =0 and s = —t ( respectively, s = rw —t ) in (g4) we obtain:
H(z,t) = tg(x,t) — 2G(x,t) > -W(x), VacR*tcR, (4.4)
and
2G (x,t) — 2G (z,7w) — ((r* + 1)t — 2r*w)g(x,t) < W(x), VYV cR?* t,w e R, r<c0,1]. (4.5)

Furthermore, taking t = s = 0 in (g4) we get W > 0 in R* and so (g4) implies (4.2).

Remark 4.1.2. We observe that if the potential V' satisfies assumption (Vy), replacing case
necessary V(z) by V(x) + const, it was shown in Stuart [63] that V satisfies assumption (V).

We also quote that a typical example of a nonlinearity satisfying our assumptions is

9w, 1) = a(@)T 2 + )|t — 1), R tER,
where 2 < q¢ < p and a(x) > ag > 0, b(x) > 0 are periodic.

Our main result of existence of solution for problem (7,) under the above hypotheses can be

summarized as follows.

Theorem 4.1.3. Assume (Vo) — (V1) and (go) — (94). If g(x,t) satisfies (4.3) then the problem
(Py) has a nontrivial weak solution. Moreover, if M denotes the collection of the solutions of
(P,), then there is a ground state solution, i.e., a solution of (P,) that minimizes the functional

energy over M. Furthermore, v € C'(R?) and u(x) =0 as |z| = oo.

The present Chapter is organized as follows. In the next section we formulate our problem in
a variational setting and we also prove a Trudinger-Moser inequality for our variational frame-
work. In Section 3, we establish some geometric properties of the energy functional, which are
required for the application of the linking-type theorem used and in Section 4 we prove that
(PS) sequences are bounded. Finally, in Section 5, we conclude the chapter with the proof of
Theorem 4.1.3.

4.2 Variational Setting

In this section we will construct the domain for our energy functional, a reflexive Banach
space (Eq, | - ||q), where we can apply the same linking theorem used in the previous chapter.
For this application, we need to establish a Trudinger-Moser inequality in the space E;, what

will be done by using Schwarz symmetrization.
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First we observe that from (4.3) and (g2) — (g3), for any 8 > 0, there exists C7,Cy > 0 such
that
G(z,t) < Ci]t|? + Colt|?(e” — 1), Vz e R teR. (4.6)

Under the hypotheses (Vp) —(V1), we will find a function space £, on which the energy functional
associated to (P,), @ : B, — R, given by

O(u) = /}RZ(|VU|2 + V(z)u?)dx — 2 /R2 G(z,u)dr

is well defined. Moreover ® € C*(FE,,R) and for any u,v € E,

%(@’(u),v) = /}RQ(VUVU + V(x)uv)dr — /}R2 g(z, u)vdx.

Thus, critical points of ¢ correspond to weak solutions to (P,). In order to find the function space
E,, let S = —A+V be the self-adjoint operator defined in L*(R?) with domain D(S) = H?*(R?).
Let {€(\)}, —00 < A < +00 be the spectral family of S, and |S|'/? be the square root of |S|. Set
U=1-&(0)—&(—0). Then U is unitary, commutes with S, |S| and |S|*/2, moreover S = U|S]|
is the polar decomposition of the operator S (see [35], p. 358).

As in the previous chapter, denote by E = D(|S|'/?), the domain of |S|'/2, then £(\)E C E
for all A € R. Under the hypothesis (V) one can see that E = D(|S|'/?) = H'(R?). Furthermore,
if we define

E-:=E&(0)E, ET:=[E(x)—-E(0)E,

(u,v) = (|S]Y?u, |S|"?v)y, Yu,v € E, and |jul| = v/(u, u),
we have the following result (see Chapter I).

Lemma 4.2.1. Assume that (V) holds. Then || - || is equivalent to || - |2 on ET. Moreover,
E=FE"@®FE" and for any u =u" +u" € E it holds

(u,ut)=(u,ut)y =0.

However, as proved in Lemma 1.2.16, || -|| is not equivalent to ||- ||z on £~ because 0 € o(S).

Thus, we need introduce another norm in £~ by setting
lull- = (llul® + ullDY?, we B,

where ¢ > 2. Let £ be the completion of E~ with respect to || - [|-. Then E_ is separable and

reflexive. Moreover, the following embedding holds (see [9], Lemma 2.1)

E; — H (R?). (4.7)
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Since ET is a closed subspace of H'(R?) we can define
E,:=E; +E*.

Furthermore, it is easy to see that E, is a reflexive Banach space as endowed with the norm (see

[91)

lullq = (lu 12+ [l (%) 2.
To the proof of the next lemma we refer to [9,68].

Lemma 4.2.2. The norm || - ||q in E, is invariant after translations in Z? and the embeddings

E, < H. (R®) and E,— L’(R%), Vp>q>2,

loc

are continuous.

We recall that the Trudinger-Moser inequality for unbounded domains established by Cao
in [17], asserts that for any « € H'(R?) and o > 0 it holds (e®*” — 1) € L'(R?). Moreover, if
l|u||lgr < M and « < 4, then there exists a constant C' = C'(«, M) > 0 such that

/ (e — 1)dz < C(a, M). (4.8)

Since E, is not immersed in L?(R?) is natural to consider the Young function W4(t) = [t|?(e® —
1), 8 > g — 2, for the Trudinger-Moser inequality. In view of Lemma 4.2.2, let S be the best
constant of the embedding F, — H'(By), i.e.,

1 el
S ueB N} [[ull gy

For our variational framework we will establish the following version of the Trudinger-Moser

inequality in the space Ej,.

Theorem 4.2.3 (Trudinger-Moser). For any u € E;, >0 and 0 > g — 2,
ul?(® — 1) e L'(R?).
Moreover, if ||ul]lq < M then there exists a constant C' = C(5,0, M) > 0 such that

ul?(e® = 1)dz < C, (4.9)

RQ
for any B > 0 such that 3(SM)? < 4r.

Proof. Let u* be the symmetrization of u, then it is well known that u* depends on |x| only and
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is nonnegative decreasing function of |x|. Furthermore,

/ ul(e® — 1)da :/ u*[?(”1 1" — 1)da
R2

RQ

:/ P (P 1)da:+/ P~ 1)da
B B

= Il + [2.

To estimate Iy, since £, < LP(R?) for any p > ¢ > 2 and

|u|Pdx = |u*|Pdx,
R R?

invoking the Radial Lemma (see [14], Lemma A.IV), for u* € LP(R?) radially decreasing we have
[u(@)] < Cullu|lpl2| 7, || # 0. (4.10)
Now we set

0, r>1

o) :{ w(r) —ur(l), 0<r<1

For each € > 0 by the Young inequality, Lemma 4.2.2 and (4.10) we obtain
' (r)]? < (1+e)v?(r) + (1+ C(e) " ()" < (1 +€)v*(r) + C(e, M).
Thus, for any v > 1 we get

/ I g < BOEM) / B4R g (4.11)
Bl Bl

Since E, < H'(B;) and |Jullq < M, by the Pélya-Szego inequality we get
Vou|?de = | |Vu*Pdz < | |Vul|?dz < (SM)>.
B B By

Using that 8(SM)? < 47 we can choose ¢ > 0 sufficiently small and v > 1 near to 1 such that
vB(1 +¢€)(SM)? < 4x. Since v € H(B;), we can invoke the Trudinger-Moser inequality in the
ball B; to obtain Cy > 0 such that

/ B g / GBS (5 g < .
B1 Bl
This, together with the Holder inequality and (4.11) imply
) 1/ . 1/
I < < ™ dl’) (/ V] dx) < Hu*||zv,eﬁc(€’M)(C'2)1/'y < (s, (4.12)
Bl Bl

provided that |lul|q < M, % + % =1 and 0 > ¢ (which is possible since v — 17 if and only
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if 7/ — 00). Now we will estimate . To this end, we fix 2 < ¢ < p < 2+ 6. Using (4.10) it

follows from the Monotone Convergence Theorem that

S (BCT| !u 15)" k20
Be [ eSO GuL g < ||Z [
|lz|>1 k= |z|>1
_ prC||w ||f§ i (5012”“ )"
24+60—0p p k!
Since [[u*[l, = [Jull, < Cslullq < C2M we get
pm 9 - 0102 ) pr B(C1CaM)?

1 ——(C1CoM C.C 12 —1]. 4.13

< ey — (GO e NCRE)
From estimates (4.12) and (4.13) we conclude the proof. O

As a byproduct of the proof of Theorem 4.2.3 we can prove the next corollary. It will be
useful throughout the paper.

Corollary 4.2.4. Ifu € E,, >0, 0 > q—2 and |lullq < M with B(SM)? < 4w, then there
exists C = C(B,0, M) > 0 such that

U2
/R2 ]u\g(eﬁ — 1)dx < CHuHZ.

Invoking Corollary 4.2.4 and inequality (4.6) we conclude that the energy functional ® asso-
ciated to (Py) is well defined. Furthermore,

O(u) = ||u+||2 — ||u_||2 — 2/ G(z,u)dr, Vu=u +u" € E, = E; + Et
RQ

and .
5(@'(u),v> = (ut,v) — (u,v) — / g(z,u)vde, Vu,vekE,
R2

4.3 Linking Geometry

In this section, in order to find critical points of the functional ® we will use one more time
the linking theorem due to Schechter-Zou [60] (see also [66, 75] for related results). With the
conditions of the theorem satisfied, we obtain a (PS) sequence for our energy functional. For
the convenience of the reader we will define the 7-topology in E, and we will present the linking

theorem in this context. Since FE, = E_ + ET and E is separable, for each v = u™ + ut we

T = ch(u )ek

k=1

have



where B = {ey, ey, ...} is dense in E_". Thus we can introduce a new norm in E, by setting

lull. = max{||u+||q,2 v ) } (4.14)

One can see that || - ||, satisfies ||u||, < ||ullq for any u € E, (see [36]). For R > p > 0 and
ug € ET\ {0} we define

pi={u=u +suf s> 00 € B fulq <R}, S,:={u* € E*:[lullq = p).
For a functional ® € C'(E,, R) defined in a Banach space E, we consider

(h:[0,1] x Q — E,, h is T-continuous. For any (so, ug) € [0, 1] x Q,)
there is a 7-neighborhood Uy, ) such that
{u—N(s,u) : (s,u) € Utsoue) N ([0, 1] X Q)} C By,

L0, u) = u, ®(h(s,u) < P(u),Yue Q.

Ve

where we use Ey;, to denote various finite-dimensional subspace of F, whose exact dimension

are irrelevant and depend on (sg, ug). Note that T # ) since id € T.

Theorem 4.3.1. [60] Suppose that a family of C*-functionals (¥, : E; — R), has the form
Oy (u) = pl(u) = J(u), pell,2].

Assume that

a) I(u) >0,V uekFE, and @, := ®;

b) I(u) + |J(u)| = oo as ||u|lq — oo;

c) @, is T-upper semicontinuous, maps bounded sets to bounded sets and @L 15 weakly sequentially

continuous on Ey;

d) sup®, <0<inf®,, Vp e [l,2].
oQ Sp
Then for almost all v € [1,2], there exists a sequence (u,) C E, such that
1 il < 00 ) =0, B () = 6

where

Cy = ilzrellf“ igg P, (h(1,u)).

Furthermore, c, € [igpf Q,, sgp ®,| and is nondecreasing in .
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In what follows, we obtain the linking structure of ®, required in Theorem 4.3.1. Precisely,

we apply Theorem 4.3.1 with
I(u) = [[u*[]* = [lu*[ly and  J(u) = Hu_|!2+2/ G(z, u)dz,
R2
that is, @, : £, = R,

B(w) =l = o =2 | Glaude, we (12
]R2

which clearly satisfies a) in Theorem 4.3.1.

Lemma 4.3.2. Assume (go). Then the functional ®, satisfies condition b) in Theorem 4.3.1.
In fact, we have I(u) + J(u) — oo as |jullq = oo.

Proof. For any u € E,, we write u = v~ + u", with v~ € E; and u* € E*. Since [lul|Z =
lu 12+ [lu* 1%, if [|ullq = oo then [u~[lq = lu™ |- = o0 or [lu*|lq = [lu*] = co. From (go) we

get

I =l P+ 2

G(z,u)dr > |lu”|* + allul§ = 0.
R2

Thus, I(u) + J(u) > I(u) = ||[ut]|* = oo if ||uT]lq = oo. Now suppose that there exists a
sequence (u,) C B, such that ||u,|lq = oo, ||u}]lq < C and I(u,) + J(u,) < C. Thus,

C=I(un) +J(un) = HUZHQJrHunHQJr?/ Gz, up)dx
R2
> uallg = llug 17 + alluwg (4.15)
> allunllg,

which implies that ||u,||, < C. Since |lu) ||, < Cllut|lq we have
g < Numllg + Nl llg < C-
This together with (4.15) imply that (||u,|/q)s is bounded and this is a contradiction. O

To carry forward, we establish an auxiliary convergence result.

Lemma 4.3.3. Assume (4.3) and (g2). Then for any sequence (u,) C E, such that u, — u in

E, we have

/2 9(x, up)pdr — /2 g(x,u)pdr, for any ¢ € C3°(R?).
R R

Proof. Let © = supp(y). Since the embedding E, — L"(2) is compact for any r > 1 it follows
that u, — u strongly in L"(Q2) and u,(z) — u(x) a.e. in Q. In particular, g(x, u,)p — gz, u)p
a.e. in Q. From (4.3) and (g2) — (g3) we can find Cy,Cy > 0 such that

lg(z, 1) < Chlt|" + Cot](e” = 1), V(z,t) € R® x R. (4.16)
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Thus

/ 9, wn)plde < C, / funl Y plde + Cs / i unl (€2 — 1)) pld.
Q Q Q

Using the Holder inequality and invoking the elementary inequality
(™ —1)" < (" —1), VteR B>0,r>1, (4.17)

we get

/ lg(z, un)pldr < C|l¢llso </ ]un]qu> ’ 1+ (/ ]un]q(eﬁq“% — 1)dw> q] )
Q Q R2

Since (uy,) is bounded, choosing 8 > 0 sufficiently small, by Theorem 4.2.3 we get

/|g(m,un)g0|dx <C (/ |un|qda:) L
Q Q

On the other hand, there exists ¢ € L'(Q) such that |u,| < |¢| in Q. Thus, for each € > 0, we

can choose a mensurable set A C {2 with |A| sufficiently small such that

qg—1

/ l9(z, up)pldr < C (/ |w|qu) ’ < €.
A A

Therefore, (g(z,u,)p), is uniformly integrable and the result follows by applying the Vitali’s
Theorem. O

In the proof of next result we will use that the topology induced by the norm || - ||, defined
in (4.14) is equivalent to the weak topology of E~ on bounded subsets (see Chapter 1). More
precisely, if (u,) C E~ is bounded then

|lun —ully =0 <= wu,—ueckE" . (4.18)

Lemma 4.3.4. Assume hypotheses (4.3), (go), (g2) and (g3). Then for each p € [1,2] the
functional ®,, is T-upper semicontinuous and maps bounded sets into bounded sets. Furthermore,

@L is weakly sequentially continuous on L.

Proof. Let (u,) C E, be such that ||u, — ul|, — 0. From (4.18) we have |lu, —u~ || — 0 and
|lu —ut]] — 0. Consequently (||u
Thus,

~|)n is bounded, hence up to a subsequence, u,, — u~ in E~.

ol all

|| <liminf ;]| and [u*| = lim [Ju
n n

Since G(z,t) > 0, by the Fatou’s lemma

/ G(x,u)dmﬁliminf/ G(z,uy)dz.
R? R?

n
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Therefore,
B, (u) = a2 — lu~ |2 - 2 / Gz, u)da

RQ
> lim sup (uuu:n? i~ 2 G(sc,un>dx)
n RQ
= limsup @, (u,,),

that is, ®, is 7-upper semicontinuous. Now, let (u,) C E, such that |ju,|q < C;. In particular,
lu, || < Cy e fjut]| < Ci. Hence,

@, (tn) = pllugy |I* = llu 1 — 2/2 G(x,un)dr < plluf|* < Co. (4.19)
R

On the other hand, invoking inequality (4.6), the embedding E, < L?(R?) and Corollary 4.2.4

we have
2/ G(z,u,)dr < 03/ |u,|?dx + 04/ |un|q(eﬁui — 1)dr < Csllun||Z < Cs.
R2 R2 R2

Thus, we get
Bl) 2 =2 | Glaua)de = ~Cr.

R2
This, together with (4.19) implies that (|®,(u,)|), is bounded. Finally, suppose that u, — u =
u~ +ut in E,. Then for any p € C°(R?), (u,,p) — (u, p) and (u,,p) = (u™,¢). Invoking

Lemma 4.3.3 we obtain

(@ (un), o) = (P (u), ), Vo€ C(RY),
and this conclude the proof. O]

Lemma 4.3.5. Assume (4.3) and (g2) — (g93). Then there are positive constants n and p such
that, for any 1 < pu < 2,

Q,(ut)>n foral u'€FET with |ut|q=p
Proof. Let p >0 and 8 > 0 such that 8p?S? < 4r. If ||u™|q = p by Corollary 4.2.4 we get

lut |9 — 1)de < Cpl.
R2

This together with inequality (4.6) and the embedding E, < L?(R?) imply

/ G(z,u)dz < Cyllu™ |1 + CQ/ lut|2(e?D” — 1)dz < Cyp.
R2 R2
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Thus, we conclude that

O, (ut) =pl(u") =2 [ G(x,u")dx > p* — Cpl.

R2
Since ¢ > 2, choosing ||u™||q = p sufficiently small we obtain the desired result. O

Lemma 4.3.6. Assume (go). Fizedui € ET\{0}, there exists R > 0 such that for all1 < p < 2
Q,(u) <0, VuedQrg, (4.20)

where
Qr :={u=u +suf : Suf|?+ v |2 < R*u” € E,,s>0}.

Proof. First we observe that if s = 0 then ®,(u) = —||u||* =2 [ G(x,u”)dz < 0 by (go). Thus,
in what follows we assume that s > 0. Note that u = u~ + suj € Qg with s > 0 if and only if

$lug I1* + [l |17 + [lu™ 5 = (4.21)

If
(4 D [lug [I* + w17 < R,

using that G(x,u) > 0 together with (4.21) we obtain

By0) = s | = o2 =2 [ G
< s P+ 52 |+ I - P2

= (u+1)s[lug |* + [lu”|I7 — B* < 0.

On the other hand, if
(1 + 1)s°[lug [I* + [l = R, (4.22)

and (4.20) does not holds, that is, there exists a sequence R, — +00, u, = u, + s,ug € OQg,
such that ®,,(u,) > 0. We consider two cases, to namely:
Case 1: Suppose that s, /R, — 0. From (4.22) we get

e () e+

2
T ) > 1/2 for n large. Since 7= — 0 we obtain

2
> 1
q

Y

U,  Sp
R, R,

q

q
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This together with (go) imply for n sufficiently large that

q

1 (,LL+ 1) Sn 2 Uu,, Sn,
0 < i) < Y (50 g - 4 2
a a
= @ - E7

which is a contradiction.
Case 2: Suppose that s, /R, > ¢; > 0. From (4.21) we have

2 (Rn)2 1
_ Sn &

U
lug 11 + || -

n

Since E; is reflexive there exists w € E_ such that = — w in E, % — w in L{ (R?) and
7;—’7 — w almost everywhere in R%. We claim that there exists ¢ > 0 such that
I snug o< ¢ || uy + snug g - (4.23)

Indeed, otherwise, after take a subsequence we have
Isnug llq = nlluy + snug -

Thus,

u
= +ug
Sn

1
Z T
0 lla

1

q

Consequently %= — —ug in L9(R?). Therefore w = —ug. Since (%, ug > =0 for all n € N and
the functional C( ) = (u,ug) belongs to E’ (the dual of E) we get

1 Up 4+ + oYy 2
0= tim (2 ) = (-uf) = =l
which is a contradiction. Therefore (4.23) holds and using (fy) together with (4.21) we obtain

0<®u(un) < (et DspllugI* + lu, llg = By — allu, + snug |l
< (u+Dsyllug I = Csillug |13

Since s,, — oo and ¢ > 2 we get another contradiction. O

4.4 (PS) Sequence

We observe that for almost everywhere p € [1,2], Theorem 4.3.1 provide a (PS) sequence,
(un)n C Ey, for @, such that

sup ||un|lq < oo, @L(un) —0 and @,(u,) — c,.
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Furthermore, ¢, € [iglf P, sup ®,,].
X e

R
We will make use of the following version of the Lions Lemma whose proof can be found in
[75], Lemma 3.3.

Lemma 4.4.1. Let r > 0 and (u,) C E, be bounded. If

sup / lun|*dz — 0 as n — oo,
yER? JB(y,r)

where B(y,r) C R? denotes the open ball with center y and radius v > 0, then u, — 0 in L'(R?)
for t > q. Particularly, if (u,) C E, then u, — 0 in L'(R?) fort > 2.

Proposition 4.4.2. Suppose (Vy), (g0), (92), (93) and (g4) are satisfied. For almost everywhere
p € [1,2], there is a sequence (u,) C E, \ {0} and a constant n > 0 such that

n<@u(u,) <c and @, (u,)=0.

Proof. In view of Lemmas 4.3.2, 4.3.5, 4.3.6, 4.3.4 and Theorem 4.3.1, for almost everywhere
p € [1,2], there exists a sequence (u,,) C E, such that

sup [lunlq < 00, @, (u,) =0 and @,(u,) — ¢, > igf ¢, >n>0.
n o
Hence, for any v € E, we have
1, . )
§<<I>M(un),v> = u(u,,v) = (u,,v) — [ g(z,u,)vdr -0 as n — oo.
R2

Since E, is a reflexive Banach space, there is a renamed subsequence of (u,,) such that u,, — u,
weakly in F,, strongly in L{ (R?) and almost everywhere in R?. Therefore, by Lemma 4.3.3 and

density arguments as used in Lemma 3.3.4 we conclude that
1, . )
§<<I>“(u#),v) = p(uy,v) — (u,,v) — g g(z,u,)vder =0, VYoveE,
ie., ® (u,) =0. Let H(z,t) :=tg(w,t) — 2G(x,t) and observe that
L
H(z,u,)dr = &, (uy,) — §<<I>“(un), Up) — Cp,

since (u,) C FE, is bounded. Using that H(z,u,) — H(x,u,) a.e. in R? and H(z,u,) > —W(z)
for all z € R?, by the Fatou’s lemma

= lign . H(x,u,)dr > . H(z,u,)dx = ®,(u,).

It remains to show that w, # 0 (up to translations). If we prove that u:[ # 0, the assertion
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follows. By Theorem 4.3.1 and Lemma 4.3.5, ¢, > 0. Moreover, by (gy) we have

w2 = g P = @, () + 2 / Gz, un)dz > (),
RQ
which implies that
tim nf (ot |° — [ 2) > ¢, > 0. (4.24)
n—-—+oo

Fixed r > 0, if sup/ lu|?dz — 0 as n — oo, then ||u}|, — 0 by Lemma 4.4.1. Now
yeR2 J B(y,r)
note that

1
pllui]? = Nlug 12 < pllat 12 = 5(@, (un),ub) + [ gle, un)u) de.
2 22

It follows from (4.6) that

/g(x,un)u,fdx < Cl/ \un|q1\u:[|dac+02/ || (P — 1) |da
R? R? R?

Cy </ |un]qdq:> ' + Oy </ |un]q(e/8q%1“% — 1)d:c) ' ] :
R2 R2

Since (uy,) is bounded in E,, we can use the embedding F, < L(R?) and Corollary 4.2.4 with
£ > 0 sufficiently small to obtain

IN

ez Nl

q—1 g—1
q

cl( |un|ng;) ' +02( |un|q(eﬂqq1u%_1)dx) < C.
R2 R2

Hence

pllug 17 = Nl 1 < S (@ (un), 1) + Cllug g,

N | —

which implies that
tim sup(ull e | ~ luz |) < 0,

n——+o00

which contradicts (4.24). Thus there is a sequence (y,) C Z? and a renamed subsequence

(uf) C ET such that
/ lw|?dr = / lu|?dr > a >0 (4.25)
B(O,T‘) B(ynﬂ")

where w,(z) = u,(z + y,,). Since V(z) and g(z,t) are 1-periodic we have that

sup ||wy]q < 00,  @,(w,) — ¢, and @L(wn) — 0.

We may assume that w, — w and w;} — w™ in E,. Furthermore, using the compact embedding
Et — L2

loc

(R?) together with (4.25) we obtain that w' # 0. Consequently w is a nontrivial
critical point of ®,,. O

In what follows we will show that every approximated (PS) sequence is bounded. To this

end we make use of the following auxiliary results.
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Lemma 4.4.3. Suppose that (g4) is satisfied. If u=u~ +u" € B, = E; + ET and r € [0,1],
then
/ [2G(z,u) — 2G(z,ru™) — ((* + Du — 2r°u™) g(z,u)] dz < C,
R2

where the constant C' does not depend on u,u™,r.

Proof. Taking w = u* and t = u in (4.5) we get
2G(z,u) — 2G(z,ru’) — ((r* + D)u — 2r*u™) g(z,u) < W(z).

The desired result follows by integrating the last inequality and using that W € L'(R?). O]

Lemma 4.4.4. Suppose hypothesis (gs). Let (pin)n C [1,2] and u, = u, +u} € E,, where

u, € B, uf € B, such that @, (u,) — 0 and (), (un),u,) = 0,(1). Then for all r € [0,1],

there 1s a constant C' independent of n, p, and r such that
0, (rugy) + 72 I = @y, (wn) < C 4 0n(1)r?luy .
Proof. In fact,
Oy, (1) + 7 |ug |* = Py, (n) = pir® [ |1 = 2/2 Gz, rug)de + 1 |lug ||* — gy |
R
+ g 1?4 2 /11{2 G(z,u,)dz

= / 2G (2, up) — 2G (2, ru;))|dw + o (r* = 1) 1P + (72 4 1), ||
]RQ
Taking ¢ = (r2 + Du, — (r? — Dut = (r? + 1u, — 2r’u’ as a test function we obtain
g SO n n n

= DI+ 024 Dl = = [ (0 D — 2020 gl )
R2
2 2 +
— (P}, (un), (" + Dup — 2r°u,)).

Thus,

@, (ruf) +r?|lug ||* = @y, (un) = / [2G (2, un) = 2G(z,ruyy) = ((r* + Duy — 2r'uy) 9@, u,)] do
R2
2 2
— (P, (un), (r* + L)uy — 2r%u,))
< C+ o, (g |,
by the previous lemma. O

Lemma 4.4.5. Assume (Vp), (4.3) and (go)-(ga). Let 1 < p, < 2 and (u,) C E, satisfying
Dy, (un)| < C, @), (un) — 0 and (@), (un), un) = 0n(1).

Then (uy) has a bounded subsequence in E,.

Proof. Let u, = u, + u; satisfying the hypotheses of lemma. Since (®/, (u,),u,) = 0,(1), by

Hn
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assumptions (go) and (g4) (see (4.4)) we get

o 2 = N P = [ gt tade + 0, (1)

> 2/ G(z,uy)dr — C + 0,(1)
R2

> allun || — C + 0a(1).

In particular, alju,||§ < |lu}||* + C. This together with the triangle inequality and continuous
embedding E, < L4(R?) imply that

g < Nunllg + il < Nunllg + Cllwglla = llually + Clluf | < Cullud 27+ Cllu || + Co.

Thus, it suffices to prove that (||uy||), is bounded. Suppose that R, = |lu,| — oo and let
v, = un/R, = v, +vF. Since ||v;) || < 1 there exists a subsequence still denoted by (v;) such
that v;7 — v weakly in E*, v)7 — v strongly in L% _(R?) and almost everywhere in R%. There
are two cases to consider:

Case 1:

sup / |of|?dr — 0 as n — oco.
yeR? J B(y,r)

In this case, by Lemma 4.4.1 v;" — 0 in L9(R?). By Lemma 4.4.4
O, (rwy) + 7o flug |17 = @, (wn) < C 4 0n(L)rlust -

Taking r, = s/ R, for s > 0 to be choose later we have

@, (svf) + 82||v, |7 < C + 0n(1)s%. (4.26)
On the other hand,

Oy, (sv7) + 8% [log |12 = pns?|log |12 + 8%[o [|* = 2 /2 G(z, svy )dx
R
> &2|un|? — 2/ Gz, sut)dz (4.27)
R2

=5 — 2/ G(z, sv})dx.
R2

Now using inequalities (4.6) and (4.17) together with Corollary 4.2.4 we get

2(,,+\2
T, SV r < (38 v, |"ax + Cas v, |* (e Y — 1)) |lax
G Hdx < Cys F9dx + Cys Fla (P ) 1)t |d
R2 R2 R2
qg—1
q

KB
< Cis"otlly + Cas ol ( [ (e - 1>dx)
R2

< Cy5%0,(1) + C3s%0,(1),
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for § > 0 sufficiently small. Therefore we obtain
., (sv) + 82 |vy |7 > 5% — s%0,(1),

which contradicts inequality (4.26) for n and s sufficiently large.
Case 2: There is a sequence (y,) C Z* and a renamed subsequence (v;") such that, for all
n €N,

/ lul|2de > o > 0. (4.28)
B(yn,r)
Let w),(x) := u,(x — y,) and using that V (z), g(z,t) are 1-periodic we have @, (u,) = @, (u,).
Consequently
Gz, uy) +112 12 1
2 [ Fde = ot = o = ) < C (1.29)

We claim that

Gz, uy,)

——5 —~dx — 00 as n — oo.
R2 Rn

Indeed, defining w, () := v,(z —y,) we have ||w,|| = ||v.]| = 1. Thus there exists a subsequence

of (w,) C E such that w, — w, w7 — w' in E, strongly in L2 _(R?) and a.e. in R?. Tt follows

loc
from (4.28) that
/ lw|?dr > 2 0,
B(0.r) 2

which implies that w* # 0 and hence w # 0. Now consider a subset A C R? with |A| > 0 where

w # 0. Since |u),(z)] = |w,()|[|un|] = 0o as n — oo, invoking (gg) we have G(x,t)/t* — oo as
t — oo. Thus,
G(z,u, G(z,u,
/ (J}'72Un) dx Z / (.I/, l;n) \wn|2dx — 00,
R2 Rn A unl

proving the claim. Now taking the limit in (4.29) as n — oo we obtain a contradiction and this

concludes the proof. O

4.5 Ground State Solution

Now we are ready to present the proof of Theorem 4.1.3. By applying Theorem 4.3.1,
there exists a sequence (i), C (1,2], with g, — 1, for which is possible to find a sequence
(ulr )m C E, \ {0} verifying

sup [Juy, || < oo, @, (up) =0 and &, (u,)—c,, as m— oo,
m

where ¢, = }lnlf; sup @, (h(1,u)). From this, for each n € N, there exists m,, € N such that
cr
Qr

N, (), i, )] <

m My,

S|
S|

and |, (up,, )] <

mn

, VneN.

3|

‘(D;Ufn (u’r’r;lln) - C;Ufn’ S
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Hereafter, we denote uy, by u,, hence we can rewritten the above limits as follows

, VnelN

S|
S|

|(b//fn (un) - C#n’ S

(P, (un), un)| < = and [|P],, (un)]| <

S

Since 0 < ¢1 < ¢y, < ¢ for all n € N, we can assume that 0 < ¢ < @, (u )<cz—|—l

By Lemma 4.4.5, after a renamed subsequence u, — u weakly in E,, strongly in L] (R?)
and a.e. in R2. Since,
1 _ 0o
0= 50, (1)) = it 9) = () = [ glwodn, Vo CF@Y, (430)
R

taking the limit and using Lemma 4.3.3 together with density arguments as in Lemma 3.3.4
we get ®'(u) = 0. We claim that u £ 0. Indeed, taking ¢ = u} in (4.30) and combining the
inequalities (4.16) and (4.17) we get

palll = [ gt uauido
R2

< 01/ |1 1|u+|dx+02/ - 1< B 1))t |de

< (/R |u:|qczx) (/ |un|qu) ' (/ | (P — )m)tl]
Crllunll™ + Co (/ g (57T — )d:c) q ]

Since (u,) is bounded, we can choose 5 > 0 sufficiently small and invoking Corollary 4.2.4 to

= lluyllq

obtain
g—1

Jun ||+ Cy (/ [y | (7T — 1)d91:) "<
R2

As a consequence we get

C1 -
S < Bl) = el P = o P = [ Glavua)de < ol P < Clufll (43)
If for r > 0 fixed,

sup / lut|’dz — 0, as n — oo,
yeR2 J B(y,r)

then by Lemma 4.4.1 we get u;f — 0 in L9(R?) and this contradicts (4.31). Consequently this

does not occur, that is, there exists a sequence (y,,) C Z? and a > 0 such that

/ lut?dz > a > 0.
B(ynr)

Now proceeding as in the end of the proof of Proposition 4.4.2, after to translation we have that
ut # 0 and hence u # 0.
To finish the proof we recall that M denotes the set of solutions of (P,). Observe that if
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u € M then by (4.4)

O(u) = ®(u) — (P'(u),u) = [ H(x,u)dx >— [ W(z)dx.

R2 R2

Consequently, the number

B = u16n/£t O (u)

is well defined. Now consider a sequence (u,) C M such that ®(u,) — . By Lemma 4.4.5,
the sequence (u,) is bounded in E,. Thus, after a renamed subsequence we may assume that

u, = uin Ey, u, = uin LL _(R?) and a.e in R?. Hence we have

loc

1 _
0= §<(I)/(un)7 90> = (U:, @) - (Un,QO) - f(x7un)90dxv
RQ
and passing the limit we get ®'(u) = 0, i.e., u € M. On the other hand,
L,
D (uy,) = P(uy,) — §<<I> (un), ) = [ H(z,u,)dx.
R2

By the Fatou’s Lemma we have

O(u)+ | W(x)dr = / [H(x,u) + W (x)|dx

RQ

<O(u)+ | W(x)d.
R2
Therefore, § = ®(u). To complete the proof, we observe that by the first step we obtain a weak
solution u € E, of
~Au = -V(z)u+g(z,u), &R

(R?). Moreover, f(z) = =V (z)ut+g(z,u) € LP(R?)
for any p > ¢ > 2. Using LP-regularity theory we obtain u € C'(R?). Using the Harnack

Invoking Lemma 4.2.2 we obtain that u € H}!

loc
inequality (see [33], Theorem 8.17) for p > ¢ we get
lulleo sy < Cllullrsay, Yy € R (4.32)

where C' > 0 is a constant independent of y € R%. Now we fix ¢ > 0. Since u € LP(R?) we have

lim |u|Pdz = 0. Thus we can take R > 0 sufficiently large such that fu |ulPdz < e.

R=+00 Jjz|>R
Then for y € R? with |y| = R + 2 we have

=R

[ull oo (By,1)) < Coe,
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by (4.32). Since € > 0 is arbitrary we conclude that |u(x)| — 0 as |x| — oo and this completes
the proof of Theorem 4.1.3.
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