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João Pessoa – PB

Dezembro de 2014

†Este trabalho contou com apoio financeiro da CAPES e do projeto PDSE número 12038-13-0.

ii



A345h Albuquerque, Nacib Gurgel.
Hardy–Littlewood/Bohnenblust–Hille multilinear inequalities

and Peano curves on topological vector spaces / Nacib Gurgel
Albuquerque. – João Pessoa, 2014.

91f.
Orientador: Daniel Marinho Pellegrino.
Co-Orientador: Juan Benigno Seoane Sepúlveda.
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Universidade Federal de Campina Grande

Programa em Associação de Pós Graduação em Matemática
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Matemática UFPB/UFCG, como requisito parcial para obtenção do t́ıtulo de Doutor emMatemática.
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“Give me a fulcrum, and I shall move the world.”

Archimedes of Syracuse (c. 287 BC – c. 212 BC)



Resumo

Este trabalho é dividido em dois temas. O primeiro diz respeito às Desigualdades multilineares

de Bohnenblust–Hille e Hardy–Littlewood. Obtemos generalizações ótimas e definitivas para

ambas desigualdades. Mais ainda, a abordagem apresentada fornece demonstrações mais sim-

ples e diretas do que as conhecidas anteriormente, além de sermos capazes de mostrar que os

expoentes envolvidos são ótimos em várias situações. A técnica utilizada combina ferramen-

tas probabiĺısticas e interpolativas; esta última é ainda usada para melhorar as estimativas das

versões vetoriais da desigualdade de Bohnenblust–Hille. O segundo tema possui como ponto

de partida a existência de espaços de Peano, ou seja, os espaços de Hausdorff que são imagem

cont́ınua do intervalo unitário. Sob o ponto de vista da lineabilidade, analisamos o conjunto das

sobrejeções cont́ınuas de um espaço euclidiano arbitrário em um espaço topológico que, de certa

forma, é coberto por espaços de Peano, e conclúımos que grandes álgebras são encontradas nas

famı́lias estudadas. Fornecemos vários resultados ótimos e definitivos em espaços euclideanos, e,

mais ainda, um resultado de lineabilidade ótimo naqueles espaços vetoriais topológicos especiais.

Palavras-chave: Bohnenblust–Hille, Hardy–Littlewood, lineabilidade, curvas de Peano, espaços

vetoriais topológicos.
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Abstract

This work is divided in two subjects. The first concerns about the Bohnenblust–Hille and Hardy–

Littlewood multilinear inequalities. We obtain optimal and definitive generalizations for both

inequalities. Moreover, the approach presented provides much simpler and straightforward proofs

than the previous one known, and we are able to show that in most cases the exponents involved

are optimal. The technique used is a combination of probabilistic tools and of an interpolative

approach; this former technique is also employed in this thesis to improve the constants for

vector-valued Bohnenblust–Hille type inequalities. The second subject has as starting point

the existence of Peano spaces, that is, Haurdorff spaces that are continuous image of the unit

interval. From the point of view of lineability we analyze the set of continuous surjections from

an arbitrary euclidean spaces on topological spaces that are, in some natural sense, covered by

Peano spaces, and we conclude that large algebras are found within the families studied. We

provide several optimal and definitive result on euclidean spaces, and, moreover, an optimal

lineability result on those special topological vector spaces.

Keywords: Bohnenblust–Hille, Hardy–Littlewood, lineability, Peano curves, topological vector

spaces.
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Introduction

Part I: Hardy–Littlewood and Bohnenblust–Hille inequal-

ities

The subject of this part of the work was born with a problem stated in 1913 by Harald Bohr

in [35] concerning convergence of scalar valued Dirichlet series, which is a series with the form

∞∑

n=1

an
1

ns
,

where the coefficients an are complex and s is a complex variable. H. F. Bohnenblust and E.

Hille in the notorious paper

[34] On the absolute convergence of Dirichlet series, Annals of Mathematics, vol. 32,

600-622, 1931,

solved the problem proposed by H. Bohr and for the proof they established in [34, Theorem I]

their famous multilinear inequality, which is of independent high interest:

Multilinear Bohnenblust–Hille’s inequality (1931). For each positive integer m ≥ 1, there

exists a constant Cm ≥ 1 such that

( ∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m
m+1

)m+1
2m

≤ Cm ‖A‖ , (1)

for all continuous m-linear forms A : c0×· · ·× c0 → C. Moreover, the exponent 2m
m+1

is optimal.

The case m = 2 is the well-known Littlewood’s 4/3 inequality [86, Theorem 1]. These

inequalities, and the growth of the constants involved in it, have important applications in various

fields of analysis and mathematical physics (see, for instance, [29,32,41,51,53,56,57,62,89,102]).

Hardy and Littlewood (see [76] and [77, p.224]) provided an ℓp-version Littlewood’s 4/3

inequality and then Praciano-Pereira studied in [99, Theorems A and B] the effect of replacing

c0 by ℓp in the Bohnenblust-Hille inequality, obtaining an general forms of it for multilinear form

on ℓp spaces, nowadays (unfortunately) known as Hardy–Littlewood’s multilinear inequality (we

set a convenient notation: Xp := ℓp, 1 ≤ p < +∞ and X∞ := c0; for p := (p1, . . . , pm) ∈
[1,+∞]m ,

∣∣∣ 1p
∣∣∣ := 1

p1
+ · · ·+ 1

pm
):

xii



Multilinear Hardy–Littlewood’s inequality. Let p ∈ [1,+∞]m with
∣∣∣ 1p
∣∣∣ ≤ 1

2
. Then there

exists a constant Cp > 0 such that, for every continuous m-linear form A : Xp1 ×· · ·×Xpm → C,

( ∞∑

i1,...,im=1

|A(ei1 , . . . , eim)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cp‖A‖.

This part of the thesis is devoted to generalize the previous notorious inequalities. In Chapter

1 we verse about a part of the paper

[5] Sharp generalizations of the multilinear Bohnenblust-Hille inequality, Journal of

Functional Analysis, vol. 266, no. 6, 3726–3740, 2014.

which is an joint work with F. Bayart, D. Pellegrino and J. Seoane. We will prove that the

multilinear Bohnenblust–Hille inequality is, de facto, a particular case of a quite general family

of optimal inequalities (which will be a particular case of vector valued results present in the

Chapter 2). More precisely we obtain

Theorem. Let m ≥ 1, let q1, . . . , qm ∈ [1, 2]. The following assertions are equivalent:

(1) There is a constant Cq1...qm ≥ 1 such that




∞∑

i1=1




∞∑

i2=1


. . .




∞∑

im−1=1

( ∞∑

im=1

‖A (ei1 , . . . , eim)‖qm
) qm−1

qm




qm−2
qm−1

. . .




q2
q3




q1
q2




1
q1

≤ Cq1...qm‖A‖

for all continuous m-linear forms A : c0 × · · · × c0 → K.

(2) 1
q1
+ · · ·+ 1

qm
≤ m+1

2
.

Here, as usual, K denotes the field of real or complex scalars. The Bohnenblust–Hille inequal-

ity is just the particular case q1 = · · · = qm = 2m
m+1

. The ingredients to attain this are nothing

else than Minkowski’s inequality, a Hölder’s interpolative inequality and a mixed (ℓ1, ℓ2)-estimate

consequence of Khintchine’s inequality.

In Chapter 2 we discourse about the results of the paper

[6] Optimal Hardy-Littlewood type inequalities for polynomials and multilinear oper-

ators, Israel Journal of Mathematics, in press.

which also is joint work with F. Bayart, D. Pellegrino and J. Seoane. It concerns about definitive

generalizations of the Littlewood’s 4/3 inequality. As soon as J. E. Littlewood proved his famous

inequality in [86, Theorem 1], it was rapidly extended to more general frameworks. For instance,

• The multilinear Bohnenblust–Hille inequality ([34, Theorem I], 1931)

• The multilinear Hardy–Littlewood inequality ([76], and [99, Theorems A and B], 1981)

xiii



• (Defant and Sevilla-Peris, [57, Theorem 1], 2009) If 1 ≤ s ≤ q ≤ 2, there exists a constant

C > 0 such that, for every continuous m-linear mapping A : c0 × · · · × c0 → ℓs, then

(
+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+2( 1
s−

1
q )

ℓq

)m+2( 1
s−

1
q )

2m

≤ C‖A‖.

Furthermore, the previous results were generalized by the author, F. Bayart, D. Pellegrino

and J. Seoane and also by Dimant and Sevilla-Peris:

• ([5, Corollary 1.3], 2013) Let 1 ≤ s ≤ q ≤ 2 and p ∈ [1,+∞]m such that

1

s
− 1

q
−
∣∣∣∣
1

p

∣∣∣∣ ≥ 0.

Then there exists a constant C > 0 such that, for every continuous m-linear mapping

A : Xp1 × · · · ×Xpm → Xs, we have

(
+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+2( 1
s−

1
q−| 1p |)

ℓq

)m+2( 1
s−

1
q−| 1p |)

2m

≤ C‖A‖

and the exponent is optimal.

• (Dimant and Sevilla-Peris, [59, Proposition 4.4], 2013) Let p ∈ [1,+∞]m and s, q ∈ [1,+∞]

be such that s ≤ q. Then there exists a constant C > 0 such that, for every continuous

m-linear mapping A : Xp1 × · · · ×Xpm → Xs, we have

(
+∞∑

i1,...,im=1

‖A (ei1 , . . . , eim)‖ρℓq

) 1
ρ

≤ C‖A‖,

where ρ is given by

(i) If s ≤ q ≤ 2, and

(a) if 0 ≤
∣∣∣ 1p
∣∣∣ < 1

s
− 1

q
, then 1

ρ
= 1

2
+ 1

m

(
1
s
− 1

q
−
∣∣∣ 1p
∣∣∣
)
.

(b) if 1
s
− 1

q
≤
∣∣∣ 1p
∣∣∣ < 1

2
+ 1

s
− 1

q
, then 1

ρ
= 1

2
+ 1

s
− 1

q
−
∣∣∣ 1p
∣∣∣.

(ii) If s ≤ 2 ≤ q, and

(a) if 0 ≤
∣∣∣ 1p
∣∣∣ < 1

s
− 1

2
, then 1

ρ
= 1

2
+ 1

m

(
1
s
− 1

2
−
∣∣∣ 1p
∣∣∣
)
.

(b) if 1
s
− 1

2
≤
∣∣∣ 1p
∣∣∣ < 1

s
, then 1

ρ
= 1

s
−
∣∣∣ 1p
∣∣∣.

(iii) If 2 ≤ s ≤ q and 0 ≤
∣∣∣ 1p
∣∣∣ < 1

s
, then 1

ρ
= 1

s
−
∣∣∣ 1p
∣∣∣.

Moreover, the exponents in the cases (ia),(iib) and (iii) are optimal. Also, the exponent in

(ib) is optimal for 1
s
− 1

q
≤
∣∣∣ 1p
∣∣∣ < 1

2
.
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In Chapter 2 we investigate, among other results, in depth the remaining cases of the Dimant

and Sevilla-Peris result and obtain the following

Theorem. Let p ∈ [1,+∞]m and let ρ > 0. Assume moreover that either q ≥ 2 or q < 2 and∣∣∣ 1p
∣∣∣ < 1

2
. Let

1

λ
:=

1

2
+

1

s
− 1

min{q, 2} −
∣∣∣∣
1

p

∣∣∣∣ > 0.

Then there exists C > 0 such that, for every continuous m-linear operator A : Xp1 ×· · ·×Xpm →
Xs, we have (

+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖ρℓq

) 1
ρ

≤ C‖A‖

if and only if
m

ρ
≤ 1

λ
+

m− 1

max{λ, s, 2} .

The following table summarizes the optimal value of 1
ρ
following the respective values of

s, q, p1, ..., pm:

1 ≤ s ≤ q ≤ 2, λ < 2
1

2
+

1

ms
− 1

mq
− 1

m
×
∣∣∣∣
1

p

∣∣∣∣

1 ≤ s ≤ q ≤ 2, λ ≥ 2,
∣∣∣ 1p
∣∣∣ < 1

2

1

2
+

1

s
− 1

q
−
∣∣∣∣
1

p

∣∣∣∣

1 ≤ s ≤ 2 ≤ q, λ < 2
m− 1

2m
+

1

ms
− 1

m
×
∣∣∣∣
1

p

∣∣∣∣

1 ≤ s ≤ 2 ≤ q, λ ≥ 2
1

s
−
∣∣∣∣
1

p

∣∣∣∣

2 ≤ s ≤ q
1

s
−
∣∣∣∣
1

p

∣∣∣∣

The technique we used is a combination of probabilistic tools and of an interpolative approach;

this former technique is also employed in this paper to improve the constants for vector-valued

Bohnenblust–Hille type inequalities.

Part II: Peano curves on topological vector spaces

Throughout history there have always been mathematical objects that have contradicted

the intuition of the working mathematician. To cite some one these objects, let us recall the

famous Weierstrass Monster. It came as a general shock when, in 1872 and during a presentation

xv



before the Berlin Academy, K. Weierstrass provided a classical example of a function that was

continuous everywhere but differentiable nowhere. The particular example was defined as

f(x) =
+∞∑

n=0

an cos(bnπx)

where 0 < a < 1 , b is an odd integer and ab > 1 + 3π/2 (see Figure 1). Although the first

published example is certainly due to Weierstrass, already in 1830 the Czech mathematician B.

Bolzano exhibited a continuous nowhere differentiable function (see [105] for a thorough study

of these citations).

Figure 1: Weiestrass’ Monster

One may think that, once such an object is found, not many more like it can possibly exist.

History has proven this last statement wrong. For the last decade there has been a generalized

trend in mathematics toward the search for large algebraic structures of special objects (and

sometimes called pathological in the literature [68,104]). One of the first results illustrating this

was due to B. Levine and D. Milman [84].

Theorem (Levine and Milman, 1940). The subset of C[0, 1] of all continuous functions on [0, 1]

of bounded variation does not contains a closed infinite linear space.

Later, the following famous result on the set of continuous nowhere differentiable functions

was proved by V. I. Gurariy [74]:

Theorem (Gurariy, 1966). The set of continuous nowhere differentiable functions on [0, 1] con-

tains an infinite linear space.

Somehow, what we are seeing is that what one could expect to be an isolated phenomenon

can actually even have a nice algebraic structure (in the form of infinite dimensional subspaces).

xvi



Let us provide a more formal and complete definition for the concepts motivated by this that,

by now, are widely known (see, e.g., [10–12,17,27,46,48, 64]).

Definition (Lineability and spaceability, [10, 104]). Let X be a topological vector space and M

a subset of X. Let µ be a cardinal number.

(1) M is said to be µ-lineable if M ∪ {0} contains a vector space of dimension µ. At times,

we shall be referring to the set M as simply lineable if the existing subspace is infinite

dimensional.

(2) When the above linear space can be chosen to be dense (infinite dimensional and closed,

resp.) in X we shall say that M is µ-dense-lineable (spaceable, resp.).

Moreover, L. Bernal introduced in [25] the notion of maximal lineable (and that of maximal

dense-lineable) in X, meaning that, when keeping the above notation, the dimension of the

existing linear space equals dim(X). Besides asking for linear spaces one could also study other

structures, such as algebrability and some related ones, which were presented in [11,12,15,104].

Definition. Given an algebra A, a subset B ⊂ A, and a cardinal number κ, we say that B is:

(1) algebrable if there is a subalgebra C of A so that C ⊂ B ∪ {0} and the cardinality of any

system of generators of C is infinite.

(2) κ-algebrable if there exists a κ-generated subalgebra C of A with C ⊂ B ∪ {0}.

(3) strongly κ-algebrable if there exists a κ-generated free algebra C contained in B ∪ {0}.

Lately the study of the linear structure of certain subsets of surjective functions in RR (such

as everywhere surjective functions, perfectly everywhere surjective functions, or Jones functions)

has attracted the attention of several authors working on Real Analysis and Set Theory (see, e.g.

[10, 12, 27, 70, 71]). The previously mentioned functions are, indeed, very “exotic”: for instance

an everywhere surjective function f in RR verifies that f(I) = R for every interval I ⊂ R and

the other classes (perfectly everywhere surjective functions and Jones functions) are particular

cases of everywhere surjective functions and, thus, with even “worse” behavior. It has been

shown [69] that there exists a 2c-dimensional vector space every non-zero element of which is

a Jones function and, thus, everywhere surjective (here, c stands for the cardinality of R). Of

course, this previous result is optimal in terms of dimension since dim(RR)= 2c. However, all the

previous classes are nowhere continuous, thus, it is natural to ask about the set of continuous

surjections.

In Chapter 3 we discourse about all the possible frameworks concerning lineability of the

continuous surjections on euclidean spaces (thus a more general framework than that of RR).

For instance, we present the results of the paper

[4] Maximal lineability of the set of continuous surjections, Bulletin of the Belgian

Mathematical Society Simon Stevin, vol. 21, 83–87, 2014.
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which solves (optimal and positively) the lineability problem. More precisely we prove that (for

a topological space X, CS(Rm, X) denotes the set of continuous surjection from Rm on X)

Theorem. For every pair m,n ∈ N, the set CS(Rm,Rn) is maximal lineable.

Still in Chapter 3, we go further and verse about a part of the paper

[7] Peano curves on topological vector spaces, Linear Algebra and its Applications,

vol. 460, 81–96, 2014,

which is a joint work with L. Bernal, D. Pellegrino and J. Seoane concerning Peano curves on

topological vector spaces. We bring comments on the positive answer of Bernal and Ordóñez (see

[26, Theorem 3.2]) on the spaceability problem (for a topological space X, CS∞(Rm, X) gathers

the continous maps f : Rm → X such that each point a ∈ X is assumed on an unbounded subset

of Rm):

Theorem (Bernal and Ordóñez, 2014). For each pair m,n ∈ N, the set CS∞(Rm,Rn) is

maximal dense-lineable and spaceable in C (Rm,Rn). In particular, it is maximal lineable in

C (Rm,Rn).

We close Chapter 3 by proving the following complement of the previous results

Theorem. For every m ∈ N, the set CS∞ (Rm,Cn) is maximal strongly algebrable in C (Rm,Cn).

This solves the algebrability remaining problem on euclidean spaces. In order to attain this

we make use of some results and machinery from Complex Analysis, and we also provide some

new results from Complex Analysis which are of independent interest (see, e.g., Lemma 3.15).

Chapter 4 presents the remaining part of the paper [7]: it moves on to the next natural step

on trying to generalize the previous result to infinite dimensional spaces. In order to this, we

make use of the notorious

Hahn–Mazurkiewicz’s theorem. A non-empty Hausdorff topological space is a continuous

image of the unit interval if and only if it is a compact, connected, locally connected metrizable

topological space.

Hausdorff spaces that are the continuous image of the unit interval are called Peano spaces.

The Hahn-Mazurkiewicz’s theorem allows us to investigate topological vector spaces that are

continuous image of the real line, from which we introduce the notion of σ-Peano space (see

Definition 4.1) and use it to provide an optimal general lineability result

Theorem. Let X be a σ-Peano topological vector space. Then CS∞ (Rm,X ) is maximal lineable

in C (Rm,X ).

In addition, we will show how, by just starting with separable normed spaces, one can obtain

σ-Peano spaces. We analyze Peano spaces in the framework of sequence spaces and also study

Peano space in real and complex function spaces.
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Preliminaries and Notation

To seek conciseness and to avoid boring technicalities, we introduce here several useful no-

tations throughout this text.

• Our main interest are the Banach spaces over K, which shall stand for the complex C or

real R fields.

• multi-index notation: for a positive integer m and a non-void subset D ⊂ N we denote the

set of multi-indices i = (i1, . . . , im), with each ik ∈ D, by

M(m,D) := {i = (i1, . . . , im) ∈ Nm; ik ∈ D, k = 1, . . . ,m} = Dm

and it is also convenient set M(m,N) := M(m, {1, 2, . . . , N}), and also Pk (m) stands for

the set of subsets S ⊆ {1, . . . ,m} with card(S)= k, Ŝ := {1, . . . ,m} \ S and iS := (ij)j∈S.

• multiple exponent notation: for a positive integer m, p stands for a multiple exponent

(p1, . . . , pm) ∈ [1,∞]m and ∣∣∣∣
1

p

∣∣∣∣ :=
1

p1
+ · · ·+ 1

pm
.

• We set X∞ := c0 and Xp := ℓp, for 1 ≤ p <∞.

• ℓNp denotes the scalar space KN with the p-norm, for p ∈ [1,∞].

• For m-linear vector valued operator A : Xp × · · · × Xp → Y and a multi-index i :=

(i1, . . . , im), we set Aei := A (ei1 , . . . , eim).

• p∗ will denote the conjugate exponent of p ∈ [1,∞].

• The symbol
∑

îk
will always means that we are fixing the k-th index and that we are

summing over all the remaining indices.

• c stands for the cardinality of R.

• For any topological spaces X, Y , C (X, Y ) denotes the set of continuous functions from X

to Y . The following notation it will be also useful on our purposes:

CS∞(Rm, X) :=
{
f ∈ C (Rm, X) : f−1({a}) is unbounded for every a ∈ X

}
.



Part I

Hardy–Littlewood and

Bohnenblust–Hille inequalities
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Chapter 1

Sharp generalizations of the multilinear

Bohnenblust–Hille inequality

This chapter is devoted to part of the paper

[5] Sharp generalizations of the multilinear Bohnenblust-Hille inequality, Journal of

Functional Analysis, vol. 266, no. 6, 3726–3740, 2014.

which is an joint work with F. Bayart, D. Pellegrino and J. Seoane. Here we verse about

scalar valued generalizations of the multilinear Bohnenblust–Hille inequality and prove that this

is, de facto, a particular case of a quite general family of optimal inequalities. In the next

chapter, among other results, we deal with the vector valued versions of the remaining part of

[5] concerning generalizations of the Hardy–Littlewood inequality.

1.1 Motivation and main results

The starting point of this chapter is the classical multilinear Bohnenblust–Hille inequality,

which has the following precise form

Theorem 1.1 (Multilinear Bohnenblust-Hille’s inequality, 1931, [34]). For each positive integer

m ≥ 1, there exists a constant Cm ≥ 1 such that

( ∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m
m+1

)m+1
2m

≤ Cm ‖A‖ , (1.1)

for all continuous m-linear forms A : c0×· · ·× c0 → K. Moreover, the exponent 2m
m+1

is optimal.

The case m = 2 is the well-known Littlewood’s 4/3 inequality [86, Theorem 1]. These

inequalities, and the growth of the constants involved in it, have important applications in various

fields of analysis and mathematical physics (see, for instance, [29,32,41,51,53,56,57,62,89,102]).

We will prove that the Bohnenblust–Hille inequality is a very particular case of a large family

of sharp inequalities. More precisely, we prove the following general result:
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Theorem 1.2. Let m ≥ 1, let q1, . . . , qm ∈ [1, 2]. The following assertions are equivalent:

(1) There is a constant Cq1...qm ≥ 1 such that




∞∑

i1=1




∞∑

i2=1


. . .




∞∑

im−1=1

( ∞∑

im=1

‖A (ei1 , . . . , eim)‖qm
) qm−1

qm




qm−2
qm−1

. . .




q2
q3




q1
q2




1
q1

≤ Cq1...qm‖A‖

for all continuous m-linear forms A : c0 × · · · × c0 → K.

(2) 1
q1
+ · · ·+ 1

qm
≤ m+1

2
.

The Bohnenblust–Hille inequality is just the particular case

q1 = · · · = qm =
2m

m+ 1
.

This is a particular case of a more general version presented in [5, Theorem 1.2] concerning

ℓq-valued multilinear operator on ℓp spaces. We deal with this in the next chapter, when we

introduce generalizations of the Hardy–Littlewood inequality.

This kind of inequalities was already considered in [28] when m = 2, as generalizations of

Littlewood’s 4/3 inequality. The strategy for the proof of (2) ⇒ (1) in Theorem 1.2 will be

very simple, maybe simpler than all previous known proofs of the Bohnenblust-Hille inequality.

The starting point is the generalized Littlewood mixed (ℓ1, ℓ2)-norm inequality, that is that

Theorem 1.2 is true when (q1, . . . , qm) = (1, 2, . . . , 2). This property is “well-known” and it is a

consequence of Khintchine’s inequality. Using this and nothing else than Minkowski’s inequality

and an Hölder’s interpolative inequality, we will infer the general case.

1.2 Interpolation on mixed norm sequence spaces

It will be useful deal with strongly summable sequences (for more details see [58, p.32]): for

a Banach space X and p ∈ [1,∞], we shall denote by ℓp(X) the space of strongly p-summable

sequences (alternatively, strong ℓp sequences), that is, a vector sequence (xn)n∈N ∈ XN belongs

to ℓp(X) if the corresponding scalar sequence (‖xn‖X)n∈N is in ℓp. Naturally ℓp(X) equipped

with the p-norm

‖(xn)n‖p := ‖(‖xn‖X)n‖p
it is a Banach space. For a multiple exponent p := (p1, . . . , pm) ∈ [1,∞]m, the mixed norm

sequence space

ℓp(X) := ℓp1 (ℓp2 (. . . (ℓpm(X)) . . . ))

(it is a Banach space when endowed with the norm ‖·‖p and) is formed by all multi-index vector

valued matrices (xi)i∈Nm with finite p-norm (recall the notation for multi-indexes i presented

2



in Section “Preliminaries and Notation”). Namely, when p ∈ [1,∞)m, a vector valued matrix

(xi)i∈Nm ∈ ℓp(X) if, and only if,

‖(xi)i‖p :=




∞∑

i1=1




∞∑

i2=1


. . .




∞∑

im−1=1

( ∞∑

im=1

‖xi‖pmX

) pm−1
pm




pm−2
pm−1

. . .




p2
p3




p1
p2




1
p1

<∞.

When X = K, we just write ℓp instead of ℓp(K).

The next interpolation result on these mixed norm sequences spaces has a central role on

our techniques. We verse on this subject in Appendix A and present a proof of it therein (see

Corollary A.5).

Proposition 1.3 (Hölder’s interpolative inequality for mixed ℓp spaces). Let m,n,N be positive

integers, r,p(1), . . . ,p(N) ∈ [1,∞]m and θ1, . . . , θN ∈ [0, 1] be such that θ1 + · · ·+ θN = 1 and

1

rj
=

N∑

k=1

θk
pj(k)

=
θ1
pj(1)

+ · · ·+ θN
pj(N)

, for j = 1, . . . ,m. (1.2)

Then, for all scalar matrices a := (ai)i∈M(m,n), we have

‖a‖r ≤ ‖a‖θ1p(1) · · · ‖a‖
θN
p(N) .

In particular, if each p(k) ∈ [1,∞), the previous inequality means that




n∑

i1=1


. . .

(
n∑

im=1

|ai|rm
) rm−1

rm

. . .




r1
r2




1
r1

≤
N∏

k=1







n∑

i1=1


. . .

(
n∑

im=1

|ai|pm(k)

) pm−1(k)

pm(k)

. . .




p1(k)
p2(k)




1
p1(k)




θk

.

Remark 1.4. The previous condition (1.2), means precisely that the point
(

1
r1
, . . . , 1

rm

)
belongs

to the convex hull of the points
(

1
p1(k)

, . . . , 1
pm(k)

)
, k = 1, . . . , N. In this situation, we will simple

say that the multiple exponent r := (r1, . . . , rm) “is obtained by interpolation” (or “comes by

interpolation”) of the multiple exponents p(k) := (p1(k), . . . , pm(k)), k = 1, . . . , N .

1.3 Applications of Minkowski’s inequality

Minkowski’s inequality is a very well-known result that helps to prove that Lp spaces are

Banach spaces: it is the triangle inequality for Lp spaces. We need a somewhat well known

3



result, which is a corollary of one of the many versions of Minkowski’s inequality, whose proof

can be found, for instance, in [72, Corollary 5.4.2].

Lemma 1.5 (Minkowski’s inequality). For any 0 < p ≤ q < ∞ and for any scalar matrix

(aij)i,j∈N, 


∞∑

i=1

( ∞∑

j=1

|aij|p
)q/p




1/q

≤




∞∑

j=1

( ∞∑

i=1

|aij|q
)p/q




1/p

.

Combining the Hölder interpolative inequality for mixed ℓp spaces (Proposition 1.3) with the

previous Minkowski inequality (Proposition 1.5) we have a very useful inequality (see [20, Remark

2.2]):

Corollary 1.6 (Blei’s general inequality). Let m,n be positive integers, 1 ≤ k ≤ m and 1 ≤
s ≤ q. Then for all scalar matrix (ai)i∈M(m,n),


 ∑

i∈M(m,n)

|ai|ρ



1
ρ

≤
∏

S∈Pk(m)



∑

iS


∑

i
Ŝ

|ai|q



s
q




1
s
· 1

(mk)

,

where

ρ :=
msq

kq + (m− k)s

and Pk (m) stands for the set of subsets S ⊆ {1, . . . ,m} with card(S)= k, Ŝ := {1, . . . ,m} \ S
and iS := (ij)j∈S.

The next proposition is simple multi-index variant of the previous Minkowski’s inequality. It

shows that an (ℓp, ℓq)-mixed norm inequality implies many other of this kind. Recall that the

symbol
∑

îk
shall mean that we are fixing the k-th index summing over all the remaining indices.

Proposition 1.7. Let m,N ≥ 1 be positive integers, 1 ≤ p < q < ∞, for each k = 1, . . . ,m,

let p(k) := (q, . . . , q, p, q, . . . , q) ∈ [1,+∞)m (p at k-th position) and also let (ai)i∈M(m,N) be a

scalar valued matrix. Then, for each k = 1, . . . ,m,

∥∥∥(ai)i∈M(m,N)

∥∥∥
p(k)

:=




N∑

i1,...,ik−1=1




N∑

ik=1




N∑

ik+1,...,im=1

|ai|q



p
q




q
p




1
q

≤




N∑

ik=1




N∑

îk=1

|ai|q



p
q




1
p

.

Proof. The result follows by induction on k combined with Minkowski’s inequality. Let us assume

that the property is true up to the (k − 1)-th position. The integers i1, . . . , ik−1 being fixed, we

set

αik−1,ik :=




N∑

ik+1,...,im=1

|ai|q



p/q

4



Applying Minkowski’s inequality with exponents 1 and q/p,

N∑

ik−1=1

(
N∑

ik=1

αik−1,ik

)q/p

≤




N∑

ik=1




N∑

ik−1=1

α
q/p
ik−1,ik




p/q



q/p

.

Hence,




N∑

i1,...,ik−1=1




N∑

ik=1




N∑

ik+1,...,im=1

|ai|q



p
q




q
p




1
q

≤




N∑

i1,...,ik−2=1




N∑

ik=1




N∑

ik−1,ik+1,...,im=1

|ai|q



p
q




q
p




1
q

Defining the scalar matrix (bi)i∈M(m,N) with entries bi1,...,ik−1,ik,...,im := ai1,...,ik,ik−1,...,im , the previ-

ous inequality means that

∥∥∥(ai)i∈M(m,N)

∥∥∥
p(k)

≤
∥∥∥(bi)i∈M(m,N)

∥∥∥
p(k−1)

,

thus by the induction hypothesis, we conclude the result:

∥∥∥(ai)i∈M(m,N)

∥∥∥
p(k)

≤
∥∥∥(bi)i∈M(m,N)

∥∥∥
p(k−1)

≤




N∑

ik−1=1




N∑

îk−1=1

|bi|q



p
q




1
p

=




N∑

ik=1




N∑

îk=1

|ai|q



p
q




1
p

.

1.4 Applications of Khinchine’s inequality

The Khinchine inequality in its modern presentation has its roots in [107]. An accessible

proof (for Rademacher independet functions) is in [58, Theorem 1.10].

Lemma 1.8 (Khinchine’s inequality). For any p ∈ [1,∞), there exists a(n) (optimal) constant

AK,p with the following properties:

(1) (Real case) For any sequence (an)n of real numbers, we have

( ∞∑

n=1

|an|2
)1/2

≤ AR,p

(∫ 1

0

∣∣∣∣∣

∞∑

n=1

anrn(t)

∣∣∣∣∣

p

dt

)1/p

,

with (rn)n∈N denoting the sequence of Rademacher functions rn : [0, 1] → {±1}. Moreover,

the optimal constants AR,p are

5



AR,p =





2
1
p
− 1

2 ≤ AR,1 =
√
2, if 1 ≤ p ≤ p0 ≈ 1.847;

2−
1
2

( √
π

Γ( 1+p
2 )

) 1
p

, if p0 < p < 2;

1, if 2 ≤ p <∞.

(2) (Complex case) For any sequence (an)n of complex numbers with finite support, we have

( ∞∑

n=1

|an|2
)1/2

≤ AC,p

(∫

T∞

∣∣∣∣∣

∞∑

n=1

anzn

∣∣∣∣∣

p

dz

)1/p

,

with T∞ :=
{
z = (zn)n∈N ∈ CN : |zn| = 1 for all n ∈ N

}
(the infinite polycircle) and dz de-

noting the standard Lebesgue probability measure on T∞. Moreover, the optimal constants

AC,p are

AC,p =




Γ
(
2+p
2

)− 1
p , if 1 ≤ p < 2;

1, if 2 ≤ p <∞.

The (apparently) strange value p0 ≈ 1.8474 is, to be precise, the unique number p0 ∈ (1, 2)

satisfying Γ
(
p0+1
2

)
=

√
π
2
. The notation AK,p for the optimal constants will be kept throughout

this. For complex scalars it more useful to use Steinhaus variables (also called Khinchine’s

inequality with Steinhaus variables) instead of the Rademacher functions, since it gives better

constants. The best constants AR,p and AC,p were obtained by Haagerup and König, respectively

(see [75] and [83]). The particular values of these when p = 1 will be very useful for the estimates

we will present:

AR,1 =
√
2 and AC,1 = [Γ (3/2)]−1 =

2√
π
.

Using Fubini’s theorem and Minkowski’s inequality (see, for instance, [54, Lemma 2.2] for

the real case and [93, Theorem 2.2] for the complex case), these inequalities have a multilinear

version.

Lemma 1.9 (Multilinear Khinchine’s inequality). Let N,m ≥ 1 be positive integers.

(1) (Real case) For any real valued matrix (ai)i∈M(m,N),


 ∑

i∈M(m,N)

|ai|2



1/2

≤ Am
R,p



∫

[0,1]m

∣∣∣∣∣∣

∑

i∈M(m,N)

ri1(t1) · · · rim(tm)ai

∣∣∣∣∣∣

p

dt1 · · · dtm




1/p

.

(2) (Complex case) For any complex valued matrix (ai)i∈M(m,N),


 ∑

i∈M(m,N)

|ai|2



1/2

≤ Am
C,p



∫

(T∞)m

∣∣∣∣∣∣

∑

i∈M(m,N)

aiz
(1)
i1
. . . z

(m)
im

∣∣∣∣∣∣

p

dz(1) . . . dz(m)




1/p

.

With this we are able to prove the following “well-known” (ℓ1, ℓ2)-norm inequality.
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Proposition 1.10. Let m ≥ 1 be a positive integer. Then, for any k ∈ {1, . . . ,m},

∞∑

ik=1




∞∑

îk=1

|A (ei1 , . . . , eim)|2



1
2

≤ (AK,1)
m−1 ‖A‖,

holds for all continuous m-linear forms A : c0 × · · · × c0 → K.

Proof. By symmetry, we just need to prove the result for k = 1. Also we will just prove the

result for the real case (the argument is the same for the complex case). The multilinear version

of Khinchine’s inequality (Lemma 1.9) delivers


∑

î1

|A (ei1 , . . . , eim)|2



1
2

≤ Am−1
R,1

∫

[0,1]m−1

∣∣∣∣∣∣

∑

î1

ri2(t2) · · · rim(tm)A (ei1 , . . . , eim)

∣∣∣∣∣∣
dt2 · · · dtm

= Am−1
R,1

∫

[0,1]m−1

∣∣∣∣∣A
(
ei1 ,
∑

i2

ri2(t2)ei2 , . . . ,
∑

im

rim(tm)eim

)∣∣∣∣∣ dt2 · · · dtm

≤ Am−1
R,1 · sup

t2,...,tm∈[0,1]

∣∣∣∣∣A
(
ei1 ,
∑

i2

ri2(t2)ei2 , . . . ,
∑

im

rim(tm)eim

)∣∣∣∣∣ . (∗)

Fixed t2, . . . , tm ∈ [0, 1], At2,...,tm := A
(
·,∑i2

ri2(t2)ei2 , . . . ,
∑

im
rim(tm)eim

)
defines a real

linear form on c0. Thus applying the Bohnenblust–Hille inequality for m = 1 (which in fact it is

a well known equality that holds with C1 = 1) we get

∑

i1

∣∣∣∣∣A
(
ei1 ,
∑

i2

ri2(t2)ei2 , . . . ,
∑

im

rim(tm)eim

)∣∣∣∣∣ ≤ ‖A‖
m∏

k=2

∥∥∥∥∥
∑

n

rn(tk)en

∥∥∥∥∥ .

So using this combined with the well-know fact

sup
t∈[0,1]

∥∥∥∥∥
∑

n

rn(t)en

∥∥∥∥∥ ≤ sup
|αn|≤1

∥∥∥∥∥
∑

n

αnen

∥∥∥∥∥ = 1,

we get that
∑

i1

∣∣∣∣∣A
(
ei1 ,
∑

i2

ri2(t2)ei2 , . . . ,
∑

im

rim(tm)eim

)∣∣∣∣∣ ≤ ‖A‖.

Therefore, using this estimate combined with inequality (∗) we conclude the result

∑

i1


∑

î1

|A (ei1 , . . . , eim)|2



1
2

≤ Am−1
R,1 ‖A‖.
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For a bounded m-linear form A : c0 × · · · × c0 → K and a multi-index i := (i1, . . . , im), let

Aei := A (ei1 , . . . , eim). The following estimates will lead us to obtain the general Bohnenblust–

Hille inequality (Theorem 1.2).

Proposition 1.11 (Mixed (ℓ1, ℓ2)-estimates). Let p(k) := (2, . . . , 2, 1, 2, . . . , 2) ∈ [1,+∞)m, for

k = 1, . . . ,m (1 at k-th position). Then,

∥∥(Aei)i∈Nm

∥∥
p(k)

:=




∑

i1,...,ik−1



∑

ik


 ∑

ik+1,...,im=1

|Aei|2



1
2




2


1
2

≤ (AK,1)
m−1 ‖A‖,

for k = 1, . . . ,m and for any bounded m-linear form A : c0 × · · · × c0 → K.

Proof. The results follows by applying the multi-index Minkowski’s inequality (Proposition 1.7),

the (ℓ1, ℓ2)-estimates (Proposition 1.10), respectively:

∥∥(Aei)i∈Nm

∥∥
p(k)

:=




∑

i1,...,ik−1



∑

ik


 ∑

ik+1,...,im=1

|Aei|2



1
2




2


1
2

≤
∑

ik=1


∑

îk

|A (ei1 , . . . , eim)|2



1
2

≤ (AK,1)
m−1 ‖A‖.

1.5 First part of the proof of Theorem 1.2

Now we will prove that (2) implies (1) in Theorem 1.2. By the monotonicity of the norm on

the sequences spaces, that is, ‖ · ‖s ≤ ‖ · ‖r as soon as r ≤ s, it is sufficient to deal with the

boundary situation:
1

q1
+ · · ·+ 1

qm
=
m+ 1

2
,

which means that the exponent q := (q1, . . . , qm) ∈ [1, 2]m comes from the interpolation of the

multiple exponents p(k) := (2, . . . , 2, 1, 2, . . . , 2) ∈ [1, 2]m, k = 1, . . . ,m where 1 is at the k-th

position (recall Remark 1.4), as guaranteed by the following straightforward characterization of

a convex hull:

Lemma 1.12. Let m ≥ 2 be a positive integer, 0 < a < b be positive real numbers and also let

Pk := (a, . . . , a, b, a . . . , a), for k ∈ {1, . . . ,m}, where b is at the k-th position. Then the convex

hull of P1, . . . , Pm is the set of points (x1, . . . , xm) such that x1 + · · · + xm = (m − 1)a + b and

xk ∈ [a, b] for any k ≥ 1.
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Given a bounded m-linear forms A : c0 × · · · × c0 → K, the mixed (ℓ1, ℓ2)-estimates (Propo-

sition 1.11) assures that ∥∥(Aei)i∈Nm

∥∥
p(k)

≤ (AK,1)
m−1 ‖A‖,

for k = 1, . . . ,m. Since q becames from the interpolation of the exponents p(k), we may

apply the Hölder’s interpolative inequality for mixed ℓp spaces (Proposition 1.3) for the matrix

(Aei)i∈Nm , and combine with the previous (ℓ1, ℓ2)-estimates to conclude the result:




∞∑

i1=1


. . .

( ∞∑

im=1

‖A (ei1 , . . . , eim)‖qm
) qm−1

qm

. . .




q1
q2




1
q1

=:
∥∥(Aei)i∈Nm

∥∥
q
≤

N∏

k=1

∥∥(Aei)i∈Nm

∥∥θk
p(k)

≤
[
(AK,1)

m−1 ‖A‖
]θ1+···+θN

= (AK,1)
m−1 ‖A‖.

Remark 1.13. If we take care of the constant in the general Bohnenblust-Hille inequality (The-

orem 1.2), our method shows that it is valid with constant Cm ≤ (
√
2)m−1 in the real case and

Cm ≤ (2/
√
π)

m−1
in the complex. This constant comes from the best known constant in the

mixed (ℓ1, ℓ2)-Littlewood inequality (Proposition 1.11). However, Bayart, Pellegrino and Seoane

provided subpolynomial constants for the multilinear case (see [20, Corollary 3.2 and 3.3] and

[94]) and, among other results, that the complex polynomial constants are actually subpolynomial

and solve a secular and outstanding problem concerning the Bohr radius (see [53]).

1.6 On the optimality of the exponents

1.6.1 A Kahane-Salem-Zygmund inequality

A way to prove that the exponent 2m
m+1

is optimal in the Bohnenblust-Hille inequality is to

use the Kahane-Salem-Zygmund inequality, which allows to control the infinite norm of random

polynomials. We need a variant of this inequality for multilinear forms on ℓnp , which represents

Kn with the p-norm.

Lemma 1.14 (Kahane-Salem-Zygmund’s multilinear inequality). Let m,N ≥ 1, p1, . . . , pm ∈
[1,+∞]m and let, for p ≥ 1,

α(p) =





1

2
− 1

p
, if p ≥ 2;

0, otherwise.

Then there exists a m-linear form A : ℓNp1 × · · · × ℓNpm → K which may be written as

A(z(1), . . . , z(m)) =
N∑

i1,...,im=1

±z(1)i1
· · · z(m)

im
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such that

‖A‖ ≤ CmN
1
2
+α(p1)+···+α(pm).

We present the proof this result in Appendix B.

1.6.2 Optimality of Theorem 1.2

Let q1, . . . , qm ∈ [1, 2] satisfying (1) of Theorem 1.2. Let A : ℓN∞ × · · · × ℓN∞ → K be the

m-linear map given by the previous Lemma 1.14. Then

‖A‖ ≤ Cq1...qmN
m+1

2

whereas, for any i1, . . . , im,

|A(ei1 , . . . , eim)| =
∣∣∣∣∣

N∑

j1,...,jm=1

±δi1j1 · · · δimjm

∣∣∣∣∣ = 1.

It is then easy to show by induction that




N∑

i1=1


. . .

(
N∑

im=1

|A (ei1 , . . . , eim)|qm
) qm−1

qm

. . .




q1
q2




1
q1

= N
1
q1

+···+ 1
qm .

So,

N
1
q1

+···+ 1
qm ≤ Cq1...qmN

m+1
2

holds for all positive integers N and, therefore, we conclude that for the condition (1) of Theorem

1.2 to be true, it is necessary that

1

q1
+ · · ·+ 1

qm
≤ m+ 1

2
.
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Chapter 2

Optimal Hardy–Littlewood type

inequalities for multilinear operators

In this chapter is we present the results of the paper

[6] Optimal Hardy-Littlewood type inequalities for polynomials and multilinear oper-

ators, Israel Journal of Mathematics, in press.

a joint work with F. Bayart, D. Pellegrino and J. Seoane which concerning general and definitive

forms of the Hardy–Littlewood inequality, which provides much simpler and straightforward

proofs when restricted to the original particular cases, and we are able to show that in most

cases the exponents involved are optimal. The technique we used is a combination of probabilistic

tools and of an interpolative approach; this former technique is also employed in this paper to

improve the constants for vector-valued Bohnenblust–Hille type inequalities.

2.1 Motivation and main results

This part of the thesis has as the starting point a result of 1930 due to J. E. Littlewood

[86, Theorem 1] which is the following result concerning bilinear forms on c0 × c0, now called

Littlewood’s 4/3 inequality:

Theorem 2.1 (Littlewood, 1930 [86]). For any bounded bilinear form A : c0 × c0 → C,

(
+∞∑

i,j=1

|A(ei, ej)|
4
3

) 3
4

≤
√
2‖A‖

and, moreover, the exponent 4/3 is optimal.

As soon as Littlewood’s 4/3 inequality appeared, it was rapidly extended to more general

frameworks. For instance, the first step was to generalize to multilinear forms, which is due to

Bohnenbluts and Hille [34, Theorem I],
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Multilinear Bohnenblust–Hille’s inequality (1931). For each positive integer m ≥ 1, there

exists a constant Cm ≥ 1 such that

( ∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m
m+1

)m+1
2m

≤ C ‖A‖ , (2.1)

for all continuous m-linear forms A : c0×· · ·× c0 → C. Moreover, the exponent 2m
m+1

is optimal.

Hardy-Littlewood (see [76] and [77, p.224]) provided an ℓp-version Littlewood’s 4/3 inequality

and then Praciano-Pereira studied in [99, Theorems A and B] the effect of replacing c0 by ℓp

in the Bohnenblust-Hille inequality, obtaining a general form of it for multilinear form on ℓp

spaces, nowadays (unfortunately) known as Hardy–Littlewood’s multilinear inequality (recall

thatXp := ℓp, 1 ≤ p < +∞ andX∞ := c0; for p := (p1, . . . , pm) ∈ [1,+∞]m ,
∣∣∣ 1p
∣∣∣ := 1

p1
+· · ·+ 1

pm
):

Multilinear Hardy–Littlewood’s inequality (1981). Let p ∈ [1,+∞]m with
∣∣∣ 1p
∣∣∣ ≤ 1

2
. Then

there exists a constant Cp > 0 such that, for every continuous m-linear form A : Xp1 × · · · ×
Xpm → C,

( ∞∑

i1,...,im=1

|A(ei1 , . . . , eim)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cp‖A‖. (2.2)

A. Defant and P. Sevilla-Peris in [57, Theorem 1] provided a vector valued form of the

Bohnenblust-Hille inequality,

Theorem 2.2 (Defant and Sevilla-Peris, 2009). If 1 ≤ s ≤ q ≤ 2, there exists a constant C > 0

such that, for every continuous m-linear mapping A : c0 × · · · × c0 → ℓs, then

(
+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+2( 1
s−

1
q )

ℓq

)m+2( 1
s−

1
q )

2m

≤ C‖A‖.

Very recently the previous results were generalized by the author, F. Bayart, D. Pellegrino

and J. Seoane in [5, Corollary 1.3] and also by Dimant and Sevilla-Peris [59, Proposition 4.4]:

Theorem 2.3 (–, Bayart, Pellegrino and Seoane, 2013). Let 1 ≤ s ≤ q ≤ 2 and p ∈ [1,+∞]m

such that
1

s
− 1

q
−
∣∣∣∣
1

p

∣∣∣∣ ≥ 0. (2.3)

Then there exists a constant C > 0 such that, for every continuous m-linear mapping A :

Xp1 × · · · ×Xpm → Xs, we have

(
+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+2( 1
s−

1
q−| 1p |)

ℓq

)m+2( 1
s−

1
q−| 1p |)

2m

≤ C‖A‖

and the exponent is optimal.
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This extends Defant and Sevilla-Peris result to the ℓp-case (and we get the same result if

we choose p1 = · · · = pm = ∞) and also implies the Hardy–Littlewood(/Praciano-Pereira)’s

inequality. To show this, it suffices to choose q = 2, s = 1 and to consider only m-linear

mappings which have their range in the span of the first basis vector.

The generalization of Dimant and Sevilla-Peris is the following.

Theorem 2.4 (Dimant and Sevilla-Peris, 2013). Let p ∈ [1,+∞]m and s, q ∈ [1,+∞] be such

that s ≤ q. Then there exists a constant C > 0 such that, for every continuous m-linear mapping

A : Xp1 × · · · ×Xpm → Xs, we have

(
+∞∑

i1,...,im=1

‖A (ei1 , . . . , eim)‖ρℓq

) 1
ρ

≤ C‖A‖,

where ρ is given by

(i) If s ≤ q ≤ 2, and

(a) if 0 ≤
∣∣∣ 1p
∣∣∣ < 1

s
− 1

q
, then 1

ρ
= 1

2
+ 1

m

(
1
s
− 1

q
−
∣∣∣ 1p
∣∣∣
)
.

(b) if 1
s
− 1

q
≤
∣∣∣ 1p
∣∣∣ < 1

2
+ 1

s
− 1

q
, then 1

ρ
= 1

2
+ 1

s
− 1

q
−
∣∣∣ 1p
∣∣∣.

(ii) If s ≤ 2 ≤ q, and

(a) if 0 ≤
∣∣∣ 1p
∣∣∣ < 1

s
− 1

2
, then 1

ρ
= 1

2
+ 1

m

(
1
s
− 1

2
−
∣∣∣ 1p
∣∣∣
)
.

(b) if 1
s
− 1

2
≤
∣∣∣ 1p
∣∣∣ < 1

s
, then 1

ρ
= 1

s
−
∣∣∣ 1p
∣∣∣.

(iii) If 2 ≤ s ≤ q and 0 ≤
∣∣∣ 1p
∣∣∣ < 1

s
, then 1

ρ
= 1

s
−
∣∣∣ 1p
∣∣∣.

Moreover, the exponents in the cases (ia),(iib) and (iii) are optimal. Also, the exponent in

(ib) is optimal for 1
s
− 1

q
≤
∣∣∣ 1p
∣∣∣ < 1

2
.

Our main intention in this chapter, is to improve the previous theorems in three directions.

(I) We study in depth the remaining cases of the Dimant and Sevilla-Peris result. Surprisingly,

we show that in case (iia), the exponent given above is optimal whereas it is not optimal in

case (ib) when
∣∣∣ 1p
∣∣∣ > 1

2
. We give a better exponent in that case and show a necessary condition

on it. These two bounds coincide when s = 1. We can summarize this into the two following

statements.

Theorem 2.5. Let p ∈ [1,+∞]m and let ρ > 0. Assume moreover that either q ≥ 2 or q < 2

and
∣∣∣ 1p
∣∣∣ < 1

2
. Let

1

λ
:=

1

2
+

1

s
− 1

min{q, 2} −
∣∣∣∣
1

p

∣∣∣∣ > 0.
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Then there exists C > 0 such that, for every continuous m-linear operator A : Xp1 × · · · ×
Xpm → Xs, we have (

+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖ρℓq

) 1
ρ

≤ C‖A‖

if and only if
m

ρ
≤ 1

λ
+

m− 1

max{λ, s, 2} .

The following table summarizes the optimal value of 1
ρ
following the respective values of

s, q, p1, ..., pm:

1 ≤ s ≤ q ≤ 2, λ < 2
1

2
+

1

ms
− 1

mq
− 1

m
×
∣∣∣∣
1

p

∣∣∣∣

1 ≤ s ≤ q ≤ 2, λ ≥ 2,
∣∣∣ 1p
∣∣∣ < 1

2

1

2
+

1

s
− 1

q
−
∣∣∣∣
1

p

∣∣∣∣

1 ≤ s ≤ 2 ≤ q, λ < 2
m− 1

2m
+

1

ms
− 1

m
×
∣∣∣∣
1

p

∣∣∣∣

1 ≤ s ≤ 2 ≤ q, λ ≥ 2
1

s
−
∣∣∣∣
1

p

∣∣∣∣

2 ≤ s ≤ q
1

s
−
∣∣∣∣
1

p

∣∣∣∣

We note that (1.1) and (2.2) are recovered by Theorem 2.5 just by choosing s = 1 and q = 2.

When q < 2 and
∣∣∣ 1p
∣∣∣ > 1

2
(observe that this automatically implies λ ≥ 2), the situation is

more difficult and we get the following statement.

Theorem 2.6. Let p ∈ [1,+∞]m,
∣∣∣ 1p
∣∣∣ > 1

2
, 1 ≤ s ≤ q ≤ 2 and let ρ > 0. Let us consider the

following property.

There exists C > 0 such that, for every continuous m-linear operator A : Xp1 × · · ·×
Xpm → Xs, we have

(
+∞∑

i1,...,im=1

‖A(ei1 , . . . , eim)‖ρℓq

) 1
ρ

≤ C‖A‖.

(A) The property is satisfied as soon as

1

ρ
≤

(
1
s
− 1

q

)(
1
s
−
∣∣∣ 1p
∣∣∣
)

1
2
− 1

s

.
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(B) If the property is satisfied, then

1

ρ
≤ 2

(
1−

∣∣∣∣
1

p

∣∣∣∣
)(

1

s
− 1

q

)
.

In particular, if s = 1, then the property is satisfied if and only if

1

ρ
≤ 2

(
1−

∣∣∣∣
1

p

∣∣∣∣
)(

1− 1

q

)
.

(II) We give a simpler proof of the sufficient part of the Dimant and Sevilla-Peris theorem. It

turns out that it is easier to prove a more general result.

Theorem 2.7. Let p ∈ [1,+∞]m and 1 ≤ s ≤ q ≤ ∞ be such that

∣∣∣∣
1

p

∣∣∣∣ <
1

2
+

1

s
− 1

min{q, 2} .

Also let
1

λ
:=

1

2
+

1

s
− 1

min{q, 2} −
∣∣∣∣
1

p

∣∣∣∣ .

If λ > 0 and t1, . . . , tm ∈ [λ,max {λ, s, 2}] are such that

1

t1
+ · · ·+ 1

tm
≤ 1

λ
+

m− 1

max{λ, s, 2} , (2.4)

then there exists C > 0 satisfying, for every continuous m-linear map A : Xp1 ×· · ·×Xpm → Xs,




+∞∑

i1=1


. . .

(
+∞∑

im=1

‖A (ei1 , . . . , eim)‖tmℓq

) tm−1
tm

. . .




t1
t2




1
t1

≤ C‖A‖. (2.5)

Moreover, the exponents are optimal except eventually if q ≤ 2 and
∣∣∣ 1p
∣∣∣ > 1

2
.

Remark 2.8. The optimality in the above theorem shall be understood in a strong sense: when

λ < 2, we prove that if t1, . . . , tm ∈ [1,+∞) are so that (2.5) holds then (2.4) is valid. When

λ ≥ 2, note that λ = max {λ, s, 2} and we prove that if t = t1 = · · · = tm are in [1,+∞) and

(2.5) is valid, then we have (2.4) and, as a direct consequence, t ≥ λ.

(III) We prove similar results for m-linear mappings with arbitrary codomains which assume

their cotype. For a Banach space X, let qX = inf{q ≥ 2; X has cotype q}.
The proof that (B) implies (A) in the theorem below appears in [59, Proposition 4.3].
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Theorem 2.9. Let p ∈ [2,+∞]m, let X be an infinite dimensional Banach space with cotype

qX ,
∣∣∣ 1p
∣∣∣ < 1

qX
, and let ρ > 0. The following assertions are equivalent:

(A) Every bounded m-linear operator A : Xp1 × · · · ×Xpm → X is such that

+∞∑

i1,...,im=1

∥∥A(ei1 , ..., eim)
∥∥ρ < +∞.

(B) 1
ρ
≤ 1

qX
−
∣∣∣ 1p
∣∣∣ .

Finally, in the last section of the paper we obtain better estimates for the constants of

vector-valued Bohnenblust–Hille inequalities.

We conclude this introduction by noting that our theorems can be naturally stated in the

context of homogeneous polynomials. Given an m-homogeneous polynomial P : X → Y , we

denote its coefficients (cα(P )). In [57, Lemma 5], it is shown that an inequality

(
∑

α

‖cα(P )‖ρ
) 1

ρ

≤ C‖P‖

holds for every m-homogeneous polynomial P : X → Y if and only if a similar inequality

(
∑

i1,...,im

‖A(ei1 , . . . , eim)‖ρ
) 1

ρ

≤ C ′‖T‖

is satisfied for every m-linear mapping A : X × · · · × X → Y , where X is a Banach sequence

space.

2.2 Proof of Theorem 2.7 (sufficiency)

Let 1 ≤ q ≤ +∞. We recall that a Banach space X has cotype q if there is a constant κ > 0

such that, no matter how we select finitely many vectors x1, ..., xn ∈ X,

(
n∑

k=1

‖xk‖q
) 1

q

≤ κ



∫

I

∥∥∥∥∥

n∑

k=1

rk(t)xk

∥∥∥∥∥

2

dt




1
2

where I = [0, 1] and rk denotes the k-th Rademacher function. To cover the case q = +∞,

the left hand side should be replaced by max1≤k≤n ‖xk‖. The smallest of all these constants is

denoted by Cq(X) and named the cotype q constant of X.

An operator between Banach spaces v : X → Y is (r, s)-summing (with s ≤ r ≤ +∞) if

there exists C > 0 such that, for all n ≥ 1 and for all vectors x1, . . . , xn ∈ X,

(
n∑

k=1

‖vxk‖r
) 1

r

≤ C sup
x∗∈BX∗

(
n∑

k=1

|x∗(xk)|s
) 1

s

.
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The smallest constant in this inequality is denoted by πr,s(v).

We need a cotype q version of [5, Proposition 4.1], whose proof can be found in [59, Propo-

sition 3.1]:

Proposition 2.10. Let X be a Banach space, let Y be a cotype q space, let r ∈ [1, q] and let

p ∈ [1,+∞]m with ∣∣∣∣
1

p

∣∣∣∣ <
1

r
− 1

q
.

Define
1

λ
:=

1

r
−
∣∣∣∣
1

p

∣∣∣∣ .

Then, for every continuous m-linear map A : Xp1 × · · · × Xpm → X and every (r, 1)-summing

operator v : X → Y , we have



∑

ik


∑

îk

‖vA(ei1 , · · · , eim)‖qY




λ/q



1/λ

≤
(√

2Cq(Y )
)m−1

πr,1(v)‖A‖ (2.6)

for all k = 1, . . . ,m.

Recall that the symbol
∑

îk
means that we are fixing the k-th index and that we are summing

over all the remaining indices. We shall deduce from this lemma the following theorem, which

extends results of [5] and [59]:

Theorem 2.11. Let p ∈ [1,+∞]m, X be a Banach space, Y be a cotype q space and 1 ≤ r ≤ q,

with
∣∣∣ 1p
∣∣∣ < 1

r
. Define

1

λ
:=

1

r
−
∣∣∣∣
1

p

∣∣∣∣ .

If t1, . . . , tm ∈ [λ,max {λ, q}] are such that

1

t1
+ · · ·+ 1

tm
≤ 1

λ
+

m− 1

max{λ, q} ,

then, for every continuous m-linear map A : Xp1 × · · · × Xpm → X and every (r, 1)-summing

operator v : X → Y , we have




+∞∑

i1=1


. . .

(
+∞∑

im=1

‖vA (ei1 , . . . , eim)‖tmY

) tm−1
tm

. . .




t1
t2




1
t1

≤
(√

2Cmax{λ,q}(Y )
)m−1

πr,1(v) ‖A‖ . (2.7)

Proof. If λ < q, from Lemma 2.10, we have (2.7) for

(t1, ..., tm) = (λ, q, ..., q) .

Since λ < q, the mixed (ℓλ, ℓq)− norm inequality (the multi-index Minkowski inequality, Propo-
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sition 1.7), we also have (2.7) for the exponents

(t1, ..., tm) = (q, ..., q, λ, q, ..., q)

with λ in the k-th position, for all k = 1, ...,m. Now, using the Hölder’s interpolative inequality

for mixed ℓp spaces (Proposition 1.3), we get (2.7) for all (t1, . . . , tm) ∈ [λ, q]m such that

1

t1
+ · · ·+ 1

tm
=

1

λ
+
m− 1

q
=

1

λ
+

m− 1

max{λ, q} .

If λ ≥ q, for any ε > 0, let qε = λ+ ε. So λ < qε and this automatically implies that

∣∣∣∣
1

p

∣∣∣∣ <
1

r
− 1

qε
.

Since Y has cotype qε > q, we may apply Lemma 2.10 to get




N∑

i1=1

(
N∑

i2,...,im=1

‖vA (ei1 , . . . , eim)‖λ+ε

) λ
λ+ε




1
λ

≤
(√

2Cλ+ε(Y )
)m−1

πr,1(v)‖A‖

for all positive integer N . Making ε→ 0, we get

(
N∑

i1,...,im=1

‖vA (ei1 , . . . , eim)‖λ
) 1

λ

≤
(√

2Cλ(Y )
)m−1

πr,1(v)‖A‖,

for all N and the proof is done.

Remark 2.12. If we take t1 = · · · = tm, then, upon polarization, we recover exactly [59, Theorem

1.2] with a much simpler proof due to the fact that the inequality is simpler to prove for the

extremal values of (t1, . . . , tm).

We are now ready for the proof of the sufficient part of Theorem 2.7. We split the proof

into three cases, and we combine Theorem 2.11 with the inequalities due (independently) to G.

Bennet and B. Carl ([22, 23, 47]):

Bennett-Carl’s inequalities. For 1 ≤ s ≤ q ≤ +∞, the inclusion map ℓs →֒ ℓq is (r, 1)-

summing, where the optimal r is given by

1

r
:=

1

2
+

1

s
− 1

min{2, q} .

(i) s ≤ q ≤ 2: The Bennet-Carl-inequalities ensure that the inclusion map ℓs →֒ ℓq is (r, 1)-

summing with 1
r
= 1

2
+ 1

s
− 1

q
, so the results follow from Theorem 2.11, with t1, . . . , tm satisfying

1

t1
+ · · ·+ 1

tm
=

1

2
+

1

s
− 1

q
−
∣∣∣∣
1

p

∣∣∣∣+
m− 1

max{λ, 2} .
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(ii) s ≤ 2 ≤ q: Also by using Bennet-Carl inequalities, ℓs →֒ ℓ2 is (s, 1)-summing, thus we get

(2.5) applying Theorem 2.11, with t1, . . . , tm satisfying

1

t1
+ · · ·+ 1

tm
=

1

s
−
∣∣∣∣
1

p

∣∣∣∣+
m− 1

max{λ, 2} .

(iii) 2 ≤ s ≤ q: Since ℓs →֒ ℓs is (s, 1)-summing, the result follows from Theorem 2.11, with

t1 = · · · = tm = λ and λ ≥ s, since r = s and

1

λ
:=

1

s
−
∣∣∣∣
1

p

∣∣∣∣ ≤
1

s
.

Remark 2.13. Let us set

cqs :=





q , if s ≤ q ≤ 2 ,

2 , if s ≤ 2 ≤ q ,

s , if 2 ≤ s ≤ q.

With the above notations, a careful look at the proof shows that the constant C which appears

in Theorem 2.7 is dominated by

(√
2Cmax{λ,s,2}(ℓcqs)

)m−1

πr,1(ℓs →֒ ℓcqs).

2.3 Proof of Theorem 2.7 (optimality)

In this section we show that the exponents in Theorem 2.7 are optimal except when q ≤ 2 and∣∣∣ 1p
∣∣∣ > 1

2
. More precisely, if (t1, . . . , tm) ∈ [1,+∞)m are such that there exists C > 1 satisfying,

for any continuous multilinear map A : Xp1 × · · · ×Xpm → Xs,




+∞∑

i1=1


. . .

(
+∞∑

im=1

‖A (ei1 , . . . , eim)‖tmℓq

) tm−1
tm

. . .




t1
t2




1
t1

≤ C‖A‖, (2.8)

then we prove that (2.4) holds. When λ ≥ 2, we will always assume that t1 = · · · = tm = t,

since λ = max {λ, s, 2} and our inequality holds true when all the exponents are equal. We split

the proof into several cases. Most of the cases are a consequence of a random construction. The

main tool is the following lemma, which is a vector-valued version of the Kahane-Salem-Sygmund

multilinear inequality presented in Lemma 1.14:

Lemma 2.14 (Vector valued Kahane-Salem-Zygmund’s multilinear inequality). Let d,N ≥ 1,

p1, . . . , pd+1 ∈ [1,+∞]d+1 and let, for p ≥ 1,

α(p) =

{
1
2
− 1

p
if p ≥ 2

0 otherwise.
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Then there exists a d-linear mapping A : ℓNp1 × · · · × ℓNpd → ℓNpd+1
which may be written

A
(
x(1), . . . , x(d)

)
=

N∑

i1,...,id+1=1

±x(1)i1
· · · x(d)id

eid+1

such that

‖A‖ ≤ CdN
1
2
+α(p1)+···+α(pd)+α(p∗

d+1).

Proof. There is an isometric correspondence between d-linear maps ℓNp1 × · · · × ℓNpd → ℓNs and

(d+ 1)-linear maps ℓNp1 × · · · × ℓNpd × ℓNs∗ → K. The correspondence is given by


z 7→

∑

i1,...,id+1

ai1,...,id+1
z
(1)
i1

· · · z(d)id
eid+1


 7→


z 7→

∑

i1,...,id+1

ai1,...,id+1
z
(1)
i1

· · · z(d+1)
id+1


 .

Therefore, the result follows by combining this isometry with Lemma 1.14.

2.3.1 Case 1: 1 ≤ s ≤ q ≤ 2 and λ < 2

This case follows by using Lemma 2.14 with d = m and (p1, . . . , pm+1) = (p1, . . . , pm, s). Let

t1, . . . , tm ∈ [λ, 2] satisfying (1) of Theorem 2.7. Let A : ℓNp1 ×· · ·× ℓNpm → ℓNs be given by Lemma

2.14. Then

‖A‖ ≤ CmN
1
2
+m+1

2
− 1

p1
−···− 1

pm
− 1

s∗ = CmN
m
2
−| 1p |+ 1

s

whereas, for any i1, . . . , im,

‖A(ei1 , . . . , eim)‖q = N1/q.

Then,
(

N∑

im=1

‖A(ei1 , . . . , eim)‖qmq

) qm−1
qm

= N
qm−1
qm

+
qm−1

q .

It is then easy to show by induction that




N∑

j1=1


. . .

(
N∑

jm=1

‖A (ej1 , . . . , ejm) ‖qmq

) qm−1
qm

. . .




q1
q2




1
q1

= N
1
q
+ 1

q1
+···+ 1

qm .

For (1) of Theorem 2.7 to be true, it is necessary that

1

q1
+ · · ·+ 1

qm
≤ m

2
−
∣∣∣∣
1

p

∣∣∣∣+
1

s
− 1

q
.

2.3.2 Case 2: 1 ≤ s ≤ q ≤ 2, λ ≥ 2 and
∣∣∣ 1
p

∣∣∣ ≤ 1
2

This case has already been solved in [59, Proposition 4.4(ib)] using a Fourier matrix. We

shall give an alternative probabilistic proof. Let p ∈ [2,+∞] be such that 1
p
=
∣∣∣ 1p
∣∣∣. By Lemma
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2.14, there exists a linear map T : ℓnp → ℓns which may be written T (x) =
∑

i,j εi,jxiej with

εi,j = ±1 and such that

‖T‖ ≤ Cn
1
2
+ 1

2
− 1

p
+ 1

2
− 1

s∗ = Cn
1
2
+ 1

s
−| 1p |.

Let A : ℓnp1 × · · · × ℓnpm → ℓns defined by

A
(
x(1), . . . , x(m)

)
:=
∑

i,j

εi,jx
(1)
i · · · x(m)

i ej.

By Hölder’s inequality, it is plain that ‖A‖ ≤ ‖T‖ ≤ Cn
1
2
+ 1

s
−| 1p |. On the other hand, since

A(ei1 , . . . , eim) 6= 0 if and only if i1 = . . . = im, and

‖A(ei, . . . , ei)‖ℓq = n1/q,

we have 
 ∑

i∈M(m,n)

‖A (ei1 , . . . , eim)‖tℓq




1
t

= n
1
q
+ 1

t .

This clearly implies
1

t
≤ 1

2
+

1

s
− 1

q
−
∣∣∣∣
1

p

∣∣∣∣ .

2.3.3 Case 3: 1 ≤ s ≤ 2 ≤ q and λ < 2

Let p ∈ [0,+∞] be defined by
1

p
=

1

pm
+

1

s∗
.

Since λ < 2, it is easy to check that p ≥ 2 and that pi ≥ 2 for any i = 1, . . . ,m. We then apply

Lemma 2.14 with d = m−1 and (q1, . . . , qm) = (p1, . . . , pm−1, p
∗). We get an (m−1)-linear form

T : ℓnp1 × · · · × ℓnpm−1
→ ℓnp∗ which can be written

T
(
x(1), . . . , x(m−1)

)
=
∑

i1,...,im

εi1,...,imx
(1)
i1

· · · x(m−1)
im−1

eim

and such that

‖T‖ ≤ Cn
1
2
+m

2
−| 1p |− 1

s∗ = Cn
m−1

2
−| 1p |+ 1

s .

We then define A : ℓnp1 × · · · × ℓnpm → ℓns by

A
(
x(1), . . . , x(m)

)
=
∑

i1,...,im

εi1,...,imx
(1)
i1

· · · x(m)
im
eim .
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Then, for any x(1), . . . , x(m) ∈ Bℓnp1
× · · · ×Bℓnpm

,

‖A
(
x(1), . . . , x(m)

)
‖ = sup

y∈Bℓn
s∗

∣∣∣∣∣
∑

i1,...,im

εi1,...,imx
(1)
i1

· · · x(m)
im
yim

∣∣∣∣∣

≤ sup
z∈Bℓnp

∣∣∣∣∣
∑

i1,...,im

εi1,...,imx
(1)
i1

· · · x(m−1)
im−1

zim

∣∣∣∣∣
≤ ‖T‖.

Moreover, given any i ∈ M(m,n), ‖A(ei1 , . . . , eim)‖q = ‖eim‖q = 1, so that




+∞∑

i1=1


. . .

(
+∞∑

im=1

‖A (ei1 , . . . , eim)‖tmℓq

) tm−1
tm

. . .




t1
t2




1
t1

= n
1
t1

+···+ 1
tm .

Hence, provided (2.8) is satisfied, (t1, . . . , tm) has to satisfy

1

t1
+ · · ·+ 1

tm
≤ m− 1

2
+

1

s
−
∣∣∣∣
1

p

∣∣∣∣ .

2.3.4 Case 4 and Case 5: 1 ≤ s ≤ 2 ≤ q and λ ≥ 2, 2 ≤ s ≤ q

These cases have a deterministic proof, as noted in [59, Proposition 4.4 (iib), (iii)], considering

A : ℓnp1 × · · · × ℓnpm → ℓns given by

A
(
x(1), . . . , x(m)

)
:=

n∑

i=1

x
(1)
i · · · x(m)

i ei.

2.3.5 The proof of Theorem 2.5

From Theorem 1.3, by choosing t1 = . . . = tm we conclude that provided

∣∣∣∣
1

p

∣∣∣∣ <
1

2
+

1

s
− 1

min{q, 2} ,

the best exponent ρ in Theorem 2.5 satisfies

m

ρ
=

1

λ
+

m− 1

max{λ, s, 2} .

To conclude the proof, it remains to prove that, whenever

∣∣∣∣
1

p

∣∣∣∣ ≥
1

2
+

1

s
− 1

min{q, 2} ,

we cannot find an exponent ρ > 0 such that (2.5) is satisfied for all m-linear operators A :

Xp1 × · · · ×Xpm → Xs. In fact, everything has already been done before: if q ≤ 2, then we have
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just to follow the lines of Case 2 and if q ≥ 2, then we may consider the m-linear mapping of

Cases 4 and 5.

2.4 The case 1 ≤ s ≤ q ≤ 2, λ ≥ 2 and
∣∣∣ 1p
∣∣∣ > 1

2

2.4.1 A reformulation of the Hardy-Littlewood type inequalities

We shall improve in this section the bound given by Theorem 2.5. We shall proceed by

interpolation. To do this, we need a reformulation of the result of this theorem, as Villanueva

and Perez-Garcia reformulated the Bohnenblust-Hille inequality in [98]. The forthcoming result

is a variant of [38, Proposition 2.2]; its proof will be omitted.

Theorem 2.15. Let 1 ≤ p1, ..., pm ≤ +∞, 1 ≤ s ≤ q ≤ ∞ and let ρ > 0. The following

assertions are equivalent.

(A) There exists C > 0 such that, for every continuous m-linear mapping A : Xp1×· · ·×Xpm →
Xs, we have (

∑

i1,...,im

‖A(ei1 , . . . , eim)‖ρℓq

)1/ρ

≤ C‖A‖.

(B) There exists C > 0 such that, for any n ≥ 1, for any Banach spaces Y1, . . . , Ym, for any

continuous m-linear mapping S : Y1 × · · · × Ym → Xs, the induced operator

T : ℓnp∗1,w(Y1)× · · · × ℓnp∗m,w(Ym) → ℓn
m

ρ (Xq)
(
x(1), . . . , x(m)

)
7→

(
S(x

(1)
i1
, . . . , x

(m)
im

)
)
i∈M(m,n)

satisfies ‖T‖ ≤ C‖S‖.

We recall that, for any p ∈ [1,+∞] and any Banach space Y ,

ℓnp,w(Y ) =



(xj)

n
j=1 ⊂ Y ; ‖(xj)‖w,p := sup

ϕ∈BY ∗

(
n∑

j=1

|ϕ(xj)|p
)1/p

< +∞





with the appropriate modifications for p = ∞.

2.4.2 Proof of the sufficient condition

We now prove our better upper bound in the case 1 ≤ s ≤ q ≤ 2,
∣∣∣ 1p
∣∣∣ > 1

2
(namely we

prove the first part of Theorem 2.6). Let n ≥ 1, let Y1, . . . , Ym be Banach spaces and let

S : Y1 × · · · × Ym → Xs be bounded. Let n ≥ 1 and let T be the operator induced by S on

Y = ℓnp∗1,w(Y1)× · · · × ℓp∗m,w(Ym), defined by

T
(
x(1), . . . , x(m)

)
=
(
S(x

(1)
i1
, . . . , x

(m)
im

)
).
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Then T is bounded as an operator from Y into ℓn
m

∞ (Xs). T is also bounded as an operator from

Y into ℓn
m

ρ (Xs) with 1
ρ
= 1

s
−
∣∣∣ 1p
∣∣∣ (this is Theorem 2.5 for 1 ≤ s ≤ 2 and q ≥ 2). We can

interpolate between these two extreme situations. Hence, let q ∈ [s, 2] and let θ ∈ [0, 1] be such

that
1

q
=

1− θ

s
+
θ

2
⇐⇒ θ =

1
s
− 1

q

1
s
− 1

2

.

By [24, Theorem 4.4.1], T is bounded as an operator from Y into ℓn
m

t (Xq) where

1

t
=

1− θ

∞ +
θ

ρ
=

(
1
s
− 1

q

)(
1
s
−
∣∣∣ 1p
∣∣∣
)

1
s
− 1

2

.

Remark 2.16. It is easy to check that, for 1 ≤ s ≤ q ≤ 2 and
∣∣∣ 1p
∣∣∣ ≥ 1

2
, then the bound

( 1
s
− 1

q )(
1
s
−| 1p |)

1
s
− 1

2

is always better (namely larger) than the bound 1
2
+ 1

s
− 1

q
−
∣∣∣ 1p
∣∣∣ obtained in Theorem

2.5.

2.4.3 The necessary condition

We now prove the second part of Theorem 2.6. It also uses a probabilistic device for linear

maps when the two spaces do not need to have the same dimension. The forthcoming lemma

can be found in [23, Proposition 3.2].

Lemma 2.17. Let n, d ≥ 1, 1 ≤ p, s ≤ 2. There exists T : ℓdp → ℓns , T (x) =
∑

i,j ±xjei such
that

‖T‖ ≤ Cp,s max
(
d1/s, n1− 1

pd
1
s
− 1

2

)
.

Coming back to the proof of Theorem 2.6, we first observe that we may always assume that∣∣∣ 1p
∣∣∣ < 1. Otherwise, we can consider the m-linear map A : Xp1 × · · · ×Xpm → Xs defined by

A
(
x(1), . . . , x(m)

)
=
∑

i≥1

x
(1)
i . . . x

(m)
i e0

and observe that it is bounded whereas it has infinitely many coefficients equal to 1. We then

define p ∈ [1, 2] by 1
p
=
∣∣∣ 1p
∣∣∣ and we consider T : ℓdp → ℓns , T (x) =

∑
i,j εi,jxjei the map given by

Lemma 2.17. We then define

A : ℓdp1 × · · · × ℓdpm → ℓns(
x(1), . . . , x(m)

)
7→

∑

i,j

εi,jx
(1)
j · · · x(m)

j ei

and we observe that, by Hölder’s inequality, ‖A‖ ≤ ‖T‖. Furthermore,

(
∑

i1,...,im

‖A(ei1 , . . . , eim)‖tℓq

)1/t

= n1/td1/q.
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Taking d1/2 = n1− 1
p (this is the optimal relation between d and n), we get that if

(
∑

i1,...,im

‖A(ei1 , . . . , eim)‖tℓq

)1/t

≤ C‖A‖,

then it is necessary that
1

t
≤ 2

(
1− 1

p

)(
1

s
− 1

q

)
.

Remark 2.18. This last condition is optimal when s = 1 or when
∣∣∣ 1p
∣∣∣ = 1

2
(with, in fact, the

same proof as in Case 2 above). When 1 < s < 2, another necessary condition is

1

t
≤ 1

s
−
∣∣∣∣
1

p

∣∣∣∣

(see Case 4 or Case 5 above).

2.5 Optimal estimates under cotype assumptions

For a Banach space X, let qX := inf{q ≥ 2; X has cotype q}. For scalar-valued multilinear

operators it is easy to observe that summability in multiple indexes behaves in a quite different

way than summability in just one index. For instance, for any bounded bilinear form A : c0×c0 →
C, (

+∞∑

i,j=1

|A(ei, ej)|
4
3

) 3
4

≤
√
2‖A‖

and the exponent 4/3 is optimal. But, if we sum diagonally (i = j) the exponent 4/3 can be

reduced to 1 since
+∞∑

i=1

|A(ei, ei)| ≤ ‖A‖

for any bounded bilinear form A : c0 × c0 → C. Now we prove Theorem 2.9 which shows that

when replacing the scalar field by infinite-dimensional spaces the situation is quite different.

Proof. (A) ⇒ (B). From a deep result of Maurey and Pisier ([88] and [58, Section 14]), ℓqX
is finitely representable in X, which means that, for any n ≥ 1, one may find unit vectors

z1, . . . , zn ∈ X such that, for any a1, . . . , an ∈ C,

n∑

i=1

‖aizi‖X ≤ 2

(
n∑

i=1

|ai|qX
)1/qX

.

We then consider the m-linear map A : ℓnp1 × · · · × ℓnpm → X defined by

A
(
x(1), · · · , x(m)

)
:=

n∑

i=1

x
(1)
i · · · x(m)

i zi.
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Then, for any (x(1), . . . , x(m)) belonging to Bℓnp1
× · · · ×Bℓnpm

,

∥∥A
(
x(1), · · · , x(m)

)∥∥ ≤ 2

(
n∑

i=1

|x(1)i |qX · · · |x(m)
i |qX

)1/qX

≤ 2n
1

qX
−| 1p |

where the last inequality follows from Hölder’s inequality applied to the exponents

p1
qX
, ...,

pm
qX
,

(
1− qX

∣∣∣∣
1

p

∣∣∣∣
)−1

.

On the other hand, (
n∑

i=1

‖A (ei, . . . , ei) ‖ρ
)1/ρ

= n
1
ρ

and we obtain (3).

(B) ⇒ (A). This implication is proved in [59, Proposition 4.3].

If X does not have cotype qX , the condition remains necessary. But now we just have the

following sufficient condition:
m

ρ
<

1

qX
−
∣∣∣∣
1

p

∣∣∣∣ .

Of course, it would be nice to determine what happens in this case. A look at [58, page 304]

shows that the situation does not look simple.

As a consequence of the previous result we conclude that under certain circumstances the

concepts of absolutely summing multilinear operator and multiple summing multilinear operator

(see [39, 87, 97]) are precisely the same.

Corollary 2.19. Let p ∈ [2,+∞], let X be an infinite dimensional Banach space with cotype

qX < p
m

and let ρ > 0. The following assertions are equivalent:

(A) Every bounded m-linear operator A : Xp × · · · ×Xp → X is absolutely (ρ; p∗)-summing.

(B) Every bounded m-linear operator A : Xp × · · · ×Xp → X is multiple (ρ; p∗)-summing.

(C) 1
ρ
≤ 1

qX
− m

p
.

We stress the equivalence between (A) and (B) is not true, in general. For instance, every

bounded bilinear operator A : ℓ2 × ℓ2 → ℓ2 is absolutely (1; 1)-summing but this is no longer

true for multiple summability.
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2.6 Constants of vector-valued Bohnenblust–Hille inequal-

ities

A particular case of our main result is the following vector-valued Bohnenblust–Hille inequal-

ity (see [57, Lemma 3] and also [103, Section 2.2]):

Theorem 2.20. Let X be a Banach space, Y a cotype q space and v : X → Y an (r, 1)-summing

operator with 1 ≤ r ≤ q. Then, for all m-linear operators T : c0 × · · · × c0 → X,

(
+∞∑

i1,...,im=1

‖vT (ei1 , . . . , eim) ‖
qrm

q+(m−1)r

Y

) q+(m−1)r
qrm

≤ CY,mπr,1(v)‖T‖

with CY,m =
(√

2Cq (Y )
)m−1

.

In this section, in Theorem 2.21, we improve the above estimate for CY,m. The proof of

Theorem 2.21 follows almost word by word the proof of [20, Proposition 3.1] using [54, Lemma

2.2] and Kahane’s inequality instead of the Khinchine inequality. We present the proof for the

sake of completeness. We need the following inequality due to Kahane:

Kahane’s Inequality. Let 0 < p, q < +∞. Then there is a constant Kp,q > 0 for which

(∫

I

∥∥∥∥∥

n∑

k=1

rk(t)xk dt

∥∥∥∥∥

q) 1
q

≤ Kp,q

(∫

I

∥∥∥∥∥

n∑

k=1

rk(t)xk dt

∥∥∥∥∥

p) 1
p

,

regardless of the choice of a Banach space X and of finitely many vectors x1, ..., xn ∈ X.

Theorem 2.21. For all m and all 1 ≤ k < m,

CY,m ≤
(
Cq(Y )K qrk

q+(k−1)r
,2

)m−k

CY,k.

Proof. Let ρ := qrm
q+(m−1)r

and to simplify notation let us write

vTei = vT (ei1 , . . . , eim) .

Let us make use of the general Blei inequality (Proposition 1.6) with m ≥ 2, 1 ≤ k ≤ m− 1 and

s = qrk
q+(k−1)r

. So we have

(
∑

i

‖vTei‖ρY

) 1
ρ

≤
∏

S∈Pk(m)



∑

iS


∑

i
Ŝ

‖vT
(
eiS , eiŜ

)
‖qY




s
q




1

s(mk)

, (2.9)

where Pk(m) denotes the set of all subsets of {1, ...,m} with cardinality k. For sake of clarity,

we shall assume that S = {1, . . . , k}. By the multilinear cotype inequality (see [54, Lemma 2.2])
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and the Kahane inequality, we have


∑

i
Ŝ

‖vT
(
eiS , eiŜ

)
‖qY




s
q

≤ (Cq(Y )Ks,2)
s(m−k)

∫

Im−k

∥∥∥∥∥∥

∑

i
Ŝ

ri
Ŝ
(tŜ)vT

(
eiS , eiŜ

)
∥∥∥∥∥∥

s

Y

dtŜ

= (Cq(Y )Ks,2)
s(m−k)

∫

Im−k

∥∥∥∥∥∥
vT


eiS ,

∑

i
Ŝ

ri
Ŝ
(tŜ)eiŜ



∥∥∥∥∥∥

s

Y

dtŜ,

which the term inside the ‖ · ‖Y in the last inequality is precisely

v


T


ei1 , . . . , eik ,

∑

ik+1

rk+1(tk+1)ek+1, . . . ,
∑

im

rm(tm)em






But for a fixed choice of (tk+1, . . . , tm) ∈ Im−k = [0, 1]m−k, we know, by Theorem 2.20, that

∑

i1,...,ik

∥∥∥∥∥∥
v


T


ei1 , . . . , eik ,

∑

ik+1

rk+1(tk+1)ek+1, . . . ,
∑

im

rm(tm)em





∥∥∥∥∥∥

s

Y

≤ (CY,kπr,1(v)‖T‖)s .

Thus,

∑

iS


∑

i
Ŝ

‖vT
(
eiS , eiŜ

)
‖qY




s
q

≤ (Cq(Y )Ks,2)
s(m−k) × (2.10)

×
∑

i1,...,ik

∥∥∥∥∥∥
v


T


ei1 , . . . , eik ,

∑

ik+1

rk+1(tk+1)ek+1, . . . ,
∑

im

rm(tm)em





∥∥∥∥∥∥

s

Y

≤
(
(Cq(Y )Ks,2)

m−k πr,1(v)CY,k‖T‖
)s
, (2.11)

namely 

∑

iS


∑

i
Ŝ

‖vT
(
eiS , eiŜ

)
‖qY




s
q




1
s

≤ (Cq(Y )Ks,2)
m−k πr,1(v)CY,k‖T‖.

From (2.9) we conclude that

(
∑

i

‖vTei‖ρY

) 1
ρ

≤ (Cq(Y )Ks,2)
m−k CY,kπr,1(v)‖T‖.
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When m is even, the case k = m
2
recovers the constants from [103].

Corollary 2.22. For all m,

CY,m ≤ Cq(Y )m−1
m−1∏
k=1

K qrk
q+(k−1)r

,2.

2.7 Other exponents

From now on 1 ≤ r ≤ q and (q1, . . . , qm) ∈ [r, q]m so that

1

q1
+ · · ·+ 1

qm
=
q + (m− 1)r

qr
=

1

r
+
m− 1

q

are called vector-valued Bohnenblust–Hille exponents. From Theorem 2.11 we have:

Theorem 2.23 (Multiple exponent vector-valued Bohnenblust–Hille inequality). Let X be a

Banach space and Y a cotype q space with 1 ≤ r ≤ q. If (q1, . . . , qm) ∈ [r, q]m are vector-valued

Bohnenblust–Hille exponents, then there exists CY,q1,...,qm ≥ 1 such that, for all m-linear operators

T : c0 × · · · × c0 → X and every (r, 1)-summing operator v : X → Y , we have




+∞∑

i1=1

. . .

(
+∞∑

im=1

‖vTei‖qmY

) qm−1
qm

. . .




1
q1

≤ CY,q1,...,qmπr,1(v)‖T‖, (2.12)

with CY,q1,...,qm =
(√

2Cq (Y )
)m−1

.

Our final result gives better estimates for the constants CY,q1,...,qm :

Theorem 2.24. If (q1, . . . , qm) is a vector-valued Bohnenblust–Hille exponent, then

CY,q1...,qm ≤
m∏

k=1

((
Cq(Y )K kqr

q+(k−1)r
,2

)m−k

CY,k

)θk

with

θm = m

(
1

r
− 1

q

)−1(
1

qσ(m)

− 1

q

)
(2.13)

and

θk = k

(
1

r
− 1

q

)−1(
1

qσ(k)
− 1

qσ(k+1)

)
, for k = 1, . . . ,m− 1. (2.14)

where σ is a permutation of the indexes {1, . . . ,m} such that qσ(1) ≤ · · · ≤ qσ(m).

Proof. First let us suppose that qi ≤ qj whenever i ≤ j. For each k = 1, . . . ,m, define

sk =
kqr

q + (k − 1)r
.
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From the proof of Theorem 2.21 we have (2.12) for each exponent
(
sk, k times. . . , sk, q, . . . , q

)
. More

precisely, from (2.11) we have



∑

i1,...,ik


 ∑

ik+1,...,im

‖vTei‖qY




sk
q




1
sk

≤ (Cq(Y )Ksk,2)
m−k CY,kπr,1(v)‖T‖.

Consequently,

CY,sk,k times... ,sk,q...,q
≤ (Cq(Y )Ksk,2)

m−k CY,k,

for each k = 1, . . . ,m. Since every vector-valued Bohnenblust–Hille exponent (q1, . . . , qm) with

q1 ≤ · · · ≤ qm could be obtained by interpolation of α1, . . . , αm with αk :=
(
sk, k times. . . , sk, q, . . . , q

)
,

and θ1, . . . , θm as in (2.13) and (2.14), we conclude that

CY,q1,...,qm ≤
m∏

k=1

(
CY,sk,k times... ,sk,q,...,q

)θk ≤
m∏

k=1

(
(Cq(Y )Ksk,2)

m−k CY,k

)θk
.

When the indexes i ∈ {1, . . . ,m} does not match with de order of the qi’s, one just need to use

the result to the exponents qσ(1) ≤ · · · ≤ qσ(m) and apply the Minkowski inequality successively

(Proposition 1.5).

A particular case of Kahane’s inequality is Khintchine’s inequality (Proposition 1.8), whose

optimal constants AK,p we will use here also. Taking X = Y = K and r = 1 we obtain estimates

for the constants of the scalar-valued Bohnenblust–Hille inequality with multiple exponents:

Corollary 2.25. If (q1, . . . , qm) ∈ [1, 2]m are such that qσ(1) ≤ · · · ≤ qσ(m) and

1

q1
+ · · ·+ 1

qm
=
m+ 1

2
,

then




+∞∑

i1=1

. . .

(
+∞∑

im=1

|T (ei1 , ..., eim)|qm
) qm−1

qm

. . .




1
q1

≤ C
2m

(
1

qσ(m)
− 1

2

)

K,m




m−1∏

k=1

(
Am−k

K, 2k
k+1

CK,k

)2k

(
1

qσ(k)
− 1

qσ(k+1)

)
 ‖T‖,

for all m-linear operators T : c0 × · · · × c0 → K. In particular, for complex scalars, the left hand
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side of the above inequality can be replaced by

(
m∏

j=1

Γ

(
2− 1

j

) j
2−2j

)2m

(
1

qσ(m)
− 1

2

)

×

×




m−1∏

k=1

(
Γ

(
3k + 1

2k + 2

)(−k−1
2k )(m−k) k∏

j=1

Γ

(
2− 1

j

) j
2−2j

)2k

(
1

qσ(k)
− 1

qσ(k+1)

)
 ‖T‖.



Part II

Peano curves on topological vector

spaces
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Chapter 3

Peano curves on Euclidean spaces

In this chapter is we present the results of the papers

[4] Maximal lineability of the set of continuous surjections, Bulletin of the Belgian

Mathematical Society Simon Stevin, vol. 21, 83–87, 2014.

and some portion of

[7] Peano curves on topological vector spaces, Linear Algebra and its Applications,

vol. 460, 81–96, 2014.

Tthe last one is a joint work with L. Bernal, D. Pellegrino and J. Seoane. We deal with Peano

curves on Euclidean spaces. The topological and algebraic structure of the set of these functions

(as well as extensions to spaces with higher dimensions) is analyzed from the modern point

of view of lineability, from which large dense vector spaces and algebras are found within the

families studied.

3.1 Motivation and main results

Lately, many authors have been interested in the study of the set of surjections in KK. From

this study, many different classes of functions have been either recovered from the old literature

or introduced. Some of these classes are, for instance, we say that f ∈ RR is

(i) everywhere surjective functions (ES, see [10]): (f ∈ ES(R)) if f(I) = R for every nontrivial

interval I ⊂ R;

(ii) strongly everywhere surjective functions (SES, see [71]): (f ∈ SES(R)) if f takes all values

c times on any interval (where c stands for the cardinality of R), i.e.,

∀ I ⊂ R (non-trivial) , ∀ a ∈ R, card
(
f−1(a) ∩ I

)
= c.

(iii) perfectly everywhere surjective functions (PES, see [71]): (f ∈ PES(R)) if f(P ) = R, for

every perfect set P ;
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(iv) Jones functions (J, see [69, 70, 81]): (f ∈ J(R)) if its graph intersects every closed subset

of R2 with uncountable projection on the x-axis.

If S and CS stand, respectively, for the set of surjections and continuous surjections on R,

the above functions (when defined on R) enjoy the following strict inclusions:

J //

++

PES //

))

SES //

##

ES

��

CS // S

Authors have studied the previous classes of functions in depth, to the point of even finding

large algebraic structures (infinite dimensional linear spaces or infinitely generated algebras)

inside the previous sets of functions. However, “most” of these functions, although surjective,

also are nowhere continuous on their domains (as expected). Thus, a natural question rises when

one tries to consider continuous surjections.

Inspired by Cantor’s counterintuitive result stating that the unit interval [0, 1] has the same

cardinality as the infinite number of points in any finite-dimensional manifold (such as the unit

square), Peano constructed the (no doubt!) most famous space filling curve, also known as the

Peano curve [95, 101] (see Figure 3.1).

Figure 3.1: Sketch of an iteration of a tridimensional space-filling curve.

Later on, the Hahn-Mazurkiewicz theorem (see, e.g., [106, Theorem 31.5] or [80]) helped

in characterizing the Hausdorff spaces that are the continuous image of [0, 1], which are called

Peano spaces, namely:

Theorem 3.1 (Hahn-Mazurkiewicz). A non-empty Hausdorff topological space is a continuous
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image of the unit interval if and only if it is a compact, connected, locally connected, and second-

countable space.

Hausdorff spaces that are the continuous image of the unit interval will be called Peano

spaces, so that, a Peano space is a Hausdorff, compact, connected, locally connected second-

countable topological space. Equivalently, by well-known metrization theorems, a Peano space

is a compact, connected, locally connected metrizable topological space. From Peano’s example

one can easily construct a continuous function from the real line R onto the plane R2 (see,

e.g., [4]). If X and Y are topological spaces, by C(X, Y ) and CS(X, Y ) we will denote,

respectively, the set of all continuous mappings X → Y and the subfamily of all continuous

surjective mappings.

This chapter focuses on studying the algebraic structure of the set of continuous surjections

between Euclidean spaces. Before carrying on, let us recall some concepts that, by now, are

widely known (see, e.g., [10–12,17,27, 46,48,64]).

Definition 3.2 (Lineability and spaceability, [10,104]). Let X be a topological vector space and

M a subset of X. Let µ be a cardinal number.

(1) M is said to be µ-lineable if M ∪ {0} contains a vector space of dimension µ. At times,

we shall be referring to the set M as simply lineable if the existing subspace is infinite

dimensional.

(2) When the above linear space can be chosen to be dense (infinite dimensional and closed,

resp.) in X we shall say that M is µ-dense-lineable (spaceable, resp.).

Moreover, L. Bernal introduced in [25] the notion of maximal lineable (and that of maximal

dense-lineable) in X, meaning that, when keeping the above notation, the dimension of the

existing linear space equals dim(X). Besides asking for linear spaces one could also study other

structures, such as algebras and some related ones, which were presented in [11,12,15,104].

Definition 3.3. Given an algebra A, a subset B ⊂ A, and a cardinal number κ, we say that B
is:

(1) algebrable if there is a subalgebra C of A so that C ⊂ B ∪ {0} and the cardinality of any

system of generators of C is infinite.

(2) κ-algebrable if there exists a κ-generated subalgebra C of A with C ⊂ B ∪ {0}.

(3) strongly κ-algebrable if there exists a κ-generated free algebra C contained in B ∪ {0}.

If A is commutative, the last sentence means that there is a set C ⊂ A with card(C) = κ

such that, for every finite set {x1, . . . , xN} ⊂ C and every nonzero polynomial P of N variables

without constant term, one has P (x1, . . . , xN) ∈ B\{0}. Being strongly algebrable implies being

algebrable (the converse is not true, see [15]). When, in part (3) of Definition 3.3, one can take

as κ the supremum of the cardinalities of all algebraically free systems in A, then B will be

called maximal strongly algebrable in A.
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This chapter is arranged in four sections. Section 3.2 is devoted to the study the lineability

of the set CS(Rm,Rn) of continuous surjections from Rm to Rn, for any pair (m,n) of posi-

tive integers. In Section 3.3 we comment how Bernal and Ordóñez solved the spaceability of

CS(Rm,Rn) as a particular case of a more general problem, which is presented in the ingenious

paper [26]. In Section 3.4 we deal with the algebrability of the set of continuous surjections from

Rm to Cn, where we improve the results from [4, 26] by showing that the subset of continuous

surjections from Rm to Cn such that each value a ∈ Cn is assumed on an unbounded set of Rm

is, actually, (maximal) strongly algebrable (Theorem 3.17). In order to achieve this we shall

need to make use of some results and machinery from Complex Analysis, such as the order of

growth of an entire function. While doing this, we also provide some new results from Complex

Analysis which are of independent interest (see, e.g., Lemma 3.15).

3.2 Lineability of the set CS(Rm,Rn)

Our starting point is to build a curve from the real that fills the plane, that is, to prove

that CS(R,R2) 6= ∅. In the next chapter we will indicate a similar construction on special

topological spaces, but for the lack of references on the subject, we write here a prove of this

simple situation. Recall the I denote the unit compact interval [0, 1].

Lemma 3.4. There exists a continuous surjection from the real line R to the plane R2, i.e., the

family CS(R,R2) is non-void.

Proof. Let us fix a Peano curve φ : I → I2. We may assume that the curve φ starts and ends at

origin. For each positive integer n, I and In = [n, n+ 1], as I2 and [−n, n]2, are homeomorphic.

Thus we may assume that the continuous function φ maps I onto [−1, 1]2, with the origin (of R2)

being the start and end point. Thus the map hn : In → [−n, n]2 defined by hn(t)
def
= n ·φ(t−n) is

a CS map (a continuous surjection) that starts and ends at origin. Pasting the maps hn (h0 = φ),

one after another, we get a CS H : [0,+∞) → R2. We may take an extension H̃ : R →→ R2 of

H mapping all (−∞, 0] into the origin and pasting with H (or just by using Tiestz’s extension

theorem). Explicitly, H̃ may be defined by H̃(t) = 0, if t ∈ (−∞, 0], and H̃(t) = hn(t), if

t ∈ [n, n+ 1], with n ≥ 0.

The following result guarantees that, de facto, there exists a continuous surjection beetween

any Euclidean spaces. It uses the fact that CS(R,R2) 6= ∅.

Proposition 3.5. For any pair (m,n) of positive integers, there exists a continuous surjection

from Rm to Rn, i.e., CS(Rm,Rn) 6= ∅.

Proof. Let us take f ∈ CS(R,R2). If fi := πi ◦ f, i = 1, 2 denotes the i-coordinates functions of

f (f = (f1, f2)), then the map idR × f : R2 −→ R3 defined by (idR × f) (t, s) := (t, f1(s), f2(s))

is a continuous surjection. Thus, (idR × f) ◦ f belongs to CS(R,R3). Proceeding by induction,

we can assure the existence of a function g belonging to CS(R,Rn) for every n ∈ N. Hence,
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defining F : Rm −→ Rn by F := g ◦ π1, i.e.,

F (x) = F (x1, . . . , xm) = g(x1) , for all x = (x1, . . . , xm) ∈ Rm

(π1 : Rm −→ R denotes the canonical projection over the first coordinate), we conclude that

F ∈ CS(Rm,Rn).

Attempting maximal lineability of CS(Rm,Rn) (that is, c-lineability, with c standing for the

cardinality of R) we make use of the following remark (inspired in a result from [10]), which

indicates a method to obtain our main result.

Remark 3.6. Given a continuous surjection f : Rm −→ Rn, suppose we have X ⊂ C (Rn;Rn)

a subset of c-many linearly independent functions such that every nonzero element of span(X )

is a continuous surjection. Then, we have that

Y := {F ◦ f}F∈X ⊂ C (Rm;Rn)

has cardinality c, is linearly independent and is formed just by continuous surjections. Moreover,

span(Y) ⊂ CS(Rm,Rn) ∪ {0},

obtaining the c-lineability of CS(Rm,Rn).

In order to continue we shall need two lemmas and some notation. First, let us consider (for

r > 0) the homeomorphism φr : R → R given by

φr(t) := ert − e−rt.

Lemma 3.7. The subset A := {φr}r∈R+ of RR is linearly independent, has cardinality c, and

every nonzero element of span(A) is continuous and surjective.

Proof. First let us prove that every nonzero element φ =
∑k

i=1 αi · φri ∈ span(A) is surjective.

We may suppose that r1 > r2 > · · · > rk and α1 6= 0. Writing

φ(t) = er1t ·
(
α1 +

k∑

i=2

αi · e(ri−r1)t

)
−

k∑

i=1

αi · e−rit,

we conclude that lim
t→+∞

φ(t) = sign(α1) ·∞ and lim
t→−∞

φ(t) = −sign(α1) ·∞. Thus, the continuity

of φ assures its surjection. Now let us see that A is linearly independent: suppose that ψ =
∑n

i=1 λi · φsi = 0. If there is some λj 6= 0, we may suppose that s1 > · · · > sn and λ1 6= 0.

Repeating the argument above, we obtain

lim
t→+∞

ψ(t) = sign(λ1) · ∞ and lim
t→−∞

ψ(t) = −sign(λ1) · ∞,

which contradicts ψ = 0. This proves that A is linearly independent. The other assertions are

easy to prove.
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For each r = (r1, . . . , rn) ∈ (R+)n, let ϕr be the homeomorphism from Rn to Rn defined by

ϕr = (φr1 , . . . , φrn), i.e.,

ϕr(x) := (φr1(x1), . . . , φrn(xn)), for all x = (x1, . . . , xn) ∈ Rn.

Working on each coordinate, and using the previous lemma, we have the following.

Lemma 3.8. The set B = {ϕr}r∈(R+)n of C(Rn;Rn) is linearly independent, has cardinality c,

and every nonzero element of span(B) is continuous and surjective.

The following is a well know result which will guarantees that the lineability result is optimal,

i.e., the result is the best possible in terms of dimension. We sketch the proof.

Lemma 3.9. dim C(Rm,Rn) = c.

Proof. Since each point of Rm may be see as a constant function in C(Rm,Rn), we get a injection

Rm →֒ C(Rm,Rn), and thus

card Rm = c ≤ card C(Rm,Rn).

On the other hand, Rm is separable (Qm is dense in Rm) and we may enumerate Qm = {rn}n∈N.
Defining a map that assigns each continuous function f ∈ C(Rm,Rn) to the sequence of its ratio-

nal points images (f(rn))n∈N, we get a map C(Rm,Rn) → (Rn)N that is injective as consequence

of the separability of Rm. Since card (Rn)N = card R(n·N) = card RN = c, we get

card C(Rm,Rn) ≤ c,

and therefore conclude that card C(Rm,Rn) = c.

Now it is time to state and prove the main lineability result.

Theorem 3.10 (Albuquerque, 2014). For every pair m,n ∈ N, the set CS(Rm,Rn) is maximal

lineable.

Proof. Let f ∈ CS(Rm,Rn). Using the notation of the previous lemma and the ideas of the

Remark 3.6, we now prove that the set C = {F ◦ f}F∈B is so that span(C) is the space we are

looking for.

The surjectivity of f assures that G ◦ f = 0 implies G = 0, for every function G from Rn to

Rn. Thus, if Gi ∈ B, i = 1, . . . , k and

0 =
k∑

i=1

αi ·Gi ◦ f =

(
k∑

i=1

αiGi

)
◦ f,

then
∑k

i=1 αiGi = 0; so since B is linearly independent, we conclude that αi = 0, i = 1, . . . , k

and thus, C is linearly independent. Clearly, it has cardinality c. Furthermore, any nonzero

38



function
l∑

i=1

λi · Fi ◦ f =

(
l∑

i=1

λiFi

)
◦ f

of span(C) is continuous and surjective, since it is the composition of continuous surjective

functions (recall that, from Lemma 3.8,
∑l

i=1 λiFi is a continuous surjective function). Therefore,

span(C) only contains, except for the zero function, continuous surjective functions.

Remark 3.11. The case of injective functions deserves some comments. In RR the set of

surjective functions is 2c-lineable, while the set of injective functions is only 1-lineable and,

consequently, also the set of bijections in RR. In fact, given two linearly independent injective

functions f, g : R → R, take x 6= y in R and α = f(x)−f(y)
g(y)−g(x)

∈ R. Then the function h :=

f + αg ∈ span (f, g) satisfies h(x) = h(y) and, therefore, is not injective. This argument can be

easily adapted to functions from Rn to R.

3.3 Spaceability of CS∞(Rm,Rn)

In [26, Theorem 3.2] Bernal and Ordóñez provide the following general spaceability criteria.

Let us recall some concepts and notation: P(Ω) denotes, as usual, the family of subsets of a set Ω;

σ(f) will denote the support of a function f : Ω → K, that is, the set σ(f) = {x ∈ Ω; f(x) 6= 0};
an F -space is a complete metrizable topological vector space; an F -norm on a vector space X

is a functional ‖ · ‖ : X → [0,∞) satisfying, for all x, y ∈ X and λ ∈ K, the following properties

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ‖λx‖ ≤ ‖x‖ if |λ| ≤ 1, ‖x‖ = 0 only if x = 0, and ‖λx‖ → 0 if λ→ 0.

Theorem 3.12 (Bernal,Ordóñez, 2014). Let Ω be a nonempty set and Z a topogical vector space

on K. Assume that X is an F -space on K consisting of Z-valued functions on Ω and that ‖ · ‖ is

an F -norm defining the topology of X. Suppose, in addition, that S is a nonempty subset of X

and S : P(Ω) → P(Ω) is a set function with A ⊂ S(A) for all A ∈ P(Ω) satisfying the following

properties:

(i) If (gn)n ⊂ X satisfies gn → g in X, then there is a subsequence (nk) ⊂ N such that, for

every x ∈ Ω, gnk
(x) → g(x);

(ii) There is a constant C ∈ (0,+∞) such that ‖f + g‖ ≥ C‖f‖ for all f, g ∈ X with σ(f) ∩
σ(g) = ∅;

(iii) αf ∈ S for all α ∈ K and all f ∈ S;

(iv) If f, g ∈ X are such that f + g ∈ S and S (σ(f)) ∩ σ(g) = ∅, then f ∈ S;

(v) There is a sequence of functions (fn)n ⊂ X \ S, such that S (σ(fm)) ∩ σ(fn) = ∅, for all

m 6= n.

Then X \ S is spaceable in X.
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For each pair m,n ∈ N, setting

CS∞(Rm,Rn) :=
{
f ∈ C (Rm,Rn) : f−1({a}) is unbounded for every a ∈ Rn

}
.

(obviously) we have that CS∞(Rm,Rn) is a “smaller” part of CS(Rm,Rn). Endowing C (Rm,Rn)

with the compact-open topology and using the previous spaceability criteria, Bernal and Ordóñez

solved problem of spaceability of the set of continuous surjections between Euclidean spaces:

Theorem 3.13 (Bernal and Ordóñez, 2014). For each pair m,n ∈ N, the set CS∞(Rm,Rn)

is maximal dense-lineable and spaceable in C (Rm,Rn). In particular, it is maximal lineable in

C (Rm,Rn).

3.4 Algebrability of CS∞ (Rm,Cn)

Let N := {1, 2, . . . } and N0 := N ∪ {0}. Recall that, for any topological space X, we set

CS∞(Rm, X) :=
{
f ∈ C (Rm, X) : f−1({a}) is unbounded for every a ∈ X

}
.

Once solved the lineability and spaceability (Theorems 3.10 and 3.13 respectively), a natural

question would be to ask about the algebrability of the set CS∞(Rm,Rn). Clearly, algebrability

cannot be obtained in the real context, since for any f ∈ RR, f 2 is always non-negative. However,

in the complex frame it is actually possible to obtain algebrability. Before that, let us recall

some results related to the growth of an entire function (see, e.g., [30, p.9]).

Remark 3.14. (Order of an entire function and consequences). By H (C) we denote the space

of all entire functions from C to C. For r > 0 and f ∈ H (C), we set M (f, r) := max|z|=r |f(z)|.
The function M(f, ·) increases strictly towards +∞ as soon as f is non-constant.

(a) The (growth) order ρ(f) of an entire function f ∈ H (C) is defined as the infimum of all

positive real numbers α with the following property: M (f, r) < er
α

for all r > r(α) > 0.

Note that ρ(f) ∈ [0,+∞]. Trivially, the order of a constant map is 0. If f is non-constant,

we have

ρ(f) = lim sup
r→+∞

log logM (f, r)

log r
.

(b) If f(z) =
∑∞

n=1 anz
n is the MacLaurin series expansion of f then

ρ(f) = lim sup
n→+∞

n log n

log (1/|an|)
.

In particular, given α > 0, fα(z) :=
∞∑

n=1

zn

nn/α
satisfies ρ(fα) = α.

(c) For every f ∈ H (C), every N ∈ N and every α ∈ C \ {0},

ρ
(
αfN

)
= ρ (f) .
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(d) For every f, g ∈ H (C),

ρ(f · g) ≤ max{ρ(f), ρ(g)}

and

ρ(f + g) ≤ max{ρ(f), ρ(g)}.

Moreover, if f and g have different orders, then

ρ(f + g) = max{ρ(f), ρ(g)} = ρ(f · g),

where it is assumed f 6≡ 0 6≡ g for the second equality.

(e) (Corollary to Hadamard’s theorem): Every non-constant entire function f with ∞ >

ρ(f) /∈ N is surjective (see, e.g., [2, Corollary, p.211] or [73, Thm 9.3.10]).

As a consequence of the previous properties, we obtain the following result (of independent

interest) concerning the order of a polynomial of several variables evaluated on entire functions

with different orders. First, we need to establish some notation: for a non-constant polynomial

in M complex variables P ∈ C[z1, . . . , zM ], let IP ⊂ {1, . . . ,M} be the set of indexes k such

that the variable zk explicitly appears in some monomial (with non-zero coefficient) of P ; that

is, IP = {n ∈ {1, . . . ,M} : ∂P
∂zn

6≡ 0}.

Lemma 3.15. Let f1, . . . , fM ∈ H(C) such that ρ(fi) 6= ρ(fj) whenever i 6= j. Then

ρ (P (f1, . . . , fM)) = max
k∈IP

ρ (fk) ,

for all non-constant polynomials P ∈ C[z1, . . . , zM ]. Moreover, (fk)
M
k=1 is algebraically indepen-

dent and generates a free algebra.

Proof. The second part of the statement follows straightforwardly from the first one. In order

to prove the first part, it is clear that we may assume, without loss of generality, that M >

1 and the entire functions f1, . . . , fM satisfy ρ(f1) < ρ(f2) < · · · < ρ(fM). Given a non-

constant polynomial P ∈ C[z1, . . . , zM ], properties (c) and (d) of Remark 3.14 assure that

ρ (P (f1, . . . , fM)) ≤ maxk∈IP ρ (fk). Therefore, we just need to prove that

ρ (P (f1, . . . , fM)) ≥ max
k∈IP

ρ (fk) .

Let be N = maxk∈IP (so that maxk∈IP ρ (fk) = ρN > 0). We can write

P (f1, . . . , fM) =
m∑

i=0

Pi(f1, . . . , fN−1) · f i
N , (1)

with some m > 0 and Pm ∈ C[z1, . . . , zN−1] \ {0}. Let ε > 0 such that

ρ(fN−1) < ρ(fN)− 2ε < ρ(fN) =: ρN .
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Now, parts (c) and (d) of Remark 3.14 allow us to estimate the order of each one of terms of

the sum in (1):

ρ (Pi(f1, . . . , fN−1)) ≤ ρ(fN−1) < ρN for all i = 0, . . . ,m and

ρ (Pm(f1, . . . , fN−1) · fN) = ρN .

By the definition of order, there exist a sequence of positive real numbers, (rn)n, going to +∞
and complex numbers zn, of modulus rn, such that, for n large enough, the following inequalities

hold:

|Pm(f1, . . . , fN−1)(zn)| · |fN(zn)| > er
ρN−ε
n and

|Pi(f1, . . . , fN−1)(zn)| < er
ρN−2ε
n for all i = 0, . . . ,m.

In particular,

|fN(zn)| > er
ρN−ε
n −r

ρN−2ε
n for n large.

Thus,

|P (f1, . . . , fM)(zn)| ≥

≥ |Pm(f1, . . . , fN−1)(zn)| · |fN(zn)|m −
m−1∑

i=0

|Pi(f1, . . . , fN−1)(zn)| · |fN(zn)|i

> er
ρN−ε
n · |fN(zn)|m−1 − er

ρN−2ε
n ·

m−1∑

i=0

|fN(zn)|i

= er
ρN−ε
n · |fN(zn)|m−1 ·

[
1− er

ρN−2ε
n −r

ρN−ε
n ·

m−1∑

i=0

|fN(zn)|i−(m−1)

]
.

Note that the expression inside the brackets in the last formula tends to 1 as n → ∞: indeed,

er
ρN−2ε
n −r

ρN−ε
n → 0 and |fN(zn)|−1 < er

ρN−2ε
n −r

ρN−ε
n → 0. Thus, it is greater than some constant

C ∈ (0, 1) for n large enough. Furthermore, we also have

er
ρN−ε
n · |fN(zn)|m−1 > er

ρN−ε
n · e(m−1)r

ρN−ε
n −(m−1)r

ρN−2ε
n

= emr
ρN−ε
n −(m−1)r

ρN−2ε
n > e(m/2) r

ρN−ε
n

for n large enough. Consequently, one has for n large that

M (P (f1, . . . , fM), rn) ≥ C · e(m/2)r
ρN−ε
n ,
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which implies

ρ (P (f1, . . . , fM)) = lim sup
r→+∞

log logM (P (f1, . . . , fM), r)

log r

≥ lim sup
n→∞

log logM (P (f1, . . . , fM), rn)

log rn

≥ lim
n→∞

log log(C · e(m/2)r
ρN−ε
n )

log rn

= ρN − ε.

Letting ε→ 0, the above inequalities prove

ρ (P (f1, . . . , fM)) ≥ ρN = max
k∈I(P )

ρ (fk) ,

as required.

Remark 3.16. Lemma 3.15 very probably plays the same role in the complex case as the

exponential-like functions method plays in the real case. The last method was developed in the

paper [13] by Balcerzak et al. and it has numerous applications, see for instance [14].

From this lemma we can prove that CS∞ (Rm,Cn) is maximal strongly algebrable, which

means that the set is strongly c-algebrable.

Theorem 3.17. For every m ∈ N, the set CS∞ (Rm,Cn) is maximal strongly algebrable in

C (Rm,Cn).

Proof. It suffices to consider the case n = m = 1. In fact, the case m > 1 follows from the

m = 1 by considering the projection map from Rm to R. The case n > 1 is obtained from n = 1

by working on each coordinate.

For each s > 0, select an entire function ϕs : C → C of order s > 0. Let A := (0,+∞) \ N.
Lemma 3.15 assures that the set {ϕs}s∈A is a system of cardinality c generating a free algebra

A.

Next, notice that any element ϕ ∈ A\ {0} may be written as a non-constant polynomial P

without constant term evaluated on some ϕs1 , ϕs2 , . . ., ϕsN :

ϕ = P (ϕs1 , ϕs2 , . . . , ϕsN ) =
∑

|α|≤m

cα · ϕα1
s1

· ϕα2
s2

· · ·ϕαN
sN
.

By Lemma 3.15, there exists j ∈ {1, . . . , N} such that ρ(ϕ) = ρ(ϕsj) = sj /∈ N0. Thus Remark

3.14 (e) guarantees that ϕ is surjective. Finally, take any F ∈ CS∞ (R,C) and consider the

algebra

B := {ϕ ◦ F}ϕ∈A .

Then it is plain that B is freely c-generated and that B \ {0} ⊂ CS∞ (R,C), as required.
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Chapter 4

Peano curves on topological vector

spaces

In this chapter is we present the remaining results of the paper

[7] Peano curves on topological vector spaces, Linear Algebra and its Applications,

vol. 460, 81–96, 2014.

(which is a joint work with L. Bernal, D. Pellegrino and J. Seoane) concerning Peano curves on

topological vector spaces. The Hahn-Mazurkiewicz’s theorem allows us to investigate topological

vector spaces that are continuous image of the real line, from which we provide an optimal

lineability result.

4.1 Motivation and main results

This chapter moves on to the study of generalizations of the previous results to topological

vector spaces that are, in some natural sense, covered by Peano spaces. We introduce the notion

of σ-Peano space (see Definition 4.1) and use it to show (among other results) that given any

topological vector space X that is also a σ-Peano space, then the set

CS∞(Rm,X ) :=
{
f ∈ C (Rm,X ) : f−1({a}) is unbounded for every a ∈ X

}

is c-lineable (hence maximal lineable in C (Rm,X )), where c stands for the continuum (see The-

orem 4.6). In addition, we will show how, by just starting with separable normed spaces, one

can obtain σ-Peano spaces. We analyze Peano spaces in the framework of sequence spaces and

also study Peano space in real and complex function spaces.

4.2 σ-Peano spaces

As mentioned in the introduction, the theorem of Hahn and Mazurkiewicz provides a topo-

logical characterization of Hausdorff topological spaces that are continuous image of the unit
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interval I := [0, 1]: these are precisely the Peano spaces. In this section we investigate topolo-

gical spaces that are continuous image of the real line and for this task the following definition

seems natural.

Definition 4.1. A topological space X is a σ-Peano space if there exists an increasing sequence

of subsets

K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ · · · ⊂ X,

such that each one of them is a Peano space (endowed with the topology inherited from X) and

its union amounts to the whole space, that is,
⋃

n∈NKn = X.

From now on, CS will stand for an abbreviation of “continuous surjective”.

Proposition 4.2. Let X be a Hausdorff topological space. The following assertions are equiva-

lent:

(a) X is a σ-Peano space.

(b) CS∞ (R, X) 6= ∅.

(c) CS (R, X) 6= ∅.

Proof. (a) ⇒ (b): Let K1 ⊂ K2 ⊂ · · · be an increasing sequence of Peano spaces in X such that

its union is the whole X. Fix a point x0 ∈ X. Without loss of generality, we may suppose that

x0 ∈ Kn, for all n ≥ 1. Since Peano spaces are arcwise connected [106, Theorem 31.2], for each

n ≥ 1 there is a Peano map fn : [n, n+ 1] → Kn, that starts and ends at x0, i.e., fn(n) = x0 =

fn(n + 1). Joining all these Peano maps with the constant path t ∈ (−∞, 1] 7→ x0 ∈ K1, one

obtains a CS map F : R → X.

(c) ⇒ (a): Let f be a map in CS (R, X). Therefore,

X = f (R) = f

(
⋃

n∈N
[−n, n]

)
=
⋃

n∈N
f ([−n, n]) .

Since (b) ⇒ (c) is obvious, the proof is done.

Example 4.3. (Spaces that are σ-Peano).

(a) Trivially, Euclidean spaces Rn and Peano spaces are σ-Peano. For 1 < p ≤ ∞, the Hilbert

cube

Cp :=
∏

n∈N

[
− 1

n
,
1

n

]
⊂ ℓp,

considered as a topological subspace of ℓp, is a compact metric space, so it is a Peano

space. For each natural k, let kCp be the Hilbert cube after applying an “k-homogeneous

dilation” to it. Therefore, the union of Hilbert cubes
⋃

k∈N kCp is a σ-Peano topological

vector space, when endowed with the topology inherited from ℓp.
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(b) Let X be a separable topological vector space and X ′ be its topological dual endowed

with the weak∗-topology. If X ′ is covered by an increasing sequence of (weak∗-)compact

subsets, then it is σ-Peano. Indeed, when the topological dual is endowed with the weak∗-

topology, its weak∗-compact subsets are metrizable (see, for instance, [100, Theorem 3.16]).

Therefore, it will be a σ-Peano space. Clearly, this holds on the topological dual (endowed

with weak∗-topology) of separable normed spaces.

Recall that an F-space is a topological vector space with complete translation-invariant metric

which provides its topology.

Example 4.4. (Spaces that are not σ-Peano).

(a) Every σ-Peano space is separable. Indeed, continuity preserves separability. In particular,

ℓ∞ is not σ-Peano.

(b) No infinite dimensional F-space is σ-compact (i.e., a countable union of compact spaces),

and, therefore, is not σ-Peano. This is a consequence of the Baire category theorem com-

bined with the fact that on infinite dimensional topological vector spaces, compact sets have

empty interior. In particular, no infinite dimensional Banach space is σ-Peano.

Remark 4.5. If X is a σ-Peano space, then card C (R, X) ≤ c. The argument is similar to

Lemma 3.9: indeed, this is consequence of card X ≤ c (as an image of the real line), in tandem

with the fact that the separability of R implies that each map of C (R, X) is uniquely determined

the sequence of its rational images, which defines an injective map C (R, X) →֒ XN and, therefore,

card C (R, X) ≤ card XN ≤ c.

Now we state and prove the main result of this section, which provides maximal lineability

of Peano curves on arbitrary topological vector spaces that are also σ-Peano spaces. As in [26],

we work with some particular Peano maps, namely, with those continuous surjections assuming

each value on an unbounded set.

It is convenient to recall a well-known fact from set theory: a family {Aλ}λ∈Λ of infinite

subsets of N is called almost disjoint if Aλ ∩Aλ′ is finite whenever λ 6= λ′. The usual procedure

to generate such a family is the following (see, e.g., [3]): denote by {qn}n∈N an enumeration of

the rational numbers. For every irrational α, we choose a subsequence {qnk
}k∈N of {qn}n∈N such

that limk→+∞ qnk
= α and define Aα := {nk}k∈N. By construction, we obtain that {Aα}α∈R\Q is

an almost disjoint uncountable family of subsets of N.

Theorem 4.6. Let X be a σ-Peano topological vector space. Then CS∞ (Rm,X ) is maximal

lineable in C (Rm,X ).

Proof. It is sufficient to prove the result for m = 1. Take g : N0 → N× N a bijection, and set

Ik,n :=
[
g−1(k, n), g−1(k, n) + 1

]
,

for all k, n ∈ N, thus {Ik,n}k,n∈N is a family of compact intervals of [0,+∞) such that
⋃

k,n∈N Ik,n =

[0,+∞), the intervals Ik,n having pairwise disjoint interiors, and
⋃

k∈N Ik,n is unbounded for every
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n. Proceeding as in the construction presented in Proposition 4.2, for each n, we can build a CS

map fn : R → X with the following properties:

• fn
(⋃

k∈N Ik,n
)
= X ;

• for each k ∈ N, on the interval Ik,n , fn starts and ends at the origin 0X ∈ X and covers

the k-th Peano subset of X ;

• fn ≡ 0 on
⋃

k∈N Ik,m, for all m 6= n.

Notice that each fn ∈ CS∞ (R,X ), since
⋃

k∈N Ik,n is unbounded.

Now let {Jλ}λ∈Λ be an almost disjoint family with cardinality c consisting of infinite subsets

of N. Define, for each λ ∈ Λ,

Fλ :=
∑

n∈Jλ

fn : R → X .

The pairwise disjointness of the interior of the intervals Ik,n (together with the above properties

of fn) guarantees that Fλ is well-defined, as well as continuous. We assert that the set

{Fλ}λ∈Λ

provides the desired maximal lineability. The crucial point is the following argument: let

Fλ1 , . . . , FλN
be distinct and α1, . . . , αN ∈ R, with αN 6= 0. Since JλN

\
(
∪N−1
i=1 Jλi

)
is infinite, we

may fix n0 ∈ JλN
\
(
∪N−1
i=1 Jλi

)
. Notice that

Fλ1 = · · · = FλN−1
≡ 0 and FλN

= fn0 on
⋃

k∈N
Ik,n0 .

Consequently,
N∑

k=1

αk · Fλk
= αN · fn0 on

⋃

k∈N
Ik,n0 .

Then F :=
∑N

k=1 αk ·Fλk
is an element of CS∞ (R,X ), because the image of R under F contains

αN · fn0(
⋃

k∈N Ik,n0) = αNX = X and each vector of X is the image by fn0 of an unbounded set.

Hence, one may easily prove that the set {Fλ}λ∈Λ has c-many linearly independent elements, and

each non-zero element of its linear span also belongs to CS∞ (R,X ). The maximal lineability

follows from Remark 4.5.

Observe that this result recovers Theorem 3.10 and the second part of Theorem 3.13. More-

over, together with Example 4.3, item (b), provides,

Corollary 4.7. Let N be a separable normed space and N ′ be its topological dual endowed with

the weak∗-topology. Then CS∞ (Rm,N ′) is maximal lineable.

Notice that this result holds in a more general framework: if X is a separable topological

vector space and its topological dual X ′ (endowed with the weak∗-topology) is covered by an

increasing sequence of (weak∗-)compact subsets, then CS∞ (Rm,X ′) is maximal lineable.
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4.3 Peano curves on sequence spaces

Throughout this section we shall deal with the space of real sequences RN and some of its

variants. Recall that RN is an F-space under the metric

d ((xn)n , (yn)n) :=
∑

n∈N

1

2n
· |xn − yn|
1 + |xn − yn|

,

and also this metric provides the product topology on RN (see [92, p.175]). From Example 4.4,

it is clear that RN is not a σ-Peano space.

Looking for infinite dimensional “smaller” subspaces of RN that could be σ-Peano, we easily

find the following example.

Example 4.8. The space c00 of eventually null sequences (with its natural topology induced by

the sup norm) is a σ-Peano space. Indeed, In := [−n, n]n × {0}N ⊂ c00 defines a increasing

sequence of Peano spaces in c00, whose union results in the entire space.

Therefore, Theorem 4.6 immediately gives the following:

Proposition 4.9. The set CS∞ (Rm, c00) is maximal lineable.

It possible to provide a more “constructive” proof of the previous result, by just making some

adjustments to an argument provided in [4]. The proof is presented below and will be used later

in order to obtain algebrability results.

2nd proof of Proposition 4.9. Let R+ := (0,+∞) and ℓ+∞ := (R+)
N ∩ ℓ∞. For r = (rn)n∈N ∈ ℓ+∞,

let us define Φr : R
N → RN by

Φr

(
(tn)n∈N

)
:= (φrn(tn))n∈N ,

where φr(t) := ert − e−rt for each r ∈ R+. Observe that each φr is a homeomorphism from R to

R and, consequently, Φr is a bijection. Notice that the restriction Φr : ℓ∞ → ℓ∞ is well defined

and surjective because, for (tn)n ∈ ℓ∞, one has

|φrn(tn)| =
∣∣erntn − e−rntn

∣∣ ≤ ern|tn| ≤ eC (n = 1, . . . ),

for some positive constant C. Moreover, the map Φr : ℓ∞ → ℓ∞ is continuous (when ℓ∞ is

endowed with its natural topology). Indeed, fix s ∈ R and let t ∈ [s − 1, s + 1]. By the mean

value theorem, there exists ζ = ζ(t, s, n) ∈ [s− 1, s+ 1] such that

|φrn(t)− φrn(s)| =
∣∣φ′

rn(ζ)
∣∣ · |t− s| .

But since r ∈ ℓ+∞,

|φ′
rn(u)| = rn

(
ernu − e−rnu

)
≤ rne

rn|u| ≤ ‖r‖∞e‖r‖∞|u|,
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for all real numbers u. Thus,

|φrn(t)− φrn(s)| ≤ ‖r‖∞e‖r‖∞(1+|s|) · |t− s| .

If now we fix s = (sn)n∈N ∈ ℓ∞ and consider t = (tn)n∈N ∈ ℓ∞ with ‖t− s‖∞ ≤ 1 then we get

|φr(t)− φr(s)| ≤ ‖r‖∞e‖r‖∞(1+‖s‖∞) · ‖t− s‖∞,

which yields the desired continuity. Since φr(0) = 0 for all r ∈ R+, we may restrict again to

Φr : c00 → c00, being a continuous mapping as well. Then, for a fixed map F ∈ CS∞ (R, c00), it

is plain that the set

{Φr ◦ F}r∈ℓ+∞
only contains functions in CS∞ (R, c00). Working on each coordinate and using the properties of

the maps φr as in [4], this family provides the desired maximal lineability.

The following result extends Theorem 3.17 to the framework of sequence spaces.

Proposition 4.10. The set CS∞ (Rm, c00 (C)) is maximal strongly algebrable in C (Rm, c00 (C)).

Proof. It is sufficient to deal with the case m = 1. The argument combines the previous con-

structive proof and the ideas of Theorem 3.17: let A := (0,+∞) \ N, and let ϕs : C → C stand

for an entire function of order s > 0 such that ϕs(0) = 0. For each r = (rn)n ∈ AN, the map

Φr := (ϕrn)n∈N : c00 (C) → c00 (C)

is well-defined, continuous and surjective. Therefore, for a fixed map

F ∈ CS∞ (R, c00 (C)) ,

the set {Φr ◦ F}r∈AN generates a free algebra, which provides the strong maximal algebrability.

From Example 4.4, item (a), we know that ℓ∞ is not σ-Peano. On the other hand, if we

consider the product topology inherited from RN, it is obvious that it becomes σ-Peano. In

fact, ℓ∞ =
⋃

n[−n, n]N. Consequently, Theorem 4.6 provides the maximal lineability of the set

CS∞ (Rm, ℓ∞) in C (Rm, ℓ∞).

Notice that, as we did earlier when we dealt with c00, one could also present a constructive

proof of this lineability result: for a fixed F ∈ CS∞ (R, ℓ∞) the set

{Φr|ℓ∞ ◦ F}r∈ℓ+∞

provides the desired maximal lineability. With appropriate adaptations, a similar argument as

the one employed in the proof of the algebrability of CS (Rm, c00 (C)) will prove that the set

CS (Rm, ℓ∞ (C)) is maximal strongly algebrable in C (Rm, ℓ∞ (C)), when ℓ∞ is endowed with the

product topology inherited from RN.
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4.4 Peano curves on function spaces

Let Λ be an infinite index set. Recall that the space RΛ of real functions f : Λ → R is a

complete metric space when endowed with the metric given by

d (f, g) := sup
λ∈Λ

min {1, |f(λ)− g(λ)|} ,

which provides the uniform topology on RΛ, strictly finer that the product topology (see [92,

p. 124] for more details). Note that RΛ is not σ-compact and, thus, cannot be σ-Peano. Indeed,

suppose that RΛ =
⋃

n∈NKn. We may regard N as a subset of Λ, and consider the standard

n-projection πn : RΛ → R, which is continuous and, so there is xn ∈ R \ πn(Kn). However, the

function f : Λ → R defined by f(n) = xn, for n ∈ N, and f(λ) = 0, if λ /∈ N, does not belong to
⋃

nKn = RΛ.

Let Λ,Γ be infinite index sets. Clearly, if cardΛ ≥ card Γ, then S(RΛ,RΓ) 6= ∅, i.e., the set of

surjective maps from from RΛ onto RΓ is non-empty. In this situation, Γ may be seen as a subset

of Λ. Keeping the notation of the proof of Proposition 4.9, for each r = (rγ)γ∈Γ ∈ (0, 1]Γ, define

Φr : R
Λ → RΓ by Φr(f)(γ) := φrγ (f(γ)). Since the set of coordinate maps {φγ := πγ ◦ Φr}γ∈Γ is

equicontinuous, Φr is continuous. Working with the set
{
Φr : R

Λ → RΓ
}
r∈(0,1]Γ and with entire

maps as in Section 2, we obtain

Proposition 4.11. Let cardΛ ≥ cardΓ. Then

(a) CS
(
RΛ,RΓ

)
is 2cardΓ-lineable.

(b) CS
(
CΛ,CΓ

)
is 2cardΓ-algebrable.
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Appendix A

The Lp spaces with mixed norm and an

interpolative Hölder’s inequality

This appendix is devoted for an approach that represents fundamental role to obtain our

results concerning the first part of this thesis (the Hardy–Littlewood multilinear type inequal-

ities): Hölder’s interpolative inequality. Since there exists a lack of references on this subject,

we verse a little bit about the mixed norm spaces introduced in [21] (see also [67]).

A.1 Lp spaces with mixed norm

From now on, (Xi,Σi, µi) , i = 1, . . . ,m shall be m given σ-finite measurable spaces,

(X,Σ, µ) :=

(
m∏

i=1

Xi,
m∏

i=1

Σi,
m∏

i=1

µi

)

shall be the product space endowed with the product measure and p := (p1, . . . , pm) ∈ [1,∞]m.

The space Lp(X) consists in all (equivalence classes of) measurable functions f : X → K with

the following property: for any (x1, . . . , xm−1) ∈ X1×· · ·×Xm−1 the function f (x1, . . . , xm−1, ·)
belongs to Lpm(Xm), that is,

‖f (x1, . . . , xm−1, ·)‖pm <∞,

and ‖f‖pm results in a measurable function defined in
(∏m−1

i=1 Xi,
∏m−1

i=1 Σi,
∏m−1

i=1 µi

)
; succes-

sively, for 1 < k < m and for any (x1, . . . , xm−k) ∈ X1 × · · · ×Xm−k, the measurable function

‖f (x1, . . . , xm−k, ·)‖pm−k+2,...,pm
: Xm−k+1 → K

belongs to Lpm−k+1
(Xm−k+1), i.e.,

‖f (x1, . . . , xm−k, · · · )‖pm−k+1,...,pm
:=
∥∥∥‖f (x1, . . . , xm−k, · · · )‖pm−k+2,...,pm

∥∥∥
pm−k+1

<∞,
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and ‖f‖pm−k+1,...,pm
results in a measurable function defined in

(∏k
i=1Xi,

∏k
i=1 Σi,

∏k
i=1 µi

)
; fi-

nally for k = m the measurable function ‖f‖p2,...,pm : X1 → K belongs to Lp1(X1), which means

that

‖f‖p = ‖f‖p1,...,pm :=
∥∥∥‖f‖p2,...,pm

∥∥∥
pm−k+1

<∞.

For instance, when all pi < ∞ a measurable function f : X → K it is an element of Lp(X) if,

and only if,

‖f‖p :=



∫

X1

(
. . .

(∫

Xm

|f |pmdµm

) pm−1
pm

. . .

) p1
p2

dµ1




1
p1

<∞.

Successive applications of Minkowski’s inequality will allow us to conclude that ‖·‖p defines

a norm on Lp(X). Indeed, let f, g ∈ Lp(X). Applying Minkowski’s inequality with the pm-norm

of f +g, f and g (evaluated in a fixed vector (x1, . . . , xm−1) ∈ X1×· · ·×Xm−1 that we will omit

for the sake of clarity), we get

‖f + g‖pm ≤ ‖f‖pm + ‖g‖pm .

By hypothesis, ‖f‖pm+‖g‖pm , ‖f‖pm , ‖g‖pm are measurable functions on Lpm−1(Xm−1), thus the

monotonicity and the Minkowski inequality now with the pm−1-norm lead us to

‖f + g‖pm−1,pm
:=
∥∥∥‖f + g‖pm

∥∥∥
pm−1

, monotonicity

≤
∥∥∥‖f‖pm + ‖g‖pm

∥∥∥
pm−1

, Minkowski

≤
∥∥∥‖f‖pm

∥∥∥
pm−1

+
∥∥∥‖g‖pm

∥∥∥
pm−1

=: ‖f‖pm−1,pm
+ ‖g‖pm−1,pm

.

Thereby, making use of Minkowski’s inequality successively we conclude that

‖f + g‖p ≤ ‖f‖p + ‖g‖p ,

and, therefore, that Lp(X) is a normed vector space.

A. Benedek and R. Panzone, on [21], established several properties and deep results concern-

ing the Lp spaces, among others, the correspondent of the Monotone and Lebesgue’s dominated

convergence classical theorems, and, as expected, they also proved that Lp(X) is a Banach space

(see [21, Theorem 1.b]).

We are interested on a version of Hölder’s inequality for these mixed norm spaces, which

implies an interpolative inequality which in turn has a crucial role in our results concerning

the Hardy–Littlewood multilinear inequality. First, let us recall that given two functions f, g ∈
Lp(X), the product function fg : X → K it is defined by the pointwise product, that is,

fg(x1, . . . , xm) := f(x1, . . . , xm) · g(x1, . . . , xm), (A.1)
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for each (x1, . . . , xm) ∈ X = X1 × · · · ×Xm. Also let us recall the classical one variable version

of the Hölder inequality.

Theorem A.1 (Classical Hölder’s inequality 1). Let (X,Σ, µ) be a measure space and let p, q ∈
[1,∞] with 1/p + 1/q = 1 (Hölder’s conjugates exponents). Then, for all measurable (real or

complex valued) functions f ∈ Lp(X) and g ∈ Lq(X), we have that fg ∈ L1(X). Moreover,

∫

X

|fg|dµ =: ‖fg‖1 ≤ ‖f‖p · ‖g‖q. (A.2)

A more general version is also very useful: let r ∈ [1,∞), p1, . . . , pN ∈ [1,∞] such that
1
r
= 1

p1
+ · · ·+ 1

pN
. If fi ∈ Lpi(X), i = 1, . . . , N , then f1 · · · fN ∈ Lr(X) and, moreover,

‖f1 · · · fN‖r ≤ ‖f1‖p1 · ‖fN‖pN . (A.3)

By making use of induction on N , this is a straightforward consequence of the classical version.

First we prove the result for N = 2: since 1 = r/p1 + r/p2, we have

∫

X

|f1f2|rdµ =: ‖|f1f2|r‖1 ≤ ‖f r
1‖p1/r · ‖f r

2‖p2/r = ‖f1‖rp1 · ‖f2‖rp2 ,

and from this we conclude that ‖f1f2‖r ≤ ‖f1‖p1 · ‖f2‖p2 . Now let us suppose that the result

is true for N − 1. If pN = ∞, then then result follows by |fN | ≤ ‖fN‖∞ and the induction

hypothesis:

‖f1 · · · fN‖r ≤ ‖f1 · · · fN−1‖r · ‖fN‖∞ ≤ ‖f1‖p1 · · · ‖fN−1‖pN−1
· ‖fN‖pN .

If pN < ∞, then note that p := pN/(pN − r) and q := pN/r are Hölder’s conjugates exponents

in (1,∞), thus applying Hölder’s inequality with the exponents 1/r = 1/rp+1/rq and then the

induction hypothesis with 1
rp

=
(

1
p1

+ · · ·+ 1
pN−1

)
, we conclude the result (note that rq = pN)

‖(f1 · · · fN−1) · fN‖r ≤ ‖f1 · · · fN−1‖rp · ‖fN‖rq ≤ ‖f1‖p1 · · · ‖fN−1‖pN−1
· ‖fN‖pN .

The corresponding result on multiple variables with mixed norm is the following.

Theorem A.2 (General mixed Hölder’s inequality). Let r ∈ [1,∞)m and ,p(1), . . . ,p(N) ∈
[1,∞]m be such that

1

rj
=

1

pj(1)
+ · · ·+ 1

pj(N)
, for j = 1, . . . ,m.

If fk ∈ Lp(k)(X) for k = 1, . . . , N , then f1f2 · · · fN ∈ Lr(X) and, moreover,

‖f1 · · · fN‖r ≤ ‖f1‖p(1) · · · ‖fN‖p(N) . (A.4)

1Leonard James Rogers (1862-1933) and Otto Hölder (1859-1937) discovered, independently, the famous
inequality that (nowadays) holds Hölder’s name (1889, [79]), they could have never imagined that, at that
precise moment, they had just started a “revolution” in Functional Analysis.
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Proof. The result follows by iterating each single-variable case and making use of the general

version of Hölder’s inequality (A.3). Indeed, since each measurable map fk (evaluated in a fixed

vector (x1, . . . , xm−1) ∈ X1 × · · · × Xm−1 that we will omit) belongs to Lpm(k)(Xm) and since

that 1
rm

= 1
pm(1)

+ · · ·+ 1
pm(N)

, by the inequality (A.3) we get that f1 · · · fN ∈ Lrm(Xm) and

‖f1 · · · fN‖rm ≤ ‖f1‖pm(1) · · · ‖fN‖pm(N).

Now since ‖f1‖pm(1), . . . , ‖fN‖pm(N) are measurable functions in Lpm−1(k)(Xm−1), the monotonic-

ity of the rm−1-norm and general Hölder’s inequality (A.3) with 1
rm−1

= 1
pm−1(1)

+ · · · + 1
pm−1(N)

lead us to

‖f1 · · · fN‖rm−1,rm
:=
∥∥‖f1 · · · fN‖rm

∥∥
rm−1

, monotonicity

≤
∥∥‖f1‖pm(1) · · · ‖fN‖pm(N)

∥∥
rm−1

, Hölder

≤
∥∥‖f1‖pm(1)

∥∥
pm−1(1)

· · ·
∥∥‖fN‖pm(1)

∥∥
pm−1(N)

=: ‖f1‖pm−1(1),pm(1) · · · ‖fN‖pm−1(N),pm(N) .

Repeating this argument successively on each variable xm−2, . . . , x1, we conclude the result.

The next interpolation result it is a general version for Lp spaces of the interpolative approach

we used for sequences spaces in the papers [5, 6].

Corollary A.3 (Mixed interpolative Hölder’s inequality). Let r,p(1), . . . ,p(N) ∈ [1,∞]m and

θ1, . . . , θN ∈ [0, 1] be such that θ1 + · · ·+ θN = 1 and

1

rj
=

N∑

k=1

θk
pj(k)

=
θ1
pj(1)

+ · · ·+ θN
pj(N)

, for j = 1, . . . ,m.

If f ∈ Lp(k)(X) for k = 1, . . . , N , then f ∈ Lr(X) and, moreover,

‖f‖r ≤ ‖f‖θ1p(1) · · · ‖f‖
θN
p(N) .

Proof. This follow straightforward from the previous result combined with the following fact: for

a real positive number θ ∈ (0, 1], p ∈ [1,∞]m and p/θ := (p1/θ, . . . , pm/θ), it is straightforward

verify that ∥∥|f |θ
∥∥
p/θ

= ‖f‖θp .

Since we have that, for j = 1, . . . ,m,

1

rj
=

1

pj(1)/θ1
+ · · ·+ 1

pj(N)/θN
,

the inequality (A.4) will lead us to conclude the result

‖f‖r =
∥∥|f |θ1 · · · |f |θN

∥∥
r
≤
∥∥|f |θ1

∥∥
p(1)/θ1

· · ·
∥∥|f |θN

∥∥
p(N)/θN

= ‖f‖θ1p(1) · · · ‖f‖
θN
p(N) .
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A.2 Sequences spaces with mixed norm

We shall now work with mixed normed sequence spaces, once it is the case we are interested

in. We may define these spaces by considering on N the power set P(N) as being the sigma

algebra and the counting measure µc(A) defined as the cardinality of each subset A of N. In this

fashion, (N,P(N), µc) becomes a measurable space and, for each p ∈ [1,∞], ℓp = Lp(N) gathers

all sequences (an) ∈ KN with finite p-norm.

Now let us consider p ∈ [1,∞]m. Using the definitions of mixed norm Lp spaces of the

preceding section, the mixed norm sequence space

ℓp := Lp (N
m)

gathers all multi-index scalars valued matrices a := (ai)i∈M(m,N) with finite p-norm (recall the

multi-index notation established: M(m,N) := Nm). For instance, when p ∈ [1,∞)m a scalar

matrix a belongs to ℓp if, and only if,

‖a‖p :=




∞∑

i1=1




∞∑

i2=1


. . .




∞∑

im−1=1

( ∞∑

im=1

|ai|pm
) pm−1

pm




pm−2
pm−1

. . .




p2
p3




p1
p2




1
p1

<∞.

Therewith, the mixed norm sequence space

ℓp(Z) := ℓp1 (ℓp2 (. . . (ℓpm(Z)) . . . )) ,

with Z a Banach space, introduced on Section 1.2, coincides with the class built previously since,

for Z = K,

ℓp(K) = Lp(N
m) =: ℓp.

We will close this appendix with the version for mixed norm sequences spaces of the mixed

Hölder inequality and its interpolation consequence (Theorem A.2 and Corollary A.3, respec-

tively). Before that, note that the product of two multi-indexes scalar matrices a := (ai)i∈M(m,n)

and b := (bi)i∈M(m,n) (recall that M(m,n) := {1, 2, . . . , n}m) defined in (A.1) turns in pointwise

product, that is,

ab := (aibi)i∈M(m,n) .

Therefore, the versions of Theorem A.2 and Corollary A.3 for mixed ℓp spaces turns in

Theorem A.4 (Hölder’s inequality for mixed ℓp spaces). Let m,n,N be positive integers, r ∈
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[1,∞)m and ,p(1), . . . ,p(N) ∈ [1,∞]m be such that

1

rj
=

1

pj(1)
+ · · ·+ 1

pj(N)
, for j = 1, . . . ,m,

and also let a(k) := (a(k)i)i∈M(m,n) , k = 1, . . . , N be scalar matrices. Then,

‖a1 · · · aN‖r ≤ ‖a1‖p(1) · · · ‖aN‖p(N) .

In particular, if each p(k) ∈ [1,∞), then we have




n∑

i1=1


. . .

(
n∑

im=1

|a(1)i · · · a(N)i|rm
) rm−1

rm

. . .




r1
r2




1
r1

≤
N∏

k=1







n∑

i1=1


. . .

(
n∑

im=1

|a(k)i|pm(k)

) pm−1(k)

pm(k)

. . .




p1(k)
p2(k)




1
p1(k)


 .

Corollary A.5 (Hölder’s interpolative inequality for mixed ℓp spaces). Let m,n,N be positive

integers, r,p(1), . . . ,p(N) ∈ [1,∞]m and θ1, . . . , θN ∈ [0, 1] be such that θ1 + · · ·+ θN = 1 and

1

rj
=

N∑

k=1

θk
pj(k)

=
θ1
pj(1)

+ · · ·+ θN
pj(N)

, for j = 1, . . . ,m.

Then, for all scalar matrix a := (ai)i∈M(m,n), we have

‖a‖r ≤ ‖a‖θ1p(1) · · · ‖a‖
θN
p(N) .

In particular, if each p(k) ∈ [1,∞), the previous inequality means that




n∑

i1=1


. . .

(
n∑

im=1

|ai|rm
) rm−1

rm

. . .




r1
r2




1
r1

≤
N∏

k=1







n∑

i1=1


. . .

(
n∑

im=1

|ai|pm(k)

) pm−1(k)

pm(k)

. . .




p1(k)
p2(k)




1
p1(k)




θk

.

Under the point of view of interpolation theory it is not a complicated result but, just in

march of 2014, the authors of [6] known the article [21] which bring more acessible techniques

to prove the previous results. But for the sake of completeness of this article, we would also

like to present the following proof of the previous result, which is based on interpolation theory
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presented in [24].

2nd proof (using interpolative approach). We just follow the lines of [5, Proposition 2.1]. Pro-

ceeding by induction on N and using that, for any Banach space Z and θ ∈ [0, 1],

ℓr(Z) = [ℓp(Z), ℓq(Z)]θ ,

with 1
ri
= θ

pi
+ 1−θ

qi
, for i = 1, . . . ,m (see, for instance, [24, Theorems 5.1.1 and 5.1.2]). If

1

qi
=

θ1
qi(1)

+ · · ·+ θN
qi(N)

,

with
∑N

k=1 θk = 1 and each θk ∈ [0, 1], then we also have

1

qi
=

θ1
qi(1)

+
1− θ1
pi

,

setting
1

pi
=

α2

qi(2)
+ · · ·+ αN

qi(N)
, and αj =

θj
1− θ1

,

for i = 1, . . . ,m and j = 2, . . . , N . So αj ∈ [0, 1] and
∑N

j=2 αj = 1. Therefore, by the induction

hypothesis, we conclude that

‖a‖q ≤ ‖a‖θ1q(1) · ‖a‖
1−θ1
p ≤ ‖a‖θ1q(1) ·

[
N∏

j=2

‖a‖αj

q(j)

]1−θ1

=
N∏

k=1

‖a‖θkq(k) .
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Appendix B

Kahane–Salem–Zygmund’s inequality

The essence of the Kahane–Salem–Zygmund inequalities, as we describe below, probably

appeared for the first time in [82], but our approach follows the lines of Boas’ paper [31]. Para-

phrasing Boas, the Kahane–Salem–Zygmund inequalities use probabilistic methods to construct

a homogeneous polynomial (or multilinear operator) with a relatively small supremum norm but

relatively large majorant function. Both the multilinear and polynomial versions are needed for

our goals.

In this appendix we present and prove Lemma 1.14. Recall that ℓnp stands for the complex

space Cn with the p-norm, p ∈ [1,∞] (the same argument with the same constants will provide

the result for real scalars). We will need following results.

Chebyshev–Markov’s Inequallity. Let (Ω,Σ, µ) be a measure space. For every measurable

numerical functions f, g on Ω, with g nonnegative and nondecreasing on the range of f , and

every positive real number α,

µ ([f ≥ α]) ≤ 1

g(α)

∫

Ω

g ◦ f dµ

holds. In particular,

µ ([|f | ≥ α]) ≤ 1

αp

∫

Ω

|f |p dµ,

holds for every real p > 0.

Proof. (see [18, Lemma 20.1]). LetA = {x ∈ Ω ; f(x) ≥ α} andB = {x ∈ Ω ; (g ◦ f) (x) ≥ g(α)}.
Since g is nondecreasing on the range of f , A ⊂ B and, consequently, µ(A) ≤ µ(B). Thus, the

result is concluded using monotonicity of integration with respect to µ and the following inequal-

ity:

∫

Ω

g ◦ f dµ ≥
∫

[g◦f≥α]

g ◦ f dµ ≥
∫

[g◦f≥α]

g(α) dµ = g(α)

∫

[g◦f≥α]

dµ = g(α)µ(B) ≥ g(α)µ(A).

The final assertion is obtained defining the map g(t)
def
= |t|p.

Lemma B.1 (Covering argument). Let r be a positive real number. Then the unit open ball B

of ℓnp can be covered by a collection of open ℓnp balls of radius r, with the numbers of balls in the
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collection not exceeding (1 + 2r−1)
2n
, and the centers of the balls lying in the closed unit ball B

of ℓnp .

Proof. Place arbitrarily in the open ball B
(
1 + r

2

) def
= {z ∈ Cn ; ‖z‖p < 1 + r/2} a collection B

of disjoint open ℓnp balls Bk
def
= Bp

n (xk, r/2) of radius r/2 (obviously the centers xk lies in the

closed unit ball B). The (Euclidean) volume of a ℓnp ball of radius r > 0 is

V p
2n(R) =

(2R · Γ (1 + 1/p))2n

Γ (1 + 2n/p)
.

Comparing the volumes of B
(
1 + r

2

)
and Bk,

V p
2n(1 + r/2)

V p
2n(r/2)

=

(
1 + r/2

r/2

)2n

=
(
1 + 2r−1

)2n
,

we conclude that the number of disjoint balls cannot exceed (1 + 2r−1)
2n
. If the collection B

if made maximal, then every point of B must lies within r/2 of some point of one ball in B
(otherwise we would get some ball of radious r/2 in B

(
1 + r

2

)
, being not in B). So the balls

B′
k

def
= Bp

n (xk, r) , k = 1, . . . , (1 + 2r−1)
2n

must cover B.

H. P. Boas presented in [31, Theorem 4] the following

Multilinear Kahane-Salem-Zygmund’s inequality (by Boas). Let p ∈ [1, p], and integers

n, d ≥ 1. Then exists a symmetric multi-linear map F :
(
ℓnp
)d → C of the form

F (z1, . . . , zd) =
n∑

j1,...,jd=1

±z1j1 · · · zdjd ,

such that the supremum of |F (z1, . . . , zd)| when every n-vector zk ∈ ℓnp lies in the unit ball of ℓnp

is at most
√

32d log (6d) ·




n

1
2 (d!)(1−

1
p) , if 1 ≤ p < 2 ;

n
1
2
+( 1

2
− 1

p)d , if 2 ≤ p ≤ ∞.

When all the vectors zk are equal, the theorem provides a special d-homogeneous polynomial.

Observe that the sum that composes F has nd monomials of degree d, and some of these are

repeated. Indeed, if αk denotes the numbers of times the integer k appears in the d-tuple

(j1, . . . , jd), then the number of d-tuples that are permutations of the list is the multinomial

coefficient
(
d
α

)
, with α = (α1, . . . , αn). Consequently, we have the following consequence of the

previous result.

Corollary B.2. Let p ∈ [1, p], and integers n, d ≥ 1. Then there exists a homogeneous polyno-

mial of degree d in the variable z in Cn of the form

∑

|α|=d

±
(
d

α

)
zα
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such that the supremum of the modulus of the polynomial when z lies in the unit ball of ℓnp is no

greater than the same bound of the previous theorem.

The following is precisely Lemma 1.14.

Multilinear Kahane-Salem-Zygmund’s inequality. Let d, n ≥ 1, p1, . . . , pd ∈ [1,+∞]d and,

for p ≥ 1, define

α(p)
def

=





1

2
− 1

p
, if p ≥ 2;

0 , otherwise.

Then there exists a d-linear map A : ℓnp1 × · · · × ℓnpd → K of the form

A (z1, . . . , zd) =
n∑

j1,...,jd=1

±z1j1 · · · zdjd ,

such that

‖A‖ ≤ Cd · n
1
2
+α(p1)+···+α(pd).

where Cd = (d!)1−
1

m(p)
√

32d log(6d), and p = max{p1, . . . , pk}.

Proof. Let’s stablish the following notation: z denotes a d-tuple z1, . . . , zd of n-vectors, j denotes

a d-tuple j1, . . . , jd of integers between 1 and n, sums and products run over all such d-tuples of

integers, a prime on a sums or product means that it is restricted to d-tuples of integers that are

arranged in non-decreasing order, and j ∼ k indicates that the d-tuples j and k are permutations

of each other. The symbol zj is shorthand for the monomial z1j1 · · · zdjd . Thus, fixed a multi-linear

map like in the statement, it can be written in the form

A(z) =
′∑

k

(
±
∑

j∼k

zj

)
,

and in this expression, all of the plus and minus signs are independent of each other.

The proof consists of a probabilistic estimate and a covering argument.

To begin the probabilistic argument, fix a point z ∈
(
Cd
)
such each zk lies in the ℓnp unit ball

Bn
p . For each d-tuple k in non-decreasing order, choose a different Rademacher function rk, and

consider the random sum

A (t, z) =
′∑

k

(
rk(t)

∑

j∼k

zj

)
,

where t lies in the interval I
def
= [0, 1]. The immediate goal is to make an upper estimate on the

probability that this sum has large modulus. Let λ be an arbitrary positive number (after we

will specify a value for λ in terms of n, d and p). Invoking the independence of the Rademacher

functions, we may compute the expectation (that is, the integral with respect to t) of the

exponential of the real part of λA (t, z), by computing the product over non-decreasing d-tuples
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k of the expectation of e(λrk(t)
∑

j∼k zj). More precisely:

Re [λA (t, z)] =
′∑

k

(
λrk(t)

∑

j∼k

Re zj

)
⇒ eRe[λA(t,z)] =

′∏

k

e(λrk(t)
∑

j∼k Re zj);

denoting αk = λ
∑

j∼k Re zj, using the independence and orthogonality properties of Rademacher

functions, and

∫

I

eβri(t) dt =

∫

I

(
+∞∑

m=1

βmrmi (t)

m!

)
dt =

+∞∑

m=1

β2m

(2m)!
= cosh (β)

we get

∫

I

eRe[λA(t,z)] dt =

∫

I

′∏

k

eαkrk(t) dt =
′∏

k

∫

I

eαkrk(t) dt =
′∏

k

cosh

(
λ
∑

j∼k

Re zj

)
.

In view of the inequality cosh x ≤ e
x2

2 (that follows by k! · 2k ≤ k! · (k + 1) · · · (2k) = (2k)! and

series comparison argument), we get a upper bound for the expectation of Re [λA (t, z)]:

∫

I

eRe[λA(t,z)] dt ≤
′∏

k

e
1
2(λ

∑
j∼k Re zj)

2

= e
1
2
λ2

∑
′

k(
∑

j∼k Re zj)
2

. (B.1)

Define p
def
= max{p1, . . . , pk}, m(t)

def
= min(t, 2) and M(t)

def
= min(t, 2), for a real positive t.

Hölder’s inequality assures

(
∑

j∼k

Re zj

)2

=

∣∣∣∣∣
∑

j∼k

Re zj

∣∣∣∣∣

2

≤
(
∑

j∼k

|Re zj|
)2

≤
(
∑

j∼k

|zj|
)2

Hölder

≤ (d!)2(1−
1

m(p)) ·
(
∑

j∼k

|zj|m(p)

) 2
m(p)

. (B.2)

The exponent 2/m(p) is equal to 1 when p ∈ [2,∞]. When p ∈ [1, 2], it is equal to 2/p and

belongs to [1, 2], so replacing it by 1 can only increase the right-hand side, since
∑

j∼k |zj|
p ≤ 1,

wich is obtained from the following argument: each n-vector zk lies in Bn
pk
, so

∑n
j=1

∣∣zkj
∣∣pk ≤ 1

and, using the fact that “r ≤ s⇒ ‖ · ‖ℓns ≤ ‖ · ‖ℓnr (p-norm is nondecreasing)”,

∑

j∼k

|zj|p =
∑

j=(j1,...,jd)∼k

∣∣z1j1 · · · zdjd
∣∣p ≤

n∑

j1,...,jd=1

∣∣z1j1 · · · zdjd
∣∣p =

d∏

k=1

(
n∑

jk=1

∣∣zkjk
∣∣p
)

=
(
‖z1‖ℓnp · · · ‖zd‖ℓnp

)p ≤
(
‖z1‖ℓnp1 · · · ‖zd‖ℓnpd

)p
≤ 1. (B.3)
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Inequalities (B.2) and (B.3), lead us to conclude, for both cases 1 ≤ p ≤ 2 and 2 ≤ p ≤ ∞, that

′∑

k

(
∑

j∼k

Re zj

)2

≤ (d!)2(1−
1

m(p)) ·
′∑

k

(
∑

j∼k

|zj|m(p)

) 2
m(p)

≤ (d!)2(1−
1

m(p)) ·
′∑

k

∑

j∼k

|zj|m(p)

= (d!)2(1−
1

m(p)) ·
n∑

j1,...,jd=1

∣∣z1j1 · · · zdjd
∣∣m(p)

= (d!)2(1−
1

m(p)) ·
(

n∑

j1=1

∣∣z1j1
∣∣m(p)

)
· · ·
(

n∑

jd=1

∣∣zdjd
∣∣m(p)

)

= (d!)2(1−
1

m(p)) ‖z1‖m(p)
ℓn
m(p)

· · · ‖zd‖m(p)
ℓn
m(p)

.

Using the following facts: m(pk) ≤ m(p) and
∣∣zkj
∣∣ ≤ ‖zk‖ℓnpk ≤ 1 ⇒

∣∣zkj
∣∣m(p) ≤

∣∣zkj
∣∣m(pk);

m(pk) ·M(pk)/2 = pk; and once more applying Hölder’s inequallity; we increase further the

bound:

‖zk‖m(p)
ℓn
m(p)

=
n∑

j=1

∣∣zkj
∣∣m(p) ≤

n∑

j=1

∣∣zkj
∣∣m(pk) ≤ n

1− 2
M(pk) ·

(
n∑

j=1

∣∣zkj
∣∣
m(pk)M(pk)

2

) 2
M(pk)

= n
1− 2

M(pk) ·
(

n∑

j=1

∣∣zkj
∣∣pk
) 2

M(pk)

= n
1− 2

M(pk) · ‖zk‖
2pk

M(pk)

ℓnpk
≤ n

1− 2
M(pk) . (B.4)

Therefore, (B.1) is bounded above by

∫

I

eλRe[A(t,z)] dt ≤ e
1
2
λ2

∑
′

k(
∑

j∼k Re zj)
2

≤ exp

[
1

2
λ2 (d!)2(1−

1
m(p)) · n2

∑d
k=1

(
1
2
− 1

M(pk)

)]
. (B.5)

Let R be an arbitrary positive real number (it will be specified a value for R in terms of

n, d and p). Using the previous upper bound and applying Chebyshev–Markov inequality with

g(t)
def
= et, we obtain a upper bound for the measure of the set A

def
= {t ∈ I ; Re [A (t, z)] ≥ R} =

{t ∈ I ; λRe [A (t, z)] ≥ λR}:

µ (A) ≤ 1

eλR

∫

I

eλRe[A(t,z)] dt ≤ exp

[
−Rλ+

1

2
λ2 (d!)2(1−

1
m(p)) · n2

∑d
k=1

(
1
2
− 1

M(pk)

)]
. (B.6)

An similar argument (symmetric reasoning) gives the same estimate for the measure of the points

t ∈ I that Re [A (t, z)] is less than −R, wich is the same set of points that (−λ) Re [A (t, z)] ≥ λR

(we may initiate the previous argument working with −λRe [A (t, z)] and obtain the inequal-

ity (B.5) with −λ). Since [|Re [A (t, z)]| ≥ R] = [Re [A (t, z)] ≥ R] ∪ [Re [A (t, z)] ≤ −R] , we
get that this set has measure at most 2 times the bound in (B.6). The same argument ap-

plies to the imaginary part of A(t, z). In view of the inequality (for complex numbers) |w| ≤
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√
2max {|Rew| , |Imw|}, |A (t, z)| ≥

√
2R implies |Re [A (t, z)]| ≥ R or |Im [A (t, z)]| ≥ R, thus

[
|A (t, z)| ≥

√
2R
]
⊂ [|Re [A (t, z)]| ≥ R] ∪ [|Im [A (t, z)]| ≥ R] .

Therefore, the probability (or measure, since µ(I) = 1) that |A (t, z)| exceeds
√
2R is at most

4 · exp
[
−Rλ+

1

2
λ2 (d!)2(1−

1
m(p)) · n2

∑d
k=1

(
1
2
− 1

M(pk)

)]
.

This probabilistic estimate holds for an arbitrary but fixed z. The second part of the proof

use the covering argument of the lemma initially presented, and a simple lipschitz estimate for

A (t, z). Suppose that z and w are points of (Cn)d such that all of the component n-vectors zk

and wk lie in Bn
p , and ‖zk − wk‖ ≤ ε for every k = 1, . . . , n. The multi-linearity of A implies

that

A (t, z1, . . . , zd) = A (t, z1 − w1, , z2, . . . , zd) + A (t, w1, z2 − w2, z3 . . . , zd) + · · ·
· · ·+ A (t, w1, . . . , wd−1, zd − wd) + A (t, w1, . . . , wd) .

Consequently, the boundedness of A guarantees

|A(t, z)− A(t, w)| ≤ ε · d · sup
z∈Bn

p1
×···×Bn

pd

|A (t, z)| .

Now let z ∈ Bn
p1
×· · ·×Bn

pd
be an arbitrary and fixed point. Taking r = 1/2d, the lemma assures

that each open ball Bn
pk

is covered by a collection of at most (1 + 4d)2n ball of radius 1/2d and

with centers lying on the in the closed unit ball Bn
pk
. Let W = {w} be the collection of points

w = (w1, . . . , wd) ∈ Bn
p1
× · · ·×Bn

pd
such that each component wk being the center of a ball from

the cover of the ball Bn
pk
, k = 1, . . . , d. Thus W do not exceed (1 + 4d)2nd points. Consequently,

each component n-vectors zk, must not exceed at most 1/2d of some wk
def
= wnk

and, therefore,

w = (w1, . . . , wd) ∈ Bn
p1
× · · · ×Bn

pd
, z, w fulfils the above lipschitz property and

|A(t, z)| ≤ |A(t, w)|+ |A(t, z)− A(t, w)| ≤ max
w∈W

|A(t, w)|+ 1

2
· sup
z∈Bn

p1
×···×Bn

pd

|A (t, z)| .

Since z is an arbitrary point, we get

sup
z∈Bn

p1
×···×Bn

pd

|A (t, z)| ≤ 2 ·max
w∈W

|A(t, w)| ,

which implies

[
sup

z∈Bn
p1

×···×Bn
pd

|A (t, z)| ≥ 2
√
2R

]
⊂
⋃

w∈W

[
|A (t, w)| ≥

√
2R
]
.

Hence, applying the preceding probabilistic estimate to each point of the finite collection W , we
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get that the measure (probability) of the set
[
supz∈Bn

p1
×···×Bn

pd

|A (t, z)| ≥ 2
√
2R
]
is at most

4 (1 + 4d)2nd · exp
[
−Rλ+

1

2
λ2 (d!)2(1−

1
m(p)) · n2

∑d
k=1

(
1
2
− 1

M(pk)

)]
.

Now taking the followings values for the parameters R and λ,

R
def
=

(
2 (d!)2(1−

1
m(p)) n

2
∑d

k=1

(
1
2
− 1

M(pk)

)
log
(
8 (1 + 4d)2nd

)) 1
2

,

λ
def
=

R

(d!)2(1−
1

m(p)) n
2
∑d

k=1

(
1
2
− 1

M(pk)

) ,

we conclude that, with these choices, the probability that the supremum of |A (t, ·)| over Bn
p1
×

· · ·×Bn
pd

exceeds 2
√
2R is at most 1/2 (this is achieved looking for values for R and λ such that

the previous probability is 1/2, i.e.,

exp

(
−Rλ+

β

2
λ2
)

=
1

2α
,

with α
def
= 4 (1 + 4d)2nd and β

def
= (d!)2(1−

1
m(p)) · n2

∑d
k=1

(
1
2
− 1

M(pk)

)
; this is equivalent to solves the

following equation with respect to λ

β

2
λ2 −Rλ+ log (2α) = 0

which provides, imposing the condition R2 − 2β log (2α) = 0, the unique solution λ = R/β, and

these are precisely the values presented previously). Therefore, we are sure that there exists a

particular value tp such that the supremum of |A (tp, ·)| over Bn
p1
× · · · ×Bn

pd
is no more than

2
√
2R =

(
16 (d!)2(1−

1
m(p)) n

2
∑d

k=1

(
1
2
− 1

M(pk)

)
log
(
8 (1 + 4d)2nd

)) 1
2

.

The values of the Rademacher functions at this particular value tp produce the pattern of

plus and minus signs indicated in the statement of theorem. Moreover, 8 (1 + 4d)2nd < (6d)2nd

when n and d are both at least 2, so the previous upper bound is even smaller than the bound

stated.
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[11] R. M. Aron, D. Pérez-Garćıa, and J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier

series, Studia Math. 175 (2006), no. 1, 83–90.
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ical vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 71–130.

[28] O. Blasco, G. Botelho, D. Pellegrino, and P. Rueda, Summability of multilinear mappings: Littlewood, Orlicz

and beyond, Monatsh. Math. 163 (2011), no. 2, 131–147.

[29] R. C Blei, Analysis in integer and fractional dimensions, Cambridge University Press, 2001.

[30] R. P. Boas Jr., Entire functions, Academic Press, Inc., 1954.

[31] H. P. Boas, Majorant series, J. Korean Math. Soc. 37 (2000), no. 2, 321–337. Several complex variables

(Seoul, 1998).

[32] H. P. Boas, The football player and the infinite series, Notices Amer. Math. Soc. 44 (1997), no. 11, 1430–

1435.

[33] H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc.

125 (1997), no. 10, 2975–2979.

[34] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32

(1931), no. 3, 600–622.
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