

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE CIÊNCIAS E TECNOLOGIA AMBIENTAL CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL

ANÁLISE TÉCNICA DE BLOCOS CERÂMICOS DE DIFERENTES FABRICANTES NA REGIÃO DO SERTÃO PARAIBANO DE ACORDO COM A NORMA NBR 15270:2017

IAN MARQUES DE OLIVEIRA BATISTA

IAN MARQUES DE OLIVEIRA BATISTA

ANÁLISE TÉCNICA DE BLOCOS CERÂMICOS DE DIFERENTES FABRICANTES NA REGIÃO DO SERTÃO PARAIBANO DE ACORDO COM A NORMA NBR 15270:2017

Trabalho de Conclusão de Curso apresentado à Unidade Acadêmica de Ciências e Tecnologia Ambiental da Universidade Federal de Campina Grande, como parte dos requisitos necessários para obtenção do título de Engenheiro Civil.

Orientador(a): Prof. Dr. Renilton Correia

da Costa

Coorientador(a): Leonardo Rodrigues

Guedes

B Batista, Ian Marques de Oliveira.

Análise técnica de blocos cerâmicos de diferentes fabricantes na região do sertão paraibano de acordo com a norma NBR 15270:2017 / Ian Marques de Oliveira Batista. - Pombal, 2022.

36 f.: il. Color.

Monografia (Bacharelado em Engenharia Civil) - Universidade Federal de Campina Grande, Centro de Ciência e Tecnologia Alimentar, 2022.

"Orientação: Prof. Dr. Renilton Correia da Costa, Prof. Dr. Leonardo Rodrigues Guedes".

Referências.

1. Blocos Cerâmicos. 2. Propriedades das Amostras. 3. Amostras de Olarias. 4. Não Conformidade. I. Costa, Renilton Correia da. II. Guedes, Leonardo Rodrigues. III. Título.

CDU 666.3:62-431(043)

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE CIÊNCIAS E TECNOLOGIA AMBIENTAL CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL

PARECER DA COMISSÃO EXAMINADORA DE TRABALHO DE CONCLUSÃO DE CURSO.

IAN MARQUES DE OLIVEIRA BATISTA

TÍTULO DO TRABALHO

Trabalho de Conclusão de Curso do discente (IAN MARQUES DE OLIVEIRA BATISTA) **APROVADO** em dia 31 de Março de 2022 pela comissão examinadora composta pelos membros abaixo relacionados como requisito para obtenção do título de ENGENHEIRO CIVIL pela Universidade Federal de Campina Grande

Registre-se e publique-se.

Prof. Dr. Renilton Correia da Costa (Orientador – UFCG)

Prof. Dr. Leovegildo Douglas Pereira de Souza

(Membro Interno – UFCG)

Prof. Leonardo Rodrigues Guedes (Coorientador – Engenheiro Civil)

Prof. Vitória Barros de Sá Magalhães (Membro Externo – Assistente de engenharia na PDCA Engenharia)

AGRADECIMENTOS

Agradeço aos meus pais, Gelsimar e Luciana, que sempre se esforçaram para que esse sonho fosse possível, não medindo esforços. Aos meus irmãos, lago e landra, que me apoiaram e dividiram todos os momentos de minha vida. Aos meus avós, Françuar, Laurita e Lúcia, que em vida deixaram todos os seus incentivos e ensinamentos para minha formação. Também aos meus tios e primos que estiveram presentes em minha caminhada.

Agradeço também a minha namorada Kawanna, que divide esse sonho comigo, apoiando nos momentos difíceis, sempre com amor, paciência e um carisma sem igual. Aos amigos que me ajudaram a realizar esse trabalho Adla, Arthur, Filipe e Leonardo, além dos outros amigos que a universidade me deu o prazer de conhece-los, Ana Letícia, Brenda, Helton, Pedro, Thayse e William.

Ao meu orientador Renilton, que acolheu esse trabalho como se fosse dele, fornecendo toda sua ajuda e sabedoria com muita transparência e paciência.

Aos que contribuíram para minha formação profissional como estagiário, na empresa PROJECTE ENGENHARIA, Aiara, Alan, Gervan, Katherine, Lamartine, Vitória. A todos da empresa ECO Premium Residence, Bianchine, Mariana, Luís, Lenice, Emanuel e mestre Alfredo.

Título em português

Título em inglês
Autor, e-mail:
Orientador, e-mail:

RESUMO

O trabalho em questão aborda a análise dos blocos cerâmicos de vedação da região do sertão paraibano, mostrando a importância que a normalização técnica fornece, onde, foi recolhido amostra de cinco olarias em cidades diferentes (A, B, C, D e E). Os blocos foram submetidos por testes de acordo com a NBR 15270:2017, assim, analisando as propriedades visuais, geométricas, físicas e mecânicas das amostras, esse que é bastante comercializado e importante na construção civil, é necessário estar de acordo com as normas. Contudo, não apresentaram resultados positivos, com todas as olarias apresentando pelo menos uma não-conformidade técnica de acordo com a norma, assim, mostra a necessidade de uma melhor fiscalização da mesma. Portanto, com a normalização passará a ter uma melhoria na uniformização na produção, padronização, redução de consumo de materiais e desperdício.

Palavras-chave: Blocos cerâmicos; Propriedades; Amostras; Não-conformidade.

ABSTRACT

The work in question addresses the analysis of the ceramic blocks of sealing in the region of the Sertão of Paraíba, showing the importance that the technical standardization provides, samples were collected from five potteries in different cities (A, B, C, D and E). The blocks were subjected to tests in accordance with NBR 15270:2017, thus analyzing the visual, geometric, physical and mechanical properties of the samples, which is quite commercialized and important in civil construction, and it is necessary to comply with the standards. However, they did not present positive results, with all the potteries presenting at least one technical non-conformity according to the norm, thus, it shows the need for a better inspection of the same. Therefore, with standardization, there will be an improvement in the uniformization of production, standardization, reduction of consumption of materials and waste.

Keywords: Ceramic blocks; Properties; samples; Non-compliance.

1. INTRODUÇÃO

Segundo Pilz et al. (2015), as construções civis juntamente com as empresas do ramo veem evoluindo nos processos de produção, e isso produz uma maior competitividade, como garantia de sobrevivência no mercado se faz necessário uma melhoria da qualidade de seus produtos. Os materiais cerâmicos são utilizados pelo homem desde 4.000 AC, destacam-se pela sua durabilidade e pela facilidade da sua fabricação, dada a abundância da matéria-prima que o origina, a argila, sendo utilizado como técnica de construção em edifícios residenciais, públicos, em pontes, torres, igrejas, entre outros.

Já Silva (2019), destaca uma outra problemática que está também na preocupação em controlar custos, reduzir desperdícios e manter a qualidade dos serviços, principalmente em empresas mais sérias. Sendo assim, os blocos e tijolos cerâmicos utilizados para erguer as alvenarias de vedação precisam passar por um controle de qualidade, evitando desperdícios devido à quebra de materiais de baixa qualidade e gastos adicionais devido aos defeitos dos blocos, como: desvios de faces e esquadros, espessura dos septos abaixo da recomendada por norma, pouca ou elevada absorção de água e resistência abaixo da especificada por norma.

De acordo com a ANICER – Associação Nacional da Indústria Cerâmica (2018), o Programa Setorial da Qualidade dos Blocos Cerâmicos (PSQ-BC), tem como objetivo assegurar a conformidade dos blocos cerâmicos, de acordo com a NBR 15270:2017, os quais estabelecem os requisitos dimensionais, físicos e mecânicos, como é estabelecido em seus métodos de ensaio. A conformidade com a norma leva ao aprimoramento dos produtos e serviços deste setor, tendo a população como o maior beneficiário destas ações.

A normalização visa alcançar a redução de custos da produção e do produto final, mantendo ou melhorando sua qualidade. Os benefícios qualitativos da normalização são, utilizar de forma adequada os recursos, uniformizar a produção, facilitar o treinamento de mão de obra, já os benefícios quantitativos são a redução do consumo de materiais, padronização dos componentes e equipamentos, aumento da produtividade, entre outros (MOREIRA, 2008).

De acordo com Bustamante e Bressiani (2000), citado por Pacheco (2018), o processo de fabricação de cerâmica vermelha é apontado como algo extremamente simples, ocorrendo a desvalorização da cultura técnica, ou seja, não respeitam os padrões normativos, levando o setor a graves erros. Isso porque, neste ramo, as empresas necessitam serem de caráter polivalente, executando diversas etapas de processamento, sendo elas a mineração, beneficiamento, preparação, conformação, secagem e queima, até obter os produtos finais, ressaltando que o sucesso de cada etapa é de suma importância para a continuidade do processo.

Vale ressaltar segundo dados da Secretaria Executiva do Comitê Nacional de Desenvolvimento Tecnológico da Habitação, de julho de 1998, o

percentual médio de não conformidade dos materiais e componentes da construção civil habitacional está em torno de 40%.

Diante do exposto, observa-se uma necessidade de se avaliar a qualidade de blocos cerâmicos, visto que existe uma carência de estudos sobre o tema na Paraíba principalmente em relação a determinação da qualidade e características do material em questão, que são comercializados e que devem seguir a normatização prescrita pela ABNT 15270:2017, e assegurando a qualidade do produto ofertado no mercado. Com isso, o objetivo deste trabalho é verificar os blocos cerâmicos de vedação comercializados na região do sertão paraibano, oriundos de 5 olarias produtoras e fornecedoras que abastecem a região. Para tanto, realizou-se uma análise destes blocos, também conhecidos como tijolos, conforme a norma.

2. MATERIAIS E MÉTODOS

Neste capítulo serão explicados os métodos utilizados para a análise dos blocos cerâmicos de vedação, que tem como base os parâmetros das Tabelas 1 e 2, regidos pela norma NBR 15270:2017.

Tabela 1 – Limites de blocos não conformes

ANÁLISES	ENSAIOS	LIMITE DE BLOCOS NÃO CONFORMES
VISUAIS	DEFORMAÇÕES	2
VISUAIS	IDENTIFICAÇÕES	0
	MEDIDAS DAS FACES	2
	ESPESSURA DOS SEPTOS	2
GEOMÉTRICAS	ESPESSURA DAS PAREDES EXTERNAS	2
	ESQUADRO	2
	PLANEZA	2
FÍSICAS	ABSORÇÃO	1
MECÂNICAS	COMPRESSÃO	2

Fonte: Autor, 2022

Tabela 2 – Parâmetros para os ensaios

ANÁLISES	ENSAIOS	PARÂMETROS
	DEFORMAÇÕES	BLOCOS SEM TRINCAS/DEFORMAÇÕES
VISUAIS	IDENTIFICAÇÕES	IDENTIFICAÇÃO DO FABRICANTE E BLOCO
	MEDIDAS DAS FACES	TOLERÂNCIA DE 5MM P/ CADA MEDIDA
	ESPESSURA DOS SEPTOS	MÁXIMO DE 6 MM
GEOMÉTRICAS	ESPESSURA DAS PAREDES EXTERNAS	MÁXIMO DE 7 MM
	ESQUADRO	MÁXIMO DE 3 MM
	PLANEZA	MÁXIMO DE 3 MM
FÍSICAS	ABSORÇÃO	ENTRE 8 E 25%
MECÂNICAS	COMPRESSÃO	MAIOR QUE 1,5 MPA

Fonte: Autor, 2022

2.1. LOCAL DE REALIZAÇÃO DO EXPERIMENTO

O estudo das características visuais, geométricas e físicas do material foi realizado no laboratório de materiais de construção, da unidade de Engenharia Civil, no campus da UFCG-Pombal. Já o estudo sobre as características mecânicas foi realizado no laboratório LEP no campus da UFCG-Campina Grande.

2.2. OBTENÇÃO E PROCESSAMENTO DAS AMOSTRAS

As amostras de blocos cerâmicos de oito furos vedação foram obtidas em 5 olarias. Foi feita a coleta de 13 amostras com dimensões de 9x19x19 centímetros de cada cidade, onde foram recebidos, identificados, limpos, retirada as rebarbas e colocados em

ambiente protegido que preserve suas características originais, onde as cidades de Malta, Quixaba, São Bentinho, Sousa e Santa Luzia, foram identificadas como A, B, C, D e E, respectivamente.

DISTRIBUIÇÕES DAS OLERIAS NOS MUNICIPIOS PARAIBANOS

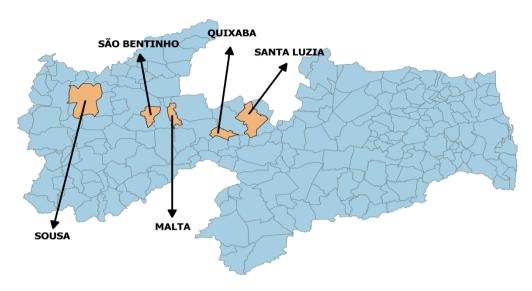


Figura 1 – Georreferenciamento dos locais de coleta dos blocos. (Fonte: O Autor; 2022)

2.3. ANÁLISE VISUAL

Os blocos primeiramente foram colocados em um ambiente plano, conferindo quebras, superfícies irregulares e/ou deformações que impediam o seu emprego corretamente na função específica. Se o valor ficasse no intervalo entre 3 e 4 unidades de blocos cerâmicos da amostragem seria necessária uma nova amostragem, igual ou superior a 5 unidades o lote inteiro é descartado (Figuras 2 e 3).

Depois foi analisado se estava gravado em uma das suas faces externas, a identificação do fabricante e do bloco, em baixo relevo ou reentrância, com caracteres de no mínimo 5 mm de altura, sem que prejudique o seu uso, onde deve ter: identificação da empresa, dimensões de fabricação em centímetros, na sequência largura (L), altura (H) e comprimento (C), na forma (L x H x C), podendo ser suprimida a inscrição da unidade de medida em centímetros. Se qualquer amostra do lote não apresentasse essa identificação, o mesmo seria rejeitado (Figura 4).

Figura 2 – Amostra sem presença de deformação e trinca. (Fonte: O autor, 2022)

Figura 3 – Amostra com presença de trinca. (Fonte: O Autor, 2022)

Figura 4 – Amostra sem identificação. (Fonte: O autor, 2022)

2.4. ANÁLISE DAS CARACTERÍSTICAS GEOMÉTRICAS

A segunda etapa é descrita como características geométricas, onde os mesmos blocos coletados na amostragem foram dispostos em cima de um ambiente plano (Figura 5), e com a utilização de um paquímetro ou uma trena foram medidas todas as faces dos blocos onde não podem ter uma variação maior do que cinco milímetros em qualquer dimensão (largura (L), altura (H) e comprimento (C)), como indicado nas Figuras 6,7,8 e 9, após realizar todas as medições, foi feito uma média aritmética de cada dimensão das treze amostras de todas olarias, onde essa média não pode ter uma variação maior do que três milímetros, de acordo com a norma.

Figura 5 – Amostras prontas para realizar a análise das características geométricas. (Fonte: O Autor, 2022)

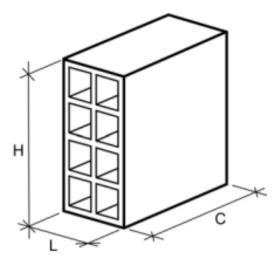


Figura 6 – Dimensões das faces da amostra. (Fonte: ABNT NBR 15270:2005)

Figura 7 – Realizando a medição da altura da amostra. (Fonte: O Autor, 2022)

Figura 8 – Realizando a medição do comprimento da amostra. (Fonte: O Autor, 2022)

Figura 9 – Realizando a medição da largura da amostra. (Fonte, O Autor, 2022)

Em seguida, com auxílio de uma régua metálica e um esquadro, foi verificado o desvio em relação ao esquadro, onde os corpos de prova foram colocados em uma superfície plana e indeformável, e o esquadro na posição da metade do comprimento, de acordo com as figuras 10 e 11, assim, foram feitas duas medições, sendo uma de cada lado da amostra, e foi utilizada a maior entre elas. Da mesma forma foi feito o ensaio de planeza das faces, porém agora, analisamos a flecha formada na diagonal, podendo ser no centro (côncavo) ou nas extremidades (convexo) conforme figuras 12, 13 e 14, para esse fizemos quatro medições nas diagonais das faces destinadas ao revestimento, onde levamos em consideração apenas o maior desvio. Ambos os ensaios, não permitem um desvio maior do que três milímetros.

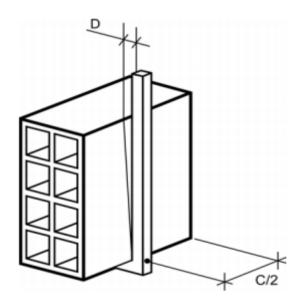


Figura 10 – Relação esquemática do desvio em relação ao esquadro. (Fonte: ABNT NBR 15270:2005)

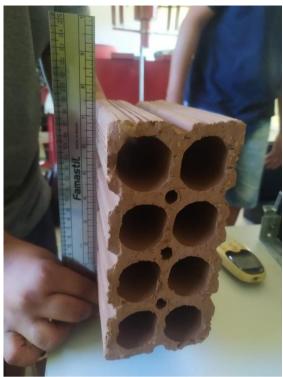


Figura 11 – Realização do ensaio de Esquadro. (Fonte, O Autor, 2022)

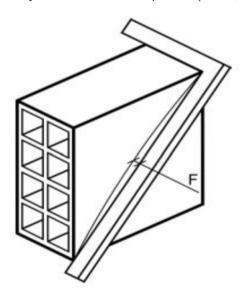


Figura 12 – Relação esquemática do desvio côncavo. (Fonte: ABNT NBR 15270:2005)

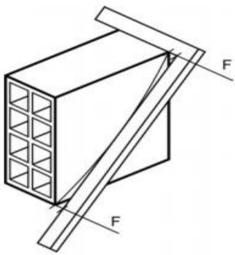


Figura 13 – Relação esquemática do desvio convexo. (Fonte: ABNT NBR 15270:2005)

Figura 14 – Realização do ensaio de planeza das faces. (Fonte: O Autor, 2022)

Por fim, com a ajuda de um paquímetro, foram feitas as medições das espessuras dos septos e das paredes externas, onde para cada um foram realizadas quatro medições, conforme figuras 15, 16 e 17, buscando sempre as menores espessuras, e se apresentar alguma ranhura a medição deve ser realizada na mesma. Com esses dados, foi levado em consideração a menor medida de espessura, onde para os septos ela não deve ser maior do que seis milímetros, e para as paredes externas sete milímetros.

Para os ensaios das características geométricas, foi considerado que se alguma olaria apresentar três ou mais amostras não condizentes com os parâmetros normativos, o lote será rejeitado, conforme a norma NBR 15270:2017.

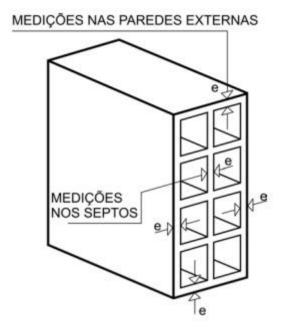


Figura 15 – Relação esquemática das medições dos septos e paredes externas. (Fonte: ABNT NBR 15270:2005)

Figura 16 – Medição do septo interno com paquímetro. (Fonte: O Autor, 2022)

Figura 17 – Medição da parede externa com paquímetro. (Fonte: O Autor, 2022)

2.5. ANÁLISE ÍNDICE FÍSICO

Para analisar o índice de absorção de água, foram coletados seis blocos do total da amostra, conforme apresenta a norma NBR 15270:2017. Primeiramente foi feito a retirada do pó e partículas no corpo de prova, depois foi medida a massa inicial em gramas com uma balança de resolução até cinco gramas e posteriormente colocado na estufa a 105°C (Figura 18); onde foi pesado em intervalos de uma hora até que esta diferença de massa não ultrapassou 0,25%, gerando assim, a massa seca (Ms). Após isso, os blocos foram levados ao recipiente preenchido com água a temperatura ambiente para que as amostras fiquem totalmente submersas (Figura 19), retirados depois de 24 horas e passados em um pano úmido, assim, foram pesados obtendo a massa úmida (Mu). Com esses dados podemos calcular a absorção da amostra utilizando a equação (1), que por norma, deve estar no intervalo de 8% a 25% como segue a norma atualizada NBR 15270:2017:

Figura 18 – Amostras na estufa a 105°C. (Fonte: O Autor, 2022)

Figura 19 – Amostras submersas em água a temperatura ambiente. (Fonte: O Autor, 2022)

$$AA (\%) = \frac{Mu - Ms}{Ms} \times 100 \tag{1}$$

Para esse ensaio, o lote deve ser rejeitado caso o número de amostras não conformes com a norma seja igual ou superior que dois, de acordo com a norma NBR 15270:2017.

2.6. ANÁLISE DAS CARACTERÍSTICAS MECÂNICAS

Após realizar todos os ensaios descritos acima, pegou-se os treze blocos de todas as olarias para realizar o capeamento, onde, primeiramente em uma superfície plana e uniforme com a ajuda de um pincel foi passada uma leve camada de óleo mineral, em seguida, foi colocada pasta de cimento sobre ela e o corpo de prova exercendo uma pressão sobre o mesmo para que a espessura do capeamento não seja superior a três milímetros (Figura 20), após a pasta endurecer, o bloco foi retirado com a ajuda de uma espátula e o mesmo processo foi repetido para o outro lado de maneira que ambos os lados ficassem uniformes.

Em seguida, foram colocados os blocos de maneira perpendicular aos seus comprimentos, em uma prensa que apresenta uma distribuição uniforme dos esforços, duas placas de aço de espessura de no mínimo 50mm na face superior e inferior do bloco e capaz de transmitir a carga de modo progressivo e sem choques, a mesma foi regulada para que a tensão aplicada fosse elevada progressivamente à razão de 0,05 MPa/s (Figuras 21, 22 e 23).

Para o ensaio de compressão axial, se o número de amostras abaixo da resistência 1,5 Mpa for igual ou maior que dois, o lote da olaria será reprovado, como indicado pela norma NBR 15270:2017.

Figura 20 – Capeamento das amostras em uma superfície plana e com uma leve camada de óleo. (Fonte: O Autor, 2022)

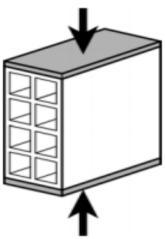


Figura 21 – Relação esquemática da compressão axial aplicada no bloco. (Fonte: ABNT NBR 15270:2005)

Figura 22 – Amostras prontas para serem colocadas na prensa. (Fonte: O Autor, 2022)

Figura 23 – Amostra na prensa com o apoio das placas de aço. (Fonte: O Autor, 2022)

3. RESULTADOS E DISCUSSÕES

3.1. CARACTERÍSTICAS VISUAIS

Em relação as características visuais, analisando o quesito de trincas ou deformações que impedissem o seu emprego corretamente na função específica, todas as olarias foram aprovadas, ou seja, nenhuma apresentou um número de amostras não-conformes igual ou maior do que três (Tabela 3).

No quesito de identificação do fabricante e dimensões de fabricação, nenhuma olaria apresenta essas informações em seus blocos ou conforme a norma regula, logo, nenhum lote foi aprovado, visto que, necessitava apenas um bloco sem essas especificações.

Tabela 3 – Resultado de amostras com presenca de deformação ou fissuras

	NÚMERO DE AMOSTRAS NÃO-CONFORMES						
Cerâmica	FISSURAS	DEFORMAÇÕES	TOTAL				
A	0	0	0				
В	1	1	2				
С	2	0	2				
D	1	0	1				
E	1	0	1				

Fonte: O Autor, 2022

3.2. CARACTERÍSTICAS GEOMÉTRICAS

3.2.1. MEDIDAS DAS FACES

De acordo com as medidas das faces, em relação a largura, todas as olarias estão padronizadas, exceto uma amostra da olaria E que apresentou 82mm, ou seja, uma diferença de 8mm para a medida original do bloco que é de 90mm, em que o permitido é uma diferença de até 5mm. Porém, essa amostra não é o suficiente para que o lote seja rejeitado.

Em relação ao comprimento, quatro olarias foram aprovadas de acordo com a norma, menos a E, em que, apresentou três amostras fora do padrão normativo, sendo esses, as amostras 10, 12 e 13. Além disso, B, C e D, apresentaram uma amostra fora do padrão, não sendo suficiente para reprovar o lote.

Em relação à altura, foi onde tivemos o maior índice de rejeição, onde duas olarias foram reprovadas, B e E, onde uma delas apresentou doze amostras e a outra quatro fora dos padrões, respectivamente. Além disso, A e D também apresentaram uma amostra fora do padrão.

Todos esses resultados podem ser melhores visualizados na tabela 4 abaixo:

Tabela 4 – Dados das medidas das faces dos blocos de vedação

Tabela 4 – Dados das medidas das laces dos biocos de vedação								
CERÂMICAS	CARACTERÍSTICAS			AM	OSTRA	S		
CENAMICAS	GEOMÉTRICAS	1	2	3	4	5	6	7
	L (mm)	90	93	92	91	91	90	92
Α	C (mm)	187	193	195	192	189	192	192
	H (mm)	187	189	189	182	189	189	188
	L (mm)	90	88	91	88	90	94	90
В	C (mm)	186	185	185	191	192	185	185
	H (mm)	188	176	178	179	175	177	180
	L (mm)	88	87	87	87	87	87	88
С	C (mm)	180	187	190	190	187	188	186
	H (mm)	190	188	188	187	188	190	187
	L (mm)	90	90	90	91	91	89	91
D	C (mm)	190	189	190	188	189	190	189
	H (mm)	185	187	187	187	186	187	186
	L (mm)	91	90	90	90	90	91	90
Е	C (mm)	190	190	192	194	190	189	190
	H (mm)	185	185	184	182	185	184	182

Fonte: Autor, 2022

Tabela 4: Dados das medidas das faces dos blocos de vedação (Continuação)

	N° UNIDADES NÃO-					
8	9	10	11	12	13	CONFORMES
91	92	91	93	92	94	0
191	195	191	188	189	188	0
187	187	188	190	190	190	1
89	91	87	89	90	90	0
187	186	184	188	185	185	1
172	177	174	173	178	175	12
88	87	86	88	89	87	0
186	186	187	187	187	187	1
187	190	188	188	190	188	0
90	92	89	90	89	90	0
186	188	190	192	184	189	1
189	186	186	187	180	187	1
90	90	82	91	90	92	1
189	190	196	187	196	198	3
185	186	185	185	185	186	4

Fonte: Autor, 2022

Em relação a média das medidas das amostras, temos que, apenas A teve seu lote aprovado, em que, B foi reprovada nas medidas de comprimento e altura, C no comprimento, D na altura e E em largura e comprimento, como apresentado na tabela 5 abaixo:

Tabela 5 – Média aritmética das medidas das faces

	I I I I I I I I I I I I I I I I I I I	loa das medidas das i	
CERÂMICAS	CARACTERÍSTICAS GEOMÉTRICAS	MÉDIA	CONFORME
	L (mm)	91,29	SIM
Α	C (mm)	191,43	SIM
	H (mm)	187,57	SIM
	L (mm)	90,14	SIM
В	C (mm)	187,00	NÃO
	H (mm)	179,00	NÃO
	L (mm)	87,29	SIM
С	C (mm)	186,86	NÃO
	H (mm)	188,29	SIM
	L (mm)	90,29	SIM
D	C (mm)	189,29	SIM
	H (mm)	186,43	NÃO
	L (mm)	90,29	SIM
E	C (mm)	190,71	SIM
	H (mm)	183,86	NÃO

Fonte: Autor, 2022

3.2.2. ESPESSURA DOS SEPTOS E PAREDES EXTERNAS, ESQUADRO E PLANEZA DAS FACES

Em relação a espessura dos septos todas as olarias foram aprovadas, ou seja, apresentaram menos de três amostras não-conformes.

Em relação a espessura das paredes externas todas as olarias foram aprovadas, com nenhuma amostra ultrapassando o limite de sete milímetros.

Em relação ao ensaio de esquadro, apenas a olaria A foi aprovada, B, C, D e E, apresentaram 6, 6, 4 e 7, amostras não-conformes respectivamente e foram reprovadas.

Em relação ao ensaio de planeza das faces foram aprovadas as olarias de A, B e E, enquanto, B e D foram reprovadas apresentando todas as amostras não-conformes.

A tabela 6 mostra com mais detalhes os resultados dos ensaios.

Tabela 6 - Resultado dos ensaios das características geométricas

rabeia 6 – Resultado dos ensaios das características geometricas AMOSTRAS AMOSTRAS								
CERÂMICAS	CARACTERÍSTICAS			AN	IOSTR/	45	1	
CERTAINITEAS	GEOMÉTRICAS	1	2	3	4	5	6	7
	Esp. Septos (mm)	4	4	4	5	5	4,5	4
А	Esp, Paredes (mm)	5	4	5	5	4	4	4
A	Esquadro (mm)	1,61	2,02	1,41	1,81	1,72	1,67	2,32
	Planeza (mm)	2,65	2,68	2,14	2,65	2,8	2,31	2,59
	Esp. Septos (mm)	4,5	5,5	6	5	5	6,5	5,5
В	Esp, Paredes (mm)	5	5,5	6	5	6,5	6	5
Ь	Esquadro (mm)	2,53	1,35	4,43	1,47	2,63	3,52	1,75
	Planeza (mm)	3,79	1,44	2,09	3,21	1,27	1,62	1,06
	Esp. Septos (mm)	4,5	6	5	5	4	5	4
С	Esp, Paredes (mm)	6	5	6	5	6	5,5	6
C	Esquadro (mm)	7,59	3,31	2,4	2,72	1,58	2,55	3,34
	Planeza (mm)	4,6	4,4	3,8	4,5	4,75	3,8	4,2
	Esp. Septos (mm)	5	5	5,5	6	5	5	5
D	Esp, Paredes (mm)	6	6,5	6	6,5	7	6,5	6
D	Esquadro (mm)	2,9	2,33	5,05	2,97	3,21	1,92	1,42
	Planeza (mm)	3,75	3,65	3,7	3,8	3,85	3,68	4,2
	Esp. Septos (mm)	4	5	5	4	5,5	5,5	5
_	Esp, Paredes (mm)	6,5	5,5	6	6	5,5	6	6
E	Esquadro (mm)	1,49	1,46	3,69	4,6	4,92	2,49	4,92
	Planeza (mm)	1,32	2,44	1,62	3,4	1,68	0,73	2

Fonte: O Autor, 2022

Tabela 6 – Resultados dos ensajos das características geométricas (Continuação)

Tabela o	N° UNIDADES NÃO-					
8	9	10	11	12	13	CONFORMES
4,5	4,5	4	5	5	5	0
5	4	5	4	4	4	0
1,55	2,17	1,22	1,59	2,12	2,01	0
1,88	3,45	1,85	1,56	3,13	2,97	2
5	4,5	5,5	4,5	5	5	1
5	5,5	5	5	5	5,5	0
4,41	4,59	3,54	2,94	2,85	4,04	6
2,52	1,03	2,59	2,54	2,43	1,58	2
5	4,5	4,5	4,5	5	4,5	0
7	6,5	5	5,5	6	6	0
3,29	1,99	3,66	1,82	3,82	1,37	6
4,95	4,5	3,9	3,95	4,7	5	13
5	5,5	4	5	5	5	0
7	6,5	6,5	6	6,5	6,5	0
1,39	1,14	2,66	3,03	8,74	2,22	4
4	3,88	3,85	3,75	3,9	3,5	13
4	5	4,9	6,5	5	4	1
5,5	6	6	6	6,5	5	0
1,76	4,91	1,53	2,29	4,27	5,42	7
2,84	1,41	3,08	1,52	1,62	2,77	2

Fonte: Autor, 2022

3.3. CARACTERÍSTICAS FÍSICAS

Todas as olarias apresentaram seus blocos cerâmicos com o nível de absorção dentro dos padrões normativos, ou seja, entre 8% e 22% e foram aprovadas (Tabela 7):

Tabela 7 – Dados da absorção de água nas amostras

CERÂMICA		Absorç	ão de água	nas amost	ras (%)		N° de não-
CERAIVIICA	A1	A2	А3	A4	A5	A6	conformes
Α	9,8	13,45	12,32	13,37	13,1	13,42	0
В	12,66	9,37	12,53	12,23	13,1	12,97	0
С	16,15	13,7	14,19	11,97	13,68	12,88	0
D	8,11	8,03	8,33	8,16	8,35	8,89	0
E	9,8	10,06	9,83	9,89	10	9,92	0

Fonte: Autor, 2022

3.4. CARACTERÍSTICAS MECÂNICAS

As olarias de A, B e C, apresentaram todos os seus corpos de prova com resistência abaixo de 1,5Mpa, assim, seus lotes foram rejeitados, pois apresentaram o número de amostras não conformes igual ou superior a 3. E, apresentou apenas uma amostra abaixo do permitido, enquanto, D teve todos acima do permitido, sendo esses dois tendo seus lotes aprovados no ensaio de compressão axial.

Esses dados estão de acordo com a tabela 8:

Tabela 8 – Dados do ensaio de resistência a compressão axial

rabola e Badee de chedie de recicionela a compressae axial								
Cerâmica	RESISTÊNCIA A COMPRESSÃO DAS AMOSTRAS (MPa)							
Ceramica	A1	A2	А3	A4	A5	A6		
Α	0,027	0,015	0,445	0,686	0,301	0,834		
В	0,523	0,535	0,686	0,529	0,688	0,639		
С	0,385	0,375	0,323	0,41	0,332	0,469		
D	2	2 2,08 3,25 3,06 3,3 3,49						
E	2,16	2,02	2,66	2,411	2,097	3,103		

Fonte: Autor, 2022

Tabela 8 – Dados de ensaio de resistência a compressão axial (Continuação)

RESIS	STÊNCIA	AMOSTRAS NÃO					
A7	A8	A9	A10	A11	A12	A13	CONFORMES
0,391	0,439	0,389	0,445	0,685	0,388	0,389	13
0,526	0,537	0,638	0,68	0,772	0,57	0,59	13
0,309	0,457	0,255	0,455	0,42	0,261	0,363	13
3,72	3,47	3,96	2,96	1,74	2,96	2,59	0
1,495	3,65	2,159	2,054	3,287	1,628	2,409	1

Fonte: Autor, 2022

3.5. ANÁLISE GERAL

A tabela 9 mostra que todas olarias apresentaram pelo menos uma nãoconformidade em relação aos ensaios executados e exigidos pela norma.

Tabela 9 - Análise dos ensaios executados

	Tabela 9 – Affailse dos ensaios executados										
		RESULTADOS DOS ENSAIOS									
Cerâmica	IDENTIFICAÇÃO	CARACTERÍSTICAS VISUAIS	CARACTERÍSTICAS GEOMÉTRICAS	CARACTERÍSTICAS FÍSICAS	CARACTERÍSTICAS MECÂNICAS						
А	REJEITADO	ACEITO	ACEITO	ACEITO	REJEITADO						
В	REJEITADO	ACEITO	REJEITADO	ACEITO	REJEITADO						
С	REJEITADO	ACEITO	REJEITADO	ACEITO	REJEITADO						
D	REJEITADO	ACEITO	REJEITADO	ACEITO	ACEITO						
Е	REJEITADO	ACEITO	REJEITADO	ACEITO	ACEITO						

Fonte: Autor, 2022

4. CONCLUSÕES

Os resultados obtidos nesse trabalho mostram que as olarias do sertão paraibano não se preocupam em fabricar seus blocos cerâmicos de vedação de acordo com a norma, oferecendo blocos sem qualidade e podendo ocasionar problemas quanto ao seu emprego corretamente. Podemos comprovar que 100% das olarias estudadas neste trabalho apresentaram pelo menos um tipo de não-conformidade técnica.

Em números, podemos dizer que 80% das olarias apresentaram não conformidade nas características geométricas, 100% não apresentaram identificação, 60%

Análise técnica de blocos cerâmicos de diferentes fabricantes na região do sertão paraibano de acordo com a norma NBR 15270:2017 lan Marques de Oliveira Batista

apresentaram não conformidade com as características mecânicas. Os ensaios em que todos foram aprovados, foram os das características visuais e físicas.

Com esses dados, notamos a necessidade de fiscalizar os padrões normativos da NBR 15270:2005 nas olarias, visando utilização adequada dos recursos, uniformização da produção, redução do consumo de materiais e aumento da produtividade, assim, beneficiando todo o mercado da construção civil.

REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, J. P. C.; CARVALHO, F. S.; GUIMARÃES, J. P.; OLIVEIRA, T. N.;

LIMA, D. P.. ANÁLISE DA QUALIDADE DOS BLOCOS CERÂMICOS DE VEDAÇÃO PRODUZIDOS NO MUNICÍPIO DE PORTO NACIONAL (TO). ENGINEERING SCIENCES, V.7, N.1, P.22-29, 2019.

ANICER – ASSOCIAÇÃO NACIONAL DA INDÚSTRIA CERÂMICA. PSQ – RESUMO EXECUTIVO. DISPONÍVEL EM https://www.anicer.com.br/psq/resumo-executivo/. ACESSO EM: 17 MARÇO. 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.270-1: COMPONENTES CERÂMICOS. PARTE 1: BLOCOS CERÂMICOS PARA ALVENARIA DE VEDAÇÃO – TERMINOLOGIA E REQUISITOS. RIO DE JANEIRO, 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, COMPONENTES CERÂMICOS — BLOCOS E TIJOLOS PARA ALVENARIA: REQUISITOS, NBR 15270:2017 PARTE 1.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, COMPONENTES CERÂMICOS — BLOCOS E TIJOLOS PARA ALVENARIA: MÉTODOS DE ENSAIOS, NBR 15270:2017 PARTE 2.

NBR 15.270-3: COMPONENTES CERÂMICOS. PARTE 3: BLOCOS CERÂMICOS PARA ALVENARIA ESTRUTURAL E DE VEDAÇÃO — MÉTODOS DE ENSAIO, RIO DE JANEIRO, 2005.

NBR 15.270-2: COMPONENTES CERÂMICOS. PARTE 3: BLOCOS CERÂMICOS PARA ALVENARIA ESTRUTURAL E DE VEDAÇÃO – TERMINOLOGIA E REQUISITOS, 2005.

LIMA, MARDEN PACHECO *VERIFICAÇÃO DE BLOCOS CERÂMICOS DE VEDAÇÃO DA REGIÃO DE FORMIGA-MG FRENTE À NBR 15270*. 2018. TCC (GRADUAÇÃO EM ENGENHARIA CIVIL) - CENTRO UNIVERSITÁRIO DE FORMIGA, 2018.

MOREIRA, G. C.; ALMADA, JLA. AVALIAÇÃO DA QUALIDADE DOS BLOCOS CERÂMICOS PARA ALVENARIA DE VEDAÇÃO COMERCIALIZADOS NA REGIÃO NORTE DO PARANÁ. 2008. 89P. TESE DE DOUTORADO. DISSERTAÇÃO (MESTRADO). PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA NAS OBRAS CIVIS, UNIVERSIDADE TUIUTI DO PARANÁ, CURITIBA-PR.

PILZ. S. E. ET AL. VERIFICAÇÃO DA QUALIDADE DOS BLOCOS CERÂMICOS CONFORME NBR 15270 COMERCIALIZADOS EM SANTA CATARINA. REVISTA DE ENGENHARIA CIVIL IMED, V. 2, N. 2, P. 19-26, 2015.

SILVA, DARLIANE MARIA DA. ANÁLISE TÉCNICA DE BLOCOS CERÂMICOS DE DIFERENTES FABRICANTES COMERCIALIZADOS NA CIDADE DO CABO DE SANTO AGOSTINHO DE ACORDO COM A NORMA NBR15270:2017. TRABALHO DE CONCLUSÃO DE CURSO. (GRADUAÇÃO EM ENGENHARIA CIVIL) - UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO, 2019.

ANEXOS

ANEXO I – DADOS DO ENSAIO DE ESQUADRO

ESQUADRO SANTA LUZIA

Nº TIJOLO	D1 (mm)	D2 (mm)	
T1	1,36	1,49	
T2	1,46	0,97	
T3	3,69	3,23	
T4	4,6	3,26	
T5	4,92	3,13	
T6	2,49	0,91	
T7	1,79	4,92	
T8	1,33	1,76	
Т9	0,43	4,91	
T10	1,53	0,5	
T11	0,48	2,29	
T12	4,27	1,22	
T13	2,27	5,42	

ESQUADRO QUIXABA									
Nº TIJOLO	D1 (mm)	D2 (mm)							
T1	1,01	2,53							
T2	0,58	1,35							
Т3	3,78	4,43							
T4	1,47	1,28							
T5	1,45	2,63							
T6	3,52	2,45							
T7	0,35	1,75							
T8	4,41	1,19							
Т9	4,59	1,66							
T10	3,54	3,07							
T11	43	0,88							
T12	2,85	1,97							
T13	4,04	3,16							

ESQUADRO SOUSA

Nº TIJOLO	D1 (mm)	D2 (mm)
T1	2,90	0,00
T2	1,76	2,33
Т3	5,05	2,25
T4	1,36	2,97
T5	1,94	3,21
T6	1,92	0,84
T7	0,00	1,42
T8	1,39	0,00
T9	1,14	0,17
T10	2,66	1,36
T11	1,18	3,03
T12	8,74	3,06
T13	2,16	2,22
		•

ESQUADRO SÃO BENTINHO

Nº TIJOLO	D1 (mm)	D2 (mm)
T1	3,87	7,59
T2	1,00	3,31
T3	1,42	2,4
T4	2,72	0,66
T5	1,55	1,58
T6	2,55	1,87
T7	3,34	3,28
T8	3,29	1,06
T9	1,99	0,93
T10	1,29	3,66
T11	1,82	1,81
T12	3,82	3
T13	Atival 10,3/7 ndow	0,89

ESQUADRO MALTA								
Nº TIJOLO	D1 (mm)	D2 (mm)						
T1	1,12	1,61						
T2	2,02	1,15						
Т3	0,83	1,41						
T4	1,81	0,73						
T5	1,13	1,72						
T6	1,67	1,32						
T7	1,29	2,32						
T8	1,07	1,55						
T9	2,17	0,49						
T10	1,22	1,1						
T11	1,17	1,59						
T12	0,85	2,12						
T13	1,22	2,01						

ENSAIO PLANEZA DAS FACES - SANTA LUZIA

21107110 1 27111227 13710 171023 3711177 202171							
AMOSTRA		MAIOR					
ANICOINA	M1	M2	М3	M4	MEDIDA		
1	1,32	0,99	0,67	0,34	1,32		
2	2,44	1,19	0,79	0,58	2,44		
3	1,62	0,62	1,52	1,16	1,62		
4	0,73	3,4	1,21	1,68	3,4		
5	1,68	1,15	0,97	0,63	1,68		
6	0,51	0,63	0,63 0,73 0,57		0,73		
7	0,87	0,87	2	0,77	2		
8	2,84	0,7	0,96	1,94	2,84		
9	1,41	0,86	1,02	1,18	1,41		
10	1,36	3,08	1,28	1,52	3,08		
11	0,87	0,49	1,52	1,27	1,52		
12	1,62	0,89	0,92	0,58	1,62		
13	1,14	1,38	1,2	2,77	2,77		

ENSAIO PLANEZA DAS FACES - QUIXABA								
AMOSTRA		MEDIÇÕ	ES (mm)		MAIOR			
AIVIOSTRA	M1	MEDIDA						
1	1,16	1,48	3,79	1,94	3,79			
2	1,07	0,88	1,44	0,71	1,44			
3	1,47	2,09	1,56	0,82	2,09			
4	3,21 1,48 1,32		1,32	1,07	3,21			
5	0,53	1,27 0,7		0,88	1,27			
6	1,62	0,86 0,91		1,33	1,62			
7	0,83	0,36 1,06 0,82		0,82	1,06			
8	1,12	2,36	1,23	2,52	2,52			
9	0,78	1,03	0,62	0,62	1,03			
10	1,6	1,72	0,89	2,59	2,59			
11	2,54	1,42	2,2	1,29	2,54			
12	1,93	1,11	2,43	1,76	2,43			
13	1,31	1,13	1,58	1,19	1,58			

ENSAIO PLANEZA DAS FACES - MALTA								
AMOSTRA		MEDIÇÕ	ES (mm)		MAIOR			
AIVIOSTRA	M1	M2	M3	M4	MEDIDA			
1	2,33	2,65	2,34	0,97	2,65			
2	2,68	2,29	1,43	2,19	2,68			
3	2,09	2,14	1.01	1,13	2,14			
4	1,83	2,65	1,66	2,19	2,65			
5	2,8	2,4	2,17	2,54	2,8			
6	2	2,31	1,03	1,53	2,31			
7	1,56	1,83	2,59	2,32	2,59			
8	1,07	1,26	1,78	1,88	1,88			
9	2,51	3,45	1,07	2,47	3,45			
10	1,85	1,72	1	1,81	1,85			
11	1,2	1,55	1,35	1,56	1,56			
12	1,94	1,15	3,13	3,11	3,13			
13	1,61	1,19	2,97	2,61	2,97			

ENSAIO PLANEZA DAS FACES - SOUSA

2113/110 2/11122/1 2/13 1/1023 3003/1							
AMOSTRA		MAIOR					
AIVIOSTRA	M1	M2	M3	M4	MEDIDA		
1	3,7	3,6	3,75	3,7	3,75		
2	3,6	3,6	3,65	3,55	3,65		
3	3,7	3,65	3,6	3,7	3,7		
4	3,7	3,8	3,7	3,65	3,8		
5	5 3,74 3,77 3,85 3,		3,6	3,85			
6	3,45	3,68	3,5	3,55	3,68		
7	4,2	4	3,65	3,65	4,2		
8	3,4	3,6	3,65	4	4		
9	3,75	3,88	3,6	3,6	3,88		
10	3,5	3,7	3,7	3,85	3,85		
11	3,65	3,7	3,68	3,75	3,75		
12	3,6	3,8	3,9	3,65	3,9		
13	3,5	3,5	3,5	3,1	3,5		

ENSAIO PLANEZA DAS FACES - SÃO BENTINHO								
AMOSTRA		MEDIÇÕ	ES (mm)		MAIOR			
AIVIOSTRA	M1	M2	M3	M4	MEDIDA			
1	4,3	3,9	3,8	4,6	4,6			
2	4,2	3,95	4	4,4	4,4			
3	3,5	3,52	3,7	3,8	3,8			
4	3,65	3,8	4,5	3,75	4,5			
5	4,6	4,75	4	3,7	4,75			
6	3,5	3,5	3,8	3,7	3,8			
7	3,7	4	4,2	3,5	4,2			
8	4,4	3,65	4,95	4,2	4,95			
9	4,5	4	3,7	4,3	4,5			
10	3,6	3,9	3,65	3,72	3,9			
11	3,95	3,7	3,6	3,85	3,95			
12	4,7	3,8	3,85	3,75	4,7			
13	5	3,9	4	3,7	5			

					Santa	Luiza					
Tijolo 1				Tijolo 2				Tijolo 3			
Septos	Internos	Parede	Externa	Septos	Internos	Parede	Externa	Septos	Internos	Parede Externa	
M1	0,6	M1	0,65	M1	0,5	M1	0,6	M1	0,65	M1	0,6
M2	0,5	M2	0,7	M2	0,55	M2	0,55	M2	0,7	M2	0,7
M3	0,5	M3	0,65	M3	0,6	M3	0,6	M3	0,5	M3	0,6
M4	0,4	M4	0,65	M4	0,6	M4	0,7	M4	0,5	M4	0,6
Tijolo 4				Tijolo 5				Tijolo 6			
Septos	Internos	Parede	Externa	Septos	Internos	Parede	Externa	Septos	Internos	Pared	e Externa
M1	0,55	M1	0,6	M1	0,6	M1	0,6	M1	0,6	M1	0,65
M2	0,65	M2	0,7	M2	0,6	M2	0,55	M2	0,65	M2	0,65
M3	0,6	M3	0,7	M3	0,55	M3	0,55	M3	0,6	M3	0,6
M4	0,4	M4	0,7	M4	0,6	M4	0,55	M4	0,55	M4	0,7
Tijolo 7				Tijolo 8				Tijolo 9			
Septos	Septos Internos Parede Externa		Externa	Septos Internos Parede Exte		Externa	Septos Internos		Parede Externa		
M1	0,5	M1	0,6	M1	0,6	M1	0,65	M1	0,55	M1	0,6
M2	0,5	M2	0,7	M2	0,5	M2	0,55	M2	0,55	M2	0,6
M3	0,7	M3	0,6	M3	0,4	M3	0,6	M3	0,55	M3	0,7
M4	0,65	M4	0,65	M4	0,6	M4	0,6	M4	0,5	M4	0,65
Tijolo 10				Tijolo 11				Tijolo 12			
Septos	Internos	Parede	Externa	Septos	Septos Internos Parede Externa		Septos Internos		Parede Externa		
M1	0,55	M1	0,6	M1	0,65	M1	0,7	M1	0,5	M1	0,7
M2	0,5	M2	0,6	M2	0,7	M2	0,65	M2	0,55	M2	0,7
M3	0,49	M3	0,7	M3	0,65	M3	0,6	M3	0,65	M3	0,65
M4	0,6	M4	0,7	M4	0,7	M4	0,65	M4	0,6	M4	0,7
Tijolo 13											
Septos	Internos	Parede	Externa								
M1	0,55	M1	0,5								
M2	0,6	M2	0,6								
M3	0,4	M3	0,6								
M4	0,65	M4	0,7								

					Qui	xaba					
Tijolo 1				Tijolo 2				Tijolo 3			
Septos	Internos	Parede	Externa	Septos	Internos	Pared	le Externa	Septos	Internos	Pared	le Externa
M1	0,85	M1	0,5	M1	0,75	M1	0,55	M1	0,65	M1	0,6
M2	0,45	M2	0,8	M2	0,6	M2	0,65	M2	0,65	M2	0,7
M3	0,5	M3	0,7	M3	0,65	M3	0,7	M3	0,8	M3	0,7
M4	0,65	M4	0,75	M4	0,55	M4	0,65	M4	0,6	M4	0,8
Tijolo 4				Tijolo 5				Tijolo 6			
Septos	Internos	Parede	Externa	Septos	Internos	Pared	le Externa	Septos	Internos	Pared	le Externa
M1	0,8	M1	0,6	M1	0,7	M1	0,7	M1	0,65	M1	0,6
M2	0,6	M2	0,6	M2	0,7	M2	0,7	M2	0,75	M2	0,7
M3	0,5	M3	0,5	M3	0,6	M3	0,65	M3	0,65	M3	0,6
M4	0,6	M4	0,8	M4	0,5	M4	0,8	M4	0,7	M4	0,6
Tijolo 7				Tijolo 8				Tijolo 9			
Septos	eptos Internos Parede Externa		Septos Internos Parede Externa		le Externa	Septos Internos		Parede Externa			
M1	0,75	M1	0,65	M1	0,6	M1	0,85	M1	0,65	M1	0,75
M2	0,6	M2	0,5	M2	0,55	M2	0,5	M2	0,55	M2	0,65
M3	0,6	M3	0,65	M3	0,5	M3	0,6	M3	0,55	M3	0,8
M4	0,55	M4	0,75	M4	0,65	M4	0,85	M4	0,45	M4	0,55
Tijolo 10				Tijolo 11				Tijolo 12			
Septos	Internos	Parede	Externa	Septos Internos Pa		Parede Externa		Septos Internos		Parede Externa	
M1	0,8	M1	0,65	M1	0,65	M1	0,6	M1	0,75	M1	0,75
M2	0,65	M2	0,5	M2	0,55	M2	0,6	M2	0,65	M2	0,7
M3	0,55	M3	0,6	M3	0,75	M3	0,5	M3	0,5	M3	0,75
M4	0,65	M4	0,6	M4	0,45	M4	0,6	M4	0,55	M4	0,5
Tijolo 13											
Septos	Internos	Parede	Externa								
M1	0,5	M1	0,55								
M2	0,65	M2	0,6								
M3	0,75	M3	0,6								
M4	0,6	M4	0,65								

					Ma	alta						
Tijolo 1				Tijolo 2				Tijolo 3				
Septos	Internos	Parede	Externa	Septos Internos		Pared	Parede Externa		Septos Internos		Parede Externa	
M1	0,5	M1	0,45	M1	0,5	M1	0,55	M1	0,7	M1	0,5	
M2	0,4	M2	0,6	M2	0,4	M2	0,4	M2	0,5	M2	0,6	
M3	0,4	M3	0,55	M3	0,6	M3	0,6	M3	0,4	M3	0,6	
M4	0,5	M4	0,5	M4	0,45	M4	0,6	M4	0,5	M4	0,6	
Tijolo 4				Tijolo 5				Tijolo 6				
Septos Internos		Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa		
M1	0,6	M1	0,6	M1	0,5	M1	0,45	M1	0,5	M1	0,4	
M2	0,6	M2	0,6	M2	0,5	M2	0,45	M2	0,6	M2	0,5	
M3	0,5	M3	0,5	M3	0,55	M3	0,6	M3	0,5	M3	0,5	
M4	0,5	M4	0,6	M4	0,5	M4	0,4	M4	0,45	M4	0,6	
Tijolo 7				Tijolo 8				Tijolo 9				
Septos Internos Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa				
M1	0,6	M1	0,4	M1	0,45	M1	0,5	M1	0,6	M1	0,5	
M2	0,5	M2	0,5	M2	0,65	M2	0,7	M2	0,5	M2	0,5	
M3	0,4	M3	0,6	M3	0,45	M3	0,55	M3	0,5	M3	0,5	
M4	0,5	M4	0,6	M4	0,6	M4	0,5	M4	0,45	M4	0,4	
Tijolo 10				Tijolo 11				Tijolo 12				
Septos Internos Pared		Parede	Externa Septos Internos		Pared	Parede Externa		Septos Internos		Parede Externa		
M1	0,4	M1	0,6	M1	0,5	M1	0,45	M1	0,5	M1	0,6	
M2	0,5	M2	0,5	M2	0,5	M2	0,55	M2	0,5	M2	0,5	
M3	0,5	M3	0,5	M3	0,65	M3	0,4	M3	0,5	M3	0,6	
M4	0,5	M4	0,6	M4	0,55	M4	0,55	M4	0,55	M4	0,4	
Tijolo 13												
Septos Internos Parede Externa												
M1	0,7	M1	0,4									
M2	0,5	M2	0,7									
M3	0,8	M3	0,6									
M4	0,5	M4	0,5									

					São Be	entinho					
Tijolo 1				Tijolo 2				Tijolo 3			
Septos	Internos	Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa	
M1	0,45	M1	0,85	M1	0,65	M1	0,7	M1	0,5	M1	0,7
M2	0,5	M2	0,6	M2	0,6	M2	0,6	M2	0,65	M2	0,75
M3	0,6	M3	0,7	M3	0,6	M3	0,5	M3	0,75	M3	0,85
M4	0,85	M4	0,6	M4	0,6	M4	0,8	M4	0,6	M4	0,6
Tijolo 4				Tijolo 5				Tijolo 6			
Septos Internos		Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa	
M1	0,5	M1	0,75	M1	0,4	M1	0,65	M1	0,5	M1	0,7
M2	0,65	M2	0,6	M2	0,5	M2	0,85	M2	0,75	M2	0,55
M3	0,5	M3	0,5	M3	0,6	M3	0,7	M3	0,6	M3	0,6
M4	0,8	M4	0,6	M4	0,7	M4	0,6	M4	0,6	M4	0,55
Tijolo 7				Tijolo 8				Tijolo 9			
Septos Internos		Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa	
M1	0,65	M1	0,6	M1	0,5	M1	0,75	M1	0,85	M1	0,65
M2	0,5	M2	0,7	M2	0,65	M2	0,75	M2	0,45	M2	0,75
M3	0,5	M3	0,75	M3	0,6	M3	0,7	M3	0,65	M3	0,65
M4	0,45	M4	0,7	M4	0,55	M4	0,85	M4	0,65	M4	0,7
Tijolo 10				Tijolo 11				Tijolo 12			
Septos Internos		Parede Externa Septos Interno		Internos	Parede Externa		Septos Internos		Parede Externa		
M1	0,6	M1	0,75	M1	0,45	M1	0,65	M1	0,5	M1	0,6
M2	0,45	M2	0,65	M2	0,6	M2	0,65	M2	0,8	M2	0,6
M3	0,7	M3	0,55	M3	0,55	M3	0,55	M3	0,6	M3	0,7
M4	0,6	M4	0,5	M4	0,65	M4	0,65	M4	0,6	M4	0,75
Tijolo 13											
Septos Internos		Parede Externa									
M1	0,7	M1	0,6								
M2	0,65	M2	0,6								
M3	0,6	M3	0,6								
M4	0,45	M4	0,65								

Análise técnica de blocos cerâmicos de diferentes fabricantes na região do sertão paraibano de acordo com a norma NBR 15270:2017 lan Marques de Oliveira Batista

					Soi	usa					
Tijolo 1				Tijolo 2				Tijolo 3			
Septos Internos Parede Exter		Externa	Septos Internos		Parede Externa		Septos Internos		Parede Externa		
M1	0,7	M1	0,6	M1	0,7	M1	0,8	M1	0,65	M1	0,8
M2	0,7	M2	0,75	M2	0,5	M2	0,65	M2	0,7	M2	0,75
M3	0,5	M3	0,6	M3	0,55	M3	0,8	M3	0,7	M3	0,6
M4	0,5	M4	0,8	M4	0,55	M4	0,65	M4	0,55	M4	0,7
Tijolo 4				Tijolo 5				Tijolo 6			
Septos Internos		Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa	
M1	0,6	M1	0,8	M1	0,6	M1	0,8	M1	0,5	M1	0,65
M2	0,65	M2	0,75	M2	0,65	M2	0,8	M2	0,5	M2	0,75
M3	0,65	M3	0,7	M3	0,5	M3	0,7	M3	0,65	M3	0,75
M4	0,65	M4	0,65	M4	0,55	M4	0,75	M4	0,6	M4	0,65
Tijolo 7				Tijolo 8				Tijolo 9			
Septos Internos		Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa	
M1	0,7	M1	0,75	M1	0,65	M1	0,7	M1	0,6	M1	0,65
M2	0,65	M2	0,8	M2	0,6	M2	0,7	M2	0,65	M2	0,7
M3	0,65	M3	0,6	M3	0,55	M3	0,7	M3	0,55	M3	0,8
M4	0,5	M4	0,75	M4	0,5	M4	0,75	M4	0,6	M4	0,75
Tijolo 10				Tijolo 11				Tijolo 12			
Septos Internos		Parede Externa		Septos Internos		Parede Externa		Septos Internos		Parede Externa	
M1	0,55	M1	0,6	M1	0,6	M1	0,8	M1	0,6	M1	0,7
M2	0,6	M2	0,8	M2	0,55	M2	0,85	M2	0,6	M2	0,65
M3	0,5	M3	0,65	M3	0,5	M3	0,85	M3	0,6	M3	0,75
M4	0,4	M4	0,7	M4	0,55	M4	0,6	M4	0,5	M4	0,65
Tijolo 13											
Septos Internos		Parede	Externa								
M1	0,6	M1	0,7								
M2	0,5	M2	0,8								
M3	0,5	M3	0,7								
M4	0,55	M4	0,65								