A4

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELETRICA E INFORMATICA
UNIDADE ACADEMICA DE SISTEMAS E COMPUTACAO

PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

LUCAS MEDEIROS CAVALCANTE

ENHANCING SECURITY IN CLOUD-BASED STORAGE SERVICES USING

EXTENSIBLE TRANSPARENT PROXIES

CAMPINA GRANDE

2020

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informatica

Coordenac¢ao de P6s-Graduacao em Ciéncia da Computacao

Enhancing Security in Cloud-Based Storage Services

Using Extensible Transparent Proxies

Lucas Medeiros Cavalcante

Dissertacdo submetida a Coordenacdo do Curso de P6s-Graduagdo em Ciéncia
da Computagdo da Universidade Federal de Campina Grande - Campus I como
parte dos requisitos necessarios para obtencdo do grau de Mestre em Ciéncia da

Computacdo.

Area de Concentracio: Ciéncia da Computacio

Linha de Pesquisa: Sistemas Distribuidos ¢ Computagdo em Nuvem

Andrey Elisio Monteiro Brito

(Orientador)

Campina Grande, Paraiba, Brasil

(©Lucas Medeiros Cavalcante, 28 de Setembro de 2020

C376e

Cavalcante, Lucas Medeiros.

Enhancing security in cloud-based storage services using extensible
transparent proxies / Lucas Medeiros Cavalcante. - Campina Grande,
2020.

54 f. : il. Color.

Dissertagdo (Mestrado em Ciéncia da Computagio) - Universidade
Federal de Campina Grande, Centro de Engenharia Elétrica e Informatica,
2020.

"Orientacdo: Prof. Dr. Andrey Elisio Monteiro Brito".

Referéncias.

1. Computagdo na Nuvem. 2. Computacdo Confidencial. 3.
Privacidade. 4. Intel SGX. 5. PROXY. Provisionamento de Recursos Intel
SGX. L. Brito, Andrey Elisio Monteiro. II. Titulo.

CDU 004.056.53(043)

FICHA CATALOGRAFICA ELABORADA PELA BIBLIOTECARIA ITAPUANA SOARES DIAS CRB-15/93

ENHANCING SECURITY IN CLOUD-BASED STORAGE SERVICES USING EXTENSIBLE
TRANSPARENT PROXIES

LUCAS MEDEIROS CAVALCANTE

DISSERTACAO APROVADA EM 28/10/2020

ANDREY ELISIO MONTEIRO BRITO, Dr., UFCG
Orientador(a)

REINALDO CEZAR DE MORAIS GOMES, Dr., UFCG
Examinador(a)

EDUARDO DE LUCENA FALCAO, Dr., UNIFACISA
Examinador(a)

CAMPINA GRANDE - PB

MINISTERIO DA EDUCACAO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
POS-GRADUACAO CIENCIAS DA COMPUTACAO
Rua Aprigio Veloso, 882, - Bairro Universitario, Campina Grande/PB, CEP 58429-900

FOLHA DE ASSINATURA PARA TESES E DISSERTAGOES

LUCAS MEDEIROS CAVALCANTE

ENHANCING SECURITY IN CLOUD-BASED STORAGE SERVICES USING EXTENSIBLE TRANSPARENT PROXIES

Dissertacdo apresentada ao Programa de Pos-
Graduacdo em Ciéncia da Computacdo como pré-
requisito para obtencdo do titulo de Mestre em
Ciéncia da Computacao

Aprovada em: 28/10/2020

Prof. Dr. ANDREY ELISIO MONTEIRO BRITO, UFCG, Orientador
Prof. Dr. REINALDO CEZAR DE MORAIS GOMES, UFCG, Examinador Interno
Prof. Dr. EDUARDO DE LUCENA FALCAO, UFRN, Examinador Externo

—

eil Documento assinado eletronicamente por REINALDO CEZAR DE MORAIS GOMES, PROFESSOR DO
ﬁlnm;‘ fj_‘] MAGISTERIO SUPERIOR, em 12/01/2022, as 16:29, conforme horario oficial de Brasilia, com
| eletrénica fundamento no art. 89, caput, da Portaria SEI n2 002, de 25 de outubro de 2018.

—

eil Documento assinado eletronicamente por ANDREY ELISIO MONTEIRO BRITO, PROFESSOR 3 GRAU,
;gmm:,. ljj_l] em 13/01/2022, as 10:51, conforme hordério oficial de Brasilia, com fundamento no art. 82, caput, da
| eletrdinica Portaria SEI n2 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por Eduardo de Lucena Falcao, Usudrio Externo, em
13/01/2022, as 15:15, conforme horario oficial de Brasilia, com fundamento no art. 89, caput, da

https://sei.ufcg.edu.br/sei/publicacoes/controlador_publicacoes.php?acao=publicacao_visualizar&id_documento=181846&id_orgao_publicacao=0
https://sei.ufcg.edu.br/sei/publicacoes/controlador_publicacoes.php?acao=publicacao_visualizar&id_documento=181846&id_orgao_publicacao=0

Portaria SElI n2 002, de 25 de outubro de 2018.

1
SEl A
assinatura
eletrfinica

Referéncia: Processo n? 23096.042821/2020-59 SEI n2 2065170

https://sei.ufcg.edu.br/sei/publicacoes/controlador_publicacoes.php?acao=publicacao_visualizar&id_documento=181846&id_orgao_publicacao=0
https://sei.ufcg.edu.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Resumo

A computagdo moderna estd mudando para a nuvem, visto que este ¢ o melhor ambiente para
atender as necessidades do estilo de vida com compartilhamento massivo de dados, que surgiu ap6s a
criacdo dos servigo de redes sociais e, mais recentemente, o aumento esmagador do niimero de com-
putadores pessoais na forma de smartphones. Como consequéncia, existe uma preocupagio cada vez
maior com a seguranca dos dados na nuvem, principalmente quando se considera o uso de provedores
publicos. No entanto, a maioria dos vazamentos que acontecem no armazenamento em nuvem acon-
tece devido a erros humanos cometidos na configuragdo de acesso ou na manipulacio de chaves. A
seguranga também estd em risco quando as ferramentas de andlise de dados sdo comumente utilizadas
para inferir tendéncias em relacdo a individuos.

A comunidade de pesquisa em seguranca da informacao é muito ativa, e abordagens simples, us-
ando criptografia, técnicas de anonimizagdo, e até mesmo privacidade diferencial, t€m sido usadas em
conjunto com Ambientes de Execu¢do Confidvel. Estes constituem a nova solucido de hardware para
trazer confianca aos ambientes em nuvem, prometendo garantias de integridade de dados e cédigo
e confidencialidade até para modelos mais estritos de ameaga. Entretanto, tais solugdes sdo desen-
volvidas para cendrios especificos e para atingir confidencialidade e privacidade, por exemplo, seria
necessdrio encadear vdrias solucdes, resultando em maiores penalizagdes em performance. Além
disso, essas solucdes sdo muito especificas e ndo podem ser usadas com as ferramentas e aplica-
tivos mais comumente utilizadas por usudrios finais. Neste trabalho propomos uma arquitetura para
um proxy seguro e transparente, capaz de executar diversos pipelines customizados, beneficiando-se,
assim, dos algoritmos desenvolvidos pela comunidade em uma unica solu¢do. No contexto desta
pesquisa, usamos SCONE em conjunto com Intel SGX, o que simplifica a construgéo de aplicativos
confidenciais.

Avaliamos nossa solu¢do em relagdo a aplicativos front-end bem conhecidos, como o sistema de
publicar/assinar Apache Kafka e a ferramenta de Business Intelligence Metabase, conectada a duas
das solugdes de armazenamento mais usadas em ambientes de nuvem: o banco de dados NoSQL

MongoDB e a solugdo para armazenamento de objetos MinlO (compativel com Amazon S3).

Abstract

Modern computing is moving to the cloud as it is the best environment to meet the needs of the
data-heavy lifestyle that emerged after the creation of social networking services and more recently
the overwhelming increase in the number of personal computers in the form of smartphones. As
a consequence, there is an ever-growing concern about data security in the cloud, especially when
dealing with public providers. However, most leaks that happen in cloud storage are due to human
error when configuring access or handling keys. Security is also at risk when data analysis tools are
so commonly used to infer trends regarding individuals.

The information security research community is very active and approaches, using cryptography,
anonymization techniques and even differential privacy have been used together with Trusted Exe-
cution Environments (TEE). This novel hardware solution is responsible for bringing trust to cloud
environments, promising guarantees of data and code integrity and confidentiality even in strict threat
models. However, such solutions developed to specific scenarios are not always ideal and to achieve
confidentiality and privacy, for example, one would need to chain multiple solutions, accumulating
more overhead. Moreover, these solutions fail to be usable with the most common tools and appli-
cations used by end-users. In this work, we propose an architecture for a secure, transparent proxy,
able to run many custom pipelines, thus benefiting from the algorithms developed by the research
community in a single solution. In the context of this research, we use SCONE in addition to Intel
SGX, which simplifies building confidential applications.

We evaluate our solution against well-known front-end applications such as the publish/subscribe
system Apache Kafka and the Business Intelligence tool Metabase connected to two of the most used
storage solutions running in Cloud environments, the NoSQL database MongoDB and the Amazon

S3 compatible object storage solution MinlO.

i

Agradecimentos

Durante esses dois anos recebi o suporte de diversos amigos e familiares, dentre eles gostaria de

destacar a contribui¢ao:

e Dos meus primeiros mentores, Georges, Vera, Geraldo, Nina, Getilio, Magna, Leudo e Sirley,
e seus alunos Leticia, Victor, Vinicius, Lais e Rodrigo, que foram essenciais na minha formagao

humana.

e Dos professores que participaram da minha formagdo académica, em especial o meu orienta-
dor Andrey Brito, que me acolheu no LSD e desempenhou os papéis de professor, gerente,

orientador, guru e conselheiro.

e Dos vdrios parceiros que fizeram parte direta e indiretamente dessa jornada, com dicussdes de
valor como, Kaio, Clenimar, Vinha, Fabio, Benardi, Maysa, Lilia, Pablo, Isla, Hugo, Fellype,

Caieu, Rodrigo, Bruno, e varios outros (vocés sabem quem sio :).

e Da tnica pessoa que consegue me aturar guase o tempo todo, Alice Pimentel e também o

suporte da sua familia.

e Da eficiente equipe de suporte do LSD que sempre me ofereceu bastante ajuda.

il

Contents

1 Introduction 1
L1 Motivation o e e e e e e e e 1

1.2 Problem Statement e e 2

1.3 Contributions e e e 3

1.4 Requirements o v i e e e e e e e e 4

1.5 Threat Model e 5

1.6 Chapter OVerview ot e e e 5

2 Background 6
2.1 Privacy e 6
2.1.1 Anonymization e e e e e 7

2.1.2 Differential Privacy 8

2.2 Trusted Execution Environment 8
221 Intel SGX L 9

222 SCONE e 9

3 Related Work 11
3.1 TEESolutions 0 e e e e e e e e 11
3.1.1 Transparent Proxy 11

3.1.2 Securing Server-side 12

3.2 Non-TEE Solutions et e 13
321 DataStorage 13

322 DataProcessing. 14

4 Solution 15
4.1 Architecture 15

v

CONTENTS

4.1.1 ProxXy-SEerver i e e e
412 Proxy-Client e
4.13 Frameand Connection
4.2 PermiSsions e e e e
4.3 Authentication. L. e
4.4 Pipelines. e e
4.5 Leveraging Security with Scone

5 Evaluation

5.1 Experiment Environment
5.2 Object Storage - Kafkaand S3 Buckets
5.2.1 Methodology e
5.22 Resultsand Discussiono o
5.3 Database - Business Intelligence and MongoDB
5.3.1 Methodology
5.3.2 Resultsand Discussion o

6 Conclusion

6.1 SummaryofResults. L
6.2 Future Work e
6.3 Other Achivements o o i i it e e e

A Appendix
A.l Metabase e
A2 MongoDB
A2 1 Security e
A.2.2 Mongo WireProtocol
A3 ApacheKafka L
A4 MinlO e e

A.5 Summary of Limitations

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Secure Proxy Architecture 16
Flowchart Diagram Proxy 17
Class Diagram Proxy-Server 19
Class Diagram Proxy-Client 20
Class Diagram Frame and Connection 21
Use Case Diagram e 22
Permissions File Example 23
Key Derivation Function 24
Class Diagram Pipelines and Permissions 25
Proxy Policy Session e 27
Kafka Dashboard 30
Connectors oo e e e e e e 31
Encrypted S3 sink - Flush Size=1 32
Encrypted S3 sink - 30MB EPC Machine 33
Encrypted S3 sink - SMB EPC Machine 34
Encrypted S3 sink - Flush =1 - 8MB EPC Machine 34
Metabase Dashboard L 36
Metabase Dashboard oL 36
MongoDB Original Collections Overview 37
MongoDB Original Collections Overview 38
Document View - Video Reviews Collection (MongoDB server) 39
Document View - Video Reviews Collection (Proxy server) 39
Rating Bar Chart ID X Rating 40
Rating Bar Chart reviewer X Rating 40
Float query - Integer result (Truncate Pipeline) 43

Vi

LIST OF FIGURES vii

5.16 Year range query (kAnon Pipeline) 44
5.17 Diabetes (Random Response Pipeline) 44
5.18 Encrypted int insert (encryption Pipeline) 45

5.19 Encrypted query range (encryption Pipeline) 45

List of Tables

5.1
5.2
5.3
54
5.5
5.6

Al
A2
A3

VM Configurations o e e e 29
Encrypted S3 sink - 30MB EPC Machine- Median 33
Encrypted S3 sink - SMB EPC-Median 35
YCSB MongoDB - Write-Only Benchmark 41
YCSB MongoDB - Read-Only Benchmark 41
YCSB MongoDB - Read/Write Benchmark (1:1) 42
Structure - Message header L oo 56
Structure - Reply message 57
Summary of Security Limitations 58

viii

Chapter 1

Introduction

1.1 Motivation

From the creation of websites that emphasise user-generated content and ease of use that resulted
in the social networking services at the beginning of the century, to the overwhelming amount of
personal computers that can reach more than 1 per inhabitant in some countries' in the form of
smartphones shapes modern computing around the demands of high availability, instant scalability,
green computing and quick deployments. With these requirements, the best environment for the back-
end to applications is cloud infrastructure. Hence 83% of all corporation workloads will run in a cloud
by 2020, 41% of these in public clouds [13].

With this massive amount of end-user data, stored in remote “easy” to access locations, cloud
applications are a perfect target for adversaries trying to obtain access to confidential user data. Credit
card information, social security numbers, medical data and even geolocation data can be dangerous
to users, exposing them to thefts and stalking. Therefore, there is a growing concern about data
security in cloud environments as there is an increasing number of data leaks, especially the ones
that happened due to user errors or negligence. For instance, the lack of care in the configuration of
Amazon Simple Storage Service (S3)? leads many companies such as CHS Consulting and Verizon to
leak personal information such as passport scans, tax documents, emails, contracts, job applications,
and background checks related to thousands of individuals [64]. Furthermore, some confidential data
should never be stored in public clouds as these environments are not trustworthy and are susceptible

to collusion attacks from its employees.

Thttps://data.worldbank.org/indicator/IT.CEL.SETS.P2
Zhttp://aws.amazon.com/s3/

1.2 Problem Statement 2

Another factor that affects data security is the usage of Data mining tools to infer trends and pat-
terns, especially regarding individuals. Some information must be restricted to protect individual pri-
vacy. The increasing concern with personal data protection leads to the creation of laws imposing data
protection and accountability such as the European General Data Protection Regulation (GDPR) [18]
and the Brazilian “Lei Geral de Prote¢do de Dados” LGPD [19].

The GDPR came to update regulations created in the "90s when people were not sharing private
information for free every minute, and it is called General because it must provide protection and
rights to all individuals from the member countries of the European Union (EU). It outlines reputa-
tional damage and hefty fines for organisations that breach its rules and mishandles user information.
The regulation is extensive and contains 99 individual articles that focus on protecting personal data,
meaning information that allows a living person to be directly, or indirectly, identified from data that
is available, which means that not only to names or addresses but also to less apparent individual data
like IP addresses and cookie identifiers [18].

Although coming from the EU, GDPR can also apply to businesses based outside the region. If a
business in the US, for instance, does business in the EU, then GDPR can be applied as it is a controller
of EU citizens. GDPR is considered a progressive approach to how people’s personally identifiable
data should be handled and lead the creation of regulations across other regions, for instance, the

LGPD in Brazil.

1.2 Problem Statement

Security, as defined in the Merriam-Webster, is “the quality or state of being secure—to be free from
danger.”>. A secure system should have multiple layers of security to protect its operations such as
Physical Security, Operations Security, Network Security and Information Security [61].

This work mainly focuses on increasing Information Security and protecting data from dangers
such as disclosure, destruction and modification.

Confidentiality is one of the basic elements of information security. Confidential information
means protection from disclosure or exposure to unauthorized individuals or systems. Confidentiality
guarantees exclusive access to information to a group of parties with special rights and privileges.
To ensure confidentiality, one need to use all the techniques designed for security like access control,
encryption, authentication and defence against penetration attacks [61].

Securing data from unauthorized modification, corruption, or other disruptive actions against its

3Definition for security: https://www.merriam-webster.com/dictionary/security

1.3 Contributions 3

original state ensures integrity and is the cornerstone of data systems as data has no value if users
cannot verify its probity. Ensuring confidentiality may help protect data integrity as potential attackers
cannot access the data, although authorized parties can disrupt data; additionally, other techniques
such as file hashing can detect if data was compromised.

Availability is another fundamental element in information security. It is vital to make sure that
data access is always available to authorized personnel. Availability in information security means
matching network and computing resources to compute data access and implement a better policy for
disaster recovery purposes [61].

While confidentiality is an all-or-nothing concept, Privacy can be seen as the capacity to control
the amount of information disclosed. Thus, a system considered privacy-friendly, it enables users to
selectively control how much information it shares with other users or systems. When privacy does
not imply confidentiality, it means that accuracy decreased due to some information contained in a
piece of data being reduced, but not wholly obfuscated.

Production-ready information systems such as SQL/NoSQL databases and object storage uses
some techniques that can guarantee some level of confidentiality and integrity. However, these tech-
niques sometimes do not consider security in a cloud environment, and further increasing protection
or tweaking it to a particular use case is discouraged as it involves changes to source code. Further-
more ensuring privacy can be difficult as different data sets have different needs.

A solution to mitigate these problems is to add a intermediate layer of protection, between the
front-end application and back-end cloud storage, that enforces custom rules to obtain data access.
This way, in order to provide access to someone, an organization must first decide which additional
permissions should be granted to a user (e.g., a data analyst) beforehand based on intent. This extends
the default application permissions, thus reducing data leakage from these sources due to misconfig-
uration. Furthermore, to enable multiple processes to be applied that increases data protection of
individuals, the additional layer can act as a Pipeline Engine, ensuring online examination of records
and an extra level of personal data protection by running custom user-defined privacy and anonymiza-

tion algorithms.

1.3 Contributions

This work contributes to the current knowledge on designing transparent proxies for increasing secu-

rity in the following ways:

1. Identifying what the research community is using to increase confidentiality and ensure indi-

1.4 Requirements 4

vidual data protection;

2. Proposing an architecture that enables current and upcoming solutions to be applied, in se-

quence, thus reducing latency and offering flexibility (when compared to similar researches);

3. Testing the proposed solution against different front-end and back-end applications that are

commonly used by companies;
4. Showing the performance overhead of the proposed solution, identifying possible bottlenecks;

5. Outlining improvements to the solution aiming for production usage of the secure proxy;

1.4 Requirements

This work proposes an intermediate system that can enable information security enforcement increas-
ing confidentiality and integrity while keeping both ends (client/target) unaware of such changes. We,

therefore, declare the following requirements for the proposed system:

e Transparency. Data scientists and application developers use many different tools to meet
their need; the most used programs already support connections with many different back-end
storage solutions. The proposed solution must be transparent to both front-end clients and

back-end servers to be used with well-known applications;

o Confidentiality. Protection against data disclosure is one of the most important requirements
of any secure application. The proposed solution must define its threat model and describe how

it is safe from malicious individuals;

e Privacy. New regulations are being created focused on protecting personal data. The solution

proposed must offer an engine that helps data owners protect individual privacy;

e Generalization. The research community is always developing novel techniques that increase
security. The proposed solution must have an extensible pipeline engine to adapt to new devel-

opments in Information Security;

e Usability. Data owners must protect the data even if the measures taken slows down the analy-
sis process. However, we understand that performance is an issue when evaluating the usability
of a particular software; therefore the proposed solution must have a somewhat unnoticeable

performance overhead to a client

1.5 Threat Model 5

1.5 Threat Model

We assume that cloud providers and client users are untrustworthy: although they are conscious of
their reputation and knowledgeable of the implications of data leaks they may not take the necessary
precautions to keep data integrity, therefore misconfigurations, hardware failures, software bugs, mal-
practice and even negligence can all result in data leaks [4]. Under this threat model, we define client
users and cloud providers as “Imperfect and Selfish”, meaning that they are susceptible to accidental
mistakes and selfish about revealing leaks as it could damage their reputation [47]. As they have full
control of the machines running the back-end, data owners can only protect their data by encrypting
it before it reaches the server; thus, data-in-transit must also be protected.

The proxy runs on a trustworthy machine as it runs on a secure SGX enclave, so we inherit the
SGX threat model: Attacker have superuser privileges on the infrastructure where the applications
run, can control the entire software stack, including, but not limited to, operating systems, hypervi-
sors, and cloud computing platform software. In Summary, adversaries have read and write access
to any memory region except the enclave memory (EPC). Adversaries performing side-channel at-
tacks are out of the scope of this solution, although there are some mitigations for side-channel using
SGX [41]. The proxy secures data storage and also individual privacy using security pipelines de-
fined by the data owner, a security expert that understands the privacy risks and uses optimal strategies

developed by the research community.

1.6 Chapter Overview

Chapter 2 contains the background knowledge necessary for a better comprehension of this work,
including concepts, technologies and also information on some well-known applications. Chapter 3
describes the related works to this research. Chapter 4 describes the solution, including the architec-
ture and how we enforce security. In Chapter 5, we test the solution against two different common
scenarios, one more concerned with confidentiality while the other focuses on privacy. Chapter 6
presents the final remarks, including discussion on possible improvements as well as other achieve-

ments.

Chapter 2

Background

2.1 Privacy

The Greek philosophers already had a perception over the division of information as public or private.
Ideas of ownership and possession were already present on ancient cultures; the concept of what
belongs to an individual, family, or even to a community [5]. Socrates division of students in an
initial “inner” circle that engages in a discussion over a theme, therefore generating data, all that
while an “outer” circle of students is limited to observe the discussion analyzing the performance of
the inner circle is in direct correlation with the modern work performed by data analysts when they
interpret statistical information over collected data to obtain business value over it. [46]

The discussion over privacy increased after the many scientific breakthroughs brought by the
Second World War, and in 1962, Alan Westin published the book “Privacy and Freedom”, a result of
his research over the impact of science and technology on privacy [17; 7]. Westin defines privacy as
“the claim of individuals, groups, or institutions to determine for themselves when, how, and to what
extent information about them is communicated to others. Privacy is the voluntary and temporary
withdrawal of a person from the general society through physical or psychological means, either in a
state of solitude or small-group intimacy or, when among larger groups, in a condition of anonymity
or reserve” [60].

The value of privacy as a need for personal autonomy, a human right, outgrows the profit oppor-
tunities of the data industry. Therefore, ensuring personal data protection is a must when dealing with
information security.

In this work, we implemented strategies from two lines of work studied by the privacy protection

research community: Anonymization and Differential Privacy.

2.1 Privacy 7

2.1.1 Anonymization

Data shared among different parties must be anonymized as proper disclosure of information keeps
individual integrity and also continues to have business value. However, sometimes data looks anony-
mous when, in fact, it is not. Data owners, including government agencies, usually remove all explicit
identifiers, such as name, addresses, Social Security Numbers, so that the information can be indis-
criminately shared, thus incorrectly assuming that these identifiers cannot be determined. However,
this technique known as de-identifying provides no guarantee of anonymity [58]. The released data
often contains some public attributes such as birth date, gender and ZIP codes. These attributes are
also known as quasi-identifiers and can be linked to other publicly available databases to re-identify
individuals. This problem was demonstrated when a combination of data from IMDB (Internet Movie
DataBase) and Netflix resulted in revealing private user information [38].

Samarati and Sweeney (1998) proposed a formal foundation for achieving anonymity while ensur-
ing protection against linking attacks and introduced k-anonymity as a characterization of the degree
of data protection against this kind of attack [52]. k-anonymity can be achieved by means of gen-
eralization and suppression of disclosed data, and an algorithm can be used to compute the minimal
generalization of a given table. The k-anonymity requirement is that “Each release of data must be
such that every combination of values of quasi-identifiers can be indistinctly matched to at least k
individuals”. Therefore k-anonymity demands that we generalize individual rows of a dataset into
a group of at least k£ rows and replace the quasi-identifiers of these rows with aggregate (or even
suppressed) quantities, such that it is no longer possible to read the individual values. This charac-
terization protects people by ensuring that an adversary who knows all quasi-identifiers of a person
can only find out which group a person might belong to but not know if the person is indeed in the
dataset.

In this work, our proposed proxy solution implements a pipeline using the Mondrian algorithm for
achieving k-anonymity in a dataset [33], which uses a greedy search algorithm to partition the original
data into smaller and smaller groups. After obtaining the partitions, the values of the quasi-identifiers
and the sensitive attributes in each k-anonymous group are aggregated. Examples of aggregations
performed are, truncation of decimal values and replacing numerical attributes with a range (e.g.

“age: 24-28”) [33].

2.2 Trusted Execution Environment 8

2.1.2 Differential Privacy

The emergence of differential privacy as a formal definition of privacy related to providing robust
privacy assurance to individuals based on adding noise to answers to queries on the data, has revolu-
tionized the field of privacy-preserving data mining [12]. Differential privacy allows general statistical
analysis to be performed in datasets, whilst private information of specific individuals is protected. It
differs from anonymization techniques that are more focused on data publishing using generalization,
while differential privacy uses noise injection and control to allow data mining [21].

Differential privacy algorithms defend against adversaries by adding random noise to the data;
therefore, an adversary is only able to receive inaccurate data that is unable, to an extent to obtain
information about an individual. Even when knowing that data from a singular person is in the
dataset it is very hard or impossible to know which data corresponds to whom [20]. In one hand,
incorporating too much noise can lead to unusable data, on the other hand with every new query
more sensitive information is leaked, thus determining the maximum privacy loss is crucial so that
meaningful privacy is guaranteed, this is called the privacy budget.

In this work, to evaluate how a secure proxy can offer a privacy protection layer, we implemented
a simple algorithm that ensures differential privacy called Randomized Responses Technique [20]
(RTT). Using RTT participants, before answering to a sensitive question like “Have you ever com-
mitted a crime?”’, must first flip a coin, if it lands on heads then the participant must answer truthfully,
if it lands on tails, then the participant throws the coin again and answer “Yes” if it is the result is
head or answer “No” if it lands on tails. This technique allows analysts to make statistical deduc-
tions on data because they know the probability of the coin flip. Also, notice that participants have
refutability on individual responses, even if the data leaks they always can say that their response was

randomized, this also enforces confidentiality [9].

2.2 Trusted Execution Environment

Trusted Execution Environment or TEE is a hardware solution designed to bring security to untrusted
platforms by creating an isolated processing environment in which applications can be securely exe-
cuted, safe from interferences from rest of the system [51].

Different hardware companies have their implementation of Trusted Execution Environments so-
lutions. Intel uses secure memory enclaves with Intel SGX, AMD increases the security of virtualized
environments with Secure Encrypted Virtualization, and similar to SGX, ARM also uses a certain re-

gion to enforce security in the form of ARM TrustZone [45; 30; 14]. In this work, we use the Intel

2.2 Trusted Execution Environment 9

Software Guard Extensions (SGX) as a TEE requirement for untrusted environments with the help of

SCONE (Secure CONtainer Environment) to facilitate the usage of SGX enclaves.

2.2.1 Intel SGX

Intel Software Guard Extensions (SGX) are a set of CPU instructions that enable the creation of
protected memory regions, called enclaves [15]. The access to these regions is shielded even from
processes with root privileges. Developers build SGX-based secure applications by splitting the ar-
chitecture into two parts: An untrusted part that serves as the interface to the program; and the trusted
enclaves. The communication between the trusted and untrusted parts is managed by the SGX driver,
which is itself an untrusted kernel module. The two parts exchange data across well-defined call
gates. The code loaded in the enclave is signed so as to verify that the code being executed is indeed
a genuine application from the developer. The enclave code can be attested locally (on the same
machine) or remotely (on a different machine), making it possible to build secure distributed applica-
tions. When dealing with an adversary that is in control of the hypervisor and the operating system,
deployed software can be susceptible to side-channel attacks, SGX applications are no exceptions to
these attacks, thus affecting both target backends and our proposed proxy solution. However, some
recent works help to mitigate these kinds of attacks: Varys fully protects against all L1/L2 cache

timing attacks and mitigates page table side-channel attacks [41].

2.2.2 SCONE

SCONE (Secure CONtainer Environment) is a software solution that facilitates the execution of se-
cure applications by leveraging SGX enclaves [3]. SCONE is based on a modified version of the libc
musl library, thus allowing applications to be developed without the modification of the source code
that would be necessary when using the Intel SGX SDK.

In contrast with the SGX SDK that limits the support to C and C++, SCONE can be utilized
by other languages that use libc such as Python, GO, Fortran and RUST. The solution proposed in
this work was implemented in RUST, as it provides an ownership feature that makes memory safety
guarantees without needing a garbage collector!. This work could be done in any language supported
by SCONE, we choose RUST for comfort reasons. SCONE relies on the container environment and

is limited to Linux machines with support for Intel SGX.

"https://medium.com/the-innovation/how-microsoft-is-adopting-rust-e0f88 16566ba

2.2 Trusted Execution Environment 10

Scone applications can be attested remotely via CAS. CAS stands for Configuration and Attesta-
tion Service and is able to verify the identity of applications and also works as a secret storage and
provisioning solution, able to inject environment variables, generate keys and provide environment
variables at runtime.

SCONE also features a file encryption mechanism, called FSPF, that supports transparent (mean-
ing that no application code changes are needed to support this) encryption and authentication of files

of the running container root filesystem [8].

Chapter 3

Related Work

Our solution proposes using a transparent proxy running inside a trusted execution environment as
a means of ensuring confidentiality and integrity to general-purpose applications. We compare our
work with solutions also using Intel SGX as a means of creating trustworthy software, as shown in
Section 3.1. The concern with cloud security did not start only after the creation of TEEs; therefore,

we also compare our work with non-TEE solutions in Section 3.2

3.1 TEE Solutions

The concept of TEEs revolves around bringing trust to cloud environments, thus enabling developers
to offer a layer of protection to existing solutions. We noticed that this layer of protection could exist
in the server-side or in-between client and server in the form of a proxy. Therefore, we compare our

work with other proxy-based solutions on Section 3.1.1 and server-side layers on Section 3.1.2.

3.1.1 Transparent Proxy

Adding a transparent layer of protection to existing applications is not a novel solution for security in
cloud environments. There have been several approaches to use TEEs for establishing secure proxies.

Solutions like Troxy and Bloxy integrates Byzantine Fault Tolerance (BFT) solutions to heteroge-
neous systems such as HTTP clients and blockchains infrastructure [34; 50]. Similar to our approach,
they use SGX to leverage a new functionality, a consensus protocol, thus increasing integrity and
availability. Both solutions are built on top of Hyster [6], a hybrid BFT system, and differ mainly on
the use case as Bloxy is tailored for the blockchain use case.

Another solution that is also concerned with integrity is the audit library LibSEAL [4]. With the

11

3.1 TEE Solutions 12

help of Intel SGX, LibSEAL generates an audit log based on client request and service responses,
acting as a termination endpoint for TLS (transport layer security) connections, a service-specific
relational audit log is created and is persisted in an embedded database running inside the TEE.
LibSEAL checks the audit logs for invariants to discover integrity violations and can be used as proof
of SLA (Service Level Agreement) violations for cloud storage solutions such as Dropbox or Google
Drive.

Silva proposes a solution to increase Apache Kafka security that utilizes a proxy component
called “Message Interceptor” responsible for filtering messages sent by publishers and received by
subscribers, and to further increasing Kafka confidentiality, and integrity messages are transparently
encrypted before reaching the server, messages are also decrypted before reaching the consumers [56].
Silva also evaluates the difference in performance brought by his proxy in a non-TEE scenario, using
the Intel SGX SDK and using Scone.

The solutions mentioned above, as other similar solutions we found in the literature, do not ad-
dress all security issues we aim to solve. Furthermore, adding multiple layers of proxies leads to
an avoidable overhead in performance. In our work, we try to provide a custom generic proxy that
relies on stacking user-defined pipelines. This way, one could have, attached to each cloud applica-
tion, a pipeline setup that increases privacy then it creates an audit log and finally it encrypts all the
data before sending it to a not trusted environment, using a single proxy, thus reducing latency and

performance overhead.

3.1.2 Securing Server-side

Another strategy when dealing with not trustworthy environments is to use a secure back-end that can
guarantee confidentiality and integrity even when used in public clouds.

SGX-FS [10] combines the FUSE (filesystem in userspace) [59] framework with an SGX module,
thus benefiting from trusted execution environments security enforcement to create a secure userspace
filesystem. SGX-FS uses a sequence of SGX callbacks for each file system operation (i.e., read, write,
open, etc.), unencrypted blocks are kept inside the enclave and, given the size limit, if they become
too large are encrypted and dumped in the local hard drive.

At a higher level of secure alternatives for data storage PESOS [31] describes an implementation
of an object storage solution for untrusted third-party storage providers that runs inside an enclave and
uses Kinetic Open Storage for trusted storage. PESOS also implements a logic of per-object security
policy specification at a controller level, separate from the storage stack. The PESOS controller

mediates IO operations to ensure that the policies are respected.

3.2 Non-TEE Solutions 13

Another high-level back-end for secure storage is EnclaveDB, a database engine that also utilizes
Intel SGX to store sensitive data such as tables, indexes and metadata [48]. EnclaveDB is an in-
memory database, and it relies on using an ahead-of-time compiler on a trusted machine to compile
queries on sensitive data to native code. The pre-compiled queries are sent to an untrusted machine
running the EnclaveDB executor inside an enclave, that authenticates the query request, runs the
query, encrypts the result and sends it back to the trusted client.

The above solutions try to leverage security at the server-side; therefore, they can be much more
efficient than a proxy-based solution, as there is no latency overhead, and there is more room for
performance optimization. However, the majority of client-side consumer applications, for exam-
ple, Business Intelligence tools such as Microsoft PowerBI[27], are designed to work with well-
established databases (PostgreSQLl, MySQLz), therefore if one would want to use EnclaveDB it
would be necessary to add a custom plugin to PoweBI. The same can be said about PESOS when
we compare it with Amazon S3, as an object storage solution, in terms of overall usability. Having a
proxy-based solution is, therefore a much more flexible solution when we want to leverage security

for commonly used applications.

3.2 Non-TEE Solutions

Not all solutions rely on using trusted execution environments to build confidential applications. In
Section 3.2.1 we discuss works using client-side encryption to ensure confidentiality in cloud storage

and Section 3.2.2 discusses secure processing of sensitive data.

3.2.1 Data Storage

For cloud data storage, using a trusted computer for encryption before sending data to the cloud can
ensure data confidentiality. MetaCloudDataStorage proposes an architecture for efficient encryption
to protect big data in cloud environments. MetaCloudDataStorage [36] runs in a trusted environment
and partitions the data, encrypts and finally stores it in many different data providers, therefore reduc-
ing the amount of data encrypted at once and also increasing data protection against malicious cloud
administrators.

Zardari et al. proposes using a K-NN algorithm to classify data between sensitive and non-

sensitive (public), and advocates that only sensitive data should be encrypted and therefore stored in

Thttps://www.postgresgl.org
Zhttps://www.mysql.com

3.2 Non-TEE Solutions 14

a different virtual machine than the non-encrypted public data that is stored unencrypted [63]. The
authors proceed to show the proposed approach in a simulated environment, however they do not
evaluate the difference in computational costs between their solution versus encrypting all the data,
also the costs of classifying all the data and decrypting some of it versus decrypting all the data.

It is important to notice that simply encrypting data before storing it in an untrusted environment
is not an ideal solution as keys can be lost, mistakenly leaked or extracted by a malicious user. A
combination of other authentication methods can be used to further extend confidentiality, such as a
two-factor data protection mechanism [62]. The process of encryption and decryption can even be
performed in multiple computers. Also, Having to depend on a trusted environment is by itself
a security flaw Furthermore, such solutions are very centralized and seem to be difficult to scale.
Therefore, creating a security proxy able to run in an untrusted cloud environment that offers TEE

hardware has an inherent scalability potential.

3.2.2 Data Processing

Public Clouds offers easier access to a wide range of powerful processing and analytical tools [2].
However, these environments are not trustworthy, and many industries such as the healthcare system
cannot rely on them to safely compute sensitive data [43].

A solution for this problem is the usage of Homomorphic Encryption (HE), allowing specific
computation to be performed on encrypted data, without the need for decryption [25; 11]. One of the
first works on privacy-preserving machine learning by Lindell and Pinkas, discuss the applicability of
a secure multiparty computation (SMC) protocol as a means of computing ID3 (a basic algorithm for

constructing decision trees) using homomorphic encryption [35].

Chapter 4

Solution

This chapter describes the components of the proposed solution: the Architecture Overview (Sec.
4.1), consisting in the proxy server components, a model structure for defining wire protocols and
how to define permissions for clients; the Pipelines (Sec. 4.4) showing how to integrate custom

pipelines enabling different security and privacy preserving algorithms to be applied.

4.1 Architecture

Our proposed solution is an implementation of a transparent proxy server that applies custom
pipelines that can be applied at the client or server side. Figure 4.1 describes the architecture proposed

in this work, and Figure 4.2 furthers describes the workflow.

15

4.1 Architecture 16

Figure 4.1: Secure Proxy Architecture

"§SecurityF'roxy§m""mmm_'"‘u‘

| PipelineEngine

B ProxyServer : | ProxyClient |

S S —> ¢

1

Fﬁ:nt-ehd
Applications

Back-end

4 2 3 Servers

w (0]

Authentication PermissionFlle i

We consider that Front-End Application users (application developers, data scientists, etc.) are
not trustworthy, as they can perform mistakes. The arrow labeled with “1” describes the first step,
common to traditional proxies, when the front-end application connects to a proxy that is acting as a
server. Step 2 of a secure proxy must be a proxy authentication, different from back-end authentica-
tion; mitigating the effect of leaked keys. Step 3 can be considered one of the cores of our solution
and is where the security Pipelines are run, following what is described in a Permission file, written
by the data owner. In Step 4, the proxy acting as a client communicates with the back-end. Additional
pipelines can be run on the back-end response, at Step 5. Finally, at Step 6 the front-end receives the

secure message.

4.1 Architecture

17

Figure 4.2: Flowchart Diagram Proxy

Send
Client
Message

Check
Permissions
File

Client-side
Pipelines

TRUE

Apply
Pipeline

Send

FALSE

Message |g
to

Backend

4

Receive
Backend
Response

Server-side
Pipelines

TRUE

Apply
Pipeline

Send

to Client

Response g

FALSE

As any transparent proxy should do, our solutions start by receiving client messages, acting as if

it is the target server. Then, it checks the stored client permissions file, so it knows which security

enforcement will be applied in the form of pipelines. Some security algorithms can be applied directly

in this client message, as to protect the data before it reaches the untrusted back-end. An example of

a client-side pipeline that increases data confidentiality is an encryption algorithm. Therefore, before

sending the message to the real server, client-side pipelines are run.

Sometimes one may want to apply extra layers of security at once, so the proxy should be able to

allow pipelines to applied in sequence, for example, to reduce user access to a particular database a

4.1 Architecture 18

pipeline could check the complexity of a query applied to a database. Another pipeline could change
the SELECT statement of a query to reduce the spectrum of the projections, and finally, the last
pipeline can keep track of the number of queries performed by the client in order to prevent query
replay attacks. After the pipeline loop ends the client message is sent to the untrustworthy back-end.
If a pipeline fails, the client gets no response. The proxy now is acting as if it is the real client.
Notice that being both transparent to the Client and Server is essential for our solution as one of the
main objectives is to be a flexible solution that can be used together with the most common software
solutions used in cloud environments.

Now the proxy has the opportunity to apply pipelines before sending the response back to the
client. These are called server-side pipelines. In opposition to what happens with the client-side
pipelines, that enforces security because they do not trust the back-end cloud environment, the server-
side pipelines, in general, exist because the user managing the client is untrustworthy. This step is
where most of the privacy-preserving techniques should be applied, and algorithms should be able
even to erase all the response, if some unavoidable leak potential is detected. Server-side pipelines
can also be applied in sequence. The final step is to send the filtered response back to the client,
ending the workflow of the proxy.

The following subsections will detail each of the core proxy components, showing how they relate

to each other.

4.1.1 Proxy-Server

A Listener state is created by the Server and has a Rust-Tokio ! TCPListener. The Listener has
a run method responsible for listening for inbound connections and spawn a task to process each
connection. Tokio tasks are like asynchronous green threads and are executed concurrently. The
accept method is responsible for accepting inbound connections. Errors are handled by backing off
and retrying. An exponential backoff strategy is used. After the first failure, the task waits for 1
second. After the second failure, the task waits for 2 seconds. Each subsequent failure doubles the
wait time. If accepting fails on the 6th try after waiting for 64 seconds, then this function returns with

an error, we decided that this was a fair amount of tries before dropping the connection.

Thttps://tokio.rs

4.1 Architecture 19

Figure 4.3: Class Diagram Proxy-Server

Server
MongoServer

+run(tcpListener, Shutdown): Result<T> <}\ +server_version
+op_reply(): Result<Option<Bytes>>

HTTPServer
Eistanar +headers: vec<pair<string;string>>
+listener: tcpListener +response _
+limit_connections: Arc<Semaphore> +status_message: pair<string;int>

+notify_shutdown: broadcast<Sender<T>>

+encode(response, buffer)

+run(self): Result<T>
+accept(self): Result<tcpStream>

Handler

+connection: Connection
+limit_connections: Arc<Semaphore>
+shutdown: Shutdown
-shutdown_complete: mspc<Sender<T>>

+run(self): Result<T>

A Semaphore is used to limit the max number of connections. Before attempting to accept a new
connection, a permit is acquired from the semaphore. If none are available, the Listener waits for one.
The Listener is also able to broadcast a shutdown signal to all active connections, in case of proxy
termination. The Server run caller provides the initial “shutdown” trigger.

For each connection, the Listener has a Handler reading requests from its connection and ap-
plying commands to its buffer. A connection represents a TCP connection decorated with the desired
protocol encoder/decoder. This protocol can be an HTTP 1.1 implementation or even represent the
MongoDB Wire Protocol. Section 4.1.3 have further details on Connections. The Handler is respon-
sible for returning the permit to the Listener when it completes the processing of a connection so that

it can receive more connections.

4.1.2 Proxy-Client

Backed by a single tokio TcpStream, Client provides basic network client functionality. Connections

are established using the connect function.

4.1 Architecture 20

Figure 4.4: Class Diagram Proxy-Client

Client

+connection: Connection

+connect(): Result<Client>

MongoClient

+op_guery(): Result<Option<BSON>>
+op_getmore(): Result<Option<BSON>>
+op_update(BSON): Result<T>
+op_insert(BSON): Result<T>
+op_delete(BSON): Result<T>

When a Listener receives an inbound connection, the TcpStream is passed to a new Connection,
which initializes the associated buffers. The connection allows the handler to operate at the Frame
level and keep the byte level protocol parsing details encapsulated in Connection. The relationship
between Frame and Connection is further explained in subsection 4.1.3.

The TCP connection is decorated with the appropriate protocol encoder/decoder and uses a
buffered TcpStream. Figure 4.4 describes an example of a MongoDB Client. Observe that op_query,
op_getmore op_update, op_insert and op_delete are all operations described by the MongoDB Wire
Protocol and all these requests are issued using the various methods of the decorated MongoDB

Client.

4.1.3 Frame and Connection

We decided, in this implementation that protocols must be modeled using an intermediate represen-
tation. In this proposed architecture we created the Frame abstraction to represent these structures.

Frames also provide utilities for parsing frames from a byte array.

4.1 Architecture 21

Figure 4.5: Class Diagram Frame and Connection

«Interface» Connection
Frame

+stream: BufWriter<TcpStream>
+buffer: BytesMut

+put_string(String)

+put_integer(integer) +new(TcpStream): Connection
+put_bytes(Bytes) +read_frame(): Result<Option<Frame>
+get_int(array): Some<Integer>> +parse_frame(): Result<Option<Frame>>
+get_string(array): Some<str>> +write_frame(Frame): Result<T>
+get_Bytes(array): Some<Bytes>> +write_value(Frame): Result<T>
A
MongoFrame

+message_length: Integer
+request_id: Integer
+response_to: Integer
+opcode: Integer

+update_length(Integer): Result<T>

MongoFrameQuery MongoFrameReply
+flags: Integer +response_flags: Integer
+collection_name: String +cursor_id: Integer
+number_to_skip: Integer +starting_from: integer
+number_to_return: Integer +number_returned: integer
+query: BSON +documents: Array<BSON>

+ .
mplector Bak +update_cursor_id(): Integer

+update_query(BSON): Result<> +update_starting_from()
+update_selector(BSON): Result<> +update_number_returned()

Connection is responsible for sending and receiving Frame values from a remote peer. When
implementing networking protocols, a message on that protocol is often composed of several smaller
messages known as frames. The purpose of Connection is to read and write frames on the underlying
TcpStream.

To read frames, the Connection uses an internal buffer, which is filled up until there are enough
bytes to create a full frame. Once this happens, the Connection creates the frame and returns it to
the caller. When sending frames, the frame is first encoded into the write buffer. The contents of the
write buffer are then written to the socket.

Figure 4.5 describes the relationship between Frame and Connection as well as depicts an im-
plementation of a MongoDB frame in the form of MongoFrame. In MongoDB query and reply
frames are quite different so we divided the implementation between MongoFrameQuery and Mon-

goFrameReply.

4.2 Permissions 22

4.2 Permissions

As shown in the flowchart diagram (Figure 4.2) before running the pipelines, our proxy solution
checks for the permission file of the user behind the client. Figure 4.6 shows an example of how data
analysts can use the proxy to access the untrusted target back-end, and data owners can configure said

access for each analyst.

Figure 4.6: Use Case Diagram

Security Proxy

Authenticate with Proxy Authenticate with Backend
«include» .7 \
Acess Backend .‘f?fl_e.r,!d”> ™
T = Get Data «includes» Backsid
L 2 acl
k) _f‘EXte"d” Apply Pipelines
\ «include»-, «include»

ey,

b o «extend» ','J
% Update Data +{if in permissions}}

5 /' +{ifin permissions}*,
Check Permissions
Encrypts Data Enforces Privacy
% ey Create Client Permissions

Data Owner

«extend» .

Data Analyst

As shown in figure 4.6 permissions are uploaded by the data owner that wants to protect the data
that is stored in an untrusted environment and analyzed by an untrusted user.

Each dataset has its characteristics. Therefore, the one with the best understanding of the data and
its characteristics is the data owner. We provide a solution architecture for enabling further security
measures to be applied transparently and although some general-purpose solutions for confidentiality,
for example, data encryption, can be performed with no knowledge of the data content, some solu-
tions, especially the ones that deal with privacy-preserving techniques, are dependent on knowledge
over the data. Therefore, its the responsibility of the data owner to choose the appropriate methods
(pipelines) that will meet the security level desired. The proxy is then only considered transparent on

the perspective of the client (front-end) users.

4.2 Permissions 23

Figure 4.7: Permissions File Example

{
"permissions":{
"collections": [

{
"name":"SampleCollections.video_reviews",
“trusted_tables": [

"rating",
Ildatell
1,

"allowed_pipelines": [
"kanon_floor":{
Wiettarghe

"tables":"rating"
}
}
1

}l

{
"name":"SampleCollections.video_movies",
“"trusted_tables": [

“title™,
Ilyearll
1

bs

1
"name":"SampleCollections.Sakilla_actors",
"trusted_tables": [

"FirstName",
"LastName"
]J
"allowed_pipelines": [
"record_supression": [
llphonell'
"address"
1
}
1
}
1
}s
"user_id":"lucas"
b

As shown in figure 4.7 Permissions are described in a JSON file format, and should be de-
fined for each user. The privacy proxy has a Permission interface that needs to be implemented
for each target backend. In this example, the permission file is for a MongoDB backend and describes
the permissions for the user_id “lucas”. This user have access to the following MongoDB collec-
tions: “SampleCollections.video_reviews”, “SampleCollections.video_movies” and “SampleCollec-
tions.Sakilla_actors”. Whenever a query targeting “SampleCollections.video_reviews” (a collection
of movie reviews done by users of a movie rental service) is performed, the projection is reduced
to only show the columns rating and date as shown in the field “trusted_tables”. Furthermore, the
MongoDB result goes through a anonymization pipeline called kanon_floor, with parameters k = 3

and column = “rating”.

4.3 Authentication 24

4.3 Authentication

Our solution revolves around dealing with the untrustworthy cloud environment as well as the un-
trustworthy user behind the client.Clients should not be trusted as the many of the Amazon AWS data
leaks are due to misuse and misconfiguration [64], thus indication a flaw.

At a daily basis, users are sending by mistake API access secrets to public sources such as GitHub
2. Therefore, in our proxy solution we decided to implement an authentication layer to the proxy that

encapsulates the authentication to the target back-end.

Figure 4.8: Key Derivation Function

Secure Proxy

?—> ?+sm+=& _ %

Proxy Key
Secret -

Backend

Figure 4.8 shows the process in which a hashed key is created by the proxy to be used as the
real authentication secret. A Key Derivation Function (KDF), also known as password stretching is
a common technique used in cryptographic applications to create hardened passwords based on the
number of random bytes used as additional input, commonly called “Salt”.

Using KDF as the authentication method for the proxy further protects the data from mistakes
that could be performed by a user. Leaking the Proxy Secret only allows a malicious individual to
have access to the proxy, protecting the backend. Additionally, to establish a connection to the proxy,
a client also needs to perform a certificate-based authentication, as the communication with the proxy

is protected by Transport Layer Security (TLS).

4.4 Pipelines

The proposed proxy leverages pipelines as a solution for the generalization of security layers for
back-end connection. Different applications have distinct needs for security, therefore it is a must that
our solution provides an easy way to extend the pipeline set, and also provides seamless integration

with the Permission component.

Zhttps://github.com

4.4 Pipelines 25

Figure 4.9: Class Diagram Pipelines and Permissions

Permission

+user_id: String PermissionParser
+cspipelines: Array
+sspipelines: Array

+permission_file: File

+parse(PermissionParser): Permission 4

JSONParser

+parse_json(file): Permission

«Interface»
Frame
- +cspipelines: Array
sinterfacey +sspipelines: Array
Pipeline
e L L +put_string(String)
+run(): Frame +put_integer(Integer)
+put_bytes(Bytes)
i ™ +get_int(array): Some<integer>>
/ % +get_string(array): Some<str>>
| kY +get_Bytes(array): Some<Bytes>>
B -run_cspipelines(array): Frame
¢ -run_sspipelines(array): Frame
EncryptionPipeline DecryptionPipeline
+key: String +key: String
+size: Integer +size: Integer
+plaintext: String +cypher: String
+run(): Frame +run(): Frame
+encrypt(): String +decrypt(): String

Figure 4.9 depicts a cut of the relationship between Pipeline, Permission and Frames. After
parsing the Permission file, the proxy automatically creates an array of Pipelines, both for client-side
and server-side Pipelines. Pipelines are seamlessly run by an internal call of run_cspipelines and
run_sspipelines.

Pipelines can be extended by implementing the Pipeline interface (trait for rustaceans). In this
example, it is possible to see an implementation of a client-side pipeline, in the form of Encryption-
Pipeline, and a server-side pipeline, in the form of DecryptionPipeline.

Uploading a Permission file describing a Pipeline that is not yet implemented raises an error. Sim-
ilarly, parameters described in a Permission file that are not described in the implemented Pipelines
also raises an error. Runtime erros in the Proxy are reported to the client and logged, but proxy failure

handling is not one of the objectives of this work

4.5 Leveraging Security with Scone 26

4.5 Leveraging Security with Scone

The described architecture can be used to protect the data from being misused by an ordinary user
(i.e. a data analyst) and also enforces the security by increasing confidentiality and integrity when
considering backends deployed in a cloud environment with untrustworthy servers. However, the
secure proxy itself is susceptible to many forms of attacks. In section 1.5, we defined a threat model
for our solution, identifying and prioritizing potential threats. We then mitigate these issues by using
SGX and Scone to enhance security, even when considering scenarios such as deploying the proxy
in an untrustworthy cloud environment. In our case, the secure proxy can be used as an encryption
mechanism. Furthermore, the communication between client and proxy and between proxy and server
is protected via TLS.

The proxy could be deployed in a trusted environment, thus protecting from adversaries that have
access to the system memory. However, this is an unrealistic scenario and a nuisance for ease of
access and scalability. Therefore, we consider that our solution should run in a TEE and due to being
able to simplify application usage of Intel SGX we built a version of the secure proxy with SCONE.

Our solution utilises the SCONE Configuration and Attestation Service (CAS) as a means of
attesting the secure proxy, storing application secrets and managing FSPF volumes. Therefore we
define a policy session for the secure proxy and upload it to CAS. Figure 4.10 shows an example of

policy that can be used.

4.5 Leveraging Security with Scone

27

Figure 4.10: Proxy Policy Session

name: proxy_policf
version: "@.2"

services:

name: proxy
image_name: proxy-service

command: ./secure_proxy -h 127.0.0.1:8081 -p 8080
mrenclaves: [$MRENCLAVE]

pwd: /

fspf_path: /fspf.pb

fspf_key: "$FSPF_KEY"

fspf_tag: "$FSPF_TAG"

images:

name: proxy_service
volumes:
- name: encrypted_permissions_volume
path: /permissions
injection_files:
— path: /etc/ca.crt
content: $$SCONE::PROXY_CA_CERT.chain$$
— patht /Jetc/server.crt
content: $$SCONE::proxy.crts
- path: /etc/server.key
content: $$SCONE::proxy.key$$
— patht Jfete/clignt.ert
content: $$SCONE::PROXY_CLIENT_CERT.crts$$
- path: /etc/client.key
content: $$SCONE: :PROXY_CLIENT_CERT.key$$

secrets:

name: proxy-key

kind: private-key

name: proxy

private_key: proxy-key

issuer: PROXY_CA_CERT

kind: x509

name: PROXY_CLIENT_KEY

kind: private-key

export:

— session: $PROXY_SIMPLECLIENT
name: PROXY_CLIENT_CERT
private_key: PROXY_CLIENT_KEY
issuer: PROXY_CA_CERT
common_name: PROXY_CLIENT_CERT
kind: x509

export:

— session: $PROXY_SIMPLECLIENT
name: PROXY_CA_KEY

kind: private-key

name: PROXY_CA_CERT

kind: x509-ca

common_name: PROXY_CA
private_key: PROXY_CA_KEY
export:

— session: $PROXY_SIMPLECLIENT

volumes:

name: encrypted_permissions_volume

Chapter 5

Evaluation

To better illustrate the interaction between the users of the proposed proxy solution, namely the data
owner and the data analyst, with the system and also how the system itself manages front-end
requests and back-end responses to meet the security requirements stipulated by the data owner, we
then define two distinct Scenarios for data security on cloud environments. Section 5.2 describes how
to protect data from a Kafka Server stored at an Object Storage solution in the form of S3 Buckets
using encryption pipelines. Section 5.3 further utilises pipelines in a Business Intelligence scenario

to protect privacy in a remote MongoDB database.

5.1 Experiment Environment

The evaluation used four different virtual machines (VMs) launched in a private cloud environment
at UFCG. The virtual machines have been tested with the popular I/O benchmark FIO' and reported
2910 IOPS and 11.9MB/s writing speed. There were two different proxies deployed, one in a 30MB
EPC machine and on in a 8MB EPC machine. Table 5.1 describes each flavour configuration. Sam-
paio (2018) described how to configure a OpenStack cloud environment to use Intel SGX for virtual-

ization [53].

'https://fio.readthedocs.io/en/latest/fiogoc.html

28

5.2 Object Storage - Kafka and S3 Buckets 29

Table 5.1: VM Configurations

vCPU RAM EPC

4 8GB 30MB
4 8GB 8MB
4 8GB OMB

5.2 Object Storage - Kafka and S3 Buckets

A simple use for our solution is as an encryption/decryption proxy as a means of enabling confiden-
tiality in cloud-based data storage solutions such as an object storage back-end. This kind of storage
is used as an easy way to store data coming from many different applications such as websites, mobile
apps, backups, IoT devices, and big data analysis.

Amazon S3 is one of the most used object storage solutions; huge companies such as Netflix use
S3 as a means of cloud storage [1]. However, despite access to S3 storage abstraction, named S3
Bucket, being private by default and only accessible through a secret key leaked data is very common
and millions of records have been compromised already [16; 54; 55]. These incidents happen mainly
due to “human error” in security configuration on cloud servers; accidental misconfigurations leads
to private settings being changed to public. Furthermore, as we mentioned before, even the cloud
provider should not be trusted, being imperfect and susceptible to mistakes and even collusion.

To avoid these leaks from happening and also protect data from inside attacks, one can choose to
only store encrypted data on the cloud. The problem is that every front-end application storing data
would need to implement an encryption algorithm before sending the data, and front-end application
would need to decrypt this data before putting it to use. Moreover, encryption keys should not be used
in untrusted environments. This is a perfect scenario to show how can a transparent proxy to solve
this issue.

The Amazon S3 responds to REST API calls, therefore to connect it as a back-end to the proxy we
had to implement support for the HTTP protocol, meaning the creation of a HttpFrame, HttpClient
and a HttpServer. We also implemented an client-side pipeline EncryptionPipeline that encrypts all
the messages sent by the Proxy-Client and a server-side pipeline DecryptionPipeline able to decrypt

responses from the Proxy-Server. Encryption is done using AES-GCM with 256 bits key with the

5.2 Object Storage - Kafka and S3 Buckets 30

help of Rust library “aes_gcm” 2.

We had at our disposal a private cloud infrastructure, so instead of using an AWS S3 server, we
used MinlO as our object storage. MinlO is an Open Source high-performance object storage that is
designed to be fully compatible with the S3 API.

It is in our best interest to test our proxy against well-known software components in a scenario
as realistic as possible, this way we can have a better view of the performance overhead and also see
that these applications are unaware of the proxy existence, showing the flexibility of our solution. We

will be connecting our proxy to Kafka, one of the most used Open Source streaming platforms.

Figure 5.1: Kafka Dashboard

(; CONFLUENT

oo

co
W Overview

Brokers

Be CONTROLCENTER.CLUS..

Brokers overview

Production Consumption

1.7k —L 3.43M —an L

bytes / second bytes / second

Topics
Connect
ksqlDB
Consumers

Partitioning and replication

Replicators

Cluster settings 5 8 1 47 1 47
Active controller ZooKeeper
broker.id 1 Yes

Kafka has a component called Kafka Connect, able to facilitate the connection between Kafka
and other systems, such as databases, key-value stores, search indexes, and file systems 3. When used
to pull data from an external system, the connector is called a Source and is more commonly used to
store metrics and do stream processing. A connector that pushes data to an external system is called
Sink and is often used for offline analysis with map-reduce solutions or as a secondary index and
backup, i.e when connected to an S3 Bucket.

In summary, our scenario describes the use of Apache Kafka, a distributed streaming platform,
and this Kafka will have a S3-Sink connector that is used to backup data from topics in an S3 Bucket.
The Sink will never directly connect to the cloud storage; instead, it will be sending requests to a

secure proxy that will encrypt every message sent to the untrusted cloud storage (MinlO). The Proxy

Zhttps://docs.rs/aes-gem/0.7.0/aes_gem/
3https://docs.confluent.io/current/connect/index.html

5.2 Object Storage - Kafka and S3 Buckets 31

runs in a VM with Intel SGX hardware. Therefore, Kafka is the untrusted front-end client connected
to the Proxy, running in a VM, and the cloud storage is the back-end, residing in an untrusted server.

We created three buckets, “Direct” will receive data from Kafka directly. “Proxy-Native” will
only receive data coming through a secure proxy running in native mode (outside an enclave), and
finally, “Proxy-Scone” that receives data from the secure Proxy running inside an enclave with the

help of SCONE.

Figure 5.2: Connectors

() CONFLUENT
Connectors
oo Overview
8B
co Brokers
Cluster 1
.
opies Connectors
Connect 3 3 O O O

ksqlDB Total Running Degraded Failed Paused

Consumers

Replicators Filter by category + Add connector] [T Upload connector config file

Cluster settings

Status Name Category Plugin name Topics Num
Running scone-sink Sink S3SinkConnector string-topic 1
Running native-sink Sink S3SinkConnector string-topic 1

Running direct-sink Sink S3SinkConnector string-topic 1

5.2.1 Methodology

It is possible to configure the size of the batch sent by the sink to the S3 bucket, and this is named the
flush size. We decided to run an experiment with an increasing flush size so we can see the difference
in performance between the three sinks. In this experiment, each message sent to Kafka has a size
of 1.5KB, and we used flush sizes of 1, 10, 100 and 1000, this means that objects of 1.5KB, 15KB,
150KB and 1500KB are sent to each S3 bucket, respectively.

To send messages to Kafka, we used the benchmarking tool kafka-producer-perf-test, that simu-
lates a Kafka producer and is a commonly used tool for evaluating throughput and latency. However,
the throughput we are interested in is between the S3 Sink connector and the MinlO S3 bucket; for
that, we collect the metrics provided by Kafka using Java Management Extensions (JMX).

The design of experiment evaluates different sink types as a factor {direct; proxy-native; proxy-
scone} representing respectively a sink directly connected to MinlO, a sink connected to a secure

proxy running in native mode, and a sink connected to a secure proxy running in SCONE. The other

5.2 Object Storage - Kafka and S3 Buckets 32

factor is the flush size {1;10;100; 1000} and the response variable is the throughput. The experi-

ments were run 15 times at different times of the day to mitigate the effect of cloud network usage.

5.2.2 Results and Discussion

In this first experiment (Figure 5.4, Table 5.2), we can see that the direct connection to the MinlO
scales with the flush size. This is a good indicator the MinlO cluster is not bottlenecked by disk
performance, in these scenarios. In Figure 5.3, we zoomed in when the flush sized is equal to 1 to
better observe the difference in performance.We also can see that the native proxy adds a performance
overhead, most of it due to the encryption pipeline, and maintains a good scalability level of the direct
connection. However we can see that the Scone proxy does not scale very well. SGX applications are
limited by the size of the EPC memory, so we decided to reduce the EPC size in order to see if this

was the bottleneck.

Figure 5.3: Encrypted S3 sink - Flush Size =1

90 |

80

0] |

Throughput (msgs/s)

60

50

direct native scone
Connection

5.2 Object Storage - Kafka and S3 Buckets

33

Figure 5.4: Encrypted S3 sink - 30MB EPC Machine

15000 -

10000 -

5000

Throughput (msgs/s)

label
direct
—o— native

scone

Flush Size

1000

Table 5.2: Encrypted S3 sink - 30MB EPC Machine- Median

Sink Flush size Messages/sec
Direct 1 81
Direct 10 902
Direct 100 6267
Direct 1000 14381
Proxy-Native 1 68
Proxy-Native 10 838
Proxy-Native 100 5927
Proxy-Native 1000 12653
Proxy-Scone 1 51
Proxy-Scone 10 662
Proxy-Scone 100 3035
Proxy-Scone 1000 3944

We reduced the EPC size to 8MB, and run the same experiments (Figure 5.5). Now, the appli-

cation is already bottlenecked at flush size 10, further indicating that EPC memory is the bottleneck

5.2 Object Storage - Kafka and S3 Buckets 34

for this encryption pipeline. Although in this scenario this limitation seems to hinder the scalability
potential of the proxy solution, enclaves dedicated physical memory is limited today to 256 MB, we
do not have these machines at our disposal in UFCG private cloud, furthermore EPC size is expected

to grow to be better suited for cloud computing [29; 42].

Figure 5.5: Encrypted S3 sink - SMB EPC Machine

10000 -

label
direct

—8— native

scone
5000 -

Throughput (msgs/s)

] 10 100 1000
Flush size

Figure 5.6: Encrypted S3 sink - Flush = 1 - 8MB EPC Machine

90 ‘

80

70

Throughput (msgs/s)

60

50

direct native scone
Connection

5.3 Database - Business Intelligence and MongoDB

35

Table 5.3: Encrypted S3 sink - SMB EPC- Median

Sink Flush size Messages/sec
Direct 1 98
Direct 10 897
Direct 100 6259
Direct 1000 13956
Proxy-Native 1 78
Proxy-Native 10 741
Proxy-Native 100 5019
Proxy-Native 1000 11160
Proxy-Scone 1 51
Proxy-Scone 10 423
Proxy-Scone 100 419
Proxy-Scone 1000 421

5.3 Database - Business Intelligence and MongoDB

To demonstrate how a proxy-based solution can add a privacy-preserving layer of security, we outline
a Business Intelligence scenario, and for that, we choose Metabase as our front-end application.
Users can summarize and visualize data, even not knowing SQL/NoSQL as they do not need to
write queries. Metabase can be connected to SQL, H2, MongoDB, Amazon Redshift, BigQuery and
many other databases. In this scenario, the back-end database connected to Metabase is a MongoDB
instance running in the cloud.

MongoDB is a general-purpose, document-based, distributed database [28], supporting end-to-
end encryption and role-based access control. Natively, MongoDB has no privacy guarantees, neither
it should as preserving privacy is impossible without knowledge of the nature of the data. With a
secure proxy, one can add anonymization and privacy-preserving algorithms as pipelines, data will
be changed in a transparent fashion, and the client application can never know the information in the
original data.

We connected a Metabase instance to a MongoDB server directly, calling the database “mongo-

orignal”, and also connected to a secure proxy, calling it “mongo-secure-proxy”’, running anonymiza-

5.3 Database - Business Intelligence and MongoDB 36

tion and privacy preserving pipelines. Figures 5.7 and 5.8 picture Metabase Ul and the connected

databases.

Figure 5.7: Metabase Dashboard

Q Ssearch... + Askaquestion i BrowseData + B £

OUR DATA W Learn about our data
- - -
— — =
mongo-original mongo-secure-proxy Sample Dataset

Figure 5.8: Metabase Dashboard

X Metabase Admin Settings People DataModel Databases Permissions Troubleshooting

Databases Add database
Name Engine
mongo-original MongoDB

mongo-secure-proxy MongoDB

5.3 Database - Business Intelligence and MongoDB 37

The sample database used has many collections as pictured in Figure 5.9. In this example we
configured the proxy so that the client only has a access to a subset of these collections as seen in
figure 5.10, this is done by selecting the desired collection in the permissions and enabling the access

control pipeline for MongoDB collections.

Figure 5.9: MongoDB Original Collections Overview

Q Search... 4 Askagquestion i Browse Data + B %

OURDATA > MONGO-ORIGINAL @ Learn about our data
25 And Sorted Test £ Crunch Base Database i DbEnvyLoad Customers
i DbEnvyLoad Orders £ DbEnvyLoad Products f5 EnronMessages
i Graph Test Small Gt Est £ MongoMartCart f5 MongoMart Item
£ SakilaActors B SakilaCustomers f5 sakiLaFilms
555 Samples Friends B samples Pokemon i SavedPlans

252 Video Movie Details B8 Video Movies ¥ VideoReviews

5.3 Database - Business Intelligence and MongoDB 38

Figure 5.10: MongoDB Original Collections Overview

Q Search... <4 Askaquestion i BrowseData -+ B o

OURDATA MONGO-SECURE-PROXY # Learn about our data
5% AndSorted Test B85 Crunch Base Database f8 MongoMart Cart
¥ MongoMart Item B85 sakilaActors #58 SakiLaCustomers
5% sakilaFilms B85 samples Friends #8 Samples Pokemon
5% Video Movie Details B2 Video Movies ¥ VideoReviews

Figure 5.11 shows the result of querying all documents in the “Video Reviews” collection. This
collection contains data about movie reviews made by users of a video rental company. Displaying
user names can be considered as a privacy violation, also the review date and the rating can be used
as Quasi-identifiers to single out users. Enabling an anonymization pipeline in the server can increase
the user privacy by hiding some of this information. Figure 5.12 shows how the documents are

transparently reported to Metabase with enforced privacy techniques.

5.3 Database - Business Intelligence and MongoDB

Figure 5.11: Document View - Video Reviews Collection (MongoDB server)

Q Search...

<4 Askaquestion

mongo-original
D
56951f4d05388292132939a6
56951f4d05388292132939a7
56951f4d05388292132939a8
56951f4d05388292132939a9
56951f4d05388292132939%aa
56951f4d0538829213293%ab
56951f4d0538829213293%ac
56951f4d0538829213293%ad
56951f4d05388292132939%ae
56951f4d05388292132939af
56951f4d05388292132939b0
56951f4d05388292132939b1
56951f4d05388292132939b2
56951f4d05388292132939b3
56951f4d05388292132939b4

56951f4d05388292132939b5

B Visualization %% Settings

Video Reviews

Date
October 26,2015, 1:00 AM
December 18, 2015, 6:00 AM
December 13,2015, 12:00 AM
December 13,2015, 12:00 AM
October 10, 2015, 12:00 AM
October 13,2015, 12:00 AM
October 21, 2015, 9:00 PM
September 16, 2015, 11:00 PM
September 21, 2015, 8:00 AM
October 15,2015, 8:00 AM
October 14, 2015, 8:00 AM
October 11,2015, 12:00 AM
October 5,2015, 12:00 AM
September 17, 2015, 12:00 AM
October 1, 2015, 12:00 AM

November 3,2015, 6:00 AM

Rating

25

5

3

45

35

45

4.5

25

35

35

35

45

35

4

45

Reviewer
Matthew Samuel
Jarrad C
hunterjt13
Eugene B
KevinM.W
Drake T
JensS
FiLmCrAzY
Sanjay R
Emile T
CarlosM
Adriel L
Pierluigi P
Flutie A
KIP

SheldonC

Save = Filter + Summarize

Text
There have been better movies made about space, and there are elements of the film that are borderline ar
The Martian Review: There are some movies you know going into them that they're going to be great. The M
An astronaut/botanist is stranded on Mars and must rely upon ingenuity to survive. It's hard to divorce my ¢

This I ionis

and inallits visual: deur. The Martian highlig
Personable sci-fi flick from Ridley Scott that updates the old Robinson Crusoe stuck on a desert isle (and ho'
Equal parts fun, smart and thrilling. The Martian is a survival story that doesn't ramp up melodrama but inst
A declaration of love for the potato, science and the indestructible will to survive. While it clearly is the Mat

This movie has everything, excitement, drama, emotion, humour, strong characters led by Damon but ultim:

I really like how this film relied more on story than on action and special effects. Goddard manages to keep t

With agreat 3D that explores very well the red landscapes using mostly a large depth of field, this smart sci.
Out-standing!

It doesn't take itself too seriously, which translates in an intelligent, immersive and charming adventure of s
Shades of 'Cast Away' & ‘Apollo 13" Really enjoyed it!

Director Ridley Scott has hit the point in his life where it is as unpredictable as the weather, as to how good

THE MARTIAN is a success because it presents its sci-fi scenarios with care and plausibility, it keeps the plo

O A

Showing 20 rows

Figure 5.12: Document View - Video Reviews Collection (Proxy server)

Q Search...

Browse Data

<4 Askaquestion

mongo-secure-proxy - Video Reviews

D
56951f4d05388292132939a6
56951f4d05388292132939a7
56951f4d05388292132939a8
56951f4d05388292132939a9
56951f4d05388292132939%aa
56951f4d05388292132939%ab
56951f4d05388292132939ac
56951f4d0538829213293%ad
56951f4d0538829213293%ae
56951f4d05388292132939af
56951f4d05388292132939b0
56951f4d0538829213293%b1
56951f4d05388292132939b2
56951f4d05388292132939b3
56951f4d05388292132939b4

56951f4d05388292132939b5

EE Visualization

Date
October 26,2015, 1:00 AM
December 18, 2015, 6:00 AM
December 13,2015, 12:00 AM
December 13,2015, 12:00 AM
October 10, 2015, 12:00 AM
October 13,2015, 12:00 AM
October 21,2015, 9:00 PM
September 16, 2015, 11:00 PM
September 21,2015, 8:00 AM
October 15,2015, 8:00 AM
October 14, 2015, 8:00 AM
October 11,2015, 12:00 AM

October 5,2015, 12:00 AM

September 17,2015, 12:00 AM

October 1, 2015, 12:00 AM

November 3, 2015, 6:00 AM

£ Settings

Rating

Reviewer
g e
5w
3 e
4 e
3 e
4 e
PR
9 e
3 e
3 e
3 e
4 e
3 e
4 e
g e
4 e

Save = Filter + Summarize

Text
There have been better movies made about space, and there are elements of the film that are borderline ama
The Martian Review: There are some movies you know going into them that they're going to be great. The Mz
An astronaut/botanist is stranded on Mars and must rely upon ingenuity to survive. It's hard to divorce my op

This novel fonis i

and inallits visual deur. The Martian highlight
Personable sci-fi flick from Ridley Scott that updates the old Robinson Crusoe stuck on a desert isle (and how
Equal parts fun, smart and thrilling. The Martian is a survival story that doesn't ramp up melodrama but inste:
A declaration of love for the potato, science and the indestructible will to survive. While it clearly is the Matt

This movie has everything, excitement, drama, emotion, humour, strong characters led by Damon but ultimat

I really like how this film relied more on story than on action and special effects. Goddard manages to keep th

With a great 3D that explores very well the red landscapes using mostly a large depth of field, this smart scier

Out-standing!

It doesn't take itself too seriously, which inani and charming f su

Shades of 'Cast Away' & 'Apollo 13" Really enjoyed it!

Director Ridley Scott has hit the point in his life where it is as unpredictable as the weather, as to how good hi

THE MARTIAN is a success because it presents its sci-fi scenarios with care and plausil it keeps the plot <

S A

Showing 20 rows

Metabase database loading time as reported in logs was 9.73 seconds for the mongo-original

and 15.62 seconds for the mongo-secure-proxy. Loading a small collection such as ‘video-reviews*

39

5.3 Database - Business Intelligence and MongoDB 40

Figure 5.13: Rating Bar Chart ID X Rating

mongo-original - Video Reviews mongo-secure-proxy - Video Reviews Swve e | 4 sommae B C

< Baroptions

) @ &=

< Baroptions

mongo-original - Video Reviews Save F Filter

< Baroptions

a5 as

C mongo-secure-proxy - Video Reviews Swve F Fiter
;
< Bar options
. u .
@ o e e @ G G @
- . a 2 s s X
Reviewer v o Reviewer. v
:
25 25 -
i - f
o . .
»
. »
N ‘f‘,\ e R S SR I Y ¥
& F

I EEEST IS TS SIS

cing
B

o
Rt

N

y
b W i
Fr=rs =@ =2 vt O 5@ PN

took metabase 1.89 seconds connected to mongo-original and 2.23 seconds for mongo-secure-proxy.
When considering the usability overhead of using the proxy this performance drawback is barely

noticeable for the average user, furthermore it is also overshadowed by the gains in security aspects.

5.3.1 Methodology

Although from a usability perspective, the performance overhead when using a secure proxy is some-
what unnoticeable, it is important to benchmark the proxy in a more stressful scenario. To do that we
choose the benchmarking tool Yahoo! Cloud Serving Benchmark (YCSB)*, able to measure the
throughput of many different commands, such as insert, query, remove and update with regards to the
number of threads, this way it is possible to observe performance overhead and scalability issues.
The design of experiment evaluates database Throughput as the response variable. The factors
are connection type {direct; proxy-native; proxy-scone} that represent respectively YCSB directly

connected to a MongoDB instance, connected to a secure proxy running outside a TEE, and a proxy

“https://github.com/brianfrankcooper/Y CSB/tree/master/mongodb

5.3 Database - Business Intelligence and MongoDB 41

running using SCONE. We also increase the number of threads to evaluate scalability with YCSB
client threads levels {1; 2; 4; 6; 8}. This scenario is ideal for evaluating the performance overhead
of different pipelines. Therefore, we run the experiments using the following strategies, {encryption;
decryption; truncate; k-anon; random-response}. The record size in each message is approximately
1KB (10 fields, 100 bytes each, plus key) and the experiments were run 15 times in different times of

the day to mitigate the effect of cloud network usage.

5.3.2 Results and Discussion

It is important to evaluate the proxy overhead when not running pipelines, as a baseline scenario. We
decide to run an asynchronous YCSB MongoDB benchmark with 8 client threads against a MongoDB
instance, a secure proxy in native mode and a secure proxy with SCONE. As there are pipelines that
are triggered when queries are made and pipelines that are triggered when updating or inserting data
we execute a Read-Only (RO) benchmark, Write-Only (WO) benchmark and a Read/Write (RW)

benchmark with 1:1 read/write ratio.

Table 5.4: YCSB MongoDB - Write-Only Benchmark

Connection Throughput(ops/sec) AVG Latency Min Latency Max Latency 95th Latency 99th Latency

Direct 7012.6227 1015.7332 416 207417 1282 2839
Proxy-Native ~ 4721.9703 1669.9426 638 252671 2919 5815
Proxy-SCONE 4119.7020 1922.29235 627 209023 3541 8607

Table 5.4 outlines the performance difference in a Write-Only scenario between the three connec-
tions. Throughout is the response variable we are evaluating in this work and we can see that there is a
33% performance overhead when using the proxy in native mode. There is a 13% performance over-
head comparing native mode and SCONE. In the Read-Only benchmark, Table 5.5, the same 33%
overhead is observed between direct connection and proxy-native. However, the overhead between

native and scone proxy increased a bit to 15%.

Table 5.5: YCSB MongoDB - Read-Only Benchmark

Connection Throughput(ops/sec) AVG Latency Min Latency Max Latency 95th Latency 99th Latency

Direct 10645.3192 747.1403 322 55903 1016 1257
Proxy-Native ~ 7154.5087 1109.4890 443 203775 1473 2839
Proxy-SCONE 6167.6779 1374.6632 573 211711 1892 3263

5.3 Database - Business Intelligence and MongoDB 42

The last baseline benchmark is the Read/Write, with equal number of reads and writes, Table
5.6. In this benchmark the slow write throughput affects the secure proxy a lot more than the direct
connection, resulting in 48% and 58% performance overhead compared to proxy-native and proxy-
scone respectively. The main cause for this overhead is the lack of cache in the proxy, furthermore
although the implemented proxy is designed to deal well with asynchronous I/0O, it is still a proof-of-
concept solution and lacks some of the performance improvements that production-level applications
such as MongoDB have. When we consider that the solution was initially developed to be used by
a singular client user, we consider being able to perform 5186 operations per second in a synthetic

benchmark a success.

Table 5.6: YCSB MongoDB - Read/Write Benchmark (1:1)

Connection Throughput(ops/sec) AVG Latency Min Latency Max Latency 95th Latency 99th Latency
Direct (R) 10760.5561 737.9023 343 60031 1027 1411
Direct (W) 10760.5561 739.6209 337 59807 1026 1430
Proxy-Native (R) 5680.4626 1276.8072 470 206335 2255 4035
Proxy-Native (W) 5680.4626 1495.0512 486 206463 2915 6247
Proxy-SCONE (R) 5186.2915 1414.9998 537 58303 2135 4663
Proxy-SCONE (W) 5186.2915 1641.8104 540 58591 2883 8263

We now want to evaluate the proxy overhead when using pipelines. In this benchmark we used
the truncate pipeline, meaning that every float number is truncated before returning the query results
to the client. The setup step of the benchmark adds an additional float field (8 bytes), the benchmark
then queries for a single record with the random value queried. In Figure 5.15 we can see that despite
the known overhead, inherited from the baseline, we have an additional a 20% performance overhead,
with 8 threads, when using the proxy-scone compared to the direct connection, furthermore the proxy
scales well with multiple client threads. This is a very simple algorithm (O(1)) and the cost is mostly

due to the buffer being transformed in the Frame abstraction.

5.3 Database - Business Intelligence and MongoDB 43

Figure 5.15: Float query - Integer result (Truncate Pipeline)

10000 -

7500 -

label
direct*
—o— native

5000 -
scone

Throughput (msgs/s)

2500

1 2 4 6 8
Client Threads

It is important to evaluate the overhead when using a more complex pipeline so we used the
k-Anonymity pipeline. The setup step creates an additional integer (8 bytes) field “year”. The bench-
mark then queries for set of documents inside a range. The proxy will use a k-Anonymity pipeline
with k=3 meaning that each record is indistinguishable from at least 2 other records. The last dig-
its of the year value are hidden until a k=3 level of anonymity is reached. The overhead, shown in
Figure 5.16, with 8 threads is 57%, this k-anon algorithm as described in 2.1.1 is greedy algorithm
with O(log(n)). The volume of data handled by the proxy at once is far less than in the Kafka-Minio

scenario, even with 8 threads, therefore we have no problems with limited EPC.

5.3 Database - Business Intelligence and MongoDB 44

Figure 5.16: Year range query (kAnon Pipeline)

10000 -

7500

label
direct*
—o— native

5000 -
scone

Throughput (msgs/s)

2500

oo -

1 2 4 6

Client Threads
An example of privacy preserving algorithm that guarantees differential privacy is Random Re-
sponse. In the setup step, the benchmark creates an additional text field “diabetes” to simulate a
medical report. When querying for this field the pipeline will flip a coin to decide whether it will give

the correct response or if it will give a random response, the odds are 0.5. The overhead results are

similar to the truncate pipeline, as this algorithm is also quite simple and fast,

Figure 5.17: Diabetes (Random Response Pipeline)

6000

©

%)

2 label

S ’

- direct*
4 -

5 4000)

_g. —o— native

)]

= scone

o

2

ey

|_

20001

5
Client Threads

-

We also evaluate a confidentiality enhancing encryption pipeline. The results are shown on figure

5.3 Database - Business Intelligence and MongoDB 45

5.18. Then, we query for documents but now we need to used the decryption pipeline, results are

shown on figure 5.19.

Figure 5.18: Encrypted int insert (encryption Pipeline)

6000
label
40001 —o— direct*
—o— native
—o— scone

Client Threads

Throughput (msgs/s)

-
N
IN
o
0

Figure 5.19: Encrypted query range (encryption Pipeline)

10000 -
7500 -
label
~o— direct*
—®— native
5000 -
~o— scone
2500 -

1 2 4 6
Client Threads

Throughput (msgs/s)

00 -

Chapter 6

Conclusion

In this work, we proposed a general-purpose solution for adding a security layer of protection to
well-known cloud-based applications. We listed similar solutions that tried to enforce security in
cloud environments. We defined an architecture that enabled a transparent proxy to connect differ-
ent front-end client applications to different back-end cloud-based servers, and this architecture was
also extensible in the form of pipeline plugins that are divided between client-side and server-side

algorithms.

6.1 Summary of Results

Our results show that in a cloud backup scenario, the secure proxy running against an HTTP back-end
with an encryption pipeline has a 23% performance overhead when compared to a direct connection.
The main issue is that due to the reduced resources of current TEE solutions, the same benchmark
running against the proxy inside an Intel SGX enclave has an underwhelming 71% performance
overhead. However, new developments in hardware solutions may help mitigate this issue. In a data
analysis scenario, we found out that running complex privacy pipelines can be very costly with the
proxy adding up to 83% performance overhead, however from the usability perspective, in most cases
the client only takes a bit of extra time to load all the data, from 9.73 seconds connected directly to
15.62 seconds using a secure proxy.

We developed support to two different protocols and were able to use them to manage the connec-
tion between four different well-known applications. Furthermore, we implemented seven different
pipelines able to enforce confidentiality and privacy; all of them are established algorithms developed

by the research community. We also describe the proxy architecture in the form of models, outlining

46

6.2 Future Work 47

the extension potential to the protocol abstraction and the pipeline plugins, thus enabling the devel-
opment of the secure proxy in other programming languages. This work is an engineering research
with scenarios demonstrated with proof-of-concept solutions; however, we evaluated the secure proxy

close to a production environment.

6.2 Future Work

Many improvements can be made to this solution, especially considering large scale usage in a pro-
duction environment. There are many examples of proxies being used to reduce bandwidth and
improves response times by caching and reusing frequent requests [49; 39]. Our proxy solution does
not perform caching, thus wasting a great opportunity to reduce overhead. When considering cache
for a secure proxy running inside a TEE, it is important to consider hardware limitations, current Intel
SGX available hardware severely lacks resources (EPC memory, limited to 256MB) that would be
necessary to benefit from caching requests. However, this maybe could be mitigated by integrating
distributed memory object caching system to our solution, also with an evaluation whether it would
be best to use a generic caching engine or use one engine specific to each protocol.

The initial motivation of the solution was deploying a proxy in the client machines to allow
secure connections to back-ends, therefore benefiting from the EPC memory available at modern
Intel personal computers. Consequently, our solution only considers one (at most a few) client users
accessing the proxy at once. One may want to have a centralised proxy acting as a firewall to all
connections from a company to a public cloud. Using a layer-4 load balancer solution to manage
multiple connections seems to be an excellent starting point to mitigate this issue. Another interesting
research opportunity is evaluating the usage of multiple proxy instances to run distributed pipelines,
for example, using map-reduce strategies, this would achieve better scalability and utilisation of TEE
hardware.

Disaster recovery is also a must if you consider using a centralised proxy solution. The current
solution does not address this at all as it was originally designed to be stateless. In fact, in the original
design the proxy would consist in multiple microservices, as each of them must run inside enclaves
this was simplified to reduce memory footprint; however, future improvements in TEE hardware may

change this and encourage a microservices division [44].

6.3 Other Achivements 48

6.3 Other Achivements

While developing this work we also had the opportunity to work in other projects and published
the following works: “Exploiting SLAs through Application of Economic Analysis on Datacenters’
Autonomic Management”, a full paper waiting publication on SBRC’20 (Simpdsio Brasileiro de Re-
des de Computadores e Sistemas Distribuidos) [24], also “Processamento confidencial de dados de
sensores na nuvem’”, a tutorial to be published on Symposium on Information and Computational

Systems Security (SBSeg) [8], and also a poster published on EuroSys’19 [44].

Bibliography

[1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

Barak Alon. Mezzfs — mounting object storage in netflix’s media process-
ing platform. https://netflixtechblog.com/mezzfs-mounting-object-storage-in-netflixs-media-

processing-platform-cda01c446ba. [accessed: 28.09.2020].

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud computing.

Communications of the ACM, 53(4):50-58, 2010.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe,
Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell, et al. {SCONE}: Secure
linux containers with intel {SGX}. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 689-703, 2016.

Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Christian Priebe,
Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter Pietzuch. Libseal: Reveal-
ing service integrity violations using trusted execution. New York, NY, USA, 2018. Association

for Computing Machinery.
Alan P Bates. Privacy—a useful concept? Social forces, 42(4):429-434, 1964.

Johannes Behl, Tobias Distler, and Riidiger Kapitza. Hybrids on steroids: Sgx-based high
performance bft. In Proceedings of the Twelfth European Conference on Computer Systems,

EuroSys *17, page 222-237, New York, NY, USA, 2017. Association for Computing Machinery.

Jacques J Berleur and Klaus Brunnstein. Ethics of computing: codes, spaces for discussion and

law. Springer Science & Business Media, 1996.

Andrey Brito, Clenimar Souza, Fabio Silva, Lucas Cavalcante, and Matteus Silva. Processa-
mento confidencial de dados de sensores na nuvem. In 2020 Symposium on Information and

Computational Systems Security SBSeg, 2020.

49

BIBLIOGRAPHY 50

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Brooke Bullek, Stephanie Garboski, Darakhshan J. Mir, and Evan M. Peck. Towards under-
standing differential privacy: When do people trust randomized response technique? In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI *17, page
3833-3837, New York, NY, USA, 2017. Association for Computing Machinery.

Dorian Burihabwa, Pascal Felber, Hugues Mercier, and Valerio Schiavoni. Sgx-fs: Hardening
a file system in user-space with intel sgx. In 2018 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), pages 67-72. IEEE, 2018.

Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon, Ryusuke Ma-
suoka, and Jesus Molina. Controlling data in the cloud: outsourcing computation without out-
sourcing control. In Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 85-90, 2009.

Chris Clifton and Tamir Tassa. On syntactic anonymity and differential privacy. In 2013 IEEE
29th International Conference on Data Engineering Workshops (ICDEW), pages 88-93. IEEE,
2013.

L. Columbus. 83% of enterprise workloads will be in the cloud by 2020.
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-
be-in-the-cloud-by-2020/35b611726261, note=[accessed: 28.09.2020],.

Intel Corporation. Intel software guard extensions. Cryptology ePrint Archive, Report 2016/086,
2015. https://software.intel.com/sites/default/.

Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, Report
2016/086, 2016. http://eprint.iacr.org/2016/086.

D. Deahl. Verizon partner data breach exposes millions of customer records.
https://www.theverge.com/2017/7/12/15962520/verizon-nice-systems-data-breach-exposes-

millions-customer-records. [accessed: 28.09.2020].
Michael L Dertouzos and Joel Moses. Computer age: a twenty-year view. 1979.

Camara dos Deputados do Brasil and Senado Federal do Brasil. General data protec-
tion regulation (gdpr) compliance guidelines. https://www.lgpdbrasil.com.br, note=[accessed:

28.09.2020],.

BIBLIOGRAPHY 51

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Camara dos Deputados do Brasil and Senado Federal do Brasil. Home - Igpd.
https://www.lgpdbrasil.com.br, note=[accessed: 28.09.2020],.

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of the

Sforty-first annual ACM symposium on Theory of computing, pages 371-380, 2009.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foun-

dations and Trends in Theoretical Computer Science, 9(3-4):211-407, 2014.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The many

faces of publish/subscribe. ACM Comput. Surv., 35(2):114-131, June 2003.

Factor, Meth, Naor, Rodeh, and Satran. Object storage: the future building block for storage
systems. In 2005 IEEE International Symposium on Mass Storage Systems and Technology,
pages 119-123, 2005.

Edurado Falcao, Lucas Cavalcante, Rafael Falcao, Jose Nunes, Kaio Oliveira, and Andrey Brito.
Poster: Vallum: Database privacy, confidentiality and access rights for sensitive data in cloud

environments. In Proceedings of the Fourteenth EuroSys Conference 2019, 2019.

Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, volume 20. Stanford

university Stanford, 2009.

Metabase Inc. Metabase: An open source business intelligence server.

https://www.metabase.com. [accessed: 28.09.2020].

Microsoft Inc. Data visualization | microsoft powerbi. https://powerbi.microsoft.com/pt-br/,

note=[accessed: 28.09.2020]..

MongoDB Inc. Mongodb: The most popular database for modern apps.
https://www.mongodb.com. [accessed: 28.09.2020].

Simon Johnson. Scaling towards confidential computing. https://systex.ibr.cs.tu-

bs.de/systex 19/slides/systex19-keynotesimon.pdf. Keynote presentation at SysTEX 2019.
David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption. White paper, 2016.

Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth, Pramod Bhatotia,
and Christof Fetzer. Pesos: Policy enhanced secure object store. In Proceedings of the Thir-

teenth EuroSys Conference, pages 1-17, 2018.

BIBLIOGRAPHY 52

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log
processing. In Proceedings of the NetDB, volume 11, pages 1-7, 2011.

Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Mondrian multidimensional k-
anonymity. In 22nd International conference on data engineering (ICDE’06), pages 25-25.
IEEE, 2006.

B. Li, N. Weichbrodt, J. Behl, P. Aublin, T. Distler, and R. Kapitza. Troxy: Transparent access
to byzantine fault-tolerant systems. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 59-70, 2018.

Yehida Lindell. Secure multiparty computation for privacy preserving data mining. In Encyclo-

pedia of Data Warehousing and Mining, pages 1005-1009. IGI Global, 2005.

Gunasekaran Manogaran, Chandu Thota, and M Vijay Kumar. Metaclouddatastorage architec-

ture for big data security in cloud computing. Procedia Computer Science, 87:128-133, 2016.

MinlO. Minio: High performance, kubernetes native object storage. https://min.io. [accessed:

28.09.2020].

Narayanan and Shmatikov. Robust de-anonymization of large sparse datasets. In 2008 IEEE

Symposium on Security and Privacy (sp 2008), pages 111-125, May 2008.

Clément Nedelcu. Nginx HTTP Server: Adopt Nginx for Your Web Applications to Make the
Most of Your Infrastructure and Serve Pages Faster Than Ever. Packt Publishing Ltd, 2010.

Solomon Negash and Paul Gray. Business intelligence. In Handbook on decision support

systems 2, pages 175-193. Springer, 2008.

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof Fetzer. Varys:
Protecting {SGX} enclaves from practical side-channel attacks. In 2018 {Usenix} Annual Tech-
nical Conference ({USENIX}{ATC} 18), pages 227-240, 2018.

Meni Orenbach, Andrew Baumann, and Mark Silberstein. Autarky: closing controlled channels
with self-paging enclaves. In Proceedings of the Fifteenth European Conference on Computer

Systems, pages 1-16, 2020.

Siani Pearson and Azzedine Benameur. Privacy, security and trust issues arising from cloud
computing. In 2010 IEEE Second International Conference on Cloud Computing Technology
and Science, pages 693—702. IEEE, 2010.

BIBLIOGRAPHY 53

[44]

[45]

[46]

[47]

[48]

[49]

(501

[51]

[52]

[53]

[54]

Ronny Peterson, Andre Carvalho, Gabriel Fernandez, Lucas Cavalcante, Altrigran Silva, and
Christof Fetzer. Poster: Vallum: Database privacy, confidentiality and access rights for sensitive

data in cloud environments. In Proceedings of the Fourteenth EuroSys Conference 2019, 2019.

Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive survey. ACM

Computing Surveys (CSUR), 51(6):1-36, 2019.

Vernon C. Polite and Arlin H. Adams. Critical thinking and values clarification through socratic

seminars. Urban Education, 32(2):256-278, 1997.

Christian Priebe, Divya Muthukumaran, Dan O’ Keeffe, David Eyers, Brian Shand, Ruediger
Kapitza, and Peter Pietzuch. Cloudsafetynet: Detecting data leakage between cloud tenants. In
Proceedings of the 6th Edition of the ACM Workshop on Cloud Computing Security, CCSW ’14,
page 117-128, New York, NY, USA, 2014. Association for Computing Machinery.

Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure database using sgx.

In 2018 IEEE Symposium on Security and Privacy (SP), pages 264-278. IEEE, 2018.

Alex Rousskov and Valery Soloviev. A performance study of the squid proxy on http/1.0. World
Wide Web, 2(1-2):47-67, 1999.

S. Riisch, K. Bleeke, and R. Kapitza. Bloxy: Providing transparent and generic bft-based order-
ing services for blockchains. In 2019 38th Symposium on Reliable Distributed Systems (SRDS),
pages 305-30509, 2019.

M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution environment: What it is, and

what it is not. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 57-64, 2015.

Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information:

k-anonymity and its enforcement through generalization and suppression. 1998.

Lilia Sampaio. Estratégias para o suporte a ambientes de execucdo confidvel em sistemas de

computacdo na nuvem. In UFCG Master Thesis, 2018.

K. Sheridan. Dow jones data leak results from an aws configuration error.
https://www.darkreading.com/cloud/dow-jones-data-leak-results-from-amazon-aws-

configuration-error/d/d-id/1329382? [accessed: 28.09.2020].

BIBLIOGRAPHY 54

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

K. Sheridan. Twilio security incident shows danger of misconfigured s3 buckets.
https://www.darkreading.com/cloud/twilio-security-incident-shows-danger-of-misconfigured-

s3-buckets/d/d-id/1338447. [accessed: 28.09.2020].

Fabio Silva, Matteus Silva, and Andrey Brito. Kafkaproxy: data-at-rest encryption and confi-
dentiality support for kafka clusters. In 2020 Symposium on Information and Computational

Systems Security (SBSeg), 2020.

BSON Spec. Bson (binary json): Specification [electronic resource]. http://bsonspec. org/spec.
html. [accessed: 28.09.2020].

Latanya Sweeney. Weaving technology and policy together to maintain confidentiality. The

Journal of Law, Medicine & Ethics, 25(2-3):98-110, 1997.
Miklos Szeredi. Fuse: Filesystem in userspace. http.//fuse. sourceforge. net, 2010.
Alan F Westin. Privacy and freedom. Washington and Lee Law Review, 25(1):166, 1968.

Michael E Whitman and Herbert J Mattord. Principles of information security. Cengage Learn-
ing, 2011.

Li Yan, Xiaowei Hao, Zelei Cheng, and Rui Zhou. Cloud computing security and privacy. In
Proceedings of the 2018 International Conference on Big Data and Computing, pages 119—123,
2018.

Zardari, Jung, and Zakaria. K-nn classifier for data confidentiality in cloud computing. In 2014

International Conference on Computer and Information Sciences (ICCOINS), pages 1-6, 2014.

Zuo, Lin, and Zhang. Why does your data leak? uncovering the data leakage in cloud from

mobile apps. In 2019 IEEE Symposium on Security and Privacy (SP), pages 1296-1310, 2019.

Appendix A

Appendix

A.1 Metabase

Metabase is an open source business intelligence tool [26]. Business intelligence systems combine
operational data with analytical tools to present complex and competitive information to planners
and decision makers. The objective is to improve the timeliness and quality of inputs to the decision
process. Business Intelligence is used to understand the capabilities available in the firm; the state of
the art, trends, and future directions in the markets, the technologies, and the regulatory environment
in which the firm competes; and the actions of competitors and the implications of these actions [40].
Databases connected to Metabase are listed in a homepage. Navigating through Metabase enables
the user to see databases and their contents. It is possible to click on tables to shows rows, also it
can perform automatic exploration in the form of what is called by the company as “x-rays”, it is
possible to see the data reference view of tables to learn more about them. In Metabase, one way to
start exploration of tables it is asking a more detailed custom question using the notebook editor, or
write a new SQL query. Regarding security, Metabase utilises HTTPS and is able to encrypt data at
rest and for authentication it uses username and password, users are divided in groups and each group

has different access permissions.

A.2 MongoDB

MongoDB is an open source NoSQL “document store” database [28]. Although MongoDB is non-
relational, it implements many features of relational databases, such as sorting, secondary indexing

and range queries. MongoDB does not organize data in tables with columns and rows. Instead, data

55

A.2 MongoDB 56

is stored in “documents”, each of which is an associative array of scalar values, lists, or nested as-
sociative arrays. MongoDB documents are serialized naturally as Javascript Object Notation (JSON)

objects, and are in fact stored internally using a binary encoding of JSON called BSON [57].

A.2.1 Security

MongoDB offers support to mTLS as a means of authentication, it also has support for username
and password, access control is done through role based permissions for users and data in transit is
protected with TLS. In MongoDB Enterprise version, there is support for data at rest encryption and

also auditability, however we only evaluate the usage of the Community version.

A.2.2 Mongo WireProtocol

The MongoDB Wire Protocol is a simple socket-based, request-response style protocol. Clients com-
municate with the database server through a regular TCP/IP socket. There is no connection hand-
shake. All integers in the MongoDB wire protocol use little-endian byte order (least-significant byte
first).

Standard Message Header. There are two types of messages, client requests and database re-
sponses. Each message has a standard message header, that is followed by request-specific data. Table

A.1 describes the message header structure

Table A.1: Structure - Message header

type value description

int32 messagelLength total message size

int32 requestID identifier for this message
int32 responseTo requestID from the original request
int32 opCode request type

Client Request Messages. Clients can send request messages that specify all but the OP_REPLY
opCode. OP_REPLY is reserved for use by the database. Only the OP_QUERY and OP_GET_MORE
messages result in a response from the database. There will be no response sent for any other message.
You can determine if a message was successful with a getLastError command. The OP_UPDATE

message is used to update a document in a collection. The OP_INSERT message is used to insert

A.3 Apache Kafka 57

one or more documents into a collection. The OP_QUERY message is used to query the database
for documents in a collection. The OP_GET_MORE message is used to query the database for
documents in a collection. The OP_DELETE message is used to remove one or more documents from
a collection. The OP_KILL_CURSORS message is used to close an active cursor in the database.
This is necessary to ensure that database resources are reclaimed at the end of the query.

Database Response Messages. The OP_REPLY message is sent by the database in response to
an OP_QUERY or OP_GET_MORE message. Table A.2 describes the message structure.

Table A.2: Structure - Reply message

type value description

MsgHeader header standard message header

int32 resposneFlags bit vector

int32 cursorID cursor id if client needs to do get more’s
int32 startingFrom where in the cursor this reply is starting
int32 numberReturned number of documents in the reply
document®* documents documents

A.3 Apache Kafka

Apache Kafka is a open source publish/subscribe system [32]. Publish/subscribe systems are known
for its loosely coupled nature of interactions between its participating entities, thus being ideal for
large scale applications [22]. One of the defining entities is the Publisher and is able to send events
to a server, in Kafka these event servers are called brokers. Subscribers are another entity and are
interested in being notified about an specific or a pattern of events. Kafka utilises an event scheme
based on topics, meaning that all events are associated to a specific topic, publishers produce mes-
sages to a topic and subscribers therefore are notified by changes in its subscribed topics. To facilitate
scalability, Kafka divides topics in a set of structures called partitions, that way multiple producers
and consumers can read and write data simultaneously. Kafka can also communicate with external
systems by using components called Connectors. There are two types of connectors, the ones out-
puting data from Kafka are called Sink connectors and function as consumers, and the ones acting as
producers, sending data to Kafka, are called Source connectors.

Kafka supports mutual TLS authentication, and also uses SSL/TLS for data-in-transit encryption,

A.4 MinlO 58

however does not encrypt locally stored data. Access control is performed in the form of Access

Control Lists (ACLs) and there is also support for Role-Base Access Control (RBAC).

A4 MinlO

MinlO is a High Performance Object Storage released under Apache License v2.0 [37]. Object
storage back-end solutions are used to build high performance infrastructures for machine learning,
analytics, and other data intensive workloads. The concept of object storage was introduced in the
early 1990’s by CMU as an academic research project, since then it has greatly matured and is now
largely adopted by the industry [23]. It works by moving lower-level functionalities such as space
management into the storage device itself, accessing the device through a standard object interface.
We choose to use MinlO because it is open source, cloud native and designed to be compatible
with Amazon S3 API, one of the most used solutions for public cloud object storage, even Microsoft
Azure uses MinlO as its S3 Gateway. MinlO supports mutual TLS (mTLS) authentication and also
uses HTTPS, it also supports two different types of server-side encryption (SSE), using secret key

provided by the S3 client or a secret key managed by a Key Management Service (KMS).

A.5 Summary of Limitations

Considering all applications mentioned above, table A.3 summarizes some of the security limitations

and therefore outlines where a secure proxy can help enforcing security measures.

Table A.3: Summary of Security Limitations

Application Authentication Access Control — Data-in-Transit Data-at-Rest Auditability

MongoDB mTLS RBAC TLS No* No*
Metabase User/Pass Group-based TLS Encrypted No
Kafka mTLS ACL and RBAC TLS No No

MinlO mTLS No TLS Encryted No

