

# UNIVERSIDADE FEDERAL

# DA PARAIBA

CAMPUS II - CAMPINA GRANDE - PB

# ESTÁGIO SUPERVISIONADO

ALUND : DACILDO DE SOUZA LIMA SOBRINHO

ORIENTADORES: HANS RAJ GHEYI

NORMA CÉSAR DE AZEVEDO

PERÍODO : De JULHO a DEZEMBRO de 1981

DEPARTAMENTO DE ENGENHARIA AGRÍCOLA

AVENIDA APRÍGIO VELOSO, 882 - Cx. Postal 518
TELEX: 0832211 - FONE: (083) 321.7222
58.100 - CAMPINA GRANDE — PB
BRASIL



Biblioteca Setorial do CDSA. Abril de 2021.

Sumé - PB

# UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA AGRÎCOLA

ESTAGIO SUPERVISIONADO

Aluno: DACILDO DE SOUZA LIMA SOBRINHO

Orientadores: HANS RAJ GHEYI

e

NORMA CÉSAR DE AZEVEDO

Perido: de Julho a Dezembro de 1981

DECLARO para os devidos fins que DACILDO DE SOUZA LIMA SOBRINHO, estudante do Curso de Engenharia Agricola do Centro de Ciências e Tecnologia da Universidade Federal da Paraiba - CAmpus II - Campina Grande, e sob número de maticula 8011288-8, estagiou no Laboratório de Irrigação e Salinidades deste Centro, na parte de Solos Agricolas, desenvolvendo em paralelo uma pesquisa sobre "LIBERAÇÃO DE VAZÃO NA CÂPSULA POROSA SCB PRESSÃO HIDROSTÁTICA", no periodo de 06.07.81 ~~ a 30.12.81, cumprindo i10 (cento e dez) horas integrais no mês de julho e 12 horas semanais nos meses restantes, perfazendo um total de 350 (trezentos e cincoenta) horas.

Campina Grande, 30 de julho de 1982

NORMA CÉSAR DE AZEVEDO

Ilmo Sr Chefe do Laboratorio de Irrigação e Salinidades Universidade Federal da Paraiba Centro de Ciências e Tecnologia Campus II Campina Grande - Paraiba

Eu, DACILDO DE SOUZA LIMA SOBRINHO, al<u>u</u> no do Curso de Engenharia Agricola deste Centro, reg<u>u</u> larmente matriculado sob número 8011288-8, solicito que Vossa Senhoria se digne apreciar este relatório, relativo ao estágio realizado neste Laboratório no período de 06.07.1981 a 30.12.1981, supervisionado pelos dignissimos professores, HANS RAJ GHEYI e NORMA CÉSAR DE AZEVEDO, encaminhando-o portanto, a quem de direi to possa atribuir a quantidade de créditos que lhe <u>fi</u>zer jus.

Nestes Termos Pede Deferimento,

Campina Grande,

BACILDO DE SOUZA LIMA SOBRINHO

O estagio foi realizado no periodo de 06.07 a 30.12.1981, perfazendo um total de 350 (trezentos e cincoenta) horas, e teve lugar no Laboratório de Irrigação e Salinidades do Departamento de Engenharia Agricola, localizado no Centro de Ciências e Tecnologia da Universidade Federal da Paraiba - Campus II - Campina Grande - Paraiba.

Purante a realização do estagio, procurei adquirir uma serie de conhecimentos praticos, a cerca das determinações necessarias a classificação de solos e aguas para irrigação. Umo vez que como futuro profissional dessa area, de certo muito me interessarão tais conhecimentos.

Vale salientar que durante o estágio, estive desenvolvendo uma pesquisa sobre "LIBERAÇÃO DE VAZÃO NA CAPSULA POROSA SOB PRESSÃO HIDROSTÁTICA" foi realizada tambem, uma experiência no campo, determinan do-se a capacidade de infiltração do solo pelo metodo do cilindro infiltrômetro.

#### INDICE

- 1 Declaração
- 2 Requerimento
- 3 Apresentação
- 4 Introdução
- 5 Atividades desenvolvidas
- 5.1 Analise da agua
- 5.2 Determinação do PH (Metodo do picnômetro)
- 5.3 Condutividade eletrica (C.E.)
- 5.4 Determinação do calcio (titulação com EDTA a 0,025N)
- 5.5 Determinação do Cálcio+Magnesio (titulação com EDTA a 0,025N)
- 5.6 Determinação de Cloretos
- 5.7 Determinação de Carbonetos
- 5.8 Determinação de Bicarbonatos
- 5.9 Determinação de Sodio
- 5.10 Determinação de Potassio
- 5.11 Determinação da Relação de Adsorsão de Sódio (RAS)
- 5.12 Perigo de Salinidade
- 5.13 Perigo de Sodio (Alcalinidade)
- 5.14 Classe de agua
- 5.15 Conclusão
  - 6 Analises fisicas do solo
  - 6.1 Preparo da amostra e calculo da terra fina
- 6.2 Analise granulometrica (Metodo do hidrômetro de Bouyoucos)
- 6.3 Classificação textual
- 6.4 Grau de Floculação e Dispersão
- 6.5 Densidade Aparente ou Global (Da) Metodo de Torrão
- 6.6 Densidade Real (Dr) Metodo do picnômetro
- 6.7 Porosidade Total
- 6.8 Determinação da Umidade Atual (Metodo da Estufa)
- 6.9 Determinação da Umidade a 15 atmos peras U.M.
- 6.10 Determinação da Umidade a 1/3 atmis feras Cc.

- 6.11 Determinação da Capacidade de Agua Disponível CAD
- 6.12 Condutividade Hidraulica usando Terra Fina
  - 7 Analises Quimica do Solo
- 7.1 Potencial Hidrogeniônico (metodo do Picnômetro)
- 7.2 Determinação de Cálcio e Magnesio Trocaveis
- 7.3 Determinação de Sodio e Potassio Trocaveis
- 7.4 Capacidade total de troca de Cations T
- 7.5 Condutividade Eletrica no Extrato de Saturação
- 7.6 Determinação de Sodio no Extrato de Saturação
- 7.7 Determinação de Potassio no Extrato de Saturação
- 7.8 Determinação de Carbonetos no Extrato de Saturação
- 7.9 Determinação de Bicarbonatos no Extrato de Saturação
- 7.10 Determinação de Cloretos no Extrato de Saturação
- 7.11 Determinação de Sulfatos no Extrato de Saturação
  - 8 Experiência de Campo
  - 8.1 Capacidade de Infiltração (metodo de cilindro infiltrometro)
    - 9 Considerações Gerais
  - 9.1 Pesquisa realizada durante o estágio
    "LIBERAÇÃO DE VAZÃO NA CÂPSULA POROSA SOB PRESSÃO
    HIDROSTÁTICA"
  - 9.2 Agradecimentos
    - 10 Conclusão
    - 1.1 Bibliografia

5 - Atividades desenvolvidas

#### 5.1 - Analise da agua

Procedência: CATOLÉ DO ROCHA-PARAIBA Propriedade: FAZENDA CACHOEIRA DO SAL

## 5.2 - Determinação do PH (Método do potenciômetro)

A finalidade do PH e determinar o carater acido ou basico de uma amostra. Zera-se o potenciômetro passando-se duas soluções tampão de PH conhecidos (4 e 7). Em seguida, imerge-se o eletrodo na amostra e faz-se a leitura no aparelho. E, evidentemente toda vez que se tira o eletrodo da imersão, lava-se o mesmo com agua destilada e limpa-se com papel de filtro, para i mergi-lo novamente em outra solução de outra amostra. O potenciômetro é aferido para  $25^{\circ}$ C.

Obs.: Liga-se o potenciômetro, pelo menos 30 minutos an tes de começar a ser usado.

#### 5.3 - Condutividade eletrica

A finalidade da condutividade elétrica é medir o teor de sais contido na amostra. É determinado diretamente pelo condutivimetro de maneira bastante simples, uma vez que, basta-se introduzir a célula do mesmo na amostra de modo que as placas internas da célula la fiquem imersas. Gira-se o botão do marcador para que

se possa obter a leitura. Esta leitura  $\bar{e}$  dada em mil $\underline{i}$  mhos/cm a  $25^{\circ}$ C. Sendo a temperatura diferente de  $25^{\circ}$ C, deve-se fazer uma correção.

 $T = 25^{\circ}C$ 

CE = 860 milimhos/cm

# 5.4 - Determinação de Câlcio a) Procedimento

Toma-se 25ml da amostra e adiciona-se 2ml de KOH a 10%. Como indicador, adiciona-se uma pitada de Murexida que da a solução uma coloração verme 2ml lha. Dai, passa-se a titular a solução com EDTA (4ml do etilenodiaminotetracetato) a 4ml 4ml

b) Calculo

Como Va = Volume da amostra = 25ml, tem-se:

40VN = m.e/l de calcio

onde: 40 = cte devido o valor de Va

V = volume gasto de EDTA = 1,10ml

N = normalidade do EDTA = 0,025N

Portanto:

 $Calcio(Ca^{++}) = 40 \times 1,1 \times 0,025 = 1,10m.e/\ell$ 

5.5 - Determinação de Calcio + Magnesio a) Procedimento Toma-se 25ml da amostra e adiciona-se 3ml de uma solução tampão de PH 10. Como indicador, adiciona-se 3 a 4 gotas de Eriocromo Negro - T que dã a solução, uma coloração roxo vinho. Daí, passa-se a titular a solução com EDTA  $\bar{a}$  0,025N, ate que se verifique a mudança da cor roxo vinho para azul. Ano ta-se o volume de EDTA gasto na titulação.

- b) Calculo Analogo ao de Calcio
- Obs.: A determinação do magnesio  $\bar{e}$  feita por diferença, ou Magnesio ( $Mg^{++}$ ) = (Volume gasto na titulação para o Câlcio e Magnesio) (volume gasto na titulação para o Câlcio).

Calcio  $(Ca^{++}) = 1,10 \text{me/l}$ Calcio + Magnesio = 2,60 m.e/l Magnesio  $(Mg^{++}) = 2,6 - 1,1 = 1,5 \text{m.eq/l}$ 

# 5.6 - Determinação de Cloretos a) Procedimento

Faz-se uma prova em branco usando-se 1 ml de cromato de potássio a 5% em água destilada.  $D\underline{e}$  pois toma-se 50ml da amostra e adiciona-se 1ml de cromato de potássio a 5% que da à solução uma coloração amarela clara. Dai passa-se a titular a solução com nitrato de prata à 0,05N, até que se verifique a mudança de cor de amarelo claro para cor de tijolo queimado. Anota-se o volume de notrato de prata  $ga\underline{s}$  to na titulação.

Como Va = volume da amostra = 50 ml, tem-se:

20VN = m.eq/l de cloretos

onde:

20 = cte devido o valor de Va

V = Vulume gasto de nitrato de prata na titulação = 2,5

N = Normalidade de nitrato de prata = 0,05N Portanto:

20  $\times$  2,5  $\times$  0,05 = m.eq/l de cloretos Cloretos (Cl<sup>-</sup>) = 2,5 m.eq/l

# 5.7 - Determinação de Carbonatos a) Procedimento

Toma-se 50ml da amostra e como indica dor adiciona-se 3 a 4 gotas de fenolftalina. Se a amostra permanecer incolor, indica ausência de carbo natos e havendo uma mudança de incolor para rosco indica presença. Dai passa-se a titular a solução com acido sulfurico a 0,02N, até que se verifique a mudança de cor roseo para incolor. Anota-se o volume de acido sulfurico gasto na titulação.

b) Calculo

Como Va = volume da amostra = 50ml, tem-se:

20VN = m.eq/l de carbonetos

onde:

20 cte devido ao valor de Va

V = 2P

P = volume gasto de acido sulfurico = 1,10ml

N = normalidade de acido sulfuriço = 0,02N

Portanto:

20 X VN = me/l de carbonatos

20 X 2 X 1,1 X 0,02 =  $me/\ell$  de Carbonatos Carbonatos ( $Co_3^{--}$ ) = 0,88  $me/\ell$ 

# 5.8 - Determinação de Bicarbonatos a) Procedimento

Toma-se 50ml da amostra e como indica dor, adiciona-se 3 a 4 gotas de metil-orange, que da a solução uma coloração. Dai passa-se a titular a solução com acido sulfurico a 0,02N, até que se verifique a mudança de cor.

Anotá-se o volume gasto de  $\bar{a}$ cido sul $\underline{b}$ u rico na titulação.

b) Calculo

Como Va = volume da amostra = 50ml, tem-se:

20VN = me./l de Bicarbonatos

Onde:

20 = cte devido ao valor valor de Va

V = (T - 2P) - Tb

T = volume total gasto de acido sulfurico = 15,7

2P = volume gasto de acido sulfurico para carbonatos

= 2P = 2.2

N = normalidade do acido sulfurico = 0,02N

Tb = volume gasto de  $\bar{a}$ cido sulfúrico no teste em bran co = 0,2ml

Portanto:

20 X (15,7 - 0,2 - 2,2) X 0,02 me./l de bicarbonatos

Bicarbonatos  $(HCO_3) = 20 \times (15, 5 - 2, 2) \times 0,02$ 

Bicarbonatos (HCO<sub>3</sub>) = 5,32 me./l

 $HCO_3 = 5,32 \text{ meq/l}$ 

## 5.9 - Determinação do Sodio a) Procedimento

Esta determinação é feita usando-se o fotômetro de chamas. Principiando-se, zera-se o apare lho com solução de sodio e agua destilada. Em seguida imerge-se uma haste do fotômetro na amostra contida em um becker e determina-se a leitura.

b) Cālculo
Na<sup>+</sup> = Leitura X diluição X fator de cēlula
Leitura = Na<sup>+</sup> = 61,0
Diluição = 1:10
Fator de cēlula = 0,01
Na<sup>+</sup> = 61 X 10 X 0,01 = 6,1 meq/l

# 5.10 - Determinação de potassio a) Procedimento

Esta determinação  $\tilde{e}$  feita com o fotôme tro de chamas. Zera-se o aparelho com solução de potâssio a 0,05N e  $\tilde{a}$ gua destilada. Em seguida, imerge-se uma haste do fotômetro na amostra contida num becker e determina-se a leitura.

b) Cālculo

K<sup>+</sup> = Leitura X diluição X fator de cēlula K<sup>+</sup>

Leitura = 9,0

Diluição = 1:10

Fator de cēlula = 0,001

K<sup>+</sup> = 9 X 10 X 0,001 = 0,09 meq/l

5.11 - Determinação da Relação de Adsorção de Sódio (RAS),

A RAS, ē dada pela seguinte formula:

$$RAS = \sqrt{\frac{Ca^{++} + Mg^{++}}{2}}$$

Onde:

Na = Teor de Sódio (resultado do Item 5.9)

Ca<sup>++</sup> = Teor de Câlcio (resultado do item 5.4)

 $Mg^{++}$  = Teor de Magnésio (resultado do item 5.5 me nos o resultado do item 5.4)

Portanto:

RAS = 
$$\frac{6,1}{\frac{1,1+1,5}{2}}$$
 = 5,35

## 5.12 - Perigo de Salinidade

Quanto ao perigo de salinidade, as aguas de irrigação se distribuem em quatro classes que são: C1, C2, C3 e C4. Tais classes são definidas em relação à condutividade eletrica, conforme pode-se observar no resumo que apresentamos loga a seguir:

| Classes | CE (milin | nhos/cm) | Perigo ( | de salinidade |
|---------|-----------|----------|----------|---------------|
| C1      | 0 -       | - 250    |          | baixo         |
| C2      | 250 -     | 750      |          | mēdio         |
| C 3     | 750 -     | 2.250    |          | alto          |
| C 4     | 2.250 -   | 5.000    |          | muito alto    |

Como encontramos uma condutividade eletrica igual a 860 milimhos/cm, temos uma agua com ALTO perigo de salinidade.

# 5.13 - Perigo de Sodio (Alcalinidade)

Quanto ao perigo de sódio, as aguas se distribuem em quatro classes que são: \$1, \$2, \$3 e \$4. Tais classes são definidas em relação ao valor da Relação de Adsorção de Sódio (RAS) con forme pode-se observar no resumo apresentado abaixo:

| Classes | RAS    | . * | Perigo de Sodio |
|---------|--------|-----|-----------------|
| S1      | 0 - 1  | 0   | baixo           |
| S2      | 10 -   | 8   | mēdio           |
| \$3     | 18 - 2 | ? 6 | alto            |
| \$4     |        | 26  | muito alto      |

Como encontramos a RAS igual a 5,35, temos uma agua com BAIXO perigo de sódio.

Para se obter a classe de agua, en tra-se com os valores da Condutividade Eletrica (CE) e da Relação de Adsorção de Sodio (RAS) no diagrama para classificação da agua de irrigação que apresenta mos anexo.

Portanto a classe de agua é C3 S1.

#### 5.15 - Conclusão

A zgua com alta salinidade, não pode ser usada em solos de drenagem deficiente. Mesmo nos de boa drenagem, pode-se necessitar de práticas especiais de controle da salinidade e sõ se deve plantar os vegetais muito tolerantes aos sais. Todavia, existem vários trabalhos experimentais, realizados em diversos países, como em Israel, nos Estados Unidos e na União Soviética no sentido de utilizar águas salinas, devido a necessidade de novas áreas de cultivos.

#### 6 - ANALISES FISICAS DO SOLO

#### 6.1 - Preparo de amostra e calculo da Terra Fina

uma amostra de solo ao dar entrada no laboratório, primeiramente, faz-se seu registro em livros especiais ou em fichas de registro de resulta

dos. Faz-se o registro para possibilitar sua segura identificação posterior. Cada amostra recebe o número de ordem que será usado como identificação em todas as determinações conduzidas sobre esta amostra.

A heterogeniedade do material, ou seja, presença de plantas, fragmentos de rochas, va riação de umidade, causa variações nos resultados ana líticos. Esta variação  $\tilde{e}$  reduzida pelo preparo da a mostra que consta, em geral, das seguintes etapas de operação:

- a) Eliminação de umidade da amostra, ou secagem ao ar;
- b) Separação do esqueleto da terra das razões e ou tros fragmentos orgânicos;
- c) Destorroamento da amostra, isto ê, destruição dos torrões;
- d) Passa-se a parte destorroada através de uma penei ra de 2,0mm de malha;
- e) Separa-se a fração retida na peneira para determi nação de pedregulhos e cascalhos;
- 6) Coloca-se a terra fina em um deposito com sua et<u>i</u> queta de identificação;
- g) Calcula-se a porcentagem de terra fina pela expressão;

% terra fina = 100 - (% cascalhos + % pedregulho) Peso da amostra = 1000g

Quantidade retida na malha de 2mm = 9,7645g

% terra fina =  $100 - 9,7645 \times 100 = 99$ %

1000

#### a) Comentário

A determinação da percentagem de areia, limo e argila é chamada análise mecênica. Os dois métodos comumente usados, são o da pepita e o do hidrômetro. Ambos os métodos dependem das razões diferenciais de sedimentação das particulas do solo em suspensão na água. No método do hidrômetro de Bouyoucos, a concentração das particulas do solo que permanecem em suspensão é determinada usando um hidrômetro projetado para medir a densidade da suspensão. A concentração das particulas de solo em suspensão em um determinado tempo depende da razão na qual as particulas sedimentam-se. As particulas maiores sedimentam mais rapidamente que as pequenas. A velo cidade de sedimentação é descrita pela Lei de Stokes.

#### b) Procedimento

Pesa-se 50 gramas de solo de tex tura fina, transfere-se para um recipiente (becker) adicionando 50ml da solução hidroxido de sodio 0,1N e deixa-se em repouso por aproximadamente 12 ho ras, a fim de que as particulas do solo sejam disper sadas. Transfere-se a solução cima descrita para copo de um agitador mecânico e adiciona-se aproxima damente 2/3 de agua destilada e agita-se por 2(dois) minutos. Em seguida, transfere-se a amostra para uma proveta de 1000ml e completa-se o volume com destilada. Lê-se a temperatura da amostra. Homogeini za-se a solução durante30(trinta) segundos, se o hidrômetro e depois de 40(quarenta) segundos, faz-se a leitura. Essa leitura corresponde à de argila + limo contida no solo. Depois, deixa-se transcorrer 2 (duas) horas e torna-se a inserir o hi drômetro, anotando-se o resultado. Torna-se a ler no vamente a temperatura. Essa leitura de 2 (duas) horas corresponde à fração de argila.

#### a) Calculos das correções

Peso inicial da amostra = Concentração inicial Co = 50

Leitura corrigida aos 40 (quarenta) segundos = Concentração de argila + limo =  $C_{40}$ 

 $C_{40}$  = 25 Leitura corrigida as 2 (duas) horas = Concentração de argila =  $C_{9}$  horas

 $C_2$  horas = 10 % argila + limo =  $C_{40}$  X 100

% argila =  $\frac{C_2 \text{ hs}}{C_0}$  X 100

%:Areia = 100 - (% argila + limo)T amostra =  $23^{\circ}\text{C}$ 

Nota: Como o hidrômetro  $\bar{e}$  usualmente calibrado para a temperatura de 67 ou 68°F, para temperaturas maiores corrige-se as leituras com o fator  $+0,2g/{}^{0}F$ .

. Correção das leituras duvido ā temperatura

$$\frac{C}{5} = \frac{F - 32}{9} : \frac{23}{5} = \frac{F - 32}{9} : T = 86^{\circ}F$$

 $Tc = 67^{\circ}C$ Como T > Tc, tem-se:

$$\Delta T = 86 - 67 = 19^{\circ} F$$

Correção

 $Tc = T \times 0,2 = 19 \times 0,2 = 3,8$ 

Portanto:

- Correção das leituras em relação ao dispersante.

 $50m\ell de NaOH - 40g/\ell$   $1000m\ell 40g/\ell X = 2g/\ell$  $50m\ell X$ 

Correção

b) Calculo das percentagens

% (limo + argila) = 
$$\frac{C_{40}s}{Co}$$
 X 100 = 26,8 X 100 = 53,6%

% argila = 
$$\frac{C_2 hs}{Co} \times \frac{100}{50} = \frac{11.8}{50} \times \frac{100}{50} = 23.6$$
%

% limo = (argila + limo) - % argila = 53,6 - 23,6 = 30%

# 6.3. - Classificação Textual

Para se obter a textura do solo, en tra-se com as percentagens encontradas anteriormente no diagrama trilinear (anexo).

O solo em estudo apresentou-se como

- 6.4 Graus de Floculação e Dispersão
- 6.4.1 Grau de Floculação a) Procedimento

Calcula-se as funções das percenta gens de argila total e argila dispersa em água, de acordo com a seguinte expressão

Grau de floculação = 100 argila total - argila disper

argila total

Nota: A argila dispersa em agua e obtida pelo mesmo procedimento da dispersão total, sendo que o dispersante e agua destilada.

Portanto, observe-se:

 $C_2hs = 5$ 

b) Calculos

- Correção devido à temperatura

 $T = 23^{\circ}C$ 

 $\Delta$  T = 86 - 67 = 19°F Tc = 19 X 0,2 = 3,8

 $C_2hs = C_2hs + correção = 5 + 3,8 = 8,8g/l$   $C_2hs = \frac{C_2hs}{Co} \times 100 = 8,8 \times 100 = 17,6%$ 

Grau de floculação = 100 (23,6 - 17,6) = 25,4%23,6

# 6.4.2 - Grau de Dispersão a) Cálculo

Grau de dispersão = 100 - Grau de floculação Gd = 100 - 25,4 = 74,6%

# 6.5 - Densidade Aparente ou Global (Da) - Metetodo do torrão

Obtem-se 3 (três) torrões nas condições naturais do campo com diâmetro de 3 a 5cm. Amara-se o torrão numa linha fina e pesa-se o mesmo. Mera gulha-se o torrão em parafina fervendo a uma temperatura de aproximadamente (80°C) por 20 ou 30 segunaos. Retira-se e espera-se que esta se solidifique. Pesa-se o torrão agora com a película, em seguida coloca-se dentro de uma proveta com agua e determina-se o aumento do volume que a introdução do torrão produziu. Este aumento corresponde ao volume do torrão.

Determina-se o conteúdo de āgua do torrão retirando-se uma pequena amostra do mesmo, pesa-se, leva-se ā estufa por 24 horas. Uma vez conhecidos o peso seco e o volume do torrão, calcula-se a densidade aparente.

#### Calculos:

Peso do torrão = 9,5g

Peso do torrão + parafina = 9,8g

Peso do torrão + parafina na agua
= 4,2g

#### Determinação da umidade

Peso do video do relogio = 
$$39,22g$$
  
Peso do solo  $\overline{u}$ mido =  $16,28g$   
Peso do solo seco ( $54,25-39,22$ )

= 15,739

$$H\% = Pa \times 100 = 0,55 \times 100 \quad h\% = 3,5\%$$
 $Ps \times 15,73 \times 100 \quad h\% = 3,5\%$ 

Temperatura da  $\bar{a}gua = 24^{\circ}C$   $da = 0,997g/cm^{3}$ 

$$d = m;$$
 como  $d = 1$ 

$$m = V = (9,8 - 4,2) = 5,6 \text{cm}^3$$
 $Da = \frac{ms}{V}$ 

Calculo de 
$$ms$$

ma =  $P$   $umido -  $P$  seco

ma =  $9,5$  -  $ms$$ 

$$h\% = \frac{m\alpha}{m\delta} \quad X \quad 100 \qquad mS = \frac{m\alpha}{h\%} \quad X \quad 100$$

$$ms = \frac{9,5 - ms}{h%} X 100 9,5 X 100 - 100ms = msh(%)$$

$$ms h(%) + 100ms = 950$$

$$ms = \frac{950}{100 + h%} = 9,178g$$

Cálculo da Densidade Aparente

$$Da = ms = 9,178$$
  $Da = 1,63g/cm^3$ 

#### 6.6 - Densidade Real (Dr) - metodo do picnômetro

Inicialmente pesa-se e enumera-se o picnômetro, enche-se com agua destilada e coloca-se em uma bacia também com agua destilada para ferver em banho-maria por 10 minutos. Em seguida retira-se 5 gramas de terra fina e volta-se a ferver por mais 5 minutos, deixa-se esfriar, completa-se seu volume com a propria agua da bacia, mede-se sua temperatura interna, seca-os com uma fianela e volta-se a pesar. Retira-se uma pequena amostra do solo, leva-se a estufa para determinação da umidade.

#### Calculos:

T interna =  $23^{\circ}$ C d' $\bar{a}$ gua = 0,9975 Peso do picnômetro = Pp = 31,55gYolume do picnômetro = 54,78cm<sup>3</sup> Peso (solo + picnômetro +  $\bar{a}$ gua)=Pt = 88,85g

Calculo da umidade

Peso do vidro do relogio = 9,7719g

Peso do vidro + solo umido = 13,7434g

Peso do vidro + solo seco = 13,5260g  $\frac{9}{h} = \frac{Pa}{Ps} \times 100 = \frac{0,2174}{3,6541} \times 100 = 5,9\%$ 

Câlculo da densidade real

100g de solo \_\_\_\_\_\_\_\_\_ 5,8g de âgua X 0,29
5g de solo \_\_\_\_\_\_\_ X de âgua

Peso seco do solo

Ps = 5g - 0,29g = 4,71

Peso da âgua

Pa = Pt - Pp - Ps = 88,85 - 31,55 - 4,71

Pa = 52,59g

V âgua = M âgua = 52,59 = 52,72

S âgua = 0,9975

$$V$$
 solo =  $Vp - Va = 54,78 - 52,72$   
 $V$  solo = 2,06cm<sup>3</sup>

$$Dr = m = 4,71 = 2,28g/cm^3$$

#### 6.7 - Porosidade total (N)

A porosidade consiste dos espaços va zios que ficam entre as particulas de solo, e pode es ta ser determinada a partir da seguinte expressão:

$$N = (1 - \underline{Da}) \quad X \quad 100$$

Onde:

Da = densidade aparente ou global

Dr = densidade real ou das particulas

$$N = (1 - 1, 63) \times 100 = 28,5\%$$

# 6.8 - Determinação da Umidade Atual (metodo da estufa)

Obtem-se uma pequena amostra de solo seco e coloca-se em vidro de relogio previamente nume rado e de peso conhecido, pesa-se o solo e anota-se o seu valor, levando-se à estufa por 24 horas. Em segui

da retira-se da estufa e coloca-se num dessecador para esfriar, pesa-se e obtem-se o peso do vidro mais o solo seco. Dai, determina-se a umidade.

Dados obtidos:

Peso do vidro de relogio = Pv = 9,209gPeso do vidro + solo = 12,6114g

Peso do vidro + solo = 12,4086gPeso do solo  $\overline{u}$ mido = 3,1996gPeso do solo seco = 3,0917

Calculo da umidade'

%h = Pa X 100 = (3,1996 - 3,0917) X 100 = 3,48% Ps 3,0917

# 6.9 - Determinação da Umidade a 15 atmosféras - U.M.

Coloca-se 25 a 30g de terra fina em aneis de borracha distribuidos sobre uma membrana que se encontra em uma bandeja e adiciona-se agua destila da ate saturar a amostra de solo, deixando-se por um periodo de 20 a 24 horas. Submete-se a mesma a uma pressão de 15 atmosferas, ate que toda agua seja drena da, por dois ou três dias aproximadamente. Coloca-se a amostra em latas de alumínio numeradas e de peso co nhecido e leva-se à estufa por 24 horas a uma tempera tura de 105°C aproximadamente. Pesa-se novamente a la

com o solo seco.

Dados obtidos:

Numero de lata = 155

Peso da lata = 30,61

Tara da lata + solo umido = 49,74g

Tara da lata + solo seco em estufa = 48,45g

% U.M. = (TFSA + agua) - TFSE

**TFSE** 

TFSA = (Tara da lata + solo umido) - tara da lata

TFSA = 49,74 - 30,61 = 19,13g

TFSA = 48,45 - 30,61 = 17,84

% U.M. = 19,13 - 17,84 X 100 U.M. 7,23% 17,84

# 6.10 - Determinação da Umidade a 1/3 atmisteras - Cc.

Coloca-se 25 a 30g de terra fina em anéis de borracha distribuidos sobre uma placa de ce râmica e satura-se a amostra. Transfere-se a placa porosa para a panela de pressão e aplica-se a pressão de 1/3 de atmosféras, até que toda a âgua seja drenada (20 a 24 horas).

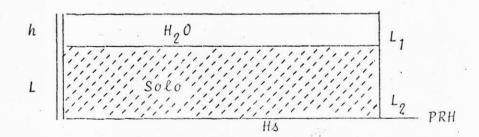
Coloca-se coloca-se a amostra em la tas de alumínio numeradas e de peso conhecido e le va-se  $\bar{a}$  estufa por 24 horas a uma temperatura de  $105^{\,0}$ C aproximadamente. Pesa-se novamente a lata com o solo seco.

Dados obtidos: Nº de latas = 177

Tara da lata = 30,56g

Tara da lata + solo úmido = solo úmido = 53,23g

Tara da lata + solo seco em estufa = 50,16g


Cc = 15,35%

6.11 - Determinação da Capacidade de Água Disponível - CAD

 $% Cc = 23,07 - 20 \times 100$ 

- 6.12 Condutividade hidrāulica usando terra fina Mētodo do permeâmetro de carga constante
- 6.12.01 Introdução

Neste método se tem o movimento de água numa coluna em posição vertical, conforme a figura abaixo:



A carga hidrāulica (H) ē dada por: H = hg + Hp

Onde;

hg = carga de posição

hp = carga de pressão

A lei de Darcy, ē dada por:

Q = KAi

Onde:

Q = vazão.

A = seção transversal, por onde flui a vazão

K = condutividade hédraulica

i = gradiente hidrāulica

A densidade de fluxo expressa a velocidade com que o fluido, no caso, a água, movimenta-se no meio e, é dada por:

$$q = Q = V$$
A At

Pela equação de Darcy, tem-se:

$$q = \frac{V}{At} = Ki$$

Donde  $K = \frac{V}{Ati}$ 

eq. 1

Para a coluna vertical, tem-se que:

$$i = H = He - Hs$$
 Onde:  $He = L + h$   
 $L = L_1 - L_2$  Onde:  $He = L + h$ 

Portanto:

Substituindo-se na equação (1) tem-se:

$$K = VL$$

$$At (L+H)$$

#### 6.12.02 - Metodologia aplicada

Estabeleceu-se uma carga constante de 2,3cm no permeâmetro, e se fez três medições de volumes escoados pela coluna de solo, em três intervalos de tempo diferentes. Isto para se ter um valor medio da condutividade hidraulica.

#### 6.12.03 - Dados obtidos

Carga - h = 2,3cmComprimento da amostra - L = 65,5cmDiâmetro do permeâmetro -  $\emptyset = 100mm$ Seção transversal da amostra - A =  $78,5cm^3$ 

#### 6.12.04 - Resultados

| CONTROL CONTROL - |                    |                     |  |                  |
|-------------------|--------------------|---------------------|--|------------------|
| t<br>(min)        | volume coletado    | condutividade       |  | condut.<br>mēdia |
|                   | (cm <sup>3</sup> ) | hidraulica (cm/Min) |  |                  |
| 3                 | 84                 | 0,344               |  | 0,343cm/min      |
| 6                 | 1,67               | 0,343               |  | 20,58cm/h        |
| 1:0               | 278                | 0,342               |  |                  |

$$K = \frac{V L}{At (L+h)} = \frac{84 \times 65,5}{78,5(65,5+2,3)} K = \frac{1,03376 \text{cm/min}}{3}$$

#### 6.12.05 - Conclusão

Com os dados obtidos, verifica-se que o ensaio foi satisfatorio, e que a variação ocorrida nos três valores da condutividade hidrau lica e atribuida à erros sistemáticos.

Para K = 20,58cm/h, tem-se a condu

#### tividade hidraulica como MUITO RAPIDA.

- 7 Analises quimicas do solo
- 7.1 Potencial Hidrogeniônico PH (Metodo do potenciôme tro)

Fez-se uma pasta de saturação para a determinação do extrato da amostra. Esta pasta é feita agregando-se agua destilada à amostra de solo e agitando com uma espatula. Ao saturar-se a pasta, esta brilha pela reflexão da luz, flui ligeiramente quando se inclina o recipiente e a pasta desliza facilmente da espatula, exeto no caso de solos com alto teor de argila. Depois de homogeneizar a amostra deve-se deixã-la em repouso durante 4 horas ou uma noite. A pasta não deve acumular agua na superficie, perder seu brilho, ou se a pasta endurecer, a neces sario misturar novamente com agua.

#### a) Procedimento

Pesa-se 300 a 400g de solo e colocase num recipiente (copo plástico). Em seguida adi ciona-se cuidadosamente água destilada até saturar a amostra. Lê-se os ml gastos e anota-se para saber a percentagem de saturação.

Transfere-se a massa do solo para um funil "BUCKNER", contendo papel de filtro adaptado a um KITASSATO e aplica-se a sucção com uma bomba a vácuo. Em seguida, transfere-se o extrato para um deposito com tampa e anota-se o número da amostra.

O PH é determinado diretamente do extrato de saturação ou mesmo da amostra satura da, sendo necessário ligar o aparelho pelo menos 30 minutos antes. O potenciômetro deve ser aferido com soluções tampão de PH 4,0 e 7,0 para solos de PH acidos ou ligeiramente básicos e PH 4,0 e 9,0 para solos mais elevados. Faz-se a leitura diretamente no aparelho.

Leitura obtida: PH = 9,6

## 7.2 - Determinação de Cálcio e Magnésio Trocaveis

Pesa-se 12,5g de Terra Fina Seca ao Ar (TFS:) e coloca-se num tubo de percolação previamente preparado. Adiciona-se 250ml de KCL (cloreto do potássio) 1N e deixa-se passar todo o  $l\bar{l}$  quido através do solo para um balão de 250ml, com pletando-se em seguida o volume com KCL 1N. Determina-se o cálcio e o magnésio de acordo com os  $m\bar{e}$  todos abaixo:

Calcio

Pega-se 50ml do extrato e transfere-se para um ERLENMEUER de 125ml. Adiciona-se 2ml de KOH (hidróxido de potássio) 10%. Coloca-se um pouco do indicador merexida e titula-se com EDTA (ácido etilenodiaminotetracético) 0,025N até a mu dança da cor vermelha para violeta. Anota-se o volume gasto na titulação.

#### Magnesio

Esta determinação é realizada indi retamente. Faz-se a determinação do cálcio + mag nésio e por diferença se encontra o teor de mag nésio contido na amostra.

Pega-se 50ml do extrato e  $trans \underline{6e}$  re-se para um ERLENMEYER de 125ml. Adiciona-se 2ml da solução tampão PH 10. Coloca-se de 2 a 5 gotas do indicador eriocromo negro T e titula-se com EDTA 0,025N até a mudança de cor roxo vinho para azul. Anota-se o volume gasto na ti tulação.

#### Calculos

Volume Gasto de EDTA Câlcio ( $Ca^{++}$ ) = 3,1ml Câlcio + Magnēsio ( $Ca^{++}$  +  $Mg^{++}$ ) = 3,3ml N = normalidade do EDTA = 0,025N

VN = meq/l. 12,5g - 250ml X = 2,5X = 50ml

Obs.: O valor X correspondente à massa de TFSA contida no extrato.

VN = meq/2,5g de solo 40VN = meq/100g de solo  $Ca^{++} = 3,1$  X 0,025 X 40 = 3,1meq/100g de solo  $Ca^{++} + Mg^{++} = 3,3$  X 0,25 X 40 = 3,3meq/100g de solo  $Mg^{++} = (Volume\ gasto\ na\ titulação\ para\ Ca^{++} + Mg^{++})$  - (volume gasto na titulação para o  $Ca^{++}$ )

 $Mg^{++} = 3,3 - 3,1 = 0,2meq/100g$  de solo

#### 7.3 - Determinação de Sodio e Potassio Trocaveis

Pesa-se 12,5g de TFSA (Terra Fina Seca ao Ar) e coloca-se em um tubo de percolação previamente preparado. Adiciona-se 125ml da solução extratora de acetato de amonio normal PH 7 e deixa-se passar todo líguido através do solo para um balão volumétrico de 250ml que posteriormente serã completado com agua destilada e agitado para que haja uma boa homogeneização. Leva-se uma alíquota do extrato para o fotômetro de chama e se faz as leituras para o sodio e o potássio. Se a leitura ultrapassar a escala do aparelho, dilui-se a solução.

Calculos

Sodio (Na<sup>+</sup>) = Leitura X diluição X Na<sup>+</sup>
Leitura = 67
Diluição = 1:10
Na<sup>+</sup> = 0,01
Na<sup>+</sup> = 67 X 10 X 0,01 = 6,7meq/l

 $1000ml -6,7 \quad X = 6,7 \quad X \quad 250 = 1,675meq \quad Na/250ml$ 

250ml - X

011

12,5g de solo - 1,675meq/Na Y = 13,4<math>me/100g

de solo

100g de solo - y y = 13,4me/100g de solo

Na = 1,67meq/ Na/250ml ou Na = 13,4meq Na/100g

Cālculo do Patāssio do Potāssio

K<sup>+</sup> = Leitura X diluição X fator X <u>250</u> X <u>100</u>

1000 12,5

Leitura = 15; diluição; fator = 0,001

 $K^{+} = 15 \times 10 \times 0,001 \times \underline{250} \times \underline{100}$ 

 $K^+ = 0,3meq K/100g de solo$ 

#### 7.4 - Capacidade Total de Troca de Cations - T

É dada pelo somatório dos cátions de cálcio, magnésio, sódio e potássio trocáveis.

Portanto:

 $T = Na^{+} + K^{+} + Ca^{++} + Mg^{+}$ 

T = 13,4 + 0,3 + 3,1 + 0,2

T = 17meq/100g de solo

## 7.5 - Condutividade Eletrica no Extrato de Saturação - CE

Pega-se uma aliquota do extrato de saturação, aproximadamente 10ml e coloca-se em um pequeno becker, verifica-se a temperatura da amostra. Faz-se a leitura no condutivimetro, devendo-se antes; lavar bem a celula do aparelho com agua destilada. A leitura e dada em milimhos por centrimetro a 25°C.

Calculos

CE = Leitura X Ft X K celula X escala

Dados:

Leitura = 3,9

 $T = 23^{\circ}C - Ft = 1,043$ 

K célula = 0,905

 $CE = 3,9 \times 1,043 \times 0,905 \times 1$ 

CE = 3,6812 milimhos/

### 7.6 - Determinação de Sódio no Extrato de Saturação

Método do fotômetro de chamas. Pegase uma aliquota do extrato de saturação, leva-se ao fo
tômetro, que deve ser aferico previamente com agua des
tilada e a solução padrão padronizada. Utiliza-se o fil
tro do ion indicado. Se a leitura ultrapassar a escala
do aparelho, dilui-se a solução.

Calculos

Na<sup>+</sup> = Leitura X diluição X Na<sup>+</sup>

Leitura = 53

Diluição = 1:100

 $Na^{+} = 53 \times 100 \times 0,01 = 53 \text{meq/l}$ 

#### 7.7 - Determinação de Potassio no Extrato de Saturação

O procedimento  $\bar{e}$  semelhante ao do  $s\bar{o}$  dio no extrato, tendo-se apenas de aferir o aparelho com a solução padrão para o potassio, utilizando-se o filtro correspondente.

Calculos

K<sup>+</sup> = Leitura X diluição X K<sup>+</sup>.

Leitura = 14

Diluição = 1:10

 $K^+ = 0,001$ 

 $K^+ = 14 \times 10 \times 0,001 = 0,14 \text{meq/l.}$ 

 $K^+ = 0,14meq/l.$ 

## 7.8 - Determinação de Carbonatos no Extrato de Saturação

Pipeta-se uma aliquota de 5 a 25ml do extrato e coloca-se em um ERLENME**Y**ER, adiciona-se 2 a 3 gotas de fenolftalina se a solução não apresentar uma coloração vermelha, indica ausência de bicarbona tos. Se apresentar uma mudança na cor, titula-se com  $H_2SO_4$  (ācido sulfūrico) a 0,025N até voltar à coloração inicial. Anota-se o volume gasto de  $H_2SO_4$ . Volume da aliquota = 5ml. Na amostra em estudo, não houve mudança de cor, indicando assim, ausência de carbona tos.

#### 7.9 - Determinação de Bicarbonatos no Extrato de Saturação

Segue-se o mesmo procedimento da de terminação de carbonatos, so que neste caso, usa-se como indicador 2 a 3 gotas de matil-orange. Anota-se o volume gasto de  ${\rm H_2SO_4}$ .

#### 7.10 - Determinação de Coretos no Extrato de Saturação

Pepita-se uma aliquota do extrato de saturação, coloca-se em um ERLENMEYER, faz-se a prova em branco, usando-se 1ml de cromato de potassio a 5%, titula-se com  $AgNO_3$  a 0,05N até apresentar uma mudança da cor amarela para o vermelho, anota-se o volume gasto na titulação.

#### 7.11 - Determinação de Sulfatos no Extrato de Saturação

Teste qualitativo - Pepita-se apro ximadamente 20ml do extrato de saturação, coloca-se em um BECKER, adiciona-se 2 a 3 gotas de HCL concentrado, coloca-se BaCl $_2$  a 10%. Observa-se se hã ou não precipitação, havendo indica presença de sulfato.

- 8 Experiência de Campo
- 8.1 Capacidade de Infiltração (método do Infiltrometro)

Determinação da velocidade de infiltração e da infil tração acumulada pelo metodo do cilindro infiltrômetro

Equipamento utilizado

- . 2 (dois) cilindros de  $\theta_1$  = 25cm e  $\theta_2$  = 50cm
- Altura = 30cm
- . Prancha de aço
- . Marreta
- . Plastico
- . Régua ou recipiente para medir o volume aduzido
- . Balde
- . Cronômetro

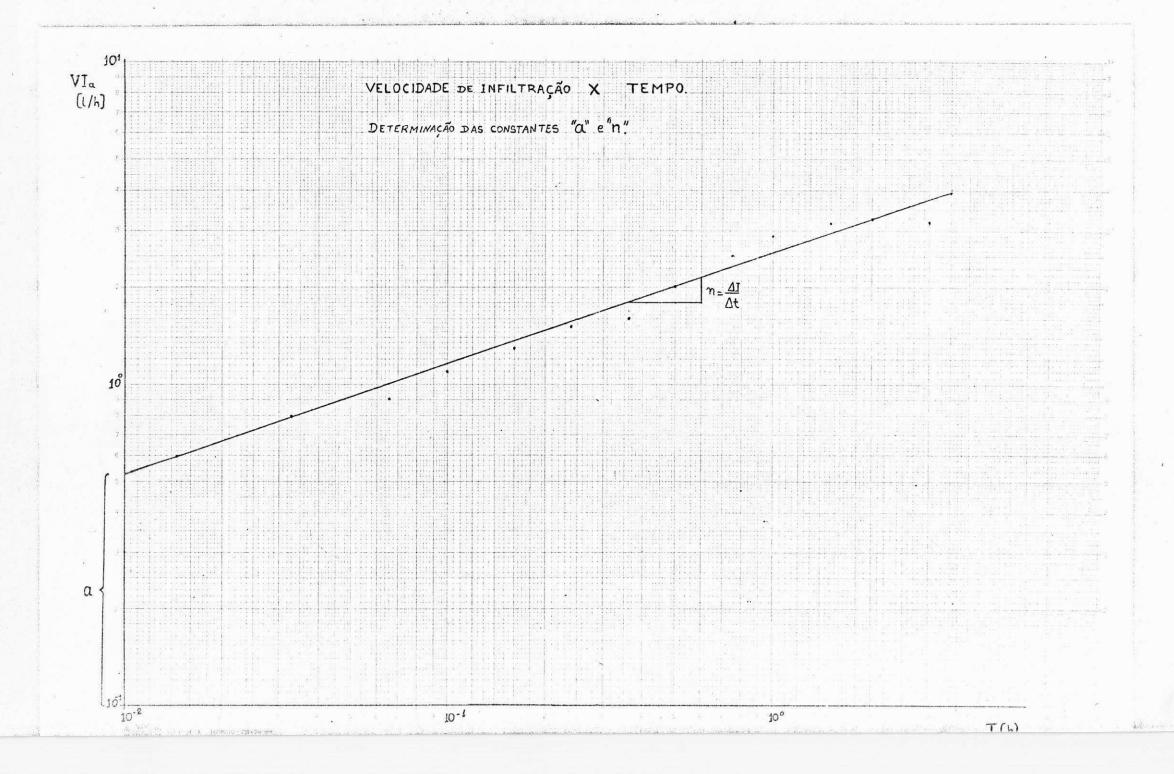
Procedimento

Os cilindros devem ser instalados concêntricos, na vertical e enterrados 15cm do so lo com auxilio de marreta em local previamente escolhido.

Coloca-se agua ao mesmo tempo nos dois cilindros (aneis), mantendo-se uma lâmina mais ou menos constante no interior e no exterior do cilindro infiltrômetro para evitar a infiltração lateral da agua.

Coloca-se um plástico no interior do cilindro infiltrômetro, antes de colocar a âgua. Quan do coloca-se âgua neste cilindro retira-se o plástico imediatamente, anotando-se a lâmina d'âgua e o tempo.

Com auxilio de um recipiente de volu


me conhecido, acompanha-se a infiltração vertical no cilindro interno em intervalos de tempo (1, 2, 4, 6, 10, 14, 22, 30, 45, 60, 90 e 180 minutos). Anota-se tambem o volume aduzido.

#### Dados obtidos

|       | Tempo       |                                       |     |             | Infiltração |        | VIM   | VIa  |
|-------|-------------|---------------------------------------|-----|-------------|-------------|--------|-------|------|
| Hora  | Inst. (min) | acum. (min                            |     | Instant.(l) | acum.(l)    | (l/h)  | (l/h) |      |
| 10:30 | -           |                                       | -   |             | 3,00        | _      | -     | -    |
| 10:31 | 1           | )*<br>//                              | 1   | (#<br>(*)   | 3,60        | 0,60   | 36,0  | 36,0 |
| 10:32 | 1           | , , , , , , , , , , , , , , , , , , , | 2   |             | 3,80        | 0,80   | 24,0  | 12,0 |
| 10:34 | 2           |                                       | 4   | (4)         | 3,90        | 0,90   | 13,5  | 3,0  |
| 10:36 | 2           | 18                                    | 6   | (S.)        | 4,10        | 1,10   | 11,0  | 3,0  |
| 10:40 | 4           |                                       | 10  |             | 4,30        | _ 1,30 | .7,8  | 3,0  |
| 10:44 | 4           | ia<br>ir                              | 14  |             | 4,50        | 1,50   | 6,4   | 0,75 |
| 10:52 | 8           | 12                                    | 22  |             | 4,60        | 1,60   | 4,4   | 3,0  |
| 11:00 | 8           |                                       | 30  | 350         | 5,00        | 2,00   | 4,2   | 1,60 |
| 11:15 | 15          |                                       | 45  |             | 5,50        | 2,50   | 3,5   | 1,60 |
| 11:30 | 15          | -                                     | 60  |             | 5,90        | 2,90   | 2,9   | 0,4  |
| 12:00 | 30          | iif                                   | 90  |             | 6,10        | 3,10   | 2,1   | 0,2  |
| 12:30 | 30          |                                       | 120 |             | 6,20        | 3,20   | 1,6   | 0,0  |
| 13:30 | 60          |                                       | 180 | 8           | 6,20        | 3,20   | 1,06  |      |

$$VI = \frac{\Delta I}{\Delta T}$$

$$VIm = \frac{1}{\tau}$$



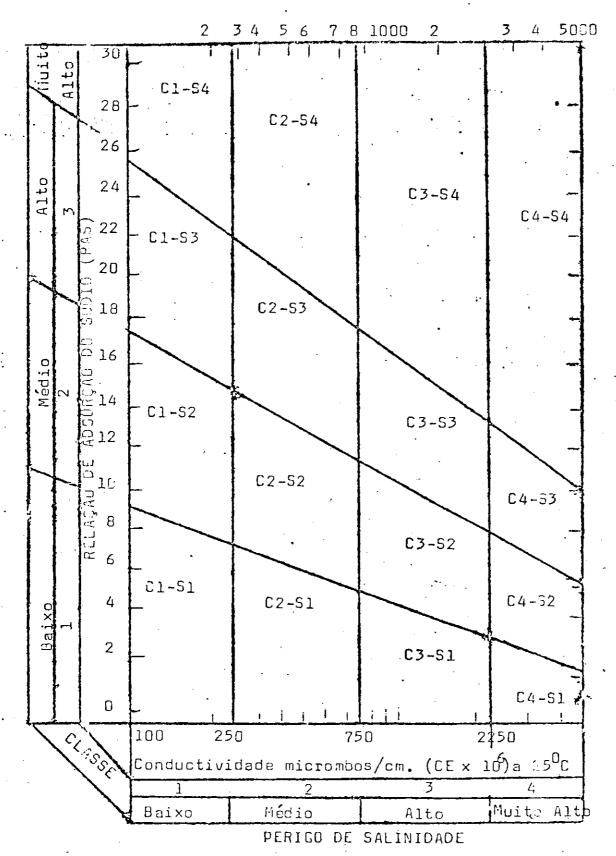



Diagrama para classificação de águas para irrigação (DO USDA Hdb.60)

- Vinculada so ministério da agricultura

100 c X PEXTO: 11 MX

# NÍVEIS CRÍTICOS.

V K=29

|      |      |         |             | B L E M F           | NTO       |                  |
|------|------|---------|-------------|---------------------|-----------|------------------|
| IN   | TERP | RETAÇÃO | rósforo     | POTÁSSIO            | cylcio +  | ALUITNIO         |
|      |      |         | TEOR EN PPN | TEOR EN<br>mØ/2061. | TEOR EM   | TEOR EM me/100ml |
| B Å  | IX   | 0       | 0 - 10      | 0 - 45              | 0 - 2,0   | 0 - 0,3          |
| n z  | ת מ  | 0       | 11 - 20     | 46 - 90             | 2,1 - 6,0 |                  |
| A I  | T C  |         | 21 ~ 30     | 91 - 135            | 6,1 -10,0 | >0,3             |
| 11 U | ΙΤΟ  | ALTO    | >30         | > 135               | >10,0     |                  |

SARVICO HACIOHAL DE LEVARIAMENTO É CONSERVAÇÃO DE SECOS

- 9 Considerações Gerais
- 9.1 Pesquisa realizada durante o estagio

Os resultados da pesquisa sobre "LIBE RAÇÃO DE VAZÃO NA CÁPSULA POROSA SOB PRESSÃO HIDROST $\overline{A}$  TICA" serão apresentados posteriormente em relatório.

#### 9.2 - Agradecimentos

Quero registrar os mais inceros agra decimentos as pessoas que direta ou indiretamente contribuiram para a realização do meu estagio, como também, na confecção deste relatorio:

- . Professor HUGO ORLANDO CARVALHO GUERRA
- . Professor HANS RAJ GHEYI
- . Professora NORMA CESAR DE AZEVEDO
- e, as pessoas de:
- . EDSON SOARES FRANCO
- . MARIA LŪCIA CRUZ SILVA
- . MARIA DO SOCORRO
- . RUBENS GERMANO COSTA
- . ROBERTO JOSELINE GUSMÃO

Aproveitando ainda, para agradecer aos colegas estagiários MARCOS ANTONIO DA SILVA, LUIZA TEIXEIRA DE LIMA, MARIA DO SOCORRO F. LIMA e JOÃO DE FARIAS FILHO, pela contribuição prestada, no decorrer da realização do referido estágio.

Ao concluir o estagio apresentado atra ves deste relatório, tenho a certeza de que aprendi coisas da mais alta significação, dentro da nossa area de especialização. Registro aqui, a importância que têm os conhecimentos à cerca da qualificação do so lo e da agua de irrigação, para a prática racional de uma agricultura irrigada.

Através de conhecimentos à cerca dos materiais e métodos que estive em permanente contato, tanto na realização de análises físicas e químicas bem como, através de experiências realizadas no campo através de pesquisa realizada paralelamente ao estágio, senti a importância dos conhecimentos adquiridos para a complementação acadêmica, na parte de Engenharia de Água e Solo.

Campina Grande-PB, 30.07.1982

DACILOO DE SOUZA LIMA SOBRINHO

.

- CAPUTO, HOMERO PINTO Mecânica dos Solos e suas aplicações
   Livros Técnicos e Científicos Editora S.A.
   5ª Edição, 1980
- 2. MANUAL DE ANÁLISES QUÍMICAS E FÍSICAS DE SOLO EMBRAPA
  - 3 OLITTA, ANTONIO FERNANDO LORDELO Os métodos de irri gação - LIVRARIA NOBEL - SÃO PAULO - SP
  - 4. BRADY, NYLE C Natureza e propriedades dos Solos Livraria FREITAS BASTOS S.A.
  - 5. DAKER, ALBERTO A água na agricultura 3º volume Irrigação e Drenagem - Livraria FREITAS BASTOS S.A. Terceira Edição.
  - 6. MILLAR, AGUSTIN A. Drenagem de Terras Agricolas Editora McGraw - HILL DO BRASIL LTDA. -1978