
Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Teste Baseado em Modelos Simbólicos para

Sistemas de Tempo Real

Wilkerson de Lucena Andrade

Tese submetida à Coordenação do Curso de Pós-Graduação em Ciência

da Computação da Universidade Federal de Campina Grande - Campus

I como parte dos requisitos necessários para obtenção do grau de Doutor

em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Patrícia Duarte de Lima Machado

(Orientadora)

Campina Grande, Paraíba, Brasil

c©Wilkerson de Lucena Andrade, Abril de 2011

F I C H A CATALOGRÁFICA E L A B O R A D A P E L A B I B L I O T E C A C E N T R A L DA I F C G

A553t Andrade, Wilkerson de Lucena.
Teste Baseado em Modelos Simbólicos para Sistemas de Tempo Real /

Wilkerson de Lucena Andrade. — Campina Grande, 2011.
196 f.: i l .

Tese (Doutorado em Ciência da Computação) - Universidade Federal
de Campina Grande, Centro de Engenharia Elétrica e Informática.

Referências.
Orientadora: Prof. Dra. Patrícia Duarte de Lima Machado.

1. Teste Formal. 2. Teste Baseado em Modelos. 3. Sistemas de
Tempo Real. . I . Título.

CDU-004. 415.532.2(043)

"SYMBOLIC MODEL-BASED TESTING FOR REAL-TIME SYSTEMS"

WILKERSON DE LUCENA ANDRADE

TESE APROVADA EM 08.04.2011

PATRÍCIA DUARTE DE LIMA MACHADO, Ph.D
Orientador(a)

TIAGp LIMA MASSONI, Dr.
Examinador(a)

R0HIT GHEYLOr.
Examinador(a)

AU ISTO CEZAR ALVES SAMPAIO, Dr.
Examinador(a)

iL BÓRIS DEHARBE, Dr.
Examinador(a)

CAMPINA GRANDE - PB

Resumo
Sistemas de tempo real são aqueles cujo correto comportamento não depende somente dos

resultados gerados, mas também de quando os resultados são gerados. Sistemas de tempo

real são utilizados em diferentes contextos, como por exemplo, monitoramento de pacientes

em hospitais, controle de tráfego aéreo e sistemas embarcados em robôs, eletrodomésticos,

veículos, etc. Para esses sistemas, confiança é uma importante propriedade que demanda

uma aplicação rigorosa das atividades de V & V, pois defeitos podem significar perdas em

termos financeiros, ambientais ou humanos. Como custos e consequências de falhas podem

ser elevados, verificação formal e verificação de modelos têm sido utilizadas no processo

de V & V. Entretanto, como essas abordagens possuem limitações práticas, teste também é

utilizado como uma abordagem complementar porque permite a execução de cenários reais

em ambientes de execução reais. Consequentemente, há um crescente interesse na busca por

metodologias, técnicas e ferramentas para dar suporte ao teste de sistemas de tempo real,

que por sua vez possui inúmeros desafios, tais como implementações compostas por ativi-

dades paralelas com eventos síncronos e assíncronos (interrupções), diferentes arquiteturas

para instalação, limitação de recursos e restrições de tempo no ambiente de execução. Esta

tese foca no teste de conformidade baseado em modelos para sistemas de tempo real. Nesse

contexto, a maioria das abordagens atuais baseia-se em máquinas de estados ou em timed

automata. Entretanto, a maioria dos sistemas de tempo real manipula dados enquanto estão

sujeitos a restrições de tempo. A solução usual consiste em enumerar os valores de dados

(em domínios finitos) enquanto o tempo é tratado de forma simbólica, levando ao problema

da explosão do espaço de estados. Esta tese propõe um novo modelo para sistemas de tempo

real que combina modelos simbólicos com timed automata a fim de tratar dados e requisitos

de tempo de maneira simbólica. Uma teoria de teste de conformidade que lida com esse

modelo é proposta juntamente com um processo de geração de casos de teste baseado na

combinação de execução simbólica e constraint solving para tratar dados e análise simbólica

para tratar aspectos temporais. Além disso, a abordagem proposta dá suporte ao teste de in-

terrupções. Finalmente, dois estudos de caso são executados para avaliar a aplicação prática

da abordagem proposta.

i

Abstract
Real-time systems are the ones whose correct behaviour depends not only on the gener-

ated results but also on whether the results are generated at the right time-points. Real-time

systems are used in different contexts such as monitoring of patients in hospitals, air traf-

fic control systems, and embedded systems in robots, appliances, vehicles, and so on. For

these systems, dependability is an important property that demands rigorous application of

V & V activities, since defects can mean losses in financial, environmental or human ar-

eas. As the costs and consequences of failures can be high, formal verification and model

checking have been used in the V & V process. However, as these approaches have practical

limitations, testing is also used as a complementary approach since it allows the execution

of real scenarios within execution environments. Consequently, there is a growing interest

in the search for methods, techniques and tools to support the testing of real-time systems,

which poses a number of distinguishing challenges such as implementations composed of

parallel activities with synchronous and asynchronous events (interruptions), with different

deployment architectures, and resource limitation and time constraints on the execution en-

vironment. This thesis focuses on model-based conformance testing of real-time systems. In

this context, current approaches are mostly based either on finite state machines/transition

systems or on timed automata. However, most real-time systems manipulate data while be-

ing subject to time constraints. The usual solution consists in enumerating data values (in

finite domains) while treating time symbolically, thus leading to the classical state explosion

problem. This thesis proposes a new model of real-time systems as an extension of both

symbolic transition systems and timed automata, in order to handle both data and time re-

quirements symbolically. We propose a conformance testing theory to deal with this model

and describe a test case generation process based on a combination of symbolic execution

and constraint solving for the data part and symbolic analysis for timed aspects. Moreover,

the proposed approach can deal with interruption testing. Finally, two case studies were

performed in order to evaluate the practical application of the proposed approach.

ii

Agradecimentos

Primeiramente a Deus por permitir-me concluir mais uma importante etapa da minha

vida. Aos meus pais, Sebastião Solano de Andrade e Jucenilda de Lucena Andrade, que

sempre me apoiaram de maneira incondicional e sempre estiveram presentes em todos os

momentos em que precisei.

Um agradecimento muito especial a minha amada, Janaína, e a minha princesa, Gabriella,

pela paciência, compreensão e pelos bons momentos juntos, incentivando-me muito durante

o trabalho. Ao meu filho Luan, que mesmo antes de nascer também me deu muita força para

chegar até aqui. As minhas irmãs, Wilkersya e Wilkerly, pela amizade e companheirismo.

Outro agradecimento especial a minha orientadora, Patrícia Duarte de Lima Machado,

pela dedicada orientação, compreensão, apoio e incentivo. A Diego Almeida e a Augusto

Macedo pelo apoio técnico, contribuindo diretamente para o sucesso do trabalho.

A equipe do projeto VerTeCs (INRIA Rennes - França) pelas discussões e importantes

sugestões, especialmente a Thierry Jéron, Hervé Marchand e Nathalie Bertrand.

A equipe do projeto Motorola Brazil Test Center (Motorola BTCRD) por todas as dis-

cussões.

Aos professores Augusto Sampaio, David Déharbe, Tiago Massoni e Rohit Gheyi, pelos

preciosos comentários visando melhorar a qualidade do trabalho. A CAPES, pelo apoio

financeiro nos dois primeiros anos do doutorado. E por fim, a todas as pessoas que, direta ou

indiretamente, contribuíram para o sucesso deste trabalho.

iii

Conteúdo

1 Introdução 1

1.1 Visão Geral da Tese . 3

1.2 Metodologia . 5

1.3 Estrutura da Tese . 6

2 Fundamentação Teórica 8

2.1 Software Testing . 8

2.1.1 Test Cases . 9

2.1.2 Oracles . 10

2.1.3 Test Cases Identification . 11

2.1.4 Model-Based Testing . 12

2.1.5 Conformance Testing . 14

2.1.6 Property Oriented Testing . 16

2.1.7 Test Case Generation . 18

2.1.8 Symbolic Execution . 18

2.1.9 Symbolic Testing . 19

2.2 Real-Time Systems . 28

2.2.1 Modelling Time . 29

2.2.2 Events . 30

2.2.3 Modelling Real-Time Systems . 30

2.2.4 Testing of Real-Time Systems . 35

2.3 Concluding Remarks . 37

iv

CONTEÚDO v

3 Teste de Interrupção em Sistemas Reativos 38

3.1 Context . 39

3.2 Interruption Model . 40

3.2.1 Representing Interruptions with IOLTS Models 42

3.2.2 Annotated Labelled Transition Systems 43

3.2.3 Testing Conformance . 48

3.3 Interruption Test Case Generation and Selection 49

3.3.1 ALTS Model Generation from Use Case Templates 49

3.3.2 Interruption Test Case Generation 52

3.3.3 Interruption Test Case Selection 55

3.4 Properties of the Interruption Test Cases 58

3.5 Case Study . 61

3.5.1 Overview of the Case Study Applications 61

3.5.2 Case Study Definition . 62

3.5.3 Case Study Results . 64

3.6 Related Work . 66

3.7 Concluding Remarks . 68

4 Trabalhos Relacionados e Problemas Identificados 69

4.1 Related Work . 69

4.1.1 Cardell-Oliver . 69

4.1.2 En-Nouaary et al. 70

4.1.3 Li et al. 71

4.1.4 Khoumsi . 72

4.1.5 Briones and Brinksma . 72

4.1.6 Bohnenkamp and Belinfante . 73

4.1.7 Bodeveix et al. 74

4.1.8 Larsen et al. 74

4.1.9 Hessel et al. 75

4.1.10 Merayo et al. 77

4.1.11 Krichen and Tripakis . 78

CONTEÚDO vi

4.1.12 Zheng et al. 80

4.1.13 David et al. 80

4.1.14 Adjir et al. 81

4.1.15 Styp et al. 82

4.1.16 Timo et al. 82

4.2 Comparison of Reviewed Work . 83

4.3 Problem Statements . 88

4.4 Concluding Remarks . 92

5 Timed Input-Output Symbolic Transition Systems 93

5.1 Syntax of TIOSTS . 93

5.2 Semantics of TIOSTS . 96

5.3 Synchronous Product of TIOSTS . 99

5.4 Concluding Remarks . 101

6 Teste de Conformidade com TIOSTS 102

6.1 Testing Conformance . 102

6.2 Test Case Generation Process . 103

6.2.1 Test Purpose Completion . 105

6.2.2 Synchronous Product Generation 108

6.2.3 Symbolic Execution . 111

6.2.4 Test Case Selection . 115

6.2.5 Test Tree Transformation . 115

6.3 Properties of the Test Cases . 118

6.4 Concluding Remarks . 120

7 Teste de Interrupção em Sistemas de Tempo Real 122

7.1 Modelling and Testing Interruptions in Real-Time Systems 122

7.2 Instantiating the Strategy with an Example 124

7.3 Concluding Remarks . 126

8 Estudos de Caso 128

8.1 The Burglar Alarm System . 128

CONTEÚDO vii

8.1.1 The GQM Measurement Model 129

8.1.2 Case Study Definition . 130

8.1.3 Case Study Results . 133

8.2 The Automatic Guided Vehicle System . 137

8.2.1 The GQM Measurement Model 137

8.2.2 Case Study Definition . 138

8.2.3 Case Study Results . 139

8.3 Concluding Remarks . 142

9 Considerações Finais 143

9.1 Conclusions . 143

9.2 Future Work . 145

A Proofs 164

B TIOSTS Models 168

B.1 TIOSTS Models of the Burglar Alarm System Case Study 168

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study . . . 175

Lista de Figuras

2.1 MBT Activities . 14

2.2 Symbolic Execution Tree of Algorithm 2.1 20

2.3 IOSTS Example . 23

2.4 Test Purpose Example . 26

2.5 Test Case Example . 26

2.6 TLTS Example . 31

2.7 TIOLTS Example . 32

2.8 TA Example . 33

2.9 TAIO Example . 34

2.10 Example of the Future Operation . 35

2.11 Example of the Intersection Operation . 35

2.12 Example of the Reset to Zero Operation 35

3.1 Interruption Test Process . 39

3.2 Test Architecture . 40

3.3 Remove Message Specification . 41

3.4 Incoming Alert Interruption Specification 41

3.5 Simple IOLTS . 42

3.6 Modelling Interruptions Using IOLTS . 42

3.7 Remove Message behaviour . 46

3.8 Remove Message behaviour with Interruptions 47

3.9 LTS Model of a Test Purpose . 56

3.10 Test Case 01 . 57

3.11 Test Case 02 . 57

viii

LISTA DE FIGURAS ix

4.1 Burglar Alarm System Architecture . 91

5.1 TIOSTS Example . 95

5.2 Synchronous Product Example . 100

6.1 TIOSTS Test Purpose Example . 105

6.2 Test Case Generation Process . 107

6.3 Completed Test Purpose Example . 107

6.4 Synchronous Product Example . 110

6.5 Zone-Based Symbolic Execution Tree of the TIOSTS of Figure 6.4 116

6.6 Test Case Obtained from the ZSET of Figure 6.5 118

7.1 Modelling an Abstract Interruption . 123

7.2 Real-Time Version of the Remove Message Behaviour with Interruptions . 125

7.3 Test Purposes . 126

7.4 Test Case with Interruption . 127

7.5 Test Case without Interruption . 127

8.1 Measurement Model for the Alarm System Case Study 130

8.2 Testing Process . 130

8.3 Test Case Builder Application . 131

8.4 TIOSTS Specification for the Burglar Alarm System Case Study 134

8.5 TIOSTS Test Purpose for the Burglar Alarm System Case Study 135

8.6 Results of the TC1 Execution . 135

8.7 Measurement Model for the AGV Case Study 138

8.8 TIOSTS Specification for the AGV Case Study 140

8.9 TIOSTS Test Purpose for the Scenario with no Interruptions (TP1) 140

8.10 TIOSTS Test Purpose for the Scenario with One Interruption (TP2) 141

B.1 Burglar Alarm System Specification . 169

B.2 Test Purpose . 170

B.3 Completed Test Purpose . 170

B.4 Synchronous Product . 171

B.5 Test Case 01 . 172

LISTA DE FIGURAS x

B.6 Test Case 02 . 173

B.7 Test Case 03 . 174

B.8 Test Purpose TP1 . 175

B.9 Automatic Guided Vehicle System Specification 176

B.10 Synchronous Product between AVG System Specification and Test Purpose

TP1 . 177

B.11 Test Case of the First Scenario . 178

B.12 Test Purpose TP2 . 179

B.13 Completed Test Purpose TP2 . 179

B.14 Synchronous Product between AVG System Specification and Test Purpose

TP2 . 180

B.15 Test Case of the Second Scenario . 181

Lista de Tabelas

3.1 Features . 62

3.2 Metrics . 64

4.1 Related Work . 85

4.2 Related Work . 87

4.3 Related Work . 89

4.4 Timing Requirements . 90

8.1 Metrics of the Burglar Alarm System Case Study 136

8.2 Metrics of the AGV Case Study . 141

9.1 Comparison with Related Work . 146

9.2 Comparison with Related Work . 148

9.3 Comparison with Related Work . 149

xi

Lista de Códigos Fonte

2.1 Code for Swapping Two Integers Variables 19

3.1 Procedure that Translates Use Case Templates to an ALTS 51

3.2 Procedure that Combines the Main Application Model with an Interruption

Model . 52

3.3 Test Case Generation Algorithm . 53

6.1 Test Purpose Completion Algorithm . 106

6.2 Synchronous Product of W1 and W2 . 108

6.3 Product of W1 and W2 . 109

6.4 Symbolic Execution of W = 〈V, P,Θ, L, l0,Σ, C, T 〉 113

6.5 Test Tree Translation Algorithm . 117

xii

Capítulo 1

Introdução

Os sistemas computacionais têm se tornado cada vez mais complexos e ubíquos, sejam

através da Internet ou sistemas embarcados. Seguindo essa mesma linha de crescimento,

um tipo especial de aplicações tem se tornado bastante comum, como é o caso dos sistemas

militares, sistemas de controle de indústrias químicas e nucleares, sistemas de controle de

tráfego aéreo, sistemas de monitoramento de pacientes em hospitais, sistemas embarcados

em robôs, veículos, aviões, etc. Todas as aplicações citadas possuem uma importante ca-

racterística em comum: requisitos temporais. O correto comportamento de tais aplicações

não depende somente da integridade dos resultados obtidos (correção lógica ou correctness),

mas depende também do tempo em que são produzidos (correção temporal ou timeliness)

[79]. Sistemas computacionais com restrições de tempo são conhecidos como Sistemas de

Tempo Real (STR).

Muitos STR são desenvolvidos com propósitos específicos e são fortemente acoplados ao

hardware. Nesse caso, esses sistemas são conhecidos como Sistemas Embarcados de Tempo

Real (SETR) [86]. Considerando os contextos de aplicações de STR citados anteriormente,

podemos observar que muitos Sistemas de Tempo Real são complexos e críticos, visto que,

problemas em STR podem significar perdas em termos financeiros, ambientais ou humanos.

Para esses sistemas, confiança (dependability) é uma importante propriedade que demanda

uma aplicação rigorosa das atividades de Verificação e Validação (V & V). Como custos e

consequências de falhas podem ser elevados, verificação formal e verificação de modelos

têm sido utilizadas no processo de V & V. Entretanto, essas abordagens possuem limitações

práticas. Nesse contexto, teste surge como uma importante abordagem complementar pois a

1

2

mesma permite a execução de cenários reais em ambientes de execução reais. Além disso,

teste é uma das técnicas de validação mais populares atualmente e se utilizada de forma

efetiva pode prover importantes indicadores de qualidade e confiabilidade de um produto.

Assim, um dos desafios atuais está na busca por metodologias, técnicas e ferramentas para

dar suporte ao teste de SERT.

Particularmente, o teste de SETR possui inúmeros desafios, como por exemplo: a

plataforma de desenvolvimento é geralmente diferente da plataforma de execução, há várias

plataformas de execução o que pode levar a existência de vários ambientes de desenvolvi-

mento, geralmente os SERT são compostos por atividades paralelas com eventos síncronos

e assíncronos (interrupções), há várias arquiteturas para instalação do sistema, há limitação

de recursos e restrições de tempo no ambiente de execução. Nesse contexto, interrupções

são usualmente aplicadas para a ativação de serviços imediatamente após as requisições.

Para isso, a tarefa que está executando em primeiro plano é suspensa para liberar recursos

para a tarefa que tratará a interrupção. Após o tratamento da interrupção, a tarefa interrom-

pida continua sua execução a partir do mesmo ponto onde a mesma foi interrompida [2;

55; 79; 86]. Como exemplo da ocorrência de uma interrupção, considerando o contexto das

aplicações para celulares, pode-se citar um cenário onde o usuário está compondo uma men-

sagem de texto e uma ligação chega a seu dispositivo, causando uma interrupção da aplicação

de ligação na aplicação que envia mensagens de texto.

A maior parte dos trabalhos em V & V, no contexto de STR, está relacionada à verificação

de modelos [13; 31; 54]. Verificação de modelos é uma técnica utilizada para verificar, de

maneira automática e precisa, a corretude de modelos. Através da utilização de modelos

e propriedades especificadas em vários formalismos, um verificador de modelos verifica se

um modelo satisfaz uma determinada propriedade. Entretanto, se o mesmo rigor não for

aplicado no teste da implementação do sistema, uma brecha é criada entre esses processos,

o que permite a presença de defeitos na implementação mesmo que o modelo tenha sido

verificado com sucesso.

Nesse sentido, várias abordagens foram desenvolvidas para adaptar técnicas de verifi-

cação de modelos para dar suporte à geração de casos de teste [19; 46; 60; 80]. Além disso,

algumas abordagens clássicas de teste foram estendidas para dar suporte ao teste de STR,

por exemplo, teste baseado em modelos [73], especialmente teste de conformidade [78]

1.1 Visão Geral da Tese 3

e o uso de propósitos de teste para selecionar cenários específicos a serem testados [17;

87]. Além disso, algumas abordagens estendem máquinas de estados finitos (MEF) e seus

métodos associados para lidar com requisitos de tempo [46; 97].

Existem poucos trabalhos no contexto de teste de STR e a maioria deles utiliza (variações

de) máquinas de estados ou (variações de) timed automata como modelo base. No entanto,

a maioria das abordagens para teste de sistemas de tempo real somente abstrai tempo e

enumeram valores de dados. Isso não é adequado quando uma especificação utiliza grandes

ou infinitos domínios de dados, pois valores de dados são enumerados, levando ao problema

da explosão do espaço de estados.

Na prática, os STR lidam com variáveis e ações com parâmetros. Assim, modelos mais

poderosos são necessários, onde as variáveis, ações com parâmetros e tempo são explici-

tamente modelados e tratados de maneira simbólica. Há poucos trabalhos cujo objetivo é

prover abordagens simbólicas para teste de software [27; 32; 52; 63; 64; 65; 72; 85; 108; 113;

114; 120]. Entretanto, a maioria dessas abordagens não considera requisitos de tempo [27;

32; 52; 63; 64; 65; 72; 85; 108] e os trabalhos mais recentes apresentados em [113; 114; 120]

estão distantes no sentido de prover uma abordagem completa de teste. O trabalho descrito

em [120] propõe um novo modelo simbólico juntamente com uma relação de conformidade

simbólica, mas nem casos de teste são definidos formalmente nem algoritmos para geração

de casos de teste são apresentados. A abordagem de teste de conformidade proposta em [113;

114] está restrita aos sistemas de tempo real baseados em fluxo de dados, dificultando o teste

de interrupções. Além disso, casos de teste não são formalmente definidos, algoritmos não

são apresentados e não há nenhuma ferramenta para dar suporte ao trabalho.

O restante deste capítulo está estruturado da seguinte forma: uma visão geral desta tese

juntamente com suas principais contribuições é apresentada na Seção 1.1. A metodologia

adotada está descrita na Seção 1.2. Finalmente, a Seção 1.3 apresenta a estrutura geral desta

tese.

1.1 Visão Geral da Tese

O foco deste trabalho de doutorado está no teste de conformidade baseado em modelos sim-

bólicos para sistemas de tempo real, onde a implementação é uma caixa preta cujos deta-

1.1 Visão Geral da Tese 4

lhes internos são desconhecidos. Assim, o testador só pode interagir com a implementação

através do seu comportamento observável (entradas e saídas). Neste tipo de teste, casos de

teste são derivados de uma especificação formal baseando-se em uma relação de conformi-

dade entre a implementação e a especificação e são utilizados para guiar os veredictos da

execução de testes [118]. Os veredictos são decididos por um componente chamado oráculo.

Neste contexto, esta tese aborda as seguintes questões de pesquisa:

Questão de Pesquisa 1 De que forma a teoria de teste baseado em modelos simbólicos

pode ser estendida para poder testar sistemas de tempo real de maneira precisa?

Questão de Pesquisa 2 No contexto de teste baseado em modelos simbólicos para STR,

como prover modelos capazes de especificar e testar eventos assíncronos, tais como

interrupções, de maneira precisa?

Questão de Pesquisa 3 No contexto de teste baseado em modelos simbólicos para STR, é

possível prover um oráculo automático?

Para responder a estas questões de pesquisa, esta tese propõe uma nova abordagem de

teste para sistemas de tempo real. Neste sentido, nossas principais contribuições são:

• Uma nova abordagem de teste de conformidade baseado em modelos para sistemas de

tempo real é proposta, onde o sistema sendo testado é modelado através de uma com-

binação de modelos simbólicos com timed automata, lidando assim com a abstração

de dados e requisitos de tempo;

• Um processo de geração de casos de teste que utiliza propósitos de teste como forma

de seleção também é proposto. O processo é baseado em execução simbólica e con-

straint solving para tratar dados juntamente com análise simbólica para tratar aspectos

temporais. Embora o modelo simbólico proposto possa representar ações internas e

não-determinismo, os algoritmos definidos para a geração de casos de teste não consi-

deram essas características. Além disso, quiescência e implementações não completas

com relação ao conjunto de entradas estão fora do escopo desta tese;

• Uma estratégia para testar interrupções é proposta juntamente com uma maneira de

definir propósitos de teste para checar cenários específicos com interrupções;

1.2 Metodologia 5

• A abordagem de teste proposta nesta tese fornece além de algoritmos para a geração de

casos de teste, uma arquitetura de teste que inclui meios automáticos para a execução

de testes e avaliação dos veredictos de forma confiável.

A aplicação prática da abordagem proposta é avaliada através de dois estudos de caso.

Em um estudo de caso, todo o processo de teste é executado (a partir da geração de casos

de teste até a execução dos mesmos), pois uma implementação do sistema está disponível.

Por outro lado, como o segundo estudo de caso não possui uma implementação do sistema,

apenas a geração de casos de teste é considerada. Os resultados obtidos mostram que a abor-

dagem proposta reduz o esforço necessário para executar o processo de teste, considerando

que a geração de casos de teste e avaliação dos resultados da execução são totalmente au-

tomatizadas. No entanto, alguns pontos de melhoria na atividade de execução de casos de

teste foram detectados.

É importante ressaltar que esta tese considera as seguintes suposições, a fim de abordar

as questões de pesquisa definidas:

1. A teoria de teste simbólico apresentada em [32; 63; 64; 65; 108] é sólida o suficiente

para ser estendida para lidar com propriedades de tempo;

2. Teste baseado em modelos simbólicos provê uma boa base para o teste de conformi-

dade em sistemas de tempo real.

1.2 Metodologia

A metodologia utilizada para desenvolver este trabalho está descrita a seguir:

• O primeiro passo foi realizar uma revisão dos trabalhos voltados para teste baseado em

modelos para sistemas de tempo real com o objetivo de identificar os problemas em

aberto. É importante mencionar que esta revisão foi constantemente atualizada durante

o desenvolvimento deste trabalho;

• O problema de testar de interrupções foi investigado em um contexto sem considerar

tempo. Neste caso, uma abordagem de teste interrupção foi proposta para sistemas

reativos;

1.3 Estrutura da Tese 6

• Execução de um estudo de caso para avaliar a abordagem de teste de interrupção pro-

posta;

• Abordagens baseadas em modelos simbólicos foram estudadas e uma abordagem foi

escolhida como teoria base;

• Uma estratégia de teste de interrupção foi definida para a abordagem baseada em mo-

delos simbólicos escolhida como teoria base;

• O formalismo baseado em modelos simbólicos escolhido foi estendido para lidar com

requisitos de tempo e sua semântica foi formalmente definida;

• Formalização dos conceitos de caso de teste e propósito de teste;

• Uma relação de conformidade existente foi escolhida para ser utilizada na abordagem

proposta;

• Definição de algoritmos para a geração e seleção de casos de teste;

• Formalização da noção de veredictos, considerando que a execução de um caso de

teste pode produzir um dos seguintes resultados: aprovado, falha ou inconclusivo;

• Definição de estratégias para a especificação e teste de interrupções utilizando a abor-

dagem proposta;

• Definição de uma arquitetura de teste e hipóteses de controlabilidade para a execução

de casos de teste;

• Desenvolvimento de um ambiente para permitir a execução de testes e avaliação dos

resultados de maneira automática;

• Execução de estudos de caso para avaliar a aplicabilidade da abordagem proposta.

1.3 Estrutura da Tese

As demais partes deste documento estão estruturadas da seguinte forma:

1.3 Estrutura da Tese 7

Capítulo 2: Fundamentação Teórica Este capítulo fornece o embasamento teórico

necessário para entender este trabalho, incluindo conceitos da área de Teste de Soft-

ware tais como casos de teste, oráculos e técnicas de teste. Finalmente, conceitos

inerentes aos sistemas de tempo real são apresentados.

Capítulo 3: Teste de Interrupção em Sistemas Reativos Este capítulo apresenta uma

abordagem de teste de conformidade para sistemas reativos com interrupções. Sis-

temas de tempo real não são considerados neste capítulo.

Capítulo 4: Trabalhos Relacionados e Problemas Identificados Este capítulo apresenta

uma revisão dos trabalhos relevantes no contexto de teste de sistemas de tempo real.

No final, alguns problemas em aberto são descritos.

Capítulo 5: Timed Input-Output Symbolic Transition Systems Este capítulo propõe o

formalismo simbólico definido com o objetivo de abstrair dados e tempo na especi-

ficação de sistemas de tempo real.

Capítulo 6: Teste de Conformidade com TIOSTS Este capítulo apresenta a teoria de teste

de conformidade considerando com o modelo proposto. Além disso, o processo de

geração de casos de teste é descrito juntamente com uma discussão acerca de algumas

propriedades dos casos de teste gerados.

Capítulo 7: Teste de Interrupção em Sistemas de Tempo Real A estratégia de mode-

lagem e teste de interrupções utilizando o formalismo simbólico proposto é descrita

neste capítulo.

Capítulo 8: Estudos de Caso Este capítulo apresenta uma demonstração prática da abor-

dagem baseada em modelos simbólicos proposta para sistemas de tempo real.

Capítulo 9: Considerações Finais Este capítulo final apresenta as considerações finais e as

perspectivas para trabalhos futuros.

Capítulo 2

Fundamentação Teórica

Este capítulo tem como objetivo principal fornecer o embasamento teórico necessário para

entender os conceitos empregados nesta tese. Serão apresentados os principais conceitos

da área de Teste de Software, destacando o teste baseado em modelos e teste simbólico, e

também os conceitos inerentes aos sistemas de tempo real.

2.1 Software Testing

Software testing is an activity that involves the effort to find evidences of defects inserted

into the software during any phase of development or maintenance of software systems.

These defects may be due to omissions, inconsistencies or misunderstanding of requirements

or specifications by developers [95]. In the software testing context, some concepts are

widely used: failure, fault, and error. According to Binder [18], a failure is the manifested

inability of a system to correctly perform a required function; a fault is defined as the absence

of code or the presence of incorrect code in a computer program that causes the failure; and

error is a human action that results in a software fault.

Testing is an important activity that contributes to ensuring that a software system does

everything it is supposed to do. Some testing efforts extend the focus to ensure an application

does nothing more than it is supposed to do. In any case, testing provides means to assess

the existence of defects (faults) which could result in a loss of time, property, customers, or

life [95].

For a long time, the software testing process was defined within software development

8

2.1 Software Testing 9

processes as a disconnected activity that was only taken into account at the end of the de-

velopment processes. This traditional view is considered as being inefficient because of

high costs associated with correction of detected errors and maintenance of software. This

has contributed to the development of methods and systematic testing techniques where the

testing activities are applied in parallel during the development process [95].

There are several kinds of tests that can be applied depending on the property of the

systems to be tested (for instance, interface, performance, safety, etc.), and their type (for

instance, object-oriented software, distributed systems, reactive systems, real-time systems).

The remainder of this section presents several concepts related to software testing and

that are important to understand this thesis, such as test cases, oracles, approaches to identify

and generate test cases, conformance testing, and some testing techniques such as model-

based testing, property oriented testing, and symbolic testing.

2.1.1 Test Cases

A test case is a set of inputs, execution conditions, and expected results chosen in order to

test a particular behaviour of a system [18]. The main key of software testing is to determine

a set of test cases (named test suite) for the software system to be tested. Every test case

must have at least the following information [67]:

• Inputs

– Conditions that must be satisfied before the test execution;

– The actual inputs chosen to test the system;

• Outputs

– Postconditions that must be satisfied after the test execution;

– The actual output produced by the system under test.

Moreover, a good test case must present additional information for supporting the testing

management [67]. For example, a test case may have a unique identifier, a purpose, an exe-

cution history, etc. Considering all this information, the act of testing consists in satisfying

2.1 Software Testing 10

the preconditions, providing the test case inputs, observing the outputs, and then comparing

these outputs with the expected outputs to decide whether the test pass or not.

In the context of this work, test cases can be classified into two types: instantiated and

abstract test cases. We say that a test case is instantiated when the values of all variables

needed for the test execution are properly assigned during the test case generation process,

whereas we say that a test case is abstract when it has variables with unassigned values. In

the latter case, the tester must assign values, according to the preconditions, during the test

execution.

2.1.2 Oracles

The execution of a test case emits a pass verdict when the system produces an acceptable

result. In order to decide which verdict must be emitted, an evaluation is made by comparing

the actual result with an expected result. The component responsible for performing this

evaluation is called test oracle or simply oracle [18]. Thus, an oracle is a mechanism that

applies a pass or fail verdict to a system execution [105]. For this, it is necessary a result

generator and a comparator. The former is responsible for generating the expected results for

an input and the latter has the objective of checking the actual results against the expected

results.

Considering that a test oracle is a generation and comparison mechanism, it can be clas-

sified into three types: manual, automated, and partially automated [18]. Considering the

manual oracle, both generation and comparison are manually performed. In the automated

oracle, both generation and comparison are automatically performed. Finally, in the partially

automated oracle, one of the activities is manually performed, whereas the other is automatic.

Several artefacts developed during the development process can support the testing pro-

cess as an oracle. The system specification can be used as an oracle, a table of examples

of inputs and expected outputs or simply the knowledge of how the software system should

operate provided by the development team can be also used as an oracle [18].

In practice, manual and partially automated oracles are error-prone. If a system under

test fails to provide some functionality in a very common situation (for example, a menu

option is in a wrong place, the system is aborted with an exception or it is restarted), then

maybe it can be seen to have a fault. But considering an expected output, specified only

2.1 Software Testing 11

by an imprecise description in natural language, a tester may fail to notice a failure. To do

better, an oracle must be automated. But, due to the semantic gap between specification

and real application values, a problem named the oracle problem arises when an automated

mechanism to emit verdicts cannot be defined [91; 92].

The concepts of test case, test suite, and oracle can be related based on a formal frame-

work [56; 91]. Let IUT be an implementation of a software system under test whose input

domain is D and output domain is X . Let TC be a test case which is defined as a total func-

tion from elements of D′ ⊆ D to elements of X ′ ⊆ X . Then dom(TC) = D′ denotes the

domain of TC. Also, let TC(p) be the corresponding expected output for a given input p ∈

dom(TC) and IUT(p) denote the actual result of executing IUT with input p. The TC passes

the system IUT if and only if it passes IUT on all inputs in dom(TC), that is, IUT(p) = TC(p)

for all p ∈ dom(TC). As dom(TC) is likely to be infinite, a finite test suite T ⊆ dom(TC)

needs to be selected. A function O is called an oracle for IUT on TC if for all p ∈ D [91]:

O(p) =


true, if IUT(p) = TC(p)

false, if IUT(p) 6= TC(p)

true, if p 6∈ dom(TC)

Considering the oracle problem, it arises because of the limitation in the definition of an

effective procedure to compare IUT(p) with TC(p), mainly because these values are defined

at different levels of abstraction [91].

2.1.3 Test Cases Identification

The two fundamental approaches used to identify test cases are known as structural and

functional testing [67]. Each of these approaches has its advantages and disadvantages.

Structural testing, also known as white box testing, is a kind of testing where test cases

are identified based on the system implementation. The objective of structural testing is

to test procedural details [101]. Because structural testing is based on the implementation,

it can test parts of the system that are not in the specification, but, on the other hand, the

structural testing fails to identify behaviours which are in the specification, but have not been

implemented.

Functional testing (also known as black box testing) is a kind of testing based on the

2.1 Software Testing 12

view that the software system can be considered as a function that maps values from its input

domain to values in its output domain [67], that is, a kind of testing performed to verify

whether, for a given input, the system produces the correct output. Functional testing is

performed only based on the specification of the system.

Because functional test cases are only identified based on the specification, they are inde-

pendent of how the system is implemented, unlike structural test cases, and therefore, even

if the implementation of the system is changed, the test cases are still useful. Another impor-

tant advantage is that testing activities can be performed in parallel with the implementation,

contributing to a better understanding and correction of models and specifications from ini-

tial stages of the development processes, avoiding late detection of problems, thus reducing

the impact and costs associated with the changes.

In addition to the classification of tests following the fundamental approaches, structural

and functional, we can make a new distinction with respect to several aspects of the behaviour

of the system to be tested. When the specification is defined by models, the approach is called

model-based testing [43]1. When the test is carried out to verify whether the system has the

planned functionalities and if those functionalities are in accordance with the specification,

it is called conformance testing [117]. When the goal is to test specific properties of the

system, test case generation can be guided by informal descriptions of the behaviours to be

tested. In this case, the approach is called property oriented testing [62].

2.1.4 Model-Based Testing

In the last decade, perhaps due to the popularization of object-oriented programming and

use of models in software engineering, there was a great development of a testing technique

known as model-based testing (MBT). MBT is a general term used to name a set of tech-

niques based on models of applications being tested in order to perform activities of test [43].

Such activities can be either generation of test cases or evaluation of test results.

The main activities related to model-based testing, shown in Figure 2.1, are described

below:

Build the model: the model is built from the requirements of the software system under

1As models are considered as specifications in this thesis, these terms are used interchangeably.

2.1 Software Testing 13

test.

Generate test cases: test cases are extracted from the model with the objective of evaluating

whether the system is in accordance with its requirements.

Generate test oracle: the test oracle is generated based on the model. The test oracle is

responsible for deciding which outputs indicate the correct behaviour of the system,

that is, the expected results.

Run tests: the application is exercised with generated test cases, producing new outputs.

Compare actual outputs with expected outputs: the outputs of the system under test, ob-

tained in the previous step, are compared by the test oracle with the expected outputs.

The process of model-based testing begins when the requirements of the software sys-

tem are defined. From requirements, a model that represents the expected behaviour of the

system is built. After defining the model, the next step is the generation of test cases. The

specification of test cases includes, among other information, expected inputs and outputs.

Using these inputs, the system is executed and its behaviour is observed. The last step is to

compare the obtained outputs with the expected outputs to assess whether or not the system

is in accordance with requirements.

One of the main advantages of using MBT is that the generated model can serve as

a reference point for communication between all the people involved in the development

process. Another important advantage is that the most popular models have a rich theoretical

basis that facilitates the generation and automation of the testing process [43].

One drawback of using MBT is the need of knowing the notation of the model and

the theoretical basis to take the most of the model chosen. To make the team acquire the

necessary knowledge implies investment in training and lack of time, in addition to time

spent on the construction of the model [43]. Another disadvantage is the high dependence

with respect to the model, that is, as the test activities are carried out based on the model of

the system, the quality of testing is directly related to the quality of the model.

2.1 Software Testing 14

Figura 2.1: MBT Activities

2.1.5 Conformance Testing

Conformance testing is a kind of testing used to verify whether the implementation of a

software system is in accordance with the specification of its functional behaviour. So, this

subsection presents, in a formal manner, a conformance testing approach based on the frame-

work proposed by Tretmans [118]. Therefore, it is important to link the informal world of

implementations and tests with the formal world of specifications and models.

Conformance testing relates a specification and an implementation under test (IUT) by

the relation conforms-to ⊆ IMPS × SPECS, where IMPS represents the universe of

implementations and SPECS represents specifications. Then, IUT conforms-to s if and

2.1 Software Testing 15

only if IUT is a correct implementation of s.

The conforms-to relation is hard to be checked by testing and the implementations are

generally unsuitable for formal reasoning. Therefore, a test hypothesis is assumed where

any IUT can be modelled by a formal object iIUT ∈ MODS, where MODS represents the

universe of models [15]. Then, an implementation relation imp ⊆ MODS × SPECS is

defined such that IUT conforms-to s if and only if iIUT imp s.

Let TESTS be the domain of test cases and t ∈ TESTS be a test case. Then EXEC(t,IUT)

denotes the operational procedure of applying t to IUT. This procedure represents the test

execution. Let an observation function that formally models EXEC(t,IUT) be defined as obs :

TESTS ×MODS → P(OBS). Then, ∀ IUT ∈ IMPS ∃iIUT ∈ MODS ∀t ∈ TESTS·

EXEC(t,IUT) = obs(t, iIUT), according to the test hypothesis.

Let a family of verdict functions vt : P(OBS)→ {fail, pass} which can be abbreviated

to IUT passes t ⇔def vt(EXEC(t,IUT)) = pass. Then, for any test suite T ⊆ TESTS, IUT

passes T ⇔ ∀t ∈ T · IUT passes t. Also, IUT fails T ⇔ ¬(IUT passes T). A test suite that can

distinguish between all conforming and non-conforming implementations is called complete.

Let Ts ⊆ TESTS be complete. Then, IUT conforms-to s if and only if IUT passes Ts.

A complete test suite is a very strong requirement for practical testing. Then, weaker

requirements are needed. A test suite is sound when all correct implementations and possibly

some incorrect implementations pass it, that is, any detected faulty implementation is non-

conforming, but not the other way around. Let T ⊆ TESTS be sound. Then, IUT conforms-

to s⇒ IUT passes T . The other direction of the implication is called exhaustiveness, meaning

that all non-conforming implementations will be detected.

In practice, sound test suites are more commonly accepted, since rejection of conforming

implementations, by exhaustive test suites, may lead to unnecessary debugging. Let derimp :

SPECS → P(TESTS) be a test suite derivation algorithm. Then, derimp(s) should only

produce sound and/or complete test suites.

This testing framework is instantiated by several works using the most different notations.

For instance, Tretmans [118] instantiated the framework with Labelled Transition Systems

(LTS), Jard and Jéron [62] instantiated it using Input-Output Labelled Transition Systems

(IOLTS), Larsen et al. [80] and Krichen [73] instantiated the framework using Timed Input-

Output Transition Systems (TIOTS), Briones and Brinksma [23] extended the Tretmans’

2.1 Software Testing 16

framework for real-time systems, etc.

One of the most important properties considered in conformance testing is called qui-

escence. In practice, tests observe the behaviour of the system and its quiescence, that is,

the absence of outputs. Quiescence is observed using timers, for instance, whenever a tester

sends an input to the implementation, a timer is reset. The duration of the timer is chosen

such that, if no output occurs while the timer is running, then no output will ever occur. Then,

when the timer finishes, the tester can conclude that the implementation is quiescent. This

approach avoids the rejection of implementations expected to be quiescent in some points

and rejects the implementations that are not, ensuring the soundness of the test cases.

In order to distinguish between observations of quiescence that are allowed by a spec-

ification and those that are not, all possible points where an implementation may become

quiescent must be made explicit in the specification. There are three possibilities of quies-

cence: deadlock, output quiescent, and livelock [62]. A deadlock state is a state where the

system cannot evolve anymore. An output quiescent state is a state where the system is wait-

ing only for an input from the environment. And, livelock is related to the loops of internal

actions, that is, loops of actions that are not seen from the environment.

2.1.6 Property Oriented Testing

It is important to note the difference between testing for conformance and testing from test

purposes. The former aims to accept/reject a given implementation. On the other hand,

the latter aims to observe a desired behaviour that is not necessarily directly related to a

required behaviour or correctness. If this desired behaviour is observed then confidence on

correctness may increase. Otherwise, no definite conclusion can be based solely on this

information. Due to its overloaded use, test purpose is called observation objective in [41].

Nevertheless, the term test purpose is kept in thesis. The concepts introduced in Subsection

2.1.5 are extended for test purposes in this subsection.

Test purposes describe desired observations that we wish to see from the implementation

during the test. Test purposes are related to implementations that are able to exhibit them by a

well chosen set of experiments. This is defined by the relation exhibits⊆ IMPS×TOBS,

where TOBS is the universe of test purposes. To reason about exhibition, we also need

to consider the test hypothesis from Subsection 2.1.5 by defining the reveal relation rev

2.1 Software Testing 17

⊆ MODS × TOBS, so that, for e ∈ TOBS, IUT exhibits e if and only if iIUT rev e, with

iIUT ∈MODS of IUT.

Let a verdict function He : P(OBS) → {hit, miss} which can decide whether a test

purpose is exhibited by an implementation. Then, IUT hits e by te =def He(EXEC(te,IUT)) =

hit. This is extended to a test suite Te as IUT hits e by Te =def He(
⋃

{EXEC(t,IUT) | t ∈ Te}) =

hit, which differs from the passes abbreviation.

An e-complete test suite can distinguish among all exhibiting and non-exhibiting imple-

mentations, such that, IUT exhibits e if and only if IUT hits e by Te. An e-exhaustive test

suite can only detect non-exhibiting implementations (IUT exhibits e implies IUT hits e by

Te), whereas an e-sound test suite can only detect exhibiting implementations (IUT exhibits e

if IUT hits e by Te). Note that the purpose of the sound test suites and e-sound test suites are

similar, even though the implications are relatively inverted. Sound test suites can reveal the

presence of faults, whereas the e-sound can reveal intended behaviour.

Conformance and exhibition can be related aiming to consider test purposes in test se-

lection to obtain test suites that are sound and e-complete. We want e-soundness so that we

can conclude that a hit result always implies exhibition, whereas we require e-exhaustiveness

because we want to be able to find all implementations that are able to exhibit. Soundness

provides us with the ability to detect non-conforming implementations. Contrary to complete

test suites, e-complete test suites are feasible.

Finally, it is important to remark that both conforming and non-conforming implemen-

tations may reveal a test purpose. An ideal situation, where all correct implementations

also exhibit, would be to only consider a test purpose e when i rev e ⊇ i passes T , where

T ⊆ TESTS. However, this situation is not practical. Test purposes are chosen so that:

{i | i rev e} ∩ {i | i imp s} 6= ∅. In this case, a test execution with test case Ts,e that is both

sound and e-complete and that results in fail means non-conformity, since sound test cases

do not reject conforming implementations and e-complete test cases distinguish between all

exhibiting and non-exhibiting implementations. Also, if the result is {pass, hit}, confidence

on correctness is increased, as the hit provides possible evidence of conformance.

2.1 Software Testing 18

2.1.7 Test Case Generation

The test case generation activity can be done following two different approaches: offline or

online testing. In offline testing, all test cases are extracted from the specification, after that,

they are executed against the implementation to obtain a verdict.

The other approach to test case generation is online (on-the-fly) testing where the gener-

ation and execution are combined into a single step. In this approach, a single action or input

is extracted from the specification at a time and it is immediately executed on the implemen-

tation. Then the output produced by the implementation is checked against the specification.

After that, another action or input is extracted again and so forth until the end of the test, or

until a defect (fault) is detected.

As advantages, the offline test generation can be guided to generate test cases in order

to reach some objective, e.g. specification structural coverage, test specific behaviours with

test purposes, and so on. During the offline test generation, all time constraints are resolved

before the execution, so the generated test cases are cheaper and faster to execute [59].

One of the main advantages of online testing is that the classical state space explosion

problem is reduced because only a limited part of the state space needs to be stored at any

point in time, whereas the state space explosion problem is very common when the offline

approach is adopted because the state space needs to be entirely built and stored. Another

advantage of online testing is that some important characteristics of real implementations

as non-determinism can be treated during the test execution more easily. However, online

testing may not be applicable in environments with limited resources, for example in the test

of some embedded systems (e.g. smart cards, mobile phones, music players, etc), because

of the need of very efficient test generation algorithms and many resources to execute them.

2.1.8 Symbolic Execution

Symbolic execution is a technique for analysing programs which represents program inputs

with symbolic values instead of concrete values [33; 71]. The execution of programs is

simulated by manipulating expressions involving symbolic values. Thus, the outputs are

expressed as a function of the symbolic inputs. This technique is used in different contexts

such as test input generation, reachability analysis, partial correctness proving of programs,

2.1 Software Testing 19

Algorithm 2.1: Code for Swapping Two Integers Variables

1 i n t x , y ;

2 i f (x > y) {

3 x = x + y ;

4 y = x − y ;

5 x = x − y ;

6 i f (x − y > 0) {

7 a s s e r t (f a l s e) ;

8 }

9 }

etc.

The execution paths of a program identified during its symbolic execution are represented

as a symbolic execution tree, whose nodes are the program states connected by program tran-

sitions. A program state includes the symbolic values of program variables, a path condition

(PC), and a program counter. A path condition is a (quantifier-free) boolean formula over

the symbolic inputs. When a PC is satisfiable means that it is possible to reach the specific

program point associated with it. Otherwise, the referred specific program point is unreach-

able.

Consider the code fragment in Algorithm 2.1, which swaps the values of integer variables

x and y when x is greater than y, with its corresponding symbolic execution tree presented

in Figure 2.2, where transitions are labelled with program statement line numbers [104]. At

the beginning, PC is true and x and y have X and Y as symbolic values, respectively. At

each statement of the code, PC is updated according to conditions associated with variables.

Analysing the symbolic execution tree of Figure 2.2, it is possible to conclude that line 7 of

Algorithm 2.1 is unreachable because the corresponding PC is not satisfiable. In practice,

constraint solvers are used to verify whether a path condition is satisfiable.

2.1.9 Symbolic Testing

In the last years, several theories and techniques of test case generation have been developed

through specifications modelled by variations of the classic LTS [12; 29; 40; 62; 85; 117].

Basically, LTS models and its variations represent a system behaviour through a graph where

2.1 Software Testing 20

Figura 2.2: Symbolic Execution Tree of Algorithm 2.1

the states are the possible system configurations and the edges represent the action of moving

between these configurations through actions occurrence.

However, LTS models are not suitable when the specification uses large or infinite data

domains because each value in the data domain is represented as a system state, leading to

the classical state space explosion problem. Consequently, many tools can only be used in

very restricted and finite domains.

In practice, test cases (written, for example, using TTCN [49]) can be real programs

with parameters and variables. In this context, a new approach to testing arises: symbolic

testing. Symbolic testing is a testing approach based on powerful models where variables

and parameters are explicitly modelled and treated in a symbolic way.

In the context of symbolic models, the principle is to adapt some existing approach to,

beyond representing the system behaviour, represent the system data without enumerating

the data values. There are still very few works in this context and most of them use (variations

of) state machines or labelled transition systems as the underlying model.

State machines tend to be used in synchronous contexts, where inputs and outputs appear

together in a single transition. Thus, they are unsuitable for representing some characteristics

of reactive systems such as non-determinism and interruptions. Considering the use of state

2.1 Software Testing 21

machines, there is a tool named GAST [72] that was extended to deal with Extended Finite

State Machines (EFSM) specifications. In this tool, properties and data types are expressed

in first-order logic, and based on this information, test data is automatically generated. This

tool is less suitable for testing because the concept of state is not present in a clear manner,

even though it is possible to represent states defining explicitly a complex data structure that

represents the state space. GAST’s algorithm unfolds, in an on-the-fly way, the data type

structure in order to select a path in the EFSM.

The use of (variations of) labelled transition systems is more common in the literature.

Lestiennes and Gaudel [85] developed a strategy of test generation and selection based on

selection hypotheses combined with an operation of unfolding algebraic data types and pred-

icate resolution. Frantzen et al. [52] extended the theory presented in [117] to support soft-

ware testing based on symbolic models. The symbolic framework developed by Frantzen

et al. uses concepts from first-order logic as underlying theory for dealing with guards and

variables, quiescence is taken into account, and some ideas about coverage is discussed.

However, the symbolic framework does not consider test purposes and there is no tool sup-

port. Calamé et al. [27] proposes an approach combining symbolic models, data abstraction,

and constraint solving to generate test cases. The main idea is to apply data abstraction to

abstract the model in a finite state one, use the TGV tool [62] to generate abstract test cases,

and finally, constraint solving is applied to instantiate the test cases.

One of the most solid approaches in the context of symbolic testing is presented in [32;

63; 64; 65; 108]. This method works directly on high-level specifications given as Input-

Output Symbolic Transition Systems (IOSTS) without enumerating their state space. Test

purposes are taken into account to verify specific behaviours of an implementation. Approx-

imate coreachability analysis is used to prune paths potentially not leading to pass verdicts

[63]. The coreachability analysis is based on Abstract Interpretation [36] and the concept

of test generation with verification techniques is also based on the theory presented in [62;

117]. Finally, constraint solving is applied to instantiate the test cases. Moreover, all the sym-

bolic testing approach is supported by the STG tool [32]. So, the theory related to IOSTS

will be presented in more detail below.

The IOSTS is a model of extended labelled transition systems that was inspired by I/O

automata [89]. An IOSTS is a symbolic automata with a finite set of locations, typed vari-

2.1 Software Testing 22

ables, and the communication with its environment is performed through actions carrying

parameters.

Definition 2.1 (IOSTS). Formally, an IOSTS is a tuple 〈V, P,Θ, L, l0,Σ, T 〉, where [108]:

• V is a finite set of typed variables;

• P is a finite set of parameters. For x ∈ V ∪ P , type(x) denotes the type of x;

• Θ is the initial condition, a predicate with variables in V ∪ P ;

• L is a finite, non-empty set of locations;

• l0 ∈ L is the initial location;

• Σ = Σ? ∪ Σ! ∪ Στ is a finite, non-empty alphabet, where Σ? is a finite set of input

actions, Σ! is a finite set of output actions, and Στ is a finite set of internal actions.

Each action a ∈ Σ has a signature sig(a) = 〈p1, ..., pk〉, that is a tuple of distinct

parameters. The signature of internal actions is the empty tuple;

• T is a set of transitions, where each transition consists of:

– a location l ∈ L, called the origin of the transition,

– an action a ∈ Σ, called the action of the transition,

– a predicate G with variables in V ∪ P ∪ sig(a), called the guard,

– an assignment A, such that for each variable x ∈ V there is exactly one assign-

ment in A, of the form x := Ax, where Ax is an expression on V ∪ P ∪ sig(a),

– a location l′ ∈ L, called the destination of the transition.

�

Figure 2.3 shows an example of an IOSTS. In graphical representations, input actions

are followed by the “?” symbol and output actions are followed by the “!” symbol. These

symbols are used only as notation, they are not part of the action’s name. The simple IOSTS

depicted in Figure 2.3 models the triangle problem, an example widely used in the litera-

ture [67; 101; 106]. The input of the problem is three integers representing the sides of a

triangle and the output is the type of the triangle. At the beginning, the system is in the

2.1 Software Testing 23

Idle location. Next, the system expects the Read input carrying three strictly positive integer

parameters p, q, and r. Then the values of the parameters are saved into the variables a,

b, and c, respectively. If the values of the variables do not represent a triangle the system

leaves the CheckTriangle location and goes to the End location emitting the NotATriangle

output. Otherwise, the system emits the IsTriangle output followed by the type of the triangle

(equilateral, isosceles, or scalene).

Figura 2.3: IOSTS Example

The semantics of IOSTS is defined through Input-Output Labelled Transition Systems

(IOLTS) [35]. An IOLTS is a variant of the classic LTS that makes distinction between

events of the system that are controllable by the environment (the inputs) and those that are

only observable (the outputs) [117]. Moreover, internal actions can be represented too.

Definition 2.2 (IOLTS). An IOLTS is a tuple 〈Q,Q0,Λ,→〉, where [35]:

• Q is a possibly infinite set of states;

• Q0 ⊆ Q is the possibly infinite set of initial states;

• R = Λ? ∪ Λ! ∪ Λτ is a possibly infinite set of actions, where Λ? is the set of input

actions, Λ! is the set of output actions, and Λτ is the set of internal actions;

2.1 Software Testing 24

• →⊆ Q× Λ×Q is the transition relation.

�

Intuitively, the IOLTS semantics of an IOSTS 〈V, P,Θ, L, l0,Σ, T 〉 enumerates the pos-

sible values of the variables V and parameters P through the valuations of their domains. A

valuation of the variables V is a mapping ν which maps every variable x ∈ V to a value ν(x)

in the domain of x. Valuations of parameters P are defined similarly.

Let V denote the set of valuations of the variables V and let Γ denote the set of valuations

of the parameters P . Considering ν ∈ V and γ ∈ Γ, an expression E involving a subset of

V ∪ P , denoted by E(ν, γ), is the value obtained by evaluating the result of the replacement

in E of each variable by ν and each parameter by γ.

Definition 2.3 (IOLTS semantics of an IOSTS). The semantics of an IOSTS S =

〈V, P,Θ, L, l0,Σ, T 〉 is an IOLTS S = 〈Q,Q0,Λ,→〉, defined as follows [35]:

• Q = L× V is the set of states;

• Q0 = {〈l0, ν〉 | Θ(ν) = true} is the set of initial states;

• Λ = {〈a, γ〉 | a ∈ Σ, γ ∈ Γsig(a)} is the set of actions, where Λ is partitioned into the

sets Λ? of input actions, Λ! of output actions, and Λτ of internal actions;

• → is the smallest relation in Q× Λ×Q defined by the following rule:

〈l, ν〉, 〈l′, ν ′〉 ∈ Q 〈a, γ〉 ∈ Λ t : 〈l, a,G,A, l′〉 ∈ T G(ν, γ) = true ν ′ = A(ν, γ)

〈l, ν〉 〈a,γ〉→ 〈l′, ν ′〉
.

�

Intuitively, the rule says that the system moves from a state 〈l, ν〉 to a state 〈l′, ν ′〉 through

an action 〈a, γ〉 if there is a transition t : 〈l, a,G,A, l′〉 whose guard G is evaluated to true.

Finally, the assignment A maps the pair (ν, γ) to ν ′.

Next, we present some important definitions used to define the conformance relation

between IOSTS specifications and the implementation of the system under test.

Definition 2.4 (Traces). Let L0 denote the set of initial states. For an IOSTS R we denote

by traces(R) the set {σ ∈ (Σ? ∪ Σ!)∗ | ∃l0 ∈ L0,∃l ∈ L, l0 σ⇒ l}. �

2.1 Software Testing 25

Definition 2.5 (After). For σ ∈ (Σ? ∪ Σ!)∗, we denote by R after σ the following set of

states: {l ∈ L | ∃l0 ∈ L0, l0
σ⇒ l}. �

Definition 2.6 (Out). For L′ ⊆ L be a set of states, we denote by out(L′) the set of valued

outputs that can be observed in states l′ ∈ L′, that is, out(L′) = {α ∈ Ω | ∃l′ ∈ L′,

∃l ∈ L, l′ α⇒ l}. �

Definition 2.7 (Pref). For a set of traces T, we denote by pref(T) the set of strict prefixes of

sequences in T. �

Next, the formal framework for conformance testing presented in [118] (Subsection

2.1.5) and the formal framework for test purposes presented in [41] (Subsection 2.1.6) are

instantiated. For this, the following concepts related to the frameworks must be defined:

specifications, implementations, test purposes, test cases, verdicts, and the conformance re-

lation.

Specifications. A specification is an IOSTS without cycles of internal actions.

Implementations. An implementation can be any computer system that can be modelled

by an IOSTS.

Test Purposes. A test purpose is an IOSTS that describes a specific scenario to be verified.

Before seeing the formal definition of a test purpose it is important to know two characteris-

tics of IOSTS: completeness e compatibility.

Definition 2.8 (Completeness). An IOSTS is complete if for each l ∈ L, α ∈ Σ, the set

{l′|l α→ l′} is non-empty, that is, each location allows all actions. �

Definition 2.9 (Compatibility). Let S1 = 〈V1, P1,Θ1, L1, l
0
1,Σ1, T1〉 and S2 =

〈V2, P2,Θ2, L2, l
0
2,Σ2, T2〉 be two IOSTS. We say that S1 and S2 are compatible if V1∩V2 = ∅,

P1 = P2, Σ!
1 = Σ!

2, Σ?
1 = Σ?

2, and Στ
1 ∩ Στ

2 = ∅. �

Definition 2.10 (Test Purpose). Let S = 〈V, P,Θ, L, l0,Σ, T 〉 be an IOSTS. A test purpose of

S is an IOSTS T P = 〈VT P , PT P ,ΘT P , LT P , l0T P ,ΣT P , TT P〉 together with a set of locations

AcceptT P ⊆ LT P and RejectT P ⊆ LT P such that T P is complete and compatible with S.

�

Figure 2.4 presents an example of a test purpose for the triangle problem example. It is

used to select scenarios where the user chooses inputs such that the triangle is equilateral.

2.1 Software Testing 26

Figura 2.4: Test Purpose Example

The Reject location is used to discard all other scenarios where the system does not exhibit

the desired behaviour. This test purpose is not complete but it is implicitly completed by the

test case generation tool, so the activity of defining test purpose is simplified by allowing to

focus only on the desired behaviour.

Test Cases. Test cases are used to assign verdicts to implementations.

Definition 2.11 (Test Case). A test case is an input-complete, deterministic IOSTS with three

disjoints sets of locations: Pass, Inconclusive, and Fail. �

An example of a test case is showed in Figure 2.5. It starts by providing three integer

values to an implementation of the triangle problem example. Then it expects to receive

a message informing that the chosen values represent the sides of a triangle. Next, if the

system says that the triangle is equilateral, the verdict is Pass, that is, the implementation is

in conformance with the specification and the test purpose. If some other response allowed

Figura 2.5: Test Case Example

2.1 Software Testing 27

by the specification is emitted then the verdict is Inconclusive. Finally, if an unspecified

output is emitted then the verdict is Fail.

Conformance. The conformance relation links an implementation to the specification and

the test purpose. In order to formally define the conformance relation it is needed to define

a product operation that identifies in the specification all possible traces obtained with the

specified test purpose.

Definition 2.12 (Product). The product P = S1 × S2 of two compatible IOSTS S1, S2 is

the IOSTS 〈V, P,Θ, L, l0,Σ, T 〉 defined by: V = V1 ∪ V2, P = P1 = P2, Θ = Θ1 ∧ Θ2,

L = L1 × L2, l0 = 〈l01, l02〉, Σ? = Σ?
1 = Σ?

2, Σ! = Σ!
1 = Σ!

2, Στ = Στ
1 ∪Στ

2 . T is the smallest

set of transitions satisfying the following rules [35]:

1. 〈l1,a,G1,A1,l′1〉 ∈ T1, a ∈ Στ1 , l2 ∈ L2

〈〈l1,l2〉,a,G1,A1∪(x:=x)x∈V2
,〈l′1,l2〉〉 ∈ T

and 〈l2,a,G2,A2,l′2〉 ∈ T2, a ∈ Στ2 , l1 ∈ L1

〈〈l1,l2〉,a,G2,A2∪(x:=x)x∈V1
,〈l1,l′2〉〉 ∈ T

2. 〈l1,a,G1,A1,l′1〉 ∈ T1 〈l2,a,G2,A2,l′2〉 ∈ T2
〈〈l1,l2〉,a,G1∧G2,A1∪A2,〈l′1,l′2〉〉 ∈ T (for a ∈ Σ! ∪ Σ?)

�

The Rule 1, defined above, allows internal actions to evolve independently in each IOSTS

and Rule 2 allows the synchronization of the observable actions of the two IOSTS.

Definition 2.13 (Atraces). Let P = S × T P be the product of the specification S with a

test purpose T P . Then Atraces(P) is the set of traces of the specification that are selected

according to the test purpose. �

Definition 2.14 (Conformance Relation). Let S be a specification modelled by an IOSTS,

T P be a test purpose for S, and P = S × T P their product.

1. An implementation I is in conformance with the specification S, denoted by I conf S ,

if for all traces σ ∈ traces(S) : out(I after σ) ⊆ out(S after σ).

2. An implementation I is in conformance with the specification S and the test pur-

pose T P , denoted by I confT P S, if for all traces σ ∈ pref(Atraces(S × T P)) :

out(I after σ) ⊆ out(S after σ).

�

2.2 Real-Time Systems 28

Intuitively, an implementation conforms to a specification if for all traces of the specifica-

tion, the set of output actions of the implementation is contained in the set of output actions

of the specification. In the second case, an implementation conforms to a specification and

a test purpose if the same inclusion holds for each prefix of a trace of the product between

specification and test purpose.

2.2 Real-Time Systems

At the same proportion in which computer systems become increasingly complex and ubiq-

uitous in our lives, applications with time restrictions have become increasingly common.

Among some examples of these types of applications we can cite military systems, control

systems for chemical and nuclear industries, multimedia systems, air traffic control systems,

elevator control systems, monitoring of patients in hospitals, embedded systems in robots,

cars, airplanes, etc. All these applications have an important characteristic in common: time

requirements. For such systems with explicit time requirements, the correct behaviour de-

pends not only on the correctness of the results but also depends on the time at which they

are produced [31]. Computer systems with this kind of restrictions are known as Real-Time

Systems (RTS).

The classical view of computer systems is that, at some level of abstraction, they are

regarded as a black box that receives inputs and provides appropriate outputs, finishing its

execution after that (e.g., compilers, numerical analysis applications, and so on). However,

most of current computer systems constantly interact with the environment around them

continuously sending responses to input stimuli from the environment. These systems are

characterized by their executions never finishing and are known as Reactive Systems. In

general, RTS fit in the concept of Reactive Systems. In this context, we can say that RTS are

computer systems that respond to input stimuli, originated from the environment in which

they are inserted, in specific times [79].

According to the level of compliance with time requirements, real-time systems can be

classified into Soft Real-Time Systems and Hard Real-Time Systems. Delays related to

compliance with a response-time constraint (deadline) can be tolerated in a soft real-time

system. On the other hand, systems in which failure to meet response-time constraints may

2.2 Real-Time Systems 29

lead to complete and catastrophic system failure are called hard real-time systems [79].

Soft real-time systems are typically used in a scenario where some elements concurrently

interact to produce outputs due to input stimuli, for instance, some packets can be dropped in

audio or video applications. In this case, violation of constraints results in degraded quality,

but the system can continue to operate. A word-processing application is another example

since it should respond to stimuli within a reasonable amount of time or its use will be

impractical.

Hard real-time systems are used when it is essential to react to an event within a strict

deadline. This kind of system requires strong time requirements because the loss of a dead-

line can mean losses in financial, environmental, or human terms. As examples of hard

real-time systems we can cite medical systems such as heart pacemakers, chemical and nu-

clear industrial process controllers, a car engine control system, and so on. Hard real-time

systems are typically found interacting at a low level with physical hardware, in embedded

systems.

2.2.1 Modelling Time

In the study of real-time systems, one essential question is the nature of time. Specifying

timing properties is difficult and may take different focuses. The focus considered in this

work is that time can be classified into discrete or dense time [5].

The discrete or digital-time model considers time as being a monotonically increasing

sequence of integers. This model allows to quantitatively express the distance between two

events and establish total orders between them with a high level granularity. One of the

advantages of this model is that its transformation to other formal languages is easier. One

of the disadvantages is that the events of the real world do not always happen at integer-

valued times.

In a dense or analogue-time model time increase monotonically as a sequence of real

numbers. This model also allows quantitatively express the distance between two events

but in a low level granularity. This model is more natural to represent events of the real

world because everything happens in a continuous time. One disadvantage is that dense-

time models are not simple to transform to a formal language and they are harder to analyse

than in the discrete case.

2.2 Real-Time Systems 30

2.2.2 Events

The nature of events is another important concept related to the study of real-time systems.

Considering software systems in general, a change in state results in a change in the flow

of control of the system. This change in the flow of control can be triggered by commands

like if-then-else, case, invocation of procedures or methods, and so on. Thus, an event is any

occurrence that causes a change in the flow of control of a software system [79].

Considering the context of real-time systems, events can be classified into synchronous

and asynchronous events. The former are those that occur at predictable points in the flow of

control and are represented by conditional branches, invocation of procedures or methods,

occurrence of internal trap interruptions (in the case of exception handling), etc. The latter

occur at unpredictable points in the flow of control. An important characteristic of the asyn-

chronous events is that they are usually caused by external sources, for instance, an alarm

system of a building has sensors to detect intruders and once a movement has been detected,

the sensors interrupt the main application of the alarm system. In this scenario, the main

application of the alarm system cannot predict when an event will occur because it is caused

by external sources.

Synchronous and asynchronous events can be classified into periodic and aperiodic

events [79]. Considering the alarm system example cited above, as the events do not oc-

cur at regular intervals they are called aperiodic asynchronous events. When interruptions

are generated by a periodic external clock they can be classified as periodic asynchronous

events. A periodic synchronous event is one represented by a sequence of invocation of tasks

in a cyclic code, for instance a cyclic invocation of a method. A conditional branch that is

not part of a code block (e.g. garbage collection) represents an aperiodic synchronous event.

2.2.3 Modelling Real-Time Systems

There are several formalisms in the literature for modelling real-time systems: timed au-

tomata [5], timed CSP [107], time Petri nets [16], real-time logics [22], and timed extended

finite state machines [96]. This subsection introduces the most used formalisms: timed la-

belled transition systems and timed automata with their variations.

Timed Labelled Transition Systems (TLTS) is the simplest model (Definition 2.15). It

2.2 Real-Time Systems 31

Figura 2.6: TLTS Example

is an extension of the classic LTS where the actions are divided into discrete and time-

elapsing actions. The difference between discrete and time-elapsing actions is that the former

occurs instantaneously, i.e. without consuming time, whereas the latter represents the time

evolution.

Definition 2.15 (TLTS). Formally, a TLTS is tuple 〈S, s0, Act, T 〉, where:

• S is a finite, non-empty set of states;

• s0 ∈ S is the initial state;

• Act = A ∪ D is a set of actions, where A is a finite set of discrete actions and D =

{d | d ∈ R≥0} is a set of time-elapsing actions;

• T ⊆ S × Act× S is the transition relation with the following properties:

– Time Determinism: ∀s, s′, s′′ ∈ S: if s d→ s′ and s d→ s′′, then s′ = s′′

– Time Additivity: ∀s, s′′ ∈ S, ∀d1, d2 ≥ 0 : (∃s′ ∈ S : s
d1→ s′

d2→ s′′) iff

s
d1+d2→ s′′

– Null Delay: ∀s, s′ ∈ S : s
0→ s′ iff s = s′.

�

An example of a TLTS is shown in Figure 2.6. That example represents a scenario

where, starting in state s0, we delay for 2.5 units of time, after which we reach s1, where we

immediately execute action a, reach s2, delay for 0.5 units of time, after which we reach s3,

where we immediately execute x, and reach state s4.

The Timed Input-Output Labelled Transition System (TIOLTS) is an extension of TLTS

where the set of discrete actions A is partitioned into input and output actions.

Definition 2.16 (TIOLTS). A TIOLTS is a timed labelled transition system 〈S, s0, Act, T 〉

with Act = AI ∪AO ∪D (AI ∩AO = ∅), where AI is a finite set of input actions and AO is

a finite set of output actions. �

2.2 Real-Time Systems 32

Figura 2.7: TIOLTS Example

Figure 2.7 presents an example of TIOLTS. It means that, starting in state s0, we delay for

2.5 units of time, after which we reach s1, where we immediately provide the input action a

to the system, reach s2, delay for 0.5 units of time, after which we reach s3, where the system

immediately responds with the output action x, and reach state s4.

Most of the work related to real-time model checking and testing is based on Timed

Automata (TA). It was firstly proposed by Alur and Dill [5] and ever since many variations

have been proposed.

Definition 2.17 (TA). A Timed Automaton is a tuple 〈Q, q0, Act, C,E〉, where:

• Q is a finite set of locations;

• q0 ∈ Q is the initial location;

• Act is a finite set of actions;

• C is a finite set of clocks;

• E is a finite set of transitions. Each transition is a tuple 〈q, q′, a, λ, δ〉, where:

– q, q′ ∈ Q are the source and destination locations,

– a ∈ Act is the action of the transition,

– λ ⊆ C is the set of clocks to reset to zero,

– δ is a clock constraint over C. δ is defined inductively by

δ := x#c | δ1 ∧ δ2,

where c is an integer constant and # ∈ {<,≤,=,≥, >}.

�

Figure 2.8 presents an example of a timed automaton that models the same scenario

represented in Figure 2.6. Considering timed automata, it is assumed all clocks are reset to

2.2 Real-Time Systems 33

Figura 2.8: TA Example

zero at the beginning. In Figure 2.8, there is a single clock w and the notation w := 0 means

the action of resetting the clock w. Similarly, the notations w = 2.5 and w = 0.5 represent

the clock constraints associated with the transitions. The automaton starts in location s0 and,

once the transition is enabled (i.e. w = 2.5), the action a is executed, reaching the location

s1. The clock is reset to zero along with this transition. The time elapsed since the occurrence

of the action a is shown by the value of clock w. The transition from location s1 to location

s2 is enabled only if this value is equal to 0.5, where the action x is immediately executed.

The semantics of TA can be defined in terms of an infinite TLTS (Definition 2.18). Let

the function υ : C → R≥0 denote a clock valuation υ.

Definition 2.18 (TLTS semantics of a TA). The semantics of a TA A = 〈Q, q0, Act, C,E〉 is

a TLTS LA = 〈S, s0, Act, T 〉, defined as follows:

• S = Q × (C → R≥0) is the set of states of the form s = (q, υ) where q ∈ Q is a

location and υ is a clock valuation;

• s0 = (q0,~0) is the initial state, where ~0 is the valuation assigning 0 to every clock in

C;

• Act = A ∪D is the set of actions, where A is the set of discrete actions and D = {d |

d ∈ R≥0} is the set of time-elapsing actions;

• T is the transition relation defined as follows: (1) transitions with discrete actions are

of the form (q, υ)
a→ (q′, υ′), where a ∈ Act and there is a transition 〈q, q′, a, λ, δ〉,

such that υ satisfies δ and υ′ is obtained by resetting to zero all clocks in λ; (2) tran-

sitions with time-elapsing actions are of the form (q, υ)
d→ (q, υ + d) for all d ∈ R≥0

such that υ |= δ and υ + d |= δ.

�

2.2 Real-Time Systems 34

Figura 2.9: TAIO Example

Timed Automata with Inputs and Outputs (TAIO) is an extension of TA where the set

of actions Act is partitioned in two disjoint sets: a set of input actions and a set of output

actions.

Definition 2.19 (TAIO). A TAIO is a timed automata 〈Q, q0, Act, C,E〉 whereAct = ActI∪

ActO, such that ActI is a finite set of input actions and ActO is a finite set of output actions.

Moreover, ActI ∩ ActO = ∅. �

The semantics of TAIO can be defined in terms of an infinite TIOLTS in a similar manner

as described for TA. Figure 2.9 presents an example of a TAIO. This example represents the

scenario of Figure 2.8 and it states that the system must receive the input a exactly with 2.5

units of time. Finally, the system must output b exactly with half of one unit of time.

As the semantics of TA and TAIO is defined in terms of infinite timed labelled transition

systems, both verification and testing techniques must deal with large sets of states which

may lead to the state space explosion problem. In this case, it is important to have an effi-

cient symbolic representation of the state space. One of the most efficient representations is

based on the notion of zone [42; 58; 122; 123]. A zone represents the maximal set of clock

valuations that satisfy a constraint.

The analysis of the state space using this symbolic representation requires some opera-

tions such as:

• The future of a zone Z, defined by ~Z = {z + d | z ∈ Z, d ∈ R≥0};

• The intersection of two zones Z and Z ′, defined by Z ∩ Z ′ = {z | z ∈ Z, z ∈ Z ′};

• The reset to zero λ ⊆ C of Z, defined by [λ← 0]Z = {[λ← o]z | z ∈ Z}.

All these operations are graphically illustrated in Figures 2.10, 2.11, and 2.12, respec-

tively.

2.2 Real-Time Systems 35

Figura 2.10: Example of the Future Operation

Figura 2.11: Example of the Intersection Operation

Figura 2.12: Example of the Reset to Zero Operation

2.2.4 Testing of Real-Time Systems

The increasing use of real-time systems, in most different contexts, has been demanding

investments in order to increase the reliability and integrity of such systems. Some research

efforts have been expended in devising techniques such as model checking [13; 31; 54],

where the correctness of models is verified in an automated and accurate manner. However,

if the same rigour is not applied to the test of the implementation, a gap is created between

2.2 Real-Time Systems 36

these processes, allowing the presence of defects in the implementation even if the model

had been successfully verified.

Since research in the real-time software testing field is very recent, the developed tech-

niques and tools are still immature and difficult to use in practice. Thus, one of the challenges

today is the search for methods, techniques and tools to support the test of systems with time

restrictions. Nevertheless, real-time systems have several distinguishing characteristics that

may need to be taken into account during the testing process, leading to the most difficult

challenges in software testing [121].

The test of real-time systems is more difficult than the test of non-real-time systems be-

cause the correct behaviour of the former depends not only on the correct results but also

when they are emitted. Thus, it is essential to develop techniques to interact with the sys-

tem: (1) by providing inputs at the correct time and (2) by observing and evaluating if the

generated results are correct in terms of integrity and timing.

Real-time systems are usually composed of parallel activities. So, the models must

represent such parallelism between many elements and allow ways of communication be-

tween these elements. As previously said, RTS are extremely related to events that of-

ten occur in terms of interruption signals from the arrival of data, ticking of a hard-

ware clock, or an error alarm. To provide an effective solution for testing, it is cru-

cial to define models capable of representing these asynchronous events. In addition, the

model has to be composable, allowing events to be combined at different points of possi-

bly different flows of execution. Research in this direction is practically nonexistent and

some approaches only consider interruptions in a non-real-time context [7; 8; 9; 12; 29;

39].

Another hard activity of testing real-time systems is the test execution. Considering an

environment composed of several processes executing at the same time with synchronous and

asynchronous events, it is very difficult to have control of the whole environment. Current

work in the literature consider so many hypotheses related to the environment and the system

under test that the results sometimes are not useful in practice. It is needed testing techniques

and theories that allow one to have interesting conclusions without having the environment

fully controllable.

A pass verdict is emitted when the system produces an acceptable result on time. The

2.3 Concluding Remarks 37

addition of time in the validation of RTS, the unpredictability of events, and the absence

of controllability during the test execution lead to a harder oracle problem. This happens

due to the fact that it is very difficult to have total control of an environment with parallel

activities during the test execution. Moreover, in practice, the time cannot be controlled and

it is treated in different abstraction levels by the tester and the specification. In this case, test

hypotheses must be defined in order to achieve valid verdicts. To the best of our knowledge,

approaches in the direction of solving the oracle problem considering the context of real-time

systems are practically nonexistent.

2.3 Concluding Remarks

This chapter presented the theoretical basis necessary for the understanding of this work. At

the beginning, the main concepts related to software testing were presented, for instance test

cases, oracles, approaches to identify test cases, conformance testing, and testing techniques

like model-based testing, property oriented testing, and symbolic testing.

With respect to the real-time systems context, we described what a real-time system is

and discussed several characteristics like how the time can be modelled, the types of existing

events, some classical notations used to model RTS, and the difficulties to test real-time

systems.

Capítulo 3

Teste de Interrupção em Sistemas

Reativos

Para prover uma solução efetiva para o teste de interrupção é crucial definir um modelo de

teste capaz de representar tais interrupções e, consequentemente, tornar possível a geração

automática de casos de teste. Tal modelo de teste deve ser passível de composição, per-

mitindo a especificação de interrupções em diferentes pontos de eventualmente diferentes

fluxos de execução. Assim, devido à grande quantidade de casos de teste possíveis, estraté-

gias de seleção precisam ser aplicadas para reduzir o tamanho das suítes de teste. Além

disso, o ambiente de execução de teste deve ser cuidadosamente considerado para que os

requisitos e as restrições de execução sejam devidamente identificados e tratados.

Este capítulo apresenta uma abordagem de teste de conformidade para sistemas reativos

com interrupções, que abrange a modelagem (voltada para teste), geração e seleção de casos

de teste consistentes [9]. O modelo adotado é denominado Annotated Labelled Transition

System (ALTS). Este tipo de Labelled Transition System (LTS) tem descrições especiais in-

seridas no modelo, a fim de tornar o processo de geração de casos de teste possível. LTSs são

bons modelos para testes funcionais, pois todas as informações necessárias são as interações

observáveis entre as aplicações e o ambiente e também entre as próprias aplicações. Além

disso, eles são o formalismo base da maioria das notações formais para aplicações reativas.

O modelo proposto está implementado na ferramenta LTS-BT [29] e um estudo de caso é

realizado para ilustrar os benefícios da abordagem em relação à seleção manual.

Teste de interrupção foi investigado em [6] considerando o contexto das aplicações para

38

3.1 Context 39

celulares, mas apenas uma estratégia operacional foi proposta. Este capítulo apresenta uma

abordagem formal para sistemas reativos em geral. Além disso, o trabalho apresentado em

[9] e descrito neste capítulo estende o trabalho apresentado em [8], abrangendo os seguintes

aspectos: (1) algoritmos definidos para a tradução de especificações em alto nível para mo-

delos são apresentados; (2) o estudo de caso é apresentado em mais detalhes e os resultados

são amplamente discutidos.

3.1 Context

In general, the test process in the context of this chapter starts with a specification of the

System Under Test (SUT) and interruptions. Given high level specifications, an ALTS model

is automatically generated. Finally, the ALTS model is combined with test purposes for

interruption test case generation. The interruption test process uses test purposes in order to

test at specific points of interest. A general view of this test process is presented in Figure 3.1.

This process considers the test architecture presented in Figure 3.2. In this test architecture,

two elements are important: the SUT and the TESTER. The SUT is composed of the main

application and interruptions allowed during the test process. The environment is assumed to

be fully controllable by the TESTER, thus, during test execution the TESTER has total control

of the interruptions, deciding when they start and finish.

Figura 3.1: Interruption Test Process

The SUT is specified as use cases using a controlled natural language [26; 84; 115]. An

example of a use case of a mobile phone application is shown in Figure 3.3. This represents

the behaviour of removing a message from inbox. A use case must have a main flow and

can have some alternative flows. The flows are described through steps that include a user

action and the respective system response. For instance, the step “4M"has the selection of

3.2 Interruption Model 40

Figura 3.2: Test Architecture

the “Remove"option, and the respective system response is to show an alert saying that the

message was removed.

Besides the actor action and the system response, each step has a condition (System State)

that determines if the system response will happen or not. If the condition is not satisfied, an

alternative flow must be specified. As an example, the step “4M"of the main flow has one

alternative flow (steps “1A"and “2A").

Considering the specifications of interruptions, the idea is to specify an interruption in

the same way by using the same use case template that is used to specify a simple behaviour

of the SUT [39]. For instance, Figure 3.4 presents the behaviour of an incoming alert inter-

ruption. This interruption specifies the arrival of a new kind of text messages where the text

appears to the user inside a dialog box.

Once the interruption flow is specified, we assume that it can be executed at any time

of another use case execution, that is, between any step of another use case. With this

specification strategy, interruption behaviours are defined in a simple manner and all points

where an interruption can occur do not need to be explicitly specified.

3.2 Interruption Model

This section presents the proposed ALTS model structure capable of representing interrup-

tions. Firstly, interruptions are represented with IOLTS models (Definition 2.2) to illustrate

the challenges and the desired semantics for ALTS models. Secondly, ALTS models are de-

3.2 Interruption Model 41

Figura 3.3: Remove Message Specification

Figura 3.4: Incoming Alert Interruption Specification

3.2 Interruption Model 42

fined, their structure is illustrated by an application in the mobile phone domain, and their

semantics are defined showing how an ALTS can be converted into an IOLTS. Finally, the

notion of conformance considered is discussed.

3.2.1 Representing Interruptions with IOLTS Models

Considering the conformance testing approach, LTS is one of the most used formalisms. Ba-

sically, LTS models are represented by graphs where the nodes are the possible system states

and the edges represent the transition between these states through occurrence of actions.

LTSs can be used for modelling the behaviour of systems such as specifications, implemen-

tations, and tests, and it serves as a semantic model for several formal languages such as

CCS and CSP [116; 117].

Particularly in the case of reactive systems, the underlying model should represent the

interaction of the system with its environment by distinguishing between inputs and outputs.

In this case, IOLTS models are used. Figure 3.5 shows an example of an IOLTS. An input

event is defined using the symbol “?” followed by the event name and an output event is

defined using the symbol “!” followed by the event name.

Figura 3.5: Simple IOLTS Figura 3.6: Modelling Interruptions Using IOLTS

It is possible to model interruptions using an IOLTS. For this, each possibility of in-

terruption needs to have a specific set of states, implying that interruption flows must be

duplicated. Figure 3.6 shows an example of how to model interruptions using IOLTS. Nodes

from 0 to 4 are related to a behaviour that can be interrupted by another behaviour at nodes

1 and 3. State 5 represents the possibility of interruption at node 1 and state 6 the possibility

of interruption at node 3. Note that nodes 5 and 6 represent the same interruption behaviour.

The replication of the interruption model is due to the semantics of the behaviour. Sup-

pose that only one state had been used to represent the interruption behaviour, then it would

not be possible to associate a unique next state to the end of the interruption execution. After

3.2 Interruption Model 43

an interruption execution, the flow needs to continue from the same point where the inter-

ruption had started.

3.2.2 Annotated Labelled Transition Systems

ALTSs are capable of representing interruptions in a more compact way, following the same

semantics presented in the previous subsection. This new kind of LTS follows the same clas-

sical LTS definition. The difference is that each label is associated with a description. This

new description inserted into the model is called an annotation. Before defining an ALTS, a

definition of a Generic Annotated Labelled Transition Systems (GALTS) is presented.

Definition 3.1 (GALTS). A GALTS is a 5-tuple 〈Q,A,L, q0, T 〉, where:

• Q is a countable, non-empty set of locations;

• A is a countable, non-empty set of annotations;

• L is a countable, non-empty set of labels;

• q0 ∈ Q is an initial location;

• T is a set of transitions. Each transition consists of:

– a location q ∈ Q, called the origin of the transition;

– an annotation a ∈ A, called the annotation of the transition;

– a label l ∈ L, called the label of the transition;

– a location q′ ∈ Q, called the destination of the transition.

�

As said before, each label has an associated description (annotation). So in the GALTS

definition (Definition 3.1) we have a set A that contains the possible descriptions of the la-

bels. This set can be instantiated according to the information to be modelled or the context

where the model will be used. In this work, the focus is on a model to support the test pro-

cess, mainly a model capable of representing interruptions efficiently. Thus, a more specific

GALTS is defined where the set A of annotations has predefined elements.

3.2 Interruption Model 44

Definition 3.2 (ALTS). An ALTS is a 5-tuple 〈Q,A,L, q0, T 〉, where:

• Q is a countable, non-empty set of locations;

• A = {steps, conditions, expectedResults, beginInterruption_X, endInterruption_X} is

the set of annotations;

• L is a countable, non-empty set of labels;

• q0 ∈ Q is an initial location;

• T is a set of transitions. Each transition consists of:

– a location q ∈ Q, called the origin of the transition;

– an annotation a ∈ A, called the annotation of the transition;

– a label l ∈ L, called the label of the transition;

– a location q′ ∈ Q, called the destination of the transition.

�

These annotations were chosen with the following specific goals: (1) guide the test case

generation process, by making the focus on particular interruptions easier; (2) make it pos-

sible for interruption models to be plugged and unplugged without interfering with the main

model; (3) guide test case documentation; (4) make it possible for conditions to be associated

with actions; (5) indicate points where interruptions can be reasonably observed externally.

The annotation steps is associated with a label l ∈ L (we write [steps]l) to indicate that l

is an input action. When a label l ∈ L represents a condition associated with an input action,

we use the annotation conditions and write [conditions]l. The expected results are indicated

through expectedResults annotation ([expectedResults]l). Two other annotations are used

to indicate the start and the end of an interruption and they are considered as special kinds of

input actions and expected results, respectively. So the labels in L represent the observable

actions (input or output actions) or some condition associated with these actions.

Let W = 〈Q,A,L, q0, T 〉 be an ALTS. We write q
[a]l→ q′ for (q, a, l, q′) ∈ T and q

[a]l→

for ∃q′ : q
[a]l→ q′. An ALTS can be defined by its initial location, then we write W → for

q0 →. Depending on the associated annotation, the labels can be classified as input actions,

3.2 Interruption Model 45

output actions, and conditions. Thus, let L = LI ∪ LO ∪ LC , where LI is the set of input

actions, LO is the set of output actions, and LC is the set of conditions. Let a(i) ∈ A be some

annotations, ω(i) ∈ L be some labels, σ ∈ ([A]L)∗ a sequence of labels with their respective

annotations, and q, q′ ∈ Q some locations.

Let Ω(q)
∆
= {[a]ω | a ∈ A, ω ∈ L, q [a]ω→} be the set of actions reachable from q. Also, let

Out(q)
∆
= Ω(q)∩ [A \ {steps, conditions, beginInterruption_X}]LO be the set of outputs

reachable from q. The definition of Out(q) can be extended for sets of locations: for P ⊆ Q

we have Out(P)
∆
=

⋃
q∈P Out(q). Denote q

[a1]ω1...[an]ωn→ q′
∆
= ∃q0, . . . , qn : q = q0

[a1]ω1→

q1
[a2]ω2→ . . .

[an]ωn→ qn = q′. The set q after σ ∆
= {q′ ∈ Q | q σ→ q′} is the set of locations

reachable from q, and P after σ ∆
=

⋃
q∈P q after σ is the set of locations reachable from

the set P . Traces(q) ∆
= {σ ∈ ([A]L)∗ | q σ→} describes the sequences of labels with their

respective annotations reachable from q. Considering the sequences of labels and annotations

reachable from the initial location of an ALTS W , we define Traces(W)
∆
= Traces(q0).

Considering our running example presented in Section 3.1, Figure 3.7 presents an ALTS

model that represents the behaviour of removing a message from inbox. This application

is specified by the use case shown in Figure 3.3. The model where interruptions can occur

will be illustrated with the scenario where that feature specified by the use case shown in

Figure 3.3 can be interrupted at some points by the Incoming Alert interruption (interruption

specified by the use case presented in Figure 3.4). The scenario described above is presented

in Figure 3.8. Note that locations from 0 to 13 are related to the remove message behaviour

(Figure 3.3), and locations from 14 to 17 are related to the Incoming Alert interruption (Fig-

ure 3.4).

From Figure 3.8, the interruption model is connected to the feature that can be interrupted

(the main flow) using two new annotations: beginInterruption_X and endInterruption_X,

where X is a counter. These annotations are used to indicate where the main flow has been

interrupted. Also, they are needed to represent the behaviour where the main flow continues

its execution from the same point where it had been interrupted. For instance, if an interrup-

tion begins with the beginInterruption_0 annotation it must finish with endInterruption_0.

One of the main advantages of using the Annotated LTS is that we can add the same

interruption behaviour to many different points only by manipulating the two new annota-

tions (beginInterruption_X and endInterruption_X). Thus, we can represent interruptions in

3.2 Interruption Model 46

a more compact way than standard LTS, while preserving the same efficiency and precision

in test generation (this is discussed in Section 3.4).

Considering time as being continuous, an interruption can occur at infinite points during

the system execution. But considering the tester’s point of view, each possibility of interrup-

tion can only be observed after each system response. This happens due to the fact that it

is impractical to reproduce a scenario where an interruption occurs between an input action

and the system response, mainly when tests are manually executed. It is important to remark

that this is a limitation of the test process in general and not of the proposal presented in this

chapter. Thus, the intention is to represent only interruptions that occur immediately after

the system responses. In this case, Figure 3.8 represents all possibilities of interruption from

the tester’s point of view.

Note that, as we are considering an LTS model for testing, only functionalities to be

tested are specified. Thus, we have a partial behavioural model. From the tester’s point of

view, only the specified behaviour is observed, and with this, all other behaviours are not

observed during the test, including other possible interruptions. We are assuming that the

test execution environment is controlled by the tester, that is, an interruption only occurs

when the tester wishes that it occur.

In practice, this interruption model should not be written by hand because it is tiresome

and not cost-effective. It must be generated directly from abstract specifications. The ALTS

Figura 3.7: Remove Message behaviour

3.2 Interruption Model 47

Figura 3.8: Remove Message behaviour with Interruptions

model presented in this section is automatically generated from those use case templates

described in Section 3.1 by the LTS-BT tool [29]. This tool is described in more details in

the next section.

The semantics of ALTS models can be defined in terms of IOLTS models. Basically,

locations in the ALTS model are states in the IOLTS plus additional states that are created to

replicate the interruption behaviour. Labels annotated with steps, conditions, beginInterrup-

tion_X are input actions in the IOLTS, whereas labels annotated with expectedResults and

endInterruption_X are output actions in the IOLTS. The transition function is incremented

by the replication of interruption behaviour by considering the new states added. The most

3.2 Interruption Model 48

non-trivial element in this association is the condition transition. The reason to map them to

input action is that they often represent in test models different paths of execution of the ap-

plication. When a condition is associated with a test case, this often means that the tester will

need to properly set up the application so that a particular flow of execution can be tested.

Therefore, in test case documentation, they are often promoted to an initial condition that

will demand an input set up information.

3.2.3 Testing Conformance

This work considers a testing theory that is based on the notions of specification, implementa-

tion, and a conformance relation between them [118]. The specification of a reactive system

with interruption can be written in any notation that can be transformed into an ALTS model.

But this work considers only use case templates or an ALTS that respects the constraints on

the use of labels defined in Subsection 3.2.2. The implementation can be any computer sys-

tem that can be interrupted at any time and can be modelled as an ALTS. Moreover, it is

assumed all interruptions to be controllable and implementations to be input-enabled, that is,

∀q ∈ Q, a ∈ A \ {conditions, expectedResults, endInterruption_X},∀ω ∈ LI , q
[a]ω→ .

As discussed in Section 3.1, the tester needs full control of the test environment in order

to achieve valid verdicts during the test execution process. Thus, the implementation un-

der test must respond to all stimuli of the tester leading to require, at least during the test

execution, that the implementation is input-enabled. This is a usual assumption of testing

techniques (e.g. [62; 116; 117]) that can be achieved by appropriate control mechanisms.

This work considers a conformance relation based on a simplification of the ioco relation

defined by Tretmans in [117]. The conf relation (presented in Definition 3.3) does not take

internal actions and quiescence into account.

Definition 3.3 (conf). Let the specification S be an ALTS and SUT be an input-enabled

ALTS:

SUT conf S ∆
= ∀σ ∈ Traces(S), Out(SUT after σ) ⊆ Out(S after σ).

�

3.3 Interruption Test Case Generation and Selection 49

It is important to mention that traces of ALTSs are restricted to paths in which the returns

from interruptions go to the correct locations according to the ALTS semantics presented in

the end of Section 3.2.2. Informally, an implementation conforms to a specification for conf

if for all traces of the specification, the set of output actions of the implementation in each

location is contained in the set of output actions of the specification. This implementation

relation is similar to the one considered by the TGV tool [62].

3.3 Interruption Test Case Generation and Selection

This section presents the algorithms developed in order to automate the test process described

in Section 3.1. Firstly, algorithms that translate use case templates to ALTS models are

presented. After that, an algorithm that generates interruption test cases is shown. Finally,

an interruption test case selection strategy based on test purposes is presented.

3.3.1 ALTS Model Generation from Use Case Templates

This subsection presents a strategy for translating use case templates into ALTS models from

which test cases can be generated. The general translation procedure is shown in Algorithm

3.1. This procedure is a variation of the one presented in [93] that focus on individual features

only. Basically:

• Each template of the use case, starting from the main flow one, is processed sequen-

tially and, from each step, locations and transitions are created in the target ALTS

according to the order of steps defined in the template. This is controlled by the two

for loops;

• currentLocation represents the location from which transitions are created for the cur-

rent step. This is either: (1) the last location created in case the From Step field is

defined as START or this is the first location; or (2) the last location of a given step

(defined in the From Step field) of another template;

• From Step and To Step guide the connection of each trace created by each of the tem-

plates;

3.3 Interruption Test Case Generation and Selection 50

• User Action, System State, and System Response become transitions that are associated

with steps, conditions, and expectedResults annotations, respectively;

• Locations are created as new transitions that need to be added. These are incrementally

numbered from 0. Locations and transitions are created by the add operation. But

locations already created can be reused when connecting the traces of new templates.

When this is possible, the addToStep (To Step is different from END) and addFromStep

(From Step is different from START) are used instead;

• Duplicated transitions from the same location are also avoided. This can happen when

the same steps are possible but with different conditions.

Algorithm 3.1 is based on two loops in order to process all steps of all templates. In

practice, all steps of all templates are processed only one time. Thus, the running time of

Algorithm 3.1 using the asymptotic notation is O(|STEPS|), where |STEPS | represents the

sum of all steps of all templates to be processed.

After the generation of the ALTS models from use case templates, the model of the

main application and the model of the interruption must be connected. Algorithm 3.2 is

responsible for connecting them. Basically:

• The procedure uses a Depth-First Search (DFS) strategy for traversing all locations of

the main application, that is, the application to be interrupted;

• As the proposed strategy only considers interruptions to be possible after expected

results, the only possible points of interruptions are exactly after the transitions with

the expectedResults annotation;

• When a transition with an expectedResults annotation is found in the main application

model, a new transition (with the beginInterruption_X annotation) is added to the first

location of the interruption model. And, from each final location of the interruption

model, a new transition (with the endInterruption_X annotation) is added for connect-

ing this model with the main application model;

• Search is a procedure responsible for marking a location (its second parameter) as a

visited location and putting all adjacent locations in a list (its first parameter) to be

processed.

3.3 Interruption Test Case Generation and Selection 51

Algorithm 3.1: Procedure that Translates Use Case Templates to an ALTS

1 UseModel UseCase2ALTS (C o l l e c t i o n Templa t e s) {

2 UseModel a l t s := new UseModel () ;

3 f o r each t e m p l a t e i n Templa t e s {

4 i f (t e m p l a t e . ge tF romStep () 6= START) {

5 / / l o c a t i o n a f t e r e x p e c t e d r e s u l t s o f from s t e p

6 c u r r e n t L o c a t i o n := a l t s . g e t F i n a l L o c a t i o n (t e m p l a t e . ge tF romStep ()) ;

7 } e l s e {

8 / / a s s o c i a t e s a l o c a t i o n t o t h e s t e p t h a t c r e a t e s i t

9 c u r r e n t L o c a t i o n := new L o c a t i o n (t e m p l a t e . g e t F i r s t S t e p ()) ;

10 }

11 f o r each s t e p i n t e m p l a t e {

12 T r a n s i t i o n s t e p s := s t e p . g e t U s e r A c t i o n () ;

13 T r a n s i t i o n c o n d i t i o n s := s t e p . g e t S y s t e m S t a t e () ;

14 T r a n s i t i o n e x p e c t e d R e s u l t s := s t e p . ge tSys t emResponse () ;

15 i f (s t e p s i n a l t s) {

16 c u r r e n t L o c a t i o n := a l t s . g e t L o c a t i o n A f t e r (s t e p s) ;

17 } e l s e i f (s t e p = t e m p l a t e . g e t F i r s t S t e p () AND

t e m p l a t e . ge tF romStep () 6= START) {

18 / / Avoid d u p l i c a t i n g a s t e p s t r a n s . from t h e same l o c a t i o n

19 c u r r e n t L o c a t i o n := a l t s . addFromStep (c u r r e n t L o c a t i o n , s t e p s ,

t e m p l a t e . ge tF romStep ()) ;

20 } e l s e {

21 / / Cr ea t e a new l o c a t i o n f o r add ing t h e new t r a n s i t i o n

22 c u r r e n t L o c a t i o n := a l t s . add (c u r r e n t L o c a t i o n , s t e p s) ;

23 }

24 i f (c o n d i t i o n s 6= e m p t y C o n d i t i o n) {

25 c u r r e n t L o c a t i o n := a l t s . add (c u r r e n t L o c a t i o n , c o n d i t i o n s) ;

26 }

27 i f (s t e p = t e m p l a t e . g e t L a s t S t e p () AND t e m p l a t e . g e t T o S t e p () 6= END) {

28 / / The t a r g e t l o c . f o r t h e s y s t e m r e s p . t r a n s . i s a l r e a d y c r e a t e d

29 c u r r e n t L o c a t i o n := a l t s . addToStep (c u r r e n t L o c a t i o n ,

e x p e c t e d R e s u l t s , t e m p l a t e . g e t T o S t e p ()) ;

30 } e l s e {

31 c u r r e n t L o c a t i o n := a l t s . add (c u r r e n t L o c a t i o n , e x p e c t e d R e s u l t s) ;

32 }

33 }

34 }

35 re turn a l t s ;

36 }

3.3 Interruption Test Case Generation and Selection 52

Algorithm 3.2: Procedure that Combines the Main Application Model with an Interruption

Model

1 CombineALTSModels (UseModel m a i n A p p l i c a t i o n , UseModel in tModel , I n t e g e r

i n t C o d e) {

2 L i s t l i s t := ∅ ; / / L i s t o f t r a n s i t i o n s t o be v i s i t e d

3 C o l l e c t i o n f i n a l L o c a t i o n s := i n t M o d e l . g e t F i n a l L o c a t i o n s () ;

4 s e a r c h (l i s t , m a i n A p p l i c a t i o n . g e t R o o t L o c a t i o n ()) ;

5 whi le (l i s t 6= ∅) {

6 t r a n s i t i o n := l i s t . remove () ;

7 t a r g e t L o c a t i o n := t r a n s i t i o n . g e t T o L o c a t i o n () ;

8 i f (t r a n s i t i o n . i s E x p e c t e d R e s u l t s T r a n s i t i o n ()) {

9 t a r g e t L o c a t i o n . a d d B e g i n I n t e r r u p t i o n T r a n s i t i o n (

i n t M od e l . g e t R o o t L o c a t i o n () , i n t C o d e) ;

10 f o r each l o c a t i o n i n f i n a l L o c a t i o n s {

11 l o c a t i o n . a d d E n d I n t e r r u p t i o n T r a n s i t i o n (t a r g e t L o c a t i o n , i n t C o d e) ;

12 }

13 i n t C o d e ++;

14 }

15 i f (t a r g e t L o c a t i o n i s n o t v i s i t e d)

16 s e a r c h (l i s t , edge . g e t T o L o c a t i o n ()) ;

17 }

18 }

19 }

The running time of Algorithm 3.2 using the asymptotic notation is O(| Q | · | F |),

where |Q | is the number of locations of the main application and |F | is the number of final

locations of the interruption model.

3.3.2 Interruption Test Case Generation

This subsection describes the interruption test case algorithm developed to extract test cases

from ALTS models. A test case generated from an ALTS is defined as follows.

Definition 3.4 (Test Case). A test case is an ALTS TC = 〈QTC , ATC , LTC , qTC0 , T TC〉. The

set of annotations is the same as the specification (ATC = AS) and the set of labels is

LTC = LTCI ∪ LTCO ∪ LTCC , where LTCI ⊆ LSUTO (outputs of the SUT are the inputs of

3.3 Interruption Test Case Generation and Selection 53

Algorithm 3.3: Test Case Generation Algorithm

1 Decompose (L o c a t i o n loc , Pa th pa th , I n t e g e r i n t C o d e) {

2 i f (l o c . i s L e a f () OR (l o c . i s R o o t () AND p a t h 6= ∅)) {

3 / / End o f a pa th

4 r e c o r d T e s t C a s e (p a t h) ;

5 re turn ;

6 }

7 f o r each d e s c e n d e n t i n l o c . g e t A d j a c e n c i e s () {

8 edge := getEdgeBetween (loc , d e s c e n d e n t)

9 i f (edge . i s B e g i n I n t e r r u p t i o n ()) {

10 i n t C o d e := edge . g e t I n t C o d e () ;

11 }

12 i f ((edge . g e t I n t C o d e () = −1 AND edge /∈ p a t h) OR (i n t C o d e >= 0 AND

edge . g e t I n t C o d e () = i n t C o d e)) {

13 p a t h . add (edge) ;

14 i f (edge . i s E n d I n t e r r u p t i o n ()) {

15 i n t C o d e := −1;

16 }

17 Decompose (d e s c e n d e n t , pa th , i n t C o d e) ;

18 } e l s e i f (edge . g e t I n t C o d e () = i n t C o d e) {

19 r e c o r d T e s t C a s e (p a t h) ;

20 }

21 }

22 re turn ;

23 }

the TC), LTCO ⊆ LSUTI (TC emits only inputs allowed by the SUT), and LTCC ⊆ LSC (the

conditions are the same specified by the specification). �

Test cases can be obtained from ALTS models, using the DFS method, by traversing the

ALTS starting from the initial location (see Algorithm 3.3). As a general coverage criterion,

all transitions need to be covered, i.e., all transitions of the ALTS model are visited at least

once. As Algorithm 3.3 is based on DFS, its running time using the asymptotic notation is

O(|Q | + |T |), where |Q | is the number of locations and |T | is the number of transitions

of the ALTS model.

3.3 Interruption Test Case Generation and Selection 54

Algorithm 3.3 requires three parameters: loc, a location of the model, indicating the

current one during execution; path, a set of transitions from the model, indicating the path

visited during the processing; and intCode, the interruption code, indicating that a given

interruption is being processed.

The extraction is started from the root (the initial location of the ALTS model), verifying

if the current location indicates the end of a path in the model, indicating that the test case

has been extracted. In this case, it needs to be recorded. If the current location does not

indicate the end of a path, then each of its descendants is visited through the depth-first

search strategy.

To visit each of its descendants, the edge between the current location and its descendant

is analysed. The search proceeds only if (Algorithm 3.3, Line 12): (i) the edge does not

belong to the current analysed path, i.e., the edge has not already been “visited"(note that

when the algorithm is processing the main application, the value of intCode is −1); or (ii)

if it is an edge from an interruption behaviour (an edge with the endInterruption_X label).

This precaution is necessary because after the interruption, the extraction process in the

ALTS comes back to previous location (the last location of the main application before the

interruption), therefore being possible to pass through the same interruption, in different

parts of the model, and constraining that would cause inconsistency.

Due to these conditions, two scenarios are encountered: (1) Conditions (i) and (ii) are

not satisfied: The search stops, recording the entire path as a test case avoiding loops in the

main application and finishing an interruption with the correct endInterruption_X transition.

In this case, the recursion step of the algorithm returns to the next branch that needs to be

analysed, continuing the algorithm; (2) Condition (i) or (ii) is satisfied: The edge between

the location and its descendent is added to the test case and the algorithm continues until it

finds the end of the path, which happens when either a leaf in the graph or an edge going

back to the root of the model are found.

These constraints over the extraction, when using the depth-first search approach, are

required to avoid an explosion of paths during the test case extraction caused by loops in

the ALTS model. This may reduce the number of extracted test cases, but without those

constraints, the number of paths extracted becomes unfeasible, while most of them may be

obtained by combining the extracted test cases. Also, from a functional testing point of view,

3.3 Interruption Test Case Generation and Selection 55

in practice these excluded paths generally add redundancy to the test suite, that is, they do

not generally add test cases that would uncover escaped faults because traversing the same

loop several times to generate tests produces test suites with similar test cases [30]. Fully

exploring loops it is usually a goal of other testing stages such as stress testing which is out

of the scope of this work. Furthermore, by considering them, the algorithm would produce a

large, infinite and not practical suite.

3.3.3 Interruption Test Case Selection

Exhaustive interruption test case generation is impractical due to the large amount of gen-

erated test cases. Particularly, in the mobile phone applications context, the majority of test

cases are manually executed. In this scenario, test case selection strategies are much needed.

The strategy used to reduce the test suite is a test case selection based on purposes. This

strategy focuses on a coverage selection criterion, the test purpose, in order to test a partic-

ular system functionality [41; 50; 51; 83; 94]. The defined test purpose is used to filter out

the model, that is, it is used to remove all paths that do not lead to the desired behaviour to

be tested. After that, the generation algorithm is executed, for then, generate the test cases.

Formally, a test purpose can be defined as follows.

Test purposes can be specified using a simple notation, where they are defined through

transition sequences. In these sequences, an “*” (asterisk) indicates that, at this point, any

transition can occur. A test purpose always finishes with a transition that has an Accept label

(indicating that all test cases need to be in conformance with the purpose) or a Refuse label

(otherwise).

Definition 3.5 (Test Purpose). A test purpose is a deterministic LTS TP =

(QTP , LTP , qTP0 , T TP), equipped with the special labels Accept, Refuse, and “*”, and

with the same alphabet as the specification, i.e., LTP = LS . QTP is a countable, non-empty

set of states, qTP0 ∈ QTP is the initial state, and T TP is the transition relation. �

Some hints on how to define test purposes are presented below:

• Choose the behaviour to be observed in the implementation and identify its description

in the specification;

3.3 Interruption Test Case Generation and Selection 56

• If the behaviour to be observed is the first behaviour of the specification, then the test

purpose should start with the description of this behaviour. Otherwise, add an asterisk

followed by the description of the behaviour to be observed. This indicates that any

behaviour can occur before the observation of the desired behaviour;

• If there are more behaviours to be observed in the same test purpose, go back to the

first step;

• If the last behaviour description added to the test purpose is the last behaviour of the

specification, then go to the next step. Otherwise, an asterisk should be added to

the test purpose. This indicates that any other behaviour can occur after the desired

behaviour;

• The last step is to add an Accept or a Reject label to the test purpose. As mentioned

before, the Accept label is used to indicate that all generated test cases must be in

conformance with the test purpose. The Reject label is used otherwise.

As an example of a test purpose, we will use that ALTS model from Figure 3.7 in order

to define a test purpose for a scenario where a message is not removed because it is blocked.

For this scenario, the following purpose could be defined: “*;‘Blocked messages cannot be

removed’ dialog is displayed;*;Accept”. The LTS model that represents this test purpose is

showed in Figure 3.9.

Figura 3.9: LTS Model of a Test Purpose

It is very simple to define test purposes where an interruption can occur. Given that

the behaviour to be interrupted has been chosen, the name of the interruption must appear

immediately after the description of this behaviour in the test purpose. The ALTS model

with interruptions from Figure 3.8 will be used to demonstrate how to define test purposes to

check specific interruptions. A test purpose will be defined to test the scenario where an alert

appears when the user is accessing the inbox folder. This scenario can be specified through

the following test purpose: “*;All inbox messages are displayed;Incoming Alert;*;Accept”.

3.3 Interruption Test Case Generation and Selection 57

Considering the defined test purpose, the model from Figure 3.8 is filtered out to be in

accordance with it. So, the following edges of the model are removed: beginInterruption_0,

endInterruption_0, beginInterruption_2, endInterruption_2, beginInterruption_3, endInter-

ruption_3, beginInterruption_4, endInterruption_4, beginInterruption_5, and endInterrup-

tion_5. The last step is to execute the test case generation algorithm.

All presented algorithms are implemented in the LTS-BT tool [29]. In order to make the

test execution activity easier, considering that this activity is manual, the tool generates test

cases in an alternative representation instead of ALTS. Each selected test case is transformed

in a matrix, where each condition is considered as an initial condition to execute the test case.

Figures 3.10 and 3.11 present the generated interruption test cases for the example above

(the scenario where an alert appears when the user is accessing the inbox folder). Note

that, in both generated test cases, the interruption occurs when the user is viewing the inbox

folder, as was specified by the test purpose. Moreover, all scenarios of the main feature are

covered. In the test case of Figure 3.10, an interruption occurs in the scenario where the

message is removed, whereas, in the test case of Figure 3.11, an interruption occurs in the

scenario where the message is not removed because it is blocked.

Figura 3.10: Test Case 01 Figura 3.11: Test Case 02

Notably LTS-BT allows for a systematic and less error-prone coverage of all possible

interruptions automatically, since the tester does not need to specify all possible points where

an interruption can occur – this is assumed by the tool. Moreover, LTS-BT makes it easier to

focus on particular points to be interrupted and interruptions. These LTS-BT characteristics

allow the tester to obtain test cases in a faster and reliable way.

3.4 Properties of the Interruption Test Cases 58

It is important to remark that in the current version of the LTS-BT tool, test cases are

selected as paths in the ALTS model. Therefore, even though the model is capable of rep-

resenting non-determinism, the tool suits only deterministic applications, differently from

the TGV tool [62], where a test case is a graph that can represent non-determinism. This is

currently being addressed for the next versions of the tool.

As an example of a test case execution, the steps required for executing the test case of

Figure 3.11 are: (1) the first step is to satisfy the initial condition, then an inbox message

must be blocked for the test case execution. Moreover, as the test case needs an incoming

alert interruption, two mobile phones must be available for the test case execution; (2) with

the phone under test, the TESTER begins to execute the actions described in the test case.

Thus, the “Message Center"application is started and, as result, all folders are displayed; (3)

next, the second action is executed: the “Inbox"folder is selected and all inbox messages

are displayed; (4) at this moment, the TESTER must cause an incoming alert interruption.

So, he takes another phone and sends an alert to the phone under test. As expected result,

a dialog must appear at the phone under test; (5) the TESTER selects the “Ok"option at the

phone under test and control goes back to the previous application. In this case, all inbox

messages must be displayed again; (6) the TESTER scrolls to a message and it is highlighted;

(7) the “Remove"option is selected by the TESTER and the following message is expected:

“Blocked messages cannot be removed"; (8) the TESTER confirms the dialog and the content

of the message is displayed. Finally, if for all steps of the test case, the expected results were

observed, the execution finishes with a pass verdict.

3.4 Properties of the Interruption Test Cases

This section comments on properties of the interruption test cases generated by the test case

generation algorithm presented in the last section. Considering the execution of a test case

against a SUT, three kinds of verdicts can be obtained indicating that the SUT should be ap-

proved or not: if the SUT emits the specified outputs for each input emitted by the test case,

the verdict is Pass; if at least one of the outputs of the SUT is not specified by the specifica-

tion, the verdict is Fail; and the Inconclusive verdict is emitted when the observed behaviour

of SUT conforms to the specification but the behaviour described by the test purpose is not

3.4 Properties of the Interruption Test Cases 59

exhibited by the SUT.

It is very important to formalise the execution of the test cases in order to establish some

properties as soundness and exhaustiveness, where the conformance relation is linked to ver-

dicts obtained during the test execution [62]. Interruptions are clearly asynchronous events,

but as we are considering a test architecture where the environment is fully controllable by

the tester, all interruptions can be analysed as synchronous events. Thus, test cases inter-

act with the SUT through a synchronous communication, where the execution of a test case

against a SUT is modelled by a parallel composition with synchronisation on common ac-

tions. Basically, parallel composition is defined by the following rule:

P || Q =
p

a→P p′, q
a→Q q′

(p, q)
a→P ||Q (p′, q′)

.

Considering the defined model of test case execution, each trace σ ∈ Traces(TC || SUT)

is associated with one of the following scenarios:

• If, at any moment, any unspecified output is emitted by the SUT, the execution is

stopped and the resulting verdict is Fail, that is, verdict(σ) = Fail;

• If the SUT, at any moment, blocks or spends a lot of time to emit an output, the

resulting verdict is Inconclusive (a timer must be used in this case). So verdict(σ) =

Inconclusive;

• If the outputs of the SUT are specified by the specification but the behaviour spec-

ified by a test purpose is not exhibited, the resulting verdict is Inconclusive, that is,

verdict(σ) = Inconclusive;

• If all steps of the test case are executed and all expected results are observed, then the

resulting verdict is Pass, i.e. verdict(σ) = Pass.

Given the possible situations with their respective verdicts, the rejection of a SUT by a

test case TC is defined as follows.

Definition 3.6 (may reject). TC may reject SUT ∆
= ∃σ ∈ Traces(TC || SUT) : verdict(σ) =

Fail. �

3.4 Properties of the Interruption Test Cases 60

The conformance relation of a SUT with respect to a specification S is decided based

on verdicts obtained with the execution of the generated test cases. So, the next definition

formally relates the previously defined conformance relation (Definition 3.3) to the verdicts

of these executions considering some properties of test cases and test suites.

Definition 3.7 (Soundness and Exhaustiveness). A test case TC is sound for S and conf if

∀SUT, SUT conf S ⇒ ¬(TC may reject SUT). A test suite is sound if all its test cases are

sound and it is exhaustive for S and conf if ∀SUT, ¬(SUT conf S)⇒ ∃TC : TC may reject

SUT. Finally, a test suite is complete if it is both sound and exhaustive. �

Informally, a test suite is said to be sound if all correct implementations, and possibly

some incorrect implementations, pass in the test (a sound test suite never rejects a correct

implementation). On the other hand, a test suite is said to be exhaustive if all non-conforming

implementations, and possibly some correct implementations, will not pass in the test. A

test suite that can identify all conforming and non-conforming implementations is called

complete.

A complete test suite is a very strong requirement for practical testing. Then, weaker

requirements are accepted. In practice, sound test suites are more commonly accepted, since

rejection of conforming implementations, by exhaustive test suites, may lead to unnecessary

debugging. In this context, the test cases generated by LTS-BT have some properties stated

in Theorem 3.1.

Theorem 3.1. For every specification S, all test suites generated by the approach proposed

in this chapter are sound. Moreover, the test suites can be considered as being exhaustive

when they are generated using test purposes. �

The proof of Theorem 3.1 is not detailed here but the main ideas are discussed (see

detail proofs in Appendix A). For soundness, we need to prove that if a test case TC may

reject a SUT (implementing the specification S), then ¬(SUT conf S). In this case, we only

need to prove that a Fail verdict of a test case only occurs if the SUT emits an unspecified

output. This was already discussed in this section and the unique case where a Fail verdict is

obtained during a test case execution is exactly when the SUT emits an unspecified output.

For exhaustiveness, we need to prove that for every non-conforming SUT there is a test

purpose TP and a way of generating a test case TC from S and TP , such that TC may

3.5 Case Study 61

reject SUT. Given that ¬(SUT conf S), then there is a trace σ of S such that an output of

SUT after σ is not allowed by S. So, the trace σ can be used to define a TP , after that, this

test purpose can be used to generate test cases where the SUT may be rejected.

3.5 Case Study

The objective of this section is to present a case study performed in order to evaluate a prac-

tical application of the approach proposed in this work. As previously said, a scenario where

interruptions are allowed may have infinite test cases. Thus, in practice, only a subset of

interruption test cases are manually generated and executed. Considering this context, the

main goal is to compare the manual process of test case generation with the automatic pro-

cess based on the algorithms presented in Section 3.3 and implemented by LTS-BT [29].

Moreover, as the amount of test cases is large, some test case selection strategy is needed.

Particularly, in this case study, the strategy used to select the test suite is based on test pur-

poses defined in order to cover a fault model which describes the set of known defects found

in the past [18]. Testers use fault models to define effective test cases since the test cases are

specially defined to uncover defects that are likely to be present. The use of fault models for

comparing testing approaches is important in our context because only stable versions of the

software are available, that is, versions with all known defects already removed. In this case,

fault models allow to compare testing approaches by observing if defined test cases would

uncover defects or not.

This case study was performed using applications of the mobile phone domain whose de-

scriptions are presented in the next subsection (Subsection 3.5.1). Subsection 3.5.2 describes

how the case study was defined and conducted. Finally, Subsection 3.5.3 presents the results

obtained during the case study execution.

3.5.1 Overview of the Case Study Applications

This subsection briefly describes the features used during the case study. All of them are

reactive applications of the mobile phone domain. In summary, the description of the features

is:

3.5 Case Study 62

Tabela 3.1: Features
Features Number of Use Cases Number of Scenarios

Aircraft Mode 7 22

Incoming Call 1 2

Incoming Message 1 2

Alarm Clock 1 3

Aircraft Mode This is the main feature of the case study and it is the feature that must be

interrupted. Aircraft Mode feature provides the functionality of allowing the user to

turn off the radio frequency transceiver and still be able to use the applications of the

phone. This feature allows the user to use applications of the phone while flying in an

aircraft, but without receiving calls, messages, and so on.

Incoming Call This is an interruption feature. Incoming Call feature provides the function-

ality of receiving calls.

Incoming Message This is an interruption feature. Incoming Message feature provides the

functionality of receiving messages.

Alarm Clock This is another interruption feature. Alarm Clock provides the functionality

of generating alarm notifications based on specific time chosen by the user.

Table 3.1 shows some metrics of the features in order to illustrate their complexity such

as the number of use cases and the number of possible scenarios. It is important to remark

that, considering the relationship between all features of this simple case study, the amount

of interruption test cases is more than forty million tests.

3.5.2 Case Study Definition

In this subsection, we present the evaluation criteria and fault model defined for conducting

and evaluating the case study. The focus is on interruption testing and generation of test

suites for manual execution.

The main goal is to show evidence on the benefits of automation in the interruption

test case generation and selection process using the implemented algorithms. The strategy

3.5 Case Study 63

adopted to achieve the goal is to compare the manual process of test case generation with the

automatic process proposed. In practice, this kind of testing is often conducted by manual

processes of selection guided by expertise. Also, there are no related proposals of more

systematic strategies that could make a good basis for comparison.

As the amount of interruption test cases is very large, generation and selection is guided

by a fault model specification that indicates the kind of faults that can be usually be found in

this kind of applications. Thus, test cases must be selected, both in manual and in automatic,

with the objective to cover the whole fault model specification. The main metrics to be

observed are: (1) the time spent during the test case generation and selection and (2) the

coverage of an instance of the fault model specification that contains actual faults detected

in products composed of these features.

The case study was conducted by three testers: one based on automatic process (named

Tester 1) and two based on manual process (named Tester 2 and Tester 3). Considering the

knowledge of the testers, they had good test skills and none of them knew the features under

test before the case study execution. Thus, all testers performed the case study based on two

kind of information:

• The specification of the features under test;

• The fault model profile.

The specification of the features under test is a document describing all use cases (Table

3.1) according to that notation presented in Section 3.1. It is important to mention that this

document was prepared in five hours. On the other hand, the fault model profile was defined

based on common problems related to feature interruptions and actual defects related to the

features under test. The fault model given to the testers is specified in natural language and

its description is defined as follows:

• After an interruption, the interrupted application does not maintain data entered by the

user;

• After an interruption, the interrupted application does not continue its execution of the

same point where it was interrupted;

3.5 Case Study 64

Tabela 3.2: Metrics
Metrics Tester 1 Tester 2 Tester 3

Preparation time 2 h 2 h 2 h

Generation time 80 min 165 min 150 min

Number of TCs 115 15 12

Productivity 86,5 TCs/h 5,4 TCs/h 4,8 TCs/h

Fault model coverage 57,14% 28,57% 28,57%

Number of invalid TCs 0 (0%) 4 (26,66%) 4 (33,33%)

Number of ineffective TCs 23 (20%) 13 (86,66%) 7 (58,33%)

Smallest TC (number of steps) 3 5 6

Biggest TC (number of steps) 12 11 8

Most common TC size 5 6 and 8 8

• Possible conflicts related to the use of shared resources (screen, network, and so on);

• Problems related to interruptions immediately before enabling the aircraft mode;

• Problems related to interruptions immediately after disabling aircraft mode;

• Problems related to interruptions when the aircraft mode is enabled.

By measuring coverage of an instance of this specification with actual faults (instead of

coverage of the specification), where one kind of fault may correspond to more than one

actual fault, it is possible to analyse which approach can be more effective to systematically

investigate the implementation by generating a more complete test suite.

3.5.3 Case Study Results

This subsection presents and discusses the obtained results. Table 3.2 presents the metrics

collected during the case study execution.

The first step of the case study consisted in reading the specification and the fault model.

These documents are usually constructed prior to the testing process by requirements and

quality engineers. In this sense, all testers had the same preparation time (Table 3.2, line

3.5 Case Study 65

“Preparation time”), and as previously said, Tester 1 generated the test suite through an auto-

matic process by using LTS-BT [29], and Tester 2 and Tester 3 generated the tests through a

manual process. According to the results, from Table 3.2, Tester 1 generated the tests in less

time (line “Generation time”). The generation time of Tester 1 basically consisted of the time

needed to define test purposes once each LTS-BT execution consumed less than one second

to generate test cases. Considering the generation time of Tester 2 and Tester 3, they spent

more time because all test cases were manually selected and written in the format shown in

Figures 3.10 and 3.11. Furthermore, Tester 1 generated the largest test suite (line “Number

of TCs”, where TCs means Test Cases) implying in more productivity (line “Productivity”).

The productivity was calculated by observing the number of test cases generated per hour.

Considering the fault model coverage (Table 3.2, line “Fault model coverage”), Tester

1 reached the best coverage. It is important to remark that the percentage of fault model

coverage achieved by Tester 2 and Tester 3 are equal but the faults found by them are not

the same. Nevertheless, the set of faults found by Tester 1 contains all faults found by the

other testers. This result is expected as LTS-BT allows a more systematic test case generation

process, from the same base specification. However, as the process is guided by test purposes

defined by the tester, the fault model coverage depends also on the tester’s experience.

On the other hand, test cases generated through manual process are error-prone. The

line “Number of invalid TCs” of Table 3.2 shows the number of test cases generated with

errors, that is, test cases impossible to run, mainly because they miss information. Moreover,

manually generated test suites tend not to take all scenarios of an interruption into account.

This does not occur in the automatic process because when the tester decides, for example,

to check the incoming call interruption at some point of the feature under test, the developed

algorithms consider all scenarios of the interruption, for example, when the call is accepted

and when it is rejected by the user.

Considering the number of test cases that actually do not find defects (line “Number of

ineffective TCs”), Tester 1 reached the best results. The number of ineffective test cases also

considers the invalid test cases. Finally, the three last lines of Table 3.2 give information

about the size of generated test cases. Note that test cases generated by both strategies are

similar w.r.t. size, that is, number of steps. This is explained by the fact that test cases were

generated based on a structured document that may induce the same general kind of test

3.6 Related Work 66

cases to be defined. In practice, manual testing is not usually based on structured documents

and then test cases tend to be as simple as possible. However, not using the same input

document would put a threat to validity of the results, in the sense that with the same inputs,

both strategies had the same basic information available.

In the scope of this case study, it is possible to conclude that the proposed strategy and

tool allow a more systematic test case generation process contributing to better productivity

and effectiveness of test process, depending on the tester’s experience. Moreover, some

problems of the manual process such as erroneous test cases generation is solved by the

automatic process since all generated tests are sound (Section 3.4). However, note that Tester

1 did not reach 100% coverage. For this, it is necessary to define complete test purposes

regarding the fault model. As this depends on the tester’s experience and accuracy, it is

possible that he can miss behaviour that should have been considered.

It is important to remark that the problem of selection in the scope of integration test-

ing in general is a hard one. The possible number of test cases resulting from different

combinations is large and also the set of all combinations is usually intractable by manual

investigation. As a consequence, the achieved level of fault coverage depends greatly on in-

formation and expertise available to pinpoint the key test cases, for instance, common faults

detected in a domain. For instance, only 57% of faults were covered by the test suite gener-

ated. However, note that this further exceeds the manually generated suites. Even though the

testing strategy presented in this chapter is based on automatic generation, it also allows the

experienced tester to target the selection process by defining the test purposes in a systematic

way.

3.6 Related Work

This section presents some works related to our proposal. Lorentsen et al. [88] propose a

way of identifying categories of interactions and create behavioural models that capture those

interactions, where interruptions are a type of interaction. They use Coloured Petri Nets to

manually model the interactions and a model checker for interactive graphical simulation.

As disadvantages, the process is manual and the work is not devoted to testing.

Another interesting work is that belonging to Jard and Jéron [62], where the TGV tool

3.6 Related Work 67

is presented. TGV receives a specification and a test purpose as input and produces abstract

test cases as output. The TGV input format for both specification and test purpose is IOLTS

(already defined in Subsection 3.2.1). As mentioned in Subsection 3.2.1, it is possible to

represent interruptions through IOLTS models. So the TGV tool can be used to generate

interruption test cases, but an interruption behaviour needs to be replicated if it can occur at

more than one place. Moreover, it is not possible to directly represent conditions associated

to actions and due to the fact that the same interruption behaviour is replicated in the IOLTS

model, the test purpose must specify the point where we want to verify the interruption and

all other points where the interruption cannot occur. Thus, given that the tester needs to

manipulate LTS models in the definition of the TGV test purposes, this notation is not useful

in practice for interruption testing.

One possible solution is to consider the tool set proposed by the AGEDIS project that

can generate test cases from high level models (e.g. UML diagrams) [57], where TGV is

internally used to generate test cases. However, the tool set does not support interruption

specifications directly as well as the newest version of UML (UML 2.0) with its greatly im-

proved diagrams. In this case, the difficulties with interruption modelling and test purposes

definition remain.

The process algebra CSP (Communicating Sequential Processes) was designed for de-

scribing systems of interacting components [109]. CSP has a specific operator for describing

interruptions but its semantics is very different from the high (application) level interruption

notion addressed in this chapter. The CSP interruption operator specifies that when a pro-

cess P1 is interrupted by another process P2, the process P1 is discarded and P2 begins its

execution. In our context, the process P1 executes again after the execution of the process

P2. Jovanovic et al. [68] have proposed an extension of CSP to represent this kind of be-

haviour but there is not any tool supporting their proposal. Figueiredo et al. [39] present a

behavioural model that represents interruptions in CSP without using the interruption oper-

ator, but the presented model is more suitable for representing the semantics of interruption

test behaviour as presented in this chapter. Nogueira et al. [102] propose an approach to

test case generation based on CSP. The SUT is specified using the same use case template

presented in Section 3.1 and it is automatically translated to CSP using the strategy presented

in [26]. The main objective of the work presented in [102] is to provide a strategy for testing

3.7 Concluding Remarks 68

individual features and feature interactions. Moreover, test purposes are defined in low level

using CSP. The interruption testing is not directly treated, but the work can be adapted to test

interruptions considering that all the possible points of interactions are specified in advance.

In our approach, all points of interruption do not need to be explicitly specified, making the

work of the tester easier and less error-prone.

Furthermore, the work presented in [25; 34] propose a strategy to reduce the test suite

size based on test cases prioritisation. This requires that every individual pair of interactions

is included at least once in a test suite. In this case, if it is not possible to execute the

entire test suite, the tester can execute at least the most important test cases. But note that

the prioritisation information is given by the tester. The strategy presented in this chapter

is similar, in the sense that the focus is on particular interruptions by using a test purpose,

but due to the expressiveness of test purposes, it is also possible to focus on and/or exclude

particular functionalities associated with the interruptions.

3.7 Concluding Remarks

This chapter presented an approach to interruption testing that is based on a model capable of

representing interruptions for reactive systems. The model makes it possible for interruptions

to be combined at different points of possibly different flows of execution. This model is

supported by the LTS-BT tool along with a test case generation algorithm and a test purpose-

based selection technique. Test selection is crucial for interruption testing since the number

of possible test cases is enormous. Also, in practice, not all possible points of interruption

are fault-prone.

It is important to mention that the current version of LTS-BT is restricted to deterministic

systems. This may seem unrealistic. However, particularly, if embedded systems such as

mobile phone applications are considered, the tool can be largely applied. For these systems,

applications are often deterministic ones that run on single-processor, single and restricted

screen, and so on. However, they have complex patterns of interruptions which clearly justify

the need for modelling and systematic test selection. Furthermore, ALTS models are capable

of representing non-determinism and the algorithms can be clearly extended to support non-

deterministic systems since the semantics of ALTS and IOLTS are very similar.

Capítulo 4

Trabalhos Relacionados e Problemas

Identificados

Este capítulo apresenta uma revisão dos trabalhos relevantes no contexto de teste de sistemas

de tempo real voltados para a geração de casos de teste a partir de especificações onde va-

riáveis e parâmetros são permitidos. Como a pesquisa voltada para o teste de sistemas de

tempo é muito recente, há poucos trabalhos relacionados com esse desafio. Após a análise

dos trabalhos relacionados, várias limitações e problemas em aberto são identificados.

4.1 Related Work

Since strategies to generate real-time symbolic test cases are practically nonexistent, the

focus here is to describe approaches related to testing real-time systems (not exactly symbolic

testing of real-time systems) and argue why they are not considered as symbolic testing

strategies.

4.1.1 Cardell-Oliver

Cardell-Oliver’s work [28] addresses the problem of conformance testing for real-time sys-

tems and proposes an approach, based on UPPAAL timed automata specifications [82], to

testing the same kind of system. As the UPPAAL timed automata have a dense or analogue-

time model, Cardell-Oliver argues that their traces include behaviour which cannot be ob-

69

4.1 Related Work 70

served in an experiment. An example of an analogue-clock test case is: provide an input at

time 1 and expect for the result at time 3. The tester implementing this test must be able to

emit the input precisely at time 1 and check whether the output occurred precisely at time 3.

In practice, the tester has finite-precision clocks and sample the outputs of the system under

test periodically, e.g. every 0.3 time units, thus, it cannot distinguish between the output ar-

riving anywhere in the interval (2.9, 3.1). In this sense, it is very difficult, if not impossible,

to implement analogue-clock tests using finite-precision clocks. In this case, Cardell-Oliver

proposes that a more appropriate model for observing real-time systems is a digital clock

approximation.

As a TLTS representation of a TA can possibly have infinite states because of the repre-

sentation of time, each timed trace of the TLTS is mapped into a set of possible integer-timed

trace interpretations. Thus, symbolic states are used to represent a set of clock valuations.

The symbolism is only used to abstract time and does not take the data of the system under

test into account, so this proposal cannot be classified as a symbolic testing approach.

Furthermore, the paper considers a kind of test purpose, named test views, where the

tester can select relevant events to observe. An implementation relation is defined based

on trace equivalence under the assumption that the implementation is input-enabled (input-

complete) and that it has no more states than the specification. An algorithm implementing

the approach is presented, but, it seems that there is not a tool to support the work.

4.1.2 En-Nouaary et al.

En-Nouaary et al. [46] address the issue of testing real-time systems specified as a variant

of the TAIO presented in Subsection 2.2.3. The TAIO considered in [46] is assumed to have

instantaneous transitions, that is, once the transitions are enabled they must be taken imme-

diately. This assumption reduces too much the expressiveness of the model, for example a

simple specification such as “when an input is provided, an output must be generated within

at most 10 time units” cannot be expressed.

En-Nouaary et al. propose a test case generation approach that is divided into three

steps: firstly, as the semantics of a TAIO can be defined in terms of an infinite TIOLTS

(see Subsection 2.2.3), the authors represent this infinite TIOLTS using a finite region graph

where the locations symbolically represent a set of clock valuations. Secondly, each clock

4.1 Related Work 71

region of the region graph is sampled, according to a granularity, in a way that each clock

region is transformed into a finite set of clock valuations; thus, the region graph is reduced

to another graph, named grid automaton, which is then transformed into a timed finite state

machine. Finally, they use state characterization techniques for test case generation [47].

Note that, as the work only represents time symbolically, it is not considered as a sym-

bolic testing strategy, since the data of the system must be also symbolically taken into

account. The work supposes that the implementation under test has the same number of lo-

cations as the specification. Thus, the implementation relation is based on trace equivalence.

The adopted assumption is very strong compromising the usefulness of the work in practice.

Moreover, no algorithms for test case generation are shown.

An interesting contribution of En-Nouaary et al. is the study about fault models. They

argue that two types of faults are possible: timing faults and action and transfer faults [48].

Timing faults are related to violation of transition time constraints and action and transfer

faults are similar to the classical faults of finite state machines. In [46], the authors discuss

how the fault model can be used to test timed systems based on TAIO model.

In [44; 45], the testing approach is improved changing the last step of the test case gen-

eration process. Instead of transforming the generated grid automata into a timed finite state

machine, the grid automata is traversed using an adaptation of the Depth-First Search strat-

egy in order to generate test cases. In this more recent work, a test selection strategy based on

test purposes is defined and algorithms are presented. Nevertheless, this improved approach

only represents time symbolically.

4.1.3 Li et al.

Li et al. [87] propose an approach to property-oriented real-time test case generation. As

specification language, they use time-enriched statecharts and provide a restricted real-time

logic as the property specification language. Li et al. argue that statecharts cannot be easily

manipulated for test generation, then they provide a way of transforming statecharts into

extended finite state machines, from which test sequences are obtained.

Li et al. [87] focus only on specification languages. Thus, several concepts of a complete

testing strategy are not taken into account such as assumptions related to specifications and

implementations, conformance relation, test architecture, tools, case studies, and so on.

4.1 Related Work 72

4.1.4 Khoumsi

Khoumsi [69; 70] proposes an approach to symbolic test case generation for real-time sys-

tems. To the best of our knowledge, this is one of the few approaches that tries to symboli-

cally deal with time and variables and actions with parameters representing the system data.

The Khoumsi’s main objective is to combine a real-time testing strategy with a non-real-time

symbolic testing strategy.

Khoumsi’s work is based on that symbolic model theory presented in Subsection 2.1.9

extended with time. Basically, the proposed approach is divided into two steps: firstly, the

real-time symbolic model is transformed into an automaton where the setting and expira-

tion of clocks are represented as actions; finally, the symbolic testing approach presented in

Subsection 2.1.9 is adapted to generate test cases.

In this approach, a new real-time symbolic model is proposed, named Timed Input-

Output Symbolic Automata (TIOSA), but its semantics is not formally defined. Additionally,

the first step of the approach, described above, restricts too much the use of clocks, guards,

and clock resets leading to a less expressive and flexible specification language. Under the

assumption of input-completeness, the adopted conformance relation can be considered as

timed trace inclusion. Finally, there is no tool supporting the work and real case studies were

not performed to validate the applicability of the proposed strategy.

4.1.5 Briones and Brinksma

Briones and Brinksma [23] present en extension of Tretmans’ theory and algorithm [117]

for testing real-time systems. A distinguishing characteristic of this work is that it takes

quiescence into account and provides an operational interpretation of this concept in the

context of RTS. Only output quiescence is considered. They consider an output quiescent

state as one where the system is unable to generate an output without further input stimuli.

Briones and Brinksma argue that the quiescence can only be detected by waiting for outputs,

but as we cannot wait forever a maximal duration M must be defined. So, the work proposes

a parameterised conformance relation where output quiescence only can be observed after a

minimal delay of M time units. The work is based on TIOLTS, which serves as semantics

for TAIO (see Subsection 2.2.3). Additionally, the paper defines the concept of real-time test

4.1 Related Work 73

cases considering execution and verdicts, and presents in an abstract way an algorithm for

generating them. Considering that the underlying continuous model of time is represented

through an infinite TIOLTS, the proposed algorithm generates uncountable test cases.

In [24], Briones and Brinksma extend the framework proposed in [23] in the sense of

allowing the implementation to be sometimes non-input-complete. This new paper presents

an extension of TIOLTS where input and output sets are divided in channels and in each

reachable state each input channel is either blocked or all inputs are accepted, i.e. the im-

plementation can sometimes be non-input-enabled. The general maximal duration M , cited

above, is relaxed and they allow different bounds for different sets of outputs. Moreover, the

entire framework is updated to deal with these extensions, including the algorithm for test

case generation. But, the algorithm has the same problem as in [23], that is, it also generates

uncountable test cases.

4.1.6 Bohnenkamp and Belinfante

Bohnenkamp and Belinfante [20] present an extension of TorX [119] where timing con-

straints can be expressed in the specification. TorX is an on-the-fly testing tool that tests for

the conformance relation proposed by Tretmans [117]. Bohnenkamp and Belinfante’s work

is influenced by the framework presented in Subsection 4.1.5, that is, the main objective of

this work is to provide an extension of TorX to implement the main ideas of the Briones and

Brinksma’s work [23].

To avoid the generation of uncountable test cases, Bohnenkamp and Belinfante adopt a

symbolic representation of TIOLTS, where each symbolic location represents the maximal

set of clock valuations that satisfy a given clock constraint. This strategy is not considered as

a symbolic testing strategy, as only time is abstracted. The tool assumes input-completeness

of the IUT and that the tool must run on the same host as the IUT. The latter restriction

reduces the usefulness of the tool in practice, since several systems cannot be tested such as

embedded systems with limited resources (e.g. smart cards, mobile phones, music players,

and so on).

4.1 Related Work 74

4.1.7 Bodeveix et al.

Bodeveix et al. [19] propose a way of checking real-time dependability requirements by

means of testing. They adopted a particular kind of timed automata, where determinism

and explicit inputs and outputs are assumed. The main idea is to model dependability re-

quirements as test purposes. The strategy is described in three steps: (1) a kind of syn-

chronous product is performed between the specification and the requirement to be checked;

(2) the states of the resulting model are symbolically represented abstracting only time; (3)

a reachability algorithm is executed to generate only one test case capable of checking the

dependability requirement.

The paper is very short and important concepts of a complete testing framework are not

discussed such as assumptions related to specifications and implementations, conformance

relation, test cases, verdicts, oracles, and so on. Additionally, algorithms are not shown and

tools were not developed to support the proposal.

4.1.8 Larsen et al.

Larsen et al. [80] propose a tool and the related theory for online testing of real-time systems.

The work is based on non-deterministic timed automata with inputs and outputs (TAIO)

specifications. However, the adopted TAIO is a variant of that presented in Subsection 2.2.3,

where both locations and transitions can have guards (clock constraints). The developed tool

was firstly named T-UPPAAL [100], but today its name is UPPAAL TRON (UPPAAL for

Testing Real-time systems ONline). This tool was implemented by extending the UPPAAL

model-checking tool [82].

A distinct characteristic of the work is the proposal of a formal implementation relation

that takes environment assumptions into account. An environment assumption is a kind of

test purpose of the property oriented testing theory, presented in Subsection 2.1.6. Thus, the

main goal of the proposed implementation relation is to check if an implementation is in con-

formance with its specification when operating under some environment assumptions. Ac-

cording to Larsen et al. [80], modelling the assumptions separately has several advantages:

(1) considering a specific environment, the testing tool generates only realistic test cases

reducing the number of test cases and improving the quality of the test suite; (2) the test-

4.1 Related Work 75

ing process can be guided to specific scenarios of interest; (3) when the environment model

is separated from the system model it is easier to test the system under different assump-

tions. The proposed implementation relation is based on Tretmans and de Vries’ work [118;

40] and coincides with timed trace inclusion considering the input enabledness assumption.

As previously said, the work is based on a variation of TAIO, but Larsen et al. [80]

show that the semantics of a TAIO can be defined in terms of an infinite TIOLTS. Thus,

all the theories and algorithms presented are based on TIOLTS. In [80], the main algorithm

for generating and executing test cases are presented as well as its proof of soundness and

completeness. As a TIOLTS, representing a TAIO, can possibly have infinite states because

of the representation of time, the generation of test cases uses a reachability algorithm that

operates on symbolic states (a symbolic state represents a set of clock valuations). As only

time is symbolically represented and the system data is not symbolically taken into account,

we cannot consider this proposal as a symbolic testing approach.

The work reported in [80] presents an experiment to validate UPPAAL TRON and in-

dicate the applicability of the proposed technique. As the test generation and execution is

online, a drawback is the need to implement an adapter component to link the system under

test to the UPPAAL TRON tool. In order to evaluate the algorithms and the tool in detail, a

real-life application was tested and the results are described in [81].

4.1.9 Hessel et al.

Hessel et al. [60] present a strategy of time-optimal test case generation using the data

structures and algorithms of the UPPAAL model checking tool [82]. Time-optimal test cases

are defined as test cases guaranteed to take the least possible time to execute. According

to Hessel et al. [60], time-optimal test cases are important for some reasons: (1) using

time-optimal test cases, the total execution time of a test suite is reduced allowing more

behaviour to be tested; (2) regression testing can be executed as quickly as possible; (3)

the time-optimal test cases have high probability of detecting errors, considering that the

fastest scenarios are stressful situations. The proposed strategy can generate test cases using

manually defined test purposes or automatically generated from some coverage criteria.

The proposed strategy assumes that both the implementation under test (IUT) and

the environment (the test purpose) are modelled using a deterministic and output ur-

4.1 Related Work 76

gent class of TA. A TA is deterministic when two transitions with the same label lead

to the same state and it is output urgent if, when an output is enabled, it occurs im-

mediately. These characteristics are very restrictive reducing the expressiveness of the

model. The work uses the fastest diagnostic trace of the UPPAAL tool to generate time-

optimal sequences. This functionality of UPPAAL generates a trace with the shortest ac-

cumulated time delay witnessing a submitted safety property. Then, a test case is gen-

erated from this diagnostic trace. As previously said in Subsection 4.1.8, the UPPAAL’s

reachability algorithm operates on symbolic states, but only time is symbolically repre-

sented. The implementation relation considered is the timed trace inclusion as in [80;

81]. One of the main ideas of the work is that test purposes can be formulated as safety

properties that can be checked by the reachability analysis performed in a model generated

by the combination of the specification with the test purpose. Another interesting idea is the

use of coverage criteria to generate test cases. In this case, the proposed solution is to anno-

tate the model using auxiliary variables to mark the coverage of target elements (e.g. edges

and locations). The work also presents an interesting experiment, but it is clear that the

annotation of the model with new auxiliary variables is tedious and error prone in practice.

Moreover, the inclusion of these variables increases the state space reducing the applicability

of the work in practice.

Several limitations of the work described above are solved in another work [61], which

extends the requirement specification language of UPPAAL in order to allow the use of

keywords to represent coverage criteria. Therewith, the reachability analysis algorithm of

the UPPAAL tool was modified to eliminate the need of manually annotating the model and

another version of UPPAAL was created, the UPPAAL CoVer tool. Even so, the defined

language is still very restrictive and the specification model continues being deterministic

and output urgent.

Finally, a book chapter [59] was written to describe both the online testing using UP-

PAAL proposed by Larsen et al. [80; 81] and the offline testing using UPPAAL proposed by

Hessel et al. [60; 61].

4.1 Related Work 77

4.1.10 Merayo et al.

Merayo et al. [96] present a formal framework to specify and test real-time systems that

considers both hard and soft deadlines, where hard deadlines must be always met on time

and soft deadlines can be sometimes met in different times. The model used to specify the

software system is an extension of the classical finite state machine, called Timed Extended

Finite State Machines (TEFSM). Transitions in classical finite state machines indicate that if

a machine is in a state s and receives an input i then an output o will be produced and it will

change its state to s′ (this can be represented as s
i/o→ s′). The timed extension proposed is

represented as s
i/o→[t1,t2] s

′ and it means that if a machine is in a state s and receives an input i

then an output o will be produced and it will change its state to s′ wasting a time greater than

or equal to t1 and smaller than or equal to t2. Merayo et al. argues that, in the context of RTS,

the notion of correctness has several possible definitions. For this, the framework defines

several conformance relations. In practice, one may consider that a system under test is in

conformance with a specification if all actions are performed exactly on a predefined time,

while another could consider that the implementation has to be always/sometimes faster.

Thus, depending on the situation, a different conformance relation can be taken into account.

The presented conformance relations are based on Tretmans’ work [117]. The paper also

formalizes the concept of test cases and test suites and gives some directions of how to apply

the test cases to an implementation. But, algorithms are not presented.

The work discussed above was extended in [97], which itself continues the proposal

presented in [103]. In this more recent work, two kinds of time are considered: actions

with associated time and time-outs. When time-outs are allowed the state of the system

can change only with the time evolution (without the occurrence of actions). Moreover, an

algorithm to generate test cases is presented and some small examples are discussed. In [98],

Merayo et al. extends the work [97] to deal with stochastic time systems. Finally, the work

presented in [99] extends all the developed formal framework to deal with specifications

where time requirements are defined using intervals.

The ideas presented by Merayo et al. [96; 97; 98; 99; 103] are very interesting. It is

extremely useful to have many conformance relations, so the theory can be used in different

contexts. But, in general, the work has some disadvantages: (1) there is no a tool supporting

the approach; (2) real examples and case studies are not presented; (3) the model does not

4.1 Related Work 78

allow to specify actions with parameters and communicating machines are not considered,

thus it is not possible to deal with asynchronous events; (4) only one clock is used to control

how time evolves reducing the expressiveness of the model; (5) only the discrete-time model

is considered.

4.1.11 Krichen and Tripakis

Currently, one of the most complete works on testing of real-time systems is the one de-

veloped by Krichen and Tripakis [73; 74; 75; 76; 77; 78]. In [74], they propose a frame-

work for conformance testing of real-time systems where specifications are modelled as

non-deterministic and partially-observable timed automata. Krichen and Tripakis argue that,

in practice, when the model is built compositionally, component interactions are usually

non-observable by the tester and this abstraction often results in non-determinism.

In comparison with other approaches, Krichen and Tripakis’ work uses less restricted

timed automata. For example, several restrict assumptions are considered by other ap-

proaches such as isolated and urgent outputs (Subsection 4.1.9); the use of determinizable

timed automata with restricted clock resets (Subsection 4.1.4); the use of trace equivalence

as conformance relation, considering that the implementation has no more states than the

specification (Subsections 4.1.1 and 4.1.2); permission of using only one clock in the spec-

ification (Subsection 4.1.10); and so on. Krichen and Tripakis use a kind of TAIO where

each transition is annotated with one of the following three deadlines: lazy, delayable, and

eager. The lazy deadline imposes no urgency, delayable means that once enabled the transi-

tion must be taken before it becomes disabled, and eager means the transition must be taken

as soon as it becomes enabled.

They propose an extension of the conformance relation from [118], named timed input-

output conformance (tioco). This new conformance relation is defined by including time

delays in the set of observable outputs. They do not require the specification to be input-

complete, thus tioco is more expressive than the other conformance relations such as trace

equivalence (Subsections 4.1.1 and 4.1.2) and trace inclusion (Subsections 4.1.9 and 4.1.4).

The proposed conformance relation is more expressive in the sense that it allows an im-

plementation to accept inputs not accepted by the specification, whereas the other timed

conformance relations above do not. Several characteristics of tioco are discussed in [77]

4.1 Related Work 79

such as transitivity, an extensive comparison with related conformance relations, the prove

that checking tioco is undecidable (it is not a problem for black-box testing since the imple-

mentation model is unknown, the conformance cannot be directly checked) and that it does

not distinguish specifications with the same set of observable traces.

Most of the other authors only consider analogue-clock tests, i.e. tests that are very diffi-

cult to execute in practice. Nevertheless, Krichen and Tripakis consider both analogue-clock

and digital-clock tests. Analogue-clock tests can measure precisely the delay between two

events, whereas digital-clock tests can only count how many time units of a periodic clock

have occurred between two events [74]. They use symbolic reachability algorithms for test

case generation, whereas other approaches use symbolic representation of time with classical

reachability algorithms. There is a tool, named TTG, supporting the proposed strategy and

in [74] only a toy example is used as case study.

The strategy of analogue and digital-clock test generation is improved in [75]. Most

test generation algorithms rely on an implicit determinization of the specification during

the test case generation, but this is a problem when analogue-clock tests are considered

because timed automata are not determinizable in general [5]. In [74], Krichen and Tripakis

proposed an on-the-fly determinization of the specification during the execution of the test,

but the generated algorithm is costly and the tester must quickly respond to the outputs

of the system under test. Thus, they proposed, in [75], a pragmatic approach where they

suppose that the tester has a single clock and that it is reset every time the tester observes an

action of the system. This proposed strategy allows analogue-clock tests to be represented as

deterministic timed automata. The generation of digital-clock tests has a different problem:

as this kind of test can be represented statically as finite trees, the generation can be offline

or on-the-fly and the strategy adopted in [74] is to generate all possible tests up to a given

depth, leading to an explosion of test cases. In [75], this problem is solved by providing a

method to generate tests which cover the specification with respect to some criteria.

Krichen and Tripakis present, in [76], the proposed framework in a methodological point

of view with emphasis on the expressiveness of the models and showing several examples

of scenarios to be specified. A real example is used as case study in this more recent work.

Finally, all the work discussed in this section is described in detail in Krichen’s PhD thesis

[73] and in [78].

4.1 Related Work 80

4.1.12 Zheng et al.

Zheng et al. [124] address methods to generate test cases from formal specifications of

real-time systems and provide a metric-based test selection method for sufficient testing of a

given implementation. The systems are specified using an object-oriented approach: firstly,

the abstract data types are separately defined; secondly, each reactive object of the system is

specified using a kind of extended finite state machines; finally, the whole system is specified

as a network of communicating objects.

As the specification notation allows time to be continuous, a grid is used to digitise the

extended finite state machines. The grid is a covering of the underlying analogue time space,

mapping points of that space onto a single representative of each grid region. So, this strategy

also represents time symbolically as most of the other approaches discussed in this chapter.

From grid automata, test cases can be generated according to a given coverage criterion (state

or transition coverage) or according to a fault model.

The work also describes an experimental study where a test bed implementing the pro-

posed strategy, named TROMLAB, is used to validate the work. But, the work has some

drawbacks such as a conformance relation is not defined, algorithms and examples of test

cases are not presented, the cited tool is not available, and the specification language only

considers synchronous communication between objects.

4.1.13 David et al.

David et al. [37] propose a game-theoretic approach to the testing of real-time systems.

Systems are modelled by Timed Input-Output Game Automata (TIOGA), which is a variant

of timed automata (see Subsection 2.2.3) with their actions partitioned into controllable ones

and uncontrollable ones. When an action is controllable it means that the tester determines

when or which action will occur, whereas when an action is uncontrollable it means that it is

the system under test that determines when or which action will occur. Considering that the

set of actions are divided into input and output actions, David et al. assume all output actions

to be uncontrollable and all input actions to be controllable. Test purposes can be defined as

Timed CTL formulas.

According to David et al., the proposed strategy can be defined as follows: a play of the

4.1 Related Work 81

timed game between the system and the tester is a run of the TIOGA towards a specified test

purpose; if the Timed CTL formula is satisfied by the TIOGA, it can synthesize a winning

strategy; since a winning strategy is a guide towards the goal states, which satisfy the test

purpose, it can be viewed as a test case. This strategy is implemented in a timed game solver,

named UPPAAL TIGA.

David et al. show that the semantics of TIOGA can be defined in terms of TIOLTS and

reuse the conformance relation defined by Krichen and Tripakis (Subsection 4.1.11). Inter-

nally, the strategy represents time in a symbolic way and uses model checking techniques to

verify the satisfiability of a formula against a specification, and if so, a test case is generated.

In this sense, this technique is not considered to be a symbolic testing strategy.

In [38], David et al. propose another game-theoretic approach to testing partially observ-

able real-time systems. This work differs from the former because the tester may observe

neither internal actions nor internal state changes due to these internal actions. Moreover,

the tester has limited precision ways to analyse the SUT, which avoids knowing which state

the SUT is in or the precise observation a timed trace. In this case, the SUT can only be

observed through a finite number of possible observations. Finally, an observation-based

conformance relation is proposed along with algorithms for test case generation, but only

time is symbolically treated.

4.1.14 Adjir et al.

Adjir et al. [3; 4] propose a technique for conformance testing of real-time systems using

TINA, a toolbox for the edition and analysis of Petri Nets and Time Petri Nets. According

to the authors, the toolbox allows the generation of time-optimal test cases. As specification

language, they use Prioritised Time Petri Nets. In this model, there is a priority relation

on the transitions, that is, a transition can only be fired if it has the highest priority at the

moment.

The authors mention that the proposed technique is based on timed trace inclusion, but

no conformance relation is formally defined. Specific scenarios of testing can be selected

through manually defined test purposes and covering criteria specified in the state-event lin-

ear temporal logic SE-LTL. Besides not presenting algorithms or case studies, this work only

abstracts time.

4.1 Related Work 82

4.1.15 Styp et al.

Styp et al. [120] propose a combination of symbolic transition systems introduced in [52]

with timed automata presented in [5], named Symbolic Timed Automata (STA). The pro-

posed formalism allows the modelling of real-time reactive systems with data input and out-

put. It is possible to use variables as bounds in clock guards and associate clock invariants

with locations. The semantics of STA is defined in terms of TLTS (see Subsection 2.2.3).

A new conformance relation is defined: stioco. The stioco relation is very similar to the

tioco relation defined by Krichen and Tripakis (Subsection 4.1.11), but symbolic constraints

(universally quantified formulas) are considered instead of dealing with concrete outputs.

Thus, an implementation conforms to a specification for stioco, if, whenever the constraints

are satisfied for the implementation to produce an output or delay, then also the specification

satisfies the constraints to produce the same output or delay. The authors state that stioco

coincides with tioco at the semantic level.

As the work is at the beginning, it is far from a complete testing approach. Test cases are

not defined along with a test architecture to execute them. Test case generation and selection

strategies are not presented. Moreover, there are neither algorithms nor tools to support the

work proposed.

4.1.16 Timo et al.

Timo and Rollet [113; 114] propose a conformance testing approach to data-flow real-time

systems based on a variant of timed automata in which only variable changing are considered

as events.

In [114] the model called Variable Driven Timed Automata (VDTA) is proposed. In the

states of a VDTA either the time elapses continuously or the environment modifies the values

of input variables. All transitions are urgent and the values of output variables can only be

observed. Moreover, a timed variable-change conformance relation (tvco) is proposed. Ba-

sically, an implementation is in conformance with its specification for tvco if all behaviours

of the implementation are allowed by its specification. In this case, the implementation must

change the value of input variables in a time allowed by the specification. An online testing

algorithm is proposed, but test cases are not formally defined.

4.2 Comparison of Reviewed Work 83

The approach presented in [114] is improved in [113]. Test purposes are introduced as a

test case selection strategy and the time is treated with region graphs, which may lead to the

state space explosion problem. Finally, abstract interpretation and approximation techniques

are proposed to generate test cases, but no algorithms are presented. It is important to men-

tion that only deterministic models are considered, quiescence is not discussed, and there is

no tool supporting the work.

4.2 Comparison of Reviewed Work

This section concludes the analysis of related work with a comparison among all studied

contributions. The analysis is divided into three tables because of the limited space. In the

first table (Table 4.1), the following characteristics are considered: (1) if the strategy of test

case generation is online or offline; (2) if the proposal allows test purposes specification; (3)

if the proposed strategy is supported by tools; (4) the specification language used to model

the IUT; (5) if the work takes quiescence into account.

Considering the first characteristic, most of the approaches adopt offline test generation.

Few approaches that consider an online test case generation has a tool available. As discussed

before, it is easier to deal with non-determinism through an online strategy. On the other

hand, it is more difficult to guide the generation with test purposes. An interesting work

is the one developed by Krichen and Tripakis (Subsection 4.1.11), where the generation is

offline but the strategy takes non-determinism into account. The generated test cases can be

seen as trees and the action of the tester depends on the observation history. It is important

to remark that non-determinism is an important characteristic of the real-time context, since

most of specifications are composed of parallel components.

The second characteristic is related to specification of properties to be verified during

the test. Most of the approaches allow the specification of test purposes. In some cases, the

approaches marked with an asterisk “*”, the strategy allows the specification of the envi-

ronment that interacts with the IUT emitting inputs and receiving outputs. In this case, the

specification of the environment can be considered as a test purpose. Test purposes are ex-

tremely needed in the context of real-time systems because the available algorithms usually

generate a huge amount of test cases.

4.2 Comparison of Reviewed Work 84

As the researches in the context of real-time testing are very recent, there are few tools

available. Basically, we can cite TROM (Subsection 4.1.8), CoVer (Subsection 4.1.9), TTG

(Subsection 4.1.11), TIGA (Subsection 4.1.13), and TINA (Subsection 4.1.14) for effective

testing of real-time systems. The other tools marked with an asterisk are only cited on their

respective papers, but they are not available. The three tools TROM, CoVer, and TIGA are

related in the sense that they are based on the UPPAAL model checking tool. These three

tools use the UPPAAL notation as the input specification.

Considering the notation used as specification language, most of the approaches use mod-

els derived from timed automata [5]. In general, timed automata cannot be determinized [5],

thus most approaches impose several restrictions to the specification language. Some au-

thors completely disallow non-determinism such as Cardell-Oliver (Subsection 4.1.1), En-

Nouaary et al. (Subsection 4.1.2), Li et al. (Subsection 4.1.3), Briones and Brinksma (Sub-

section 4.1.5), Bodeveix et al. (Subsection 4.1.7), Hessel et al. (Subsection 4.1.9), Zheng

et al. (Subsection 4.1.12), and David et al. (Subsection 4.1.13); whereas, others restrict the

use of clocks, guards, or clock resets such as Khoumsi (Subsection 4.1.4), Bohnenkamp and

Belinfante (Subsection 4.1.6), and Merayo et al. (Subsection 4.1.10). The most expressive

specification languages are used by Larsen et al. (Subsection 4.1.8) and Krichen and Tri-

pakis (Subsection 4.1.11). Non-determinism is also important to model timing uncertainty,

that is, it is more realistic to allow an output occurring in some interval of time. In this case,

non-determinism is a choice between letting the time pass or emitting an output.

Khoumsi (Subsection 4.1.4) is one of the authors that proposes a specification language

where parameters and variables containing data of the system can be defined. This is the

first step in order to provide an effective real-time symbolic testing strategy. Nevertheless,

strong restrictions are made on clocks, guards, and clock resets leading to restrictions on its

applicability in practice. Two other approaches described in Subsections 4.1.15 and 4.1.16

are intended to provide a real-time symbolic testing strategy, but these approaches can be

considered as incomplete since test cases are not formally defined, a test architecture is not

defined, no algorithms are presented, and there is no tool supporting the work.

The last characteristic considered in Table 4.1 is quiescence. Quiescence is a character-

istic of systems that indicates the absence of outputs, and as described in Subsection 2.1.5 it

is extremely related to real-time systems. To provide an effective way of dealing with qui-

4.2 Comparison of Reviewed Work 85

escence, the following concepts must take it into account: input specification, conformance

relation, oracle, and so on. In this sense, only two approaches consider quiescence: Briones

and Brinksma (Subsection 4.1.5) and Bohnenkamp and Belinfante (Subsection 4.1.6). How-

ever, the former work does not have an implemented tool, whereas the latter implemented a

prototype which is unavailable.

Work

Test Case

Generation TP Tool Spec. Language Quiesc.

Cardell-Oliver offline yes∗ Essex∗ TIOLTS no

En-Nouaary et

al. offline yes no

deterministic and output

urgent TAIO no

Li et al. offline yes no RT Statecharts no

Khoumsi offline yes no non-deterministic TIOSA no

Briones and

Brinksma offline no no TIOLTS yes

Bohnenkamp

and Belinfante online yes yes∗
non-deterministic safety

TAIO yes

Bodeveix et al. offline yes no a kind of TAIO no

Larsen et al. online yes TRON

TAIO (with guards on lo-

cations and transitions) no

Hessel et al. offline yes CoVer

deterministic and output

urgent TAIO no

Merayo et al. offline no no non-deterministic TEFSM no

Krichen and

Tripakis

offline and

online yes TTG∗
partially-observable and

non-deterministic TAIO no

Zheng et al. offline yes∗ TROMLAB∗ TEFSM no

David et al. offline yes TIGA TIOGA no

Adjir et al. offline yes TINA Prioritized Time Petri Nets no

Styp et al. no no no STA no

Timo et al. offline yes no VDTA no

Tabela 4.1: Related Work

In the second table (Table 4.2), the following characteristics are considered: (1) defini-

tion of a conformance relation; (2) assumptions related to the specification; (3) assumptions

related to the implementation under test. Considering the first characteristic, most of the

approaches define a conformance relation based on either trace equivalence or trace inclu-

4.2 Comparison of Reviewed Work 86

sion. These kinds of conformance are very restricted because the implementation must have

inputs and outputs defined in the specification. In the case where the specification does not

completely specify a system, an implementation is allowed to have inputs not defined in

the specification, thus only the outputs related to inputs defined in the specification must

be considered. In this sense, Krichen and Tripakis (Subsection 4.1.11) propose a less re-

stricted conformance relation, named tioco. Briones and Brinksma (Subsection 4.1.5) is the

only work that defines a conformance relation considering quiescence and the idea is im-

plemented by Bohnenkamp and Belinfante (Subsection 4.1.6). Merayo et al. (Subsection

4.1.10) define several conformance relations which can be considered as timed trace inclu-

sions as well as the conformance relation defined by Timo et al. (Subsection 4.1.16). An

interesting conformance relation is defined by Styp et al. (Subsection 4.1.15) based on sym-

bolic constraints instead of concrete outputs, however at the semantic level it coincides with

tioco.

Considering the second characteristic in Table 4.2, as already discussed, several ap-

proaches impose determinism to the specification in order to simplify the strategy. Almost

all approaches assume input-completeness of the specification, so a complete specification

of the IUT must be available. This restriction is relaxed by Krichen and Tripakis (Subsection

4.1.11) where the testing process can be performed with a system partially specified.

The last characteristic in Table 4.2 is related to the assumptions about the IUT. Practically,

all approaches assume the input-completeness of the IUT. In practice, this assumption is true

in many contexts, but not all. There are several scenarios where an IUT may not be input-

complete, for instance, when a user tries to save a read-only text or to insert a PIN card in a

slot of a cash machine where there is already another PIN card inserted. It is clear that there

are situations where the inputs can be forbidden or ignored by the system. In this sense,

Briones and Brinksma (Subsection 4.1.5) provide a strategy to deal with these cases.

In the third table (Table 4.3), the following characteristics are considered: (1) the kind

of time (analogue or digital-time); (2) the kind of test cases (instantiated or abstract); (3)

the kind of communication allowed by models; (4) the kind of oracle (manual, partial, or

automated). Considering the first characteristic of Table 4.3, almost all approaches adopt the

analogue-time model and represent time in a symbolic way. An interesting characteristic of

Krichen and Tripakis’ work is that they do not represent time symbolically, but they provide

4.2 Comparison of Reviewed Work 87

Work Conf. Relation Specification Implementation

Cardell-Oliver trace equivalence

input-complete and must have

more states than the implemen-

tation. input-complete

En-Nouaary et

al. trace equivalence

input-complete and must have

the same number of locations as

the implementation. input-complete

Li et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Khoumsi timed trace inclusion input-complete input-complete

Briones and

Brinksma ioco with quiescence input-complete input-complete∗

Bohnenkamp

and Belinfante ioco with quiescence input-complete input-complete

Bodeveix et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Larsen et al. timed trace inclusion

deterministic and input-

complete input-complete

Hessel et al. timed trace inclusion

deterministic, input-complete,

and output urgent input-complete

Merayo et al.

there are several confor-

mance relations input-complete input-complete

Krichen and

Tripakis tioco

no restriction on input-

completeness input-complete

Zheng et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

David et al. tioco input-complete input-complete

Adjir et al. timed trace inclusion

deterministic, input-complete,

and output urgent

deterministic,

input-complete,

and output urgent

Styp et al. stioco non-deterministic input-complete

Timo et al. tvco assumptions are not discussed

assumptions are not

discussed

Tabela 4.2: Related Work

4.3 Problem Statements 88

a symbolic reachability algorithm to generate tests. Timo et al. (Subsection 4.1.16) propose

a reachability analysis based on clock regions, but this strategy can quickly lead to the state

space explosion problem. It is important to remark that complete real-time symbolic testing

strategies that take system variables, parameters and time into account are nonexistent.

Almost all approaches generate instantiated test cases, since only time is abstracted dur-

ing the test generation. Considering the approaches proposed by Styp et al. (Subsection

4.1.15) and Timo et al. (Subsection 4.1.16), it is not possible to define the kind of test case

because neither examples are presented nor test cases are formally defined. Considering

the possibility of specification of communicating elements, all approaches only allow syn-

chronous communication. Thus, it is not possible to model asynchronous events such as

interruptions. Considering the last characteristic in Table 4.3, most approaches only pro-

vided test case generation algorithms, but in the context of real-time systems the execution

of test cases and verdicts assignment are as difficult as the generation of tests. Only three

approaches developed an automated oracle. Basically, Bohnenkamp and Belinfante (Subsec-

tion 4.1.6), Larsen et al. (Subsection 4.1.8), and Krichen and Tripakis (Subsection 4.1.11)

developed algorithms that use the specification to guide the execution of tests and assign-

ment of verdicts. When the specification has only actions without parameters and variables

the development of automated oracles is relatively simple. Nevertheless, an automated ora-

cle in a real-time symbolic testing strategy causes the test data generation problem because

variables and parameters must be instantiated during the test execution.

4.3 Problem Statements

This section describes several problems identified during the review of the work related to

this thesis. A practical example adapted from [110] will be used to clarify the discussion.

The chosen example is a burglar alarm system, a real-time monitoring system. The objective

of the system is to monitor sensors to detect the presence of intruders in a building.

This system uses different kinds of sensors including movement detectors in individual

rooms, window sensors, which detect the breaking of a window and door sensors, which de-

tect the opening of doors. There are 50 window sensors, 30 door sensors, and 200 movement

detectors. When a sensor indicates the presence of an intruder, the system automatically

4.3 Problem Statements 89

Work Time Test Cases Communication Oracle

Cardell-Oliver

analogue-time model (internally the

model is digitised) instantiated synchronous partial

En-Nouaary et

al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Li et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Khoumsi

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Briones and

Brinksma

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Bohnenkamp

and Belinfante

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Bodeveix et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Larsen et al.

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Hessel et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Merayo et al. digital-time model instantiated synchronous partial

Krichen and

Tripakis digital and analogue-time models∗ instantiated synchronous automated

Zheng et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

David et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Adjir et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Styp et al. analogue-time model undefined synchronous undefined

Timo et al. analogue-time model undefined synchronous undefined

Tabela 4.3: Related Work

calls the police and, with a voice synthesiser, reports the position of the alarm. In addition,

the system switches on lights around the area with activated sensors and switches on an au-

dible alarm. The system is normally powered by the central power supply system, but it

is equipped with a battery backup. The loss of power is detected by a circuit monitor that

4.3 Problem Statements 90

monitors the main tension. The system switches automatically to backup power when a volt-

age drop is detected. The timing requirements contained in our version of the burglar alarm

system are described in Table 4.4.

Stimulus/Response Timing Requirements

Power fail interrupt

The switch to backup power must be completed

within a deadline of 50 ms.

Audible alarm

The audible alarm should be switched on within 1/2

second after an alarm is raised by a sensor.

Voice synthesiser

A synthesised message should be available within 3

seconds after an audible alarm is switched on.

Communications

The call to the police should be started within 1 sec-

ond after a message is synthesised.

Lights switch

The lights should be switched on within 1/2 second

after the calling to the police.

Tabela 4.4: Timing Requirements

Considering the architecture of the system, each system functionality is allocated to a

concurrent process as well as each kind of sensor is allocated to a process. There is an

interruption-driven system to deal with the failure and switching of power supply, a com-

munication system, a voice synthesiser, an audible alarm system, and an illumination drive

system to turn on lights around the sensor. The architecture of the system is depicted in

Figure 4.1. The labelled arrows indicate the data flow between processes and the notes asso-

ciated with the processes indicate which process or action causes the interruption.

Considering the specified scenario, some limitations of the approaches presented in this

chapter are discussed. As an alarm system is naturally a system that has several quiescent

states it is important to consider this property during the testing process. In this sense, the

first problem that arises is the lack of tools for testing quiescence in real-time systems.

Another limitation of the current work is the input-completeness assumption of imple-

mentations. As discussed in Section 4.2, there are situations where some inputs can be for-

bidden or ignored by the system. These cases are only considered by Briones and Brinksma

[24], but all forbidden or ignored inputs must be previously specified. Thus, there are still

4.3 Problem Statements 91

Figura 4.1: Burglar Alarm System Architecture

open problems such as the cases where a system cannot accept an input because of a fault

(e.g. a requirement was implemented but there is not an option menu to access it). This

problem is very common in the test of mobile phone applications and it is present not only

in the real-time systems context but also in non-real-time systems.

The most efficient implementation of the burglar alarm system is to adopt the interrupt-

driven architecture of Figure 4.1 where most communication between processes is asyn-

chronous. For example, when an intruder is detected, the process that controls the activated

sensors interrupts the building monitor process, which interrupts the alarm system process.

Finally, the alarm system process, using interruptions, activates the following processes:

audible alarm, lighting control, voice synthesiser, and communication process. However,

current real-time models do not take asynchronous events into account. Thus, the testing

process of real-time systems with asynchronous events based on formal models is compro-

mised, if not impossible.

As discussed in Section 4.2, all approaches only use symbolic strategies to abstract time

as a way of digitisation of analogue-time models. Nevertheless, when the system uses huge

data domains, each value continues to be represented as a system state, leading to the clas-

4.4 Concluding Remarks 92

sical state space explosion problem. Moreover, the digitisation of analogue-time models

usually leads to a huge number of test cases. An interesting solution would be to provide

symbolic testing strategies to abstract not only time but also variables of the system, leading

to a simplified test suite where only most significant system data would be used during the

test execution.

Taking the burglar alarm system as an example, the representation of the three kinds of

sensors (movement, door and window sensors) using the existing real-time models would

lead to three different paths in the model. In a real-time symbolic model, the representation

is simple: the processes representing the three kinds of sensors could be abstracted in only

one location in the model, where the interruption action would carry the information about

the kind of sensor and the room number as parameters. In addition, the number of rooms

of the burglar alarm system could be abstracted in a variable, thus it would be simpler to

model situations where depending on the number of activated sensors, the system could take

different decisions.

The high abstraction level in symbolic models leads to other problems such as the oracle

problem. As it is possible to generate abstract test cases, the oracle problem is related to

symbolic strategies in the sense that it is more difficult to provide an automated way for test

case generation and execution, since test cases must be instantiated according to constraints

defined in the specification.

4.4 Concluding Remarks

This chapter presented a review of work related to this thesis and several problems were

stated. It is not our intention to deal with all identified problems. As discussed in Chapter 1,

we intend to propose an extension of the symbolic testing strategy presented in Subsection

2.1.9 to deal with real-time systems. Furthermore, we intend to provide ways of modelling

and testing asynchronous events considering an automated oracle for test case generation

and execution. Problems related to quiescence and input-completeness are outside the scope

of this thesis.

Capítulo 5

Timed Input-Output Symbolic Transition

Systems

Este capítulo apresenta um novo modelo simbólico chamado Timed Input-Output Symbolic

Transition System (TIOSTS) [11]. O objetivo é tratar as limitações dos formalismos exis-

tentes abstraindo tempo e dados durante a geração de casos de teste. Este modelo é uma

extensão de dois modelos existentes: Timed Automata with Inputs and Outputs (TAIO), que

por sua vez são uma extensão de Timed Automata [5] com entradas e saídas associadas

a prazos para modelar urgência [21], e Input-Output Symbolic Transition Systems (IOSTS)

[108]. Em outras palavras, um TIOSTS é um autômato com um conjunto finito de nós, variá-

veis utilizadas para representar dados do sistema e um conjunto finito de relógios utilizados

para representar a evolução do tempo. Uma transição é composta por uma condição envol-

vendo variáveis e relógios, uma ação com parâmetros para a comunicação com o ambiente,

atribuições a variáveis e reinicialização de relógios.

5.1 Syntax of TIOSTS

We intuitively explain the different notions of the TIOSTS model through the example shown

in Figure 5.11 that models a withdrawal transaction in an ATM system. In a TIOSTS, a

transition is fired if its guard is true, then the action is executed and all assignments are

1In graphical representations, input actions are followed by the “?” symbol and output actions are followed

by the “!” symbol. These symbols are used only as visual notation, they are not part of the action’s name.

93

5.1 Syntax of TIOSTS 94

performed.

The withdrawal transaction has a precondition (an initial condition) that states that the

current balance must be strictly positive. Initially, the system is in the Idle location where

it expects the Withdrawal input carrying a strictly positive integer parameter amount that

is saved into the withdrawalValue variable with the clock set to zero when the transition

is taken. The scope of an action parameter is local with respect to the transition where it

appears, thus the value of an action parameter must be stored in a variable in order to use it

in the future.

Considering that the value of withdrawalValue is less than or equal to the balance and the

time represented by clock is less than or equal to 10 time units, the ATM system dispenses

the cash through the DispenseCash output carrying the amount parameter (the condition

amount = withdrawalV alue contained in the guard means “choose a value for the amount

parameter that, with the value of the withdrawalValue variable, satisfies the guard”). This

is a characteristic inherited from IOSTS models whose objective is to associate the value of

a variable with an action parameter in order to define output actions. Finally, the balance

variable is decreased by the withdrawn value, and the system returns to the Idle location.

On the other hand, if the account does not have sufficient funds, the system must emit the

invalid withdrawal value through the InsufficientFunds output carrying the amount parameter

when clock is at most 2 (the condition amount = withdrawalV alue has a similar meaning

to the previous guard), and reset the clock to zero again. Finally, the current balance is

emitted through the PrintBalance output when clock is at most 5 (the condition amount =

balance contained in the guard means “choose a value for the amount parameter such that it

is equal to the value of the balance parameter”), and the system returns to the Idle location.

Guards on transitions only indicate when they are enabled or not, but they cannot force

the transition to be taken. Considering the specification of Figure 5.1, the TIOSTS may stay

forever in any location. This can be solved by adding some restrictions to the transitions

in order to describe the urgency of execution. Adopting the strategy defined in [21], each

transition is annotated with one of the following three deadlines: lazy, delayable, and eager.

The lazy deadline imposes no urgency to the transition to be taken, delayable means that

once enabled the transition must be taken before it becomes disabled, and eager means the

transition must be taken as soon as it becomes enabled.

5.1 Syntax of TIOSTS 95

Figura 5.1: TIOSTS Example

Default deadlines are adopted in order to not overload pictures, thus when not specified

the deadline of transitions with output actions is assumed to be delayable and the deadline

of transitions with input actions is assumed to be lazy. On the other hand, when different

deadlines are necessary they must be explicitly specified. A TIOSTS is formally described

in Definition 5.1.

Definition 5.1 (TIOSTS). Formally, a TIOSTS is a tuple 〈V, P,Θ, L, l0,Σ, C, T 〉, where:

• V is a finite set of typed variables;

• P is a finite set of parameters. For x ∈ V ∪ P , type(x) denotes the type of x;

• Θ is the initial condition, a predicate with variables in V ;

• L is a finite, non-empty set of locations;

• l0 ∈ L is the initial location;

• Σ = Σ? ∪ Σ! ∪ Στ is a non-empty, finite alphabet, which is the disjoint union of a

set Σ? of input actions, a set Σ! of output actions, and a set Στ of internal actions.

Each action a ∈ Σ has a signature sig(a) = 〈p1, ..., pn〉, that is a tuple of distinct

parameters. The signature of internal actions is the empty tuple;

• C is a finite set of clocks;

• T is a finite set of transitions. Each transition t ∈ T is a tuple 〈l, a,G,A, y, l′〉, where:

5.2 Semantics of TIOSTS 96

– l ∈ L is the origin location of the transition,

– a ∈ Σ is the action,

– G = GD∧GC is the guard, whereGD is a predicate over variables in V ∪sig(a)2

and GC is a clock constraint over C defined as a conjunction of constraints of

the form α#c, where α ∈ C, c is an integer constant and # ∈ {<,≤,=,≥, >},

– A = AD ∪ AC is the assignment of the transition. For each variable x ∈ V

there is exactly one assignment in AD, of the form x := AD
x, where ADx is an

expression on V ∪ sig(a). AC ⊆ C is the set of clocks to be reset,

– y ∈ {lazy, delayable, eager} is the deadline of the transition,

– l′ ∈ L is the destination location of the transition.

�

5.2 Semantics of TIOSTS

TLTS and TIOLTS models are used to define the semantics of all approaches based on TA

and TAIO, respectively. Thus, the semantics of a TIOSTS 〈V, P,Θ, L, l0,Σ, C, T 〉 is de-

scribed in terms of a TIOLTS (Definition 5.2). Intuitively, the TIOLTS states expand the

sets of locations, of valuations of variables V and clocks C, while transitions expand the

sets of actions Σ associated with parameter values P . A valuation of the variables in V is a

mapping ν which maps every variable x ∈ V to a value ν(x) in the domain of x. Valuations

of parameters P are defined similarly. Let V denote the set of valuations of the variables V

and let Γ denote the set of valuations of the parameters P . Let the function ψ : C → R≥0

denote a clock valuation. We denote by 0 the valuation that assigns 0 to all clocks.

Considering ν ∈ V and γ ∈ Γ, for an expressionE involving a subset of V ∪P , we denote

by E(ν, γ) the value obtained by evaluating the result of substituting in E each variable by

its value according to ν and each parameter by its value according to γ.

Definition 5.2 (TIOLTS semantics of a TIOSTS). The semantics of a TIOSTS W =

〈V, P,Θ, L, l0,Σ, C, T 〉 is a TIOLTS [[W]] = 〈S, S0, Act, T 〉, defined as follows:

2GD is assumed to be expressed in a theory in which satisfiability is decidable.

5.2 Semantics of TIOSTS 97

• S = L×V × (C → R≥0) is the set of states of the form s = 〈l, ν, ψ〉 where l ∈ L is a

location, ν ∈ V is a specific valuation for all variables V , and ψ is a clock valuation;

• S0 = {〈l0, ν, ψ〉 | Θ(ν) = true, 0} is the set of initial states. It is important to remark

that the number of initial states can be infinite because, in this case, there may be

infinite valuations satisfying the initial condition Θ;

• Act = Λ∪D is the set of actions, where Λ = {〈a, γ〉 | a ∈ Σ, γ ∈ Γsig(a)} is the set of

discrete actions and D = R≥0 is the set of time-elapsing actions. Λ is partitioned into

the sets Λ? of input actions, Λ! of output actions, and Λτ of internal actions;

• T is the transition relation defined as follows: (1) transitions with discrete actions are

of the form 〈l, ν, ψ〉 〈a,γ〉→ (l′, ν ′, ψ′), where the system moves from 〈l, ν, ψ〉 to 〈l′, ν ′, ψ′〉

through an action 〈a, γ〉 if there is a transition t : 〈l, a,G,A, y, l′〉 ∈ T such that

G evaluates to true, ν ′ = AD(ν, γ), and ψ′ = AC(ψ); (2) transitions with time-

elapsing actions are of the form (l, ν, ψ)
d→ (l, ν, ψ + d) for all d ∈ D considering

that the deadlines do not block time progress. Once the lazy deadline is used only

to denote the absence of deadlines, lazy transitions cannot block time progress. A

delayable transition can block time progress if there exist 0 ≤ d1 < d2 ≤ d such that

ψ+ d1 |= GC and ψ+ d2 6|= GC , whereas an eager transition can block time progress

if ψ |= GC .

�

As in [78], delayable transitions with guards of the form α < c are not allowed because

there is no latest time so that the guard is still true. Also, eager transitions with guards of the

form α > c are not allowed because there is no earliest time so that the guard becomes true.

Most notions and properties of TIOSTS are defined in terms of their underlying TIOLTS

semantics (Definition 5.2). Then, consider s, s′, si ∈ S; τi ∈ Λτ ; ω, ωi ∈ Act; and a, ai ∈

(Act\Λτ). Moreover, let ρ ∈ Act∗ be a sequence of discrete actions and time-elapsing

actions, and σ ∈ (Act\Λτ)∗ be a sequence of visible discrete and time-elapsing actions.

ε ∈ Act∗ is the empty sequence. The sum of all delays spent in a sequence of actions ρ

(respectively σ) is denoted by time(ρ) (respectively by time(σ)). For example, time(ε) = 0

and time(2.5 a? 0.5 x!) = 3.0.

5.2 Semantics of TIOSTS 98

Let W = 〈V, P,Θ, L, l0,Σ, C, T 〉 be a TIOSTS whose semantics is defined by the

TIOLTS [[W]] = 〈S, S0, Act, T 〉. We write s ω→ s′ for (s, w, s′) ∈ T , s ω→ for ∃s′ : s
ω→ s′.

Let s ω1...ωn→ s′
∆
= ∃s0, ..., sn : s = s0

ω1→ s1
ω2→...

ωn→ sn = s′ be an execution. We also write

s
ρ→ for ∃s′ : s

ρ→ s′. Traces(s) ∆
= {ρ ∈ Act∗ | s ρ→} describes the set of sequences of dis-

crete and time-elapsing actions fireable from s. The set of fireable actions from s is defined

by Ω(s)
∆
= {ω ∈ Act | s ω→}. Out(s) ∆

= Ω(s) ∩ (Λ! ∪ D) is the set of all output events

(including time-elapsing actions) fireable from s. The definition of Out(s) can be extended

for sets of states: for P ⊆ S we have Out(P)
∆
=

⋃
s∈P Out(s).

The⇒ relation is used to denote the observable behaviour. Given s, s′ ∈ S, d ∈ R≥0 and

a ∈ Λ! ∪ Λ?, we have s d⇒ s′ whenever ∃ρ ∈ (Λτ ∪D)∗ such that s
ρ→ s′ and time(ρ) = d,

whereas we have s a⇒ s′ whenever ∃ρ1, ρ2 ∈ (Λτ)∗, s1, s2 ∈ S such that s
ρ1→ s1

a→ s2
ρ2→ s′.

Given a1, · · · an ∈ (Act\Λτ)∗, an observable execution is defined as s a1...an⇒ s′
∆
= ∃s0, ..., sn :

s = s0
a1⇒ s1

a2⇒...
an⇒ sn = s′. For a ∈ Act \ Λτ we also define s a⇒ ∆

= ∃s′ : s
a⇒ s′ and

for σ ∈ (Act \ Λτ)∗, s σ⇒ ∆
= ∃s′ : s

σ⇒ s′. ObservableTraces(s) ∆
= {σ ∈ (Act \ Λτ)∗ |

s
σ⇒} describes the set of sequences of observable and time-elapsing actions fireable from

s. Finally, the set of sequences of observable behaviours fireable from the initial state of a

TIOSTS W is defined by ObservableTraces(W)
∆
= ObservableTraces(S0).

The set s after σ ∆
= {s′ ∈ S | s σ⇒ s′} is the set of states reachable from s after the

execution of σ, and P after σ ∆
=

⋃
s∈P s after σ is the set of states reachable from the set P

after the execution of σ.

Subclasses of TIOSTS. Let W = 〈V, P,Θ, L, l0,Σ, C, T 〉 be a TIOSTS and [[W]] =

〈S, S0, Act, T 〉 its associated TIOLTS. W is complete if it can accept any action at any

state, i.e., ∀s ∈ S, b ∈ Λ : s
b→. On the other hand, W is input-complete if it can ac-

cept any input action at any state, possibly after internal actions, i.e., ∀s ∈ S, b ∈ Λ? : s
b⇒.

W is said to be a lazy-action TIOSTS if the deadlines of all transitions are lazy, that is,

T = {t | t : 〈l, a,G,A, lazy, l′〉 ∈ T }. W is said to be a non-blocking TIOSTS

when it does not block time. In this case, the following condition must be satisfied

[74]: ∀s ∈ S0 after ρ, ∀d ∈ R≥0, ∃ρ′ ∈ (Λ! ∪ Λτ ∪ D)∗ : time(ρ′) = d ∧ s ρ′→.

W is said to be deterministic if the following three conditions are satisfied [35; 63;

108]:

5.3 Synchronous Product of TIOSTS 99

1. Λτ = ∅ (i.e. there are no internal actions);

2. | S0 |= 1, that is, there is only one initial state implying the initial condition Θ is

satisfied by only one valuation ν0;

3. for all l ∈ L and for each pair of distinct transitions with origin in l carrying the same

action a, that is, t1 : 〈l, a,G1, A1, y1, l
′
1〉 and t2 : 〈l, a,G2, A2, y2, l

′
2〉, the guards G1

and G2 are mutually exclusive (i.e., G1 ∧G2 is unsatisfiable).

5.3 Synchronous Product of TIOSTS

The synchronous product of two TIOSTSs W1 and W2 is an important operation used in

both property oriented testing and conformance testing. This operation is used in the former

for identifying behaviours of the specification accepted or rejected by a particular property

(e.g., W1 could be a specification and W2 could be a test purpose). On the other hand, for

conformance testing, this operation is used for modelling the synchronous execution of a test

case on an implementation (e.g., W1 could be a test case and W2 could be an implementation

under test). This classical problem is known as the language intersection problem [62].

The synchronous product operation requires compatibility between W1 and W2, that is,

W1 and W2 must share the same sets of input and output actions from the same signature,

with the same set of parameters, and have no variables, internal actions, or clocks in common.

Definition 5.3 (Compatibility for Synchronous Product). The TIOSTSs Wi =

〈Vi, Pi,Θi, Li, l
0
i ,Σi, Ci, Ti〉 (i = 1, 2) are compatible if V1 ∩ V2 = ∅, P1 = P2,Σ

?
1 =

Σ?
2,Σ

!
1 = Σ!

2,Σ
τ
1 ∩ Στ

2 = ∅, and C1 ∩ C2 = ∅. �

Given the ordering lazy < delayable < eager on deadlines and two deadlines y1, y2,

op(y1, y2) = (y2 if y1 < y2 and y1 otherwise) is an operation which computes the resulting

deadline in the synchronous product operation by keeping the most restrictive one.

Given two compatible TIOSTSs, Definition 5.4 formally describes the synchronous prod-

uct between them.

Definition 5.4 (Synchronous Product). The synchronous product of two compatible TIOSTSs

W1 and W2 is denoted by SP = W1 ‖ W2. SP is the TIOSTS 〈V, P,Θ, L, l0,Σ, C, T 〉

5.3 Synchronous Product of TIOSTS 100

defined by: V = V1 ∪ V2, P = P1 = P2,Θ = Θ1 ∧ Θ2, L = L1 × L2, l
0 = 〈l01, l02〉,Σ? =

Σ?
1 = Σ?

2,Σ
! = Σ!

1 = Σ!
2,Σ

τ = Στ
1 ∪ Στ

2, and C = C1 ∪ C2. The set T is the smallest set

such that:

1. For a ∈ Στ
1 and l2 ∈ L2:

if 〈l1, a, G1, A1, y1, l
′
1〉 ∈ T1 then 〈〈l1, l2〉, a, G1, A1, y1, 〈l′1, l2〉〉 ∈ T ;

2. For a ∈ Στ
2 and l1 ∈ L1:

if 〈l2, a, G2, A2, y2, l
′
2〉 ∈ T2 then 〈〈l1, l2〉, a, G2, A2, y2, 〈l1, l′2〉〉 ∈ T ;

3. For a ∈ Σ? ∪ Σ!:

if 〈l1, a, G1, A1, y1, l
′
1〉 ∈ T1 and 〈l2, a, G2, A2, y2, l

′
2〉 ∈ T2 then

〈〈l1, l2〉, a, G1 ∧G2, A1 ∪ A2, op(y1, y2), 〈l′1, l′2〉〉 ∈ T .

�

Considering the Definition 5.4, the execution of internal actions can occur independently

and it is described by Rules 1 and 2. Rule 3 describes the synchronization of W1 and W2

through observable actions. Figure 5.2 presents an example of the synchronous product

between a TIOSTS W1 (Figure 5.2(a)) and a TIOSTS W2 (Figure 5.2(b)), obtaining the

TIOSTS of Figure 5.2(c) as result.

(a) TIOSTS W1 (b) TIOSTS W2 (c) SP = W1 ‖W2

Figura 5.2: Synchronous Product Example

5.4 Concluding Remarks 101

5.4 Concluding Remarks

This chapter presented the symbolic model proposed to address limitations of the existing

notations abstracting time and data in the specification of real-time systems. As the proposed

model is based on timed automata, it has the same expressiveness as the approaches presented

in Chapter 4. However, the use of variables to represent the system data leads to more

compact and abstract models. Moreover, when data and time are treated in a symbolic way

the state space explosion problem is avoided. Next chapter presents how test cases can be

generated from the proposed model.

Capítulo 6

Teste de Conformidade com TIOSTS

Este capítulo instancia o arcabouço de teste de conformidade apresentado na Subseção 2.1.5

e o arcabouço de propósito de teste apresentado na Subseção 2.1.6 considerando os modelos

TIOSTS definidos no Capítulo 5. Em seguida, o processo de geração de casos de teste

baseado em modelos TIOSTS definido com a finalidade de checar a conformidade entre

uma especificação e uma implementação é descrito. Finalmente, algumas propriedades dos

casos de teste gerados através da nossa abordagem são discutidas. O conteúdo deste capítulo

também está descrito em [11].

6.1 Testing Conformance

Conformance testing is a kind of testing used to ensure that an implementation of a soft-

ware system meets its specification [118]. This kind of testing relates a specification with an

implementation through a conformance relation, which is checked by the execution of test

cases, possibly selected according to a test purpose. Thus, it is essential to describe all con-

cepts related to conformance testing such as specifications, implementations, conformance

relations between specifications and implementations, and test cases.

Specifications. A specification is a formal model of the SUT represented by a non-blocking

TIOSTS S. The non-blocking specification assumption is due to the fact that we are consid-

ering specifications of software systems that do not force input actions, that is, the system

cannot block because an input action was not provided by the environment.

102

6.2 Test Case Generation Process 103

Implementations. An implementation is a physical software system running on a real-time

environment (e.g., a real-time operating system). In order to reason about conformance, it is

assumed that the semantics of any implementation can be modelled by a formal object. We

assume here that it is modelled by a TIOLTS I. Moreover, the implementation is assumed to

be input-complete, non-blocking, and has the same interface (input and output actions with

their signatures) as the specification S. These assumptions are called test hypotheses.

Test Cases. Test cases (Definition 6.1) are used to check the conformance between specifi-

cations and implementations. It is here defined as a TIOSTS TC as follows:

Definition 6.1 (Test Case). A test case is a deterministic, input-complete TIOSTS TC =

〈VTC , PTC ,ΘTC , LTC , l
0
TC ,ΣTC , CTC , TTC〉, equipped with three disjoint sets of locations

Pass, Fail, and Inconclusive. Moreover, the set of actions is ΣTC = Σ?
TC ∪ Σ!

TC , where

Σ?
TC = Σ!

SUT (outputs of the SUT are the inputs of the TC) and Σ!
TC = Σ?

SUT (TC emits only

inputs allowed by the SUT). �

Intuitively, when the location Fail is reached, it means rejection, the location Pass

means that some targeted behaviour has been reached (this will be clarified later) and

Inconclusive means that targeted behaviours cannot be reached anymore.

Conformance Relation. The conformance relation considered is the tioco relation defined

by Krichen and Tripakis in [76; 77]. Informally, an implementation conforms to a specifica-

tion for tioco if and only if, after any trace of the specification, any output action (including

time-elapsing actions) that the implementation provides after this trace is an output action

that the specification may also provide.

Definition 6.2 (tioco). An implementation I conforms to a specification S for tioco, denoted

by I tioco S , iff ∀σ ∈ ObservableTraces(S), Out(I after σ) ⊆ Out(S after σ). �

6.2 Test Case Generation Process

The test case generation process derives test cases from specifications according to the con-

formance relation. For simplicity, we shall assume that the specification S is deterministic

6.2 Test Case Generation Process 104

and non-blocking. However, it is possible to deal with non-determinism, under some as-

sumptions, for both data [65] and time [17]. It is important to remark that internal actions,

quiescence, and non-input-completeness of implementations are not considered in the pro-

posed test case generation process because these characteristics are outside the scope of this

thesis. The proposed process considers the selection of test cases by test purposes.

Test Purposes. A test purpose describes some desired behaviours that we wish to check on

the implementation during the test campaign. They are used to select test cases in order to

check specific scenarios. In our setting, a test purpose is a particular TIOSTS TP formally

described as follows:

Definition 6.3 (Test Purpose). Given a specification TIOSTS S with action alpha-

bet Σ, a test purpose is a deterministic, complete, lazy-action TIOSTS TP =

〈VTP , PTP ,ΘTP , LTP , l
0
TP ,ΣTP , CTP , TTP 〉, equipped with a special set of locations Accept

⊆ LTP such that all transitions leaving these locations are self-loops1. Moreover TP has to

be compatible with S thus ΣTP = Σ. �

The selection is performed through the synchronous product operation defined in Section

5.3. For this, complete test purposes are needed to ensure that the runs of a specification are

not restricted before they are accepted (if ever).

Accept locations are used to indicate that the expected scenario modelled by the test

purpose has been fulfilled, while Reject locations are used otherwise. Figure 6.1 presents an

example of a test purpose for the withdrawal transaction example presented in Subsection

5.1. It is used to select the scenarios where the user successfully performs a withdrawal

transaction. The Reject location is used to discard all other scenarios where the system does

not exhibit the desired behaviour.

It is important to note that this test purpose is not complete (i.e., not all actions are

enabled at any location), but using a strategy defined in [108] it is possible to automatically

complete it. The steps to automatically complete a test purpose are: (1) in each location, add

a self-loop with an action not enabled; (2) for each transition with a guard G and an action

a, create a new transition to the Reject location with the same action a and the negation of

1One can also consider another set of locations Reject that can be used to discard all other scenarios where

the system does not exhibit the desired behaviour.

6.2 Test Case Generation Process 105

Figura 6.1: TIOSTS Test Purpose Example

the conjunction of all guards associated with a. With this automatic operation the activity

of defining test purposes is simplified by allowing the tester to focus only on the desired

behaviour.

The test case generation process starts with the specification S of the SUT I and a test

purpose TP . Test purposes are used in order to verify if the SUT exhibits a desired behaviour

and their definition allow the tester to focus only on specific behaviours. In this case, test

purposes need to be completed because all input actions are not enabled all the time. The

specification of I is combined with the completed test purpose through the computation of

the synchronous product (Definition 5.4). Then, the resulting TIOSTS model is symbolically

executed to identify and select possible traces leading to an Accept location. Finally, the

selected trace is translated into a test case considering the TIOSTS notation. A general view

of this test process is presented in Figure 6.2. Each step of this process is detailed in the

remainder of this section.

6.2.1 Test Purpose Completion

Algorithm 6.1 presents a simplified implementation of the test purpose completion operation.

This algorithm requires only one parameter: the test purpose to be completed.

During the algorithm execution all non-verdict locations of the test purpose are analysed

(Lines from 2 to 4). If some location has not enabled actions, then a self loop is created with

these actions (Lines from 5 to 14).

After that, for each outgoing transition of the location being processed that has any guard,

it is created a new transition without assignments and as guard the negation of the conjunction

of all guards associated with the action of the current transition (Lines from 15 to 22). If

6.2 Test Case Generation Process 106

Algorithm 6.1: Test Purpose Completion Algorithm

1 c o m p l e t e (TIOSTS TP) {

2 S e t l o c a t i o n s := TP . g e t L o c a t i o n s () ;

3 f o r (L o c a t i o n l o c a t i o n : l o c a t i o n s) {

4 i f (! i s V e r d i c t (l o c a t i o n)) {

5 f o r (Ac t i on a c t i o n : r e m a n i n g A c t i o n s (l o c a t i o n)) {

6 T r a n s i t i o n t r a n s i t i o n := new T r a n s i t i o n () ;

7 t r a n s i t i o n . s e t S o u r c e (l o c a t i o n) ;

8 t r a n s i t i o n . s e t G u a r d (t rue) ;

9 t r a n s i t i o n . s e t A c t i o n (a c t i o n) ;

10 t r a n s i t i o n . s e t A s s i g n m e n t s (∅) ;

11 t r a n s i t i o n . s e t D e a d l i n e (lazy) ;

12 t r a n s i t i o n . s e t T a r g e t (l o c a t i o n) ;

13 TP . a d d T r a n s i t i o n (t r a n s i t i o n) ;

14 }

15 f o r (T r a n s i t i o n t : l o c a t i o n . g e t O u t G o i n g T r a n s i t i o n s ()) {

16 i f (! t . ge tGuard () . i sEmpty ()) {

17 T r a n s i t i o n t r a n s i t i o n := new T r a n s i t i o n () ;

18 t r a n s i t i o n . s e t S o u r c e (l o c a t i o n) ;

19 t r a n s i t i o n . s e t G u a r d (

n e g a t i o n (l o c a t i o n . g e t A l l G u a r d s (t . g e t A c t i o n ()))) ;

20 t r a n s i t i o n . s e t A c t i o n (t . g e t A c t i o n ()) ;

21 t r a n s i t i o n . s e t A s s i g n m e n t s (∅) ;

22 t r a n s i t i o n . s e t D e a d l i n e (lazy) ;

23 i f (t . g e t T a r g e t () = reject) {

24 t r a n s i t i o n . s e t T a r g e t (l o c a t i o n) ;

25 } e l s e {

26 t r a n s i t i o n . s e t T a r g e t (reject) ;

27 }

28 i f (! TP . c o n t a i n s (t r a n s i t i o n)) {

29 TP . a d d T r a n s i t i o n (t r a n s i t i o n) ;

30 }

31 }

32 }

33 }

34 }

35 }

6.2 Test Case Generation Process 107

Figura 6.2: Test Case Generation Process

the target location of the transition being processed is the Reject location, then a self loop is

created with this new transition (Line 24); otherwise, the target location of this new transition

is set to the Reject location (Line 26). Finally, the created transition is added to the test

purpose if it has not been added (Lines from 28 to 30).

Using the asymptotic notation, the running time of Algorithm 6.1 is O(|LTP | · |ΣTP |),

where | LTP | is the number of locations of the test purpose and | ΣTP | is the size of the

alphabet of the test purpose.

Figure 6.3 shows the completed test purpose generated by Algorithm 6.1 using, as pa-

rameter, the test purpose of Figure 6.1.

Figura 6.3: Completed Test Purpose Example

6.2 Test Case Generation Process 108

Algorithm 6.2: Synchronous Product of W1 and W2

1 s y n c h r o n o u s P r o d u c t (TIOSTS W1 , TIOSTS W2 , TIOSTS s y n c P r o d u c t) {

2 i f (i s C o m p a t i b l e (W1 , W2)) {

3 p r o d u c t (l01 , l02 , s y n c P r o d u c t) ;

4 m i r r o r (s y n c P r o d u c t) ;

5 }

6 }

6.2.2 Synchronous Product Generation

Algorithms 6.2 and 6.3 present a simplified implementation of the synchronous product op-

eration defined in Section 5.3. Algorithm 6.2 requires three TIOSTS as parameters: the

synchronous product is computed between W1 (specification) and W2 (completed test pur-

pose), and the result is returned in syncProduct.

Firstly, it is necessary to check whether W1 and W2 are compatible for synchronous

product (Algorithm 6.2, Line 2) according to Definition 5.3. Then, the product method is

used to traverse both TIOSTS from their initial locations following the Depth-First Search

(DFS) strategy (Algorithm 6.2, Line 3).

Once the synchronous product is computed, the last action of Algorithm 6.2 (Line 4) is

to invert input and output actions, in other words, all input actions become output actions

and all output actions become input actions. This is important because during the test case

execution the inputs of the SUT are outputs of the environment (tester) and vice-versa.

The product method is detailed in Algorithm 6.3. Three parameters are needed: l1, the

current location of W1 being processed; l2, the current location of W2 being processed; and

syncProduct, the synchronous product being computed. The first step (Algorithm 6.3, Line

2) is to check whether l2 is a verdict location (Accept or Reject location). If so, the processing

is stopped.

The loop in Line 5 of Algorithm 6.3 processes each transition t1 leaving l1 (i.e., the

current location of W1). T2 contains all transitions leaving the current location of W2 that

have the same action as t1 (Algorithm 6.3, Line 6).

When T2 is empty (Algorithm 6.3, Line 9) means that there is no transition leaving the

current location of W2 with the same action as t1. In this case, the new transition t of the

6.2 Test Case Generation Process 109

Algorithm 6.3: Product of W1 and W2

1 p r o d u c t (L o c a t i o n l1 , L o c a t i o n l2 , TIOSTS s y n c P r o d u c t) {

2 i f (i s V e r d i c t (l2)) {

3 re turn ;

4 }

5 f o r (T r a n s i t i o n t1 : l1 . g e t O u t G o i n g T r a n s i t i o n s ()) {

6 S e t T2 := g e t T r a n s i t i o n s B y A c t i o n (l2 , t1 . g e t A c t i o n ()) ;

7 L o c a t i o n s o u r c e := new L o c a t i o n (l1 . g e t L a b e l () + "_" + l2 . g e t L a b e l ()) ;

8 T r a n s i t i o n t := new T r a n s i t i o n () ;

9 i f (T2 . i sEmpty ()) {

10 t . s e t S o u r c e (s o u r c e) ;

11 t . s e t G u a r d (t1 . ge tGuard ()) ;

12 t . s e t A c t i o n (t1 . g e t A c t i o n ()) ;

13 t . s e t D e a d l i n e (t1 . g e t D e a d l i n e ()) ;

14 t . s e t A s s i g n m e n t s (t1 . g e t A s s i g n m e n t s ()) ;

15 t . s e t T a r g e t (t1 . g e t T a r g e t () . g e t L a b e l + "_" + l2 . g e t L a b e l ()) ;

16 i f (! s y n c P r o d u c t . c o n t a i n s T r a n s i t i o n (t)) {

17 s y n c P r o d u c t . a d d T r a n s i t i o n (t) ;

18 p r o d u c t (t1 . g e t T a r g e t () , l2 , s y n c P r o d u c t) ;

19 }

20 } e l s e {

21 f o r (T r a n s i t i o n t2 : T2) {

22 t . s e t S o u r c e (s o u r c e) ;

23 t . s e t G u a r d (t1 . ge tGuard () + "AND" + t2 . ge tGuard ()) ;

24 t . s e t A c t i o n (t1 . g e t A c t i o n ()) ;

25 t . s e t D e a d l i n e (t1 . g e t D e a d l i n e ()) ;

26 t . s e t A s s i g n m e n t s (t1 . g e t A s s i g n m e n t s () + t2 . g e t A s s i g n m e n t s ()) ;

27 t . s e t T a r g e t (t1 . g e t T a r g e t () . g e t L a b e l () + "_" +

t2 . g e t T a r g e t () . g e t L a b e l ()) ;

28 i f (! s y n c P r o d u c t . c o n t a i n s T r a n s i t i o n (t)) {

29 s y n c P r o d u c t . a d d T r a n s i t i o n (t) ;

30 p r o d u c t (t1 . g e t T a r g e t () , t2 . g e t T a r g e t () , s y n c P r o d u c t) ;

31 }

32 }

33 }

34 }

35 }

6.2 Test Case Generation Process 110

synchronous product will be identical to t1 (Lines from 11 to 14) excepting the source (Lines

7 and 10) and target (Line 15) locations. The test of Line 16 is necessary to avoid the

inclusion of a transition twice when there are loops in the models and to guarantee that the

algorithm terminates. If t has not been added to syncProduct, it is added and the algorithm

continues recursively with the following parameters: l1 becomes the target location of t1, the

same l2 being processed, and syncProduct.

If T2 has one or more transitions with the same action as t1, each transition t2 ∈ T2 leads

to creation of a new transition t to be added to syncProduct with the following properties:

(1) the source location is the composition of the current locations (Lines 7 and 22); (2) the

guard is the conjunction of the guards of t1 and t2 (Line 23); (3) the action is the same as

t1 (Line 24); (4) the deadline is the same as t1 (Line 25); (5) the set of assignments is the

union of the assignments set of t1 and t2 (Line 26); (6) the target location is the composition

of target location of t1 and target location of t2 (Line 27).

If t has not been added to syncProduct, it is added and the algorithm continues recursively

with target locations of t1 and t2, and syncProduct as parameters (Algorithm 6.3, Lines from

28 to 30).

Algorithms 6.2 and 6.3 have the same running time: O(| T1 | + | T2 |), where | T1 | is

the number of transitions of the TIOSTS W1 and | T2 | is the number of transitions of the

TIOSTS W2.

Figure 6.4 shows the synchronous product generated by Algorithms 6.2 and 6.3 from

specification of Figure 5.1 and completed test purpose of Figure 6.3.

Figura 6.4: Synchronous Product Example

6.2 Test Case Generation Process 111

6.2.3 Symbolic Execution

Symbolic execution is a technique for analysing programs based on symbolic values as input

rather than concrete values [33; 71]. Symbolic execution techniques were used by Gaston et

al. [53] and Jöbstl et al. [66] for test generation for untimed systems. We here extend the

work proposed by Jöbstl et al. [66] to deal with TIOSTS models.

The main idea is to symbolically execute TIOSTS models using the same technique used

for symbolically executing programs. Thus, all possible traces are identified using symbolic

values instead of concrete values for action parameters and variables of the model, avoiding

the state space explosion problem w.r.t. the data part since data values are not enumerated.

The resulting traces are represented as a zone-based symbolic execution tree (Definition

6.6), whose nodes are zone-based symbolic extended states (Definition 6.4) and edges are

symbolic actions (Definition 6.5).

Definition 6.4 (Zone-Based Symbolic Extended State). A zone-based symbolic extended

state (ZSES) of a TIOSTS W = 〈V, P,Θ, L, l0,Σ, C, T 〉 is a tuple η = 〈l, π, ϕ, Z〉, where:

• l ∈ L is a location of W ;

• π is the path condition, that is, a Boolean expression representing a data guard;

• ϕ is a mapping from variables and action parameters to their symbolic values;

• Z is a zone representing the solution set of a clock constraint.

�

Symbolically executing a TIOSTS implies that data and time must be taken into account.

As in [66], path conditions are checked using constraint solving. However, our definition of

states differs from [66] because zones are used to check the reachability of states w.r.t. time

requirements: a state is reachable if its path condition π is satisfiable and its zone Z is not

empty. Zones provide an efficient symbolic representation of time requirements, avoiding

the state space explosion problem w.r.t. the time part. Furthermore, ZSESs are connected

through transitions labelled by symbolic actions (Definition 6.5).

Definition 6.5 (Symbolic Action). A symbolic action is a tuple sa = 〈a, µsa, ϕsa〉, where:

6.2 Test Case Generation Process 112

• a ∈ Σ is the corresponding action in the TIOSTS;

• µsa is a list of unique identifiers denoting the action parameters of sa;

• ϕsa is a mapping from the original action parameter names to the unique identifiers in

µsa.

�

We are now ready to define zone-based symbolic execution trees:

Definition 6.6 (Zone-Based Symbolic Execution Tree). A zone-based symbolic execution

tree (ZSET) is a deterministic, connected, acyclic graph represented by a tuple 〈S, SA, η0, T 〉,

where:

• S is a finite set of zone-based symbolic extended states;

• SA is a finite set of symbolic actions;

• η0 ∈ S is the initial zone-based symbolic extended state;

• T is a finite set of transitions. Each transition t ∈ T is a tuple 〈η, sa, η′〉, where:

– η ∈ S is the origin state of the transition,

– sa ∈ SA is the symbolic action of the transition,

– η′ ∈ S is is the destination state of the transition.

�

A ZSET is deterministic if ∀η, η′, η′′ ∈ S, ∀sa ∈ SA : 〈η, sa, η′〉 ∈ T ∧ 〈η, sa, η′′〉 ∈

T ⇒ η′ = η′′.

Algorithms for symbolically executing symbolic transition systems have been proposed

by Gaston et al. [53] and Jöbstl et al. [66]. However, as they do not deal with time, a new

algorithm is presented in this thesis.

Algorithm 6.4 is an extended version of the algorithm proposed by Jöbstl et al. [66]. It

requires two parameters: TIOSTS W is the input model to be symbolically executed and

ZSET is the resulting zone-based symbolic execution tree. Firstly, a unique symbolic value

is generated for each variable of V and each action parameter of P (Line 2). In Line 3, the

6.2 Test Case Generation Process 113

Algorithm 6.4: Symbolic Execution of W = 〈V, P,Θ, L, l0,Σ, C, T 〉
1 s y m b o l i c E x e c u t i o n (TIOSTS W , ZSET ZSET) {

2 ϕ0 ← map of variables of V ∪ P to symbolic values

3 η0 ← 〈l0,Θ, ϕ0, Z0〉

4 addState(ZSET, η0)

5 Unvisited ← {η0}

6 whi le Unvisited 6= ∅ do

7 pick and remove some η = 〈l, π, ϕ, Z〉 from Unvisited

8 f o r a l l 〈l, a,G,A, y, l′〉 ∈ T do

9 µsa ← list of unique symbolic values for every parameter of a

10 ϕsa ← map of action parameters to symbolic values

11 sa← 〈a, µsa, ϕsa〉

12 π′ ← π ∧ ϕ(ϕsa(GD)) // GD is the data guard of G

13 ϕ′ ← ϕ ◦ ϕsa ◦AD // AD represents data assignments of A

14 Z ′ ← [AC ← 0](GC ∩ ~Z) // AC is the set of clocks to reset and GC is the clock guard of G

15 η′ = 〈l′, π′, ϕ′, Z ′〉

16 i f (isReachable(η′) ∧ ¬(upperBoundReached(l′)) ∧ η′ 6⊆ η′′ ∀η′′ ∈ ZSET) then

17 Unvisited ← Unvisited ∪ {η′}

18 addState(ZSET, η′)

19 addTransition(ZSET, 〈η, sa, η′〉)

20 end i f

21 end f o r

22 end whi l e

23 }

first state η0 of ZSET is defined considering the initial location of W , the initial condition of

W as first path condition, the mapping defined in Line 2, and the initial clock zone (i.e., all

clocks set to zero). Once defined, the first state η0 is added to ZSET (Line 4).

The state η0 is added to the set of states to be visited (Line 5). As long as there are

unvisited states (Line 6), the algorithm picks and remove some state η from Unvisited (Line

7). The ZSES η refers to a location l of W and the loop in Line 8 processes all transitions

from l.

The symbolic action sa is computed from the action a, attributing unique symbolic values

for every parameter of a (Line 9) and mapping the original action parameter names to the

6.2 Test Case Generation Process 114

defined symbolic values (Line 10).

Once the symbolic action has been defined (Line 11), the next step of Algorithm 6.4 is

to compute the target state η′. Thus, the path condition π′ for η′ is defined (Line 12) as the

conjunction of π with the guard GD (i.e., the data guard of G) considering the mappings ϕ

and ϕsa. The mapping ϕ′ is defined through ϕ ◦ ϕsa ◦ AD (Line 13), where AD represents

data assignments of A and ◦ denotes function composition.

Z ′ is defined in Line 14. The successor of Z is defined by letting time elapse (~Z), taking

the intersection with the clock guard GC , and finally updating the values of clocks that are

reset (i.e., clocks in AC).

Once π′, ϕ′, and Z ′ have been defined, the target state η′ is created in Line 15. Finally, η′

is added to the set of states to be visited (Line 17) and a new transition labelled by sa con-

necting η to η′ is added to ZSET (Lines 18 and 19), if the following conditions are satisfied

(Line 16):

1. The state η′ is reachable, that is, the path condition π′ is satisfiable and the zone Z ′ is

not empty;

2. The number of ZSESs in the current path that correspond to the location l′ does not

exceed a certain bound. This checking is needed to avoid infinite ZSETs in the case

where there are loops in the specification whose number of iterations depends on val-

ues assigned to parameters and variables [66];

3. η′ 6⊆ η′′ ∀η′′ ∈ ZSET according to Definition 6.7, where the state inclusion of Gaston

et al. [53] was extended to deal with zones.

Definition 6.7 (ZSESs Comparison). Let η = 〈l, π, ϕ, Z〉 and η′ = 〈l′, π′, ϕ′, Z ′〉 be two

zone-based symbolic extended states. ZSES η′ is included in ZSES η, that is, η′ ⊆ η, if and

only if:

1. l′ = l;

2. (π′ ∧
∧
x∈AD(x = ϕ′(x))) ⇒ (π ∧

∧
x∈AD(x = ϕ(x))) is a tautology, where AD

represents data assignments of the TIOSTS;

3. Z ′ ⊆ Z.

�

6.2 Test Case Generation Process 115

As the implementation of the proposed algorithm for symbolic execution depends on

tools related to concepts that are outside the scope of this thesis such as zones and con-

straint solving, the running time of the algorithm is described independently of imple-

mentation strategies and tools. Thus, the running time of Algorithm 6.4 is O(| L |

+ Cost(reachability analysis) + Cost(ZSESs comparison)), where |L | is the number of

locations of the TIOSTS W , Cost(reachability analysis) is the cost to verify whether a ZSES

is reachable, and Cost(ZSESs comparison)) is the cost to compare two ZSESs.

Figure 6.5 presents the ZSET obtained from the symbolic execution of the synchronous

product shown in Figure 6.4.

6.2.4 Test Case Selection

Once all possible traces have been identified by symbolic execution, the next step is to select

a test case by choosing a trace that leads to an Accept state. For this, it is necessary to select

a subtree of the generated ZSET called test tree. Finally, the selected test tree is translated

into a test case (see Subsection 6.2.5).

The strategy used for the selection of the test tree is the same proposed by Jöbstl et al.

[66], which is similar to the strategy of the TGV tool [62]. The idea is to select one reachable

Accept state and perform a backward traversal to the root ZSES. Finally, a forward traversal

is performed in order to extend the selected path to a test tree by adding missing inputs that

are allowed by the specification. These missing inputs are possible outputs of the SUT and

they are important to avoid fail verdicts on outputs allowed by the specification. In this case,

the verdict is Inconclusive. Note that the forward traversal ensures the controllability of

the generated test tree (i.e. test cases do not have the choice between inputs and outputs, or

between several outputs).

The test tree from the ZSET in Figure 6.5 is the same ZSET since there is only one path

leading to an Accept state and the addition of missing inputs leads to the whole ZSET.

6.2.5 Test Tree Transformation

Considering the conformance testing framework defined in Section 6.1, test cases are timed

input-output symbolic transition systems. Thus, the last step of the test case generation

6.2 Test Case Generation Process 116

Figura 6.5: Zone-Based Symbolic Execution Tree of the TIOSTS of Figure 6.4

process (Figure 6.2) is to translate the selected test tree TT = 〈S,SA, η0, T 〉 into a test case

TIOSTS TC = 〈V, P,Θ, L, l0,Σ, C, T 〉.

The test tree translation operation is described by Algorithm 6.5. It requires three param-

eters: TIOSTS SP is the synchronous product from which the test tree was obtained, ZSET

ZSET is the test tree, and TIOSTS TC is the resulting test case.

The data of TC (i.e. V ∪ P) is defined by symbolic values of ZSET (Lines 2 and 3).

As in [66], the symbolic values are considered as variables and parameters of the test case.

Let η0 = 〈l0, π0, ϕ0, Z0〉 be the initial state of ZSET, then the initial condition of TC is π0

6.2 Test Case Generation Process 117

Algorithm 6.5: Test Tree Translation Algorithm

1 ZSET2TC (TIOSTS SP , ZSET ZSET , TIOSTS TC) {

2 VTC ← symbolic values of variables of ZSET

3 PTC ← symbolic values of parameters of ZSET

4 // Let η0 = 〈l0, π0, ϕ0, Z0〉 be the initial state of ZSET

5 ΘTC ← π0

6 LTC ← S

7 l0TC ← η0

8 ΣTC ←
⋃
〈a,µsa,ϕsa〉∈SA a

9 CTC ← CSP

10 f o r a l l 〈η, sa, η′〉 ∈ TZSET do

11 l← η

12 a← action of sa = 〈a, µsa, ϕsa〉 with parameters of µsa

13 G← conjunction of path condition of η′ with clock guards associated with a in SP

14 A← clock resets associated with a in SP

15 y ← deadline associated with a in SP

16 l′ ← η′

17 addTransition(TC, 〈l, a,G,A, y, l′〉)

18 end f o r

19 }

(Line 5), the set of locations is S (Line 6), the initial location is η0 (Line 7), the alphabet is⋃
〈a,µsa,ϕsa〉∈SA a (Line 8), and the set of clocks is the same as the synchronous product SP,

that is, CSP (Line 9).

All transitions 〈η, sa, η′〉 ∈ T of ZSET are analysed in Lines from 10 to 18. Each

transition of ZSET leads to the creation of a new transition 〈l, a,G,A, y, l′〉 ∈ T in the

test case. Thus, the source location is η, the action of the new transition is the action of

sa = 〈a, µsa, ϕsa〉 with parameters of µsa, the conjunction of the path condition of η′ with

clock guards associated with a in SP is the guard, the assignments are defined based on clock

resets associated with a in SP, the deadline is the same as the one associated with a in SP,

and the target location is η′.

Using the asymptotic notation, the running time of Algorithm 6.5 is O(|T |), where |T |

is the number of transitions of the ZSET test tree.

Figure 6.6 presents the test case obtained from the ZSET of Figure 6.5. It starts by

6.3 Properties of the Test Cases 118

performing a withdrawal transaction in the ATM system and resetting the clock to zero.

Then it expects to receive the money. If the ATM system dispenses the expected money

in at most 10 time units, the verdict is Pass, that is, the implementation is in conformance

with the specification and the test purpose. If the ATM system indicates insufficient funds

in at most 2 time units, the verdict is Inconclusive (i.e. the implementation conforms to the

specification but the desired behaviour was not observed). Finally, if either an unspecified

output is received or a time requirement is not satisfied, the verdict is Fail.

Figura 6.6: Test Case Obtained from the ZSET of Figure 6.5

6.3 Properties of the Test Cases

This section comments on properties of the test cases generated by the process presented

in Section 6.2. The execution of test cases must be formalised in order to establish some

properties such as soundness and exhaustiveness, where the conformance relation is linked

to the verdicts.

The generated test cases are considered as a mechanism for guiding the execution of the

implementation. Thus, conformance checking is performed in two steps, in an offline way.

Firstly, the implementation is executed, guided by test cases, and all information needed to

check conformance (e.g., input actions, responses, and time associated with responses) are

logged into a file. Considering that the SUT runs on a real-time environment such as a real-

time operating system, it is important that the implementation logs its own information in

order to reduce the number of processes and consequently avoid introduction of noise in the

results.

6.3 Properties of the Test Cases 119

As said, each SUT execution produces a log describing the exercised scenario. This log

is an observable trace (defined in Subsection 5.2), which is a specific sequence of observable

discrete and time-elapsing actions. For example, considering the TIOSTS of Figure 5.1 an

observable trace of a scenario where a withdrawal transaction is successfully done in 5 time

units could be represented by σSUT = 0 Withdrawal?(100) 5 DispenseCash!(100).

Let [[TC]] = 〈S, S0, Act, T 〉 be the TIOLTS semantics of the test case TC =

〈V, P,Θ, L, l0,Σ, C, T 〉. Thus, an observable trace of I can be checked with respect to

the test case through the TIOLTS parallel composition defined by Krichen and Tripakis [78].

In this case, each trace σ ∈ Traces([[TC]] || ObservableTraces(I)) is associated with one of

the following scenarios:

• If all outputs of TC are executed and all inputs are observed on time, then the resulting

verdict is Pass, that is, verdict(σ) = Pass ∆
= S0 after σ ⊆ Pass;

• If, at any moment, any unspecified input is observed by the test case or some time

requirement is not met, the conformance checking is stopped and the resulting verdict

is Fail, that is, verdict(σ) = Fail ∆
= S0 after σ ⊆ Fail;

• We denote verdict(σ) = Inconclusive ∆
= S0 after σ ⊆ Inconclusive for two situations:

if I, at any moment, blocks or spends a lot of time to emit an output; and if the outputs

of I are specified by S but the behaviour specified by a test purpose is not exhibited.

Given the possible situations with their respective verdicts, the rejection of I by a test

case TC is formally defined as follows:

Definition 6.8 (may reject). TC may reject I ∆
= ∃σ ∈ Traces([[TC]] ||

ObservableTraces(I)) : verdict(σ) = Fail. �

The conformance relation of an implementation with its specification is decided based

on verdicts obtained with the execution of test cases. So, Definition 6.9 formally relates the

tioco relation to the verdicts considering some properties of test cases and test suites.

Definition 6.9 (Soundness and Exhaustiveness). A test case TC is sound for S and tioco if

∀I, I tioco S ⇒ ¬(TC may reject I). A test suite is sound if all its test cases are sound and

it is exhaustive for S and tioco if ∀I, ¬(I tioco S)⇒ ∃TC : TC may reject I. Finally, a

test suite is complete if it is both sound and exhaustive. �

6.4 Concluding Remarks 120

Informally, a test suite is sound if correct implementations are never rejected. On the

other hand, a test suite is exhaustive if all non-conforming implementations are rejected.

A test suite that can identify all conforming and non-conforming implementations is called

complete. Since a complete test suite is a very strong requirement for practical testing,

sound test suites are more commonly accepted. In this context, the test cases generated by

our approach have the properties stated in Theorem 6.1.

Theorem 6.1. For every specification S, all test suites generated by our approach are sound.

Moreover, test suites can be considered as being exhaustive when they refer to specific sce-

narios defined by test purposes. �

The proof of Theorem 6.1 is not detailed here but the main ideas are discussed (see de-

tailed proofs in Appendix A). For soundness, we need to prove that if a test case TC may

reject I (implementing the specification S), then ¬(I tioco S). In this case, we only need to

prove that a Fail verdict only occurs if I emits an unspecified output or some time require-

ment is not met. In our approach, test cases are generated based on symbolic execution of

specifications. This approach allows to identify all possible traces of a specification. Thus,

the unique case where a Fail verdict occurs is exactly when I emits an unexpected output or

some time requirements is not satisfied. For exhaustiveness, we need to prove that for every

non-conforming I there is a test purpose TP and a way of generating a test case TC from

S and TP , such that TC may reject I. Given that ¬(I tioco S), then there is a trace σ of S

such that an output of I after σ is not allowed by S. In this case, a TP can be defined based

on σ and used to generate test cases where I may be rejected.

6.4 Concluding Remarks

This chapter presented an approach to conformance testing of real-time systems based on

the use of a symbolic model that abstracts both time and data in order to broadening the

application of conformance testing in this field. It also described the test case generation

process and discussed some properties of the generated test cases.

The presented test case generation process is completely automated by a tool developed

to support the proposed approach. In order to check the satisfiability of path conditions and

6.4 Concluding Remarks 121

verify state inclusion w.r.t. data we are using the CVC3 SMT Solver2. As the satisfiability

of data guards is assumed to be decidable, the CVC3 SMT Solver arises as a promising tool

[111]. Moreover, data guards of a TIOSTS are expressed using the same notation as the

notation used by the CVC3 SMT Solver, which facilitates the use of the tool and does not

require any translation. However, it is important to note that our approach is limited to the

types supported by this solver such as Boolean, integer, real, arrays, records, etc.

All operations related to zones used in Algorithm 6.4 are provided by UPPAAL DBM

Library3. The same library is also used to verify the state inclusion w.r.t. zones.

2http://www.cs.nyu.edu/acsys/cvc3
3http://www.cs.aau.dk/˜adavid/UDBM

Capítulo 7

Teste de Interrupção em Sistemas de

Tempo Real

Este capítulo descreve como modelar e testar interrupções utilizando o arcabouço de teste

de conformidade baseado em modelos TIOSTS apresentado nos Capítulos 5 e 6. A estraté-

gia de teste de interrupção definida é somente uma forma de modelagem utilizando mode-

los TIOSTS e, dessa forma, nenhuma modificação na teoria é necessária. Esta estratégia é

mesma apresentada em [7], onde interrupções são modeladas através de modelos simbólicos

para sistemas sem requisitos de tempo. Além disso, assim como a estratégia baseada em

modelos ALTS apresentada no Capítulo 3, a estratégia de teste de interrupção baseada em

modelos TIOSTS possibilita a combinação de interrupções em diferentes pontos e permite a

seleção de casos de teste baseada em propósitos de teste.

7.1 Modelling and Testing Interruptions in Real-Time Sys-

tems

The TIOSTS model proposed in Chapter 5 can be used to model interruptions. The idea is to

take advantage of the use of variables and action parameters in order to guarantee that once

the main flow has been interrupted, it can continue its execution from the same point where

the interruption had started.

In order to model interruptions, consider the existence of two models: one TIOSTS rep-

122

7.1 Modelling and Testing Interruptions in Real-Time Systems 123

resenting the main flow (Figure 7.1, locations from 0 to 20), that is, the application that

can be interrupted; and another TIOSTS representing the interruption (Figure 7.1, locations

from 21 to 28). Thus, the main flow can be linked with the interruption model through the

following steps:

1. Identify the point (location) where the interruption can occur (Figure 7.1, location 10);

2. Link this point to the interruption behaviour using a transition labelled as follows: the

guard is intCode = X and choice = 0, where X is an integer that uniquely identifies this

point of interruption; the action is Interrupt?(intCode); and the assignment is choice

:= intCode (Figure 7.1, transition from location 10 to 21). Notice that the value of the

parameter intCode is saved into the choice variable.

3. Connect the last action of the interruption behaviour to the same point where the in-

terruption started using a transition labelled with the guard choice = X, where X is

the same value that uniquely identifies this point of interruption (Figure 7.1, transition

from location 28 to 10). This guard is used to guarantee that the main flow contin-

ues its execution from the same point where it had been interrupted. For instance,

if an interruption begins with the parameter intCode equals to 1, then it must finish

performing the action that has the following guard: choice = 1.

Figura 7.1: Modelling an Abstract Interruption

The test case generation strategy where only one interruption is allowed for each test case

is achieved because of the second part of the guard (choice = 0) associated to the Interrupt

7.2 Instantiating the Strategy with an Example 124

action. When an interruption is allowed, the value of the choice variable is changed to any

value different from zero, then all other interruptions are automatically discarded during the

test case generation.

The defined steps must be performed for all points where interruptions can occur. As

a complete model with all possibilities of interruption represents many scenarios, the test

selection strategy based on test purposes defined in Chapter 6 is used for testing specific

interruptions in specific scenarios. For this, it is enough to use the Interrupt action in the

test purpose carrying the integer that identifies the selected point. For generating test cases

without interruptions, the Interrupt action is taken to the Reject location.

In order to test interruptions using TIOSTS models, the same test architecture presented

in Chapter 3 is adopted. Thus, the environment is assumed to be fully controllable by the

tester.

7.2 Instantiating the Strategy with an Example

A real-time version of the mobile phone application described in Chapter 3 is used for de-

scribing how to deal with interruptions using the TIOSTS formalism. Now, the action of

removing a message from inbox after selecting the “Remove” option must be performed in

at most 2000 milliseconds. Also, only unblocked messages can be removed and the main

application can be interrupted at some points by the Incoming Alert interruption. As said

in Chapter 3, this interruption specifies the arrival of a simple text message displayed inside

a dialog box. Figure 7.2 shows the TIOSTS model that represents the described behaviour,

where locations from 1 to 12 represent the behaviour of removing a message from inbox and

locations from 13 to 16 represent the occurrence of interruptions.

As we can see, in Figure 7.2, the interruption model is connected to the feature that

can be interrupted (the main flow) using the Interrupt action carrying a parameter (intCode)

that identifies the place where the interruption is allowed. Then, the intCode parameter is

saved into the choice variable. Each point where an interruption is allowed has a different

integer value associated with it. Another important information is in the last action of the

interruption, where there is a guard used to guarantee the return to the correct point of the

main flow.

7.2 Instantiating the Strategy with an Example 125

Figura 7.2: Real-Time Version of the Remove Message Behaviour with Interruptions

As discussed in Chapter 3, an interruption can occur at infinite points during the system

execution, but in the tester’s point of view, an interruption can only be observed after an

output of the SUT. Thus, the TIOSTS model of Figure 7.2 represents all possibilities of

interruption from the tester’s point of view.

Once the system is specified using the TIOSTS formalism, the next step is to define test

purposes in order to check specific interruptions at some points. Considering the specifica-

tion in Figure 7.2, a test purpose can be defined in order to verify the scenario where an alert

appears when the user is accessing the inbox folder. As the selected interruption point corre-

sponds to the second output of the specification, the action Interrupt must carry the integer 2.

Next, the last action of the selected behaviour (the scenario where the message is removed)

is appended to the test purpose. Figure 7.3(a) presents the test purpose defined above and

7.3 Concluding Remarks 126

(a) Scenario with Interruption (b) Scenario without Interruption

Figura 7.3: Test Purposes

Figure 7.4 shows the obtained test case. Note that in the generated test case (Figure 7.4) the

interruption occurs only in one specific point.

Another test purpose can be defined in order to test a scenario where a message is re-

moved and all interruptions are not allowed. This test purpose is presented in Figure 7.3(b).

Note that to prohibit all interruptions it is enough to take the Interrupt action to the Reject

location. The other action of the test purpose (“Message removed” is displayed!) is used

to select the scenario where the message is removed. The generated test case is shown in

Figure 7.5.

7.3 Concluding Remarks

This chapter presented a strategy developed for modelling and testing interruptions that is

based on the symbolic model proposed in Chapter 5. The presented strategy makes it possible

for interruptions to be combined at different points of possibly different flows of execution.

Moreover, test purposes can be used to select specific interruptions to be tested. Finally, it is

important to remark that this proposed strategy is only a specific way of modelling using the

TIOSTS notation. No modifications in the theory and algorithms are needed.

7.3 Concluding Remarks 127

Figura 7.4: Test Case with Interruption

Figura 7.5: Test Case without Interruption

Capítulo 8

Estudos de Caso

O objetivo deste capítulo é apresentar alguns estudos de caso realizados com a finalidade

de avaliar a aplicação prática da abordagem baseada em modelos simbólicos proposta nesta

tese. A aplicação da abordagem desenvolvida é avaliada utilizando dois estudos de caso: um

sistema de alarme contra intrusos e um sistema para veículos guiados automaticamente.

8.1 The Burglar Alarm System

The first case study is aimed at generating and executing test cases for the burglar alarm

system described in Section 4.3. For this, a simplified implementation was developed to

run on a real-time operating system named FreeRTOS [112], a mini-kernel that can be used

to develop real-time systems for embedded devices. The alarm system case study is useful

because it is possible to execute test cases and it allows us to show how scenarios with

interruptions can be checked.

The main objective of this case study is to assess the performance of the symbolic model-

based approach developed for testing real-time systems. In order to achieve this objective

we use the Goal/Question/Metric (GQM) paradigm [14], a mechanism for defining and eval-

uating goals using measurement.

128

8.1 The Burglar Alarm System 129

8.1.1 The GQM Measurement Model

The GQM paradigm is a top-down systematic approach to evaluating goals based on an op-

erational level. Thus, the first step is to define the goal to be evaluated (conceptual level).

Secondly, at the operational level, questions are defined in order to characterize the measure-

ment object with respect to desired quality criteria. Finally, a set of data is defined to answer

each question in a quantitative level.

Figure 8.1 presents the GQM measurement model defined for this case study. The main

goal is to evaluate the performance of the symbolic model-based approach developed for test-

ing real-time systems. Thus, three questions were defined to characterize the measurement

objects:

What is the effort required to use this approach? This question is intended to evaluate

the effort required to apply all the test process from the building of the model to

test case execution. For answering this question the following metric was defined:

E = E1 + E2 + E3 + E4 + E5, where:

• E1 is the time spent to build the model using the TIOSTS formalism;

• E2 is the time spent to define test purposes in order to test specific scenarios. Test

purposes are also defined using the TIOSTS formalism;

• E3 is the time spent to generate test cases using the prototype tool implementing

the presented algorithms;

• E4 is the time spent to implement the automatically generated test cases;

• E5 is the time spent to execute the implemented test cases and evaluate the ob-

tained results for emitting verdicts.

How effective is this approach? This question is intended to evaluate the effectiveness of

the proposed approach w.r.t. fault coverage. The C metric, used to answer this ques-

tion, indicates the ability of generated test cases of uncovering faults described by a

previously defined fault model.

What percentage of test cases cannot be executed? This question is intended to identify

the percentage of invalid test cases, represented by the metric I .

8.1 The Burglar Alarm System 130

Figura 8.1: Measurement Model for the Alarm System Case Study

Figura 8.2: Testing Process

8.1.2 Case Study Definition

An initial infrastructure to support test execution in an actual real-time environment is inves-

tigated in [10]. However, the work presented in [90] extends the previous work by presenting

an effective solution to support automation of test case execution for real-time systems.

The testing process considered in this case study is illustrated in Figure 8.2. It is divided

into four well defined steps.

The first step is to define test cases according to the approach and theory presented in

Chapters 5, 6, and 7. As there is a prototype tool implementing the proposed test case

generation and selection strategy, the tester needs to manually instantiate a Java class to

define the TIOSTS of the specification and the TIOSTS representing the test purpose. Once

the specification and test purpose have been defined, the test case generation and selection is

automatically performed.

8.1 The Burglar Alarm System 131

Figura 8.3: Test Case Builder Application

At the second step, each test case is translated into C code. Another Java application

has been implemented to support this activity as shown in Figure 8.3. Currently, the tester

manually indicate all inputs and outputs of the generated test case in an interactive way and

a C code implementing the test case is automatically generated. Furthermore, to make the

system testable, a C API (see [90]) has been developed to instrument the code of the SUT.

The SUT is instrumented for including Points of Control and Observation (PCOs). As the

focus of this work is on functional testing, some examples of PCOs are the possibilities

of observing values returned by functions, received messages, and timing associated with

system responses. The instrumentation activity is manually performed by the tester using

the implemented API.

The third step consists in the execution of the instrumented SUT guided by test cases. For

this, a logging mechanism has been implemented in order to store all information needed to

check the testing results. Considering that the SUT runs on a real-time environment such as a

real-time operating system, it is important that the implementation logs its own information

in order to reduce the number of processes and consequently avoid introduction of noise in

8.1 The Burglar Alarm System 132

the results. As we are dealing with RTES, each addition of code has a direct effect in the

execution time of the application. Thus, test case execution can interfere with the flow of ex-

ecution of the SUT, adding delays that can lead to false positives of failures. For minimizing

this interference, all generated information is kept in the main memory. After the SUT exe-

cution, a simple text file is generated with the results. Logging frameworks such as log4c1

are not suitable in this case since the quantity of dependencies forbid their execution within

a dedicated hardware and the added code can cause a large delay at the actual execution time

of the SUT.

The fourth step receives as input the text file with the execution results and provide ver-

dicts for the tester. This step is not executed inside the execution platform level, but at the

development platform level. An extension of the CUnit2 framework has been developed for

evaluating the text file with execution results and emit a verdict according to the test cases

defined in the first step.

The case study was conducted by only one tester with large experience in TIOSTS mod-

els. Moreover, the case study aimed at testing only one scenario due to difficulties to com-

pletely execute the testing process. The scenario to be tested was based on a fault model

profile based on common faults related to interruption testing [9] and potential faults in an

implementation of a TIOSTS. The fault model given to the tester is specified in natural lan-

guage and its description is defined as follows:

• After an interruption, the interrupted application does not maintain data previously

received as input;

• After an interruption, the interrupted application does not continue its execution at the

same point where it was interrupted;

• Unexpected outputs, when an implementation responds with an output not described

in its specification;

• Clock guard restriction, when an implementation reduces an execution time range as-

sociated with an action;
1http://log4c.sourceforge.net
2http://cunit.sourceforge.net

8.1 The Burglar Alarm System 133

• Clock guard widening, when an implementation increases an execution time range

associated with an action.

It is important to remark that all information used as input for the execution of this case

study was the high level description of the SUT presented in Section 4.3, the defined fault

model, and the implementation of the SUT.

8.1.3 Case Study Results

This subsection presents and discusses the obtained results. The most critical scenario of the

alarm system is the power failure exactly after some alarm has been triggered. In this case,

the system must switch to backup power and continues its execution with the calling to the

police and turning on the lights of the room where the sensor detected an intruder.

Considering the first activity of the testing process (see Figure 8.2), a TIOSTS specifi-

cation was built along with a TIOSTS test purpose to check the defined scenario. Figures

8.4 and 8.5 present the defined specification and test purpose, respectively. However, all

TIOSTS models automatically generated by the prototype tool are presented in Appendix B.

Table 8.1 summarizes the metrics collected during the execution of all activities of the

test process. It is important to remark that the test case generation and implementation is

performed in a different platform from the execution platform of the SUT. The development

platform has the following characteristics: 2x3.00GHz CPU, 1536MB RAM, Ubuntu 10.10,

CVC3 2.2, and UPPAAL DBM Library 2.0.7. The execution platform is based on FreeRTOS

environment using the industrial PC (x86) port.

Considering the first activity of the testing process depicted in Figure 8.2, the tester spent

40 minutes to manually implement the TIOSTS representing the specification and 4 minutes

to implement the TIOSTS test purpose (Table 8.1, lines 1 and 2, respectively). Once the

specification and test purpose are built, the test case generation and selection is automatically

performed in 3 seconds (Table 8.1, line 3).

The prototype tool generated 3 test cases (Table 8.1, line 4). Observing the specification

presented in Figure 8.4 it is possible to realize that only considering the interruption after

triggering an alarm, there are three possibilities. The first path is the scenario where a win-

dow breaking alarm is triggered (we denote TC1). At the second scenario, a door opening

8.1 The Burglar Alarm System 134

Figura 8.4: TIOSTS Specification for the Burglar Alarm System Case Study

alarm is triggered (TC2). The last scenario is the case where a room movement alarm is

triggered (TC3).

After the generation of test cases, the testing process is completely executed for each of

them from the second step. Considering only the TC1, the next activity is to implement it

and prepare the environment to the execution. For this, three activities were performed:

1. The test case builder application (Figure 8.3) was used to generate the C code imple-

menting the test case in 25 minutes (Table 8.1, line 5). For this, the tester manually

indicated all inputs, outputs, and time requirements of TC1. It is important to mention

that all defined information (inputs, outputs, and so on) can be reused in the definition

of other test cases with the same information and the CVC3 SMT Solver is used for

automatically defining the inputs of the test case.

2. An interface was implemented to allow the communication between the SUT and test

driver. This activity was performed in 18 minutes (Table 8.1, line 6) and it is used for

all test cases.

3. Finally, the SUT was instrumented for the execution of TC1. 6 minutes were spent to

8.1 The Burglar Alarm System 135

Figura 8.5: TIOSTS Test Purpose for the Burglar Alarm System Case Study

Figura 8.6: Results of the TC1 Execution

perform this activity (Table 8.1, line 7).

The next step is to deploy the instrumented SUT, execute it to extract the generated log

file, and evaluate the results. As this evaluation is automatically performed (see Figure 8.6)

it takes little time (Table 8.1, line 8).

Considering the execution of TC2 (Table 8.1, lines from 9 to 11) and TC3 (Table 8.1,

lines from 12 to 14), the testing process activities take less time than the activities related to

the execution of TC1 because many information can be reused.

Since all needed information was collected, the questions of the defined measurement

model can be answered. For the first question, “what is the effort required to use this ap-

proach?”, we have the following effort required to test the defined scenario considering all

8.1 The Burglar Alarm System 136

Tabela 8.1: Metrics of the Burglar Alarm System Case Study

Metrics Time

1 Definition and implementation of the TIOSTS specification 40 min

2 Definition and implementation of the TIOSTS test purpose 4 min

3 Test case generation time 3 sec

4 Number of Test Cases 3

5 Implementation of TC1 25 min

6

Implementation of an interface to allow the communication be-

tween SUT and test driver 18 min

7 Instrumentation of SUT for executing TC1 6 min

8 Evaluation of results for TC1 1 sec

9 Implementation of TC2 5 min

10 Instrumentation of SUT for executing TC2 5 min

11 Evaluation of results for TC2 1 sec

12 Implementation of TC3 5 min

13 Instrumentation of SUT for executing TC3 5 min

14 Evaluation of results for TC3 1 sec

15 Execution time of all test process for all generated test cases 113.1 min

16 Fault model coverage 100%

17 Number of invalid TCs 0 (0%)

generated test cases:

E = E1 + E2 + E3 + E4 + E5

= 40 min + 4 min + 3 sec + 69 min + 3 sec

= 113.1 min

The fault model profile defined in Subsection 8.1.2 was instantiated in order to evaluate

the effectiveness of the approach proposed in this thesis. Thus, the following real defects

were inserted in the SUT:

• After the power failure interruption, the calling to the police informs a wrong room

number;

8.2 The Automatic Guided Vehicle System 137

• After the power failure interruption, the SUT turns on the lights of the room where the

sensor detected an intruder instead of calling to the police;

• After calling to the police, the SUT performs an unspecified output;

• The SUT performs the action of turning on the lights in more than 50 ms.

As the specification does not specify lower bounds as time requirements, it not possible

to insert faults related to clock guard restrictions. As shown in Table 8.1, line 16, 100% of

the defined fault model instance is covered by the defined test cases.

Finally, as all generated test cases were executed, no invalid test cases could be detected

(Table 8.1, line 17).

8.2 The Automatic Guided Vehicle System

The automatic guided vehicle (AGV) system consists of a robot for autonomous navigation

that is able to plan and execute predefined tasks. Automatic guided vehicles are used, for

example, to transport materials in industries, for inspection in risk areas or deposits of toxic

materials, etc.

Basically, the first step of an AGV system is to define the plan to be followed. After

that, the execution is started. Sensors are used to drive the vehicle and allow it to overcome

obstacles of the path. Deviations from the original path may be required because of obstacles

and avoid collisions.

This case study is aimed at generating test cases for the AGV system. Test execution

is not considered because we do not have an implementation of this system. Even thus,

the AGV case study allows us to evaluate the test case generation activity including the

generation of test cases for checking interruptions.

8.2.1 The GQM Measurement Model

Since test execution is not considered in this case study, another measurement model was

defined (Figure 8.7). The goal is the same as in Section 8.1, but only two questions were

defined to characterize the measurement objects:

8.2 The Automatic Guided Vehicle System 138

What is the effort required to use this approach? This question is intended to evaluate

the effort required to apply all the test process from the building of the model to

test case generation. For answering this question the following metric was defined:

E = E1 + E2 + E3, where:

• E1 is the time spent to build the model using the TIOSTS formalism;

• E2 is the time spent to define test purposes in order to test specific scenarios.

• E3 is the time spent to generate test cases using the developed prototype tool.

How effective is this approach? The objective of this question is to evaluate the effective-

ness of the proposed approach w.r.t. fault coverage. Thus, the C metric indicates the

ability of generated test cases for uncovering faults described by a previously defined

fault model.

Figura 8.7: Measurement Model for the AGV Case Study

8.2.2 Case Study Definition

The testing process considered in this case study is composed of three steps: build the model,

define test purposes, and generate test cases. The first step is related to the definition of a

TIOSTS representing the specification. Next, at the second step, test purposes are defined

8.2 The Automatic Guided Vehicle System 139

also using the TIOSTS formalism. Once the specification and test purposes have been de-

fined, the test case generation and selection are automatically performed by the developed

prototype tool.

The case study was conducted by only one tester with large experience in TIOSTS mod-

els. The case study aimed at testing two scenarios: an execution with no interruptions and

another with one interruption. The first scenario was chosen for demonstrating that the strat-

egy can be used for generating test cases with no interruptions. The latter is related to the

most important scenario: an interruption occurs because an obstacle has been identified.

All information used as input for the execution of this case study was a high level de-

scription of the SUT described in two pages and the fault model defined in Subsection 8.1.2.

8.2.3 Case Study Results

This subsection presents and discusses the obtained results. Considering the first activity

of the process described in Subsection 8.2.2, a TIOSTS representing the specification was

defined (see Figure 8.8). At the beginning, the AGV system expects as input (represented

by the action between locations S1 and S2 in Figure 8.8) the initial reference and path

of the plan to be followed. After the input action, the AGV system emits several output

actions: a message indicating that the file was successfully read (action between locations

S2 and S3), another indicating that the references were successfully decoded (action between

locations S3 and S4), and another message indicating that the path was successfully decoded

(action between locations S4 and S5). After reading all needed information, the AGV system

starts moving (action between locations S5 and S6). A periodic task is executed every 2000

milliseconds when the AGV system is moving. For controlling this task the periodicClock

clock is used. Moreover, two interruptions can occur when the AGV system is moving: one

related to the self diagnosis (Locations I2.1 and I2.2) and another related to the detection of

an obstacle (Locations from I1.1 to I1.4). The interruptionClock clock is used to indicate

that the latter interruption must be treated within at most 500 milliseconds. Finally, the AGV

system emits an output message to indicate that the plan was successfully executed.

The test purpose depicted in Figure 8.9, named TP1, was defined for testing the scenario

where no interruptions occur and the other test purpose of Figure 8.10, named TP2, was

defined for testing the scenario where an obstacle is identified and an interruption occurs. All

8.2 The Automatic Guided Vehicle System 140

Figura 8.8: TIOSTS Specification for the AGV Case Study

Figura 8.9: TIOSTS Test Purpose for the Scenario with no Interruptions (TP1)

TIOSTS models automatically generated by the prototype tool are presented in Appendix B.

Table 8.2 summarizes the metrics collected during the execution of all activities defined

for this case study. Considering the first activity of the process, the tester spent 50 minutes

to manually implement the TIOSTS representing the specification (Table 8.2, line 1).

Considering the scenario with no interruptions, the test purpose was defined in 4 minutes

(Table 8.2, line 2). Once the specification and test purpose is implemented, the test case

generation and selection was automatically performed in 3 seconds (Table 8.2, line 3) and

only one test case was generated (Table 8.2, line 4).

The test purpose for the scenario with one interruption was defined in 3 minutes (Table

8.2, line 5). For this case, the test case generation and selection was performed in 3 seconds

(Table 8.2, line 6) and only one test case was generated (Table 8.2, line 7).

Since all needed information was collected, the questions of the defined measurement

8.2 The Automatic Guided Vehicle System 141

Figura 8.10: TIOSTS Test Purpose for the Scenario with One Interruption (TP2)

Tabela 8.2: Metrics of the AGV Case Study

Metrics Time

1 Definition and implementation of the TIOSTS specification 50 min

2 Definition and implementation of the TIOSTS test purpose TP1 4 min

3 Test case generation time considering TP1 3 sec

4 Number of Test Cases considering TP1 1

5 Definition and implementation of the TIOSTS test purpose TP2 3 min

6 Test case generation time considering TP2 3 sec

7 Number of Test Cases considering TP2 1

8 Execution time of all test process for all generated test cases 57.1 min

9 Fault model coverage 100%

model can be answered. For the first question, “what is the effort required to use this ap-

proach?”, we have the following effort required to generate test cases for the two defined

scenarios:

E = E1 + E2 + E3

= 50 min + 4 min + 3 min + 3 sec + 3 sec

= 57.1 min

The fault model profile defined in Subsection 8.1.2 was instantiated, based on the sce-

narios described in Subsection 8.2.2, in order to evaluate the effectiveness of the proposed

approach.

8.3 Concluding Remarks 142

• After the obstacle detection interruption, the AGV system does not maintain the data

of the path to be followed;

• After the obstacle detection interruption, the AGV system does not finish its mission;

• After receiving initial references and the initial path, the SUT performs an unspecified

output;

• An obstacle is overcome in more than 500 ms.

As the specification does not specify lower bounds as time requirements, it not possible

to instantiate faults related to clock guard restrictions. As shown in Table 8.2, line 9, 100%

of the defined fault model instance is covered by the defined test cases.

8.3 Concluding Remarks

This chapter presented two case studies performed to evaluate the applicability of the pro-

posed approach. The first case study allowed to evaluate the test case generation and ex-

ecution once an implementation is available. It was not possible to execute test cases for

the second case study because there is no implementation available. Even thus, these case

studies allowed to realize that the effort spent to generate test cases for checking specific

scenarios is minimal when compared to the time spent to perform the entire process, even

when interruptions are taken into account. Another strength of the work is the automation of

some parts of the test process such as test case generation and evaluation of the results given

that the logs have been generated. However, some points of improvements were identified

such as the development of algorithms to translate the TIOSTS test case into C code in order

to reduce the time spent to execute test cases.

Capítulo 9

Considerações Finais

Este capítulo resume os principais resultados deste trabalho e apresenta as sugestões de tra-

balhos futuros.

9.1 Conclusions

The main objective of this thesis was to provide an approach to conformance testing of

real-time systems based on the use of a symbolic model that abstracts both time and data

in order to broadening the application of conformance testing in this field. This thesis also

presented a conformance testing theory to deal with the model proposed and described how

test cases can be generated. Moreover, interruption testing of real-time systems was taken

into account. For this, as a result of an initial investigation, an approach to conformance

testing of non-real-time reactive systems with interruptions was proposed.

Considering the research questions defined in Chapter 1, the following results were

achieved:

Research Question 1 In which ways can we extend the symbolic model-based testing the-

ory to be able to test real-time systems in an accurate manner?

In order to answer this first research question a new symbolic model-based testing ap-

proach was proposed by combining symbolic transition systems [108] with timed automata

[5]. Thus, the proposed model can handle both data and time requirements symbolically (see

143

9.1 Conclusions 144

Chapter 5). Furthermore, a conformance testing framework is proposed in Chapter 6 along

with algorithms for test case generation.

Research Question 2 In a real-time symbolic model-based testing context, how can we

provide models to be able to specify and test asynchronous events such as interruptions

in an accurate manner?

In order to answer this second research question an initial investigation was performed

in the context of non-real-time reactive systems. As a result, Chapter 3 presented a com-

plete conformance testing approach for reactive systems. This work intended to investigate

interruptions in a simple context. Considering the interruption testing of real-time systems,

Chapter 7 presented a strategy based on the proposed symbolic model-based conformance

testing approach to specify and test interruptions.

Research Question 3 In a real-time symbolic model-based testing context, is it possible to

provide an automated oracle?

As discussed in Chapter 2, an oracle is a mechanism composed of a result generator

and a comparator. In an automated oracle these two activities are fully automated. As the

test cases generated by our approach describes all outputs allowed by specifications, the

first activity of an oracle is automatically performed. According to what was discussed in

Section 6.3, each execution of an implementation produces a log that describes the executed

scenario. Next, this log is compared to the test case in order to emit a verdict. As this

comparison is automatically performed (see Chapter 8), we can state that an automated oracle

was provided by our approach. But it is important to remark that the test process is not

completely automated, since TIOSTS test cases are manually translated into C code.

In summary, this thesis provides the following contributions:

1. An approach to conformance testing of reactive systems with interruptions and a tool

to facilitate the practical application of the proposal;

2. A complete review of relevant work on conformance testing of real-time systems, de-

scribed in Chapter 4, that resulted in the identification of some open problems.

9.2 Future Work 145

3. A new conformance testing approach to real-time systems, where the SUT is modelled

using a symbolic model that abstract both time and data;

4. A test case generation process based on symbolic execution and constraint solving for

the data aspects combined with symbolic analysis of timed aspects.

5. A prototype tool implementing all algorithms of the test case generation process,

which is essential in the generation of test cases from symbolic models.

6. A strategy to interruption testing of real-time systems along with a way of defining test

purposes in order to check specific interruptions;

7. An initial test architecture including automatic ways of test execution and reliable

verdicts achievements.

8. Results of case studies involving the use of the proposed work that show the feasibility

of the practical application of the proposal.

Considering the related work presented in Chapter 4, all tables are presented here again

in order to compare the related work with our approach. Table 9.1 shows that our approach

generates test cases in an offline way using test purposes as test case selection strategy, there

is tool support based on TIOSTS specification language, and quiescence is not taken into

account. Table 9.2 shows that the tioco conformance relation is adopted and only deter-

ministic specifications are taken into account along with input-complete implementations.

Table 9.3 presents that our approach deals with analogue-time models and it is able to gener-

ate both instantiated and abstract test cases, considering that the CVC3 SMT Solver can be

used to instantiate abstract test cases. Furthermore, our approach allows the specification of

synchronous and asynchronous events and provides an automated oracle.

9.2 Future Work

With the completion of this work, there are several opportunities for future work. Next, some

ideas are described:

9.2 Future Work 146

Work

Test Case

Generation TP Tool Spec. Language Quiesc.

Cardell-Oliver offline yes∗ Essex∗ TIOLTS no

En-Nouaary et

al. offline yes no

deterministic and output

urgent TAIO no

Li et al. offline yes no RT Statecharts no

Khoumsi offline yes no non-deterministic TIOSA no

Briones and

Brinksma offline no no TIOLTS yes

Bohnenkamp

and Belinfante online yes yes∗
non-deterministic safety

TAIO yes

Bodeveix et al. offline yes no a kind of TAIO no

Larsen et al. online yes TRON

TAIO (with guards on lo-

cations and transitions) no

Hessel et al. offline yes CoVer

deterministic and output

urgent TAIO no

Merayo et al. offline no no non-deterministic TEFSM no

Krichen and

Tripakis

offline and

online yes TTG∗
partially-observable and

non-deterministic TAIO no

Zheng et al. offline yes∗ TROMLAB∗ TEFSM no

David et al. offline yes TIGA TIOGA no

Adjir et al. offline yes TINA Prioritized Time Petri Nets no

Styp et al. no no no STA no

Timo et al. offline yes no VDTA no

Andrade offline yes yes TIOSTS no

Tabela 9.1: Comparison with Related Work

Take quiescence into account: in practice, tests observe the behaviour of the system and

the absence of outputs. Then, an important future work is to extend the proposed

conformance testing approach to deal with quiescence;

Take internal actions into account: although the TIOSTS definition allows the specifica-

tion of internal actions, the developed algorithms do not treat internal actions;

Deal with non-input-complete implementations: practically all reviewed approaches as-

sume the input-completeness of the implementation. the intention of this future work

9.2 Future Work 147

is to investigate how this assumption could be discarded;

Deal with non-deterministic models: the intention here is to extend the approach proposed

in this thesis to deal with non-deterministic models;

Propose generic fault models: fault models based on approaches that use region clocks

such as the work presented in [48; 1] cannot be completely reused in a context where

zones are used because of the higher abstraction level. Then, this issue must be better

investigated;

Generate test cases based on coverage criteria: this thesis proposes a test selection ap-

proach based on test purposes, but there are other approaches to test case selection

such as selection based on coverage criteria;

Deal with more data types: investigate techniques such as abstract interpretation in order

to deal with more data types;

Improve the test execution activity: the test case execution can be improved by automat-

ing the translation of TIOSTS test cases into C code. In this case, the time spent in the

test case execution activity can be decreased;

Execution of test cases in other platforms: the intention is to extend the work proposed in

this thesis to allow the execution of test cases in other environments besides FreeRTOS;

Develop a fully integrated environment for testing real-time systems: it is important to

integrate the test case generation tool with the test execution tools in order to provide

a complete environment to generate and execute test cases;

Perform new case studies: since a complete environment for test case generation and exe-

cution is proposed as a future work, it is essential to perform new case studies in order

to evaluate the applicability of the work.

9.2 Future Work 148

Work Conf. Relation Specification Implementation

Cardell-Oliver trace equivalence

input-complete and must have

more states than the implemen-

tation. input-complete

En-Nouaary et

al. trace equivalence

input-complete and must have

the same number of locations as

the implementation. input-complete

Li et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Khoumsi timed trace inclusion input-complete input-complete

Briones and

Brinksma ioco with quiescence input-complete input-complete∗

Bohnenkamp

and Belinfante ioco with quiescence input-complete input-complete

Bodeveix et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Larsen et al. timed trace inclusion

deterministic and input-

complete input-complete

Hessel et al. timed trace inclusion

deterministic, input-complete,

and output urgent input-complete

Merayo et al.

there are several confor-

mance relations input-complete input-complete

Krichen and

Tripakis tioco

no restriction on input-

completeness input-complete

Zheng et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

David et al. tioco input-complete input-complete

Adjir et al. timed trace inclusion

deterministic, input-complete,

and output urgent

deterministic,

input-complete,

and output urgent

Styp et al. stioco non-deterministic input-complete

Timo et al. tvco assumptions are not discussed

assumptions are not

discussed

Andrade tioco

deterministic and no restriction

on input-completeness input-complete

Tabela 9.2: Comparison with Related Work

9.2 Future Work 149

Work Time Test Cases Communication Oracle

Cardell-Oliver

analogue-time model (internally the

model is digitised) instantiated synchronous partial

En-Nouaary et

al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Li et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Khoumsi

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Briones and

Brinksma

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Bohnenkamp

and Belinfante

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Bodeveix et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Larsen et al.

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Hessel et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Merayo et al. digital-time model instantiated synchronous partial

Krichen and

Tripakis digital and analogue-time models∗ instantiated synchronous automated

Zheng et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

David et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Adjir et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Styp et al. analogue-time model undefined synchronous undefined

Timo et al. analogue-time model undefined synchronous undefined

Andrade analogue-time model

instantiated

and abstract

synchronous and

asynchronous automated

Tabela 9.3: Comparison with Related Work

Bibliografia

[1] M. S. AbouTrab and S. Counsell. Fault coverage measurement of a timed test case

generation approach. In ECBS ’10: Proceedings of the 2010 17th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems, ECBS

’10, pages 141–149, Washington, DC, USA, 2010. IEEE Computer Society.

[2] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Sys-

tems: Modelling, Specification and Verification. Cambridge University Press, 2007.

[3] Noureddine Adjir, Pierre Saqui-Sannes, and Kamel Mustapha Rahmouni. Testing

real-time systems using tina. In Proceedings of the 21st IFIP WG 6.1 International

Conference on Testing of Software and Communication Systems and 9th International

FATES Workshop, TESTCOM ’09/FATES ’09, pages 1–15, Berlin, Heidelberg, 2009.

Springer-Verlag.

[4] Noureddine Adjir, Pierre Saqui-Sannes, and Kamel Mustapha Rahmouni. Time-

optimal real-time test case generation using prioritized time petri nets. In VALID

’09: Proceedings of the First International Conference on Advances in System Testing

and Validation Lifecycle, pages 110–116, 2009.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.

[6] Wilkerson L. Andrade. Interaction test case generation for mobile phone applications.

Master’s thesis, Federal University of Campina Grande, Mar 2007.

[7] Wilkerson L. Andrade and Patrícia D. L. Machado. Modeling and testing interruptions

in reactive systems using symbolic models. In SAST’08: Proc. of the 2nd Brazilian

150

BIBLIOGRAFIA 151

Work. on Systematic and Automated Software Testing, pages 34–43, Porto Alegre,

2008. SBC.

[8] Wilkerson L. Andrade and Patrícia D. L. Machado. Interruption testing of reactive

systems. In Formal Methods: Foundations and Applications, volume 5902 of LNCS,

pages 37–53. Springer, 2009.

[9] Wilkerson L. Andrade and Patrícia D. L. Machado. Interruption testing of reactive

systems. Formal Aspects of Computing, pages 1–23, 2011. To appear.

[10] Wilkerson L. Andrade, Patrícia D. L. Machado, Everton L. G. Alves, and Diego R.

Almeida. Test case generation of embedded real-time systems with interruptions

for FreeRTOS. In Formal Methods: Foundations and Applications, volume 5902

of LNCS, pages 54–69. Springer, 2009.

[11] Wilkerson L. Andrade, Patrícia D. L. Machado, Thierry Jéron, and Hervé Marchand.

Abstracting time and data for conformance testing of real-time systems. In A-MOST

’11: Proceedings of the 7th Workshop on Advances in Model Based Testing, March

2011. To appear.

[12] Wilkerson L. Andrade, Francisco G. O. Neto, and Patrícia D. L. Machado. Geração

de casos de teste de interrupção para aplicações de celulares. In WTF ’07: Proc. of

the VIII Test and Fault Tolerance Workshop, pages 129–142, Porto Alegre, RS, Brazil,

2007. Brazilian Computer Society.

[13] George S. Avrunin, James C. Corbett, and Laura K. Dillon. Analyzing partially-

implemented real-time systems. IEEE Trans. Softw. Eng., 24(8):602–614, 1998.

[14] Victor R. Basili. Software modeling and measurement: the goal/question/metric

paradigm. Technical report, University of Maryland at College Park, College Park,

MD, USA, 1992.

[15] Gilles Bernot. Testing against formal specifications: a theoretical view. In TAPSOFT

’91: Vol. 2, pages 99–119, New York, NY, USA, 1991. Springer-Verlag.

BIBLIOGRAFIA 152

[16] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems

using time petri nets. IEEE Transactions on Software Engineering, 17(3):259–273,

Mar 1991.

[17] N. Bertrand, T. Jéron, A. Stainer, and M. Krichen. Off-line test selection with test

purposes for non-deterministic timed automata. In Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS 2011), march 2011. To appear.

[18] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley, Boston, MA, USA, 1999.

[19] Jean-Paul Bodeveix, Rachid Bouaziz, and Ousmane Koné. Test method for embedded

real-time systems. In ERCIM European Workshop on Dependable Software Intensive

Embedded Systems, pages 1–10, Porto, Portugal, 2005. ERCIM.

[20] Henrik Bohnenkamp and Axel Belinfante. Timed testing with TorX. In FM 2005:

Formal Methods, volume 3582 of Lecture Notes in Computer Science, pages 173–

188, Newcastle, UK, 2005. Springer-Verlag.

[21] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed

systems. In Compositionality: The Significant Difference, volume 1536 of LNCS,

pages 264–279. Springer, 1998.

[22] Ahmed Bouajjani, Yassine Lakhnech, and Sergio Yovine. Model-checking for ex-

tended timed temporal logics. In FTRTFT ’96: Proceedings of the 4th International

Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages

306–326, London, UK, 1996. Springer-Verlag.

[23] Laura Brandán Briones and Ed Brinksma. A test generation framework for quiescent

real-time systems. In Formal Approaches to Software Testing, volume 3395 of LNCS,

pages 64–78. Springer, 2005.

[24] Laura Brandán Briones and Ed Brinksma. Testing real-time multi input-output sys-

tems. In Formal Methods and Software Engineering, volume 3785 of Lecture Notes

in Computer Science, pages 264–279. Springer-Verlag, 2005.

BIBLIOGRAFIA 153

[25] Renée C. Bryce and Charles J. Colbourn. Test prioritization for pairwise interaction

coverage. In A-MOST ’05: Proceedings of the first international workshop on Ad-

vances in model-based testing, pages 1–7, New York, NY, USA, 2005. ACM Press.

[26] Gustavo Cabral and Augusto Sampaio. Formal specification generation from require-

ment documents. Electron. Notes Theor. Comput. Sci., 195:171–188, 2008.

[27] Jens R. Calamé, Natalia Ioustinova, and Jaco van de Pol. Automatic model-based

generation of parameterized test cases using data abstraction. In J. Romijn, G. Smith,

and J. van de Pol, editors, Proc. of the Doctoral Symposium affiliated with the Fifth

Integrated Formal Methods Conference (IFM 2005), volume 191 of Electronic Notes

in Computer Science, pages 25–48. Elsevier, October 2007.

[28] Rachel Cardell-Oliver. Conformance tests for real-time systems with timed automata

specifications. Formal Aspects of Computing, 12(5):350–371, Dec. 2000.

[29] Emanuela G. Cartaxo, Wilkerson L. Andrade, Francisco G. O. Neto, and Patrícia D. L.

Machado. LTSBT: A tool to generate and select functional test cases for embedded

systems. In SAC’08: Proc. of the 2008 ACM symposium on Applied computing, vol-

ume 2, pages 1540–1544, New York, NY, USA, 2008. ACM Press.

[30] Emanuela G. Cartaxo, Patrícia D. L. Machado, and Francisco G. Oliveira Neto. On

the use of a similarity function for test case selection in the context of model-based

testing. Software Testing, Verification and Reliability, 2009. Early Online View:

http://dx.doi.org/10.1002/stvr.413.

[31] Albert M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification. John

Wiley & Sons, Inc., New York, NY, USA, 2002.

[32] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A symbolic

test generation tool. In TACAS’02: Proc. of the Int. Conf. on Tools and Algorithms

for Construction and Analysis of Systems, volume 2280 of LNCS, pages 151–173.

Springer, 2002.

[33] L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE

Trans. Softw. Eng., 2(3):215–222, 1976.

BIBLIOGRAFIA 154

[34] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.

Constructing test suites for interaction testing. In ICSE ’03: Proceedings of the 25th

International Conference on Software Engineering, pages 38–48, Washington, DC,

USA, 2003. IEEE Computer Society.

[35] Camille Constant, Thierry Jéron, Hervé Marchand, and Vlad Rusu. Integrating formal

verification and conformance testing for reactive systems. IEEE Trans. Software Eng.,

33(8):558–574, 2007.

[36] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In POPL

’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 238–252, New York, NY, USA, 1977. ACM.

[37] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. A game-theoretic

approach to real-time system testing. In DATE ’08: Proceedings of the conference on

Design, automation and test in Europe, pages 486–491, New York, NY, USA, 2008.

ACM.

[38] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. Timed testing under

partial observability. In Proceedings of the 2009 International Conference on Software

Testing Verification and Validation, pages 61–70, Washington, DC, USA, 2009. IEEE

Computer Society.

[39] André L. L. de Figueiredo, Wilkerson L. Andrade, and Patrícia D. L. Machado. Gen-

erating interaction test cases for mobile phone systems from use case specifications.

SIGSOFT Softw. Eng. Notes, 31(6):1–10, 2006. Proceedings of the AMOST’2006.

[40] R. G. de Vries and J. Tretmans. On-the-fly conformance testing using SPIN. Software

Tools for Technology Transfer, 2(4):382–393, March 2000.

[41] R. G. de Vries and J. Tretmans. Towards formal test purposes. In Proceedings

of 1st International Workshop on Formal Approaches to Testing of Software 2001

(FATES’01), volume NS-01-4 of BRICS Notes Series, pages 61–76, Aarhus, Den-

mark, August 2001.

BIBLIOGRAFIA 155

[42] David L. Dill. Timing assumptions and verification of finite-state concurrent systems.

In Joseph Sifakis, editor, Proceedings of the International Workshop on Automatic

Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Com-

puter Science, pages 197–212. Springer-Verlag, 1990.

[43] I. K. El-Far and J. A. Whittaker. Model-based software testing. Encyclopedia on

Software Engineering, 2001.

[44] Abdeslam En-Nouaary. A scalable method for testing real-time systems. Software

Quality Control, 16:3–22, March 2008.

[45] Abdeslam En-Nouaary and Rachida Dssouli. A guided method for testing timed input

output automata. In Dieter Hogrefe and Anthony Wiles, editors, Testing of Communi-

cating Systems, volume 2644 of Lecture Notes in Computer Science, pages 211–225.

Springer Berlin / Heidelberg, 2003. Proceedings of the 15th IFIP international con-

ference on Testing of communicating systems (TestCom’03).

[46] Abdeslam En-Nouaary, Rachida Dssouli, and Ferhat Khendek. Timed wp-method:

Testing real-time systems. IEEE Trans. Softw. Eng., 28(11):1023–1038, 2002.

[47] Abdeslam En-Nouaary, Rachida Dssouli, Ferhat Khendek, and Abdelkader Elqortobi.

Timed test cases generation based on state characterization technique. In RTSS ’98:

Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 220–230, Wash-

ington, DC, USA, 1998. IEEE Computer Society.

[48] Abdeslam En-Nouaary, Ferhat Khendek, and Rachida Dssouli. Fault coverage in test-

ing real-time systems. In RTCSA ’99: Proceedings of the Sixth International Confer-

ence on Real-Time Computing Systems and Applications, page 150, Washington, DC,

USA, 1999. IEEE Computer Society.

[49] ETSI. European Standard (ES) 201 873 - The Testing and Test Control Notation

Version 3 (TTCN-3), Part 1: TTCN-3 Core Language, Part 2: Tabular Presentation

Format for TTCN-3 (TFT), Part 3: Graphical Presentation Format for TTCN-3 (GFT),

Part 4: Operational Semantics, Part 5: The TTCN-3 Runtime Interface (TRI), Part

BIBLIOGRAFIA 156

6: The TTCN-3 Control Interfaces (TCI). European Telecommunications Standards

Institute (ETSI), Sophia-Antipolis (France), 2005.

[50] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. Property oriented test

case generation. In Formal Approaches to Software Testing, Proceedings of FATES

2003, volume 2931 of Lecture Notes in Computer Science, pages 147–163, Montreal,

Canada, 2004. Springer.

[51] G. Fink and M. Bishop. Property-based testing: a new approach to testing for assur-

ance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, 1997.

[52] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework for Model-

Based Testing. In Formal Approaches to Software Testing and Runtime Verification –

FATES/RV 2006, number 4262 in LNCS, pages 40–54. Springer, 2006.

[53] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic exe-

cution techniques for test purpose definition. In Testing of Communicating Systems,

volume 3964 of Lecture Notes in Computer Science, pages 1–18. Springer, 2006.

[54] L.D. Gowen. Specifying and verifying safety-critical software systems. Proceedings

of the IEEE Seventh Symposium on Computer-Based Medical Systems, pages 235–

240, Jun 1994.

[55] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Springer, 1993.

[56] Dick Hamlet. Software quality, software process, and software testing. In Marvin V.

Zelkowitz, editor, Advances in Computers, volume 41, pages 191–229. Academic

Press, 1995.

[57] A. Hartman and K. Nagin. The AGEDIS tools for model based testing. SIGSOFT

Softw. Eng. Notes, 29(4):129–132, 2004.

[58] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic

model checking for real-time systems. Inf. Comput., 111:193–244, June 1994.

[59] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, Paul Pet-

tersson, and Arne Skou. Testing real-time systems using UPPAAL. In Robert M.

BIBLIOGRAFIA 157

Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Test-

ing, volume 4949 of LNCS, pages 77–117. Springer, 2008.

[60] Anders Hessel, Kim Guldstrand Larsen, Brian Nielsen, Paul Pettersson, and Arne

Skou. Time-optimal real-time test case generation using UPPAAL. In Alexandre

Petrenko and Andreas Ulrich, editors, Formal Approaches to Software Testing, volume

2931 of LNCS, pages 114–130. Springer, 2004.

[61] Anders Hessel and Paul Pettersson. A test case generation algorithm for real-time

systems. In QSIC ’04: Proceedings of the Quality Software, Fourth International

Conference, pages 268–273, Washington, DC, USA, 2004. IEEE Computer Society.

[62] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms: A tool for the

automatic synthesis of conformance test cases for non-deterministic reactive systems.

Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[63] Bertrand Jeannet, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Symbolic test

selection based on approximate analysis. In TACAS’05: Proc. of Int. Conf. on Tools

and Alg. for Construction and Analysis of Systems, volume 3440 of LNCS, pages 349–

364, 2005.

[64] Thierry Jéron. Symbolic model-based test selection. Electron. Notes Theor. Comput.

Sci., 240:167–184, July 2009. Proceedings of the Eleventh Brazilian Symposium on

Formal Methods (SBMF 2008).

[65] Thierry Jéron, Hervé Marchand, and Vlad Rusu. Symbolic determinisation of ex-

tended automata. In Proceedings of the 4th IFIP International Conference on Theo-

retical Computer Science, volume 209 of IFIP book series, pages 197–212. Springer-

Verlag, 2006.

[66] Elisabeth Jöbstl, Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa.

When BDDs Fail: Conformance Testing with Symbolic Execution and SMT Solving.

In ICST ’10: Proceedings of the 2010 Third International Conference on Software

Testing, Verification and Validation, pages 479–488, Washington, DC, USA, 2010.

IEEE Computer Society.

BIBLIOGRAFIA 158

[67] Paul Jorgensen. Software Testing: A Craftman’s Approach. CRC Press, Inc., 3rd

edition, 2008.

[68] D. S. Jovanovic, B. Orlic, and J. F. Broenink. On issues of constructing an excep-

tion handling mechanism for CSP-based process-oriented concurrent software. In

Proceedings of Communicating Process Architectures CPA 2005, pages 18–21, Eind-

hoven, NL, 2005. IOS Press.

[69] Ahmed Khoumsi. Complete test graph synthesis for symbolic real-time systems.

ENTCS, 130:79–100, 2005.

[70] Ahmed Khoumsi. On synthesizing test cases in symbolic real-time testing. Journal

of the Brazilian Computer Society, 12:31–48, 2007.

[71] James C. King. Symbolic execution and program testing. Commun. ACM, 19:385–

394, July 1976.

[72] Pieter Koopman and Rinus Plasmeijer. Testing reactive systems with GAST. In

Stephen Gilmore, editor, Trends in Functional Programming, volume 4 of Trends in

Functional Programming, pages 111–129. Intellect, 2003.

[73] Moez Krichen. Model-Based Testing for Real-Time Systems. PhD thesis, Université

Joseph Fourier, Dec 2007.

[74] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-time

systems. In SPIN’04: Proc. of the 11th Int. SPIN Workshop on Model Checking of

Software, volume 2989 of LNCS, pages 109–126. Springer, 2004.

[75] Moez Krichen and Stavros Tripakis. Real-time testing with timed automata testers

and coverage criteria. In Formal Techniques, Modelling and Analysis of Timed and

Fault-Tolerant Systems, volume 3253 of Lecture Notes in Computer Science, pages

134–151. Springer-Verlag, 2004.

[76] Moez Krichen and Stavros Tripakis. An expressive and implementable formal frame-

work for testing real-time systems. In TestCom’05: Proc. of the 17th IFIP Int. Conf. on

Testing of Communicating Systems, volume 3502 of LNCS, pages 209–225. Springer,

2005.

BIBLIOGRAFIA 159

[77] Moez Krichen and Stavros Tripakis. Interesting properties of the real-time confor-

mance relation tioco. In ICTAC’06: Proc. of the 3rd Int. Colloquium on Theoretical

Aspects of Computing, volume 4281 of LNCS, pages 317–331. Springer, 2006.

[78] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. For-

mal Methods in System Design, 34(3):238–304, 2009.

[79] Phillip A. Laplante. Real-Time System Design and Analysis. John Wiley & Sons,

2004.

[80] Kim Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of real-time sys-

tems using uppaal. In Formal Approaches to Software Testing, volume 3395 of LNCS,

pages 79–94. Springer, 2005.

[81] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time

embedded software using uppaal-tron: an industrial case study. In EMSOFT ’05:

Proceedings of the 5th ACM international conference on Embedded software, pages

299–306, New York, NY, USA, 2005. ACM.

[82] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International

Journal on Software Tools for Technology Transfer, 1(1):134–152, 1997.

[83] Y. Ledru, L. du Bousquet, P. Bontron, O. Maury, C. Oriat, and M.-L. Potet. Test

purposes: Adapting the notion of specification to testing. In ASE ’01: Proceedings

of the 16th IEEE international conference on Automated software engineering, pages

127–134, Washington, DC, USA, 2001. IEEE Computer Society.

[84] Daniel Leitao, Dante Torres, and Flávia Barros. NLForSpec: Translating natural lan-

guage descriptions into formal test case specifications. In Proceedings of the Nine-

teenth International Conference on Software Engineering & Knowledge Engineering

(SEKE’2007), pages 129–134, Boston, Massachusetts, USA, 2007. Knowledge Sys-

tems Institute Graduate School.

[85] Grégory Lestiennes and Marie-Claude Gaudel. Testing processes from formal specifi-

cations with inputs, outputs and data types. In ISSRE’02: Proc. of the 13th Int. Symp.

on Software Reliability Engineering, page 3. IEEE Computer Society, 2002.

BIBLIOGRAFIA 160

[86] Qing Li and Carolyn Yao. Real-Time Concepts for Embedded Systems. CMP Books,

2003.

[87] Shuhao Li, Ji Wang, Wei Dong, and Zhi-Chang Qi. Property-oriented testing of real-

time systems. In APSEC’04: Proc. of the 11th Asia-Pacific Software Engineering

Conference, pages 358–365. IEEE Computer Society, 2004.

[88] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling feature interactions in mobile

phones. In Feature Interaction in Composed Systems (ECOOP 2001), pages 7–13,

Budapest, Hungary, 2001.

[89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI

Quarterly, 2(3):219–246, sep 1989.

[90] Augusto Q. Macedo, Wilkerson L. Andrade, Diego R. Almeida, and Patrícia D. L.

Machado. Automating test case execution for real-time embedded systems. In

ICTSS’10: Proceedings of the 22nd IFIP International Conference on Testing Soft-

ware and Systems, pages 37–42, 2010. Short Paper.

[91] Patrícia D. L. Machado. Testing from Structured Algebraic Specifications: The Oracle

Problem. PhD thesis, LFCS, University of Edinburgh, UK, 2000.

[92] Patrícia D. L. Machado and Wilkerson L. Andrade. The oracle problem for testing

against quantified properties. In QSIC ’07: Proceedings of the Seventh International

Conference on Quality Software, pages 415–418, Washington, DC, USA, 2007. IEEE

Computer Society.

[93] Patrícia D. L. Machado and Augusto C. A. Sampaio. Automatic test-case generation.

In Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock, editors, Test-

ing Techniques in Software Engineering, volume 6153 of Lecture Notes in Computer

Science, pages 59–103. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

[94] Patrícia D. L. Machado, Daniel A. Silva, and Alexandre C. Mota. Towards property

oriented testing. Electronic Notes in Theoretical Computer Science, 184:3–19, 2007.

[95] John D. McGregor and David A. Sykes. A practical guide to testing object-oriented

software. Addison-Wesley, Boston, MA, USA, 2001.

BIBLIOGRAFIA 161

[96] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. Formal testing of sys-

tems presenting soft and hard deadlines. In FSEN’07: Proc. of the Int. Symp. on Fun-

damentals of Software Engineering, volume 4767 of LNCS, pages 160–174. Springer,

2007.

[97] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. Extending EFSMs to

specify and test timed systems with action durations and time-outs. IEEE Trans.

Comput., 57(6):835–844, 2008.

[98] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. Formal testing from

timed finite state machines. Comput. Netw., 52(2):432–460, 2008.

[99] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. A formal framework

to test soft and hard deadlines in timed systems. Software Testing, Verification and

Reliability, pages n/a–n/a, 2011.

[100] Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. T-uppaal: Online model-based

testing of real-time systems. In Proceedings of the 19th IEEE international conference

on Automated software engineering, pages 396–397, Washington, DC, USA, 2004.

IEEE Computer Society.

[101] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., Hoboken,

NJ, USA, 2nd edition, 2004.

[102] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Guided test generation

from CSP models. In Proceedings of the 5th international colloquium on Theoretical

Aspects of Computing, pages 258–273, Berlin, Heidelberg, 2008. Springer-Verlag.

[103] Manuel Núñez and Ismael Rodríguez. Conformance testing relations for timed sys-

tems. In Wolfgang Grieskamp and Carsten Weise, editors, Formal Approaches to

Software Testing, volume 3997 of Lecture Notes in Computer Science, pages 103–

117. Springer Berlin / Heidelberg, 2006.

[104] Corina S. Pasareanu and Willem Visser. A survey of new trends in symbolic execution

for software testing and analysis. Int. J. Softw. Tools Technol. Transf., 11:339–353,

October 2009.

BIBLIOGRAFIA 162

[105] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process, Principles,

and Techniques. Wiley, 2007.

[106] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,

Inc., 7th edition, 2009.

[107] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential pro-

cesses. Theor. Comput. Sci., 58(1-3):249–261, 1988.

[108] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approach to symbolic test

generation. In IFM’00: Proc. of the Second Int. Conf. on Integrated Formal Methods,

pages 338–357. Springer, 2000.

[109] Steve Schneider. Concurrent and Real-Time Systems: The CSP Approach. John Wiley

& Sons, Inc., New York, NY, USA, 2000.

[110] Ian Sommerville. Software Engineering. International Computer Science Series.

Addison-Wesley, Boston, MA, USA, 9th edition, 2010.

[111] Mitsuo Takaki, Diego Cavalcanti, Rohit Gheyi, Juliano Iyoda, Marcelo D’Amorim,

and Ricardo B. Prudêncio. Randomized constraint solvers: a comparative study. In-

nov. Syst. Softw. Eng., 6:243–253, September 2010.

[112] The FreeRTOS.org Project. FreeRTOS. http://www.freertos.org.

[113] Omer Nguena Timo, Hervé Marchand, and Antoine Rollet. Automatic test generation

for data-flow reactive systems with time constraints. In ICTSS’10: Proceedings of the

22nd IFIP International Conference on Testing Software and Systems, pages 25–30,

2010. Short Paper.

[114] Omer Nguena Timo and Antoine Rollet. Conformance testing of variable driven au-

tomata. In WFCS’10: Proceedings of the 8th IEEE International Workshop on Factory

Communication Systems, pages 241–248. IEEE Computer Society, 2010.

[115] Dante Torres, Daniel Leitao, and Flávia Barros. Motorola SpecNL: A hybrid system to

generate nl descriptions from test case specifications. In HIS ’06: Proceedings of the

BIBLIOGRAFIA 163

Sixth International Conference on Hybrid Intelligent Systems, page 45, Washington,

DC, USA, 2006. IEEE Computer Society.

[116] Jan Tretmans. Conformance testing with labelled transition systems: implementation

relations and test generation. Comput. Netw. ISDN Syst., 29(1):49–79, 1996.

[117] Jan Tretmans. Test generation with inputs, outputs, and quiescence. In TACAS’96:

Proc. of the Second Int. Workshop on Tools and Algorithms for Construction and

Analysis of Systems, pages 127–146. Springer, 1996.

[118] Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR’99:

Proc. of the 10th Int. Conf. on Concurrency Theory, pages 46–65. Springer, 1999.

[119] Jan Tretmans and Ed Brinksma. Torx: Automated model-based testing. In A. Hart-

man and K. Dussa-Ziegler, editors, Proceedings of the First European Conference on

Model-Driven Software Engineering, pages 31–43, Nuremberg, Germany, 2003.

[120] Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A conformance testing

relation for symbolic timed automata. In Krishnendu Chatterjee and Thomas Hen-

zinger, editors, Formal Modeling and Analysis of Timed Systems, volume 6246 of

Lecture Notes in Computer Science, pages 243–255. Springer Berlin / Heidelberg,

2010.

[121] Rob Williams. Real-Time Systems Development. Butterworth-Heinemann, Oxford,

UK, 2006.

[122] Mihalis Yannakakis and David Lee. An efficient algorithm for minimizing real-time

transition systems. Form. Methods Syst. Des., 11:113–136, August 1997.

[123] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-time com-

municating systems by constraint-solving. In Proceedings of the 7th IFIP WG6.1 In-

ternational Conference on Formal Description Techniques VII, pages 243–258, Lon-

don, UK, UK, 1995. Chapman & Hall, Ltd.

[124] Mao Zheng, Vasu Alagar, and Olga Ormandjieva. Automated generation of test suites

from formal specifications of real-time reactive systems. J. Syst. Softw., 81(2):286–

304, 2008.

Apêndice A

Proofs

Proof of Theorem 3.1.

Proof of soundness:

According to Definition 3.7 a test suite is sound if all of its test cases are sound. Further-

more, a test case TC is sound for S and conf if ∀SUT,

SUT conf S ⇒ ¬(TC may reject SUT).

Using the contraposition principle, we need to prove that if a test case TC may reject a

SUT (implementing the specification S), then ¬(SUT conf S). Thus, we need to prove that

∀SUT,

TC may reject SUT⇒ ¬(SUT conf S).

By Definition 3.6 we need to prove that ∀SUT,

∃σ ∈ Traces(TC || SUT) : verdict(σ) = Fail⇒ ¬(SUT conf S).

Let SUT be an arbitrary implementation such that ∃σ ∈ Traces(TC ||

SUT) : verdict(σ) = Fail. Then, let σ = [a1]ω1 [a2]ω2 . . . [an]ωn ∈ ([A]L)∗ be the trace cor-

responding to the interaction between TC and SUT until the verdict Fail is emitted. Also,

let σn−1 = [a1]ω1 [a2]ω2 . . . [an−1]ωn−1 be a trace excluding [an]ωn. According to the

verdicts definition (page 16), if a Fail is emitted then [an]ωn is an output action. Thus,

Out(SUT after σn−1) 6= ∅ because [an]ωn ∈ Out(SUT after σn−1).

Since Fail is obtained, [an]ωn 6∈ Out(S after σn−1). Hence, Out(SUT after σn−1) 6⊆

Out(S after σn−1) and consequently ¬(SUT conf S).

164

165

Then, ∀SUT, TC may reject SUT⇒ ¬(SUT conf S) and, consequently,

∀TC ∀SUT, TC may reject SUT⇒ ¬(SUT conf S).

Proof of exhaustiveness:

For proving that the test suites generated by LTS-BT are exhaustive, we need to prove

that for every non-conforming SUT there is a test purpose TP and a way of generating a test

case TC from S and TP , such that TC may reject SUT.

According to Definition 3.7 a test suite is exhaustive for S and conf if ∀SUT,

¬(SUT conf S)⇒ ∃TC : TC may reject SUT.

By Definition 3.3, if ¬(SUT conf S) then there is a trace σ =

[a1]ω1 [a2]ω2 . . . [an−1]ωn−1 [an]ωn ∈ Traces(S) and an output action [an+1]ωn+1 ∈

[A \ {steps, conditions, beginInterruption_X}]LO such that

[an+1]ωn+1 ∈ Out(SUT after σ) and [an+1]ωn+1 6∈ Out(S after σ).

Let [a′n+1]ω′n+1 be the correct output action such that [a′n+1]ω′n+1 ∈ Out(S after σ). Thus,

σ and [a′n+1]ω′n+1 can be used to define the following TP :

“ω1 ω2 . . . ωn−1 ωn;ω′n+1; Accept”.

Finally, a test case TC is generated based on S and the defined TP . Thus, during the

test case execution the SUT produces [an+1]ωn+1 instead of [a′n+1]ω′n+1. In this case, a Fail

verdict is emitted as expected. Hence, TC may reject SUT according to Definition 3.6.

166

Proof of Theorem 6.1.

Proof of soundness:

Let [[TC]] = 〈S, S0, Act, T 〉 be the TIOLTS semantics of the test case TC =

〈V, P,Θ, L, l0,Σ, C, T 〉. According to Definition 6.9 a test suite is sound if all of its test

cases are sound. Furthermore, a test case TC is sound for S and tioco if ∀I,

I tioco S ⇒ ¬(TC may reject I).

Using the contraposition principle, we need to prove that if a test case TC may reject I

(implementing the specification S), then ¬(I tioco S). Thus, we need to prove that ∀I,

TC may reject I ⇒ ¬(I tioco S).

By Definition 6.8 we need to prove that ∀I,

∃σ ∈ Traces([[TC]] || ObservableTraces(I)) : verdict(σ) = Fail⇒ ¬(I tioco S).

Let I be an arbitrary implementation such that ∃σ ∈ Traces([[TC]] ||

ObservableTraces(I)) : verdict(σ) = Fail. Then, let σ = a1 a2 . . . an ∈ (Act\Λτ)∗

be the trace corresponding to the interaction between [[TC]] and an observable behaviour

of I until the verdict Fail is emitted. Also, let σn−1 = a1 a2 . . . an−1 be a trace exclud-

ing an. According to the verdicts definition (Section 6.3), if a Fail is emitted then an is

either an output action or a time-elapsing action. Thus, Out(I after σn−1) 6= ∅ because

an ∈ Out(I after σn−1).

Since Fail is obtained, an 6∈ Out(S after σn−1). Hence, Out(I after σn−1) 6⊆

Out(S after σn−1) and consequently ¬(I tioco S).

Then, ∀I, TC may reject I ⇒ ¬(I tioco S) and, consequently,

∀TC ∀I, TC may reject I ⇒ ¬(I tioco S).

Proof of exhaustiveness:

For proving that the test suites generated by our approach are exhaustive, we need to

prove that for every non-conforming I there is a test purpose TP and a way of generating a

test case TC from S and TP , such that TC may reject I.

According to Definition 6.9 a test suite is exhaustive for S and tioco if ∀I,

¬(I tioco S)⇒ ∃TC : TC may reject I.

167

By Definition 6.2, if ¬(I tioco S) then there is a trace σ = a1 a2 . . . an−1 an ∈

ObservableTraces(S) and an output event an+1 (i.e., an output action or time-elapsing ac-

tion) such that

an+1 ∈ Out(I after σ) and an+1 6∈ Out(S after σ).

Let a′n+1 be the correct output event such that a′n+1 ∈ Out(S after σ). Thus, σ and a′n+1

can be used to define a TP with the path “a1 a2 . . . an−1 an a
′
n+1” leading to an Accept

location.

Finally, a test case TC is generated based on S and the defined TP . Thus, during the

test case execution I produces an+1 instead of a′n+1. In this case, a Fail verdict is emitted as

expected. Hence, TC may reject I according to Definition 6.8.

Apêndice B

TIOSTS Models

This appendix presents all TIOSTS models automatically generated by the prototype tool

during the execution of the case studies described in Chapter 8.

B.1 TIOSTS Models of the Burglar Alarm System Case

Study

168

B.1 TIOSTS Models of the Burglar Alarm System Case Study 169

Figura B.1: Burglar Alarm System Specification

B.1 TIOSTS Models of the Burglar Alarm System Case Study 170

Figura B.2: Test Purpose

Figura B.3: Completed Test Purpose

B.1 TIOSTS Models of the Burglar Alarm System Case Study 171

Figura B.4: Synchronous Product

B.1 TIOSTS Models of the Burglar Alarm System Case Study 172

Figura B.5: Test Case 01

B.1 TIOSTS Models of the Burglar Alarm System Case Study 173

Figura B.6: Test Case 02

B.1 TIOSTS Models of the Burglar Alarm System Case Study 174

Figura B.7: Test Case 03

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 175

B.2 TIOSTS Models of the Automatic Guided Vehicle Sys-

tem Case Study

Figura B.8: Test Purpose TP1

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 176

Figura B.9: Automatic Guided Vehicle System Specification

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 177

Figura B.10: Synchronous Product between AVG System Specification and Test Purpose

TP1

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 178

Figura B.11: Test Case of the First Scenario

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 179

Figura B.12: Test Purpose TP2

Figura B.13: Completed Test Purpose TP2

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 180

Figura B.14: Synchronous Product between AVG System Specification and Test Purpose

TP2

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 181

Figura B.15: Test Case of the Second Scenario

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Symbolic Model-Based Testing for

Real-Time Systems

Wilkerson de Lucena Andrade

Thesis submitted to Coordenação do Curso de Pós-Graduação em Ciên-

cia da Computação of Universidade Federal de Campina Grande in par-

tial fulfillment of the requirements for the degree of Doctor in Computer

Science.

Research Area: Computer Science

Research Line: Software Engineering

Patrícia Duarte de Lima Machado

(Supervisor)

Campina Grande, Paraíba, Brazil

c©Wilkerson de Lucena Andrade, April 2011

Abstract

Real-time systems are the ones whose correct behaviour depends not only on the gener-

ated results but also on whether the results are generated at the right time-points. Real-time

systems are used in different contexts such as monitoring of patients in hospitals, air traf-

fic control systems, and embedded systems in robots, appliances, vehicles, and so on. For

these systems, dependability is an important property that demands rigorous application of

V & V activities, since defects can mean losses in financial, environmental or human ar-

eas. As the costs and consequences of failures can be high, formal verification and model

checking have been used in the V & V process. However, as these approaches have practical

limitations, testing is also used as a complementary approach since it allows the execution

of real scenarios within execution environments. Consequently, there is a growing interest

in the search for methods, techniques and tools to support the testing of real-time systems,

which poses a number of distinguishing challenges such as implementations composed of

parallel activities with synchronous and asynchronous events (interruptions), with different

deployment architectures, and resource limitation and time constraints on the execution en-

vironment. This thesis focuses on model-based conformance testing of real-time systems. In

this context, current approaches are mostly based either on finite state machines/transition

systems or on timed automata. However, most real-time systems manipulate data while be-

ing subject to time constraints. The usual solution consists in enumerating data values (in

finite domains) while treating time symbolically, thus leading to the classical state explosion

problem. This thesis proposes a new model of real-time systems as an extension of both

symbolic transition systems and timed automata, in order to handle both data and time re-

quirements symbolically. We propose a conformance testing theory to deal with this model

and describe a test case generation process based on a combination of symbolic execution

and constraint solving for the data part and symbolic analysis for timed aspects. Moreover,

the proposed approach can deal with interruption testing. Finally, two case studies were

performed in order to evaluate the practical application of the proposed approach.

i

Contents

1 Introduction 1

1.1 Overview of the Thesis . 3

1.2 Methodology . 5

1.3 Outline of the Thesis . 6

2 Background 8

2.1 Software Testing . 8

2.1.1 Test Cases . 9

2.1.2 Oracles . 10

2.1.3 Test Cases Identification . 11

2.1.4 Model-Based Testing . 12

2.1.5 Conformance Testing . 14

2.1.6 Property Oriented Testing . 16

2.1.7 Test Case Generation . 18

2.1.8 Symbolic Execution . 18

2.1.9 Symbolic Testing . 19

2.2 Real-Time Systems . 28

2.2.1 Modelling Time . 29

2.2.2 Events . 30

2.2.3 Modelling Real-Time Systems . 30

2.2.4 Testing of Real-Time Systems . 35

2.3 Concluding Remarks . 37

ii

CONTENTS iii

3 Interruption Testing of Reactive Systems 38

3.1 Context . 39

3.2 Interruption Model . 41

3.2.1 Representing Interruptions with IOLTS Models 42

3.2.2 Annotated Labelled Transition Systems 43

3.2.3 Testing Conformance . 48

3.3 Interruption Test Case Generation and Selection 49

3.3.1 ALTS Model Generation from Use Case Templates 49

3.3.2 Interruption Test Case Generation 52

3.3.3 Interruption Test Case Selection 55

3.4 Properties of the Interruption Test Cases 58

3.5 Case Study . 61

3.5.1 Overview of the Case Study Applications 61

3.5.2 Case Study Definition . 62

3.5.3 Case Study Results . 64

3.6 Related Work . 66

3.7 Concluding Remarks . 68

4 Related Work and Problem Statements 69

4.1 Related Work . 69

4.1.1 Cardell-Oliver . 69

4.1.2 En-Nouaary et al. 70

4.1.3 Li et al. 71

4.1.4 Khoumsi . 72

4.1.5 Briones and Brinksma . 72

4.1.6 Bohnenkamp and Belinfante . 73

4.1.7 Bodeveix et al. 74

4.1.8 Larsen et al. 74

4.1.9 Hessel et al. 75

4.1.10 Merayo et al. 77

4.1.11 Krichen and Tripakis . 78

CONTENTS iv

4.1.12 Zheng et al. 80

4.1.13 David et al. 80

4.1.14 Adjir et al. 81

4.1.15 Styp et al. 82

4.1.16 Timo et al. 82

4.2 Comparison of Reviewed Work . 83

4.3 Problem Statements . 88

4.4 Concluding Remarks . 92

5 Timed Input-Output Symbolic Transition Systems 93

5.1 Syntax of TIOSTS . 93

5.2 Semantics of TIOSTS . 96

5.3 Synchronous Product of TIOSTS . 99

5.4 Concluding Remarks . 100

6 Conformance Testing with TIOSTS 102

6.1 Testing Conformance . 102

6.2 Test Case Generation Process . 103

6.2.1 Test Purpose Completion . 105

6.2.2 Synchronous Product Generation 108

6.2.3 Symbolic Execution . 111

6.2.4 Test Case Selection . 115

6.2.5 Test Tree Transformation . 115

6.3 Properties of the Test Cases . 118

6.4 Concluding Remarks . 120

7 Interruption Testing of Real-Time Systems 122

7.1 Modelling and Testing Interruptions in Real-Time Systems 122

7.2 Instantiating the Strategy with an Example 124

7.3 Concluding Remarks . 126

8 Case Studies 128

8.1 The Burglar Alarm System . 128

CONTENTS v

8.1.1 The GQM Measurement Model 129

8.1.2 Case Study Definition . 130

8.1.3 Case Study Results . 133

8.2 The Automatic Guided Vehicle System . 137

8.2.1 The GQM Measurement Model 137

8.2.2 Case Study Definition . 138

8.2.3 Case Study Results . 139

8.3 Concluding Remarks . 142

9 Concluding Remarks 143

9.1 Conclusions . 143

9.2 Future Work . 145

A Proofs 164

B TIOSTS Models 168

B.1 TIOSTS Models of the Burglar Alarm System Case Study 168

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study . . . 175

List of Figures

2.1 MBT Activities . 14

2.2 Symbolic Execution Tree of Algorithm 2.1 20

2.3 IOSTS Example . 23

2.4 Test Purpose Example . 26

2.5 Test Case Example . 26

2.6 TLTS Example . 31

2.7 TIOLTS Example . 32

2.8 TA Example . 33

2.9 TAIO Example . 34

2.10 Example of the Future Operation . 35

2.11 Example of the Intersection Operation . 35

2.12 Example of the Reset to Zero Operation 35

3.1 Interruption Test Process . 39

3.2 Test Architecture . 40

3.3 Remove Message Specification . 40

3.4 Incoming Alert Interruption Specification 41

3.5 Simple IOLTS . 42

3.6 Modelling Interruptions Using IOLTS . 42

3.7 Remove Message behaviour . 45

3.8 Remove Message behaviour with Interruptions 46

3.9 LTS Model of a Test Purpose . 56

3.10 Test Case 01 . 57

3.11 Test Case 02 . 57

vi

LIST OF FIGURES vii

4.1 Burglar Alarm System Architecture . 91

5.1 TIOSTS Example . 95

5.2 Synchronous Product Example . 100

6.1 TIOSTS Test Purpose Example . 105

6.2 Test Case Generation Process . 107

6.3 Completed Test Purpose Example . 107

6.4 Synchronous Product Example . 110

6.5 Zone-Based Symbolic Execution Tree of the TIOSTS of Figure 6.4 116

6.6 Test Case Obtained from the ZSET of Figure 6.5 118

7.1 Modelling an Abstract Interruption . 123

7.2 Real-Time Version of the Remove Message Behaviour with Interruptions . 125

7.3 Test Purposes . 126

7.4 Test Case with Interruption . 127

7.5 Test Case without Interruption . 127

8.1 Measurement Model for the Alarm System Case Study 130

8.2 Testing Process . 130

8.3 Test Case Builder Application . 131

8.4 TIOSTS Specification for the Burglar Alarm System Case Study 134

8.5 TIOSTS Test Purpose for the Burglar Alarm System Case Study 135

8.6 Results of the TC1 Execution . 135

8.7 Measurement Model for the AGV Case Study 138

8.8 TIOSTS Specification for the AGV Case Study 140

8.9 TIOSTS Test Purpose for the Scenario with no Interruptions (TP1) 140

8.10 TIOSTS Test Purpose for the Scenario with One Interruption (TP2) 141

B.1 Burglar Alarm System Specification . 169

B.2 Test Purpose . 170

B.3 Completed Test Purpose . 170

B.4 Synchronous Product . 171

B.5 Test Case 01 . 172

LIST OF FIGURES viii

B.6 Test Case 02 . 173

B.7 Test Case 03 . 174

B.8 Test Purpose TP1 . 175

B.9 Automatic Guided Vehicle System Specification 176

B.10 Synchronous Product between AVG System Specification and Test Purpose

TP1 . 177

B.11 Test Case of the First Scenario . 178

B.12 Test Purpose TP2 . 179

B.13 Completed Test Purpose TP2 . 179

B.14 Synchronous Product between AVG System Specification and Test Purpose

TP2 . 180

B.15 Test Case of the Second Scenario . 181

List of Tables

3.1 Features . 62

3.2 Metrics . 64

4.1 Related Work . 85

4.2 Related Work . 87

4.3 Related Work . 89

4.4 Timing Requirements . 90

8.1 Metrics of the Burglar Alarm System Case Study 136

8.2 Metrics of the AGV Case Study . 141

9.1 Comparison with Related Work . 146

9.2 Comparison with Related Work . 148

9.3 Comparison with Related Work . 149

ix

List of Algorithms

2.1 Code for Swapping Two Integers Variables 19

3.1 Procedure that Translates Use Case Templates to an ALTS 51

3.2 Procedure that Combines the Main Application Model with an Interruption

Model . 52

3.3 Test Case Generation Algorithm . 53

6.1 Test Purpose Completion Algorithm . 106

6.2 Synchronous Product of W1 and W2 . 108

6.3 Product of W1 and W2 . 109

6.4 Symbolic Execution of W = 〈V, P,Θ, L, l0,Σ, C, T 〉 113

6.5 Test Tree Translation Algorithm . 117

x

Chapter 1

Introduction

Software systems are more and more complex and omnipresent in our lives, be they through

Internet or embedded systems. In this same proportion, a special kind of application has

become increasingly common, for instance, monitoring of patients in hospitals, air traffic

control systems, and embedded systems in robots, mobile phones, appliances, vehicles, air-

craft, and so on. All these applications have an important characteristic in common: time

requirements. For such systems, the correct behaviour depends not only on the generated

results but also whether the results are generated at the right time-points. Computer systems

with time constraints are known as Real-Time Systems (RTS).

Most RTS are developed for specific purposes and are composed of tightly coupled hard-

ware and software integration. In this case, these systems are called Real-Time Embedded

Systems (RTES) [86]. Considering the possibilities of using the real-time systems cited

above, we can see that several RTS are complex and critical, since defects can mean losses

in financial, environmental or human areas. For these systems, dependability is an important

property that demands rigorous application of Verification and Validation (V & V) activities.

As the costs and consequences of failures are high, formal verification and model checking

have been used in the V & V process. However, these approaches have practical limitations.

In this context, testing arises as an important complementary approach since it allows the ex-

ecution of real scenarios within execution environments. Furthermore, testing is one of the

most popular validation techniques and if used in an effective way may provide important

evidences of product quality and reliability. Thus, one of the challenges today is the search

for methods, techniques and tools to support the testing of RTES.

1

2

Particularly, testing RTES poses a number of distinguishing challenges such as the devel-

opment platform is usually different from the execution platform, and also there are several

execution platforms leading to several cross-development environments. Moreover, RTES

are usually composed of parallel activities with synchronous and asynchronous events (in-

terruptions), with different deployment architectures, and resource limitation and time con-

straints on the execution environment. In this context, interruptions are usually applied

so that services can be activated as soon as demanded. For this, the task running in the

foreground is instantly suspended to release resources for the interrupting task. After in-

terruption, the interrupted task should resume from the point where it stopped [2; 55; 79;

86]. As an example from the mobile phone context, when a user is composing an e-mail

by using a mobile phone device and an incoming call arrives in this device, the call feature

interrupts the e-mail feature that must successfully resume later.

Most work on V & V, in the RTS context, are related to the model checking field [13; 31;

54]. Model checking is a technique used to verify, in an automated and accurate manner, the

correctness of models. Through the use of models and properties specified in various for-

malisms, a model checker verifies whether a model satisfies a particular property. However,

if the same rigour is not applied to the test of the implementation, a gap is created between

these processes, allowing the presence of defects in the implementation even if the model

has been successfully verified.

In this sense, several approaches were developed in order to adapt model checking tech-

niques to support test case generation [19; 46; 60; 80]. Furthermore, some classic testing

approaches have been extended to support the test of RTS, for instance, model-based testing

[73], specially conformance testing [78] and the use of test purposes to select specific sce-

narios to be verified [17; 87]. Also, some approaches extend finite state machines (FSMs)

and their associated methods to deal with time [46; 97].

There are still very few works in this context and most of them use either (variations of)

state machines or (variations of) timed automata as the underlying model. However, most

approaches to testing real-time systems abstract only time and enumerate data values. This

is not suitable when the specification uses large or infinite data domains because data values

are enumerated, leading to the state space explosion problem.

In practice, RTS handle variables and action parameters. Thus, powerful models are

1.1 Overview of the Thesis 3

needed where variables, action parameters and time are explicitly modelled and treated in

a symbolic way. There are few works whose goal is to provide symbolic approaches to

software testing [27; 32; 52; 63; 64; 65; 72; 85; 108; 113; 114; 120]. However, most of

these approaches do not take time requirements into account [27; 32; 52; 63; 64; 65; 72; 85;

108] and the most recent approaches presented in [113; 114; 120] are far from a complete

testing approach. The work described in [120] proposes a new symbolic model along with a

symbolic conformance relation but neither test cases are formally defined nor algorithms for

test case generation are presented. The conformance testing approach proposed in [113; 114]

is restricted to data-flow real-time systems making it difficult to test interruptions. Moreover,

test cases are not formally defined, algorithms are not presented and there is no tool to support

the work.

The rest of this chapter is structured as follows. An overview of this thesis along with its

main contributions are presented in Section 1.1. The adopted methodology is described in

Section 1.2. Finally, Section 1.3 presents the structure of this thesis.

1.1 Overview of the Thesis

This thesis focuses on symbolic model-based conformance testing of real-time systems

where the implementation is a black-box whose internal details are unknown. Thus, the

tester can only interact with the implementation through its observable behaviour (inputs

and outputs). In this kind of testing, test cases are derived from a formal specification, based

on a conformance relation between the implementation and the specification, and used to

guide the verdicts of test execution [118]. The verdicts are decided by a component called

oracle. In this context, this thesis addresses the following research questions:

Research Question 1 In which ways can we extend the symbolic model-based testing the-

ory to be able to test real-time systems in an accurate manner?

Research Question 2 In a real-time symbolic model-based testing context, how can we

provide models to be able to specify and test asynchronous events such as interruptions

in an accurate manner?

1.1 Overview of the Thesis 4

Research Question 3 In a real-time symbolic model-based testing context, is it possible to

provide an automated oracle?

In order to answer these research questions, this thesis proposes a new approach to testing

real-time systems. In this sense, our main contributions are:

• A new model-based conformance testing approach to real-time systems is proposed,

where the system under test (SUT) is modelled through an extension of both symbolic

transition systems and timed automata, thus dealing with both data and time require-

ments;

• We propose a test case generation process based on test selection using test purposes,

which is based on symbolic execution and constraint solving for the data aspects com-

bined with symbolic analysis of timed aspects. Although the proposed symbolic model

can represent internal actions and non-determinism, the algorithms defined for test

case generation do not take these characteristics into account. Moreover, quiescence

and non-input-completeness of implementations are outside the scope of this thesis;

• A strategy to interruption testing is proposed along with a simple way of defining test

purposes in order to check specific scenarios with interruptions;

• Our testing approach provides, besides algorithms for test case generation, a complete

definition of a test architecture including automatic ways of test execution and reliable

verdicts achievements.

The practical application of the proposed approach is evaluated using two case studies.

In one case study all test process is performed (from test case generation to test case execu-

tion) since an implementation of the system is available. On the other hand, as the second

case study does not have an implementation of the system, only the test case generation is

considered. The obtained results show that the proposed approach reduces the effort spent

to perform the test process since test case generation and evaluation of test execution results

are completely automated. However, some points of improvements in the test case execution

activity were detected.

It is important to remark that this thesis considers the following assumptions in order to

address the defined research questions:

1.2 Methodology 5

1. The non-real-time symbolic testing theory presented in [32; 63; 64; 65; 108] is solid

enough to be extended to deal with timing properties;

2. Symbolic model-based testing provides a good basis for conformance testing of real-

time systems.

1.2 Methodology

In general, the methodology used to develop this work is described as follows:

• The first step was to perform a review of work on model-based testing of real-time

systems for identifying open problems. It is important to mention that this review was

constantly updated during the development of this work;

• The problem of testing interruptions was investigated in a non-real-time context. In

this case, an interruption testing approach was proposed to reactive systems;

• Execution of a case study for evaluating the proposed interruption testing approach;

• Symbolic model-based approaches were studied and one approach was chosen as the

underlying theory;

• An interruption testing strategy was defined for the chosen non-real-time symbolic

model-based approach;

• The chosen symbolic model-based formalism was extended to deal with time require-

ments and its semantics was formally defined;

• Formalisation of the concept of test case and test purpose;

• An existing conformance relation was chosen to be used in the proposed approach;

• Definition of test case generation and selection algorithms;

• Formalisation of the notion of verdicts considering that a test case execution can pro-

duce one of the following verdicts: pass, fail, or inconclusive;

1.3 Outline of the Thesis 6

• Definition of strategies for specification and testing of interruptions using the proposed

approach;

• Definition of a test architecture and controllability assumptions for test case execution;

• Development of an environment to allow automated test execution and evaluation of

results;

• Execution of case studies to evaluate the applicability of the proposed approach.

1.3 Outline of the Thesis

The remaining parts of this document are structured as follows:

Chapter 2: Background This chapter provides the theoretical background necessary to un-

derstand this work, including concepts of the software testing field such as test cases,

oracles, and testing techniques. Finally, concepts related to real-time systems are pre-

sented.

Chapter 3: Interruption Testing of Reactive Systems This chapter presents an approach

to conformance testing of reactive systems with interruptions. Real-time systems are

not considered yet.

Chapter 4: Related Work and Problem Statements This chapter presents a review of rel-

evant work on testing of real-time systems. Finally, some open problems are described.

Chapter 5: Timed Input-Output Symbolic Transition Systems This chapter proposes

the symbolic formalism defined in order to abstract data and time.

Chapter 6: Conformance Testing with TIOSTS This chapter presents the conformance

testing theory to deal with the model proposed. Moreover, the test case generation

process is described along with a discussion of some properties of the generated test

cases.

Chapter 7: Interruption Testing of Real-Time Systems The strategy of modelling and

testing interruptions using the proposed symbolic formalism is described in this chap-

ter.

1.3 Outline of the Thesis 7

Chapter 8: Case Studies This chapter presents a practical demonstration of the proposed

symbolic model-based testing approach to real-time systems.

Chapter 9: Concluding Remarks This final chapter presents the conclusions and

prospects for future work.

Chapter 2

Background

This chapter has as main objective to provide a theoretical foundation related to the concepts

discussed in this thesis. It discusses concepts from the software testing field, with empha-

sis on model-based testing and symbolic testing, and concepts from the real-time systems

context.

2.1 Software Testing

Software testing is an activity that involves the effort to find evidences of defects inserted

into the software during any phase of development or maintenance of software systems.

These defects may be due to omissions, inconsistencies or misunderstanding of requirements

or specifications by developers [95]. In the software testing context, some concepts are

widely used: failure, fault, and error. According to Binder [18], a failure is the manifested

inability of a system to correctly perform a required function; a fault is defined as the absence

of code or the presence of incorrect code in a computer program that causes the failure; and

error is a human action that results in a software fault.

Testing is an important activity that contributes to ensuring that a software system does

everything it is supposed to do. Some testing efforts extend the focus to ensure an application

does nothing more than it is supposed to do. In any case, testing provides means to assess

the existence of defects (faults) which could result in a loss of time, property, customers, or

life [95].

For a long time, the software testing process was defined within software development

8

2.1 Software Testing 9

processes as a disconnected activity that was only taken into account at the end of the de-

velopment processes. This traditional view is considered as being inefficient because of

high costs associated with correction of detected errors and maintenance of software. This

has contributed to the development of methods and systematic testing techniques where the

testing activities are applied in parallel during the development process [95].

There are several kinds of tests that can be applied depending on the property of the

systems to be tested (for instance, interface, performance, safety, etc.), and their type (for

instance, object-oriented software, distributed systems, reactive systems, real-time systems).

The remainder of this section presents several concepts related to software testing and

that are important to understand this thesis, such as test cases, oracles, approaches to identify

and generate test cases, conformance testing, and some testing techniques such as model-

based testing, property oriented testing, and symbolic testing.

2.1.1 Test Cases

A test case is a set of inputs, execution conditions, and expected results chosen in order to

test a particular behaviour of a system [18]. The main key of software testing is to determine

a set of test cases (named test suite) for the software system to be tested. Every test case

must have at least the following information [67]:

• Inputs

– Conditions that must be satisfied before the test execution;

– The actual inputs chosen to test the system;

• Outputs

– Postconditions that must be satisfied after the test execution;

– The actual output produced by the system under test.

Moreover, a good test case must present additional information for supporting the testing

management [67]. For example, a test case may have a unique identifier, a purpose, an exe-

cution history, etc. Considering all this information, the act of testing consists in satisfying

2.1 Software Testing 10

the preconditions, providing the test case inputs, observing the outputs, and then comparing

these outputs with the expected outputs to decide whether the test pass or not.

In the context of this work, test cases can be classified into two types: instantiated and

abstract test cases. We say that a test case is instantiated when the values of all variables

needed for the test execution are properly assigned during the test case generation process,

whereas we say that a test case is abstract when it has variables with unassigned values. In

the latter case, the tester must assign values, according to the preconditions, during the test

execution.

2.1.2 Oracles

The execution of a test case emits a pass verdict when the system produces an acceptable

result. In order to decide which verdict must be emitted, an evaluation is made by comparing

the actual result with an expected result. The component responsible for performing this

evaluation is called test oracle or simply oracle [18]. Thus, an oracle is a mechanism that

applies a pass or fail verdict to a system execution [105]. For this, it is necessary a result

generator and a comparator. The former is responsible for generating the expected results for

an input and the latter has the objective of checking the actual results against the expected

results.

Considering that a test oracle is a generation and comparison mechanism, it can be clas-

sified into three types: manual, automated, and partially automated [18]. Considering the

manual oracle, both generation and comparison are manually performed. In the automated

oracle, both generation and comparison are automatically performed. Finally, in the partially

automated oracle, one of the activities is manually performed, whereas the other is automatic.

Several artefacts developed during the development process can support the testing pro-

cess as an oracle. The system specification can be used as an oracle, a table of examples

of inputs and expected outputs or simply the knowledge of how the software system should

operate provided by the development team can be also used as an oracle [18].

In practice, manual and partially automated oracles are error-prone. If a system under

test fails to provide some functionality in a very common situation (for example, a menu

option is in a wrong place, the system is aborted with an exception or it is restarted), then

maybe it can be seen to have a fault. But considering an expected output, specified only

2.1 Software Testing 11

by an imprecise description in natural language, a tester may fail to notice a failure. To do

better, an oracle must be automated. But, due to the semantic gap between specification

and real application values, a problem named the oracle problem arises when an automated

mechanism to emit verdicts cannot be defined [91; 92].

The concepts of test case, test suite, and oracle can be related based on a formal frame-

work [56; 91]. Let IUT be an implementation of a software system under test whose input

domain is D and output domain is X . Let TC be a test case which is defined as a total func-

tion from elements of D′ ⊆ D to elements of X ′ ⊆ X . Then dom(TC) = D′ denotes the

domain of TC. Also, let TC(p) be the corresponding expected output for a given input p ∈

dom(TC) and IUT(p) denote the actual result of executing IUT with input p. The TC passes

the system IUT if and only if it passes IUT on all inputs in dom(TC), that is, IUT(p) = TC(p)

for all p ∈ dom(TC). As dom(TC) is likely to be infinite, a finite test suite T ⊆ dom(TC)

needs to be selected. A function O is called an oracle for IUT on TC if for all p ∈ D [91]:

O(p) =


true, if IUT(p) = TC(p)

false, if IUT(p) 6= TC(p)

true, if p 6∈ dom(TC)

Considering the oracle problem, it arises because of the limitation in the definition of an

effective procedure to compare IUT(p) with TC(p), mainly because these values are defined

at different levels of abstraction [91].

2.1.3 Test Cases Identification

The two fundamental approaches used to identify test cases are known as structural and

functional testing [67]. Each of these approaches has its advantages and disadvantages.

Structural testing, also known as white box testing, is a kind of testing where test cases

are identified based on the system implementation. The objective of structural testing is

to test procedural details [101]. Because structural testing is based on the implementation,

it can test parts of the system that are not in the specification, but, on the other hand, the

structural testing fails to identify behaviours which are in the specification, but have not been

implemented.

Functional testing (also known as black box testing) is a kind of testing based on the

2.1 Software Testing 12

view that the software system can be considered as a function that maps values from its input

domain to values in its output domain [67], that is, a kind of testing performed to verify

whether, for a given input, the system produces the correct output. Functional testing is

performed only based on the specification of the system.

Because functional test cases are only identified based on the specification, they are inde-

pendent of how the system is implemented, unlike structural test cases, and therefore, even

if the implementation of the system is changed, the test cases are still useful. Another impor-

tant advantage is that testing activities can be performed in parallel with the implementation,

contributing to a better understanding and correction of models and specifications from ini-

tial stages of the development processes, avoiding late detection of problems, thus reducing

the impact and costs associated with the changes.

In addition to the classification of tests following the fundamental approaches, structural

and functional, we can make a new distinction with respect to several aspects of the behaviour

of the system to be tested. When the specification is defined by models, the approach is called

model-based testing [43]1. When the test is carried out to verify whether the system has the

planned functionalities and if those functionalities are in accordance with the specification,

it is called conformance testing [117]. When the goal is to test specific properties of the

system, test case generation can be guided by informal descriptions of the behaviours to be

tested. In this case, the approach is called property oriented testing [62].

2.1.4 Model-Based Testing

In the last decade, perhaps due to the popularization of object-oriented programming and

use of models in software engineering, there was a great development of a testing technique

known as model-based testing (MBT). MBT is a general term used to name a set of tech-

niques based on models of applications being tested in order to perform activities of test [43].

Such activities can be either generation of test cases or evaluation of test results.

The main activities related to model-based testing, shown in Figure 2.1, are described

below:

Build the model: the model is built from the requirements of the software system under

1As models are considered as specifications in this thesis, these terms are used interchangeably.

2.1 Software Testing 13

test.

Generate test cases: test cases are extracted from the model with the objective of evaluating

whether the system is in accordance with its requirements.

Generate test oracle: the test oracle is generated based on the model. The test oracle is

responsible for deciding which outputs indicate the correct behaviour of the system,

that is, the expected results.

Run tests: the application is exercised with generated test cases, producing new outputs.

Compare actual outputs with expected outputs: the outputs of the system under test, ob-

tained in the previous step, are compared by the test oracle with the expected outputs.

The process of model-based testing begins when the requirements of the software sys-

tem are defined. From requirements, a model that represents the expected behaviour of the

system is built. After defining the model, the next step is the generation of test cases. The

specification of test cases includes, among other information, expected inputs and outputs.

Using these inputs, the system is executed and its behaviour is observed. The last step is to

compare the obtained outputs with the expected outputs to assess whether or not the system

is in accordance with requirements.

One of the main advantages of using MBT is that the generated model can serve as

a reference point for communication between all the people involved in the development

process. Another important advantage is that the most popular models have a rich theoretical

basis that facilitates the generation and automation of the testing process [43].

One drawback of using MBT is the need of knowing the notation of the model and

the theoretical basis to take the most of the model chosen. To make the team acquire the

necessary knowledge implies investment in training and lack of time, in addition to time

spent on the construction of the model [43]. Another disadvantage is the high dependence

with respect to the model, that is, as the test activities are carried out based on the model of

the system, the quality of testing is directly related to the quality of the model.

2.1 Software Testing 14

Figure 2.1: MBT Activities

2.1.5 Conformance Testing

Conformance testing is a kind of testing used to verify whether the implementation of a

software system is in accordance with the specification of its functional behaviour. So, this

subsection presents, in a formal manner, a conformance testing approach based on the frame-

work proposed by Tretmans [118]. Therefore, it is important to link the informal world of

implementations and tests with the formal world of specifications and models.

Conformance testing relates a specification and an implementation under test (IUT) by

the relation conforms-to ⊆ IMPS × SPECS, where IMPS represents the universe of

implementations and SPECS represents specifications. Then, IUT conforms-to s if and

2.1 Software Testing 15

only if IUT is a correct implementation of s.

The conforms-to relation is hard to be checked by testing and the implementations are

generally unsuitable for formal reasoning. Therefore, a test hypothesis is assumed where

any IUT can be modelled by a formal object iIUT ∈ MODS, where MODS represents the

universe of models [15]. Then, an implementation relation imp ⊆ MODS × SPECS is

defined such that IUT conforms-to s if and only if iIUT imp s.

Let TESTS be the domain of test cases and t ∈ TESTS be a test case. Then EXEC(t,IUT)

denotes the operational procedure of applying t to IUT. This procedure represents the test

execution. Let an observation function that formally models EXEC(t,IUT) be defined as obs :

TESTS ×MODS → P(OBS). Then, ∀ IUT ∈ IMPS ∃iIUT ∈ MODS ∀t ∈ TESTS·

EXEC(t,IUT) = obs(t, iIUT), according to the test hypothesis.

Let a family of verdict functions vt : P(OBS)→ {fail, pass} which can be abbreviated

to IUT passes t ⇔def vt(EXEC(t,IUT)) = pass. Then, for any test suite T ⊆ TESTS, IUT

passes T ⇔ ∀t ∈ T · IUT passes t. Also, IUT fails T ⇔ ¬(IUT passes T). A test suite that can

distinguish between all conforming and non-conforming implementations is called complete.

Let Ts ⊆ TESTS be complete. Then, IUT conforms-to s if and only if IUT passes Ts.

A complete test suite is a very strong requirement for practical testing. Then, weaker

requirements are needed. A test suite is sound when all correct implementations and possibly

some incorrect implementations pass it, that is, any detected faulty implementation is non-

conforming, but not the other way around. Let T ⊆ TESTS be sound. Then, IUT conforms-

to s⇒ IUT passes T . The other direction of the implication is called exhaustiveness, meaning

that all non-conforming implementations will be detected.

In practice, sound test suites are more commonly accepted, since rejection of conforming

implementations, by exhaustive test suites, may lead to unnecessary debugging. Let derimp :

SPECS → P(TESTS) be a test suite derivation algorithm. Then, derimp(s) should only

produce sound and/or complete test suites.

This testing framework is instantiated by several works using the most different notations.

For instance, Tretmans [118] instantiated the framework with Labelled Transition Systems

(LTS), Jard and Jéron [62] instantiated it using Input-Output Labelled Transition Systems

(IOLTS), Larsen et al. [80] and Krichen [73] instantiated the framework using Timed Input-

Output Transition Systems (TIOTS), Briones and Brinksma [23] extended the Tretmans’

2.1 Software Testing 16

framework for real-time systems, etc.

One of the most important properties considered in conformance testing is called qui-

escence. In practice, tests observe the behaviour of the system and its quiescence, that is,

the absence of outputs. Quiescence is observed using timers, for instance, whenever a tester

sends an input to the implementation, a timer is reset. The duration of the timer is chosen

such that, if no output occurs while the timer is running, then no output will ever occur. Then,

when the timer finishes, the tester can conclude that the implementation is quiescent. This

approach avoids the rejection of implementations expected to be quiescent in some points

and rejects the implementations that are not, ensuring the soundness of the test cases.

In order to distinguish between observations of quiescence that are allowed by a spec-

ification and those that are not, all possible points where an implementation may become

quiescent must be made explicit in the specification. There are three possibilities of quies-

cence: deadlock, output quiescent, and livelock [62]. A deadlock state is a state where the

system cannot evolve anymore. An output quiescent state is a state where the system is wait-

ing only for an input from the environment. And, livelock is related to the loops of internal

actions, that is, loops of actions that are not seen from the environment.

2.1.6 Property Oriented Testing

It is important to note the difference between testing for conformance and testing from test

purposes. The former aims to accept/reject a given implementation. On the other hand,

the latter aims to observe a desired behaviour that is not necessarily directly related to a

required behaviour or correctness. If this desired behaviour is observed then confidence on

correctness may increase. Otherwise, no definite conclusion can be based solely on this

information. Due to its overloaded use, test purpose is called observation objective in [41].

Nevertheless, the term test purpose is kept in thesis. The concepts introduced in Subsection

2.1.5 are extended for test purposes in this subsection.

Test purposes describe desired observations that we wish to see from the implementation

during the test. Test purposes are related to implementations that are able to exhibit them by a

well chosen set of experiments. This is defined by the relation exhibits⊆ IMPS×TOBS,

where TOBS is the universe of test purposes. To reason about exhibition, we also need

to consider the test hypothesis from Subsection 2.1.5 by defining the reveal relation rev

2.1 Software Testing 17

⊆ MODS × TOBS, so that, for e ∈ TOBS, IUT exhibits e if and only if iIUT rev e, with

iIUT ∈MODS of IUT.

Let a verdict function He : P(OBS) → {hit, miss} which can decide whether a test

purpose is exhibited by an implementation. Then, IUT hits e by te =def He(EXEC(te,IUT)) =

hit. This is extended to a test suite Te as IUT hits e by Te =def He(
⋃

{EXEC(t,IUT) | t ∈ Te}) =

hit, which differs from the passes abbreviation.

An e-complete test suite can distinguish among all exhibiting and non-exhibiting imple-

mentations, such that, IUT exhibits e if and only if IUT hits e by Te. An e-exhaustive test

suite can only detect non-exhibiting implementations (IUT exhibits e implies IUT hits e by

Te), whereas an e-sound test suite can only detect exhibiting implementations (IUT exhibits e

if IUT hits e by Te). Note that the purpose of the sound test suites and e-sound test suites are

similar, even though the implications are relatively inverted. Sound test suites can reveal the

presence of faults, whereas the e-sound can reveal intended behaviour.

Conformance and exhibition can be related aiming to consider test purposes in test se-

lection to obtain test suites that are sound and e-complete. We want e-soundness so that we

can conclude that a hit result always implies exhibition, whereas we require e-exhaustiveness

because we want to be able to find all implementations that are able to exhibit. Soundness

provides us with the ability to detect non-conforming implementations. Contrary to complete

test suites, e-complete test suites are feasible.

Finally, it is important to remark that both conforming and non-conforming implemen-

tations may reveal a test purpose. An ideal situation, where all correct implementations

also exhibit, would be to only consider a test purpose e when i rev e ⊇ i passes T , where

T ⊆ TESTS. However, this situation is not practical. Test purposes are chosen so that:

{i | i rev e} ∩ {i | i imp s} 6= ∅. In this case, a test execution with test case Ts,e that is both

sound and e-complete and that results in fail means non-conformity, since sound test cases

do not reject conforming implementations and e-complete test cases distinguish between all

exhibiting and non-exhibiting implementations. Also, if the result is {pass, hit}, confidence

on correctness is increased, as the hit provides possible evidence of conformance.

2.1 Software Testing 18

2.1.7 Test Case Generation

The test case generation activity can be done following two different approaches: offline or

online testing. In offline testing, all test cases are extracted from the specification, after that,

they are executed against the implementation to obtain a verdict.

The other approach to test case generation is online (on-the-fly) testing where the gener-

ation and execution are combined into a single step. In this approach, a single action or input

is extracted from the specification at a time and it is immediately executed on the implemen-

tation. Then the output produced by the implementation is checked against the specification.

After that, another action or input is extracted again and so forth until the end of the test, or

until a defect (fault) is detected.

As advantages, the offline test generation can be guided to generate test cases in order

to reach some objective, e.g. specification structural coverage, test specific behaviours with

test purposes, and so on. During the offline test generation, all time constraints are resolved

before the execution, so the generated test cases are cheaper and faster to execute [59].

One of the main advantages of online testing is that the classical state space explosion

problem is reduced because only a limited part of the state space needs to be stored at any

point in time, whereas the state space explosion problem is very common when the offline

approach is adopted because the state space needs to be entirely built and stored. Another

advantage of online testing is that some important characteristics of real implementations

as non-determinism can be treated during the test execution more easily. However, online

testing may not be applicable in environments with limited resources, for example in the test

of some embedded systems (e.g. smart cards, mobile phones, music players, etc), because

of the need of very efficient test generation algorithms and many resources to execute them.

2.1.8 Symbolic Execution

Symbolic execution is a technique for analysing programs which represents program inputs

with symbolic values instead of concrete values [33; 71]. The execution of programs is

simulated by manipulating expressions involving symbolic values. Thus, the outputs are

expressed as a function of the symbolic inputs. This technique is used in different contexts

such as test input generation, reachability analysis, partial correctness proving of programs,

2.1 Software Testing 19

Algorithm 2.1: Code for Swapping Two Integers Variables

1 i n t x , y ;

2 i f (x > y) {

3 x = x + y ;

4 y = x − y ;

5 x = x − y ;

6 i f (x − y > 0) {

7 a s s e r t (f a l s e) ;

8 }

9 }

etc.

The execution paths of a program identified during its symbolic execution are represented

as a symbolic execution tree, whose nodes are the program states connected by program tran-

sitions. A program state includes the symbolic values of program variables, a path condition

(PC), and a program counter. A path condition is a (quantifier-free) boolean formula over

the symbolic inputs. When a PC is satisfiable means that it is possible to reach the specific

program point associated with it. Otherwise, the referred specific program point is unreach-

able.

Consider the code fragment in Algorithm 2.1, which swaps the values of integer variables

x and y when x is greater than y, with its corresponding symbolic execution tree presented

in Figure 2.2, where transitions are labelled with program statement line numbers [104]. At

the beginning, PC is true and x and y have X and Y as symbolic values, respectively. At

each statement of the code, PC is updated according to conditions associated with variables.

Analysing the symbolic execution tree of Figure 2.2, it is possible to conclude that line 7 of

Algorithm 2.1 is unreachable because the corresponding PC is not satisfiable. In practice,

constraint solvers are used to verify whether a path condition is satisfiable.

2.1.9 Symbolic Testing

In the last years, several theories and techniques of test case generation have been developed

through specifications modelled by variations of the classic LTS [12; 29; 40; 62; 85; 117].

Basically, LTS models and its variations represent a system behaviour through a graph where

2.1 Software Testing 20

Figure 2.2: Symbolic Execution Tree of Algorithm 2.1

the states are the possible system configurations and the edges represent the action of moving

between these configurations through actions occurrence.

However, LTS models are not suitable when the specification uses large or infinite data

domains because each value in the data domain is represented as a system state, leading to

the classical state space explosion problem. Consequently, many tools can only be used in

very restricted and finite domains.

In practice, test cases (written, for example, using TTCN [49]) can be real programs

with parameters and variables. In this context, a new approach to testing arises: symbolic

testing. Symbolic testing is a testing approach based on powerful models where variables

and parameters are explicitly modelled and treated in a symbolic way.

In the context of symbolic models, the principle is to adapt some existing approach to,

beyond representing the system behaviour, represent the system data without enumerating

the data values. There are still very few works in this context and most of them use (variations

of) state machines or labelled transition systems as the underlying model.

State machines tend to be used in synchronous contexts, where inputs and outputs appear

together in a single transition. Thus, they are unsuitable for representing some characteristics

of reactive systems such as non-determinism and interruptions. Considering the use of state

2.1 Software Testing 21

machines, there is a tool named GAST [72] that was extended to deal with Extended Finite

State Machines (EFSM) specifications. In this tool, properties and data types are expressed

in first-order logic, and based on this information, test data is automatically generated. This

tool is less suitable for testing because the concept of state is not present in a clear manner,

even though it is possible to represent states defining explicitly a complex data structure that

represents the state space. GAST’s algorithm unfolds, in an on-the-fly way, the data type

structure in order to select a path in the EFSM.

The use of (variations of) labelled transition systems is more common in the literature.

Lestiennes and Gaudel [85] developed a strategy of test generation and selection based on

selection hypotheses combined with an operation of unfolding algebraic data types and pred-

icate resolution. Frantzen et al. [52] extended the theory presented in [117] to support soft-

ware testing based on symbolic models. The symbolic framework developed by Frantzen

et al. uses concepts from first-order logic as underlying theory for dealing with guards and

variables, quiescence is taken into account, and some ideas about coverage is discussed.

However, the symbolic framework does not consider test purposes and there is no tool sup-

port. Calamé et al. [27] proposes an approach combining symbolic models, data abstraction,

and constraint solving to generate test cases. The main idea is to apply data abstraction to

abstract the model in a finite state one, use the TGV tool [62] to generate abstract test cases,

and finally, constraint solving is applied to instantiate the test cases.

One of the most solid approaches in the context of symbolic testing is presented in [32;

63; 64; 65; 108]. This method works directly on high-level specifications given as Input-

Output Symbolic Transition Systems (IOSTS) without enumerating their state space. Test

purposes are taken into account to verify specific behaviours of an implementation. Approx-

imate coreachability analysis is used to prune paths potentially not leading to pass verdicts

[63]. The coreachability analysis is based on Abstract Interpretation [36] and the concept

of test generation with verification techniques is also based on the theory presented in [62;

117]. Finally, constraint solving is applied to instantiate the test cases. Moreover, all the sym-

bolic testing approach is supported by the STG tool [32]. So, the theory related to IOSTS

will be presented in more detail below.

The IOSTS is a model of extended labelled transition systems that was inspired by I/O

automata [89]. An IOSTS is a symbolic automata with a finite set of locations, typed vari-

2.1 Software Testing 22

ables, and the communication with its environment is performed through actions carrying

parameters.

Definition 2.1 (IOSTS). Formally, an IOSTS is a tuple 〈V, P,Θ, L, l0,Σ, T 〉, where [108]:

• V is a finite set of typed variables;

• P is a finite set of parameters. For x ∈ V ∪ P , type(x) denotes the type of x;

• Θ is the initial condition, a predicate with variables in V ∪ P ;

• L is a finite, non-empty set of locations;

• l0 ∈ L is the initial location;

• Σ = Σ? ∪ Σ! ∪ Στ is a finite, non-empty alphabet, where Σ? is a finite set of input

actions, Σ! is a finite set of output actions, and Στ is a finite set of internal actions.

Each action a ∈ Σ has a signature sig(a) = 〈p1, ..., pk〉, that is a tuple of distinct

parameters. The signature of internal actions is the empty tuple;

• T is a set of transitions, where each transition consists of:

– a location l ∈ L, called the origin of the transition,

– an action a ∈ Σ, called the action of the transition,

– a predicate G with variables in V ∪ P ∪ sig(a), called the guard,

– an assignment A, such that for each variable x ∈ V there is exactly one assign-

ment in A, of the form x := Ax, where Ax is an expression on V ∪ P ∪ sig(a),

– a location l′ ∈ L, called the destination of the transition.

�

Figure 2.3 shows an example of an IOSTS. In graphical representations, input actions

are followed by the “?” symbol and output actions are followed by the “!” symbol. These

symbols are used only as notation, they are not part of the action’s name. The simple IOSTS

depicted in Figure 2.3 models the triangle problem, an example widely used in the litera-

ture [67; 101; 106]. The input of the problem is three integers representing the sides of a

triangle and the output is the type of the triangle. At the beginning, the system is in the

2.1 Software Testing 23

Idle location. Next, the system expects the Read input carrying three strictly positive integer

parameters p, q, and r. Then the values of the parameters are saved into the variables a,

b, and c, respectively. If the values of the variables do not represent a triangle the system

leaves the CheckTriangle location and goes to the End location emitting the NotATriangle

output. Otherwise, the system emits the IsTriangle output followed by the type of the triangle

(equilateral, isosceles, or scalene).

Figure 2.3: IOSTS Example

The semantics of IOSTS is defined through Input-Output Labelled Transition Systems

(IOLTS) [35]. An IOLTS is a variant of the classic LTS that makes distinction between

events of the system that are controllable by the environment (the inputs) and those that are

only observable (the outputs) [117]. Moreover, internal actions can be represented too.

Definition 2.2 (IOLTS). An IOLTS is a tuple 〈Q,Q0,Λ,→〉, where [35]:

• Q is a possibly infinite set of states;

• Q0 ⊆ Q is the possibly infinite set of initial states;

• R = Λ? ∪ Λ! ∪ Λτ is a possibly infinite set of actions, where Λ? is the set of input

actions, Λ! is the set of output actions, and Λτ is the set of internal actions;

2.1 Software Testing 24

• →⊆ Q× Λ×Q is the transition relation.

�

Intuitively, the IOLTS semantics of an IOSTS 〈V, P,Θ, L, l0,Σ, T 〉 enumerates the pos-

sible values of the variables V and parameters P through the valuations of their domains. A

valuation of the variables V is a mapping ν which maps every variable x ∈ V to a value ν(x)

in the domain of x. Valuations of parameters P are defined similarly.

Let V denote the set of valuations of the variables V and let Γ denote the set of valuations

of the parameters P . Considering ν ∈ V and γ ∈ Γ, an expression E involving a subset of

V ∪ P , denoted by E(ν, γ), is the value obtained by evaluating the result of the replacement

in E of each variable by ν and each parameter by γ.

Definition 2.3 (IOLTS semantics of an IOSTS). The semantics of an IOSTS S =

〈V, P,Θ, L, l0,Σ, T 〉 is an IOLTS S = 〈Q,Q0,Λ,→〉, defined as follows [35]:

• Q = L× V is the set of states;

• Q0 = {〈l0, ν〉 | Θ(ν) = true} is the set of initial states;

• Λ = {〈a, γ〉 | a ∈ Σ, γ ∈ Γsig(a)} is the set of actions, where Λ is partitioned into the

sets Λ? of input actions, Λ! of output actions, and Λτ of internal actions;

• → is the smallest relation in Q× Λ×Q defined by the following rule:

〈l, ν〉, 〈l′, ν ′〉 ∈ Q 〈a, γ〉 ∈ Λ t : 〈l, a,G,A, l′〉 ∈ T G(ν, γ) = true ν ′ = A(ν, γ)

〈l, ν〉 〈a,γ〉→ 〈l′, ν ′〉
.

�

Intuitively, the rule says that the system moves from a state 〈l, ν〉 to a state 〈l′, ν ′〉 through

an action 〈a, γ〉 if there is a transition t : 〈l, a,G,A, l′〉 whose guard G is evaluated to true.

Finally, the assignment A maps the pair (ν, γ) to ν ′.

Next, we present some important definitions used to define the conformance relation

between IOSTS specifications and the implementation of the system under test.

Definition 2.4 (Traces). Let L0 denote the set of initial states. For an IOSTS R we denote

by traces(R) the set {σ ∈ (Σ? ∪ Σ!)∗ | ∃l0 ∈ L0,∃l ∈ L, l0 σ⇒ l}. �

2.1 Software Testing 25

Definition 2.5 (After). For σ ∈ (Σ? ∪ Σ!)∗, we denote by R after σ the following set of

states: {l ∈ L | ∃l0 ∈ L0, l0
σ⇒ l}. �

Definition 2.6 (Out). For L′ ⊆ L be a set of states, we denote by out(L′) the set of valued

outputs that can be observed in states l′ ∈ L′, that is, out(L′) = {α ∈ Ω | ∃l′ ∈ L′,

∃l ∈ L, l′ α⇒ l}. �

Definition 2.7 (Pref). For a set of traces T, we denote by pref(T) the set of strict prefixes of

sequences in T. �

Next, the formal framework for conformance testing presented in [118] (Subsection

2.1.5) and the formal framework for test purposes presented in [41] (Subsection 2.1.6) are

instantiated. For this, the following concepts related to the frameworks must be defined:

specifications, implementations, test purposes, test cases, verdicts, and the conformance re-

lation.

Specifications. A specification is an IOSTS without cycles of internal actions.

Implementations. An implementation can be any computer system that can be modelled

by an IOSTS.

Test Purposes. A test purpose is an IOSTS that describes a specific scenario to be verified.

Before seeing the formal definition of a test purpose it is important to know two characteris-

tics of IOSTS: completeness e compatibility.

Definition 2.8 (Completeness). An IOSTS is complete if for each l ∈ L, α ∈ Σ, the set

{l′|l α→ l′} is non-empty, that is, each location allows all actions. �

Definition 2.9 (Compatibility). Let S1 = 〈V1, P1,Θ1, L1, l
0
1,Σ1, T1〉 and S2 =

〈V2, P2,Θ2, L2, l
0
2,Σ2, T2〉 be two IOSTS. We say that S1 and S2 are compatible if V1∩V2 = ∅,

P1 = P2, Σ!
1 = Σ!

2, Σ?
1 = Σ?

2, and Στ
1 ∩ Στ

2 = ∅. �

Definition 2.10 (Test Purpose). Let S = 〈V, P,Θ, L, l0,Σ, T 〉 be an IOSTS. A test purpose of

S is an IOSTS T P = 〈VT P , PT P ,ΘT P , LT P , l0T P ,ΣT P , TT P〉 together with a set of locations

AcceptT P ⊆ LT P and RejectT P ⊆ LT P such that T P is complete and compatible with S.

�

Figure 2.4 presents an example of a test purpose for the triangle problem example. It is

used to select scenarios where the user chooses inputs such that the triangle is equilateral.

2.1 Software Testing 26

Figure 2.4: Test Purpose Example

The Reject location is used to discard all other scenarios where the system does not exhibit

the desired behaviour. This test purpose is not complete but it is implicitly completed by the

test case generation tool, so the activity of defining test purpose is simplified by allowing to

focus only on the desired behaviour.

Test Cases. Test cases are used to assign verdicts to implementations.

Definition 2.11 (Test Case). A test case is an input-complete, deterministic IOSTS with three

disjoints sets of locations: Pass, Inconclusive, and Fail. �

An example of a test case is showed in Figure 2.5. It starts by providing three integer

values to an implementation of the triangle problem example. Then it expects to receive

a message informing that the chosen values represent the sides of a triangle. Next, if the

system says that the triangle is equilateral, the verdict is Pass, that is, the implementation is

in conformance with the specification and the test purpose. If some other response allowed

Figure 2.5: Test Case Example

2.1 Software Testing 27

by the specification is emitted then the verdict is Inconclusive. Finally, if an unspecified

output is emitted then the verdict is Fail.

Conformance. The conformance relation links an implementation to the specification and

the test purpose. In order to formally define the conformance relation it is needed to define

a product operation that identifies in the specification all possible traces obtained with the

specified test purpose.

Definition 2.12 (Product). The product P = S1 × S2 of two compatible IOSTS S1, S2 is

the IOSTS 〈V, P,Θ, L, l0,Σ, T 〉 defined by: V = V1 ∪ V2, P = P1 = P2, Θ = Θ1 ∧ Θ2,

L = L1 × L2, l0 = 〈l01, l02〉, Σ? = Σ?
1 = Σ?

2, Σ! = Σ!
1 = Σ!

2, Στ = Στ
1 ∪Στ

2 . T is the smallest

set of transitions satisfying the following rules [35]:

1. 〈l1,a,G1,A1,l′1〉 ∈ T1, a ∈ Στ1 , l2 ∈ L2

〈〈l1,l2〉,a,G1,A1∪(x:=x)x∈V2
,〈l′1,l2〉〉 ∈ T

and 〈l2,a,G2,A2,l′2〉 ∈ T2, a ∈ Στ2 , l1 ∈ L1

〈〈l1,l2〉,a,G2,A2∪(x:=x)x∈V1
,〈l1,l′2〉〉 ∈ T

2. 〈l1,a,G1,A1,l′1〉 ∈ T1 〈l2,a,G2,A2,l′2〉 ∈ T2
〈〈l1,l2〉,a,G1∧G2,A1∪A2,〈l′1,l′2〉〉 ∈ T (for a ∈ Σ! ∪ Σ?)

�

The Rule 1, defined above, allows internal actions to evolve independently in each IOSTS

and Rule 2 allows the synchronization of the observable actions of the two IOSTS.

Definition 2.13 (Atraces). Let P = S × T P be the product of the specification S with a

test purpose T P . Then Atraces(P) is the set of traces of the specification that are selected

according to the test purpose. �

Definition 2.14 (Conformance Relation). Let S be a specification modelled by an IOSTS,

T P be a test purpose for S, and P = S × T P their product.

1. An implementation I is in conformance with the specification S, denoted by I conf S ,

if for all traces σ ∈ traces(S) : out(I after σ) ⊆ out(S after σ).

2. An implementation I is in conformance with the specification S and the test pur-

pose T P , denoted by I confT P S, if for all traces σ ∈ pref(Atraces(S × T P)) :

out(I after σ) ⊆ out(S after σ).

�

2.2 Real-Time Systems 28

Intuitively, an implementation conforms to a specification if for all traces of the specifica-

tion, the set of output actions of the implementation is contained in the set of output actions

of the specification. In the second case, an implementation conforms to a specification and

a test purpose if the same inclusion holds for each prefix of a trace of the product between

specification and test purpose.

2.2 Real-Time Systems

At the same proportion in which computer systems become increasingly complex and ubiq-

uitous in our lives, applications with time restrictions have become increasingly common.

Among some examples of these types of applications we can cite military systems, control

systems for chemical and nuclear industries, multimedia systems, air traffic control systems,

elevator control systems, monitoring of patients in hospitals, embedded systems in robots,

cars, airplanes, etc. All these applications have an important characteristic in common: time

requirements. For such systems with explicit time requirements, the correct behaviour de-

pends not only on the correctness of the results but also depends on the time at which they

are produced [31]. Computer systems with this kind of restrictions are known as Real-Time

Systems (RTS).

The classical view of computer systems is that, at some level of abstraction, they are

regarded as a black box that receives inputs and provides appropriate outputs, finishing its

execution after that (e.g., compilers, numerical analysis applications, and so on). However,

most of current computer systems constantly interact with the environment around them

continuously sending responses to input stimuli from the environment. These systems are

characterized by their executions never finishing and are known as Reactive Systems. In

general, RTS fit in the concept of Reactive Systems. In this context, we can say that RTS are

computer systems that respond to input stimuli, originated from the environment in which

they are inserted, in specific times [79].

According to the level of compliance with time requirements, real-time systems can be

classified into Soft Real-Time Systems and Hard Real-Time Systems. Delays related to

compliance with a response-time constraint (deadline) can be tolerated in a soft real-time

system. On the other hand, systems in which failure to meet response-time constraints may

2.2 Real-Time Systems 29

lead to complete and catastrophic system failure are called hard real-time systems [79].

Soft real-time systems are typically used in a scenario where some elements concurrently

interact to produce outputs due to input stimuli, for instance, some packets can be dropped in

audio or video applications. In this case, violation of constraints results in degraded quality,

but the system can continue to operate. A word-processing application is another example

since it should respond to stimuli within a reasonable amount of time or its use will be

impractical.

Hard real-time systems are used when it is essential to react to an event within a strict

deadline. This kind of system requires strong time requirements because the loss of a dead-

line can mean losses in financial, environmental, or human terms. As examples of hard

real-time systems we can cite medical systems such as heart pacemakers, chemical and nu-

clear industrial process controllers, a car engine control system, and so on. Hard real-time

systems are typically found interacting at a low level with physical hardware, in embedded

systems.

2.2.1 Modelling Time

In the study of real-time systems, one essential question is the nature of time. Specifying

timing properties is difficult and may take different focuses. The focus considered in this

work is that time can be classified into discrete or dense time [5].

The discrete or digital-time model considers time as being a monotonically increasing

sequence of integers. This model allows to quantitatively express the distance between two

events and establish total orders between them with a high level granularity. One of the

advantages of this model is that its transformation to other formal languages is easier. One

of the disadvantages is that the events of the real world do not always happen at integer-

valued times.

In a dense or analogue-time model time increase monotonically as a sequence of real

numbers. This model also allows quantitatively express the distance between two events

but in a low level granularity. This model is more natural to represent events of the real

world because everything happens in a continuous time. One disadvantage is that dense-

time models are not simple to transform to a formal language and they are harder to analyse

than in the discrete case.

2.2 Real-Time Systems 30

2.2.2 Events

The nature of events is another important concept related to the study of real-time systems.

Considering software systems in general, a change in state results in a change in the flow

of control of the system. This change in the flow of control can be triggered by commands

like if-then-else, case, invocation of procedures or methods, and so on. Thus, an event is any

occurrence that causes a change in the flow of control of a software system [79].

Considering the context of real-time systems, events can be classified into synchronous

and asynchronous events. The former are those that occur at predictable points in the flow of

control and are represented by conditional branches, invocation of procedures or methods,

occurrence of internal trap interruptions (in the case of exception handling), etc. The latter

occur at unpredictable points in the flow of control. An important characteristic of the asyn-

chronous events is that they are usually caused by external sources, for instance, an alarm

system of a building has sensors to detect intruders and once a movement has been detected,

the sensors interrupt the main application of the alarm system. In this scenario, the main

application of the alarm system cannot predict when an event will occur because it is caused

by external sources.

Synchronous and asynchronous events can be classified into periodic and aperiodic

events [79]. Considering the alarm system example cited above, as the events do not oc-

cur at regular intervals they are called aperiodic asynchronous events. When interruptions

are generated by a periodic external clock they can be classified as periodic asynchronous

events. A periodic synchronous event is one represented by a sequence of invocation of tasks

in a cyclic code, for instance a cyclic invocation of a method. A conditional branch that is

not part of a code block (e.g. garbage collection) represents an aperiodic synchronous event.

2.2.3 Modelling Real-Time Systems

There are several formalisms in the literature for modelling real-time systems: timed au-

tomata [5], timed CSP [107], time Petri nets [16], real-time logics [22], and timed extended

finite state machines [96]. This subsection introduces the most used formalisms: timed la-

belled transition systems and timed automata with their variations.

Timed Labelled Transition Systems (TLTS) is the simplest model (Definition 2.15). It

2.2 Real-Time Systems 31

Figure 2.6: TLTS Example

is an extension of the classic LTS where the actions are divided into discrete and time-

elapsing actions. The difference between discrete and time-elapsing actions is that the former

occurs instantaneously, i.e. without consuming time, whereas the latter represents the time

evolution.

Definition 2.15 (TLTS). Formally, a TLTS is tuple 〈S, s0, Act, T 〉, where:

• S is a finite, non-empty set of states;

• s0 ∈ S is the initial state;

• Act = A ∪ D is a set of actions, where A is a finite set of discrete actions and D =

{d | d ∈ R≥0} is a set of time-elapsing actions;

• T ⊆ S × Act× S is the transition relation with the following properties:

– Time Determinism: ∀s, s′, s′′ ∈ S: if s d→ s′ and s d→ s′′, then s′ = s′′

– Time Additivity: ∀s, s′′ ∈ S, ∀d1, d2 ≥ 0 : (∃s′ ∈ S : s
d1→ s′

d2→ s′′) iff

s
d1+d2→ s′′

– Null Delay: ∀s, s′ ∈ S : s
0→ s′ iff s = s′.

�

An example of a TLTS is shown in Figure 2.6. That example represents a scenario

where, starting in state s0, we delay for 2.5 units of time, after which we reach s1, where we

immediately execute action a, reach s2, delay for 0.5 units of time, after which we reach s3,

where we immediately execute x, and reach state s4.

The Timed Input-Output Labelled Transition System (TIOLTS) is an extension of TLTS

where the set of discrete actions A is partitioned into input and output actions.

Definition 2.16 (TIOLTS). A TIOLTS is a timed labelled transition system 〈S, s0, Act, T 〉

with Act = AI ∪AO ∪D (AI ∩AO = ∅), where AI is a finite set of input actions and AO is

a finite set of output actions. �

2.2 Real-Time Systems 32

Figure 2.7: TIOLTS Example

Figure 2.7 presents an example of TIOLTS. It means that, starting in state s0, we delay for

2.5 units of time, after which we reach s1, where we immediately provide the input action a

to the system, reach s2, delay for 0.5 units of time, after which we reach s3, where the system

immediately responds with the output action x, and reach state s4.

Most of the work related to real-time model checking and testing is based on Timed

Automata (TA). It was firstly proposed by Alur and Dill [5] and ever since many variations

have been proposed.

Definition 2.17 (TA). A Timed Automaton is a tuple 〈Q, q0, Act, C,E〉, where:

• Q is a finite set of locations;

• q0 ∈ Q is the initial location;

• Act is a finite set of actions;

• C is a finite set of clocks;

• E is a finite set of transitions. Each transition is a tuple 〈q, q′, a, λ, δ〉, where:

– q, q′ ∈ Q are the source and destination locations,

– a ∈ Act is the action of the transition,

– λ ⊆ C is the set of clocks to reset to zero,

– δ is a clock constraint over C. δ is defined inductively by

δ := x#c | δ1 ∧ δ2,

where c is an integer constant and # ∈ {<,≤,=,≥, >}.

�

Figure 2.8 presents an example of a timed automaton that models the same scenario

represented in Figure 2.6. Considering timed automata, it is assumed all clocks are reset to

2.2 Real-Time Systems 33

Figure 2.8: TA Example

zero at the beginning. In Figure 2.8, there is a single clock w and the notation w := 0 means

the action of resetting the clock w. Similarly, the notations w = 2.5 and w = 0.5 represent

the clock constraints associated with the transitions. The automaton starts in location s0 and,

once the transition is enabled (i.e. w = 2.5), the action a is executed, reaching the location

s1. The clock is reset to zero along with this transition. The time elapsed since the occurrence

of the action a is shown by the value of clock w. The transition from location s1 to location

s2 is enabled only if this value is equal to 0.5, where the action x is immediately executed.

The semantics of TA can be defined in terms of an infinite TLTS (Definition 2.18). Let

the function υ : C → R≥0 denote a clock valuation υ.

Definition 2.18 (TLTS semantics of a TA). The semantics of a TA A = 〈Q, q0, Act, C,E〉 is

a TLTS LA = 〈S, s0, Act, T 〉, defined as follows:

• S = Q × (C → R≥0) is the set of states of the form s = (q, υ) where q ∈ Q is a

location and υ is a clock valuation;

• s0 = (q0,~0) is the initial state, where ~0 is the valuation assigning 0 to every clock in

C;

• Act = A ∪D is the set of actions, where A is the set of discrete actions and D = {d |

d ∈ R≥0} is the set of time-elapsing actions;

• T is the transition relation defined as follows: (1) transitions with discrete actions are

of the form (q, υ)
a→ (q′, υ′), where a ∈ Act and there is a transition 〈q, q′, a, λ, δ〉,

such that υ satisfies δ and υ′ is obtained by resetting to zero all clocks in λ; (2) tran-

sitions with time-elapsing actions are of the form (q, υ)
d→ (q, υ + d) for all d ∈ R≥0

such that υ |= δ and υ + d |= δ.

�

2.2 Real-Time Systems 34

Figure 2.9: TAIO Example

Timed Automata with Inputs and Outputs (TAIO) is an extension of TA where the set

of actions Act is partitioned in two disjoint sets: a set of input actions and a set of output

actions.

Definition 2.19 (TAIO). A TAIO is a timed automata 〈Q, q0, Act, C,E〉 whereAct = ActI∪

ActO, such that ActI is a finite set of input actions and ActO is a finite set of output actions.

Moreover, ActI ∩ ActO = ∅. �

The semantics of TAIO can be defined in terms of an infinite TIOLTS in a similar manner

as described for TA. Figure 2.9 presents an example of a TAIO. This example represents the

scenario of Figure 2.8 and it states that the system must receive the input a exactly with 2.5

units of time. Finally, the system must output b exactly with half of one unit of time.

As the semantics of TA and TAIO is defined in terms of infinite timed labelled transition

systems, both verification and testing techniques must deal with large sets of states which

may lead to the state space explosion problem. In this case, it is important to have an effi-

cient symbolic representation of the state space. One of the most efficient representations is

based on the notion of zone [42; 58; 122; 123]. A zone represents the maximal set of clock

valuations that satisfy a constraint.

The analysis of the state space using this symbolic representation requires some opera-

tions such as:

• The future of a zone Z, defined by ~Z = {z + d | z ∈ Z, d ∈ R≥0};

• The intersection of two zones Z and Z ′, defined by Z ∩ Z ′ = {z | z ∈ Z, z ∈ Z ′};

• The reset to zero λ ⊆ C of Z, defined by [λ← 0]Z = {[λ← o]z | z ∈ Z}.

All these operations are graphically illustrated in Figures 2.10, 2.11, and 2.12, respec-

tively.

2.2 Real-Time Systems 35

Figure 2.10: Example of the Future Operation

Figure 2.11: Example of the Intersection Operation

Figure 2.12: Example of the Reset to Zero Operation

2.2.4 Testing of Real-Time Systems

The increasing use of real-time systems, in most different contexts, has been demanding

investments in order to increase the reliability and integrity of such systems. Some research

efforts have been expended in devising techniques such as model checking [13; 31; 54],

where the correctness of models is verified in an automated and accurate manner. However,

if the same rigour is not applied to the test of the implementation, a gap is created between

2.2 Real-Time Systems 36

these processes, allowing the presence of defects in the implementation even if the model

had been successfully verified.

Since research in the real-time software testing field is very recent, the developed tech-

niques and tools are still immature and difficult to use in practice. Thus, one of the challenges

today is the search for methods, techniques and tools to support the test of systems with time

restrictions. Nevertheless, real-time systems have several distinguishing characteristics that

may need to be taken into account during the testing process, leading to the most difficult

challenges in software testing [121].

The test of real-time systems is more difficult than the test of non-real-time systems be-

cause the correct behaviour of the former depends not only on the correct results but also

when they are emitted. Thus, it is essential to develop techniques to interact with the sys-

tem: (1) by providing inputs at the correct time and (2) by observing and evaluating if the

generated results are correct in terms of integrity and timing.

Real-time systems are usually composed of parallel activities. So, the models must

represent such parallelism between many elements and allow ways of communication be-

tween these elements. As previously said, RTS are extremely related to events that of-

ten occur in terms of interruption signals from the arrival of data, ticking of a hard-

ware clock, or an error alarm. To provide an effective solution for testing, it is cru-

cial to define models capable of representing these asynchronous events. In addition, the

model has to be composable, allowing events to be combined at different points of possi-

bly different flows of execution. Research in this direction is practically nonexistent and

some approaches only consider interruptions in a non-real-time context [7; 8; 9; 12; 29;

39].

Another hard activity of testing real-time systems is the test execution. Considering an

environment composed of several processes executing at the same time with synchronous and

asynchronous events, it is very difficult to have control of the whole environment. Current

work in the literature consider so many hypotheses related to the environment and the system

under test that the results sometimes are not useful in practice. It is needed testing techniques

and theories that allow one to have interesting conclusions without having the environment

fully controllable.

A pass verdict is emitted when the system produces an acceptable result on time. The

2.3 Concluding Remarks 37

addition of time in the validation of RTS, the unpredictability of events, and the absence

of controllability during the test execution lead to a harder oracle problem. This happens

due to the fact that it is very difficult to have total control of an environment with parallel

activities during the test execution. Moreover, in practice, the time cannot be controlled and

it is treated in different abstraction levels by the tester and the specification. In this case, test

hypotheses must be defined in order to achieve valid verdicts. To the best of our knowledge,

approaches in the direction of solving the oracle problem considering the context of real-time

systems are practically nonexistent.

2.3 Concluding Remarks

This chapter presented the theoretical basis necessary for the understanding of this work. At

the beginning, the main concepts related to software testing were presented, for instance test

cases, oracles, approaches to identify test cases, conformance testing, and testing techniques

like model-based testing, property oriented testing, and symbolic testing.

With respect to the real-time systems context, we described what a real-time system is

and discussed several characteristics like how the time can be modelled, the types of existing

events, some classical notations used to model RTS, and the difficulties to test real-time

systems.

Chapter 3

Interruption Testing of Reactive Systems

In order to provide an effective solution for interruption testing, it is crucial to define a

model capable of representing such interruptions and, consequently, make the automatic test

case generation process possible. In addition, the model has to be composable, allowing

interruptions to be combined at different points of possibly different flows of execution.

Moreover, due to the large amount of possible test cases, selection strategies need to be

applied to reduce the size of test suites. Furthermore, the test execution environment should

be carefully considered so that execution requirements and constraints are properly identified

and handled.

This chapter presents an approach to conformance testing of reactive systems with in-

terruptions that covers modelling (devoted to testing), generation and selection of sound test

cases [9]. The model adopted is named Annotated Labelled Transition System (ALTS). This

kind of Labelled Transition System (LTS) has special descriptions inserted into the model in

order to make the test case generation process feasible. LTSs are good models for functional

testing because all needed information is the observable interactions between applications

and environment and between applications. Also, they are the underlying formalism of most

formal notations for reactive applications. The proposed model is implemented by the LTS-

BT tool [29] and a case study is performed to illustrate the benefits of the strategy when

compared to manual selection.

Interruption testing was investigated in [6] considering the mobile phone applications

context, but only an operational strategy was proposed. This chapter presents a formalised

approach for reactive systems in general. Furthermore, the work presented in [9] and de-

38

3.1 Context 39

scribed in this chapter extends the work presented in [8], covering the following aspects: (1)

algorithms defined to translate high level specifications into ALTS models are presented; (2)

the case study is presented in more details and results are more thoroughly discussed.

3.1 Context

In general, the test process in the context of this chapter starts with a specification of the

System Under Test (SUT) and interruptions. Given high level specifications, an ALTS model

is automatically generated. Finally, the ALTS model is combined with test purposes for

interruption test case generation. The interruption test process uses test purposes in order to

test at specific points of interest. A general view of this test process is presented in Figure 3.1.

This process considers the test architecture presented in Figure 3.2. In this test architecture,

two elements are important: the SUT and the TESTER. The SUT is composed of the main

application and interruptions allowed during the test process. The environment is assumed to

be fully controllable by the TESTER, thus, during test execution the TESTER has total control

of the interruptions, deciding when they start and finish.

Figure 3.1: Interruption Test Process

The SUT is specified as use cases using a controlled natural language [26; 84; 115]. An

example of a use case of a mobile phone application is shown in Figure 3.3. This represents

the behaviour of removing a message from inbox. A use case must have a main flow and

can have some alternative flows. The flows are described through steps that include a user

action and the respective system response. For instance, the step “4M" has the selection of

the “Remove" option, and the respective system response is to show an alert saying that the

message was removed.

Besides the actor action and the system response, each step has a condition (System State)

3.1 Context 40

Figure 3.2: Test Architecture

Figure 3.3: Remove Message Specification

3.2 Interruption Model 41

that determines if the system response will happen or not. If the condition is not satisfied, an

alternative flow must be specified. As an example, the step “4M" of the main flow has one

alternative flow (steps “1A" and “2A").

Considering the specifications of interruptions, the idea is to specify an interruption in

the same way by using the same use case template that is used to specify a simple behaviour

of the SUT [39]. For instance, Figure 3.4 presents the behaviour of an incoming alert inter-

ruption. This interruption specifies the arrival of a new kind of text messages where the text

appears to the user inside a dialog box.

Figure 3.4: Incoming Alert Interruption Specification

Once the interruption flow is specified, we assume that it can be executed at any time

of another use case execution, that is, between any step of another use case. With this

specification strategy, interruption behaviours are defined in a simple manner and all points

where an interruption can occur do not need to be explicitly specified.

3.2 Interruption Model

This section presents the proposed ALTS model structure capable of representing interrup-

tions. Firstly, interruptions are represented with IOLTS models (Definition 2.2) to illustrate

the challenges and the desired semantics for ALTS models. Secondly, ALTS models are de-

fined, their structure is illustrated by an application in the mobile phone domain, and their

semantics are defined showing how an ALTS can be converted into an IOLTS. Finally, the

notion of conformance considered is discussed.

3.2 Interruption Model 42

3.2.1 Representing Interruptions with IOLTS Models

Considering the conformance testing approach, LTS is one of the most used formalisms. Ba-

sically, LTS models are represented by graphs where the nodes are the possible system states

and the edges represent the transition between these states through occurrence of actions.

LTSs can be used for modelling the behaviour of systems such as specifications, implemen-

tations, and tests, and it serves as a semantic model for several formal languages such as

CCS and CSP [116; 117].

Particularly in the case of reactive systems, the underlying model should represent the

interaction of the system with its environment by distinguishing between inputs and outputs.

In this case, IOLTS models are used. Figure 3.5 shows an example of an IOLTS. An input

event is defined using the symbol “?” followed by the event name and an output event is

defined using the symbol “!” followed by the event name.

Figure 3.5: Simple IOLTS Figure 3.6: Modelling Interruptions Using IOLTS

It is possible to model interruptions using an IOLTS. For this, each possibility of in-

terruption needs to have a specific set of states, implying that interruption flows must be

duplicated. Figure 3.6 shows an example of how to model interruptions using IOLTS. Nodes

from 0 to 4 are related to a behaviour that can be interrupted by another behaviour at nodes

1 and 3. State 5 represents the possibility of interruption at node 1 and state 6 the possibility

of interruption at node 3. Note that nodes 5 and 6 represent the same interruption behaviour.

The replication of the interruption model is due to the semantics of the behaviour. Sup-

pose that only one state had been used to represent the interruption behaviour, then it would

not be possible to associate a unique next state to the end of the interruption execution. After

an interruption execution, the flow needs to continue from the same point where the inter-

ruption had started.

3.2 Interruption Model 43

3.2.2 Annotated Labelled Transition Systems

ALTSs are capable of representing interruptions in a more compact way, following the same

semantics presented in the previous subsection. This new kind of LTS follows the same clas-

sical LTS definition. The difference is that each label is associated with a description. This

new description inserted into the model is called an annotation. Before defining an ALTS, a

definition of a Generic Annotated Labelled Transition Systems (GALTS) is presented.

Definition 3.1 (GALTS). A GALTS is a 5-tuple 〈Q,A,L, q0, T 〉, where:

• Q is a countable, non-empty set of locations;

• A is a countable, non-empty set of annotations;

• L is a countable, non-empty set of labels;

• q0 ∈ Q is an initial location;

• T is a set of transitions. Each transition consists of:

– a location q ∈ Q, called the origin of the transition;

– an annotation a ∈ A, called the annotation of the transition;

– a label l ∈ L, called the label of the transition;

– a location q′ ∈ Q, called the destination of the transition.

�

As said before, each label has an associated description (annotation). So in the GALTS

definition (Definition 3.1) we have a set A that contains the possible descriptions of the la-

bels. This set can be instantiated according to the information to be modelled or the context

where the model will be used. In this work, the focus is on a model to support the test pro-

cess, mainly a model capable of representing interruptions efficiently. Thus, a more specific

GALTS is defined where the set A of annotations has predefined elements.

Definition 3.2 (ALTS). An ALTS is a 5-tuple 〈Q,A,L, q0, T 〉, where:

• Q is a countable, non-empty set of locations;

3.2 Interruption Model 44

• A = {steps, conditions, expectedResults, beginInterruption_X, endInterruption_X} is

the set of annotations;

• L is a countable, non-empty set of labels;

• q0 ∈ Q is an initial location;

• T is a set of transitions. Each transition consists of:

– a location q ∈ Q, called the origin of the transition;

– an annotation a ∈ A, called the annotation of the transition;

– a label l ∈ L, called the label of the transition;

– a location q′ ∈ Q, called the destination of the transition.

�

These annotations were chosen with the following specific goals: (1) guide the test case

generation process, by making the focus on particular interruptions easier; (2) make it pos-

sible for interruption models to be plugged and unplugged without interfering with the main

model; (3) guide test case documentation; (4) make it possible for conditions to be associated

with actions; (5) indicate points where interruptions can be reasonably observed externally.

The annotation steps is associated with a label l ∈ L (we write [steps]l) to indicate that l

is an input action. When a label l ∈ L represents a condition associated with an input action,

we use the annotation conditions and write [conditions]l. The expected results are indicated

through expectedResults annotation ([expectedResults]l). Two other annotations are used

to indicate the start and the end of an interruption and they are considered as special kinds of

input actions and expected results, respectively. So the labels in L represent the observable

actions (input or output actions) or some condition associated with these actions.

Let W = 〈Q,A,L, q0, T 〉 be an ALTS. We write q
[a]l→ q′ for (q, a, l, q′) ∈ T and q

[a]l→

for ∃q′ : q
[a]l→ q′. An ALTS can be defined by its initial location, then we write W → for

q0 →. Depending on the associated annotation, the labels can be classified as input actions,

output actions, and conditions. Thus, let L = LI ∪ LO ∪ LC , where LI is the set of input

actions, LO is the set of output actions, and LC is the set of conditions. Let a(i) ∈ A be some

annotations, ω(i) ∈ L be some labels, σ ∈ ([A]L)∗ a sequence of labels with their respective

annotations, and q, q′ ∈ Q some locations.

3.2 Interruption Model 45

Let Ω(q)
∆
= {[a]ω | a ∈ A, ω ∈ L, q [a]ω→} be the set of actions reachable from q. Also, let

Out(q)
∆
= Ω(q)∩ [A \ {steps, conditions, beginInterruption_X}]LO be the set of outputs

reachable from q. The definition of Out(q) can be extended for sets of locations: for P ⊆ Q

we have Out(P)
∆
=

⋃
q∈P Out(q). Denote q

[a1]ω1...[an]ωn→ q′
∆
= ∃q0, . . . , qn : q = q0

[a1]ω1→

q1
[a2]ω2→ . . .

[an]ωn→ qn = q′. The set q after σ ∆
= {q′ ∈ Q | q σ→ q′} is the set of locations

reachable from q, and P after σ ∆
=

⋃
q∈P q after σ is the set of locations reachable from

the set P . Traces(q) ∆
= {σ ∈ ([A]L)∗ | q σ→} describes the sequences of labels with their

respective annotations reachable from q. Considering the sequences of labels and annotations

reachable from the initial location of an ALTS W , we define Traces(W)
∆
= Traces(q0).

Considering our running example presented in Section 3.1, Figure 3.7 presents an ALTS

model that represents the behaviour of removing a message from inbox. This application

is specified by the use case shown in Figure 3.3. The model where interruptions can occur

will be illustrated with the scenario where that feature specified by the use case shown in

Figure 3.3 can be interrupted at some points by the Incoming Alert interruption (interruption

specified by the use case presented in Figure 3.4). The scenario described above is presented

in Figure 3.8. Note that locations from 0 to 13 are related to the remove message behaviour

(Figure 3.3), and locations from 14 to 17 are related to the Incoming Alert interruption (Fig-

ure 3.4).

From Figure 3.8, the interruption model is connected to the feature that can be interrupted

Figure 3.7: Remove Message behaviour

3.2 Interruption Model 46

Figure 3.8: Remove Message behaviour with Interruptions

(the main flow) using two new annotations: beginInterruption_X and endInterruption_X,

where X is a counter. These annotations are used to indicate where the main flow has been

interrupted. Also, they are needed to represent the behaviour where the main flow continues

its execution from the same point where it had been interrupted. For instance, if an interrup-

tion begins with the beginInterruption_0 annotation it must finish with endInterruption_0.

One of the main advantages of using the Annotated LTS is that we can add the same

interruption behaviour to many different points only by manipulating the two new annota-

tions (beginInterruption_X and endInterruption_X). Thus, we can represent interruptions in

a more compact way than standard LTS, while preserving the same efficiency and precision

3.2 Interruption Model 47

in test generation (this is discussed in Section 3.4).

Considering time as being continuous, an interruption can occur at infinite points during

the system execution. But considering the tester’s point of view, each possibility of interrup-

tion can only be observed after each system response. This happens due to the fact that it

is impractical to reproduce a scenario where an interruption occurs between an input action

and the system response, mainly when tests are manually executed. It is important to remark

that this is a limitation of the test process in general and not of the proposal presented in this

chapter. Thus, the intention is to represent only interruptions that occur immediately after

the system responses. In this case, Figure 3.8 represents all possibilities of interruption from

the tester’s point of view.

Note that, as we are considering an LTS model for testing, only functionalities to be

tested are specified. Thus, we have a partial behavioural model. From the tester’s point of

view, only the specified behaviour is observed, and with this, all other behaviours are not

observed during the test, including other possible interruptions. We are assuming that the

test execution environment is controlled by the tester, that is, an interruption only occurs

when the tester wishes that it occur.

In practice, this interruption model should not be written by hand because it is tiresome

and not cost-effective. It must be generated directly from abstract specifications. The ALTS

model presented in this section is automatically generated from those use case templates

described in Section 3.1 by the LTS-BT tool [29]. This tool is described in more details in

the next section.

The semantics of ALTS models can be defined in terms of IOLTS models. Basically,

locations in the ALTS model are states in the IOLTS plus additional states that are created to

replicate the interruption behaviour. Labels annotated with steps, conditions, beginInterrup-

tion_X are input actions in the IOLTS, whereas labels annotated with expectedResults and

endInterruption_X are output actions in the IOLTS. The transition function is incremented

by the replication of interruption behaviour by considering the new states added. The most

non-trivial element in this association is the condition transition. The reason to map them to

input action is that they often represent in test models different paths of execution of the ap-

plication. When a condition is associated with a test case, this often means that the tester will

need to properly set up the application so that a particular flow of execution can be tested.

3.2 Interruption Model 48

Therefore, in test case documentation, they are often promoted to an initial condition that

will demand an input set up information.

3.2.3 Testing Conformance

This work considers a testing theory that is based on the notions of specification, implementa-

tion, and a conformance relation between them [118]. The specification of a reactive system

with interruption can be written in any notation that can be transformed into an ALTS model.

But this work considers only use case templates or an ALTS that respects the constraints on

the use of labels defined in Subsection 3.2.2. The implementation can be any computer sys-

tem that can be interrupted at any time and can be modelled as an ALTS. Moreover, it is

assumed all interruptions to be controllable and implementations to be input-enabled, that is,

∀q ∈ Q, a ∈ A \ {conditions, expectedResults, endInterruption_X},∀ω ∈ LI , q
[a]ω→ .

As discussed in Section 3.1, the tester needs full control of the test environment in order

to achieve valid verdicts during the test execution process. Thus, the implementation un-

der test must respond to all stimuli of the tester leading to require, at least during the test

execution, that the implementation is input-enabled. This is a usual assumption of testing

techniques (e.g. [62; 116; 117]) that can be achieved by appropriate control mechanisms.

This work considers a conformance relation based on a simplification of the ioco relation

defined by Tretmans in [117]. The conf relation (presented in Definition 3.3) does not take

internal actions and quiescence into account.

Definition 3.3 (conf). Let the specification S be an ALTS and SUT be an input-enabled

ALTS:

SUT conf S ∆
= ∀σ ∈ Traces(S), Out(SUT after σ) ⊆ Out(S after σ).

�

It is important to mention that traces of ALTSs are restricted to paths in which the returns

from interruptions go to the correct locations according to the ALTS semantics presented in

the end of Section 3.2.2. Informally, an implementation conforms to a specification for conf

if for all traces of the specification, the set of output actions of the implementation in each

3.3 Interruption Test Case Generation and Selection 49

location is contained in the set of output actions of the specification. This implementation

relation is similar to the one considered by the TGV tool [62].

3.3 Interruption Test Case Generation and Selection

This section presents the algorithms developed in order to automate the test process described

in Section 3.1. Firstly, algorithms that translate use case templates to ALTS models are

presented. After that, an algorithm that generates interruption test cases is shown. Finally,

an interruption test case selection strategy based on test purposes is presented.

3.3.1 ALTS Model Generation from Use Case Templates

This subsection presents a strategy for translating use case templates into ALTS models from

which test cases can be generated. The general translation procedure is shown in Algorithm

3.1. This procedure is a variation of the one presented in [93] that focus on individual features

only. Basically:

• Each template of the use case, starting from the main flow one, is processed sequen-

tially and, from each step, locations and transitions are created in the target ALTS

according to the order of steps defined in the template. This is controlled by the two

for loops;

• currentLocation represents the location from which transitions are created for the cur-

rent step. This is either: (1) the last location created in case the From Step field is

defined as START or this is the first location; or (2) the last location of a given step

(defined in the From Step field) of another template;

• From Step and To Step guide the connection of each trace created by each of the tem-

plates;

• User Action, System State, and System Response become transitions that are associated

with steps, conditions, and expectedResults annotations, respectively;

• Locations are created as new transitions that need to be added. These are incrementally

numbered from 0. Locations and transitions are created by the add operation. But

3.3 Interruption Test Case Generation and Selection 50

locations already created can be reused when connecting the traces of new templates.

When this is possible, the addToStep (To Step is different from END) and addFromStep

(From Step is different from START) are used instead;

• Duplicated transitions from the same location are also avoided. This can happen when

the same steps are possible but with different conditions.

Algorithm 3.1 is based on two loops in order to process all steps of all templates. In

practice, all steps of all templates are processed only one time. Thus, the running time of

Algorithm 3.1 using the asymptotic notation is O(|STEPS|), where |STEPS | represents the

sum of all steps of all templates to be processed.

After the generation of the ALTS models from use case templates, the model of the

main application and the model of the interruption must be connected. Algorithm 3.2 is

responsible for connecting them. Basically:

• The procedure uses a Depth-First Search (DFS) strategy for traversing all locations of

the main application, that is, the application to be interrupted;

• As the proposed strategy only considers interruptions to be possible after expected

results, the only possible points of interruptions are exactly after the transitions with

the expectedResults annotation;

• When a transition with an expectedResults annotation is found in the main application

model, a new transition (with the beginInterruption_X annotation) is added to the first

location of the interruption model. And, from each final location of the interruption

model, a new transition (with the endInterruption_X annotation) is added for connect-

ing this model with the main application model;

• Search is a procedure responsible for marking a location (its second parameter) as a

visited location and putting all adjacent locations in a list (its first parameter) to be

processed.

The running time of Algorithm 3.2 using the asymptotic notation is O(| Q | · | F |),

where |Q | is the number of locations of the main application and |F | is the number of final

locations of the interruption model.

3.3 Interruption Test Case Generation and Selection 51

Algorithm 3.1: Procedure that Translates Use Case Templates to an ALTS

1 UseModel UseCase2ALTS (C o l l e c t i o n Templa t e s) {

2 UseModel a l t s := new UseModel () ;

3 f o r each t e m p l a t e i n Templa t e s {

4 i f (t e m p l a t e . ge tF romStep () 6= START) {

5 / / l o c a t i o n a f t e r e x p e c t e d r e s u l t s o f from s t e p

6 c u r r e n t L o c a t i o n := a l t s . g e t F i n a l L o c a t i o n (t e m p l a t e . ge tF romStep ()) ;

7 } e l s e {

8 / / a s s o c i a t e s a l o c a t i o n t o t h e s t e p t h a t c r e a t e s i t

9 c u r r e n t L o c a t i o n := new L o c a t i o n (t e m p l a t e . g e t F i r s t S t e p ()) ;

10 }

11 f o r each s t e p i n t e m p l a t e {

12 T r a n s i t i o n s t e p s := s t e p . g e t U s e r A c t i o n () ;

13 T r a n s i t i o n c o n d i t i o n s := s t e p . g e t S y s t e m S t a t e () ;

14 T r a n s i t i o n e x p e c t e d R e s u l t s := s t e p . ge tSys t emResponse () ;

15 i f (s t e p s i n a l t s) {

16 c u r r e n t L o c a t i o n := a l t s . g e t L o c a t i o n A f t e r (s t e p s) ;

17 } e l s e i f (s t e p = t e m p l a t e . g e t F i r s t S t e p () AND

t e m p l a t e . ge tF romStep () 6= START) {

18 / / Avoid d u p l i c a t i n g a s t e p s t r a n s . from t h e same l o c a t i o n

19 c u r r e n t L o c a t i o n := a l t s . addFromStep (c u r r e n t L o c a t i o n , s t e p s ,

t e m p l a t e . ge tF romStep ()) ;

20 } e l s e {

21 / / Cr ea t e a new l o c a t i o n f o r add ing t h e new t r a n s i t i o n

22 c u r r e n t L o c a t i o n := a l t s . add (c u r r e n t L o c a t i o n , s t e p s) ;

23 }

24 i f (c o n d i t i o n s 6= e m p t y C o n d i t i o n) {

25 c u r r e n t L o c a t i o n := a l t s . add (c u r r e n t L o c a t i o n , c o n d i t i o n s) ;

26 }

27 i f (s t e p = t e m p l a t e . g e t L a s t S t e p () AND t e m p l a t e . g e t T o S t e p () 6= END) {

28 / / The t a r g e t l o c . f o r t h e s y s t e m r e s p . t r a n s . i s a l r e a d y c r e a t e d

29 c u r r e n t L o c a t i o n := a l t s . addToStep (c u r r e n t L o c a t i o n ,

e x p e c t e d R e s u l t s , t e m p l a t e . g e t T o S t e p ()) ;

30 } e l s e {

31 c u r r e n t L o c a t i o n := a l t s . add (c u r r e n t L o c a t i o n , e x p e c t e d R e s u l t s) ;

32 }

33 }

34 }

35 re turn a l t s ;

36 }

3.3 Interruption Test Case Generation and Selection 52

Algorithm 3.2: Procedure that Combines the Main Application Model with an Interruption

Model

1 CombineALTSModels (UseModel m a i n A p p l i c a t i o n , UseModel in tModel , I n t e g e r

i n t C o d e) {

2 L i s t l i s t := ∅ ; / / L i s t o f t r a n s i t i o n s t o be v i s i t e d

3 C o l l e c t i o n f i n a l L o c a t i o n s := i n t M o d e l . g e t F i n a l L o c a t i o n s () ;

4 s e a r c h (l i s t , m a i n A p p l i c a t i o n . g e t R o o t L o c a t i o n ()) ;

5 whi le (l i s t 6= ∅) {

6 t r a n s i t i o n := l i s t . remove () ;

7 t a r g e t L o c a t i o n := t r a n s i t i o n . g e t T o L o c a t i o n () ;

8 i f (t r a n s i t i o n . i s E x p e c t e d R e s u l t s T r a n s i t i o n ()) {

9 t a r g e t L o c a t i o n . a d d B e g i n I n t e r r u p t i o n T r a n s i t i o n (

i n t M od e l . g e t R o o t L o c a t i o n () , i n t C o d e) ;

10 f o r each l o c a t i o n i n f i n a l L o c a t i o n s {

11 l o c a t i o n . a d d E n d I n t e r r u p t i o n T r a n s i t i o n (t a r g e t L o c a t i o n , i n t C o d e) ;

12 }

13 i n t C o d e ++;

14 }

15 i f (t a r g e t L o c a t i o n i s n o t v i s i t e d)

16 s e a r c h (l i s t , edge . g e t T o L o c a t i o n ()) ;

17 }

18 }

19 }

3.3.2 Interruption Test Case Generation

This subsection describes the interruption test case algorithm developed to extract test cases

from ALTS models. A test case generated from an ALTS is defined as follows.

Definition 3.4 (Test Case). A test case is an ALTS TC = 〈QTC , ATC , LTC , qTC0 , T TC〉. The

set of annotations is the same as the specification (ATC = AS) and the set of labels is

LTC = LTCI ∪ LTCO ∪ LTCC , where LTCI ⊆ LSUTO (outputs of the SUT are the inputs of

the TC), LTCO ⊆ LSUTI (TC emits only inputs allowed by the SUT), and LTCC ⊆ LSC (the

conditions are the same specified by the specification). �

Test cases can be obtained from ALTS models, using the DFS method, by traversing the

3.3 Interruption Test Case Generation and Selection 53

Algorithm 3.3: Test Case Generation Algorithm

1 Decompose (L o c a t i o n loc , Pa th pa th , I n t e g e r i n t C o d e) {

2 i f (l o c . i s L e a f () OR (l o c . i s R o o t () AND p a t h 6= ∅)) {

3 / / End o f a pa th

4 r e c o r d T e s t C a s e (p a t h) ;

5 re turn ;

6 }

7 f o r each d e s c e n d e n t i n l o c . g e t A d j a c e n c i e s () {

8 edge := getEdgeBetween (loc , d e s c e n d e n t)

9 i f (edge . i s B e g i n I n t e r r u p t i o n ()) {

10 i n t C o d e := edge . g e t I n t C o d e () ;

11 }

12 i f ((edge . g e t I n t C o d e () = −1 AND edge /∈ p a t h) OR (i n t C o d e >= 0 AND

edge . g e t I n t C o d e () = i n t C o d e)) {

13 p a t h . add (edge) ;

14 i f (edge . i s E n d I n t e r r u p t i o n ()) {

15 i n t C o d e := −1;

16 }

17 Decompose (d e s c e n d e n t , pa th , i n t C o d e) ;

18 } e l s e i f (edge . g e t I n t C o d e () = i n t C o d e) {

19 r e c o r d T e s t C a s e (p a t h) ;

20 }

21 }

22 re turn ;

23 }

ALTS starting from the initial location (see Algorithm 3.3). As a general coverage criterion,

all transitions need to be covered, i.e., all transitions of the ALTS model are visited at least

once. As Algorithm 3.3 is based on DFS, its running time using the asymptotic notation is

O(|Q | + |T |), where |Q | is the number of locations and |T | is the number of transitions

of the ALTS model.

Algorithm 3.3 requires three parameters: loc, a location of the model, indicating the

current one during execution; path, a set of transitions from the model, indicating the path

visited during the processing; and intCode, the interruption code, indicating that a given

interruption is being processed.

3.3 Interruption Test Case Generation and Selection 54

The extraction is started from the root (the initial location of the ALTS model), verifying

if the current location indicates the end of a path in the model, indicating that the test case

has been extracted. In this case, it needs to be recorded. If the current location does not

indicate the end of a path, then each of its descendants is visited through the depth-first

search strategy.

To visit each of its descendants, the edge between the current location and its descendant

is analysed. The search proceeds only if (Algorithm 3.3, Line 12): (i) the edge does not

belong to the current analysed path, i.e., the edge has not already been “visited" (note that

when the algorithm is processing the main application, the value of intCode is −1); or (ii)

if it is an edge from an interruption behaviour (an edge with the endInterruption_X label).

This precaution is necessary because after the interruption, the extraction process in the

ALTS comes back to previous location (the last location of the main application before the

interruption), therefore being possible to pass through the same interruption, in different

parts of the model, and constraining that would cause inconsistency.

Due to these conditions, two scenarios are encountered: (1) Conditions (i) and (ii) are

not satisfied: The search stops, recording the entire path as a test case avoiding loops in the

main application and finishing an interruption with the correct endInterruption_X transition.

In this case, the recursion step of the algorithm returns to the next branch that needs to be

analysed, continuing the algorithm; (2) Condition (i) or (ii) is satisfied: The edge between

the location and its descendent is added to the test case and the algorithm continues until it

finds the end of the path, which happens when either a leaf in the graph or an edge going

back to the root of the model are found.

These constraints over the extraction, when using the depth-first search approach, are

required to avoid an explosion of paths during the test case extraction caused by loops in

the ALTS model. This may reduce the number of extracted test cases, but without those

constraints, the number of paths extracted becomes unfeasible, while most of them may be

obtained by combining the extracted test cases. Also, from a functional testing point of view,

in practice these excluded paths generally add redundancy to the test suite, that is, they do

not generally add test cases that would uncover escaped faults because traversing the same

loop several times to generate tests produces test suites with similar test cases [30]. Fully

exploring loops it is usually a goal of other testing stages such as stress testing which is out

3.3 Interruption Test Case Generation and Selection 55

of the scope of this work. Furthermore, by considering them, the algorithm would produce a

large, infinite and not practical suite.

3.3.3 Interruption Test Case Selection

Exhaustive interruption test case generation is impractical due to the large amount of gen-

erated test cases. Particularly, in the mobile phone applications context, the majority of test

cases are manually executed. In this scenario, test case selection strategies are much needed.

The strategy used to reduce the test suite is a test case selection based on purposes. This

strategy focuses on a coverage selection criterion, the test purpose, in order to test a partic-

ular system functionality [41; 50; 51; 83; 94]. The defined test purpose is used to filter out

the model, that is, it is used to remove all paths that do not lead to the desired behaviour to

be tested. After that, the generation algorithm is executed, for then, generate the test cases.

Formally, a test purpose can be defined as follows.

Test purposes can be specified using a simple notation, where they are defined through

transition sequences. In these sequences, an “*” (asterisk) indicates that, at this point, any

transition can occur. A test purpose always finishes with a transition that has an Accept label

(indicating that all test cases need to be in conformance with the purpose) or a Refuse label

(otherwise).

Definition 3.5 (Test Purpose). A test purpose is a deterministic LTS TP =

(QTP , LTP , qTP0 , T TP), equipped with the special labels Accept, Refuse, and “*”, and

with the same alphabet as the specification, i.e., LTP = LS . QTP is a countable, non-empty

set of states, qTP0 ∈ QTP is the initial state, and T TP is the transition relation. �

Some hints on how to define test purposes are presented below:

• Choose the behaviour to be observed in the implementation and identify its description

in the specification;

• If the behaviour to be observed is the first behaviour of the specification, then the test

purpose should start with the description of this behaviour. Otherwise, add an asterisk

followed by the description of the behaviour to be observed. This indicates that any

behaviour can occur before the observation of the desired behaviour;

3.3 Interruption Test Case Generation and Selection 56

• If there are more behaviours to be observed in the same test purpose, go back to the

first step;

• If the last behaviour description added to the test purpose is the last behaviour of the

specification, then go to the next step. Otherwise, an asterisk should be added to

the test purpose. This indicates that any other behaviour can occur after the desired

behaviour;

• The last step is to add an Accept or a Reject label to the test purpose. As mentioned

before, the Accept label is used to indicate that all generated test cases must be in

conformance with the test purpose. The Reject label is used otherwise.

As an example of a test purpose, we will use that ALTS model from Figure 3.7 in order

to define a test purpose for a scenario where a message is not removed because it is blocked.

For this scenario, the following purpose could be defined: “*;‘Blocked messages cannot be

removed’ dialog is displayed;*;Accept”. The LTS model that represents this test purpose is

showed in Figure 3.9.

Figure 3.9: LTS Model of a Test Purpose

It is very simple to define test purposes where an interruption can occur. Given that

the behaviour to be interrupted has been chosen, the name of the interruption must appear

immediately after the description of this behaviour in the test purpose. The ALTS model

with interruptions from Figure 3.8 will be used to demonstrate how to define test purposes to

check specific interruptions. A test purpose will be defined to test the scenario where an alert

appears when the user is accessing the inbox folder. This scenario can be specified through

the following test purpose: “*;All inbox messages are displayed;Incoming Alert;*;Accept”.

Considering the defined test purpose, the model from Figure 3.8 is filtered out to be in

accordance with it. So, the following edges of the model are removed: beginInterruption_0,

endInterruption_0, beginInterruption_2, endInterruption_2, beginInterruption_3, endInter-

ruption_3, beginInterruption_4, endInterruption_4, beginInterruption_5, and endInterrup-

tion_5. The last step is to execute the test case generation algorithm.

3.3 Interruption Test Case Generation and Selection 57

All presented algorithms are implemented in the LTS-BT tool [29]. In order to make the

test execution activity easier, considering that this activity is manual, the tool generates test

cases in an alternative representation instead of ALTS. Each selected test case is transformed

in a matrix, where each condition is considered as an initial condition to execute the test case.

Figures 3.10 and 3.11 present the generated interruption test cases for the example above

(the scenario where an alert appears when the user is accessing the inbox folder). Note

that, in both generated test cases, the interruption occurs when the user is viewing the inbox

folder, as was specified by the test purpose. Moreover, all scenarios of the main feature are

covered. In the test case of Figure 3.10, an interruption occurs in the scenario where the

message is removed, whereas, in the test case of Figure 3.11, an interruption occurs in the

scenario where the message is not removed because it is blocked.

Figure 3.10: Test Case 01 Figure 3.11: Test Case 02

Notably LTS-BT allows for a systematic and less error-prone coverage of all possible

interruptions automatically, since the tester does not need to specify all possible points where

an interruption can occur – this is assumed by the tool. Moreover, LTS-BT makes it easier to

focus on particular points to be interrupted and interruptions. These LTS-BT characteristics

allow the tester to obtain test cases in a faster and reliable way.

It is important to remark that in the current version of the LTS-BT tool, test cases are

selected as paths in the ALTS model. Therefore, even though the model is capable of rep-

resenting non-determinism, the tool suits only deterministic applications, differently from

the TGV tool [62], where a test case is a graph that can represent non-determinism. This is

currently being addressed for the next versions of the tool.

3.4 Properties of the Interruption Test Cases 58

As an example of a test case execution, the steps required for executing the test case of

Figure 3.11 are: (1) the first step is to satisfy the initial condition, then an inbox message

must be blocked for the test case execution. Moreover, as the test case needs an incoming

alert interruption, two mobile phones must be available for the test case execution; (2) with

the phone under test, the TESTER begins to execute the actions described in the test case.

Thus, the “Message Center" application is started and, as result, all folders are displayed; (3)

next, the second action is executed: the “Inbox" folder is selected and all inbox messages

are displayed; (4) at this moment, the TESTER must cause an incoming alert interruption.

So, he takes another phone and sends an alert to the phone under test. As expected result,

a dialog must appear at the phone under test; (5) the TESTER selects the “Ok" option at the

phone under test and control goes back to the previous application. In this case, all inbox

messages must be displayed again; (6) the TESTER scrolls to a message and it is highlighted;

(7) the “Remove" option is selected by the TESTER and the following message is expected:

“Blocked messages cannot be removed"; (8) the TESTER confirms the dialog and the content

of the message is displayed. Finally, if for all steps of the test case, the expected results were

observed, the execution finishes with a pass verdict.

3.4 Properties of the Interruption Test Cases

This section comments on properties of the interruption test cases generated by the test case

generation algorithm presented in the last section. Considering the execution of a test case

against a SUT, three kinds of verdicts can be obtained indicating that the SUT should be ap-

proved or not: if the SUT emits the specified outputs for each input emitted by the test case,

the verdict is Pass; if at least one of the outputs of the SUT is not specified by the specifica-

tion, the verdict is Fail; and the Inconclusive verdict is emitted when the observed behaviour

of SUT conforms to the specification but the behaviour described by the test purpose is not

exhibited by the SUT.

It is very important to formalise the execution of the test cases in order to establish some

properties as soundness and exhaustiveness, where the conformance relation is linked to ver-

dicts obtained during the test execution [62]. Interruptions are clearly asynchronous events,

but as we are considering a test architecture where the environment is fully controllable by

3.4 Properties of the Interruption Test Cases 59

the tester, all interruptions can be analysed as synchronous events. Thus, test cases inter-

act with the SUT through a synchronous communication, where the execution of a test case

against a SUT is modelled by a parallel composition with synchronisation on common ac-

tions. Basically, parallel composition is defined by the following rule:

P || Q =
p

a→P p′, q
a→Q q′

(p, q)
a→P ||Q (p′, q′)

.

Considering the defined model of test case execution, each trace σ ∈ Traces(TC || SUT)

is associated with one of the following scenarios:

• If, at any moment, any unspecified output is emitted by the SUT, the execution is

stopped and the resulting verdict is Fail, that is, verdict(σ) = Fail;

• If the SUT, at any moment, blocks or spends a lot of time to emit an output, the

resulting verdict is Inconclusive (a timer must be used in this case). So verdict(σ) =

Inconclusive;

• If the outputs of the SUT are specified by the specification but the behaviour spec-

ified by a test purpose is not exhibited, the resulting verdict is Inconclusive, that is,

verdict(σ) = Inconclusive;

• If all steps of the test case are executed and all expected results are observed, then the

resulting verdict is Pass, i.e. verdict(σ) = Pass.

Given the possible situations with their respective verdicts, the rejection of a SUT by a

test case TC is defined as follows.

Definition 3.6 (may reject). TC may reject SUT ∆
= ∃σ ∈ Traces(TC || SUT) : verdict(σ) =

Fail. �

The conformance relation of a SUT with respect to a specification S is decided based

on verdicts obtained with the execution of the generated test cases. So, the next definition

formally relates the previously defined conformance relation (Definition 3.3) to the verdicts

of these executions considering some properties of test cases and test suites.

Definition 3.7 (Soundness and Exhaustiveness). A test case TC is sound for S and conf if

∀SUT, SUT conf S ⇒ ¬(TC may reject SUT). A test suite is sound if all its test cases are

3.4 Properties of the Interruption Test Cases 60

sound and it is exhaustive for S and conf if ∀SUT, ¬(SUT conf S)⇒ ∃TC : TC may reject

SUT. Finally, a test suite is complete if it is both sound and exhaustive. �

Informally, a test suite is said to be sound if all correct implementations, and possibly

some incorrect implementations, pass in the test (a sound test suite never rejects a correct

implementation). On the other hand, a test suite is said to be exhaustive if all non-conforming

implementations, and possibly some correct implementations, will not pass in the test. A

test suite that can identify all conforming and non-conforming implementations is called

complete.

A complete test suite is a very strong requirement for practical testing. Then, weaker

requirements are accepted. In practice, sound test suites are more commonly accepted, since

rejection of conforming implementations, by exhaustive test suites, may lead to unnecessary

debugging. In this context, the test cases generated by LTS-BT have some properties stated

in Theorem 3.1.

Theorem 3.1. For every specification S, all test suites generated by the approach proposed

in this chapter are sound. Moreover, the test suites can be considered as being exhaustive

when they are generated using test purposes. �

The proof of Theorem 3.1 is not detailed here but the main ideas are discussed (see

detail proofs in Appendix A). For soundness, we need to prove that if a test case TC may

reject a SUT (implementing the specification S), then ¬(SUT conf S). In this case, we only

need to prove that a Fail verdict of a test case only occurs if the SUT emits an unspecified

output. This was already discussed in this section and the unique case where a Fail verdict is

obtained during a test case execution is exactly when the SUT emits an unspecified output.

For exhaustiveness, we need to prove that for every non-conforming SUT there is a test

purpose TP and a way of generating a test case TC from S and TP , such that TC may

reject SUT. Given that ¬(SUT conf S), then there is a trace σ of S such that an output of

SUT after σ is not allowed by S. So, the trace σ can be used to define a TP , after that, this

test purpose can be used to generate test cases where the SUT may be rejected.

3.5 Case Study 61

3.5 Case Study

The objective of this section is to present a case study performed in order to evaluate a prac-

tical application of the approach proposed in this work. As previously said, a scenario where

interruptions are allowed may have infinite test cases. Thus, in practice, only a subset of

interruption test cases are manually generated and executed. Considering this context, the

main goal is to compare the manual process of test case generation with the automatic pro-

cess based on the algorithms presented in Section 3.3 and implemented by LTS-BT [29].

Moreover, as the amount of test cases is large, some test case selection strategy is needed.

Particularly, in this case study, the strategy used to select the test suite is based on test pur-

poses defined in order to cover a fault model which describes the set of known defects found

in the past [18]. Testers use fault models to define effective test cases since the test cases are

specially defined to uncover defects that are likely to be present. The use of fault models for

comparing testing approaches is important in our context because only stable versions of the

software are available, that is, versions with all known defects already removed. In this case,

fault models allow to compare testing approaches by observing if defined test cases would

uncover defects or not.

This case study was performed using applications of the mobile phone domain whose de-

scriptions are presented in the next subsection (Subsection 3.5.1). Subsection 3.5.2 describes

how the case study was defined and conducted. Finally, Subsection 3.5.3 presents the results

obtained during the case study execution.

3.5.1 Overview of the Case Study Applications

This subsection briefly describes the features used during the case study. All of them are

reactive applications of the mobile phone domain. In summary, the description of the features

is:

Aircraft Mode This is the main feature of the case study and it is the feature that must be

interrupted. Aircraft Mode feature provides the functionality of allowing the user to

turn off the radio frequency transceiver and still be able to use the applications of the

phone. This feature allows the user to use applications of the phone while flying in an

aircraft, but without receiving calls, messages, and so on.

3.5 Case Study 62

Table 3.1: Features
Features Number of Use Cases Number of Scenarios

Aircraft Mode 7 22

Incoming Call 1 2

Incoming Message 1 2

Alarm Clock 1 3

Incoming Call This is an interruption feature. Incoming Call feature provides the function-

ality of receiving calls.

Incoming Message This is an interruption feature. Incoming Message feature provides the

functionality of receiving messages.

Alarm Clock This is another interruption feature. Alarm Clock provides the functionality

of generating alarm notifications based on specific time chosen by the user.

Table 3.1 shows some metrics of the features in order to illustrate their complexity such

as the number of use cases and the number of possible scenarios. It is important to remark

that, considering the relationship between all features of this simple case study, the amount

of interruption test cases is more than forty million tests.

3.5.2 Case Study Definition

In this subsection, we present the evaluation criteria and fault model defined for conducting

and evaluating the case study. The focus is on interruption testing and generation of test

suites for manual execution.

The main goal is to show evidence on the benefits of automation in the interruption

test case generation and selection process using the implemented algorithms. The strategy

adopted to achieve the goal is to compare the manual process of test case generation with the

automatic process proposed. In practice, this kind of testing is often conducted by manual

processes of selection guided by expertise. Also, there are no related proposals of more

systematic strategies that could make a good basis for comparison.

As the amount of interruption test cases is very large, generation and selection is guided

by a fault model specification that indicates the kind of faults that can be usually be found in

3.5 Case Study 63

this kind of applications. Thus, test cases must be selected, both in manual and in automatic,

with the objective to cover the whole fault model specification. The main metrics to be

observed are: (1) the time spent during the test case generation and selection and (2) the

coverage of an instance of the fault model specification that contains actual faults detected

in products composed of these features.

The case study was conducted by three testers: one based on automatic process (named

Tester 1) and two based on manual process (named Tester 2 and Tester 3). Considering the

knowledge of the testers, they had good test skills and none of them knew the features under

test before the case study execution. Thus, all testers performed the case study based on two

kind of information:

• The specification of the features under test;

• The fault model profile.

The specification of the features under test is a document describing all use cases (Table

3.1) according to that notation presented in Section 3.1. It is important to mention that this

document was prepared in five hours. On the other hand, the fault model profile was defined

based on common problems related to feature interruptions and actual defects related to the

features under test. The fault model given to the testers is specified in natural language and

its description is defined as follows:

• After an interruption, the interrupted application does not maintain data entered by the

user;

• After an interruption, the interrupted application does not continue its execution of the

same point where it was interrupted;

• Possible conflicts related to the use of shared resources (screen, network, and so on);

• Problems related to interruptions immediately before enabling the aircraft mode;

• Problems related to interruptions immediately after disabling aircraft mode;

• Problems related to interruptions when the aircraft mode is enabled.

3.5 Case Study 64

Table 3.2: Metrics
Metrics Tester 1 Tester 2 Tester 3

Preparation time 2 h 2 h 2 h

Generation time 80 min 165 min 150 min

Number of TCs 115 15 12

Productivity 86,5 TCs/h 5,4 TCs/h 4,8 TCs/h

Fault model coverage 57,14% 28,57% 28,57%

Number of invalid TCs 0 (0%) 4 (26,66%) 4 (33,33%)

Number of ineffective TCs 23 (20%) 13 (86,66%) 7 (58,33%)

Smallest TC (number of steps) 3 5 6

Biggest TC (number of steps) 12 11 8

Most common TC size 5 6 and 8 8

By measuring coverage of an instance of this specification with actual faults (instead of

coverage of the specification), where one kind of fault may correspond to more than one

actual fault, it is possible to analyse which approach can be more effective to systematically

investigate the implementation by generating a more complete test suite.

3.5.3 Case Study Results

This subsection presents and discusses the obtained results. Table 3.2 presents the metrics

collected during the case study execution.

The first step of the case study consisted in reading the specification and the fault model.

These documents are usually constructed prior to the testing process by requirements and

quality engineers. In this sense, all testers had the same preparation time (Table 3.2, line

“Preparation time”), and as previously said, Tester 1 generated the test suite through an auto-

matic process by using LTS-BT [29], and Tester 2 and Tester 3 generated the tests through a

manual process. According to the results, from Table 3.2, Tester 1 generated the tests in less

time (line “Generation time”). The generation time of Tester 1 basically consisted of the time

needed to define test purposes once each LTS-BT execution consumed less than one second

to generate test cases. Considering the generation time of Tester 2 and Tester 3, they spent

3.5 Case Study 65

more time because all test cases were manually selected and written in the format shown in

Figures 3.10 and 3.11. Furthermore, Tester 1 generated the largest test suite (line “Number

of TCs”, where TCs means Test Cases) implying in more productivity (line “Productivity”).

The productivity was calculated by observing the number of test cases generated per hour.

Considering the fault model coverage (Table 3.2, line “Fault model coverage”), Tester

1 reached the best coverage. It is important to remark that the percentage of fault model

coverage achieved by Tester 2 and Tester 3 are equal but the faults found by them are not

the same. Nevertheless, the set of faults found by Tester 1 contains all faults found by the

other testers. This result is expected as LTS-BT allows a more systematic test case generation

process, from the same base specification. However, as the process is guided by test purposes

defined by the tester, the fault model coverage depends also on the tester’s experience.

On the other hand, test cases generated through manual process are error-prone. The

line “Number of invalid TCs” of Table 3.2 shows the number of test cases generated with

errors, that is, test cases impossible to run, mainly because they miss information. Moreover,

manually generated test suites tend not to take all scenarios of an interruption into account.

This does not occur in the automatic process because when the tester decides, for example,

to check the incoming call interruption at some point of the feature under test, the developed

algorithms consider all scenarios of the interruption, for example, when the call is accepted

and when it is rejected by the user.

Considering the number of test cases that actually do not find defects (line “Number of

ineffective TCs”), Tester 1 reached the best results. The number of ineffective test cases also

considers the invalid test cases. Finally, the three last lines of Table 3.2 give information

about the size of generated test cases. Note that test cases generated by both strategies are

similar w.r.t. size, that is, number of steps. This is explained by the fact that test cases were

generated based on a structured document that may induce the same general kind of test

cases to be defined. In practice, manual testing is not usually based on structured documents

and then test cases tend to be as simple as possible. However, not using the same input

document would put a threat to validity of the results, in the sense that with the same inputs,

both strategies had the same basic information available.

In the scope of this case study, it is possible to conclude that the proposed strategy and

tool allow a more systematic test case generation process contributing to better productivity

3.6 Related Work 66

and effectiveness of test process, depending on the tester’s experience. Moreover, some

problems of the manual process such as erroneous test cases generation is solved by the

automatic process since all generated tests are sound (Section 3.4). However, note that Tester

1 did not reach 100% coverage. For this, it is necessary to define complete test purposes

regarding the fault model. As this depends on the tester’s experience and accuracy, it is

possible that he can miss behaviour that should have been considered.

It is important to remark that the problem of selection in the scope of integration test-

ing in general is a hard one. The possible number of test cases resulting from different

combinations is large and also the set of all combinations is usually intractable by manual

investigation. As a consequence, the achieved level of fault coverage depends greatly on in-

formation and expertise available to pinpoint the key test cases, for instance, common faults

detected in a domain. For instance, only 57% of faults were covered by the test suite gener-

ated. However, note that this further exceeds the manually generated suites. Even though the

testing strategy presented in this chapter is based on automatic generation, it also allows the

experienced tester to target the selection process by defining the test purposes in a systematic

way.

3.6 Related Work

This section presents some works related to our proposal. Lorentsen et al. [88] propose a

way of identifying categories of interactions and create behavioural models that capture those

interactions, where interruptions are a type of interaction. They use Coloured Petri Nets to

manually model the interactions and a model checker for interactive graphical simulation.

As disadvantages, the process is manual and the work is not devoted to testing.

Another interesting work is that belonging to Jard and Jéron [62], where the TGV tool

is presented. TGV receives a specification and a test purpose as input and produces abstract

test cases as output. The TGV input format for both specification and test purpose is IOLTS

(already defined in Subsection 3.2.1). As mentioned in Subsection 3.2.1, it is possible to

represent interruptions through IOLTS models. So the TGV tool can be used to generate

interruption test cases, but an interruption behaviour needs to be replicated if it can occur at

more than one place. Moreover, it is not possible to directly represent conditions associated

3.6 Related Work 67

to actions and due to the fact that the same interruption behaviour is replicated in the IOLTS

model, the test purpose must specify the point where we want to verify the interruption and

all other points where the interruption cannot occur. Thus, given that the tester needs to

manipulate LTS models in the definition of the TGV test purposes, this notation is not useful

in practice for interruption testing.

One possible solution is to consider the tool set proposed by the AGEDIS project that

can generate test cases from high level models (e.g. UML diagrams) [57], where TGV is

internally used to generate test cases. However, the tool set does not support interruption

specifications directly as well as the newest version of UML (UML 2.0) with its greatly im-

proved diagrams. In this case, the difficulties with interruption modelling and test purposes

definition remain.

The process algebra CSP (Communicating Sequential Processes) was designed for de-

scribing systems of interacting components [109]. CSP has a specific operator for describing

interruptions but its semantics is very different from the high (application) level interruption

notion addressed in this chapter. The CSP interruption operator specifies that when a pro-

cess P1 is interrupted by another process P2, the process P1 is discarded and P2 begins its

execution. In our context, the process P1 executes again after the execution of the process

P2. Jovanovic et al. [68] have proposed an extension of CSP to represent this kind of be-

haviour but there is not any tool supporting their proposal. Figueiredo et al. [39] present a

behavioural model that represents interruptions in CSP without using the interruption oper-

ator, but the presented model is more suitable for representing the semantics of interruption

test behaviour as presented in this chapter. Nogueira et al. [102] propose an approach to

test case generation based on CSP. The SUT is specified using the same use case template

presented in Section 3.1 and it is automatically translated to CSP using the strategy presented

in [26]. The main objective of the work presented in [102] is to provide a strategy for testing

individual features and feature interactions. Moreover, test purposes are defined in low level

using CSP. The interruption testing is not directly treated, but the work can be adapted to test

interruptions considering that all the possible points of interactions are specified in advance.

In our approach, all points of interruption do not need to be explicitly specified, making the

work of the tester easier and less error-prone.

Furthermore, the work presented in [25; 34] propose a strategy to reduce the test suite

3.7 Concluding Remarks 68

size based on test cases prioritisation. This requires that every individual pair of interactions

is included at least once in a test suite. In this case, if it is not possible to execute the

entire test suite, the tester can execute at least the most important test cases. But note that

the prioritisation information is given by the tester. The strategy presented in this chapter

is similar, in the sense that the focus is on particular interruptions by using a test purpose,

but due to the expressiveness of test purposes, it is also possible to focus on and/or exclude

particular functionalities associated with the interruptions.

3.7 Concluding Remarks

This chapter presented an approach to interruption testing that is based on a model capable of

representing interruptions for reactive systems. The model makes it possible for interruptions

to be combined at different points of possibly different flows of execution. This model is

supported by the LTS-BT tool along with a test case generation algorithm and a test purpose-

based selection technique. Test selection is crucial for interruption testing since the number

of possible test cases is enormous. Also, in practice, not all possible points of interruption

are fault-prone.

It is important to mention that the current version of LTS-BT is restricted to deterministic

systems. This may seem unrealistic. However, particularly, if embedded systems such as

mobile phone applications are considered, the tool can be largely applied. For these systems,

applications are often deterministic ones that run on single-processor, single and restricted

screen, and so on. However, they have complex patterns of interruptions which clearly justify

the need for modelling and systematic test selection. Furthermore, ALTS models are capable

of representing non-determinism and the algorithms can be clearly extended to support non-

deterministic systems since the semantics of ALTS and IOLTS are very similar.

Chapter 4

Related Work and Problem Statements

This chapter presents a review of relevant work on the testing of real-time systems which is

concerned with deriving real-time test cases from specifications where variables and actions

with parameters are allowed. As research related to the test of real-time systems is very

recent, there are few works aligned with this challenge. After the analysis of the related

work, several limitations and open problems are identified.

4.1 Related Work

Since strategies to generate real-time symbolic test cases are practically nonexistent, the

focus here is to describe approaches related to testing real-time systems (not exactly symbolic

testing of real-time systems) and argue why they are not considered as symbolic testing

strategies.

4.1.1 Cardell-Oliver

Cardell-Oliver’s work [28] addresses the problem of conformance testing for real-time sys-

tems and proposes an approach, based on UPPAAL timed automata specifications [82], to

testing the same kind of system. As the UPPAAL timed automata have a dense or analogue-

time model, Cardell-Oliver argues that their traces include behaviour which cannot be ob-

served in an experiment. An example of an analogue-clock test case is: provide an input at

time 1 and expect for the result at time 3. The tester implementing this test must be able to

69

4.1 Related Work 70

emit the input precisely at time 1 and check whether the output occurred precisely at time 3.

In practice, the tester has finite-precision clocks and sample the outputs of the system under

test periodically, e.g. every 0.3 time units, thus, it cannot distinguish between the output ar-

riving anywhere in the interval (2.9, 3.1). In this sense, it is very difficult, if not impossible,

to implement analogue-clock tests using finite-precision clocks. In this case, Cardell-Oliver

proposes that a more appropriate model for observing real-time systems is a digital clock

approximation.

As a TLTS representation of a TA can possibly have infinite states because of the repre-

sentation of time, each timed trace of the TLTS is mapped into a set of possible integer-timed

trace interpretations. Thus, symbolic states are used to represent a set of clock valuations.

The symbolism is only used to abstract time and does not take the data of the system under

test into account, so this proposal cannot be classified as a symbolic testing approach.

Furthermore, the paper considers a kind of test purpose, named test views, where the

tester can select relevant events to observe. An implementation relation is defined based

on trace equivalence under the assumption that the implementation is input-enabled (input-

complete) and that it has no more states than the specification. An algorithm implementing

the approach is presented, but, it seems that there is not a tool to support the work.

4.1.2 En-Nouaary et al.

En-Nouaary et al. [46] address the issue of testing real-time systems specified as a variant

of the TAIO presented in Subsection 2.2.3. The TAIO considered in [46] is assumed to have

instantaneous transitions, that is, once the transitions are enabled they must be taken imme-

diately. This assumption reduces too much the expressiveness of the model, for example a

simple specification such as “when an input is provided, an output must be generated within

at most 10 time units” cannot be expressed.

En-Nouaary et al. propose a test case generation approach that is divided into three

steps: firstly, as the semantics of a TAIO can be defined in terms of an infinite TIOLTS

(see Subsection 2.2.3), the authors represent this infinite TIOLTS using a finite region graph

where the locations symbolically represent a set of clock valuations. Secondly, each clock

region of the region graph is sampled, according to a granularity, in a way that each clock

region is transformed into a finite set of clock valuations; thus, the region graph is reduced

4.1 Related Work 71

to another graph, named grid automaton, which is then transformed into a timed finite state

machine. Finally, they use state characterization techniques for test case generation [47].

Note that, as the work only represents time symbolically, it is not considered as a sym-

bolic testing strategy, since the data of the system must be also symbolically taken into

account. The work supposes that the implementation under test has the same number of lo-

cations as the specification. Thus, the implementation relation is based on trace equivalence.

The adopted assumption is very strong compromising the usefulness of the work in practice.

Moreover, no algorithms for test case generation are shown.

An interesting contribution of En-Nouaary et al. is the study about fault models. They

argue that two types of faults are possible: timing faults and action and transfer faults [48].

Timing faults are related to violation of transition time constraints and action and transfer

faults are similar to the classical faults of finite state machines. In [46], the authors discuss

how the fault model can be used to test timed systems based on TAIO model.

In [44; 45], the testing approach is improved changing the last step of the test case gen-

eration process. Instead of transforming the generated grid automata into a timed finite state

machine, the grid automata is traversed using an adaptation of the Depth-First Search strat-

egy in order to generate test cases. In this more recent work, a test selection strategy based on

test purposes is defined and algorithms are presented. Nevertheless, this improved approach

only represents time symbolically.

4.1.3 Li et al.

Li et al. [87] propose an approach to property-oriented real-time test case generation. As

specification language, they use time-enriched statecharts and provide a restricted real-time

logic as the property specification language. Li et al. argue that statecharts cannot be easily

manipulated for test generation, then they provide a way of transforming statecharts into

extended finite state machines, from which test sequences are obtained.

Li et al. [87] focus only on specification languages. Thus, several concepts of a complete

testing strategy are not taken into account such as assumptions related to specifications and

implementations, conformance relation, test architecture, tools, case studies, and so on.

4.1 Related Work 72

4.1.4 Khoumsi

Khoumsi [69; 70] proposes an approach to symbolic test case generation for real-time sys-

tems. To the best of our knowledge, this is one of the few approaches that tries to symboli-

cally deal with time and variables and actions with parameters representing the system data.

The Khoumsi’s main objective is to combine a real-time testing strategy with a non-real-time

symbolic testing strategy.

Khoumsi’s work is based on that symbolic model theory presented in Subsection 2.1.9

extended with time. Basically, the proposed approach is divided into two steps: firstly, the

real-time symbolic model is transformed into an automaton where the setting and expira-

tion of clocks are represented as actions; finally, the symbolic testing approach presented in

Subsection 2.1.9 is adapted to generate test cases.

In this approach, a new real-time symbolic model is proposed, named Timed Input-

Output Symbolic Automata (TIOSA), but its semantics is not formally defined. Additionally,

the first step of the approach, described above, restricts too much the use of clocks, guards,

and clock resets leading to a less expressive and flexible specification language. Under the

assumption of input-completeness, the adopted conformance relation can be considered as

timed trace inclusion. Finally, there is no tool supporting the work and real case studies were

not performed to validate the applicability of the proposed strategy.

4.1.5 Briones and Brinksma

Briones and Brinksma [23] present en extension of Tretmans’ theory and algorithm [117]

for testing real-time systems. A distinguishing characteristic of this work is that it takes

quiescence into account and provides an operational interpretation of this concept in the

context of RTS. Only output quiescence is considered. They consider an output quiescent

state as one where the system is unable to generate an output without further input stimuli.

Briones and Brinksma argue that the quiescence can only be detected by waiting for outputs,

but as we cannot wait forever a maximal duration M must be defined. So, the work proposes

a parameterised conformance relation where output quiescence only can be observed after a

minimal delay of M time units. The work is based on TIOLTS, which serves as semantics

for TAIO (see Subsection 2.2.3). Additionally, the paper defines the concept of real-time test

4.1 Related Work 73

cases considering execution and verdicts, and presents in an abstract way an algorithm for

generating them. Considering that the underlying continuous model of time is represented

through an infinite TIOLTS, the proposed algorithm generates uncountable test cases.

In [24], Briones and Brinksma extend the framework proposed in [23] in the sense of

allowing the implementation to be sometimes non-input-complete. This new paper presents

an extension of TIOLTS where input and output sets are divided in channels and in each

reachable state each input channel is either blocked or all inputs are accepted, i.e. the im-

plementation can sometimes be non-input-enabled. The general maximal duration M , cited

above, is relaxed and they allow different bounds for different sets of outputs. Moreover, the

entire framework is updated to deal with these extensions, including the algorithm for test

case generation. But, the algorithm has the same problem as in [23], that is, it also generates

uncountable test cases.

4.1.6 Bohnenkamp and Belinfante

Bohnenkamp and Belinfante [20] present an extension of TorX [119] where timing con-

straints can be expressed in the specification. TorX is an on-the-fly testing tool that tests for

the conformance relation proposed by Tretmans [117]. Bohnenkamp and Belinfante’s work

is influenced by the framework presented in Subsection 4.1.5, that is, the main objective of

this work is to provide an extension of TorX to implement the main ideas of the Briones and

Brinksma’s work [23].

To avoid the generation of uncountable test cases, Bohnenkamp and Belinfante adopt a

symbolic representation of TIOLTS, where each symbolic location represents the maximal

set of clock valuations that satisfy a given clock constraint. This strategy is not considered as

a symbolic testing strategy, as only time is abstracted. The tool assumes input-completeness

of the IUT and that the tool must run on the same host as the IUT. The latter restriction

reduces the usefulness of the tool in practice, since several systems cannot be tested such as

embedded systems with limited resources (e.g. smart cards, mobile phones, music players,

and so on).

4.1 Related Work 74

4.1.7 Bodeveix et al.

Bodeveix et al. [19] propose a way of checking real-time dependability requirements by

means of testing. They adopted a particular kind of timed automata, where determinism

and explicit inputs and outputs are assumed. The main idea is to model dependability re-

quirements as test purposes. The strategy is described in three steps: (1) a kind of syn-

chronous product is performed between the specification and the requirement to be checked;

(2) the states of the resulting model are symbolically represented abstracting only time; (3)

a reachability algorithm is executed to generate only one test case capable of checking the

dependability requirement.

The paper is very short and important concepts of a complete testing framework are not

discussed such as assumptions related to specifications and implementations, conformance

relation, test cases, verdicts, oracles, and so on. Additionally, algorithms are not shown and

tools were not developed to support the proposal.

4.1.8 Larsen et al.

Larsen et al. [80] propose a tool and the related theory for online testing of real-time systems.

The work is based on non-deterministic timed automata with inputs and outputs (TAIO)

specifications. However, the adopted TAIO is a variant of that presented in Subsection 2.2.3,

where both locations and transitions can have guards (clock constraints). The developed tool

was firstly named T-UPPAAL [100], but today its name is UPPAAL TRON (UPPAAL for

Testing Real-time systems ONline). This tool was implemented by extending the UPPAAL

model-checking tool [82].

A distinct characteristic of the work is the proposal of a formal implementation relation

that takes environment assumptions into account. An environment assumption is a kind of

test purpose of the property oriented testing theory, presented in Subsection 2.1.6. Thus, the

main goal of the proposed implementation relation is to check if an implementation is in con-

formance with its specification when operating under some environment assumptions. Ac-

cording to Larsen et al. [80], modelling the assumptions separately has several advantages:

(1) considering a specific environment, the testing tool generates only realistic test cases

reducing the number of test cases and improving the quality of the test suite; (2) the test-

4.1 Related Work 75

ing process can be guided to specific scenarios of interest; (3) when the environment model

is separated from the system model it is easier to test the system under different assump-

tions. The proposed implementation relation is based on Tretmans and de Vries’ work [118;

40] and coincides with timed trace inclusion considering the input enabledness assumption.

As previously said, the work is based on a variation of TAIO, but Larsen et al. [80]

show that the semantics of a TAIO can be defined in terms of an infinite TIOLTS. Thus,

all the theories and algorithms presented are based on TIOLTS. In [80], the main algorithm

for generating and executing test cases are presented as well as its proof of soundness and

completeness. As a TIOLTS, representing a TAIO, can possibly have infinite states because

of the representation of time, the generation of test cases uses a reachability algorithm that

operates on symbolic states (a symbolic state represents a set of clock valuations). As only

time is symbolically represented and the system data is not symbolically taken into account,

we cannot consider this proposal as a symbolic testing approach.

The work reported in [80] presents an experiment to validate UPPAAL TRON and in-

dicate the applicability of the proposed technique. As the test generation and execution is

online, a drawback is the need to implement an adapter component to link the system under

test to the UPPAAL TRON tool. In order to evaluate the algorithms and the tool in detail, a

real-life application was tested and the results are described in [81].

4.1.9 Hessel et al.

Hessel et al. [60] present a strategy of time-optimal test case generation using the data

structures and algorithms of the UPPAAL model checking tool [82]. Time-optimal test cases

are defined as test cases guaranteed to take the least possible time to execute. According

to Hessel et al. [60], time-optimal test cases are important for some reasons: (1) using

time-optimal test cases, the total execution time of a test suite is reduced allowing more

behaviour to be tested; (2) regression testing can be executed as quickly as possible; (3)

the time-optimal test cases have high probability of detecting errors, considering that the

fastest scenarios are stressful situations. The proposed strategy can generate test cases using

manually defined test purposes or automatically generated from some coverage criteria.

The proposed strategy assumes that both the implementation under test (IUT) and

the environment (the test purpose) are modelled using a deterministic and output ur-

4.1 Related Work 76

gent class of TA. A TA is deterministic when two transitions with the same label lead

to the same state and it is output urgent if, when an output is enabled, it occurs im-

mediately. These characteristics are very restrictive reducing the expressiveness of the

model. The work uses the fastest diagnostic trace of the UPPAAL tool to generate time-

optimal sequences. This functionality of UPPAAL generates a trace with the shortest ac-

cumulated time delay witnessing a submitted safety property. Then, a test case is gen-

erated from this diagnostic trace. As previously said in Subsection 4.1.8, the UPPAAL’s

reachability algorithm operates on symbolic states, but only time is symbolically repre-

sented. The implementation relation considered is the timed trace inclusion as in [80;

81]. One of the main ideas of the work is that test purposes can be formulated as safety

properties that can be checked by the reachability analysis performed in a model generated

by the combination of the specification with the test purpose. Another interesting idea is the

use of coverage criteria to generate test cases. In this case, the proposed solution is to anno-

tate the model using auxiliary variables to mark the coverage of target elements (e.g. edges

and locations). The work also presents an interesting experiment, but it is clear that the

annotation of the model with new auxiliary variables is tedious and error prone in practice.

Moreover, the inclusion of these variables increases the state space reducing the applicability

of the work in practice.

Several limitations of the work described above are solved in another work [61], which

extends the requirement specification language of UPPAAL in order to allow the use of

keywords to represent coverage criteria. Therewith, the reachability analysis algorithm of

the UPPAAL tool was modified to eliminate the need of manually annotating the model and

another version of UPPAAL was created, the UPPAAL CoVer tool. Even so, the defined

language is still very restrictive and the specification model continues being deterministic

and output urgent.

Finally, a book chapter [59] was written to describe both the online testing using UP-

PAAL proposed by Larsen et al. [80; 81] and the offline testing using UPPAAL proposed by

Hessel et al. [60; 61].

4.1 Related Work 77

4.1.10 Merayo et al.

Merayo et al. [96] present a formal framework to specify and test real-time systems that

considers both hard and soft deadlines, where hard deadlines must be always met on time

and soft deadlines can be sometimes met in different times. The model used to specify the

software system is an extension of the classical finite state machine, called Timed Extended

Finite State Machines (TEFSM). Transitions in classical finite state machines indicate that if

a machine is in a state s and receives an input i then an output o will be produced and it will

change its state to s′ (this can be represented as s
i/o→ s′). The timed extension proposed is

represented as s
i/o→[t1,t2] s

′ and it means that if a machine is in a state s and receives an input i

then an output o will be produced and it will change its state to s′ wasting a time greater than

or equal to t1 and smaller than or equal to t2. Merayo et al. argues that, in the context of RTS,

the notion of correctness has several possible definitions. For this, the framework defines

several conformance relations. In practice, one may consider that a system under test is in

conformance with a specification if all actions are performed exactly on a predefined time,

while another could consider that the implementation has to be always/sometimes faster.

Thus, depending on the situation, a different conformance relation can be taken into account.

The presented conformance relations are based on Tretmans’ work [117]. The paper also

formalizes the concept of test cases and test suites and gives some directions of how to apply

the test cases to an implementation. But, algorithms are not presented.

The work discussed above was extended in [97], which itself continues the proposal

presented in [103]. In this more recent work, two kinds of time are considered: actions

with associated time and time-outs. When time-outs are allowed the state of the system

can change only with the time evolution (without the occurrence of actions). Moreover, an

algorithm to generate test cases is presented and some small examples are discussed. In [98],

Merayo et al. extends the work [97] to deal with stochastic time systems. Finally, the work

presented in [99] extends all the developed formal framework to deal with specifications

where time requirements are defined using intervals.

The ideas presented by Merayo et al. [96; 97; 98; 99; 103] are very interesting. It is

extremely useful to have many conformance relations, so the theory can be used in different

contexts. But, in general, the work has some disadvantages: (1) there is no a tool supporting

the approach; (2) real examples and case studies are not presented; (3) the model does not

4.1 Related Work 78

allow to specify actions with parameters and communicating machines are not considered,

thus it is not possible to deal with asynchronous events; (4) only one clock is used to control

how time evolves reducing the expressiveness of the model; (5) only the discrete-time model

is considered.

4.1.11 Krichen and Tripakis

Currently, one of the most complete works on testing of real-time systems is the one de-

veloped by Krichen and Tripakis [73; 74; 75; 76; 77; 78]. In [74], they propose a frame-

work for conformance testing of real-time systems where specifications are modelled as

non-deterministic and partially-observable timed automata. Krichen and Tripakis argue that,

in practice, when the model is built compositionally, component interactions are usually

non-observable by the tester and this abstraction often results in non-determinism.

In comparison with other approaches, Krichen and Tripakis’ work uses less restricted

timed automata. For example, several restrict assumptions are considered by other ap-

proaches such as isolated and urgent outputs (Subsection 4.1.9); the use of determinizable

timed automata with restricted clock resets (Subsection 4.1.4); the use of trace equivalence

as conformance relation, considering that the implementation has no more states than the

specification (Subsections 4.1.1 and 4.1.2); permission of using only one clock in the spec-

ification (Subsection 4.1.10); and so on. Krichen and Tripakis use a kind of TAIO where

each transition is annotated with one of the following three deadlines: lazy, delayable, and

eager. The lazy deadline imposes no urgency, delayable means that once enabled the transi-

tion must be taken before it becomes disabled, and eager means the transition must be taken

as soon as it becomes enabled.

They propose an extension of the conformance relation from [118], named timed input-

output conformance (tioco). This new conformance relation is defined by including time

delays in the set of observable outputs. They do not require the specification to be input-

complete, thus tioco is more expressive than the other conformance relations such as trace

equivalence (Subsections 4.1.1 and 4.1.2) and trace inclusion (Subsections 4.1.9 and 4.1.4).

The proposed conformance relation is more expressive in the sense that it allows an im-

plementation to accept inputs not accepted by the specification, whereas the other timed

conformance relations above do not. Several characteristics of tioco are discussed in [77]

4.1 Related Work 79

such as transitivity, an extensive comparison with related conformance relations, the prove

that checking tioco is undecidable (it is not a problem for black-box testing since the imple-

mentation model is unknown, the conformance cannot be directly checked) and that it does

not distinguish specifications with the same set of observable traces.

Most of the other authors only consider analogue-clock tests, i.e. tests that are very diffi-

cult to execute in practice. Nevertheless, Krichen and Tripakis consider both analogue-clock

and digital-clock tests. Analogue-clock tests can measure precisely the delay between two

events, whereas digital-clock tests can only count how many time units of a periodic clock

have occurred between two events [74]. They use symbolic reachability algorithms for test

case generation, whereas other approaches use symbolic representation of time with classical

reachability algorithms. There is a tool, named TTG, supporting the proposed strategy and

in [74] only a toy example is used as case study.

The strategy of analogue and digital-clock test generation is improved in [75]. Most

test generation algorithms rely on an implicit determinization of the specification during

the test case generation, but this is a problem when analogue-clock tests are considered

because timed automata are not determinizable in general [5]. In [74], Krichen and Tripakis

proposed an on-the-fly determinization of the specification during the execution of the test,

but the generated algorithm is costly and the tester must quickly respond to the outputs

of the system under test. Thus, they proposed, in [75], a pragmatic approach where they

suppose that the tester has a single clock and that it is reset every time the tester observes an

action of the system. This proposed strategy allows analogue-clock tests to be represented as

deterministic timed automata. The generation of digital-clock tests has a different problem:

as this kind of test can be represented statically as finite trees, the generation can be offline

or on-the-fly and the strategy adopted in [74] is to generate all possible tests up to a given

depth, leading to an explosion of test cases. In [75], this problem is solved by providing a

method to generate tests which cover the specification with respect to some criteria.

Krichen and Tripakis present, in [76], the proposed framework in a methodological point

of view with emphasis on the expressiveness of the models and showing several examples

of scenarios to be specified. A real example is used as case study in this more recent work.

Finally, all the work discussed in this section is described in detail in Krichen’s PhD thesis

[73] and in [78].

4.1 Related Work 80

4.1.12 Zheng et al.

Zheng et al. [124] address methods to generate test cases from formal specifications of

real-time systems and provide a metric-based test selection method for sufficient testing of a

given implementation. The systems are specified using an object-oriented approach: firstly,

the abstract data types are separately defined; secondly, each reactive object of the system is

specified using a kind of extended finite state machines; finally, the whole system is specified

as a network of communicating objects.

As the specification notation allows time to be continuous, a grid is used to digitise the

extended finite state machines. The grid is a covering of the underlying analogue time space,

mapping points of that space onto a single representative of each grid region. So, this strategy

also represents time symbolically as most of the other approaches discussed in this chapter.

From grid automata, test cases can be generated according to a given coverage criterion (state

or transition coverage) or according to a fault model.

The work also describes an experimental study where a test bed implementing the pro-

posed strategy, named TROMLAB, is used to validate the work. But, the work has some

drawbacks such as a conformance relation is not defined, algorithms and examples of test

cases are not presented, the cited tool is not available, and the specification language only

considers synchronous communication between objects.

4.1.13 David et al.

David et al. [37] propose a game-theoretic approach to the testing of real-time systems.

Systems are modelled by Timed Input-Output Game Automata (TIOGA), which is a variant

of timed automata (see Subsection 2.2.3) with their actions partitioned into controllable ones

and uncontrollable ones. When an action is controllable it means that the tester determines

when or which action will occur, whereas when an action is uncontrollable it means that it is

the system under test that determines when or which action will occur. Considering that the

set of actions are divided into input and output actions, David et al. assume all output actions

to be uncontrollable and all input actions to be controllable. Test purposes can be defined as

Timed CTL formulas.

According to David et al., the proposed strategy can be defined as follows: a play of the

4.1 Related Work 81

timed game between the system and the tester is a run of the TIOGA towards a specified test

purpose; if the Timed CTL formula is satisfied by the TIOGA, it can synthesize a winning

strategy; since a winning strategy is a guide towards the goal states, which satisfy the test

purpose, it can be viewed as a test case. This strategy is implemented in a timed game solver,

named UPPAAL TIGA.

David et al. show that the semantics of TIOGA can be defined in terms of TIOLTS and

reuse the conformance relation defined by Krichen and Tripakis (Subsection 4.1.11). Inter-

nally, the strategy represents time in a symbolic way and uses model checking techniques to

verify the satisfiability of a formula against a specification, and if so, a test case is generated.

In this sense, this technique is not considered to be a symbolic testing strategy.

In [38], David et al. propose another game-theoretic approach to testing partially observ-

able real-time systems. This work differs from the former because the tester may observe

neither internal actions nor internal state changes due to these internal actions. Moreover,

the tester has limited precision ways to analyse the SUT, which avoids knowing which state

the SUT is in or the precise observation a timed trace. In this case, the SUT can only be

observed through a finite number of possible observations. Finally, an observation-based

conformance relation is proposed along with algorithms for test case generation, but only

time is symbolically treated.

4.1.14 Adjir et al.

Adjir et al. [3; 4] propose a technique for conformance testing of real-time systems using

TINA, a toolbox for the edition and analysis of Petri Nets and Time Petri Nets. According

to the authors, the toolbox allows the generation of time-optimal test cases. As specification

language, they use Prioritised Time Petri Nets. In this model, there is a priority relation

on the transitions, that is, a transition can only be fired if it has the highest priority at the

moment.

The authors mention that the proposed technique is based on timed trace inclusion, but

no conformance relation is formally defined. Specific scenarios of testing can be selected

through manually defined test purposes and covering criteria specified in the state-event lin-

ear temporal logic SE-LTL. Besides not presenting algorithms or case studies, this work only

abstracts time.

4.1 Related Work 82

4.1.15 Styp et al.

Styp et al. [120] propose a combination of symbolic transition systems introduced in [52]

with timed automata presented in [5], named Symbolic Timed Automata (STA). The pro-

posed formalism allows the modelling of real-time reactive systems with data input and out-

put. It is possible to use variables as bounds in clock guards and associate clock invariants

with locations. The semantics of STA is defined in terms of TLTS (see Subsection 2.2.3).

A new conformance relation is defined: stioco. The stioco relation is very similar to the

tioco relation defined by Krichen and Tripakis (Subsection 4.1.11), but symbolic constraints

(universally quantified formulas) are considered instead of dealing with concrete outputs.

Thus, an implementation conforms to a specification for stioco, if, whenever the constraints

are satisfied for the implementation to produce an output or delay, then also the specification

satisfies the constraints to produce the same output or delay. The authors state that stioco

coincides with tioco at the semantic level.

As the work is at the beginning, it is far from a complete testing approach. Test cases are

not defined along with a test architecture to execute them. Test case generation and selection

strategies are not presented. Moreover, there are neither algorithms nor tools to support the

work proposed.

4.1.16 Timo et al.

Timo and Rollet [113; 114] propose a conformance testing approach to data-flow real-time

systems based on a variant of timed automata in which only variable changing are considered

as events.

In [114] the model called Variable Driven Timed Automata (VDTA) is proposed. In the

states of a VDTA either the time elapses continuously or the environment modifies the values

of input variables. All transitions are urgent and the values of output variables can only be

observed. Moreover, a timed variable-change conformance relation (tvco) is proposed. Ba-

sically, an implementation is in conformance with its specification for tvco if all behaviours

of the implementation are allowed by its specification. In this case, the implementation must

change the value of input variables in a time allowed by the specification. An online testing

algorithm is proposed, but test cases are not formally defined.

4.2 Comparison of Reviewed Work 83

The approach presented in [114] is improved in [113]. Test purposes are introduced as a

test case selection strategy and the time is treated with region graphs, which may lead to the

state space explosion problem. Finally, abstract interpretation and approximation techniques

are proposed to generate test cases, but no algorithms are presented. It is important to men-

tion that only deterministic models are considered, quiescence is not discussed, and there is

no tool supporting the work.

4.2 Comparison of Reviewed Work

This section concludes the analysis of related work with a comparison among all studied

contributions. The analysis is divided into three tables because of the limited space. In the

first table (Table 4.1), the following characteristics are considered: (1) if the strategy of test

case generation is online or offline; (2) if the proposal allows test purposes specification; (3)

if the proposed strategy is supported by tools; (4) the specification language used to model

the IUT; (5) if the work takes quiescence into account.

Considering the first characteristic, most of the approaches adopt offline test generation.

Few approaches that consider an online test case generation has a tool available. As discussed

before, it is easier to deal with non-determinism through an online strategy. On the other

hand, it is more difficult to guide the generation with test purposes. An interesting work

is the one developed by Krichen and Tripakis (Subsection 4.1.11), where the generation is

offline but the strategy takes non-determinism into account. The generated test cases can be

seen as trees and the action of the tester depends on the observation history. It is important

to remark that non-determinism is an important characteristic of the real-time context, since

most of specifications are composed of parallel components.

The second characteristic is related to specification of properties to be verified during

the test. Most of the approaches allow the specification of test purposes. In some cases, the

approaches marked with an asterisk “*”, the strategy allows the specification of the envi-

ronment that interacts with the IUT emitting inputs and receiving outputs. In this case, the

specification of the environment can be considered as a test purpose. Test purposes are ex-

tremely needed in the context of real-time systems because the available algorithms usually

generate a huge amount of test cases.

4.2 Comparison of Reviewed Work 84

As the researches in the context of real-time testing are very recent, there are few tools

available. Basically, we can cite TROM (Subsection 4.1.8), CoVer (Subsection 4.1.9), TTG

(Subsection 4.1.11), TIGA (Subsection 4.1.13), and TINA (Subsection 4.1.14) for effective

testing of real-time systems. The other tools marked with an asterisk are only cited on their

respective papers, but they are not available. The three tools TROM, CoVer, and TIGA are

related in the sense that they are based on the UPPAAL model checking tool. These three

tools use the UPPAAL notation as the input specification.

Considering the notation used as specification language, most of the approaches use mod-

els derived from timed automata [5]. In general, timed automata cannot be determinized [5],

thus most approaches impose several restrictions to the specification language. Some au-

thors completely disallow non-determinism such as Cardell-Oliver (Subsection 4.1.1), En-

Nouaary et al. (Subsection 4.1.2), Li et al. (Subsection 4.1.3), Briones and Brinksma (Sub-

section 4.1.5), Bodeveix et al. (Subsection 4.1.7), Hessel et al. (Subsection 4.1.9), Zheng

et al. (Subsection 4.1.12), and David et al. (Subsection 4.1.13); whereas, others restrict the

use of clocks, guards, or clock resets such as Khoumsi (Subsection 4.1.4), Bohnenkamp and

Belinfante (Subsection 4.1.6), and Merayo et al. (Subsection 4.1.10). The most expressive

specification languages are used by Larsen et al. (Subsection 4.1.8) and Krichen and Tri-

pakis (Subsection 4.1.11). Non-determinism is also important to model timing uncertainty,

that is, it is more realistic to allow an output occurring in some interval of time. In this case,

non-determinism is a choice between letting the time pass or emitting an output.

Khoumsi (Subsection 4.1.4) is one of the authors that proposes a specification language

where parameters and variables containing data of the system can be defined. This is the

first step in order to provide an effective real-time symbolic testing strategy. Nevertheless,

strong restrictions are made on clocks, guards, and clock resets leading to restrictions on its

applicability in practice. Two other approaches described in Subsections 4.1.15 and 4.1.16

are intended to provide a real-time symbolic testing strategy, but these approaches can be

considered as incomplete since test cases are not formally defined, a test architecture is not

defined, no algorithms are presented, and there is no tool supporting the work.

The last characteristic considered in Table 4.1 is quiescence. Quiescence is a character-

istic of systems that indicates the absence of outputs, and as described in Subsection 2.1.5 it

is extremely related to real-time systems. To provide an effective way of dealing with qui-

4.2 Comparison of Reviewed Work 85

escence, the following concepts must take it into account: input specification, conformance

relation, oracle, and so on. In this sense, only two approaches consider quiescence: Briones

and Brinksma (Subsection 4.1.5) and Bohnenkamp and Belinfante (Subsection 4.1.6). How-

ever, the former work does not have an implemented tool, whereas the latter implemented a

prototype which is unavailable.

Work

Test Case

Generation TP Tool Spec. Language Quiesc.

Cardell-Oliver offline yes∗ Essex∗ TIOLTS no

En-Nouaary et

al. offline yes no

deterministic and output

urgent TAIO no

Li et al. offline yes no RT Statecharts no

Khoumsi offline yes no non-deterministic TIOSA no

Briones and

Brinksma offline no no TIOLTS yes

Bohnenkamp

and Belinfante online yes yes∗
non-deterministic safety

TAIO yes

Bodeveix et al. offline yes no a kind of TAIO no

Larsen et al. online yes TRON

TAIO (with guards on lo-

cations and transitions) no

Hessel et al. offline yes CoVer

deterministic and output

urgent TAIO no

Merayo et al. offline no no non-deterministic TEFSM no

Krichen and

Tripakis

offline and

online yes TTG∗
partially-observable and

non-deterministic TAIO no

Zheng et al. offline yes∗ TROMLAB∗ TEFSM no

David et al. offline yes TIGA TIOGA no

Adjir et al. offline yes TINA Prioritized Time Petri Nets no

Styp et al. no no no STA no

Timo et al. offline yes no VDTA no

Table 4.1: Related Work

In the second table (Table 4.2), the following characteristics are considered: (1) defini-

tion of a conformance relation; (2) assumptions related to the specification; (3) assumptions

related to the implementation under test. Considering the first characteristic, most of the

approaches define a conformance relation based on either trace equivalence or trace inclu-

4.2 Comparison of Reviewed Work 86

sion. These kinds of conformance are very restricted because the implementation must have

inputs and outputs defined in the specification. In the case where the specification does not

completely specify a system, an implementation is allowed to have inputs not defined in

the specification, thus only the outputs related to inputs defined in the specification must

be considered. In this sense, Krichen and Tripakis (Subsection 4.1.11) propose a less re-

stricted conformance relation, named tioco. Briones and Brinksma (Subsection 4.1.5) is the

only work that defines a conformance relation considering quiescence and the idea is im-

plemented by Bohnenkamp and Belinfante (Subsection 4.1.6). Merayo et al. (Subsection

4.1.10) define several conformance relations which can be considered as timed trace inclu-

sions as well as the conformance relation defined by Timo et al. (Subsection 4.1.16). An

interesting conformance relation is defined by Styp et al. (Subsection 4.1.15) based on sym-

bolic constraints instead of concrete outputs, however at the semantic level it coincides with

tioco.

Considering the second characteristic in Table 4.2, as already discussed, several ap-

proaches impose determinism to the specification in order to simplify the strategy. Almost

all approaches assume input-completeness of the specification, so a complete specification

of the IUT must be available. This restriction is relaxed by Krichen and Tripakis (Subsection

4.1.11) where the testing process can be performed with a system partially specified.

The last characteristic in Table 4.2 is related to the assumptions about the IUT. Practically,

all approaches assume the input-completeness of the IUT. In practice, this assumption is true

in many contexts, but not all. There are several scenarios where an IUT may not be input-

complete, for instance, when a user tries to save a read-only text or to insert a PIN card in a

slot of a cash machine where there is already another PIN card inserted. It is clear that there

are situations where the inputs can be forbidden or ignored by the system. In this sense,

Briones and Brinksma (Subsection 4.1.5) provide a strategy to deal with these cases.

In the third table (Table 4.3), the following characteristics are considered: (1) the kind

of time (analogue or digital-time); (2) the kind of test cases (instantiated or abstract); (3)

the kind of communication allowed by models; (4) the kind of oracle (manual, partial, or

automated). Considering the first characteristic of Table 4.3, almost all approaches adopt the

analogue-time model and represent time in a symbolic way. An interesting characteristic of

Krichen and Tripakis’ work is that they do not represent time symbolically, but they provide

4.2 Comparison of Reviewed Work 87

Work Conf. Relation Specification Implementation

Cardell-Oliver trace equivalence

input-complete and must have

more states than the implemen-

tation. input-complete

En-Nouaary et

al. trace equivalence

input-complete and must have

the same number of locations as

the implementation. input-complete

Li et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Khoumsi timed trace inclusion input-complete input-complete

Briones and

Brinksma ioco with quiescence input-complete input-complete∗

Bohnenkamp

and Belinfante ioco with quiescence input-complete input-complete

Bodeveix et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Larsen et al. timed trace inclusion

deterministic and input-

complete input-complete

Hessel et al. timed trace inclusion

deterministic, input-complete,

and output urgent input-complete

Merayo et al.

there are several confor-

mance relations input-complete input-complete

Krichen and

Tripakis tioco

no restriction on input-

completeness input-complete

Zheng et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

David et al. tioco input-complete input-complete

Adjir et al. timed trace inclusion

deterministic, input-complete,

and output urgent

deterministic,

input-complete,

and output urgent

Styp et al. stioco non-deterministic input-complete

Timo et al. tvco assumptions are not discussed

assumptions are not

discussed

Table 4.2: Related Work

4.3 Problem Statements 88

a symbolic reachability algorithm to generate tests. Timo et al. (Subsection 4.1.16) propose

a reachability analysis based on clock regions, but this strategy can quickly lead to the state

space explosion problem. It is important to remark that complete real-time symbolic testing

strategies that take system variables, parameters and time into account are nonexistent.

Almost all approaches generate instantiated test cases, since only time is abstracted dur-

ing the test generation. Considering the approaches proposed by Styp et al. (Subsection

4.1.15) and Timo et al. (Subsection 4.1.16), it is not possible to define the kind of test case

because neither examples are presented nor test cases are formally defined. Considering

the possibility of specification of communicating elements, all approaches only allow syn-

chronous communication. Thus, it is not possible to model asynchronous events such as

interruptions. Considering the last characteristic in Table 4.3, most approaches only pro-

vided test case generation algorithms, but in the context of real-time systems the execution

of test cases and verdicts assignment are as difficult as the generation of tests. Only three

approaches developed an automated oracle. Basically, Bohnenkamp and Belinfante (Subsec-

tion 4.1.6), Larsen et al. (Subsection 4.1.8), and Krichen and Tripakis (Subsection 4.1.11)

developed algorithms that use the specification to guide the execution of tests and assign-

ment of verdicts. When the specification has only actions without parameters and variables

the development of automated oracles is relatively simple. Nevertheless, an automated ora-

cle in a real-time symbolic testing strategy causes the test data generation problem because

variables and parameters must be instantiated during the test execution.

4.3 Problem Statements

This section describes several problems identified during the review of the work related to

this thesis. A practical example adapted from [110] will be used to clarify the discussion.

The chosen example is a burglar alarm system, a real-time monitoring system. The objective

of the system is to monitor sensors to detect the presence of intruders in a building.

This system uses different kinds of sensors including movement detectors in individual

rooms, window sensors, which detect the breaking of a window and door sensors, which de-

tect the opening of doors. There are 50 window sensors, 30 door sensors, and 200 movement

detectors. When a sensor indicates the presence of an intruder, the system automatically

4.3 Problem Statements 89

Work Time Test Cases Communication Oracle

Cardell-Oliver

analogue-time model (internally the

model is digitised) instantiated synchronous partial

En-Nouaary et

al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Li et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Khoumsi

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Briones and

Brinksma

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Bohnenkamp

and Belinfante

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Bodeveix et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Larsen et al.

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Hessel et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Merayo et al. digital-time model instantiated synchronous partial

Krichen and

Tripakis digital and analogue-time models∗ instantiated synchronous automated

Zheng et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

David et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Adjir et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Styp et al. analogue-time model undefined synchronous undefined

Timo et al. analogue-time model undefined synchronous undefined

Table 4.3: Related Work

calls the police and, with a voice synthesiser, reports the position of the alarm. In addition,

the system switches on lights around the area with activated sensors and switches on an au-

dible alarm. The system is normally powered by the central power supply system, but it

is equipped with a battery backup. The loss of power is detected by a circuit monitor that

4.3 Problem Statements 90

monitors the main tension. The system switches automatically to backup power when a volt-

age drop is detected. The timing requirements contained in our version of the burglar alarm

system are described in Table 4.4.

Stimulus/Response Timing Requirements

Power fail interrupt

The switch to backup power must be completed

within a deadline of 50 ms.

Audible alarm

The audible alarm should be switched on within 1/2

second after an alarm is raised by a sensor.

Voice synthesiser

A synthesised message should be available within 3

seconds after an audible alarm is switched on.

Communications

The call to the police should be started within 1 sec-

ond after a message is synthesised.

Lights switch

The lights should be switched on within 1/2 second

after the calling to the police.

Table 4.4: Timing Requirements

Considering the architecture of the system, each system functionality is allocated to a

concurrent process as well as each kind of sensor is allocated to a process. There is an

interruption-driven system to deal with the failure and switching of power supply, a com-

munication system, a voice synthesiser, an audible alarm system, and an illumination drive

system to turn on lights around the sensor. The architecture of the system is depicted in

Figure 4.1. The labelled arrows indicate the data flow between processes and the notes asso-

ciated with the processes indicate which process or action causes the interruption.

Considering the specified scenario, some limitations of the approaches presented in this

chapter are discussed. As an alarm system is naturally a system that has several quiescent

states it is important to consider this property during the testing process. In this sense, the

first problem that arises is the lack of tools for testing quiescence in real-time systems.

Another limitation of the current work is the input-completeness assumption of imple-

mentations. As discussed in Section 4.2, there are situations where some inputs can be for-

bidden or ignored by the system. These cases are only considered by Briones and Brinksma

[24], but all forbidden or ignored inputs must be previously specified. Thus, there are still

4.3 Problem Statements 91

Figure 4.1: Burglar Alarm System Architecture

open problems such as the cases where a system cannot accept an input because of a fault

(e.g. a requirement was implemented but there is not an option menu to access it). This

problem is very common in the test of mobile phone applications and it is present not only

in the real-time systems context but also in non-real-time systems.

The most efficient implementation of the burglar alarm system is to adopt the interrupt-

driven architecture of Figure 4.1 where most communication between processes is asyn-

chronous. For example, when an intruder is detected, the process that controls the activated

sensors interrupts the building monitor process, which interrupts the alarm system process.

Finally, the alarm system process, using interruptions, activates the following processes:

audible alarm, lighting control, voice synthesiser, and communication process. However,

current real-time models do not take asynchronous events into account. Thus, the testing

process of real-time systems with asynchronous events based on formal models is compro-

mised, if not impossible.

As discussed in Section 4.2, all approaches only use symbolic strategies to abstract time

as a way of digitisation of analogue-time models. Nevertheless, when the system uses huge

data domains, each value continues to be represented as a system state, leading to the clas-

4.4 Concluding Remarks 92

sical state space explosion problem. Moreover, the digitisation of analogue-time models

usually leads to a huge number of test cases. An interesting solution would be to provide

symbolic testing strategies to abstract not only time but also variables of the system, leading

to a simplified test suite where only most significant system data would be used during the

test execution.

Taking the burglar alarm system as an example, the representation of the three kinds of

sensors (movement, door and window sensors) using the existing real-time models would

lead to three different paths in the model. In a real-time symbolic model, the representation

is simple: the processes representing the three kinds of sensors could be abstracted in only

one location in the model, where the interruption action would carry the information about

the kind of sensor and the room number as parameters. In addition, the number of rooms

of the burglar alarm system could be abstracted in a variable, thus it would be simpler to

model situations where depending on the number of activated sensors, the system could take

different decisions.

The high abstraction level in symbolic models leads to other problems such as the oracle

problem. As it is possible to generate abstract test cases, the oracle problem is related to

symbolic strategies in the sense that it is more difficult to provide an automated way for test

case generation and execution, since test cases must be instantiated according to constraints

defined in the specification.

4.4 Concluding Remarks

This chapter presented a review of work related to this thesis and several problems were

stated. It is not our intention to deal with all identified problems. As discussed in Chapter 1,

we intend to propose an extension of the symbolic testing strategy presented in Subsection

2.1.9 to deal with real-time systems. Furthermore, we intend to provide ways of modelling

and testing asynchronous events considering an automated oracle for test case generation

and execution. Problems related to quiescence and input-completeness are outside the scope

of this thesis.

Chapter 5

Timed Input-Output Symbolic Transition

Systems

This chapter presents a new symbolic model named Timed Input-Output Symbolic Transi-

tion System (TIOSTS) [11]. The goal is to address limitations of the existing notations and

abstract time and data during test case generation. This model is an extension of two existing

models: Timed Automata with Inputs and Outputs (TAIO), itself an extension of timed au-

tomata [5] with distinguished inputs and outputs, and deadlines to model urgency [21]; and

Input-Output Symbolic Transition Systems (IOSTS) [108]. In other words, a TIOSTS is an

automaton with a finite set of locations, variables used to represent the system data, and a

finite set of clocks used to represent time evolution. An edge comprises a guard on variables

and clocks, an action carrying parameters for the communication with its environment, an

assignment to variables, and resets of clocks.

5.1 Syntax of TIOSTS

We intuitively explain the different notions of the TIOSTS model through the example shown

in Figure 5.11 that models a withdrawal transaction in an ATM system. In a TIOSTS, a

transition is fired if its guard is true, then the action is executed and all assignments are

performed.

1In graphical representations, input actions are followed by the “?” symbol and output actions are followed

by the “!” symbol. These symbols are used only as visual notation, they are not part of the action’s name.

93

5.1 Syntax of TIOSTS 94

The withdrawal transaction has a precondition (an initial condition) that states that the

current balance must be strictly positive. Initially, the system is in the Idle location where

it expects the Withdrawal input carrying a strictly positive integer parameter amount that

is saved into the withdrawalValue variable with the clock set to zero when the transition

is taken. The scope of an action parameter is local with respect to the transition where it

appears, thus the value of an action parameter must be stored in a variable in order to use it

in the future.

Considering that the value of withdrawalValue is less than or equal to the balance and the

time represented by clock is less than or equal to 10 time units, the ATM system dispenses

the cash through the DispenseCash output carrying the amount parameter (the condition

amount = withdrawalV alue contained in the guard means “choose a value for the amount

parameter that, with the value of the withdrawalValue variable, satisfies the guard”). This

is a characteristic inherited from IOSTS models whose objective is to associate the value of

a variable with an action parameter in order to define output actions. Finally, the balance

variable is decreased by the withdrawn value, and the system returns to the Idle location.

On the other hand, if the account does not have sufficient funds, the system must emit the

invalid withdrawal value through the InsufficientFunds output carrying the amount parameter

when clock is at most 2 (the condition amount = withdrawalV alue has a similar meaning

to the previous guard), and reset the clock to zero again. Finally, the current balance is

emitted through the PrintBalance output when clock is at most 5 (the condition amount =

balance contained in the guard means “choose a value for the amount parameter such that it

is equal to the value of the balance parameter”), and the system returns to the Idle location.

Guards on transitions only indicate when they are enabled or not, but they cannot force

the transition to be taken. Considering the specification of Figure 5.1, the TIOSTS may stay

forever in any location. This can be solved by adding some restrictions to the transitions

in order to describe the urgency of execution. Adopting the strategy defined in [21], each

transition is annotated with one of the following three deadlines: lazy, delayable, and eager.

The lazy deadline imposes no urgency to the transition to be taken, delayable means that

once enabled the transition must be taken before it becomes disabled, and eager means the

transition must be taken as soon as it becomes enabled.

Default deadlines are adopted in order to not overload pictures, thus when not specified

5.1 Syntax of TIOSTS 95

Figure 5.1: TIOSTS Example

the deadline of transitions with output actions is assumed to be delayable and the deadline

of transitions with input actions is assumed to be lazy. On the other hand, when different

deadlines are necessary they must be explicitly specified. A TIOSTS is formally described

in Definition 5.1.

Definition 5.1 (TIOSTS). Formally, a TIOSTS is a tuple 〈V, P,Θ, L, l0,Σ, C, T 〉, where:

• V is a finite set of typed variables;

• P is a finite set of parameters. For x ∈ V ∪ P , type(x) denotes the type of x;

• Θ is the initial condition, a predicate with variables in V ;

• L is a finite, non-empty set of locations;

• l0 ∈ L is the initial location;

• Σ = Σ? ∪ Σ! ∪ Στ is a non-empty, finite alphabet, which is the disjoint union of a

set Σ? of input actions, a set Σ! of output actions, and a set Στ of internal actions.

Each action a ∈ Σ has a signature sig(a) = 〈p1, ..., pn〉, that is a tuple of distinct

parameters. The signature of internal actions is the empty tuple;

• C is a finite set of clocks;

• T is a finite set of transitions. Each transition t ∈ T is a tuple 〈l, a,G,A, y, l′〉, where:

– l ∈ L is the origin location of the transition,

5.2 Semantics of TIOSTS 96

– a ∈ Σ is the action,

– G = GD∧GC is the guard, whereGD is a predicate over variables in V ∪sig(a)2

and GC is a clock constraint over C defined as a conjunction of constraints of

the form α#c, where α ∈ C, c is an integer constant and # ∈ {<,≤,=,≥, >},

– A = AD ∪ AC is the assignment of the transition. For each variable x ∈ V

there is exactly one assignment in AD, of the form x := AD
x, where ADx is an

expression on V ∪ sig(a). AC ⊆ C is the set of clocks to be reset,

– y ∈ {lazy, delayable, eager} is the deadline of the transition,

– l′ ∈ L is the destination location of the transition.

�

5.2 Semantics of TIOSTS

TLTS and TIOLTS models are used to define the semantics of all approaches based on TA

and TAIO, respectively. Thus, the semantics of a TIOSTS 〈V, P,Θ, L, l0,Σ, C, T 〉 is de-

scribed in terms of a TIOLTS (Definition 5.2). Intuitively, the TIOLTS states expand the

sets of locations, of valuations of variables V and clocks C, while transitions expand the

sets of actions Σ associated with parameter values P . A valuation of the variables in V is a

mapping ν which maps every variable x ∈ V to a value ν(x) in the domain of x. Valuations

of parameters P are defined similarly. Let V denote the set of valuations of the variables V

and let Γ denote the set of valuations of the parameters P . Let the function ψ : C → R≥0

denote a clock valuation. We denote by 0 the valuation that assigns 0 to all clocks.

Considering ν ∈ V and γ ∈ Γ, for an expressionE involving a subset of V ∪P , we denote

by E(ν, γ) the value obtained by evaluating the result of substituting in E each variable by

its value according to ν and each parameter by its value according to γ.

Definition 5.2 (TIOLTS semantics of a TIOSTS). The semantics of a TIOSTS W =

〈V, P,Θ, L, l0,Σ, C, T 〉 is a TIOLTS [[W]] = 〈S, S0, Act, T 〉, defined as follows:

• S = L×V × (C → R≥0) is the set of states of the form s = 〈l, ν, ψ〉 where l ∈ L is a

location, ν ∈ V is a specific valuation for all variables V , and ψ is a clock valuation;
2GD is assumed to be expressed in a theory in which satisfiability is decidable.

5.2 Semantics of TIOSTS 97

• S0 = {〈l0, ν, ψ〉 | Θ(ν) = true, 0} is the set of initial states. It is important to remark

that the number of initial states can be infinite because, in this case, there may be

infinite valuations satisfying the initial condition Θ;

• Act = Λ∪D is the set of actions, where Λ = {〈a, γ〉 | a ∈ Σ, γ ∈ Γsig(a)} is the set of

discrete actions and D = R≥0 is the set of time-elapsing actions. Λ is partitioned into

the sets Λ? of input actions, Λ! of output actions, and Λτ of internal actions;

• T is the transition relation defined as follows: (1) transitions with discrete actions are

of the form 〈l, ν, ψ〉 〈a,γ〉→ (l′, ν ′, ψ′), where the system moves from 〈l, ν, ψ〉 to 〈l′, ν ′, ψ′〉

through an action 〈a, γ〉 if there is a transition t : 〈l, a,G,A, y, l′〉 ∈ T such that

G evaluates to true, ν ′ = AD(ν, γ), and ψ′ = AC(ψ); (2) transitions with time-

elapsing actions are of the form (l, ν, ψ)
d→ (l, ν, ψ + d) for all d ∈ D considering

that the deadlines do not block time progress. Once the lazy deadline is used only

to denote the absence of deadlines, lazy transitions cannot block time progress. A

delayable transition can block time progress if there exist 0 ≤ d1 < d2 ≤ d such that

ψ+ d1 |= GC and ψ+ d2 6|= GC , whereas an eager transition can block time progress

if ψ |= GC .

�

As in [78], delayable transitions with guards of the form α < c are not allowed because

there is no latest time so that the guard is still true. Also, eager transitions with guards of the

form α > c are not allowed because there is no earliest time so that the guard becomes true.

Most notions and properties of TIOSTS are defined in terms of their underlying TIOLTS

semantics (Definition 5.2). Then, consider s, s′, si ∈ S; τi ∈ Λτ ; ω, ωi ∈ Act; and a, ai ∈

(Act\Λτ). Moreover, let ρ ∈ Act∗ be a sequence of discrete actions and time-elapsing

actions, and σ ∈ (Act\Λτ)∗ be a sequence of visible discrete and time-elapsing actions.

ε ∈ Act∗ is the empty sequence. The sum of all delays spent in a sequence of actions ρ

(respectively σ) is denoted by time(ρ) (respectively by time(σ)). For example, time(ε) = 0

and time(2.5 a? 0.5 x!) = 3.0.

Let W = 〈V, P,Θ, L, l0,Σ, C, T 〉 be a TIOSTS whose semantics is defined by the

TIOLTS [[W]] = 〈S, S0, Act, T 〉. We write s ω→ s′ for (s, w, s′) ∈ T , s ω→ for ∃s′ : s
ω→ s′.

Let s ω1...ωn→ s′
∆
= ∃s0, ..., sn : s = s0

ω1→ s1
ω2→...

ωn→ sn = s′ be an execution. We also write

5.2 Semantics of TIOSTS 98

s
ρ→ for ∃s′ : s

ρ→ s′. Traces(s) ∆
= {ρ ∈ Act∗ | s ρ→} describes the set of sequences of dis-

crete and time-elapsing actions fireable from s. The set of fireable actions from s is defined

by Ω(s)
∆
= {ω ∈ Act | s ω→}. Out(s) ∆

= Ω(s) ∩ (Λ! ∪ D) is the set of all output events

(including time-elapsing actions) fireable from s. The definition of Out(s) can be extended

for sets of states: for P ⊆ S we have Out(P)
∆
=

⋃
s∈P Out(s).

The⇒ relation is used to denote the observable behaviour. Given s, s′ ∈ S, d ∈ R≥0 and

a ∈ Λ! ∪ Λ?, we have s d⇒ s′ whenever ∃ρ ∈ (Λτ ∪D)∗ such that s
ρ→ s′ and time(ρ) = d,

whereas we have s a⇒ s′ whenever ∃ρ1, ρ2 ∈ (Λτ)∗, s1, s2 ∈ S such that s
ρ1→ s1

a→ s2
ρ2→ s′.

Given a1, · · · an ∈ (Act\Λτ)∗, an observable execution is defined as s a1...an⇒ s′
∆
= ∃s0, ..., sn :

s = s0
a1⇒ s1

a2⇒...
an⇒ sn = s′. For a ∈ Act \ Λτ we also define s a⇒ ∆

= ∃s′ : s
a⇒ s′ and

for σ ∈ (Act \ Λτ)∗, s σ⇒ ∆
= ∃s′ : s

σ⇒ s′. ObservableTraces(s) ∆
= {σ ∈ (Act \ Λτ)∗ |

s
σ⇒} describes the set of sequences of observable and time-elapsing actions fireable from

s. Finally, the set of sequences of observable behaviours fireable from the initial state of a

TIOSTS W is defined by ObservableTraces(W)
∆
= ObservableTraces(S0).

The set s after σ ∆
= {s′ ∈ S | s σ⇒ s′} is the set of states reachable from s after the

execution of σ, and P after σ ∆
=

⋃
s∈P s after σ is the set of states reachable from the set P

after the execution of σ.

Subclasses of TIOSTS. Let W = 〈V, P,Θ, L, l0,Σ, C, T 〉 be a TIOSTS and [[W]] =

〈S, S0, Act, T 〉 its associated TIOLTS. W is complete if it can accept any action at any

state, i.e., ∀s ∈ S, b ∈ Λ : s
b→. On the other hand, W is input-complete if it can ac-

cept any input action at any state, possibly after internal actions, i.e., ∀s ∈ S, b ∈ Λ? : s
b⇒.

W is said to be a lazy-action TIOSTS if the deadlines of all transitions are lazy, that is,

T = {t | t : 〈l, a,G,A, lazy, l′〉 ∈ T }. W is said to be a non-blocking TIOSTS

when it does not block time. In this case, the following condition must be satisfied

[74]: ∀s ∈ S0 after ρ, ∀d ∈ R≥0, ∃ρ′ ∈ (Λ! ∪ Λτ ∪ D)∗ : time(ρ′) = d ∧ s ρ′→.

W is said to be deterministic if the following three conditions are satisfied [35; 63;

108]:

1. Λτ = ∅ (i.e. there are no internal actions);

2. | S0 |= 1, that is, there is only one initial state implying the initial condition Θ is

satisfied by only one valuation ν0;

5.3 Synchronous Product of TIOSTS 99

3. for all l ∈ L and for each pair of distinct transitions with origin in l carrying the same

action a, that is, t1 : 〈l, a,G1, A1, y1, l
′
1〉 and t2 : 〈l, a,G2, A2, y2, l

′
2〉, the guards G1

and G2 are mutually exclusive (i.e., G1 ∧G2 is unsatisfiable).

5.3 Synchronous Product of TIOSTS

The synchronous product of two TIOSTSs W1 and W2 is an important operation used in

both property oriented testing and conformance testing. This operation is used in the former

for identifying behaviours of the specification accepted or rejected by a particular property

(e.g., W1 could be a specification and W2 could be a test purpose). On the other hand, for

conformance testing, this operation is used for modelling the synchronous execution of a test

case on an implementation (e.g., W1 could be a test case and W2 could be an implementation

under test). This classical problem is known as the language intersection problem [62].

The synchronous product operation requires compatibility between W1 and W2, that is,

W1 and W2 must share the same sets of input and output actions from the same signature,

with the same set of parameters, and have no variables, internal actions, or clocks in common.

Definition 5.3 (Compatibility for Synchronous Product). The TIOSTSs Wi =

〈Vi, Pi,Θi, Li, l
0
i ,Σi, Ci, Ti〉 (i = 1, 2) are compatible if V1 ∩ V2 = ∅, P1 = P2,Σ

?
1 =

Σ?
2,Σ

!
1 = Σ!

2,Σ
τ
1 ∩ Στ

2 = ∅, and C1 ∩ C2 = ∅. �

Given the ordering lazy < delayable < eager on deadlines and two deadlines y1, y2,

op(y1, y2) = (y2 if y1 < y2 and y1 otherwise) is an operation which computes the resulting

deadline in the synchronous product operation by keeping the most restrictive one.

Given two compatible TIOSTSs, Definition 5.4 formally describes the synchronous prod-

uct between them.

Definition 5.4 (Synchronous Product). The synchronous product of two compatible TIOSTSs

W1 and W2 is denoted by SP = W1 ‖ W2. SP is the TIOSTS 〈V, P,Θ, L, l0,Σ, C, T 〉

defined by: V = V1 ∪ V2, P = P1 = P2,Θ = Θ1 ∧ Θ2, L = L1 × L2, l
0 = 〈l01, l02〉,Σ? =

Σ?
1 = Σ?

2,Σ
! = Σ!

1 = Σ!
2,Σ

τ = Στ
1 ∪ Στ

2, and C = C1 ∪ C2. The set T is the smallest set

such that:

5.4 Concluding Remarks 100

(a) TIOSTS W1 (b) TIOSTS W2 (c) SP = W1 ‖W2

Figure 5.2: Synchronous Product Example

1. For a ∈ Στ
1 and l2 ∈ L2:

if 〈l1, a, G1, A1, y1, l
′
1〉 ∈ T1 then 〈〈l1, l2〉, a, G1, A1, y1, 〈l′1, l2〉〉 ∈ T ;

2. For a ∈ Στ
2 and l1 ∈ L1:

if 〈l2, a, G2, A2, y2, l
′
2〉 ∈ T2 then 〈〈l1, l2〉, a, G2, A2, y2, 〈l1, l′2〉〉 ∈ T ;

3. For a ∈ Σ? ∪ Σ!:

if 〈l1, a, G1, A1, y1, l
′
1〉 ∈ T1 and 〈l2, a, G2, A2, y2, l

′
2〉 ∈ T2 then

〈〈l1, l2〉, a, G1 ∧G2, A1 ∪ A2, op(y1, y2), 〈l′1, l′2〉〉 ∈ T .

�

Considering the Definition 5.4, the execution of internal actions can occur independently

and it is described by Rules 1 and 2. Rule 3 describes the synchronization of W1 and W2

through observable actions. Figure 5.2 presents an example of the synchronous product

between a TIOSTS W1 (Figure 5.2(a)) and a TIOSTS W2 (Figure 5.2(b)), obtaining the

TIOSTS of Figure 5.2(c) as result.

5.4 Concluding Remarks

This chapter presented the symbolic model proposed to address limitations of the existing

notations abstracting time and data in the specification of real-time systems. As the proposed

5.4 Concluding Remarks 101

model is based on timed automata, it has the same expressiveness as the approaches presented

in Chapter 4. However, the use of variables to represent the system data leads to more

compact and abstract models. Moreover, when data and time are treated in a symbolic way

the state space explosion problem is avoided. Next chapter presents how test cases can be

generated from the proposed model.

Chapter 6

Conformance Testing with TIOSTS

This chapter instantiates the conformance testing framework presented in Subsection 2.1.5

and the test purpose framework presented in Subsection 2.1.6 considering TIOSTS models

defined in Chapter 5. After that, the whole process defined to generate test cases based on

TIOSTS models in order to check the conformance between a specification and an imple-

mentation is described. Finally, some properties of the test cases generated by our approach

are discussed. The contents of this chapter is also discussed in [11].

6.1 Testing Conformance

Conformance testing is a kind of testing used to ensure that an implementation of a soft-

ware system meets its specification [118]. This kind of testing relates a specification with an

implementation through a conformance relation, which is checked by the execution of test

cases, possibly selected according to a test purpose. Thus, it is essential to describe all con-

cepts related to conformance testing such as specifications, implementations, conformance

relations between specifications and implementations, and test cases.

Specifications. A specification is a formal model of the SUT represented by a non-blocking

TIOSTS S. The non-blocking specification assumption is due to the fact that we are consid-

ering specifications of software systems that do not force input actions, that is, the system

cannot block because an input action was not provided by the environment.

Implementations. An implementation is a physical software system running on a real-time

102

6.2 Test Case Generation Process 103

environment (e.g., a real-time operating system). In order to reason about conformance, it is

assumed that the semantics of any implementation can be modelled by a formal object. We

assume here that it is modelled by a TIOLTS I. Moreover, the implementation is assumed to

be input-complete, non-blocking, and has the same interface (input and output actions with

their signatures) as the specification S. These assumptions are called test hypotheses.

Test Cases. Test cases (Definition 6.1) are used to check the conformance between specifi-

cations and implementations. It is here defined as a TIOSTS TC as follows:

Definition 6.1 (Test Case). A test case is a deterministic, input-complete TIOSTS TC =

〈VTC , PTC ,ΘTC , LTC , l
0
TC ,ΣTC , CTC , TTC〉, equipped with three disjoint sets of locations

Pass, Fail, and Inconclusive. Moreover, the set of actions is ΣTC = Σ?
TC ∪ Σ!

TC , where

Σ?
TC = Σ!

SUT (outputs of the SUT are the inputs of the TC) and Σ!
TC = Σ?

SUT (TC emits only

inputs allowed by the SUT). �

Intuitively, when the location Fail is reached, it means rejection, the location Pass

means that some targeted behaviour has been reached (this will be clarified later) and

Inconclusive means that targeted behaviours cannot be reached anymore.

Conformance Relation. The conformance relation considered is the tioco relation defined

by Krichen and Tripakis in [76; 77]. Informally, an implementation conforms to a specifica-

tion for tioco if and only if, after any trace of the specification, any output action (including

time-elapsing actions) that the implementation provides after this trace is an output action

that the specification may also provide.

Definition 6.2 (tioco). An implementation I conforms to a specification S for tioco, denoted

by I tioco S , iff ∀σ ∈ ObservableTraces(S), Out(I after σ) ⊆ Out(S after σ). �

6.2 Test Case Generation Process

The test case generation process derives test cases from specifications according to the con-

formance relation. For simplicity, we shall assume that the specification S is deterministic

and non-blocking. However, it is possible to deal with non-determinism, under some as-

sumptions, for both data [65] and time [17]. It is important to remark that internal actions,

6.2 Test Case Generation Process 104

quiescence, and non-input-completeness of implementations are not considered in the pro-

posed test case generation process because these characteristics are outside the scope of this

thesis. The proposed process considers the selection of test cases by test purposes.

Test Purposes. A test purpose describes some desired behaviours that we wish to check on

the implementation during the test campaign. They are used to select test cases in order to

check specific scenarios. In our setting, a test purpose is a particular TIOSTS TP formally

described as follows:

Definition 6.3 (Test Purpose). Given a specification TIOSTS S with action alpha-

bet Σ, a test purpose is a deterministic, complete, lazy-action TIOSTS TP =

〈VTP , PTP ,ΘTP , LTP , l
0
TP ,ΣTP , CTP , TTP 〉, equipped with a special set of locations Accept

⊆ LTP such that all transitions leaving these locations are self-loops1. Moreover TP has to

be compatible with S thus ΣTP = Σ. �

The selection is performed through the synchronous product operation defined in Section

5.3. For this, complete test purposes are needed to ensure that the runs of a specification are

not restricted before they are accepted (if ever).

Accept locations are used to indicate that the expected scenario modelled by the test

purpose has been fulfilled, while Reject locations are used otherwise. Figure 6.1 presents an

example of a test purpose for the withdrawal transaction example presented in Subsection

5.1. It is used to select the scenarios where the user successfully performs a withdrawal

transaction. The Reject location is used to discard all other scenarios where the system does

not exhibit the desired behaviour.

It is important to note that this test purpose is not complete (i.e., not all actions are

enabled at any location), but using a strategy defined in [108] it is possible to automatically

complete it. The steps to automatically complete a test purpose are: (1) in each location, add

a self-loop with an action not enabled; (2) for each transition with a guard G and an action

a, create a new transition to the Reject location with the same action a and the negation of

the conjunction of all guards associated with a. With this automatic operation the activity

of defining test purposes is simplified by allowing the tester to focus only on the desired

1One can also consider another set of locations Reject that can be used to discard all other scenarios where

the system does not exhibit the desired behaviour.

6.2 Test Case Generation Process 105

Figure 6.1: TIOSTS Test Purpose Example

behaviour.

The test case generation process starts with the specification S of the SUT I and a test

purpose TP . Test purposes are used in order to verify if the SUT exhibits a desired behaviour

and their definition allow the tester to focus only on specific behaviours. In this case, test

purposes need to be completed because all input actions are not enabled all the time. The

specification of I is combined with the completed test purpose through the computation of

the synchronous product (Definition 5.4). Then, the resulting TIOSTS model is symbolically

executed to identify and select possible traces leading to an Accept location. Finally, the

selected trace is translated into a test case considering the TIOSTS notation. A general view

of this test process is presented in Figure 6.2. Each step of this process is detailed in the

remainder of this section.

6.2.1 Test Purpose Completion

Algorithm 6.1 presents a simplified implementation of the test purpose completion operation.

This algorithm requires only one parameter: the test purpose to be completed.

During the algorithm execution all non-verdict locations of the test purpose are analysed

(Lines from 2 to 4). If some location has not enabled actions, then a self loop is created with

these actions (Lines from 5 to 14).

After that, for each outgoing transition of the location being processed that has any guard,

it is created a new transition without assignments and as guard the negation of the conjunction

of all guards associated with the action of the current transition (Lines from 15 to 22). If

the target location of the transition being processed is the Reject location, then a self loop is

created with this new transition (Line 24); otherwise, the target location of this new transition

6.2 Test Case Generation Process 106

Algorithm 6.1: Test Purpose Completion Algorithm

1 c o m p l e t e (TIOSTS TP) {

2 S e t l o c a t i o n s := TP . g e t L o c a t i o n s () ;

3 f o r (L o c a t i o n l o c a t i o n : l o c a t i o n s) {

4 i f (! i s V e r d i c t (l o c a t i o n)) {

5 f o r (Ac t i on a c t i o n : r e m a n i n g A c t i o n s (l o c a t i o n)) {

6 T r a n s i t i o n t r a n s i t i o n := new T r a n s i t i o n () ;

7 t r a n s i t i o n . s e t S o u r c e (l o c a t i o n) ;

8 t r a n s i t i o n . s e t G u a r d (t rue) ;

9 t r a n s i t i o n . s e t A c t i o n (a c t i o n) ;

10 t r a n s i t i o n . s e t A s s i g n m e n t s (∅) ;

11 t r a n s i t i o n . s e t D e a d l i n e (lazy) ;

12 t r a n s i t i o n . s e t T a r g e t (l o c a t i o n) ;

13 TP . a d d T r a n s i t i o n (t r a n s i t i o n) ;

14 }

15 f o r (T r a n s i t i o n t : l o c a t i o n . g e t O u t G o i n g T r a n s i t i o n s ()) {

16 i f (! t . ge tGuard () . i sEmpty ()) {

17 T r a n s i t i o n t r a n s i t i o n := new T r a n s i t i o n () ;

18 t r a n s i t i o n . s e t S o u r c e (l o c a t i o n) ;

19 t r a n s i t i o n . s e t G u a r d (

n e g a t i o n (l o c a t i o n . g e t A l l G u a r d s (t . g e t A c t i o n ()))) ;

20 t r a n s i t i o n . s e t A c t i o n (t . g e t A c t i o n ()) ;

21 t r a n s i t i o n . s e t A s s i g n m e n t s (∅) ;

22 t r a n s i t i o n . s e t D e a d l i n e (lazy) ;

23 i f (t . g e t T a r g e t () = reject) {

24 t r a n s i t i o n . s e t T a r g e t (l o c a t i o n) ;

25 } e l s e {

26 t r a n s i t i o n . s e t T a r g e t (reject) ;

27 }

28 i f (! TP . c o n t a i n s (t r a n s i t i o n)) {

29 TP . a d d T r a n s i t i o n (t r a n s i t i o n) ;

30 }

31 }

32 }

33 }

34 }

35 }

6.2 Test Case Generation Process 107

Figure 6.2: Test Case Generation Process

is set to the Reject location (Line 26). Finally, the created transition is added to the test

purpose if it has not been added (Lines from 28 to 30).

Using the asymptotic notation, the running time of Algorithm 6.1 is O(|LTP | · |ΣTP |),

where | LTP | is the number of locations of the test purpose and | ΣTP | is the size of the

alphabet of the test purpose.

Figure 6.3 shows the completed test purpose generated by Algorithm 6.1 using, as pa-

rameter, the test purpose of Figure 6.1.

Figure 6.3: Completed Test Purpose Example

6.2 Test Case Generation Process 108

Algorithm 6.2: Synchronous Product of W1 and W2

1 s y n c h r o n o u s P r o d u c t (TIOSTS W1 , TIOSTS W2 , TIOSTS s y n c P r o d u c t) {

2 i f (i s C o m p a t i b l e (W1 , W2)) {

3 p r o d u c t (l01 , l02 , s y n c P r o d u c t) ;

4 m i r r o r (s y n c P r o d u c t) ;

5 }

6 }

6.2.2 Synchronous Product Generation

Algorithms 6.2 and 6.3 present a simplified implementation of the synchronous product op-

eration defined in Section 5.3. Algorithm 6.2 requires three TIOSTS as parameters: the

synchronous product is computed between W1 (specification) and W2 (completed test pur-

pose), and the result is returned in syncProduct.

Firstly, it is necessary to check whether W1 and W2 are compatible for synchronous

product (Algorithm 6.2, Line 2) according to Definition 5.3. Then, the product method is

used to traverse both TIOSTS from their initial locations following the Depth-First Search

(DFS) strategy (Algorithm 6.2, Line 3).

Once the synchronous product is computed, the last action of Algorithm 6.2 (Line 4) is

to invert input and output actions, in other words, all input actions become output actions

and all output actions become input actions. This is important because during the test case

execution the inputs of the SUT are outputs of the environment (tester) and vice-versa.

The product method is detailed in Algorithm 6.3. Three parameters are needed: l1, the

current location of W1 being processed; l2, the current location of W2 being processed; and

syncProduct, the synchronous product being computed. The first step (Algorithm 6.3, Line

2) is to check whether l2 is a verdict location (Accept or Reject location). If so, the processing

is stopped.

The loop in Line 5 of Algorithm 6.3 processes each transition t1 leaving l1 (i.e., the

current location of W1). T2 contains all transitions leaving the current location of W2 that

have the same action as t1 (Algorithm 6.3, Line 6).

When T2 is empty (Algorithm 6.3, Line 9) means that there is no transition leaving the

current location of W2 with the same action as t1. In this case, the new transition t of the

6.2 Test Case Generation Process 109

Algorithm 6.3: Product of W1 and W2

1 p r o d u c t (L o c a t i o n l1 , L o c a t i o n l2 , TIOSTS s y n c P r o d u c t) {

2 i f (i s V e r d i c t (l2)) {

3 re turn ;

4 }

5 f o r (T r a n s i t i o n t1 : l1 . g e t O u t G o i n g T r a n s i t i o n s ()) {

6 S e t T2 := g e t T r a n s i t i o n s B y A c t i o n (l2 , t1 . g e t A c t i o n ()) ;

7 L o c a t i o n s o u r c e := new L o c a t i o n (l1 . g e t L a b e l () + "_" + l2 . g e t L a b e l ()) ;

8 T r a n s i t i o n t := new T r a n s i t i o n () ;

9 i f (T2 . i sEmpty ()) {

10 t . s e t S o u r c e (s o u r c e) ;

11 t . s e t G u a r d (t1 . ge tGuard ()) ;

12 t . s e t A c t i o n (t1 . g e t A c t i o n ()) ;

13 t . s e t D e a d l i n e (t1 . g e t D e a d l i n e ()) ;

14 t . s e t A s s i g n m e n t s (t1 . g e t A s s i g n m e n t s ()) ;

15 t . s e t T a r g e t (t1 . g e t T a r g e t () . g e t L a b e l + "_" + l2 . g e t L a b e l ()) ;

16 i f (! s y n c P r o d u c t . c o n t a i n s T r a n s i t i o n (t)) {

17 s y n c P r o d u c t . a d d T r a n s i t i o n (t) ;

18 p r o d u c t (t1 . g e t T a r g e t () , l2 , s y n c P r o d u c t) ;

19 }

20 } e l s e {

21 f o r (T r a n s i t i o n t2 : T2) {

22 t . s e t S o u r c e (s o u r c e) ;

23 t . s e t G u a r d (t1 . ge tGuard () + "AND" + t2 . ge tGuard ()) ;

24 t . s e t A c t i o n (t1 . g e t A c t i o n ()) ;

25 t . s e t D e a d l i n e (t1 . g e t D e a d l i n e ()) ;

26 t . s e t A s s i g n m e n t s (t1 . g e t A s s i g n m e n t s () + t2 . g e t A s s i g n m e n t s ()) ;

27 t . s e t T a r g e t (t1 . g e t T a r g e t () . g e t L a b e l () + "_" +

t2 . g e t T a r g e t () . g e t L a b e l ()) ;

28 i f (! s y n c P r o d u c t . c o n t a i n s T r a n s i t i o n (t)) {

29 s y n c P r o d u c t . a d d T r a n s i t i o n (t) ;

30 p r o d u c t (t1 . g e t T a r g e t () , t2 . g e t T a r g e t () , s y n c P r o d u c t) ;

31 }

32 }

33 }

34 }

35 }

6.2 Test Case Generation Process 110

synchronous product will be identical to t1 (Lines from 11 to 14) excepting the source (Lines

7 and 10) and target (Line 15) locations. The test of Line 16 is necessary to avoid the

inclusion of a transition twice when there are loops in the models and to guarantee that the

algorithm terminates. If t has not been added to syncProduct, it is added and the algorithm

continues recursively with the following parameters: l1 becomes the target location of t1, the

same l2 being processed, and syncProduct.

If T2 has one or more transitions with the same action as t1, each transition t2 ∈ T2 leads

to creation of a new transition t to be added to syncProduct with the following properties:

(1) the source location is the composition of the current locations (Lines 7 and 22); (2) the

guard is the conjunction of the guards of t1 and t2 (Line 23); (3) the action is the same as

t1 (Line 24); (4) the deadline is the same as t1 (Line 25); (5) the set of assignments is the

union of the assignments set of t1 and t2 (Line 26); (6) the target location is the composition

of target location of t1 and target location of t2 (Line 27).

If t has not been added to syncProduct, it is added and the algorithm continues recursively

with target locations of t1 and t2, and syncProduct as parameters (Algorithm 6.3, Lines from

28 to 30).

Algorithms 6.2 and 6.3 have the same running time: O(| T1 | + | T2 |), where | T1 | is

the number of transitions of the TIOSTS W1 and | T2 | is the number of transitions of the

TIOSTS W2.

Figure 6.4 shows the synchronous product generated by Algorithms 6.2 and 6.3 from

specification of Figure 5.1 and completed test purpose of Figure 6.3.

Figure 6.4: Synchronous Product Example

6.2 Test Case Generation Process 111

6.2.3 Symbolic Execution

Symbolic execution is a technique for analysing programs based on symbolic values as input

rather than concrete values [33; 71]. Symbolic execution techniques were used by Gaston et

al. [53] and Jöbstl et al. [66] for test generation for untimed systems. We here extend the

work proposed by Jöbstl et al. [66] to deal with TIOSTS models.

The main idea is to symbolically execute TIOSTS models using the same technique used

for symbolically executing programs. Thus, all possible traces are identified using symbolic

values instead of concrete values for action parameters and variables of the model, avoiding

the state space explosion problem w.r.t. the data part since data values are not enumerated.

The resulting traces are represented as a zone-based symbolic execution tree (Definition

6.6), whose nodes are zone-based symbolic extended states (Definition 6.4) and edges are

symbolic actions (Definition 6.5).

Definition 6.4 (Zone-Based Symbolic Extended State). A zone-based symbolic extended

state (ZSES) of a TIOSTS W = 〈V, P,Θ, L, l0,Σ, C, T 〉 is a tuple η = 〈l, π, ϕ, Z〉, where:

• l ∈ L is a location of W ;

• π is the path condition, that is, a Boolean expression representing a data guard;

• ϕ is a mapping from variables and action parameters to their symbolic values;

• Z is a zone representing the solution set of a clock constraint.

�

Symbolically executing a TIOSTS implies that data and time must be taken into account.

As in [66], path conditions are checked using constraint solving. However, our definition of

states differs from [66] because zones are used to check the reachability of states w.r.t. time

requirements: a state is reachable if its path condition π is satisfiable and its zone Z is not

empty. Zones provide an efficient symbolic representation of time requirements, avoiding

the state space explosion problem w.r.t. the time part. Furthermore, ZSESs are connected

through transitions labelled by symbolic actions (Definition 6.5).

Definition 6.5 (Symbolic Action). A symbolic action is a tuple sa = 〈a, µsa, ϕsa〉, where:

6.2 Test Case Generation Process 112

• a ∈ Σ is the corresponding action in the TIOSTS;

• µsa is a list of unique identifiers denoting the action parameters of sa;

• ϕsa is a mapping from the original action parameter names to the unique identifiers in

µsa.

�

We are now ready to define zone-based symbolic execution trees:

Definition 6.6 (Zone-Based Symbolic Execution Tree). A zone-based symbolic execution

tree (ZSET) is a deterministic, connected, acyclic graph represented by a tuple 〈S, SA, η0, T 〉,

where:

• S is a finite set of zone-based symbolic extended states;

• SA is a finite set of symbolic actions;

• η0 ∈ S is the initial zone-based symbolic extended state;

• T is a finite set of transitions. Each transition t ∈ T is a tuple 〈η, sa, η′〉, where:

– η ∈ S is the origin state of the transition,

– sa ∈ SA is the symbolic action of the transition,

– η′ ∈ S is is the destination state of the transition.

�

A ZSET is deterministic if ∀η, η′, η′′ ∈ S, ∀sa ∈ SA : 〈η, sa, η′〉 ∈ T ∧ 〈η, sa, η′′〉 ∈

T ⇒ η′ = η′′.

Algorithms for symbolically executing symbolic transition systems have been proposed

by Gaston et al. [53] and Jöbstl et al. [66]. However, as they do not deal with time, a new

algorithm is presented in this thesis.

Algorithm 6.4 is an extended version of the algorithm proposed by Jöbstl et al. [66]. It

requires two parameters: TIOSTS W is the input model to be symbolically executed and

ZSET is the resulting zone-based symbolic execution tree. Firstly, a unique symbolic value

is generated for each variable of V and each action parameter of P (Line 2). In Line 3, the

6.2 Test Case Generation Process 113

Algorithm 6.4: Symbolic Execution of W = 〈V, P,Θ, L, l0,Σ, C, T 〉
1 s y m b o l i c E x e c u t i o n (TIOSTS W , ZSET ZSET) {

2 ϕ0 ← map of variables of V ∪ P to symbolic values

3 η0 ← 〈l0,Θ, ϕ0, Z0〉

4 addState(ZSET, η0)

5 Unvisited ← {η0}

6 whi le Unvisited 6= ∅ do

7 pick and remove some η = 〈l, π, ϕ, Z〉 from Unvisited

8 f o r a l l 〈l, a,G,A, y, l′〉 ∈ T do

9 µsa ← list of unique symbolic values for every parameter of a

10 ϕsa ← map of action parameters to symbolic values

11 sa← 〈a, µsa, ϕsa〉

12 π′ ← π ∧ ϕ(ϕsa(GD)) // GD is the data guard of G

13 ϕ′ ← ϕ ◦ ϕsa ◦AD // AD represents data assignments of A

14 Z ′ ← [AC ← 0](GC ∩ ~Z) // AC is the set of clocks to reset and GC is the clock guard of G

15 η′ = 〈l′, π′, ϕ′, Z ′〉

16 i f (isReachable(η′) ∧ ¬(upperBoundReached(l′)) ∧ η′ 6⊆ η′′ ∀η′′ ∈ ZSET) then

17 Unvisited ← Unvisited ∪ {η′}

18 addState(ZSET, η′)

19 addTransition(ZSET, 〈η, sa, η′〉)

20 end i f

21 end f o r

22 end whi l e

23 }

first state η0 of ZSET is defined considering the initial location of W , the initial condition of

W as first path condition, the mapping defined in Line 2, and the initial clock zone (i.e., all

clocks set to zero). Once defined, the first state η0 is added to ZSET (Line 4).

The state η0 is added to the set of states to be visited (Line 5). As long as there are

unvisited states (Line 6), the algorithm picks and remove some state η from Unvisited (Line

7). The ZSES η refers to a location l of W and the loop in Line 8 processes all transitions

from l.

The symbolic action sa is computed from the action a, attributing unique symbolic values

for every parameter of a (Line 9) and mapping the original action parameter names to the

6.2 Test Case Generation Process 114

defined symbolic values (Line 10).

Once the symbolic action has been defined (Line 11), the next step of Algorithm 6.4 is

to compute the target state η′. Thus, the path condition π′ for η′ is defined (Line 12) as the

conjunction of π with the guard GD (i.e., the data guard of G) considering the mappings ϕ

and ϕsa. The mapping ϕ′ is defined through ϕ ◦ ϕsa ◦ AD (Line 13), where AD represents

data assignments of A and ◦ denotes function composition.

Z ′ is defined in Line 14. The successor of Z is defined by letting time elapse (~Z), taking

the intersection with the clock guard GC , and finally updating the values of clocks that are

reset (i.e., clocks in AC).

Once π′, ϕ′, and Z ′ have been defined, the target state η′ is created in Line 15. Finally, η′

is added to the set of states to be visited (Line 17) and a new transition labelled by sa con-

necting η to η′ is added to ZSET (Lines 18 and 19), if the following conditions are satisfied

(Line 16):

1. The state η′ is reachable, that is, the path condition π′ is satisfiable and the zone Z ′ is

not empty;

2. The number of ZSESs in the current path that correspond to the location l′ does not

exceed a certain bound. This checking is needed to avoid infinite ZSETs in the case

where there are loops in the specification whose number of iterations depends on val-

ues assigned to parameters and variables [66];

3. η′ 6⊆ η′′ ∀η′′ ∈ ZSET according to Definition 6.7, where the state inclusion of Gaston

et al. [53] was extended to deal with zones.

Definition 6.7 (ZSESs Comparison). Let η = 〈l, π, ϕ, Z〉 and η′ = 〈l′, π′, ϕ′, Z ′〉 be two

zone-based symbolic extended states. ZSES η′ is included in ZSES η, that is, η′ ⊆ η, if and

only if:

1. l′ = l;

2. (π′ ∧
∧
x∈AD(x = ϕ′(x))) ⇒ (π ∧

∧
x∈AD(x = ϕ(x))) is a tautology, where AD

represents data assignments of the TIOSTS;

3. Z ′ ⊆ Z.

�

6.2 Test Case Generation Process 115

As the implementation of the proposed algorithm for symbolic execution depends on

tools related to concepts that are outside the scope of this thesis such as zones and con-

straint solving, the running time of the algorithm is described independently of imple-

mentation strategies and tools. Thus, the running time of Algorithm 6.4 is O(| L |

+ Cost(reachability analysis) + Cost(ZSESs comparison)), where |L | is the number of

locations of the TIOSTS W , Cost(reachability analysis) is the cost to verify whether a ZSES

is reachable, and Cost(ZSESs comparison)) is the cost to compare two ZSESs.

Figure 6.5 presents the ZSET obtained from the symbolic execution of the synchronous

product shown in Figure 6.4.

6.2.4 Test Case Selection

Once all possible traces have been identified by symbolic execution, the next step is to select

a test case by choosing a trace that leads to an Accept state. For this, it is necessary to select

a subtree of the generated ZSET called test tree. Finally, the selected test tree is translated

into a test case (see Subsection 6.2.5).

The strategy used for the selection of the test tree is the same proposed by Jöbstl et al.

[66], which is similar to the strategy of the TGV tool [62]. The idea is to select one reachable

Accept state and perform a backward traversal to the root ZSES. Finally, a forward traversal

is performed in order to extend the selected path to a test tree by adding missing inputs that

are allowed by the specification. These missing inputs are possible outputs of the SUT and

they are important to avoid fail verdicts on outputs allowed by the specification. In this case,

the verdict is Inconclusive. Note that the forward traversal ensures the controllability of

the generated test tree (i.e. test cases do not have the choice between inputs and outputs, or

between several outputs).

The test tree from the ZSET in Figure 6.5 is the same ZSET since there is only one path

leading to an Accept state and the addition of missing inputs leads to the whole ZSET.

6.2.5 Test Tree Transformation

Considering the conformance testing framework defined in Section 6.1, test cases are timed

input-output symbolic transition systems. Thus, the last step of the test case generation

6.2 Test Case Generation Process 116

Figure 6.5: Zone-Based Symbolic Execution Tree of the TIOSTS of Figure 6.4

process (Figure 6.2) is to translate the selected test tree TT = 〈S,SA, η0, T 〉 into a test case

TIOSTS TC = 〈V, P,Θ, L, l0,Σ, C, T 〉.

The test tree translation operation is described by Algorithm 6.5. It requires three param-

eters: TIOSTS SP is the synchronous product from which the test tree was obtained, ZSET

ZSET is the test tree, and TIOSTS TC is the resulting test case.

The data of TC (i.e. V ∪ P) is defined by symbolic values of ZSET (Lines 2 and 3).

As in [66], the symbolic values are considered as variables and parameters of the test case.

Let η0 = 〈l0, π0, ϕ0, Z0〉 be the initial state of ZSET, then the initial condition of TC is π0

6.2 Test Case Generation Process 117

Algorithm 6.5: Test Tree Translation Algorithm

1 ZSET2TC (TIOSTS SP , ZSET ZSET , TIOSTS TC) {

2 VTC ← symbolic values of variables of ZSET

3 PTC ← symbolic values of parameters of ZSET

4 // Let η0 = 〈l0, π0, ϕ0, Z0〉 be the initial state of ZSET

5 ΘTC ← π0

6 LTC ← S

7 l0TC ← η0

8 ΣTC ←
⋃
〈a,µsa,ϕsa〉∈SA a

9 CTC ← CSP

10 f o r a l l 〈η, sa, η′〉 ∈ TZSET do

11 l← η

12 a← action of sa = 〈a, µsa, ϕsa〉 with parameters of µsa

13 G← conjunction of path condition of η′ with clock guards associated with a in SP

14 A← clock resets associated with a in SP

15 y ← deadline associated with a in SP

16 l′ ← η′

17 addTransition(TC, 〈l, a,G,A, y, l′〉)

18 end f o r

19 }

(Line 5), the set of locations is S (Line 6), the initial location is η0 (Line 7), the alphabet is⋃
〈a,µsa,ϕsa〉∈SA a (Line 8), and the set of clocks is the same as the synchronous product SP,

that is, CSP (Line 9).

All transitions 〈η, sa, η′〉 ∈ T of ZSET are analysed in Lines from 10 to 18. Each

transition of ZSET leads to the creation of a new transition 〈l, a,G,A, y, l′〉 ∈ T in the

test case. Thus, the source location is η, the action of the new transition is the action of

sa = 〈a, µsa, ϕsa〉 with parameters of µsa, the conjunction of the path condition of η′ with

clock guards associated with a in SP is the guard, the assignments are defined based on clock

resets associated with a in SP, the deadline is the same as the one associated with a in SP,

and the target location is η′.

Using the asymptotic notation, the running time of Algorithm 6.5 is O(|T |), where |T |

is the number of transitions of the ZSET test tree.

Figure 6.6 presents the test case obtained from the ZSET of Figure 6.5. It starts by

6.3 Properties of the Test Cases 118

performing a withdrawal transaction in the ATM system and resetting the clock to zero.

Then it expects to receive the money. If the ATM system dispenses the expected money

in at most 10 time units, the verdict is Pass, that is, the implementation is in conformance

with the specification and the test purpose. If the ATM system indicates insufficient funds

in at most 2 time units, the verdict is Inconclusive (i.e. the implementation conforms to the

specification but the desired behaviour was not observed). Finally, if either an unspecified

output is received or a time requirement is not satisfied, the verdict is Fail.

Figure 6.6: Test Case Obtained from the ZSET of Figure 6.5

6.3 Properties of the Test Cases

This section comments on properties of the test cases generated by the process presented

in Section 6.2. The execution of test cases must be formalised in order to establish some

properties such as soundness and exhaustiveness, where the conformance relation is linked

to the verdicts.

The generated test cases are considered as a mechanism for guiding the execution of the

implementation. Thus, conformance checking is performed in two steps, in an offline way.

Firstly, the implementation is executed, guided by test cases, and all information needed to

check conformance (e.g., input actions, responses, and time associated with responses) are

logged into a file. Considering that the SUT runs on a real-time environment such as a real-

time operating system, it is important that the implementation logs its own information in

order to reduce the number of processes and consequently avoid introduction of noise in the

results.

6.3 Properties of the Test Cases 119

As said, each SUT execution produces a log describing the exercised scenario. This log

is an observable trace (defined in Subsection 5.2), which is a specific sequence of observable

discrete and time-elapsing actions. For example, considering the TIOSTS of Figure 5.1 an

observable trace of a scenario where a withdrawal transaction is successfully done in 5 time

units could be represented by σSUT = 0 Withdrawal?(100) 5 DispenseCash!(100).

Let [[TC]] = 〈S, S0, Act, T 〉 be the TIOLTS semantics of the test case TC =

〈V, P,Θ, L, l0,Σ, C, T 〉. Thus, an observable trace of I can be checked with respect to

the test case through the TIOLTS parallel composition defined by Krichen and Tripakis [78].

In this case, each trace σ ∈ Traces([[TC]] || ObservableTraces(I)) is associated with one of

the following scenarios:

• If all outputs of TC are executed and all inputs are observed on time, then the resulting

verdict is Pass, that is, verdict(σ) = Pass ∆
= S0 after σ ⊆ Pass;

• If, at any moment, any unspecified input is observed by the test case or some time

requirement is not met, the conformance checking is stopped and the resulting verdict

is Fail, that is, verdict(σ) = Fail ∆
= S0 after σ ⊆ Fail;

• We denote verdict(σ) = Inconclusive ∆
= S0 after σ ⊆ Inconclusive for two situations:

if I, at any moment, blocks or spends a lot of time to emit an output; and if the outputs

of I are specified by S but the behaviour specified by a test purpose is not exhibited.

Given the possible situations with their respective verdicts, the rejection of I by a test

case TC is formally defined as follows:

Definition 6.8 (may reject). TC may reject I ∆
= ∃σ ∈ Traces([[TC]] ||

ObservableTraces(I)) : verdict(σ) = Fail. �

The conformance relation of an implementation with its specification is decided based

on verdicts obtained with the execution of test cases. So, Definition 6.9 formally relates the

tioco relation to the verdicts considering some properties of test cases and test suites.

Definition 6.9 (Soundness and Exhaustiveness). A test case TC is sound for S and tioco if

∀I, I tioco S ⇒ ¬(TC may reject I). A test suite is sound if all its test cases are sound and

it is exhaustive for S and tioco if ∀I, ¬(I tioco S)⇒ ∃TC : TC may reject I. Finally, a

test suite is complete if it is both sound and exhaustive. �

6.4 Concluding Remarks 120

Informally, a test suite is sound if correct implementations are never rejected. On the

other hand, a test suite is exhaustive if all non-conforming implementations are rejected.

A test suite that can identify all conforming and non-conforming implementations is called

complete. Since a complete test suite is a very strong requirement for practical testing,

sound test suites are more commonly accepted. In this context, the test cases generated by

our approach have the properties stated in Theorem 6.1.

Theorem 6.1. For every specification S, all test suites generated by our approach are sound.

Moreover, test suites can be considered as being exhaustive when they refer to specific sce-

narios defined by test purposes. �

The proof of Theorem 6.1 is not detailed here but the main ideas are discussed (see de-

tailed proofs in Appendix A). For soundness, we need to prove that if a test case TC may

reject I (implementing the specification S), then ¬(I tioco S). In this case, we only need to

prove that a Fail verdict only occurs if I emits an unspecified output or some time require-

ment is not met. In our approach, test cases are generated based on symbolic execution of

specifications. This approach allows to identify all possible traces of a specification. Thus,

the unique case where a Fail verdict occurs is exactly when I emits an unexpected output or

some time requirements is not satisfied. For exhaustiveness, we need to prove that for every

non-conforming I there is a test purpose TP and a way of generating a test case TC from

S and TP , such that TC may reject I. Given that ¬(I tioco S), then there is a trace σ of S

such that an output of I after σ is not allowed by S. In this case, a TP can be defined based

on σ and used to generate test cases where I may be rejected.

6.4 Concluding Remarks

This chapter presented an approach to conformance testing of real-time systems based on

the use of a symbolic model that abstracts both time and data in order to broadening the

application of conformance testing in this field. It also described the test case generation

process and discussed some properties of the generated test cases.

The presented test case generation process is completely automated by a tool developed

to support the proposed approach. In order to check the satisfiability of path conditions and

6.4 Concluding Remarks 121

verify state inclusion w.r.t. data we are using the CVC3 SMT Solver2. As the satisfiability

of data guards is assumed to be decidable, the CVC3 SMT Solver arises as a promising tool

[111]. Moreover, data guards of a TIOSTS are expressed using the same notation as the

notation used by the CVC3 SMT Solver, which facilitates the use of the tool and does not

require any translation. However, it is important to note that our approach is limited to the

types supported by this solver such as Boolean, integer, real, arrays, records, etc.

All operations related to zones used in Algorithm 6.4 are provided by UPPAAL DBM

Library3. The same library is also used to verify the state inclusion w.r.t. zones.

2http://www.cs.nyu.edu/acsys/cvc3
3http://www.cs.aau.dk/˜adavid/UDBM

Chapter 7

Interruption Testing of Real-Time

Systems

This chapter describes how to model and test interruptions using the TIOSTS-based confor-

mance testing framework presented in Chapters 5 and 6. The defined interruption testing

strategy is only a way of modelling using TIOSTS models and no modification in the theory

is needed. This strategy is the same as the one presented in [7], where interruptions are mod-

elled by non-real-time symbolic models. Furthermore, as for the ALTS models presented

in Chapter 3, the TIOSTS-based interruption testing strategy makes it possible to combine

interruptions at different points and allows to select test cases based on test purposes.

7.1 Modelling and Testing Interruptions in Real-Time Sys-

tems

The TIOSTS model proposed in Chapter 5 can be used to model interruptions. The idea is to

take advantage of the use of variables and action parameters in order to guarantee that once

the main flow has been interrupted, it can continue its execution from the same point where

the interruption had started.

In order to model interruptions, consider the existence of two models: one TIOSTS rep-

resenting the main flow (Figure 7.1, locations from 0 to 20), that is, the application that

can be interrupted; and another TIOSTS representing the interruption (Figure 7.1, locations

122

7.1 Modelling and Testing Interruptions in Real-Time Systems 123

from 21 to 28). Thus, the main flow can be linked with the interruption model through the

following steps:

1. Identify the point (location) where the interruption can occur (Figure 7.1, location 10);

2. Link this point to the interruption behaviour using a transition labelled as follows: the

guard is intCode = X and choice = 0, where X is an integer that uniquely identifies this

point of interruption; the action is Interrupt?(intCode); and the assignment is choice

:= intCode (Figure 7.1, transition from location 10 to 21). Notice that the value of the

parameter intCode is saved into the choice variable.

3. Connect the last action of the interruption behaviour to the same point where the in-

terruption started using a transition labelled with the guard choice = X, where X is

the same value that uniquely identifies this point of interruption (Figure 7.1, transition

from location 28 to 10). This guard is used to guarantee that the main flow contin-

ues its execution from the same point where it had been interrupted. For instance,

if an interruption begins with the parameter intCode equals to 1, then it must finish

performing the action that has the following guard: choice = 1.

Figure 7.1: Modelling an Abstract Interruption

The test case generation strategy where only one interruption is allowed for each test case

is achieved because of the second part of the guard (choice = 0) associated to the Interrupt

action. When an interruption is allowed, the value of the choice variable is changed to any

value different from zero, then all other interruptions are automatically discarded during the

test case generation.

7.2 Instantiating the Strategy with an Example 124

The defined steps must be performed for all points where interruptions can occur. As

a complete model with all possibilities of interruption represents many scenarios, the test

selection strategy based on test purposes defined in Chapter 6 is used for testing specific

interruptions in specific scenarios. For this, it is enough to use the Interrupt action in the

test purpose carrying the integer that identifies the selected point. For generating test cases

without interruptions, the Interrupt action is taken to the Reject location.

In order to test interruptions using TIOSTS models, the same test architecture presented

in Chapter 3 is adopted. Thus, the environment is assumed to be fully controllable by the

tester.

7.2 Instantiating the Strategy with an Example

A real-time version of the mobile phone application described in Chapter 3 is used for de-

scribing how to deal with interruptions using the TIOSTS formalism. Now, the action of

removing a message from inbox after selecting the “Remove” option must be performed in

at most 2000 milliseconds. Also, only unblocked messages can be removed and the main

application can be interrupted at some points by the Incoming Alert interruption. As said

in Chapter 3, this interruption specifies the arrival of a simple text message displayed inside

a dialog box. Figure 7.2 shows the TIOSTS model that represents the described behaviour,

where locations from 1 to 12 represent the behaviour of removing a message from inbox and

locations from 13 to 16 represent the occurrence of interruptions.

As we can see, in Figure 7.2, the interruption model is connected to the feature that

can be interrupted (the main flow) using the Interrupt action carrying a parameter (intCode)

that identifies the place where the interruption is allowed. Then, the intCode parameter is

saved into the choice variable. Each point where an interruption is allowed has a different

integer value associated with it. Another important information is in the last action of the

interruption, where there is a guard used to guarantee the return to the correct point of the

main flow.

As discussed in Chapter 3, an interruption can occur at infinite points during the system

execution, but in the tester’s point of view, an interruption can only be observed after an

output of the SUT. Thus, the TIOSTS model of Figure 7.2 represents all possibilities of

7.2 Instantiating the Strategy with an Example 125

Figure 7.2: Real-Time Version of the Remove Message Behaviour with Interruptions

interruption from the tester’s point of view.

Once the system is specified using the TIOSTS formalism, the next step is to define test

purposes in order to check specific interruptions at some points. Considering the specifica-

tion in Figure 7.2, a test purpose can be defined in order to verify the scenario where an alert

appears when the user is accessing the inbox folder. As the selected interruption point corre-

sponds to the second output of the specification, the action Interrupt must carry the integer 2.

Next, the last action of the selected behaviour (the scenario where the message is removed)

is appended to the test purpose. Figure 7.3(a) presents the test purpose defined above and

Figure 7.4 shows the obtained test case. Note that in the generated test case (Figure 7.4) the

interruption occurs only in one specific point.

Another test purpose can be defined in order to test a scenario where a message is re-

7.3 Concluding Remarks 126

(a) Scenario with Interruption (b) Scenario without Interruption

Figure 7.3: Test Purposes

moved and all interruptions are not allowed. This test purpose is presented in Figure 7.3(b).

Note that to prohibit all interruptions it is enough to take the Interrupt action to the Reject

location. The other action of the test purpose (“Message removed” is displayed!) is used

to select the scenario where the message is removed. The generated test case is shown in

Figure 7.5.

7.3 Concluding Remarks

This chapter presented a strategy developed for modelling and testing interruptions that is

based on the symbolic model proposed in Chapter 5. The presented strategy makes it possible

for interruptions to be combined at different points of possibly different flows of execution.

Moreover, test purposes can be used to select specific interruptions to be tested. Finally, it is

important to remark that this proposed strategy is only a specific way of modelling using the

TIOSTS notation. No modifications in the theory and algorithms are needed.

Chapter 8

Case Studies

The objective of this chapter is to present some case studies performed in order to evaluate the

practical application of the symbolic model-based testing approach proposed in this thesis.

The application of the developed approach is evaluated using the burglar alarm system and

the automatic guided vehicle case studies, respectively.

8.1 The Burglar Alarm System

The first case study is aimed at generating and executing test cases for the burglar alarm

system described in Section 4.3. For this, a simplified implementation was developed to

run on a real-time operating system named FreeRTOS [112], a mini-kernel that can be used

to develop real-time systems for embedded devices. The alarm system case study is useful

because it is possible to execute test cases and it allows us to show how scenarios with

interruptions can be checked.

The main objective of this case study is to assess the performance of the symbolic model-

based approach developed for testing real-time systems. In order to achieve this objective

we use the Goal/Question/Metric (GQM) paradigm [14], a mechanism for defining and eval-

uating goals using measurement.

128

8.1 The Burglar Alarm System 129

8.1.1 The GQM Measurement Model

The GQM paradigm is a top-down systematic approach to evaluating goals based on an op-

erational level. Thus, the first step is to define the goal to be evaluated (conceptual level).

Secondly, at the operational level, questions are defined in order to characterize the measure-

ment object with respect to desired quality criteria. Finally, a set of data is defined to answer

each question in a quantitative level.

Figure 8.1 presents the GQM measurement model defined for this case study. The main

goal is to evaluate the performance of the symbolic model-based approach developed for test-

ing real-time systems. Thus, three questions were defined to characterize the measurement

objects:

What is the effort required to use this approach? This question is intended to evaluate

the effort required to apply all the test process from the building of the model to

test case execution. For answering this question the following metric was defined:

E = E1 + E2 + E3 + E4 + E5, where:

• E1 is the time spent to build the model using the TIOSTS formalism;

• E2 is the time spent to define test purposes in order to test specific scenarios. Test

purposes are also defined using the TIOSTS formalism;

• E3 is the time spent to generate test cases using the prototype tool implementing

the presented algorithms;

• E4 is the time spent to implement the automatically generated test cases;

• E5 is the time spent to execute the implemented test cases and evaluate the ob-

tained results for emitting verdicts.

How effective is this approach? This question is intended to evaluate the effectiveness of

the proposed approach w.r.t. fault coverage. The C metric, used to answer this ques-

tion, indicates the ability of generated test cases of uncovering faults described by a

previously defined fault model.

What percentage of test cases cannot be executed? This question is intended to identify

the percentage of invalid test cases, represented by the metric I .

8.1 The Burglar Alarm System 130

Figure 8.1: Measurement Model for the Alarm System Case Study

Figure 8.2: Testing Process

8.1.2 Case Study Definition

An initial infrastructure to support test execution in an actual real-time environment is inves-

tigated in [10]. However, the work presented in [90] extends the previous work by presenting

an effective solution to support automation of test case execution for real-time systems.

The testing process considered in this case study is illustrated in Figure 8.2. It is divided

into four well defined steps.

The first step is to define test cases according to the approach and theory presented in

Chapters 5, 6, and 7. As there is a prototype tool implementing the proposed test case

generation and selection strategy, the tester needs to manually instantiate a Java class to

define the TIOSTS of the specification and the TIOSTS representing the test purpose. Once

the specification and test purpose have been defined, the test case generation and selection is

automatically performed.

8.1 The Burglar Alarm System 131

Figure 8.3: Test Case Builder Application

At the second step, each test case is translated into C code. Another Java application

has been implemented to support this activity as shown in Figure 8.3. Currently, the tester

manually indicate all inputs and outputs of the generated test case in an interactive way and

a C code implementing the test case is automatically generated. Furthermore, to make the

system testable, a C API (see [90]) has been developed to instrument the code of the SUT.

The SUT is instrumented for including Points of Control and Observation (PCOs). As the

focus of this work is on functional testing, some examples of PCOs are the possibilities

of observing values returned by functions, received messages, and timing associated with

system responses. The instrumentation activity is manually performed by the tester using

the implemented API.

The third step consists in the execution of the instrumented SUT guided by test cases. For

this, a logging mechanism has been implemented in order to store all information needed to

check the testing results. Considering that the SUT runs on a real-time environment such as a

real-time operating system, it is important that the implementation logs its own information

in order to reduce the number of processes and consequently avoid introduction of noise in

8.1 The Burglar Alarm System 132

the results. As we are dealing with RTES, each addition of code has a direct effect in the

execution time of the application. Thus, test case execution can interfere with the flow of ex-

ecution of the SUT, adding delays that can lead to false positives of failures. For minimizing

this interference, all generated information is kept in the main memory. After the SUT exe-

cution, a simple text file is generated with the results. Logging frameworks such as log4c1

are not suitable in this case since the quantity of dependencies forbid their execution within

a dedicated hardware and the added code can cause a large delay at the actual execution time

of the SUT.

The fourth step receives as input the text file with the execution results and provide ver-

dicts for the tester. This step is not executed inside the execution platform level, but at the

development platform level. An extension of the CUnit2 framework has been developed for

evaluating the text file with execution results and emit a verdict according to the test cases

defined in the first step.

The case study was conducted by only one tester with large experience in TIOSTS mod-

els. Moreover, the case study aimed at testing only one scenario due to difficulties to com-

pletely execute the testing process. The scenario to be tested was based on a fault model

profile based on common faults related to interruption testing [9] and potential faults in an

implementation of a TIOSTS. The fault model given to the tester is specified in natural lan-

guage and its description is defined as follows:

• After an interruption, the interrupted application does not maintain data previously

received as input;

• After an interruption, the interrupted application does not continue its execution at the

same point where it was interrupted;

• Unexpected outputs, when an implementation responds with an output not described

in its specification;

• Clock guard restriction, when an implementation reduces an execution time range as-

sociated with an action;
1http://log4c.sourceforge.net
2http://cunit.sourceforge.net

8.1 The Burglar Alarm System 133

• Clock guard widening, when an implementation increases an execution time range

associated with an action.

It is important to remark that all information used as input for the execution of this case

study was the high level description of the SUT presented in Section 4.3, the defined fault

model, and the implementation of the SUT.

8.1.3 Case Study Results

This subsection presents and discusses the obtained results. The most critical scenario of the

alarm system is the power failure exactly after some alarm has been triggered. In this case,

the system must switch to backup power and continues its execution with the calling to the

police and turning on the lights of the room where the sensor detected an intruder.

Considering the first activity of the testing process (see Figure 8.2), a TIOSTS specifi-

cation was built along with a TIOSTS test purpose to check the defined scenario. Figures

8.4 and 8.5 present the defined specification and test purpose, respectively. However, all

TIOSTS models automatically generated by the prototype tool are presented in Appendix B.

Table 8.1 summarizes the metrics collected during the execution of all activities of the

test process. It is important to remark that the test case generation and implementation is

performed in a different platform from the execution platform of the SUT. The development

platform has the following characteristics: 2x3.00GHz CPU, 1536MB RAM, Ubuntu 10.10,

CVC3 2.2, and UPPAAL DBM Library 2.0.7. The execution platform is based on FreeRTOS

environment using the industrial PC (x86) port.

Considering the first activity of the testing process depicted in Figure 8.2, the tester spent

40 minutes to manually implement the TIOSTS representing the specification and 4 minutes

to implement the TIOSTS test purpose (Table 8.1, lines 1 and 2, respectively). Once the

specification and test purpose are built, the test case generation and selection is automatically

performed in 3 seconds (Table 8.1, line 3).

The prototype tool generated 3 test cases (Table 8.1, line 4). Observing the specification

presented in Figure 8.4 it is possible to realize that only considering the interruption after

triggering an alarm, there are three possibilities. The first path is the scenario where a win-

dow breaking alarm is triggered (we denote TC1). At the second scenario, a door opening

8.1 The Burglar Alarm System 134

Figure 8.4: TIOSTS Specification for the Burglar Alarm System Case Study

alarm is triggered (TC2). The last scenario is the case where a room movement alarm is

triggered (TC3).

After the generation of test cases, the testing process is completely executed for each of

them from the second step. Considering only the TC1, the next activity is to implement it

and prepare the environment to the execution. For this, three activities were performed:

1. The test case builder application (Figure 8.3) was used to generate the C code imple-

menting the test case in 25 minutes (Table 8.1, line 5). For this, the tester manually

indicated all inputs, outputs, and time requirements of TC1. It is important to mention

that all defined information (inputs, outputs, and so on) can be reused in the definition

of other test cases with the same information and the CVC3 SMT Solver is used for

automatically defining the inputs of the test case.

2. An interface was implemented to allow the communication between the SUT and test

driver. This activity was performed in 18 minutes (Table 8.1, line 6) and it is used for

all test cases.

3. Finally, the SUT was instrumented for the execution of TC1. 6 minutes were spent to

8.1 The Burglar Alarm System 135

Figure 8.5: TIOSTS Test Purpose for the Burglar Alarm System Case Study

Figure 8.6: Results of the TC1 Execution

perform this activity (Table 8.1, line 7).

The next step is to deploy the instrumented SUT, execute it to extract the generated log

file, and evaluate the results. As this evaluation is automatically performed (see Figure 8.6)

it takes little time (Table 8.1, line 8).

Considering the execution of TC2 (Table 8.1, lines from 9 to 11) and TC3 (Table 8.1,

lines from 12 to 14), the testing process activities take less time than the activities related to

the execution of TC1 because many information can be reused.

Since all needed information was collected, the questions of the defined measurement

model can be answered. For the first question, “what is the effort required to use this ap-

proach?”, we have the following effort required to test the defined scenario considering all

8.1 The Burglar Alarm System 136

Table 8.1: Metrics of the Burglar Alarm System Case Study

Metrics Time

1 Definition and implementation of the TIOSTS specification 40 min

2 Definition and implementation of the TIOSTS test purpose 4 min

3 Test case generation time 3 sec

4 Number of Test Cases 3

5 Implementation of TC1 25 min

6

Implementation of an interface to allow the communication be-

tween SUT and test driver 18 min

7 Instrumentation of SUT for executing TC1 6 min

8 Evaluation of results for TC1 1 sec

9 Implementation of TC2 5 min

10 Instrumentation of SUT for executing TC2 5 min

11 Evaluation of results for TC2 1 sec

12 Implementation of TC3 5 min

13 Instrumentation of SUT for executing TC3 5 min

14 Evaluation of results for TC3 1 sec

15 Execution time of all test process for all generated test cases 113.1 min

16 Fault model coverage 100%

17 Number of invalid TCs 0 (0%)

generated test cases:

E = E1 + E2 + E3 + E4 + E5

= 40 min + 4 min + 3 sec + 69 min + 3 sec

= 113.1 min

The fault model profile defined in Subsection 8.1.2 was instantiated in order to evaluate

the effectiveness of the approach proposed in this thesis. Thus, the following real defects

were inserted in the SUT:

• After the power failure interruption, the calling to the police informs a wrong room

number;

8.2 The Automatic Guided Vehicle System 137

• After the power failure interruption, the SUT turns on the lights of the room where the

sensor detected an intruder instead of calling to the police;

• After calling to the police, the SUT performs an unspecified output;

• The SUT performs the action of turning on the lights in more than 50 ms.

As the specification does not specify lower bounds as time requirements, it not possible

to insert faults related to clock guard restrictions. As shown in Table 8.1, line 16, 100% of

the defined fault model instance is covered by the defined test cases.

Finally, as all generated test cases were executed, no invalid test cases could be detected

(Table 8.1, line 17).

8.2 The Automatic Guided Vehicle System

The automatic guided vehicle (AGV) system consists of a robot for autonomous navigation

that is able to plan and execute predefined tasks. Automatic guided vehicles are used, for

example, to transport materials in industries, for inspection in risk areas or deposits of toxic

materials, etc.

Basically, the first step of an AGV system is to define the plan to be followed. After

that, the execution is started. Sensors are used to drive the vehicle and allow it to overcome

obstacles of the path. Deviations from the original path may be required because of obstacles

and avoid collisions.

This case study is aimed at generating test cases for the AGV system. Test execution

is not considered because we do not have an implementation of this system. Even thus,

the AGV case study allows us to evaluate the test case generation activity including the

generation of test cases for checking interruptions.

8.2.1 The GQM Measurement Model

Since test execution is not considered in this case study, another measurement model was

defined (Figure 8.7). The goal is the same as in Section 8.1, but only two questions were

defined to characterize the measurement objects:

8.2 The Automatic Guided Vehicle System 138

What is the effort required to use this approach? This question is intended to evaluate

the effort required to apply all the test process from the building of the model to

test case generation. For answering this question the following metric was defined:

E = E1 + E2 + E3, where:

• E1 is the time spent to build the model using the TIOSTS formalism;

• E2 is the time spent to define test purposes in order to test specific scenarios.

• E3 is the time spent to generate test cases using the developed prototype tool.

How effective is this approach? The objective of this question is to evaluate the effective-

ness of the proposed approach w.r.t. fault coverage. Thus, the C metric indicates the

ability of generated test cases for uncovering faults described by a previously defined

fault model.

Figure 8.7: Measurement Model for the AGV Case Study

8.2.2 Case Study Definition

The testing process considered in this case study is composed of three steps: build the model,

define test purposes, and generate test cases. The first step is related to the definition of a

TIOSTS representing the specification. Next, at the second step, test purposes are defined

8.2 The Automatic Guided Vehicle System 139

also using the TIOSTS formalism. Once the specification and test purposes have been de-

fined, the test case generation and selection are automatically performed by the developed

prototype tool.

The case study was conducted by only one tester with large experience in TIOSTS mod-

els. The case study aimed at testing two scenarios: an execution with no interruptions and

another with one interruption. The first scenario was chosen for demonstrating that the strat-

egy can be used for generating test cases with no interruptions. The latter is related to the

most important scenario: an interruption occurs because an obstacle has been identified.

All information used as input for the execution of this case study was a high level de-

scription of the SUT described in two pages and the fault model defined in Subsection 8.1.2.

8.2.3 Case Study Results

This subsection presents and discusses the obtained results. Considering the first activity

of the process described in Subsection 8.2.2, a TIOSTS representing the specification was

defined (see Figure 8.8). At the beginning, the AGV system expects as input (represented

by the action between locations S1 and S2 in Figure 8.8) the initial reference and path

of the plan to be followed. After the input action, the AGV system emits several output

actions: a message indicating that the file was successfully read (action between locations

S2 and S3), another indicating that the references were successfully decoded (action between

locations S3 and S4), and another message indicating that the path was successfully decoded

(action between locations S4 and S5). After reading all needed information, the AGV system

starts moving (action between locations S5 and S6). A periodic task is executed every 2000

milliseconds when the AGV system is moving. For controlling this task the periodicClock

clock is used. Moreover, two interruptions can occur when the AGV system is moving: one

related to the self diagnosis (Locations I2.1 and I2.2) and another related to the detection of

an obstacle (Locations from I1.1 to I1.4). The interruptionClock clock is used to indicate

that the latter interruption must be treated within at most 500 milliseconds. Finally, the AGV

system emits an output message to indicate that the plan was successfully executed.

The test purpose depicted in Figure 8.9, named TP1, was defined for testing the scenario

where no interruptions occur and the other test purpose of Figure 8.10, named TP2, was

defined for testing the scenario where an obstacle is identified and an interruption occurs. All

8.2 The Automatic Guided Vehicle System 140

Figure 8.8: TIOSTS Specification for the AGV Case Study

Figure 8.9: TIOSTS Test Purpose for the Scenario with no Interruptions (TP1)

TIOSTS models automatically generated by the prototype tool are presented in Appendix B.

Table 8.2 summarizes the metrics collected during the execution of all activities defined

for this case study. Considering the first activity of the process, the tester spent 50 minutes

to manually implement the TIOSTS representing the specification (Table 8.2, line 1).

Considering the scenario with no interruptions, the test purpose was defined in 4 minutes

(Table 8.2, line 2). Once the specification and test purpose is implemented, the test case

generation and selection was automatically performed in 3 seconds (Table 8.2, line 3) and

only one test case was generated (Table 8.2, line 4).

The test purpose for the scenario with one interruption was defined in 3 minutes (Table

8.2, line 5). For this case, the test case generation and selection was performed in 3 seconds

(Table 8.2, line 6) and only one test case was generated (Table 8.2, line 7).

Since all needed information was collected, the questions of the defined measurement

8.2 The Automatic Guided Vehicle System 141

Figure 8.10: TIOSTS Test Purpose for the Scenario with One Interruption (TP2)

Table 8.2: Metrics of the AGV Case Study

Metrics Time

1 Definition and implementation of the TIOSTS specification 50 min

2 Definition and implementation of the TIOSTS test purpose TP1 4 min

3 Test case generation time considering TP1 3 sec

4 Number of Test Cases considering TP1 1

5 Definition and implementation of the TIOSTS test purpose TP2 3 min

6 Test case generation time considering TP2 3 sec

7 Number of Test Cases considering TP2 1

8 Execution time of all test process for all generated test cases 57.1 min

9 Fault model coverage 100%

model can be answered. For the first question, “what is the effort required to use this ap-

proach?”, we have the following effort required to generate test cases for the two defined

scenarios:

E = E1 + E2 + E3

= 50 min + 4 min + 3 min + 3 sec + 3 sec

= 57.1 min

The fault model profile defined in Subsection 8.1.2 was instantiated, based on the sce-

narios described in Subsection 8.2.2, in order to evaluate the effectiveness of the proposed

approach.

8.3 Concluding Remarks 142

• After the obstacle detection interruption, the AGV system does not maintain the data

of the path to be followed;

• After the obstacle detection interruption, the AGV system does not finish its mission;

• After receiving initial references and the initial path, the SUT performs an unspecified

output;

• An obstacle is overcome in more than 500 ms.

As the specification does not specify lower bounds as time requirements, it not possible

to instantiate faults related to clock guard restrictions. As shown in Table 8.2, line 9, 100%

of the defined fault model instance is covered by the defined test cases.

8.3 Concluding Remarks

This chapter presented two case studies performed to evaluate the applicability of the pro-

posed approach. The first case study allowed to evaluate the test case generation and ex-

ecution once an implementation is available. It was not possible to execute test cases for

the second case study because there is no implementation available. Even thus, these case

studies allowed to realize that the effort spent to generate test cases for checking specific

scenarios is minimal when compared to the time spent to perform the entire process, even

when interruptions are taken into account. Another strength of the work is the automation of

some parts of the test process such as test case generation and evaluation of the results given

that the logs have been generated. However, some points of improvements were identified

such as the development of algorithms to translate the TIOSTS test case into C code in order

to reduce the time spent to execute test cases.

Chapter 9

Concluding Remarks

This chapter summarizes the main results of this work and presents some suggestions for

future work.

9.1 Conclusions

The main objective of this thesis was to provide an approach to conformance testing of

real-time systems based on the use of a symbolic model that abstracts both time and data

in order to broadening the application of conformance testing in this field. This thesis also

presented a conformance testing theory to deal with the model proposed and described how

test cases can be generated. Moreover, interruption testing of real-time systems was taken

into account. For this, as a result of an initial investigation, an approach to conformance

testing of non-real-time reactive systems with interruptions was proposed.

Considering the research questions defined in Chapter 1, the following results were

achieved:

Research Question 1 In which ways can we extend the symbolic model-based testing the-

ory to be able to test real-time systems in an accurate manner?

In order to answer this first research question a new symbolic model-based testing ap-

proach was proposed by combining symbolic transition systems [108] with timed automata

[5]. Thus, the proposed model can handle both data and time requirements symbolically (see

143

9.1 Conclusions 144

Chapter 5). Furthermore, a conformance testing framework is proposed in Chapter 6 along

with algorithms for test case generation.

Research Question 2 In a real-time symbolic model-based testing context, how can we

provide models to be able to specify and test asynchronous events such as interruptions

in an accurate manner?

In order to answer this second research question an initial investigation was performed

in the context of non-real-time reactive systems. As a result, Chapter 3 presented a com-

plete conformance testing approach for reactive systems. This work intended to investigate

interruptions in a simple context. Considering the interruption testing of real-time systems,

Chapter 7 presented a strategy based on the proposed symbolic model-based conformance

testing approach to specify and test interruptions.

Research Question 3 In a real-time symbolic model-based testing context, is it possible to

provide an automated oracle?

As discussed in Chapter 2, an oracle is a mechanism composed of a result generator

and a comparator. In an automated oracle these two activities are fully automated. As the

test cases generated by our approach describes all outputs allowed by specifications, the

first activity of an oracle is automatically performed. According to what was discussed in

Section 6.3, each execution of an implementation produces a log that describes the executed

scenario. Next, this log is compared to the test case in order to emit a verdict. As this

comparison is automatically performed (see Chapter 8), we can state that an automated oracle

was provided by our approach. But it is important to remark that the test process is not

completely automated, since TIOSTS test cases are manually translated into C code.

In summary, this thesis provides the following contributions:

1. An approach to conformance testing of reactive systems with interruptions and a tool

to facilitate the practical application of the proposal;

2. A complete review of relevant work on conformance testing of real-time systems, de-

scribed in Chapter 4, that resulted in the identification of some open problems.

9.2 Future Work 145

3. A new conformance testing approach to real-time systems, where the SUT is modelled

using a symbolic model that abstract both time and data;

4. A test case generation process based on symbolic execution and constraint solving for

the data aspects combined with symbolic analysis of timed aspects.

5. A prototype tool implementing all algorithms of the test case generation process,

which is essential in the generation of test cases from symbolic models.

6. A strategy to interruption testing of real-time systems along with a way of defining test

purposes in order to check specific interruptions;

7. An initial test architecture including automatic ways of test execution and reliable

verdicts achievements.

8. Results of case studies involving the use of the proposed work that show the feasibility

of the practical application of the proposal.

Considering the related work presented in Chapter 4, all tables are presented here again

in order to compare the related work with our approach. Table 9.1 shows that our approach

generates test cases in an offline way using test purposes as test case selection strategy, there

is tool support based on TIOSTS specification language, and quiescence is not taken into

account. Table 9.2 shows that the tioco conformance relation is adopted and only deter-

ministic specifications are taken into account along with input-complete implementations.

Table 9.3 presents that our approach deals with analogue-time models and it is able to gener-

ate both instantiated and abstract test cases, considering that the CVC3 SMT Solver can be

used to instantiate abstract test cases. Furthermore, our approach allows the specification of

synchronous and asynchronous events and provides an automated oracle.

9.2 Future Work

With the completion of this work, there are several opportunities for future work. Next, some

ideas are described:

9.2 Future Work 146

Work

Test Case

Generation TP Tool Spec. Language Quiesc.

Cardell-Oliver offline yes∗ Essex∗ TIOLTS no

En-Nouaary et

al. offline yes no

deterministic and output

urgent TAIO no

Li et al. offline yes no RT Statecharts no

Khoumsi offline yes no non-deterministic TIOSA no

Briones and

Brinksma offline no no TIOLTS yes

Bohnenkamp

and Belinfante online yes yes∗
non-deterministic safety

TAIO yes

Bodeveix et al. offline yes no a kind of TAIO no

Larsen et al. online yes TRON

TAIO (with guards on lo-

cations and transitions) no

Hessel et al. offline yes CoVer

deterministic and output

urgent TAIO no

Merayo et al. offline no no non-deterministic TEFSM no

Krichen and

Tripakis

offline and

online yes TTG∗
partially-observable and

non-deterministic TAIO no

Zheng et al. offline yes∗ TROMLAB∗ TEFSM no

David et al. offline yes TIGA TIOGA no

Adjir et al. offline yes TINA Prioritized Time Petri Nets no

Styp et al. no no no STA no

Timo et al. offline yes no VDTA no

Andrade offline yes yes TIOSTS no

Table 9.1: Comparison with Related Work

Take quiescence into account: in practice, tests observe the behaviour of the system and

the absence of outputs. Then, an important future work is to extend the proposed

conformance testing approach to deal with quiescence;

Take internal actions into account: although the TIOSTS definition allows the specifica-

tion of internal actions, the developed algorithms do not treat internal actions;

Deal with non-input-complete implementations: practically all reviewed approaches as-

sume the input-completeness of the implementation. the intention of this future work

9.2 Future Work 147

is to investigate how this assumption could be discarded;

Deal with non-deterministic models: the intention here is to extend the approach proposed

in this thesis to deal with non-deterministic models;

Propose generic fault models: fault models based on approaches that use region clocks

such as the work presented in [48; 1] cannot be completely reused in a context where

zones are used because of the higher abstraction level. Then, this issue must be better

investigated;

Generate test cases based on coverage criteria: this thesis proposes a test selection ap-

proach based on test purposes, but there are other approaches to test case selection

such as selection based on coverage criteria;

Deal with more data types: investigate techniques such as abstract interpretation in order

to deal with more data types;

Improve the test execution activity: the test case execution can be improved by automat-

ing the translation of TIOSTS test cases into C code. In this case, the time spent in the

test case execution activity can be decreased;

Execution of test cases in other platforms: the intention is to extend the work proposed in

this thesis to allow the execution of test cases in other environments besides FreeRTOS;

Develop a fully integrated environment for testing real-time systems: it is important to

integrate the test case generation tool with the test execution tools in order to provide

a complete environment to generate and execute test cases;

Perform new case studies: since a complete environment for test case generation and exe-

cution is proposed as a future work, it is essential to perform new case studies in order

to evaluate the applicability of the work.

9.2 Future Work 148

Work Conf. Relation Specification Implementation

Cardell-Oliver trace equivalence

input-complete and must have

more states than the implemen-

tation. input-complete

En-Nouaary et

al. trace equivalence

input-complete and must have

the same number of locations as

the implementation. input-complete

Li et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Khoumsi timed trace inclusion input-complete input-complete

Briones and

Brinksma ioco with quiescence input-complete input-complete∗

Bohnenkamp

and Belinfante ioco with quiescence input-complete input-complete

Bodeveix et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

Larsen et al. timed trace inclusion

deterministic and input-

complete input-complete

Hessel et al. timed trace inclusion

deterministic, input-complete,

and output urgent input-complete

Merayo et al.

there are several confor-

mance relations input-complete input-complete

Krichen and

Tripakis tioco

no restriction on input-

completeness input-complete

Zheng et al.

no conformance relation

is defined assumptions are not discussed

assumptions are not

discussed

David et al. tioco input-complete input-complete

Adjir et al. timed trace inclusion

deterministic, input-complete,

and output urgent

deterministic,

input-complete,

and output urgent

Styp et al. stioco non-deterministic input-complete

Timo et al. tvco assumptions are not discussed

assumptions are not

discussed

Andrade tioco

deterministic and no restriction

on input-completeness input-complete

Table 9.2: Comparison with Related Work

9.2 Future Work 149

Work Time Test Cases Communication Oracle

Cardell-Oliver

analogue-time model (internally the

model is digitised) instantiated synchronous partial

En-Nouaary et

al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Li et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Khoumsi

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Briones and

Brinksma

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Bohnenkamp

and Belinfante

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Bodeveix et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Larsen et al.

analogue-time model (internally the

model is digitised) instantiated synchronous automated

Hessel et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Merayo et al. digital-time model instantiated synchronous partial

Krichen and

Tripakis digital and analogue-time models∗ instantiated synchronous automated

Zheng et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

David et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Adjir et al.

analogue-time model (internally the

model is digitised) instantiated synchronous partial

Styp et al. analogue-time model undefined synchronous undefined

Timo et al. analogue-time model undefined synchronous undefined

Andrade analogue-time model

instantiated

and abstract

synchronous and

asynchronous automated

Table 9.3: Comparison with Related Work

Bibliography

[1] M. S. AbouTrab and S. Counsell. Fault coverage measurement of a timed test case

generation approach. In ECBS ’10: Proceedings of the 2010 17th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems, ECBS

’10, pages 141–149, Washington, DC, USA, 2010. IEEE Computer Society.

[2] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Sys-

tems: Modelling, Specification and Verification. Cambridge University Press, 2007.

[3] Noureddine Adjir, Pierre Saqui-Sannes, and Kamel Mustapha Rahmouni. Testing

real-time systems using tina. In Proceedings of the 21st IFIP WG 6.1 International

Conference on Testing of Software and Communication Systems and 9th International

FATES Workshop, TESTCOM ’09/FATES ’09, pages 1–15, Berlin, Heidelberg, 2009.

Springer-Verlag.

[4] Noureddine Adjir, Pierre Saqui-Sannes, and Kamel Mustapha Rahmouni. Time-

optimal real-time test case generation using prioritized time petri nets. In VALID

’09: Proceedings of the First International Conference on Advances in System Testing

and Validation Lifecycle, pages 110–116, 2009.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.

[6] Wilkerson L. Andrade. Interaction test case generation for mobile phone applications.

Master’s thesis, Federal University of Campina Grande, Mar 2007.

[7] Wilkerson L. Andrade and Patrícia D. L. Machado. Modeling and testing interruptions

in reactive systems using symbolic models. In SAST’08: Proc. of the 2nd Brazilian

150

BIBLIOGRAPHY 151

Work. on Systematic and Automated Software Testing, pages 34–43, Porto Alegre,

2008. SBC.

[8] Wilkerson L. Andrade and Patrícia D. L. Machado. Interruption testing of reactive

systems. In Formal Methods: Foundations and Applications, volume 5902 of LNCS,

pages 37–53. Springer, 2009.

[9] Wilkerson L. Andrade and Patrícia D. L. Machado. Interruption testing of reactive

systems. Formal Aspects of Computing, pages 1–23, 2011. To appear.

[10] Wilkerson L. Andrade, Patrícia D. L. Machado, Everton L. G. Alves, and Diego R.

Almeida. Test case generation of embedded real-time systems with interruptions

for FreeRTOS. In Formal Methods: Foundations and Applications, volume 5902

of LNCS, pages 54–69. Springer, 2009.

[11] Wilkerson L. Andrade, Patrícia D. L. Machado, Thierry Jéron, and Hervé Marchand.

Abstracting time and data for conformance testing of real-time systems. In A-MOST

’11: Proceedings of the 7th Workshop on Advances in Model Based Testing, March

2011. To appear.

[12] Wilkerson L. Andrade, Francisco G. O. Neto, and Patrícia D. L. Machado. Geração

de casos de teste de interrupção para aplicações de celulares. In WTF ’07: Proc. of

the VIII Test and Fault Tolerance Workshop, pages 129–142, Porto Alegre, RS, Brazil,

2007. Brazilian Computer Society.

[13] George S. Avrunin, James C. Corbett, and Laura K. Dillon. Analyzing partially-

implemented real-time systems. IEEE Trans. Softw. Eng., 24(8):602–614, 1998.

[14] Victor R. Basili. Software modeling and measurement: the goal/question/metric

paradigm. Technical report, University of Maryland at College Park, College Park,

MD, USA, 1992.

[15] Gilles Bernot. Testing against formal specifications: a theoretical view. In TAPSOFT

’91: Vol. 2, pages 99–119, New York, NY, USA, 1991. Springer-Verlag.

BIBLIOGRAPHY 152

[16] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems

using time petri nets. IEEE Transactions on Software Engineering, 17(3):259–273,

Mar 1991.

[17] N. Bertrand, T. Jéron, A. Stainer, and M. Krichen. Off-line test selection with test

purposes for non-deterministic timed automata. In Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS 2011), march 2011. To appear.

[18] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley, Boston, MA, USA, 1999.

[19] Jean-Paul Bodeveix, Rachid Bouaziz, and Ousmane Koné. Test method for embedded

real-time systems. In ERCIM European Workshop on Dependable Software Intensive

Embedded Systems, pages 1–10, Porto, Portugal, 2005. ERCIM.

[20] Henrik Bohnenkamp and Axel Belinfante. Timed testing with TorX. In FM 2005:

Formal Methods, volume 3582 of Lecture Notes in Computer Science, pages 173–

188, Newcastle, UK, 2005. Springer-Verlag.

[21] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed

systems. In Compositionality: The Significant Difference, volume 1536 of LNCS,

pages 264–279. Springer, 1998.

[22] Ahmed Bouajjani, Yassine Lakhnech, and Sergio Yovine. Model-checking for ex-

tended timed temporal logics. In FTRTFT ’96: Proceedings of the 4th International

Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages

306–326, London, UK, 1996. Springer-Verlag.

[23] Laura Brandán Briones and Ed Brinksma. A test generation framework for quiescent

real-time systems. In Formal Approaches to Software Testing, volume 3395 of LNCS,

pages 64–78. Springer, 2005.

[24] Laura Brandán Briones and Ed Brinksma. Testing real-time multi input-output sys-

tems. In Formal Methods and Software Engineering, volume 3785 of Lecture Notes

in Computer Science, pages 264–279. Springer-Verlag, 2005.

BIBLIOGRAPHY 153

[25] Renée C. Bryce and Charles J. Colbourn. Test prioritization for pairwise interaction

coverage. In A-MOST ’05: Proceedings of the first international workshop on Ad-

vances in model-based testing, pages 1–7, New York, NY, USA, 2005. ACM Press.

[26] Gustavo Cabral and Augusto Sampaio. Formal specification generation from require-

ment documents. Electron. Notes Theor. Comput. Sci., 195:171–188, 2008.

[27] Jens R. Calamé, Natalia Ioustinova, and Jaco van de Pol. Automatic model-based

generation of parameterized test cases using data abstraction. In J. Romijn, G. Smith,

and J. van de Pol, editors, Proc. of the Doctoral Symposium affiliated with the Fifth

Integrated Formal Methods Conference (IFM 2005), volume 191 of Electronic Notes

in Computer Science, pages 25–48. Elsevier, October 2007.

[28] Rachel Cardell-Oliver. Conformance tests for real-time systems with timed automata

specifications. Formal Aspects of Computing, 12(5):350–371, Dec. 2000.

[29] Emanuela G. Cartaxo, Wilkerson L. Andrade, Francisco G. O. Neto, and Patrícia D. L.

Machado. LTSBT: A tool to generate and select functional test cases for embedded

systems. In SAC’08: Proc. of the 2008 ACM symposium on Applied computing, vol-

ume 2, pages 1540–1544, New York, NY, USA, 2008. ACM Press.

[30] Emanuela G. Cartaxo, Patrícia D. L. Machado, and Francisco G. Oliveira Neto. On

the use of a similarity function for test case selection in the context of model-based

testing. Software Testing, Verification and Reliability, 2009. Early Online View:

http://dx.doi.org/10.1002/stvr.413.

[31] Albert M. K. Cheng. Real-Time Systems: Scheduling, Analysis, and Verification. John

Wiley & Sons, Inc., New York, NY, USA, 2002.

[32] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A symbolic

test generation tool. In TACAS’02: Proc. of the Int. Conf. on Tools and Algorithms

for Construction and Analysis of Systems, volume 2280 of LNCS, pages 151–173.

Springer, 2002.

[33] L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE

Trans. Softw. Eng., 2(3):215–222, 1976.

BIBLIOGRAPHY 154

[34] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.

Constructing test suites for interaction testing. In ICSE ’03: Proceedings of the 25th

International Conference on Software Engineering, pages 38–48, Washington, DC,

USA, 2003. IEEE Computer Society.

[35] Camille Constant, Thierry Jéron, Hervé Marchand, and Vlad Rusu. Integrating formal

verification and conformance testing for reactive systems. IEEE Trans. Software Eng.,

33(8):558–574, 2007.

[36] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In POPL

’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 238–252, New York, NY, USA, 1977. ACM.

[37] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. A game-theoretic

approach to real-time system testing. In DATE ’08: Proceedings of the conference on

Design, automation and test in Europe, pages 486–491, New York, NY, USA, 2008.

ACM.

[38] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. Timed testing under

partial observability. In Proceedings of the 2009 International Conference on Software

Testing Verification and Validation, pages 61–70, Washington, DC, USA, 2009. IEEE

Computer Society.

[39] André L. L. de Figueiredo, Wilkerson L. Andrade, and Patrícia D. L. Machado. Gen-

erating interaction test cases for mobile phone systems from use case specifications.

SIGSOFT Softw. Eng. Notes, 31(6):1–10, 2006. Proceedings of the AMOST’2006.

[40] R. G. de Vries and J. Tretmans. On-the-fly conformance testing using SPIN. Software

Tools for Technology Transfer, 2(4):382–393, March 2000.

[41] R. G. de Vries and J. Tretmans. Towards formal test purposes. In Proceedings

of 1st International Workshop on Formal Approaches to Testing of Software 2001

(FATES’01), volume NS-01-4 of BRICS Notes Series, pages 61–76, Aarhus, Den-

mark, August 2001.

BIBLIOGRAPHY 155

[42] David L. Dill. Timing assumptions and verification of finite-state concurrent systems.

In Joseph Sifakis, editor, Proceedings of the International Workshop on Automatic

Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Com-

puter Science, pages 197–212. Springer-Verlag, 1990.

[43] I. K. El-Far and J. A. Whittaker. Model-based software testing. Encyclopedia on

Software Engineering, 2001.

[44] Abdeslam En-Nouaary. A scalable method for testing real-time systems. Software

Quality Control, 16:3–22, March 2008.

[45] Abdeslam En-Nouaary and Rachida Dssouli. A guided method for testing timed input

output automata. In Dieter Hogrefe and Anthony Wiles, editors, Testing of Communi-

cating Systems, volume 2644 of Lecture Notes in Computer Science, pages 211–225.

Springer Berlin / Heidelberg, 2003. Proceedings of the 15th IFIP international con-

ference on Testing of communicating systems (TestCom’03).

[46] Abdeslam En-Nouaary, Rachida Dssouli, and Ferhat Khendek. Timed wp-method:

Testing real-time systems. IEEE Trans. Softw. Eng., 28(11):1023–1038, 2002.

[47] Abdeslam En-Nouaary, Rachida Dssouli, Ferhat Khendek, and Abdelkader Elqortobi.

Timed test cases generation based on state characterization technique. In RTSS ’98:

Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 220–230, Wash-

ington, DC, USA, 1998. IEEE Computer Society.

[48] Abdeslam En-Nouaary, Ferhat Khendek, and Rachida Dssouli. Fault coverage in test-

ing real-time systems. In RTCSA ’99: Proceedings of the Sixth International Confer-

ence on Real-Time Computing Systems and Applications, page 150, Washington, DC,

USA, 1999. IEEE Computer Society.

[49] ETSI. European Standard (ES) 201 873 - The Testing and Test Control Notation

Version 3 (TTCN-3), Part 1: TTCN-3 Core Language, Part 2: Tabular Presentation

Format for TTCN-3 (TFT), Part 3: Graphical Presentation Format for TTCN-3 (GFT),

Part 4: Operational Semantics, Part 5: The TTCN-3 Runtime Interface (TRI), Part

BIBLIOGRAPHY 156

6: The TTCN-3 Control Interfaces (TCI). European Telecommunications Standards

Institute (ETSI), Sophia-Antipolis (France), 2005.

[50] Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. Property oriented test

case generation. In Formal Approaches to Software Testing, Proceedings of FATES

2003, volume 2931 of Lecture Notes in Computer Science, pages 147–163, Montreal,

Canada, 2004. Springer.

[51] G. Fink and M. Bishop. Property-based testing: a new approach to testing for assur-

ance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, 1997.

[52] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A Symbolic Framework for Model-

Based Testing. In Formal Approaches to Software Testing and Runtime Verification –

FATES/RV 2006, number 4262 in LNCS, pages 40–54. Springer, 2006.

[53] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia Touil. Symbolic exe-

cution techniques for test purpose definition. In Testing of Communicating Systems,

volume 3964 of Lecture Notes in Computer Science, pages 1–18. Springer, 2006.

[54] L.D. Gowen. Specifying and verifying safety-critical software systems. Proceedings

of the IEEE Seventh Symposium on Computer-Based Medical Systems, pages 235–

240, Jun 1994.

[55] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Springer, 1993.

[56] Dick Hamlet. Software quality, software process, and software testing. In Marvin V.

Zelkowitz, editor, Advances in Computers, volume 41, pages 191–229. Academic

Press, 1995.

[57] A. Hartman and K. Nagin. The AGEDIS tools for model based testing. SIGSOFT

Softw. Eng. Notes, 29(4):129–132, 2004.

[58] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic

model checking for real-time systems. Inf. Comput., 111:193–244, June 1994.

[59] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, Paul Pet-

tersson, and Arne Skou. Testing real-time systems using UPPAAL. In Robert M.

BIBLIOGRAPHY 157

Hierons, Jonathan P. Bowen, and Mark Harman, editors, Formal Methods and Test-

ing, volume 4949 of LNCS, pages 77–117. Springer, 2008.

[60] Anders Hessel, Kim Guldstrand Larsen, Brian Nielsen, Paul Pettersson, and Arne

Skou. Time-optimal real-time test case generation using UPPAAL. In Alexandre

Petrenko and Andreas Ulrich, editors, Formal Approaches to Software Testing, volume

2931 of LNCS, pages 114–130. Springer, 2004.

[61] Anders Hessel and Paul Pettersson. A test case generation algorithm for real-time

systems. In QSIC ’04: Proceedings of the Quality Software, Fourth International

Conference, pages 268–273, Washington, DC, USA, 2004. IEEE Computer Society.

[62] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms: A tool for the

automatic synthesis of conformance test cases for non-deterministic reactive systems.

Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[63] Bertrand Jeannet, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Symbolic test

selection based on approximate analysis. In TACAS’05: Proc. of Int. Conf. on Tools

and Alg. for Construction and Analysis of Systems, volume 3440 of LNCS, pages 349–

364, 2005.

[64] Thierry Jéron. Symbolic model-based test selection. Electron. Notes Theor. Comput.

Sci., 240:167–184, July 2009. Proceedings of the Eleventh Brazilian Symposium on

Formal Methods (SBMF 2008).

[65] Thierry Jéron, Hervé Marchand, and Vlad Rusu. Symbolic determinisation of ex-

tended automata. In Proceedings of the 4th IFIP International Conference on Theo-

retical Computer Science, volume 209 of IFIP book series, pages 197–212. Springer-

Verlag, 2006.

[66] Elisabeth Jöbstl, Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa.

When BDDs Fail: Conformance Testing with Symbolic Execution and SMT Solving.

In ICST ’10: Proceedings of the 2010 Third International Conference on Software

Testing, Verification and Validation, pages 479–488, Washington, DC, USA, 2010.

IEEE Computer Society.

BIBLIOGRAPHY 158

[67] Paul Jorgensen. Software Testing: A Craftman’s Approach. CRC Press, Inc., 3rd

edition, 2008.

[68] D. S. Jovanovic, B. Orlic, and J. F. Broenink. On issues of constructing an excep-

tion handling mechanism for CSP-based process-oriented concurrent software. In

Proceedings of Communicating Process Architectures CPA 2005, pages 18–21, Eind-

hoven, NL, 2005. IOS Press.

[69] Ahmed Khoumsi. Complete test graph synthesis for symbolic real-time systems.

ENTCS, 130:79–100, 2005.

[70] Ahmed Khoumsi. On synthesizing test cases in symbolic real-time testing. Journal

of the Brazilian Computer Society, 12:31–48, 2007.

[71] James C. King. Symbolic execution and program testing. Commun. ACM, 19:385–

394, July 1976.

[72] Pieter Koopman and Rinus Plasmeijer. Testing reactive systems with GAST. In

Stephen Gilmore, editor, Trends in Functional Programming, volume 4 of Trends in

Functional Programming, pages 111–129. Intellect, 2003.

[73] Moez Krichen. Model-Based Testing for Real-Time Systems. PhD thesis, Université

Joseph Fourier, Dec 2007.

[74] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-time

systems. In SPIN’04: Proc. of the 11th Int. SPIN Workshop on Model Checking of

Software, volume 2989 of LNCS, pages 109–126. Springer, 2004.

[75] Moez Krichen and Stavros Tripakis. Real-time testing with timed automata testers

and coverage criteria. In Formal Techniques, Modelling and Analysis of Timed and

Fault-Tolerant Systems, volume 3253 of Lecture Notes in Computer Science, pages

134–151. Springer-Verlag, 2004.

[76] Moez Krichen and Stavros Tripakis. An expressive and implementable formal frame-

work for testing real-time systems. In TestCom’05: Proc. of the 17th IFIP Int. Conf. on

Testing of Communicating Systems, volume 3502 of LNCS, pages 209–225. Springer,

2005.

BIBLIOGRAPHY 159

[77] Moez Krichen and Stavros Tripakis. Interesting properties of the real-time confor-

mance relation tioco. In ICTAC’06: Proc. of the 3rd Int. Colloquium on Theoretical

Aspects of Computing, volume 4281 of LNCS, pages 317–331. Springer, 2006.

[78] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. For-

mal Methods in System Design, 34(3):238–304, 2009.

[79] Phillip A. Laplante. Real-Time System Design and Analysis. John Wiley & Sons,

2004.

[80] Kim Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of real-time sys-

tems using uppaal. In Formal Approaches to Software Testing, volume 3395 of LNCS,

pages 79–94. Springer, 2005.

[81] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time

embedded software using uppaal-tron: an industrial case study. In EMSOFT ’05:

Proceedings of the 5th ACM international conference on Embedded software, pages

299–306, New York, NY, USA, 2005. ACM.

[82] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International

Journal on Software Tools for Technology Transfer, 1(1):134–152, 1997.

[83] Y. Ledru, L. du Bousquet, P. Bontron, O. Maury, C. Oriat, and M.-L. Potet. Test

purposes: Adapting the notion of specification to testing. In ASE ’01: Proceedings

of the 16th IEEE international conference on Automated software engineering, pages

127–134, Washington, DC, USA, 2001. IEEE Computer Society.

[84] Daniel Leitao, Dante Torres, and Flávia Barros. NLForSpec: Translating natural lan-

guage descriptions into formal test case specifications. In Proceedings of the Nine-

teenth International Conference on Software Engineering & Knowledge Engineering

(SEKE’2007), pages 129–134, Boston, Massachusetts, USA, 2007. Knowledge Sys-

tems Institute Graduate School.

[85] Grégory Lestiennes and Marie-Claude Gaudel. Testing processes from formal specifi-

cations with inputs, outputs and data types. In ISSRE’02: Proc. of the 13th Int. Symp.

on Software Reliability Engineering, page 3. IEEE Computer Society, 2002.

BIBLIOGRAPHY 160

[86] Qing Li and Carolyn Yao. Real-Time Concepts for Embedded Systems. CMP Books,

2003.

[87] Shuhao Li, Ji Wang, Wei Dong, and Zhi-Chang Qi. Property-oriented testing of real-

time systems. In APSEC’04: Proc. of the 11th Asia-Pacific Software Engineering

Conference, pages 358–365. IEEE Computer Society, 2004.

[88] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling feature interactions in mobile

phones. In Feature Interaction in Composed Systems (ECOOP 2001), pages 7–13,

Budapest, Hungary, 2001.

[89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI

Quarterly, 2(3):219–246, sep 1989.

[90] Augusto Q. Macedo, Wilkerson L. Andrade, Diego R. Almeida, and Patrícia D. L.

Machado. Automating test case execution for real-time embedded systems. In

ICTSS’10: Proceedings of the 22nd IFIP International Conference on Testing Soft-

ware and Systems, pages 37–42, 2010. Short Paper.

[91] Patrícia D. L. Machado. Testing from Structured Algebraic Specifications: The Oracle

Problem. PhD thesis, LFCS, University of Edinburgh, UK, 2000.

[92] Patrícia D. L. Machado and Wilkerson L. Andrade. The oracle problem for testing

against quantified properties. In QSIC ’07: Proceedings of the Seventh International

Conference on Quality Software, pages 415–418, Washington, DC, USA, 2007. IEEE

Computer Society.

[93] Patrícia D. L. Machado and Augusto C. A. Sampaio. Automatic test-case generation.

In Paulo Borba, Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock, editors, Test-

ing Techniques in Software Engineering, volume 6153 of Lecture Notes in Computer

Science, pages 59–103. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

[94] Patrícia D. L. Machado, Daniel A. Silva, and Alexandre C. Mota. Towards property

oriented testing. Electronic Notes in Theoretical Computer Science, 184:3–19, 2007.

[95] John D. McGregor and David A. Sykes. A practical guide to testing object-oriented

software. Addison-Wesley, Boston, MA, USA, 2001.

BIBLIOGRAPHY 161

[96] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. Formal testing of sys-

tems presenting soft and hard deadlines. In FSEN’07: Proc. of the Int. Symp. on Fun-

damentals of Software Engineering, volume 4767 of LNCS, pages 160–174. Springer,

2007.

[97] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. Extending EFSMs to

specify and test timed systems with action durations and time-outs. IEEE Trans.

Comput., 57(6):835–844, 2008.

[98] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. Formal testing from

timed finite state machines. Comput. Netw., 52(2):432–460, 2008.

[99] Mercedes G. Merayo, Manuel Núñez, and Ismael Rodríguez. A formal framework

to test soft and hard deadlines in timed systems. Software Testing, Verification and

Reliability, pages n/a–n/a, 2011.

[100] Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. T-uppaal: Online model-based

testing of real-time systems. In Proceedings of the 19th IEEE international conference

on Automated software engineering, pages 396–397, Washington, DC, USA, 2004.

IEEE Computer Society.

[101] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., Hoboken,

NJ, USA, 2nd edition, 2004.

[102] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Guided test generation

from CSP models. In Proceedings of the 5th international colloquium on Theoretical

Aspects of Computing, pages 258–273, Berlin, Heidelberg, 2008. Springer-Verlag.

[103] Manuel Núñez and Ismael Rodríguez. Conformance testing relations for timed sys-

tems. In Wolfgang Grieskamp and Carsten Weise, editors, Formal Approaches to

Software Testing, volume 3997 of Lecture Notes in Computer Science, pages 103–

117. Springer Berlin / Heidelberg, 2006.

[104] Corina S. Pasareanu and Willem Visser. A survey of new trends in symbolic execution

for software testing and analysis. Int. J. Softw. Tools Technol. Transf., 11:339–353,

October 2009.

BIBLIOGRAPHY 162

[105] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process, Principles,

and Techniques. Wiley, 2007.

[106] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,

Inc., 7th edition, 2009.

[107] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential pro-

cesses. Theor. Comput. Sci., 58(1-3):249–261, 1988.

[108] Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approach to symbolic test

generation. In IFM’00: Proc. of the Second Int. Conf. on Integrated Formal Methods,

pages 338–357. Springer, 2000.

[109] Steve Schneider. Concurrent and Real-Time Systems: The CSP Approach. John Wiley

& Sons, Inc., New York, NY, USA, 2000.

[110] Ian Sommerville. Software Engineering. International Computer Science Series.

Addison-Wesley, Boston, MA, USA, 9th edition, 2010.

[111] Mitsuo Takaki, Diego Cavalcanti, Rohit Gheyi, Juliano Iyoda, Marcelo D’Amorim,

and Ricardo B. Prudêncio. Randomized constraint solvers: a comparative study. In-

nov. Syst. Softw. Eng., 6:243–253, September 2010.

[112] The FreeRTOS.org Project. FreeRTOS. http://www.freertos.org.

[113] Omer Nguena Timo, Hervé Marchand, and Antoine Rollet. Automatic test generation

for data-flow reactive systems with time constraints. In ICTSS’10: Proceedings of the

22nd IFIP International Conference on Testing Software and Systems, pages 25–30,

2010. Short Paper.

[114] Omer Nguena Timo and Antoine Rollet. Conformance testing of variable driven au-

tomata. In WFCS’10: Proceedings of the 8th IEEE International Workshop on Factory

Communication Systems, pages 241–248. IEEE Computer Society, 2010.

[115] Dante Torres, Daniel Leitao, and Flávia Barros. Motorola SpecNL: A hybrid system to

generate nl descriptions from test case specifications. In HIS ’06: Proceedings of the

BIBLIOGRAPHY 163

Sixth International Conference on Hybrid Intelligent Systems, page 45, Washington,

DC, USA, 2006. IEEE Computer Society.

[116] Jan Tretmans. Conformance testing with labelled transition systems: implementation

relations and test generation. Comput. Netw. ISDN Syst., 29(1):49–79, 1996.

[117] Jan Tretmans. Test generation with inputs, outputs, and quiescence. In TACAS’96:

Proc. of the Second Int. Workshop on Tools and Algorithms for Construction and

Analysis of Systems, pages 127–146. Springer, 1996.

[118] Jan Tretmans. Testing concurrent systems: A formal approach. In CONCUR’99:

Proc. of the 10th Int. Conf. on Concurrency Theory, pages 46–65. Springer, 1999.

[119] Jan Tretmans and Ed Brinksma. Torx: Automated model-based testing. In A. Hart-

man and K. Dussa-Ziegler, editors, Proceedings of the First European Conference on

Model-Driven Software Engineering, pages 31–43, Nuremberg, Germany, 2003.

[120] Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A conformance testing

relation for symbolic timed automata. In Krishnendu Chatterjee and Thomas Hen-

zinger, editors, Formal Modeling and Analysis of Timed Systems, volume 6246 of

Lecture Notes in Computer Science, pages 243–255. Springer Berlin / Heidelberg,

2010.

[121] Rob Williams. Real-Time Systems Development. Butterworth-Heinemann, Oxford,

UK, 2006.

[122] Mihalis Yannakakis and David Lee. An efficient algorithm for minimizing real-time

transition systems. Form. Methods Syst. Des., 11:113–136, August 1997.

[123] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-time com-

municating systems by constraint-solving. In Proceedings of the 7th IFIP WG6.1 In-

ternational Conference on Formal Description Techniques VII, pages 243–258, Lon-

don, UK, UK, 1995. Chapman & Hall, Ltd.

[124] Mao Zheng, Vasu Alagar, and Olga Ormandjieva. Automated generation of test suites

from formal specifications of real-time reactive systems. J. Syst. Softw., 81(2):286–

304, 2008.

Appendix A

Proofs

Proof of Theorem 3.1.

Proof of soundness:

According to Definition 3.7 a test suite is sound if all of its test cases are sound. Further-

more, a test case TC is sound for S and conf if ∀SUT,

SUT conf S ⇒ ¬(TC may reject SUT).

Using the contraposition principle, we need to prove that if a test case TC may reject a

SUT (implementing the specification S), then ¬(SUT conf S). Thus, we need to prove that

∀SUT,

TC may reject SUT⇒ ¬(SUT conf S).

By Definition 3.6 we need to prove that ∀SUT,

∃σ ∈ Traces(TC || SUT) : verdict(σ) = Fail⇒ ¬(SUT conf S).

Let SUT be an arbitrary implementation such that ∃σ ∈ Traces(TC ||

SUT) : verdict(σ) = Fail. Then, let σ = [a1]ω1 [a2]ω2 . . . [an]ωn ∈ ([A]L)∗ be the trace cor-

responding to the interaction between TC and SUT until the verdict Fail is emitted. Also,

let σn−1 = [a1]ω1 [a2]ω2 . . . [an−1]ωn−1 be a trace excluding [an]ωn. According to the

verdicts definition (page 16), if a Fail is emitted then [an]ωn is an output action. Thus,

Out(SUT after σn−1) 6= ∅ because [an]ωn ∈ Out(SUT after σn−1).

Since Fail is obtained, [an]ωn 6∈ Out(S after σn−1). Hence, Out(SUT after σn−1) 6⊆

Out(S after σn−1) and consequently ¬(SUT conf S).

164

165

Then, ∀SUT, TC may reject SUT⇒ ¬(SUT conf S) and, consequently,

∀TC ∀SUT, TC may reject SUT⇒ ¬(SUT conf S).

Proof of exhaustiveness:

For proving that the test suites generated by LTS-BT are exhaustive, we need to prove

that for every non-conforming SUT there is a test purpose TP and a way of generating a test

case TC from S and TP , such that TC may reject SUT.

According to Definition 3.7 a test suite is exhaustive for S and conf if ∀SUT,

¬(SUT conf S)⇒ ∃TC : TC may reject SUT.

By Definition 3.3, if ¬(SUT conf S) then there is a trace σ =

[a1]ω1 [a2]ω2 . . . [an−1]ωn−1 [an]ωn ∈ Traces(S) and an output action [an+1]ωn+1 ∈

[A \ {steps, conditions, beginInterruption_X}]LO such that

[an+1]ωn+1 ∈ Out(SUT after σ) and [an+1]ωn+1 6∈ Out(S after σ).

Let [a′n+1]ω′n+1 be the correct output action such that [a′n+1]ω′n+1 ∈ Out(S after σ). Thus,

σ and [a′n+1]ω′n+1 can be used to define the following TP :

“ω1 ω2 . . . ωn−1 ωn;ω′n+1; Accept”.

Finally, a test case TC is generated based on S and the defined TP . Thus, during the

test case execution the SUT produces [an+1]ωn+1 instead of [a′n+1]ω′n+1. In this case, a Fail

verdict is emitted as expected. Hence, TC may reject SUT according to Definition 3.6.

166

Proof of Theorem 6.1.

Proof of soundness:

Let [[TC]] = 〈S, S0, Act, T 〉 be the TIOLTS semantics of the test case TC =

〈V, P,Θ, L, l0,Σ, C, T 〉. According to Definition 6.9 a test suite is sound if all of its test

cases are sound. Furthermore, a test case TC is sound for S and tioco if ∀I,

I tioco S ⇒ ¬(TC may reject I).

Using the contraposition principle, we need to prove that if a test case TC may reject I

(implementing the specification S), then ¬(I tioco S). Thus, we need to prove that ∀I,

TC may reject I ⇒ ¬(I tioco S).

By Definition 6.8 we need to prove that ∀I,

∃σ ∈ Traces([[TC]] || ObservableTraces(I)) : verdict(σ) = Fail⇒ ¬(I tioco S).

Let I be an arbitrary implementation such that ∃σ ∈ Traces([[TC]] ||

ObservableTraces(I)) : verdict(σ) = Fail. Then, let σ = a1 a2 . . . an ∈ (Act\Λτ)∗

be the trace corresponding to the interaction between [[TC]] and an observable behaviour

of I until the verdict Fail is emitted. Also, let σn−1 = a1 a2 . . . an−1 be a trace exclud-

ing an. According to the verdicts definition (Section 6.3), if a Fail is emitted then an is

either an output action or a time-elapsing action. Thus, Out(I after σn−1) 6= ∅ because

an ∈ Out(I after σn−1).

Since Fail is obtained, an 6∈ Out(S after σn−1). Hence, Out(I after σn−1) 6⊆

Out(S after σn−1) and consequently ¬(I tioco S).

Then, ∀I, TC may reject I ⇒ ¬(I tioco S) and, consequently,

∀TC ∀I, TC may reject I ⇒ ¬(I tioco S).

Proof of exhaustiveness:

For proving that the test suites generated by our approach are exhaustive, we need to

prove that for every non-conforming I there is a test purpose TP and a way of generating a

test case TC from S and TP , such that TC may reject I.

According to Definition 6.9 a test suite is exhaustive for S and tioco if ∀I,

¬(I tioco S)⇒ ∃TC : TC may reject I.

167

By Definition 6.2, if ¬(I tioco S) then there is a trace σ = a1 a2 . . . an−1 an ∈

ObservableTraces(S) and an output event an+1 (i.e., an output action or time-elapsing ac-

tion) such that

an+1 ∈ Out(I after σ) and an+1 6∈ Out(S after σ).

Let a′n+1 be the correct output event such that a′n+1 ∈ Out(S after σ). Thus, σ and a′n+1

can be used to define a TP with the path “a1 a2 . . . an−1 an a
′
n+1” leading to an Accept

location.

Finally, a test case TC is generated based on S and the defined TP . Thus, during the

test case execution I produces an+1 instead of a′n+1. In this case, a Fail verdict is emitted as

expected. Hence, TC may reject I according to Definition 6.8.

Appendix B

TIOSTS Models

This appendix presents all TIOSTS models automatically generated by the prototype tool

during the execution of the case studies described in Chapter 8.

B.1 TIOSTS Models of the Burglar Alarm System Case

Study

168

B.1 TIOSTS Models of the Burglar Alarm System Case Study 169

Figure B.1: Burglar Alarm System Specification

B.1 TIOSTS Models of the Burglar Alarm System Case Study 170

Figure B.2: Test Purpose

Figure B.3: Completed Test Purpose

B.1 TIOSTS Models of the Burglar Alarm System Case Study 171

Figure B.4: Synchronous Product

B.1 TIOSTS Models of the Burglar Alarm System Case Study 172

Figure B.5: Test Case 01

B.1 TIOSTS Models of the Burglar Alarm System Case Study 173

Figure B.6: Test Case 02

B.1 TIOSTS Models of the Burglar Alarm System Case Study 174

Figure B.7: Test Case 03

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 175

B.2 TIOSTS Models of the Automatic Guided Vehicle Sys-

tem Case Study

Figure B.8: Test Purpose TP1

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 176

Figure B.9: Automatic Guided Vehicle System Specification

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 177

Figure B.10: Synchronous Product between AVG System Specification and Test Purpose

TP1

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 178

Figure B.11: Test Case of the First Scenario

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 179

Figure B.12: Test Purpose TP2

Figure B.13: Completed Test Purpose TP2

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 180

Figure B.14: Synchronous Product between AVG System Specification and Test Purpose

TP2

B.2 TIOSTS Models of the Automatic Guided Vehicle System Case Study 181

Figure B.15: Test Case of the Second Scenario

