
Federal University of Campina Grande

Informatics and Electrical Engineering Center

Towards a Test Generation Approach for

Compositional Real-Time Systems

Adriana Carla Damasceno

Thesis submitted to Post-Graduation Coordination of Computer Sci-

ence of Federal University of Campina Grande in partial fulfillment

of the requirements for the degree of Doctor of Computer Science.

Research area: Computer Science

Research Interest: Software Engineering

Patricia Duarte de Lima Machado

(Advisor)

Wilkerson de Lucena Andrade

(Co-advisor)

Campina Grande, Paráıba, Brasil

c©Adriana Carla Damasceno, March 6, 2015

 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DA UFCG

D155t Damasceno, Adriana Carla.

 Towards a test generation approach for compositional real-time

systems. / Adriana Carla Damasceno. – Campina Grande, 2015.

 129f. : il. color.

 Tese (Doutorado em Ciência da Computação) – Universidade Federal de

Campina Grande, Centro de Engenharia Elétrica e Informática, 2015.

 "Orientação: Prof.ª Dr.ª Patrícia Duarte de Lima Machado, Prof. Dr.

Wilkerson de Lucena Andrade".

 Referências.

 1. Real-time systems. 2. Compositional testing. 3. Model-based testing.

4. Tioco. 5. Integration testing. I. Machado, Patrícia Duarte de Lima.

II. Andrade, Wilkerson de Lucena. III. Título.

 CDU 004.451(043)

Abstract

We can find many examples of Real-time Systems (RTS) in critical applications such

as patient monitoring, air traffic control and others. A failure in this kind of system

can be catastrophic. For example, it can harm human lives or increase project bud-

gets. Hence, the testing of real-time systems must be accurate. Models are used to

perform this task, since they contain information about how the system behaves and

when actions may happen. Due to the complexity of the available systems, most RTS

are composed of subsystems that interact as part of a bigger system. These subsystems

are combined through operators to model their specification behavior. However, works

on the testing of compositional models for RTS are practically nonexistent. Among the

available approaches to perform testing for non-compositional RTS models, the tioco

conformance testing theory focuses on generating test cases based on implementation

and specification models. Moreover, a conformance relation defines whether success in

testing means conformance between an implementation and a specification. To express

specifications and to represent implementations under test, we use Timed Input Out-

put Symbolic Transitions Systems (TIOSTS). These models store symbolic data and

clock variables, avoiding the state space and region explosion problems. Regarding the

testing of compositional models, some questions may arise: If two subsystem imple-

mentations are tioco conformant to their specifications, is it correct to assume that the

composition of the implementations is also tioco conformant to the composition of their

specifications? In this case, how can operators be defined to work with TIOSTS and

tioco? To answer these questions, this thesis proposes the sequential, interruption and

parallel operators for the TIOSTS model. For each operator, we study how the tioco

conformance relation behaves with respect to subsystems and the composed system.

We present results towards properties of compositional operators when the subsys-

tems are composed, as well as implementing them. Besides, we show three examples

where each operator can be used and illustrate the applicability of our approach in two

exploratory studies. The first models components of a aircraft specification and the

second presents application level interruptions in an Android system.

i

Unshakable faith is only that which can meet reason face to face in

every Human epoch.

—ALLAN KARDEC, The gospel according to the Spiritism

ii

Acknowledgements

I want to thank God for letting me go beyond each difficulty to achieve this doctoral

degree. Also, I express deep gratitude for my family, especially Damasceno, Gloria and

Juan, for being extremely supportive, patient and kind; and Formiga e Maria Celia,

for guiding me in the academic area since my childhood. I acknowledge the effort

my advisors made in guiding me during this thesis, especially Patricia. Finally, I am

grateful for all the friends who helped and supported me.

iii

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Research Goals . 5

1.3 Contributions . 6

1.4 Methodology . 7

1.5 Outline of the Document . 8

1.6 Publications . 8

2 Background 10

2.1 Parallel Computing . 10

2.2 Real-time Systems . 11

2.3 Software Testing . 12

2.3.1 Model-Based Testing . 15

2.3.2 Conformance Testing . 16

2.4 Concluding Remarks . 30

3 Test Case Generation from Compositional Models 31

3.1 Sequential Composition . 32

3.2 Interruption Composition . 38

3.3 Parallel Composition . 48

3.4 Test Case Generation Process . 53

3.5 Concluding Remarks . 57

4 Algorithms 58

4.1 Sequential Composition Algorithm . 58

iv

4.2 Interruption Composition Algorithm 62

4.3 Parallel Composition Algorithm . 67

4.4 Concluding Remarks . 70

5 Exploratory Studies 71

5.1 Avionics System . 71

5.2 Cell Phone System . 78

5.3 Concluding Remarks . 87

6 Related Works 88

6.1 Model-based Interruption Testing . 88

6.2 Model-based Compositional Testing . 90

6.2.1 Bijl et al. 90

6.2.2 Daca et al. 91

6.2.3 Sampaio et al. 92

6.2.4 Briones . 93

6.2.5 Aiguier et al. 93

6.2.6 Faivre et al. 94

6.2.7 Olderog and Swaminathan . 95

6.2.8 Krichen and Tripakis . 96

6.2.9 Bannour et al. 97

6.3 Concluding Remarks . 98

7 Concluding Remarks 100

7.1 Main Results . 100

7.2 Future Works . 102

A Proofs 111

A.1 Theorem 2 . 111

A.2 Theorem 3 . 114

A.3 Theorem 4 . 116

v

List of Figures

1.1 S1 specification . 3

1.2 S2 specification . 3

1.3 Model I1 tioco S1 . 4

1.4 Model I4 ¬tioco S1 . 4

1.5 Composition for S1 ‖ S2 . 5

1.6 Composition for I1 ‖ I2 . 5

2.1 General testing process . 14

2.2 Model-based testing approach (adapted from [Kic14]) 16

2.3 TAIO for the Mouse subsystem . 18

2.4 TAIO for the Screen subsystem . 18

2.5 TAIO Screen conformant . 19

2.6 TAIO Screen not conformant . 19

2.7 Parallel composition for the Mouse and Screen specifications using the

TAIO model . 20

2.8 Input-completion for the Screen TAIO specification 22

2.9 Mouse subsystem . 25

2.10 Screen subsystem . 25

2.11 Model in conformance with Screen . 26

2.12 Model not in conformance with Screen 26

2.13 Test case generation process . 29

3.1 Toy example for the sequential composition 33

3.2 Choose subsystem . 34

3.3 Pay subsystem . 34

vi

3.4 The sequential composition Choose;send Pay 35

3.5 Mouse subsystem . 40

3.6 Reset subsystem . 40

3.7 Interruption composition for the Mouse and Reset subsystems 40

3.8 Example of weak interruption composition 42

3.9 Step 1 of the sync operator . 43

3.10 Step 2 of the sync operator . 44

3.11 Steps for the weak interruption composition 46

3.12 Toy example for the parallel composition 49

3.13 Parallel composition for Mouse and Screen specifications 50

3.14 Input-complete Mouse spec . 51

3.15 Input-complete Screen spec . 51

3.16 The integration test case generation process 53

3.17 Test purpose for the Choose;send Pay system 54

3.18 Test cases for the Choose;send Pay system 55

3.19 Test purpose for Mouse ‖ Screen system 55

3.20 Test cases for the Mouse ‖ Screen system 56

3.21 Test purpose for Mouse Interrupted and Reset subsystems 56

3.22 Test cases for the Mouse Interrupted and Reset subsystems 57

4.1 Toy example for the sequential composition 59

4.2 Example of weak interruption composition 62

4.3 Toy example for the parallel composition 67

5.1 Tracking system of the generic avionics specification 72

5.2 Radar specification . 73

5.3 Target Designation specification . 74

5.4 Target Tracking specification . 76

5.5 Sequential composition for the Tracking subsystem 77

5.6 Test purpose for the Target system . 78

5.7 Test purpose for Target system ‖ Radar 78

5.8 Cell Phone system . 80

vii

5.9 Contacts subsystem . 82

5.10 Message subsystem . 83

5.11 Receive Call subsystem . 84

5.12 Test purpose (a) . 84

5.13 Test purpose (b) . 84

5.14 Test purpose (c) . 85

5.15 Test purpose (d) . 85

5.16 Test case 0 from test purpose (a) . 86

A.1 Toy example for the sequential composition 112

A.2 Example of weak interruption composition 114

A.3 Toy example for the parallel composition 118

viii

List of Tables

5.1 Test purposes and generation time of test cases 78

5.2 Test purposes and generation time of test cases 87

6.1 Summary of works . 99

ix

Chapter 1

Introduction

Real-time systems (RTS) are currently found in a number of embedded devices for

monitoring and controlling activities such as patient monitoring, operation of aircrafts,

business transactions, and so on. These systems have requirements that are constrained

by time, that is, system tasks are performed successfully if a correct behavior can

be observed within a time period [Lap09]. For instance, consider a robot movement

controller that might act within 2s when an obstacle is detected in order to avoid a

crash. Independently of the technology used, these systems are usually composed of a

set of concurrent subsystems that may run on independent devices. Whether the system

is critical or not, testing such systems is a complex task particularly at integration level.

There is usually a number of interactions required as well as a number of assumptions

of expected behavior that might be precisely defined in order to avoid false verdicts

during testing execution.

To address these issues, a number of efforts have been carried out towards a confor-

mance testing theory and practice for real-time systems [AM13; BJSK11; HLM+08].

Usually, the goal is to automatically generate valid test cases from an abstract model

according to a testing criteria and test hypotheses in order to check conformance of a

target implementation. This practice is known as Model-Based Testing (MBT) [UL07].

MBT has been extensively investigated as well as applied in industry. For instance,

there are experience reports on the use of MBT for RTS by the SCARLETT [Sca14]

and the DAIMLER/Verified Systems International GMBH [PHL+11] projects.

However, the state explosion problem [Val98] remains unsolved for a wide range

1

of models based on labeled transition systems. We can identify initiatives to solve

this problem which are based on language specifications [DFM09] and symbolic models

[Vea13]. Regarding conformance testing based on transition systems, symbolic models

are a promising approach since both data and time can be abstracted in order to handle

the complexity of RTS as well as to cope with the state space explosion problem

[vSBS10; TR11]. Particularly, Andrade et al. [AM13] proposed a symbolic model,

named Timed Input Output Symbolic Transition System (TIOSTS), devoted to real-

time systems. The model can express both data and time symbolically with different

types of deadlines. A test case generation process and a tool – SYMBOLRT – were

also developed based on this model [AACM12]. However, the structure of the system

under testing is not taken into account since the system is specified by a single model.

Conformance testing based on compositional models [BRT04; KT06] has addressed

the problem of deciding the conformance of a system defined by a composition of spec-

ifications, when the corresponding subsystem implementations are in conformance to

their specifications by testing them separately. For this, precise rules and constraints

must be defined so that the composition of implementations preserves conformance to

the composition of their corresponding specifications. Compositional testing can save

integration testing effort because lessen system complexity to the level of subsystems

[BRT04; DHKN14; SNMI14]. Moreover, test case generation from composite specifica-

tions can greatly contribute to the integration testing process by increasing reliability

to test case definition and execution. Even though, there might be strong practical

assumptions to be met on specifications and implementations when inferring composi-

tional conformance by testing, some of them might be controlled by the test execution

infrastructure.

The compositional conformance testing of real-time systems [KT06; BGAL13] can

be achieved by two main strategies: i) infer conformance to the composition when

subsystems are conformant or ii) generate tests from the composed specification to

test the integration of the composed system. We follow and present both strategies

along this work, studying difficulties and practical implications that may arise with

them.

2

Figure 1.1: S1 specification Figure 1.2: S2 specification

1.1 Problem Statement

Frequently, real-time systems requirements are modeled by Timed Automata with In-

puts and Outputs (TAIO)[KT06]. Basically, this model is composed of a set of loca-

tions, a set of clocks that can be reset to zero, sets of input and output actions and

a set of transitions where each element is a tuple comprised of the following elements:

a guard over a clock, an action and an assignment that is related to the clock. In

this section, we use the TAIO model to express the specification and implementation

behaviors we want to check.

Figure 1.1 illustrates the TAIO for the S1 specification. From the S0 location, the

system communicates the b? input action, resets clock x and goes to location S1. From

the S1 location, the system communicates the a? input action as long as x < 5 and

goes to the S2 location.

Figure 1.2 shows the S2 specification. Similarly to S1, it also has three locations.

From the S3 location, the system communicates the c? input action, resets the y clock

and goes to the S4 location. From location S4, the system executes the a! output

action if y > 5 and goes to the S5 location. From the S5 location, the system offers

the a! output action and returns to the S5 location.

We use the tioco (Timed Input-Output COnformance) to compare a specification

S to an implementation model I. In general terms, we say that I tioco S if, for every

output action that I is capable of showing after a trace σ, there is a corresponding

output action in S. Hence, even if there is an input action present in S which is absent

in I, the tioco relation can be preserved.

Figure 1.3 shows the I1 implementation that is in tioco conformance to S1. If we

3

Figure 1.3: Model I1 tioco S1 Figure 1.4: Model I4 ¬tioco S1

compare each trace from S1 to each trace from I1, we can notice that the given outputs

are the same. Although the S7-S8 transition from I1 contains the x < 4 guard that

differs from the x < 5 guard from the S1-S2 transition of S1, since the represented set

from the x < 4 guard is contained in the represented set from the x < 5 guard, I1 tioco

S1.

On the other hand, Figure 1.4 shows the I4 implementation which characterizes

an example where the tioco conformance relation is not preserved. This happens be-

cause the S14-S14 transition allows the extra d! output action that is not present in

the corresponding trace of the S1 specification. Furthermore, the S14-S15 transition

contains the x == 6 guard that represents a set which is not contained in x < 5. In

fact, these sets refer to different clock values, what forbids the preservation of the tioco

conformance relation.

Unfortunately, the tioco conformance relation has some properties that stickles its

usage when we test two isolated subsystems. Consider two specifications S1 and S2,

their corresponding implementations I1 and I2 and a compositional operator rel. If

I1 tioco S1 ∧ I2 tioco S2, we cannot always assume that I1 rel I2 tioco S1 rel S2. This

happens because, although the tioco conformance relation allows the underspecification

of inputs, it forbids the underspecification of outputs, leading to the generation of

unpredictable outputs in the composed models.

For example, using the S1 and S2 specifications from Figures 1.1 and 1.2 and an

ordinary parallel operator that allows subsystems to synchronize on common actions

or interleave on distinct actions, we have the S1 ‖ S2 system in Figure 1.5. Considering

4

Figure 1.5: Composition for S1 ‖ S2 Figure 1.6: Composition for I1 ‖ I2

that implementation I2 is represented by the same model of specification S2, Figure

1.6 shows system I1 ‖ I2. It has the additional a! output action in the (S8,S12) - (S9,

S12) transition which is generated during the synchronization process because of the

additional a? input action of the S8-S9 transition contained in the I1 implementation.

There are many implications on the usage of the tioco conformance relation when

testing compositional systems. Using the composed specification from Figure 1.5, we

can observe that interleaved actions such as b? and c? must be tested and their inter-

changeable nature must be taken into account. In addition, the resulting composition

and clocks resetting may lead the system that contain paths with unreachable condi-

tions. Thus, if we take the two available paths to (S1, S4) location, the only one that

makes the x < 5 AND y > 5 guard satisfied is by using the (S0, S4) location.

1.2 Research Goals

Facing the difficulties pointed out in Section 1.1, we define the following research ques-

tions that guides our work:

Research Question 1 How symbolic models of real-time systems that abstract data

and time can be composed?

Research Question 2 What are the main challenges to infer conformance of the com-

posed system based on the conformance of subsystems?

5

Research Question 3 How can integration test cases be generated from composed

models?

These questions have been investigated in the scope of timed symbolic transition

systems, more specifically, the TIOSTS model. We focus on the message-passing

paradigm and investigate the sequential, interruption and parallel composition of sub-

systems with inputs and outputs that can be observed and modeled as independent

components (Research Question 1). We examine constraints and applicability of these

operators in accordance to the tioco conformance relation, guiding the test generation

and execution results analysis (Research Question 2). Finally, from a practical point

of view, integration testing is analyzed to allow test generation focused on subsystem

interactions (Research Question 3).

To let our scope clear, we clarify that:

• We compose models intended to be used in a test case generation process;

• Test cases are derived from the compose model;

• We investigate theoretical implications of compositionality properties by using

the tioco conformance relation;

• We focus on the generation of abstract test cases, excluding implementation issues

of test cases and other architectural details;

• We take into consideration the composition of two subsystems at time;

• We do not take state and region explosion issues into account.

1.3 Contributions

To answer the research questions from Section 1.2, we propose a framework for com-

posing real-time models. This is achieved by defining compositional operators that

are suitable to the model and the conformance testing theory we intend to use. More

specifically, we present the contributions:

• Define the parallel, sequential and interruption operators;

6

• Present and prove compositionality properties about conformance from subsys-

tems to composed systems;

• Propose an integration testing strategy that uses these operators;

• Implement operators in a tool.

In general terms, our approach is composed by the following steps (Chapter 3): i)

Compose subsystems; ii) Choose actions according to our test strategy; iii) Use a test

generation strategy to generate test cases from the composed model . After that, we

have test cases that cover interactions between subsystems. Moreover, we automate

the composition of models and apply it two exploratory studies: i) a general avionics

specification; and ii) a cell phone application. (Chapter 5).

We validade compositionality properties for each operator by using proofs that

verify the preservation of the conformance relation when the subsystems are composed.

Even so, we d not automate these compostionality results because of theoretical issues.

1.4 Methodology

We performed the following steps to develop our work:

• Execution of exploratory studies on the TIOSTS model and conformance the-

ory described by [AM13]. Results showed that the definition of compositional

operators improved practical usage of their work;

• Development of a systematic mapping to understand the main issues and difficul-

ties regarding to compositional modeling of real-time systems. We analyzed 37

papers and compared them according to the adopted model, test generation ap-

proach, usage of a compositional strategy, evaluation method, and tool support.

We report results in [Dam11];

• Definition of the sequential, parallel and interruption compositional operators;

• Implementation of the compositional operators in a tool;

• Execution of exploratory studies to improve operators definition;

7

• Improvements on the formal definition for each operator;

• Execution of further exploratory studies to evaluate the applicability of the ap-

proach;

• Definition of proofs about the compositional properties of operators when faced

to the tioco conformance relation.

1.5 Outline of the Document

The remaining parts of this document are structured as follows:

Chapter 2 This chapter contains the basic concepts of real-time systems and the test-

ing concepts we use, including a general view of model-based testing, conformance

testing, symbolic model-based testing and compositional testing;

Chapter 3 We show the definition of the sequential, interruption and parallel oper-

ators. Moreover, we present proofs based on the compositionality properties of

these operators. Finally, we show examples and our test case generation process;

Chapter 5 This chapter shows two exploratory studies that use the sequential, inter-

ruption and parallel operators. We implement and execute test case results for

each system;

Chapter 6 This chapter presents the works related to our approach and compare

them to our work;

Chapter 7 This chapter presents the answers to our research questions along with

future work.

1.6 Publications

The following papers were produced from the work developed in this thesis, in this

order:

8

1. DAMASCENO, A. C. ; ANDRADE,W. L. ; MACHADO, P. D. L. Automatic Test

Generation of Compositional Real-Time Systems. In: 2nd Workshop on Theses

and Dissertations of CBSoft (WTDSoft 2012), 2012, Natal - RN. Proceedings

of the 2nd Workshop on Theses and Dissertations of CBSoft / 3rd Brazilian

Conference on Software: Theory and Practice, 2012, 2012. v. 06. p. 60-66.

2. DAMASCENO, A. C.; MACHADO, P. D. L.; ANDRADE, W. L. Testing Real-

Time Systems from Compositional Symbolic Specifications, submitted on July 15,

2014 to Software Tools for Technology Transfer Journal;

3. DAMASCENO, A. C. ; Machado, P. D. L. ; ANDRADE, W. L.; TORRES,

W. N. M. Symbolic Test Case Generation of Compositional Real-Time Systems

Driven by Interruptions. In: IEEE Symposium on Real-time Computing, 2015,

AUCKLAND. Proceedings of the IEEE Symposium on Real-time Computing,

2015. v. 18, p 228-235.

9

Chapter 2

Background

This chapter provides the basic concepts for our work. Section 2.1 shows basic concepts

on parallel computing. Section 2.2 presents characteristics of real-time systems. Section

2.3 shows general concepts in which software testing for real-time systems are based on,

as well as a general background on model-based testing (Section 2.3.1) and conformance

testing (Section 2.3.2.1).

2.1 Parallel Computing

Many key activities in interdisciplinary research such as climate modeling, protein fold-

ing and data analysis require high computer performance. As the computational power

increases, other problems appear and require more performance. The computational

power needed to perform these activities is achieved by an increasing density of tran-

sistors in the microprocessors that process activities [Pac11]. Additionally, Moore’s

Law assures that transistors density in a microprocessor doubles every 18 to 24 months

[M+65].

The speed of integrated circuits may not follow the need from research problems

due to limitations imposed by the technology associated to microprocessors [Tan07].

With this increasing necessity, sequential programs are rewritten to become parallel

and the performance be increased accordingly. The writing of parallel programs uses

coordination so that work is done by using several processors (or cores).

Parallel computing is based on processes and threads [CT05]. A process contains

10

the program instructions and the data used by the program. Processes do not share

memory unless the operating system allows to do so. A thread is a unit of control within

a process that executes a function in the program and is created by using commands

from a programming language. Multithreaded programs allow the execution of more

than one thread and hence the execution of multiple tasks.

A common way of building programs that use parallel computing is the message

passing paradigm [Pac11]. Here, a system is composed by threads, named subsystems,

that communicate data through messages from subsystems to communicate effects of

the program execution. In the synchronous message passing, processes communicate

through messages that are synchronized with no delay and forcing one process to wait

for each other. With asynchronous message passing, it is possible for the process

to receive messages while being busy. Consequently, messages are buffered so that

processes are not postponed by others.

On the other hand, Parallel, distributed and concurrent computing are mislead-

ing concepts and there is no general agreement on these terms [Pac11]. This happens

because they describe systems that perform more than one task at a time. Concur-

rent computing [CT05] denotes tasks of a program which interact over shared data,

performing tasks simultaneously because this is part of a system functionality. For

example, the same processor perform multiple tasks. Parallel computing [Pac11] allows

tasks to run simultaneously to speed up computational results. For instance, multiple

and possible related tasks are running in two processors at the same time. Distributed

computing [BCDK12] focuses on using multiple physical parts connected by a network.

Frequently, these parts are geographically dispersed and communication is constrained

by network protocols. Although systems are broken into parts, they form a set that

behaves as a single system. For example, tasks are performed on different machines in

a network.

2.2 Real-time Systems

Currently, real-time systems have a range of applications. We can find examples in

multimedia and health care monitoring systems, cell phones, engine controllers in cars

11

and washing machines. Their correctness depend on the system behavior and when

tasks are executed [Kop11].

Consequently, these systems are based on the concept of time. The present point

in time distinguishes between past and future. The state of a system unleashes its past

and future behaviors, referring to its present point. A digital clock partitions the time

into a sequence of equally and discrete spaced intervals, while an analog clock gives

the notion of time continuity. Time constraint [Lap09] specifies the response time and

the temporal behavior of real-time systems. A time constraint for a health monitoring

system can be exemplified by a situation where the patient’s heart stops beating for

more than 5 seconds, and a result is that an emergency call is sent to doctors. These

constraints come from design and safety decisions imposed by the systems developer.

The instant when a result must be produced is called a deadline [Li03]. The deadline

is called firm if the result cannot be used after time passes by, otherwise it is called

soft. If missing a deadline leads to severe consequences, it is named hard. For example,

airplane systems are ruled by hard deadlines once that if an aircraft does not obey its

route within a predefined time, there may be a crash. A real-time system that contains

at least one hard deadline is called hard real-time system. If no hard deadline exists,

the system is called soft real-time system.

Every real-time system may be able to react to external stimuli within time in-

tervals. Hence, we call them reactive. These reactions are guided by the real-time

application, which is a set of tasks that implements the system functionality. Fre-

quently, complex real-time applications can be decomposed into simpler parts called

components that interact through actions [CT05]. Components can be reused by taking

into account their interface specifications without the need to understand the internal

details.

2.3 Software Testing

The goal of software testing is to find and fix inconsistencies before delivering to the end

user. This activity executes a model or program by using inputs to assess the software

behavior. The test case is used to set the initial conditions and post-conditions for the

12

program execution, along with the performed steps.

The testing process comprises some fundamental concepts. Six of them are “fault” ,

“mistake”, “error”, “failure”, “validation” and “verification” [DMJ07; Gal04]. A fault

denotes an incorrect requirement in the implementation or the configuration of the

system that produces an incorrect behavior. It can be a project or software development

process inconsistency, as well as an incorrect data definition. A mistake is a human

action that produces a fault. These two concepts are static since they do not depend

on a specific program execution. The occurrence of a fault can lead to an error during

a program execution, which is an unexpected system behavior. This situation can

cause a failure, making the user observe an unexpected behavior at program execution.

When opposed to errors, failures are easier to detect because they produce a behavior

which is external to the system. Validation is to assess the degree to which a system

meets its requirements in order to meet the user needs. This activity leads to the

question: “Are we building the right product for the end user?”. Verification is checking

the conformance of an implementation with respect to a specification. We intend to

answer the question: “Are we building the product right?”. Consequently, verification

is a check of consistency between two descriptions, in contrast to validation which

compares a description against the user needs.

When focusing on the testing of real-time concurrent programs, we face two main

issues: sequence feasibility, probe effect and timeliness [CT05]. A sequence of actions

allowed by a program is named a feasible sequence. Testing concurrent programs in-

volves determining if a sequence of actions is feasible or not. For instance, a failure may

happen due to a synchronization problem. Probe effect is a change in the system be-

havior due to measuring that system and code instrumentation causes this undesirable

change. Programs may fail when instrumentation code is removed and inconsistencies

may disappear when debugging code is added. Timeliness intends to evaluate if the

software meets time constraints.

Testing software is important because it is an evaluation technique that allows the

examination of the implementation behavior in the environment of the real application.

For instance, the system being tested may contain an unexpected behavior because of

the misunderstanding of a system module or general requirements that are used by more

13

Figure 2.1: General testing process

than one part of a system. Each situation requires different ways of finding faults, since

the testing of the isolated and integrated subsystems are different. Because of that, the

testing phases are defined as unit, integration, system and acceptance testing [DMJ07].

Figure 2.1 shows this process.

The main goal of unit testing is to assess if each subsystem is correct with respect

to its specification. We understand that a subsystem is the inner part of a system to

be tested, that is, procedures, functions, methods or classes. Unit tests can be applied

as soon as each subsystem is finished, no matter if other subsystems are still being

developed.

We use the integration testing phase to assess the interaction between subsystems

in their working groups. This phase evaluates the interfaces between subsystem and

how they can be grouped. Some common types of integration testing approaches are

big-bang, top-down, bottom-up and sandwich [Bin00].

In the big-bang approach, most of the developed subsystems are coupled together to

form a complete software system for which the integration testing can be applied. Be-

cause of this, it is the least expensive and the fastest approach. The top-down approach

begins by testing a top level subsystem and progressively adds lower level subsystems

one by one. Generally, it simulates lower level subsystems by stubs. Conversely, the

bottom-up approach integrates subsystems by making the lowest level components be

tested first. After that, the testing of higher level components is performed. This

process is repeated until the component at the top of the hierarchy is tested. The

sandwich testing uses the bottom-up and top-down approaches at the same time.

The system testing phase starts after previous phases are performed. Its main goal

is to evaluate if the features from the requirements document are implemented. In

some cases such as the testing of embedded systems, we also test its non-functional

requirements and how the program reacts to the embedded system.

Acceptance testing evaluates if a product works for the user. It consists in con-

14

ducting tests to determine if specification requirements are meet and the user accepts

the solution. Generally, this phase intends to examine the application functionality

without taking its internal structure into consideration.

During a software testing process, a great amount of time is used to figure out

what the system might do. The reason is that it is difficult to discover if a result is

correct or not. Thus, a model is very important because it can capture the system

behavior. Moreover, it describes the structure of the input space, allowing testers to

use information from software requirements and design.

2.3.1 Model-Based Testing

A model is an abstract description of the system and can be used to insert information

about faults and other data that help in the test case generation process. Model-based

testing uses models that abstract specific system behaviors to produce test cases that

reveal divergences between the implementation and the specification models [DMJ07].

Usually, the tester receives the requirements document and produces a model from

it. In the sequence, test cases that comprise inputs and expected outputs are generated.

Inputs guide the implementation execution to produce results that are compared to the

expected outputs of the test case. These outputs are produced by the test oracle, which

is responsible for evaluating if the test passed or failed. If the test case is successful,

there is no action to be taken. Otherwise, feedbacks to the implementation, model and

requirements are produced in order to improve the whole system. Figure 2.2 shows a

summary for this process.

Test cases can be executed using several approaches. Two common methods are

online and offline testing [DNSVT07]. Online testing means that a model-based test-

ing tool connects directly to an implementation and performs dynamic tests. Offline

generation refers to a tool that generates test cases as computer instructions that are

stored to be executed later.

15

Figure 2.2: Model-based testing approach (adapted from [Kic14])

2.3.2 Conformance Testing

Implementations and specifications may be abstracted into models that are compared

under some criteria. Conformance testing [Gar05] emerges to check that the imple-

mentation meets predefined requirements from the specification by means of testing.

A specification S is a model of what the system should do and contains the goals to be

checked on the testing process. An implementation I is described by using the same

model used for the specification. Conformance testing has many applications. For in-

stance, compilers (implementations) are extensively tested to determine if they contain

deviations from programming language standards (specifications) and is guided by test

derivation [bG14; 98914b; 98914a].

Treatmans [Tre99] describes the basics of conformance testing. He claims that the

conformance testing process has two main phases: test generation and test execution.

Test generation analyses and determines how the specification is going to be tested and

develops test scripts. Test execution refers to a test environment which is developed

to execute test scripts. This execution results in a verdict about the behavior of the

implementation with regard to the specification.

Generally, conformance testing and formal methods are used to define frameworks.

Each specification S belongs to a set of formal specifications SPECS, while an imple-

mentation iut is contained in a set of implementations IMPS. In this way, confor-

mance is defined as the relation conforms-to ⊆ IMPS × SPECS and I conforms-

to S means that I is a correct implementation of S.

16

Conversely to specifications, implementations are real pieces of hardware or soft-

ware. This may cause difficulties on expressing a formal implementation behavior. To

delimit the scope of specifications and implementations, the following assumption is

made: any real implementation can be modeled by a formal object I ∈MODS, where

MODS is the universe of models. This assumption is the test hypothesis.

The test hypothesis assumes that implementations are formal objects. Thus, it

is possible to express conformance by the formal relation between implementations,

specifications and models. This relation, named implementation relation, is defined by

imp ⊆ MODS × SPECS. An implementation iut ∈ IMPS is correct with respect

to S ∈ SPECS, or iut conforms-to S, if and only if the model I ∈ MODS of iut

is imp-related to S: I imp S.

Conformance testing uses a wide range of models. Most of them are based on la-

beled transition systems and state machines [You08], but they are limited by the state

explosion problem. On the other hand, the increasing system complexity requires that

conformance relations allow composition operators usage. Symbolic models lessen the

state explosion problem by preserving the behavior of infinite systems and correspond-

ing values to symbolic expressions. Section 2.3.2.1 presents issues on conformance

testing for composition subsystems and Section 2.3.2.2 shows an example of a model

suitable for real-time systems.

2.3.2.1 Conformance Testing of Compositional Models

Due to the increasing complexity of real-time systems, they are divided into subsystems

that interact through composition operators. The testing process complexity of the

overall system follows the system complexity. Test generation of composed systems

becomes an important task, as well as inferring properties from subsystems to the

composed systems.

However, conformance relations that are based on inputs and outputs are not pre-

served from subsystems to the composed system [ABK12]. More specifically, given

two specifications S1 and S2, two implementations I1 and I2, an operation op, and

a conformance relation conforms-to based on inputs and outputs, if I1 conforms-

to S1 and I2 conforms-to S2, can we infer that I1 op I2 conforms-to S1 op S2?

17

Figure 2.3: TAIO for theMouse subsystem Figure 2.4: TAIO for the Screen subsystem

We exemplify this difficulty by using the TAIO model and tioco conformance relation

presented by Krichen and Tripakis [KT06].

The authors adopted the TAIO (Timed Automata with Inputs and Outputs) model.

Basically, it is a timed automata with a partitioned set of input, output and internal

actions. In addition, it has sets of clocks, locations, transitions, actions and an initial

state where the model starts. Figures 2.3 and 2.4 show two examples of the TAIO

model which represent generic mouse and screen systems, in this sequence.

Transition deadlines impose the latest time by which a transition must be taken,

assuming three possible values: i) lazy, imposes no urgency for a transition to be taken;

ii) delayable, imposes that a transition must be taken before its condition becomes

disabled, and iii) eager, imposes that a transition must be taken as soon as its condition

becomes enabled. Definition 1 shows the formal concepts of the TAIO model.

Definition 1 (Timed Automata with Inputs and Outputs). A Timed Automata with

Inputs and Outpus (TAIO) is a tuple (Q, q0, X, Acτ , E) where Acτ = Acin∪Acout∪{τ},

Q is a finite set of locations, X is a finite set o clocks and E is a finite set of transitions.

Each transition is a tuple (q, q′, ψ, r, d, a), where:

• q, q′ ∈ Q are the source and destination locations,

• ψ is the guard,

• r ⊆ X is a set of clocks to reset to zero,

• d ∈ {lazy, delayable, eager} is the deadline,

18

Figure 2.5: TAIO Screen conformant Figure 2.6: TAIO Screen not conformant

• a is a conjunction of constraints of the form x#c, where x ∈ X, c is an integer

constant and # ∈ {<,≤,=,≥, >}.

The test assumptions are: the specification S of the system under test must be given

as a non-blocking TAIO, that is, the system spends a discrete and finite period of time

to execute any reachable action from the model. In addition, the implementation I is

modeled as a non-blocking TAIO whose every location contains an output transition

for every input action from this model. The tioco conformance relation can be used

to test I against S. In other words, the relation I tioco S expresses that I conforms

to S if after any trace σ of the specification, every output action that I is capable of

showing should be allowed by S, as well as the time restrictions imposed by S.

Figure 2.5 shows an example of implementation for the Screen specification from

Figure 2.4 that is in tioco conformance to its specification. Although transition S4-S4

contains the additional simpleClick? input event, this omission is allowed by the tioco

conformance relation. Furthermore, the clocks > 5s guard is contained in the true set

of the corresponding trace of its specification. On the contrary, the implementation

shown in Figure 2.6 is not tioco conformant to its specification because it has the

additional printMenu! output action belonging to the S6-S3 transition.

Using the TAIO model, the parallel composition operator was defined. It interleaves

actions which are uncommon to both models and synchronizes actions which belong to

the set of input actions of one model and the set of output actions of the model at the

same time. Figure 2.7 shows an example of parallel composition between the Mouse

and Screen TAIO models. The subsystems synchronize on simpleClick and doubleClick

actions, leading the (S1,S3)-(S0,S5) and (S2,S3)-(S0,S4) transitions to be replaced by

19

the τ internal action.

Figure 2.7: Parallel composition for the Mouse and Screen specifications using the

TAIO model

Given two subsystems S1 and S2, the parallel composition S1 ‖ S2 is restricted by

some rules. The subsystems must have disjoint sets of clocks, every input action from

their synchronization sets must be associated to the deadline lazy (lazy-input) and they

are input-complete with regard to this same set. The two TAIO synchronize on time

and shared common actions that belong to the sets Ac2→1 and Ac1→2, being pairwise

disjoint and, when connected to each other, the interaction between subsystems is

assumed to be unobservable from the outside. Moreover, Ac1in, Ac
1
out, Ac

2
in and Ac2out

are pairwise disjoint sets of input and output actions which do not belong to the

synchronization set of the S1 and S2 models. Definition 2 presents the parallel operator.

Definition 2 (tioco Parallel Composition). Let Si (i ∈ {1,2}) be two TAIO with

the disjoint sets of unsynchronizable input and output actions Aciin and Aciout and Si

are both input-complete and lazy-input with regard to their synchronizable action set

Ac(3−i)→i. The parallel composition S1 ‖ S2 = (Q1×Q2, (q
1
0, q

2
0), X1∪X2, Acτ , E) where

Acτ = Acin ∪ Acout ∪ τ , Acin =
⋃

i∈{1,2}

Aciin, Acout =
⋃

i∈{1,2}

Aciout and E is the smallest

set such that:

- For (q1, q2) ∈ Q1 ×Q2 and a ∈ Ac1in ∪ Ac
1
out ∪ {τ}:

(q1, q
′

1, ψ1, r1, d1, a) ∈ E1 ⇒ ((q1, q2), (q
′

1, q2), ψ1, r1, d1, a) ∈ E;

20

- For (q1, q2) ∈ Q1 ×Q2 and a ∈ Ac2in ∪ Ac
2
out ∪ {τ}:

(q2, q
′

2, ψ2, r2, d2, a) ∈ E2 ⇒ ((q1, q2), (q1, q
′

2), ψ2, r2, d2, a) ∈ E;

- For a ∈ Ac1→2 : (q1, q
′

1, ψ1, r1, d1, a) ∈ E1 ∧ (q2, q
′

2, ψ2, r2, d2, a) ∈ E2

⇒ ((q1, q2), (q1, q
′

2), ψ1 ∧ ψ2, r1 ∪ r2, d1, τa) ∈ E;

- For a ∈ Ac2→1 : (q1, q
′

1, ψ1, r1, d1, a) ∈ E1 ∧ (q2, q
′

2, ψ2, r2, d2, a) ∈ E2

⇒ ((q1, q2), (q1, q
′

2), ψ1 ∧ ψ2, r1 ∪ r2, d2, τa) ∈ E;

Unfortunately, the tioco confomance relation is not preserved from subsystems to

the composed systems. If we consider the specifications S1 and S2 and their corre-

sponding implementations I1 and I2, assuming that I1 tioco S1 and I2 tioco S2, I1 ‖

I2 tioco S1 ‖ S2 if both specifications are input-complete. This happens because the

tioco conformance relation allows underspecification of inputs, but not the underspec-

ification of outputs. Consequently, new transitions with output actions are generated

in the resulting composed implementation if confronted to its corresponding composed

specification. Theorem 1 presents these results, and its proof is available in [KT06].

Theorem 1 (Compositionality of tioco for the parallel operator). Let I1, I2, S1 and

S2 be input-complete TAIO. If I1 tioco S1 ∧ I2 tioco S2, then I1 ‖ I2 tioco S1 ‖ S2.

Krichen and Tripakis also presented an approach to perform the input-completion

of TAIO models. However, the approach is limited to deterministic and fully observable

(not having internal actions) specifications. Figure 2.8 shows an example of the input-

complete version of the TAIO Mouse specification. The “don’t care” location Qdc is

the destination of every transition that contains underspecified input actions in the

original specification, as (S5-Qdc) location exemplifies. Moreover, if the input action

is present but the guard is not true, the negation of this guard with the same input

action is added to the input-complete model. For instance, (S3-Qdc) transition adds

the transition with the doubleClick? input event associated to the guard clocks <= 3

s.

The input-complete process is done by adding edges covering the missing inputs

and leading to a “don’t care” location where all inputs and outputs are accepted. This

process is formally presented in Definition 3. The proof is shown in [KT06].

21

Figure 2.8: Input-completion for the Screen TAIO specification

Definition 3 (TAIO Input-completion Transformation). Given a TAIO S = (Q, q0, X,Ac, E),

we build a corresponding input-complete TAIO S̃ = (Q̃, q0, X,Ac, Ẽ), where Q̃ =

Q ∪ {qdc}, qdc 6∈ Q is the “don’t care” location, and

Ẽ = E ∪{(qdc, qdc), true, ∅, lazy, a)|a ∈ Ac}∪{(q, qdc),¬ψ, ∅, lazy, a)|q ∈ Q∧a ∈ Acin}

such that for each q ∈ Q and each a ∈ Acin, ψ = ψ1 ∨ ψ2 ∨ . . . ψk are the guards of the

outgoing edges of q labeled with a.

2.3.2.2 Conformance Testing of Symbolic Models

Symbolic model based-testing has its foundations on model-based testing, conformance

testing and symbolic execution. Symbolic execution builds predicates that define con-

ditions under which execution paths can be taken and the effects of the execution

on program state can be verified [You08; Kin76]. This approach is useful to identify

unfeasible paths or paths that lead the tester to a fail verdict.

We use Timed Input-Output Symbolic Transition Systems (TIOSTS) [AMJM11;

AM13] as special kinds of symbolic transition systems where time constraints can be

modeled by using a new type of variable to manage time. More specifically, a TIOSTS

comprises an initial condition that must be satisfied prior to system execution along

with a set of transitions containing the following elements: i) a source and a target

location; ii) a condition that must be satisfied to allow the transition to be fired; iii)

a deadline that imposes the latest time by which the transition can be executed; iv)

22

an input or output action that communicates one or more parameters and a set of

assignments that change variable values. Definition 4 formalizes this model.

Definition 4 (TIOSTS). Timed Input-Output Symbolic Transition System is a tuple

〈V, P,Θ, L, l0, Σ, C, T 〉, where:

• V is a finite set of typed variables;

• P is a finite set of parameters;

• Θ is the initial condition, a predicate with variables in V ;

• L is a finite, non-empty set of locations and l0 ∈ L is the initial location;

• Σ = Σ? ∪ Σ! is a non-empty, finite alphabet, in which there is the disjoint union

of the set Σ? of input actions and the set Σ! of output actions. For each action

a ∈ Σ, its signature sig(a) = 〈p1, . . . , pn〉 is a tuple of distinct parameters, where

each pi ∈ P (i = 1, . . . , n);

• C is a finite set of clocks with values in the set of non-negative real numbers,

denoted by R
≥0;

• T is a finite set of transitions. Each transition t ∈ T is a tuple 〈l, a, G,A, y, l′〉

where:

– l ∈ L is the origin location of the transition,

– a ∈ Σ is the action,

– G = GD ∧ GC is the guard, where GD is a predicate with variables in V ∪

set(sig(a))1,2 and GC is a clock constraint over C defined as a conjunction

of constraints over C in the format α#c, where α ∈ C, # ∈ { <, ≤, =, ≥,

> } and c ∈ N,

– A = AD ∪ AC is the assignment of the transition. For each variable x ∈ V

there is exactly one assignment in AD using the format x := ADx

, where

1GD is assumed to be expressed in a theory in which satisfiability is decidable.
2Let set(j) be the function that converts the tuple j in a set.

23

ADx

is an expression on V ∪ set(sig(a)). AC ⊆ C is a set of clocks to be

reset,

– y ∈ {lazy, delayable, eager} is the deadline of the transition,

– l′ ∈ L is the destination location of the transition.

TIOSTS models include distinct sets of locations, variables, parameters and clocks.

Since we are dealing with a symbolic model, the set of states is represented by locations.

Also, clock constraints are represented by using zones, which is the maximum set of

clock arguments satisfying a constraint [BY04]. Accordingly, variables and parameters

refer to symbolic values, avoiding the state explosion problem, but they have one slight

difference: their model scope. Parameters are used to communicate values from one

model to another or to the environment. Moreover, parameters scope is restricted to

a single transition. On the other hand, variables have global scope inside the model.

For the sake of simplicity, transition deadlines can be omitted from the graphical

visualization of a TIOSTS and, in this case, we assume by default the lazy deadline

for input actions and the delayable deadline for output actions.

Figure 2.9 presents an example of a TIOSTS that models a Mouse system with

single and double click commands. In the S0 location, this subsystem can receive a

click? with no urgency. When the transition fires, it stores this value in the coordinateM

variable and goes to the S1 location. In the S1 location, either a click? input action

can be received within 2s without urgency (S1 to S2 transition) or a simpleClick!

output can be issued after 2s with eager urgency, leading to clock resetting (S1 to S0

transition). In the latter situation, the guard coordinateM = position communicates the

coordinateM variable to other subsystems or the environment through the simpleClick!

output action with eager deadline, forcing the parameter position to assume a value

equal to the coordinateM variable value. In the S2 location, the coordinateM variable

value is communicated to other subsystems or the environment through the doubleClick!

output action with delayable deadline, also forcing parameter position to assume a value

equal to the coordinateM variable value (see guard coordinateM = position). Also, the

clock is reset and the system goes to the S0 location.

Additionally, consider the Screen specification (Figure 2.10) that is responsible for

24

Figure 2.9: Mouse subsystem Figure 2.10: Screen subsystem

showing the consequences of the mouse commands on a general computer screen. In this

sense, it should run in parallel with the Mouse application by synchronizing through

the simpleClick and doubleClick actions. The Screen behavior has two main scenarios:

1) If the Mouse subsystem outputs the position value through the simpleClick! output

action, the corresponding simpleClick? action from the Screen application inputs its

position value within 3s and prints a menu by using the printMenu! output action; 2)

If the Mouse subsystem outputs the mouse pointer position by using the doubleClick!

output action, the Screen subsystem will respond to it by receiving this position through

the doubleClick? input action and opening an application through the openApp! output

action within 6s.

Based on the tioco conformance relation [KT06], TIOSTS models can be used for

conformance testing focusing on whether observable behavior of a given implementation

is in conformance with a specification. We assume the testing hypothesis that the

implementation can be abstracted as an implementation model, which will be referred

simply as implementation further on (for simplicity). It is important to remark that

the implementation model is not required to be constructed in a conformance testing

process but rather assumed to exist [Tre99]. The examples of implementations provided

in this section and throughout this paper are devoted solely for illustration of the theory.

In practice, from a TIOSTS specification model, test cases are generated to test a real

implementation.

The tioco conformance theory is exemplified by using the Screen subsystem speci-

fication from Figure 2.10 and two possible implementations in Figures 2.11 and 2.12.

Since tioco allows underspecification of inputs, the implementation of Figure 2.11 con-

25

Figure 2.11: Model in conformance with

Screen

Figure 2.12: Model not in conformance

with Screen

forms to its specification even if presenting an additional transition from the S4 location

(it contains the simpleClick? input action). Also, the clock guard from the S5 outgoing

transition contains the clockS > 5s guard that represents a set that is contained in the

set represented by the Gc = true guard from the S5 outgoing transition of the model

presented in Figure 2.10. Nevertheless, the implementation of Figure 2.12 does not

conform to its specification because location S6 has an outgoing transition with the

extra output action printMenu!. Besides, location S6 has an incoming transition with

Gc = true, opposing to the clockS > 6s condition from the S4 outgoing transition of

its specification model.

TIOSTS semantics is defined in terms of the TIOLTS model [AM13]. Basically,

TIOLTS states instantiate the set of locations, valuations and clocks of a TIOSTS.

The transition relation of the TIOLTS uses rules of inferences, where a preconditions

are predefined to achieve a postcondition [BBJ02]. In this way, we need to understand

elements from TIOLTS, presented in Definition 5.

Definition 5 (TIOLTS semantics of a TIOSTS). The semantics of a TIOSTS W =

〈V, P,Θ, L, l0,Σ, C, T 〉 is a TIOLTS [[W]] = 〈S, S0, Act, T 〉, defined as follows:

• S = L × V × (C → R
≥0) is the set of states of the form s = 〈l, ν, ψ〉, where l ∈ L

is a location from the set of locations L, ν ∈ V is a valuation for all variables V,

ψ is a clock valuation from the set C of clock valuations.

• S0 = {〈l
0, ν, ψ〉|Θ(ν) = true, 0} is the set of initial states.

• Act = Λ ∪ D is the set of actions, where Λ = {〈a, γ〉 | a ∈ Σ, γ ∈ Γsig(a)} is

26

the set of discrete actions and D = R
≥0 is the set of time-elapsing actions. Λ is

the union of the sets Λ? of input actions, Λ! of output actions and Γsig(a) is the

sequence of parameters associated to a transition action.

• T is the transition relation defined as the minimum set of the following rules:

– Discrete actions:

〈l, ν, ψ〉, 〈l′, ν ′, ψ′〉 ∈ S 〈a, γ〉 ∈ Λ

t : 〈l, a, G,A, y, l′〉 ∈ T G = true

ν ′ = AD(ν, γ) ψ′ = ψ[AC ← 0]

〈l, ν, ψ〉
〈a, γ〉
−−−→ 〈l′, ν ′, ψ′〉

– Time-elapsing actions:

d ∈ D 〈l, ν, ψ〉, 〈l, ν, ψ + d〉 ∈ S

t : 〈l, a, G,A, y, l′〉 ∈ T

y = eager ⇒ ψ 6|= GC

y = delayable⇒6 ∃d1, d2 ∈ D :

0 ≤ d1 < d2 ≤ d ∧ ψ + d1 |= GC ∧ ψ + d2 6|= GC

〈l, ν, ψ〉
d
−→ 〈l, ν, ψ + d〉

Let s, s′, si ∈ S be states; a, ai ∈ Act be actions; and σ ∈ Act∗ be a sequence

over Act, where ǫ ∈ Act∗ is the empty sequence. If σ1, σ2 ∈ Act
∗, then σ1 · σ2 is the

concatenation of σ1 and σ2. We write s
a
→ s′ for (s, a, s′) ∈ T , s

a
→ for ∃s′ : s

a
→ s′.

Let s
a1...an−→ s′ , ∃s0, . . . sn : s = s0

a1→ s1
a2→...

an→ sn = s′ be an execution. In addition,

we use s
σ
→ for ∃s′ : s

σ
→ s′. Moreover, considering l and l′ ∈ L, we write l

a
→ l′ for

〈l, a, G,A, y, l′〉 ∈ T , omitting G,A and y to improve readability.

The set of fireable actions from s is defined by Ω(s) , {a ∈ Act | s
a
→}. The

set of all output actions (including time-elapsing actions) fireable from s is defined

by Out(s) , Ω(s) ∩ (Λ! ∪ D) and, when considering set of states, it is defined by

Out(P) ,
⋃

s∈P Out(s). By using these elements, Definition 6 presents Traces(s),

which returns the set of sequences and time-elapsing actions fireable from a given

location.

27

Definition 6 (Traces). Let Act∗ be a set of sequences of actions that includes the empty

sequence ǫ, σ be a sequence over Act∗ and s be a state. Traces(s) , {σ ∈ Act∗| s
σ
→}.

The set of sequences of actions fireable from the initial state of a TIOSTS W is

given by Traces(W) , Traces(S0). In addition, s after σ , {s′ ∈ S | s
σ
→ s′} is the

set of reachable states from s after the execution of σ; for P ⊆ S, P after σ ,
⋃

s∈P s

after σ is the set of states reachable from the set P after the execution of σ and W

after σ , S0 after σ is the set of states reachable from S0 after the execution of σ.

Based on these concepts, the timed input-output conformance relation, denoted tioco,

is formalized in Definition 7 by using the TIOLTS model to express specifications and

implementations.

Definition 7 (tioco). Given a specification S and an implementation I, I tioco S ⇔

∀σ ∈ Traces(S): Out(I after σ) ⊆ Out(S after σ).

Based on the tioco and TIOSTS theory, Andrade et al. [AM13] developed the

testing framework we use. Their test generation process assumes some characteristics

for the specification and implementation that can be handled. The specification S is a

non-blocking TIOSTS. This means that the system spends a discrete and finite period

of time to execute any reachable action from the model. The system is not supposed

to block because an input action was not provided by the environment (the system

cannot force input actions). Also, the implementation I is a software system running

on a real-time environment which is represented by an input-complete model, meaning

that it accepts any input action at any state. In addition, it must be non-blocking and

have the same input and output actions with their signatures as in specification S.

Besides, S and I are required to be deterministic in the theory and the tool we

use. Given an action a ∈ ΣS and three states s1, s2 and s3, S is deterministic if

∀ s1, s2, s3 ∈ SS , s1
a
→ s2 ∧ s1

a
→ s3 then s2 = s3. In other words, specification

results must be predictable and repeatable, meaning that: i) there is only one initial

state mapped from its initial location, and ii) transitions originating from the same

location that contain the same action must contain mutually exclusive guards. In

general, formalisms like Timed Automata (TA) cannot be determinized [HLM+08]

when the test case generation is performed apart from the test case execution (offline

28

Figure 2.13: Test case generation process

test generation). Since the TIOSTS is related to TA and our tool would need to

determinize models in the generation test cases process, we constrain subsystems to be

deterministic.

The proposed test case generation process, presented in Figure 2.13, is guided by

test purposes. A test purpose is a TIOSTS that contains the behavior we want to

check in the implementation during test execution. It finishes with Accept or Reject

locations, meaning that the behavior must be part of the test cases or a given scenario

must be excluded from the set of test cases, respectively.

Initially, the test purpose completion step completes the definition of the test pur-

pose provided as input. Then, the synchronous product generation phase performs a

customized parallel product between the completed test purpose and the specification.

This operation is defined by an algorithm that combines the test purpose and the spec-

ification model by synchronizing their actions and generating a new model that will be

the basis for the next phase, focusing on the behavior specified by the test purpose.

The symbolic execution phase performs the execution of TIOSTS models by using

a similar procedure adopted by the symbolic execution of programs. The goal is to

provide a representation of infinite concrete sets of data and time by corresponding

them to abstracted sets. However, both data and time parts are executed in distinct

ways. The data part is accomplished by collecting transition guards of a path and

checking them with a constraint solving. The time part involves zones to check the

reachability of locations as it refers to time requirements. Consequently, a location is

reachable if its path condition is satisfiable and its zone is not empty. The result is a

symbolic execution tree that contains all allowed model traces.

In the selection of test cases, a sub-tree of the symbolic execution tree is chosen. A

29

test case is generated by selecting a trace that leads to a reachable Accept location in the

symbolic execution sub-tree. Meanwhile, missing inputs allowed by the specification

are added to the test case with Inconclusive verdicts.

Finally, the test tree transformation phase translates the selected test tree into a

test case modeled by TIOSTS rules. Each test case leaf can finish with the Inconclusive,

Accept or Reject verdicts. Besides, the Inconclusive verdict is an option if the paths

that contain it lead to a behavior that conforms to the specification, but the actions

from the test purpose are not presented. We highlight that the generation of the test

cases is guided by the test purposes, so a test case scenario is exercised until the actions

of the test purposes are found in the specification.

2.4 Concluding Remarks

This chapter presents the background for our work, divided into parallel computing,

real-time systems and software testing. First, we present concepts on parallel com-

puting, such as the message-passing paradigm and the differences between parallel,

concurrent and distributed computing. In the sequence, we define some of the fun-

damental concepts of real-time systems, like clocks, components and deadline. In the

sequence, we present a range of concepts of the software testing area: failure, fault, er-

ror, validation, verification and the software testing phases. We emphasize model-based

and conformance testing, focusing on compositional properties of the ioco conformance

relation and symbolic models for real-time systems that uses the tioco conformance

relation.

Although conformance testing of symbolic models presents many gains during the

test case generation process, there is no work that focuses on the study of problems

of the tioco conformance relation and composition operators. Our work intends to

contribute in this field.

30

Chapter 3

Test Case Generation from

Compositional Models

This chapter presents the compositional operators defined for the TIOSTS model. We

present the sequential, parallel and interruption operators. Their choice happens be-

cause they can be largely applied in real-time applications. Moreover, the interruption

operator is an extended version of the sequential operator, lessening the effort to define

it. In addition, the parallel operator is essential to parallel applications, which are

frequently used nowadays.

Section 3.1 shows the sequential operator by introducing the Choose and Pay sub-

systems. In the sequence, Section 3.2 introduces the interruption operator through

the Mouse Interrupted and Reset subsystems. Section 3.3 defines the parallel compo-

sition and applies it to the Mouse and Screen subsystems. Finally, we provide formal

definitions for each operator and address implications of the tioco conformance from

subsystems to the composed system. We present a test case generation process – which

was developed in this work and integrated to a tool – showing test case results for each

composed system (Section 3.4)1.

1A complete presentation of test purposes and test cases with accept and inconclusive paths gen-

erated by using the SYMBOLRT tool as well as an implementation of the compositional operators

are available at https://sites.google.com/site/compositionaltioco/

31

3.1 Sequential Composition

Sequential composition is applied when the interaction between two subsystems must

be ordered and the first subsystem finishes before the second starts. We used the

message passing paradigm to define this operator in a way that information is com-

municated from one subsystem to another through a single action which is present in

both subsystems.

As an example, suppose that a system can be modeled by the sequential compo-

sition of the S1 and S2 TIOSTS models presented in Figure A.1. TIOSTS S1 has a

location lc1 with a single incoming transition composed by the lazy deadline and the

ac1 output action with parameter p1. On the other hand, S2 has an input action with

the same label of ac1 that receives parameter p1 to be further used in S2 through the

A0
2 assignment. The sequential composition S1 ;ac1 S2 performs the synchronization of

the ac1 action at the end of S1 and the beginning of S2.

Consequently, it allows that both subsystems be linked through the single transition

(l0c1, l
0
2)

ac1!p1
−−−→ (lc1, l

′0
2) that has the lazy deadline. This transition comprises the guard

Gc1 AND Θ2 AND G0
2, composed by S2 initial condition and l0c1

ac1!p1
−−−→ lc1 and l

0
2

ac1?p1
−−−→

l′02 transition guards, to meet system conditions. Also, we add clock resetting to A0
2

in order to maintain the behavior of S2 clocks after the sequential composition, since

every clock from the composite model starts in the beginning of S1. Finally, we replace

transitions that contain l0c1 and l
′0
2 locations by new transitions with (l0c1, l

0
2) and (lc1, l

′0
2)

locations.

Now consider a more practical example of a system that describes a choosing and

payment process. We shall model the resulting system Choose;send Pay from the two

distinct subsystems that are composed by the sequential composition operator, since

the Pay subsystem only starts after the Choose subsystem finishes. Therefore, we show

the sequential composition operator behavior using the TIOSTS models Choose and

Pay from Figures 3.2 and 3.3.

The Choose subsystem allows the user to select its payment method, first receiving

the parameter op and storing it in the optionC variable. If optionC equals to check,

cash or card and clockC is less than or equal to 10s, the performPayment! output

32

Figure 3.1: Toy example for the sequential composition

action must be executed when the transition fires. Similarly, if optionC equals to off

and clockC is less than or equals to 10s, the shutdown! output action must be executed.

Alternatively, if the clock value is more than 10s, the return! output action must be

executed and the clock resets to zero. Finally, in the S2 location, optionC variable

is communicated through the send action by using the op parameter and the send!

output action.

The Pay subsystem models the user payment method. The payment alternatives

are checked according to optionP variable. If optionP is check or cash and the clockP

value is less than or equal to 20s, the pay! output action must be executed. If optionP

is equal to card and the clockP value is less than or equal to 20s, the parameter info

is received through the sign? input action and the variable signature stores its value.

Depending on the signature value, this subsystem must execute the pay! or discard!

output actions, the last one with clock resetting. Finally, if optionP stores the off value,

the finishSystem! output action must be executed.

Now suppose these subsystems are part of a payment system, but they have been

developed and/or are to be deployed separately. In this case, integration testing will

be required. For this, we need to compose them both at specification level to allow

test case generation. Notice that the Choose subsystem produces a value, stored in

the optionC variable, that is consumed by the Pay system and stored in the optionP

33

Figure 3.2: Choose subsystem Figure 3.3: Pay subsystem

variable. Also this value is produced as output by Choose and received as input by

Pay. In this case, as the execution of the subsystems is inherently sequential, they can

be easily composed by the sequential composition operator: Choose;send Pay (Figure

3.4).

As a result of the composition, synchronization of the send! output action from tran-

sition S2
send!op
−−−−→S3 to the send? input action from S5

send?op
−−−−→S6 transition is performed.

The new transition (S2,S5)
send!op
−−−−→(S3,S6) that joins Choose and Pay subsystems has

its guard built by the conjunction of the incoming transition of the S3 location from

Choose subsystem, the guard of Pay first transition and the initial condition of Pay

subsystem so that the set of initial values from Choose to Pay subsystem be preserved

in the resulting composition. Moreover, we include the synchronizing send! output

action to allow this parameter to be communicated (as a testing logging) to other sub-

systems during the integration testing phase. Also, we maintain assignments of the

S5
send?op
−−−−→S6 transition in lieu of assignments from the S2

send!op
−−−−→S3 transition because

there is no need to preserve them after the op parameter be communicated to the

Pay subsystem, since we adopt a normal form that forces the assignments from the

S2
send!op
−−−−→S3 transition to be empty.

The sequential composition is not applicable to any pair of TIOSTS. A few re-

quirements are needed for both models. To make them clear, we define a normal form

that includes information about the final (composition) location of the first model and

34

Figure 3.4: The sequential composition Choose;send Pay

also about the composition (initial) location of the second model. Nevertheless, the

sequential operator does not impose any additional test hypotheses on specifications

and implementations besides the ones mentioned in Section 2.3.2.2, since this operator

preserves the tioco conformance relation (Theorem 2).

The sequential composition S1;ac1 S2 can be defined if the following conditions are

met by S1 and S2. The S1 model must present: 1) A composition location lc1 with a

single input transition named tc1; 2) tc1 has an output action ac1 and no assignments.

Moreover, the S2 model must present: 1) The initial location l02 without input transi-

tions and a single output transition t02; 2) t
0
2 comprises the a02 input action such that the

list of parameters from ac1 is equal to a02 (ac1 and a02 have the same label and opposing

output/ input actions); 3) The assignments A0
2 such that every parameter communi-

cated through the ac1 action corresponds to a variable from S2 and every clock from

C2 is reset (an example is presented in Figure A.1).

Given three locations l0, l and l
′

∈ LS1
, we consider l0 → l and l → l

′

, meaning

35

that l0 is the source and l is the target of a transition, as well as l is the source and

l′ is the target of another transition. In addition, the function a? = a! is responsible

for returning the opposite action with its label preserved. We formalize the Sequential

Composition (SC) Normal Form in Definition 8.

Definition 8 (SC Normal Form). Let Si = 〈Vi, Pi,Θi, Li, l
0
i ,Σi, Ci, Ti〉, with i ∈ {1, 2},

be two TIOSTSs. S1 and S2 are in the SC normal form if:

• L1 ∩ L2 = V1 ∩ V2 = C1 ∩ C2 = ∅;

• S1 has a special location named lc1 with a single incoming transition tc1 = (l0c1, ac1,

Gc1, Ac1, dc1, lc1) such that ac1 ∈ Σ!
1, dc1 = lazy, ac1 does not appear in any other

transition from S1, sig(ac1) = 〈p1c1, p
2
c1, . . . p

n
c1〉 is the list of parameters to be

communicated to S2 and Ac1 = ∅;

• S2 has the l02 initial location with a single outgoing transition t02 = (l02, a
0
2, G

0
2,

A0
2, d

0
2, l

′0
2), where a

0
2 = ac1, a

0
2 does not appear in any other transition from S2,

sig(a02) = 〈p
1
c1, p

2
c1, . . . p

n
c1〉, A

0
2 = A0D

2 ∪ A
0C
2 such that A0C

2 has one element for

each clock resetting from C2 and, for each parameter p from sig(a02) and variable

x ∈ V2, there is one element in A0D
2 using the format x := p.

The conditions imposed by the normal form do not strictly narrow the operator

usage. In practice, they can be met in a pipeline-style system, without shared mem-

ory, where the first subsystem produces a single result that is going to be consumed

by the second one. For instance, model composition of Java threads defined by the

FutureTask class is a potential scope of application. The Future interface provides

a way of blocking a task until the result provided by another one is completed. In

this sense, we may have a system where execution of task2 starts only when a result is

returned from the execution of task1 [JP14] without no other needed synchronization

than passing the result produced from one task to another. Moreover, sequential com-

position can be found at application level in the Android development platform [Dev14]

to integrate an activity that is invoked for a result and a subsequent one consumes it.

From the SC Normal Form, the sequential composition operator can be defined as

follows, where given two sets Σ1 and Σ2, Σ1\Σ2 returns the set of Σ1 elements minus

the set of Σ2 elements.

36

Definition 9 (Sequential Composition). Let S1 and S2 be two TIOSTS in the SC Normal

Form. The sequential composition S1;ac1 S2 = 〈V1∪V2, P1∪P2,Θ1, L, l
0,Σ, C1∪C2, T 〉 where

L = L1\{l
0
c1, lc1} ∪ L2\{l

0
2, l

′0
2 } ∪ {(l

0
c1, l

0
2), (lc1, l

′0
2)}, Σ = Σ1 ∪ Σ2\{a

0
2} and T is the set of

transitions such that:

T1\({(l1, a1, G1, A1, d1, l
0
c1
)|(l1, a1, G1, A1, d1, l

0
c1
) ∈ T1}∪

{(l0c1 , a1, G1, A1, d1, l1)|(l
0
c1
, a1, G1, A1, d1, l1) ∈ T1} ∪ {tc1})∪ (3.1)

T2\({(l
′0
2 , a2, G2, A2, d2, l2)|(l

′0
2 , a2, G2, A2, d2, l2) ∈ T2}∪

{(l2, a2, G2, A2, d2, l
′0
2)|(l2, a2, G2, A2, d2, l

′0
2) ∈ T2} ∪ {t

0
2}) ∪ (3.2)

{(l1, a1, G1, A1, d1, (l
0
c1, l

0
2)|(l1, a1, G1, A1, d1, l

0
c1) ∈ T1}∪

{((l0c1, l
0
2), a1, G1, A1, d1, l1|(l

0
c1, a1, G1, A1, d1, l1) ∈ T1} ∪ (3.3)

{((lc1, l
′0
2), a2, G2, A2, d2, l2|(l

′0
2 , a2, G2, A2, d2, l2) ∈ T2}∪

{(l2, a2, G2, A2, d2, (lc1, l
′0
2)|(l2, a2, G2, A2, d2, l

′0
2) ∈ T2} ∪ (3.4)

{((l0c1, l
0
2), ac1, Gc1 ∧Θ2 ∧G0

2, A
0
2, lazy, (lc1, l

′0
2))} (3.5)

The sequential composition combines the union of variables, parameters, locations

and actions of TIOSTS. Furthermore, both TIOSTS are composed through the creation

of the transition set T , built in five steps during T definition: (3.1) Add T1 transitions

excepting tc1 transition and those that have l0c1 as their source or target location; (3.2)

Add T2 transitions excepting t02 transition and those that have l′02 as their source or

target location; (3.3) Add transitions excluded in step (3.1) with location l0c1 replaced by

location (l0c1, l
0
2); (3.4) Add transitions excluded in step (3.2) with location l′02 replaced

by location (lc1, l
′0
2); (3.5) Add a new transition with the lazy deadline from locations

(l0c1, l
0
2) to (lc1, l

′0
2) that perform the communication between models S1 and S2.

In order to make certain under which conditions the sequential composition oper-

ator preserves the tioco conformance relation, we have the compositionality result of

Theorem 2. Its proof is presented in Appendix A.

Theorem 2 (tioco Sequential Composition). Let S1 and S2 be specifications and I1,

I2 be implementations modeled by TIOSTSs that meet Definition 9. If I1 tioco S1 ∧I2

tioco S2 then I1;ac1 I2 tioco S1;ac1 S2.

37

The sequential operator preserves the tioco conformance relation without requiring

that the specification of the subsystems be input complete. This happens because it

does not change the outputs after each trace from the two subsystems in the resulting

system. In this way, if two subsystem implementations are in conformance to their

specifications, the sequential composition of the implementations also will preserve

conformance to the sequential composition of their specifications.

Analogously, it is not possible that non conforming subsystems leads to a composed

implementation which is tioco conformant to its composed specification. This happens

because there is no extra input or output actions which are added by the sequential

operator when comparing the composed specification to the composed implementation.

In practice, we cannot always use that result when only a few tests have been

performed to check I1 against S1 and I2 against S2. Therefore, it is crucial to develop

a strategy to test the composition of I1 and I2. This is discussed in Section 3.4.

3.2 Interruption Composition

When composing subsystems by interruptions, one subsystem may interrupt the exe-

cution of another when shared resources are instantly required. For example, consider

a phone call that arrives when the user is editing a document on a smartphone. This

is an application level interruption and the effect is that the call subsystem is brought

forward, sending the edition subsystem to the background.

After an interruption handling, the interrupted subsystem may or may not resume

its execution [ZHHL11]. When the interrupted subsystem resumes its execution, from

the point where the interruption occurred, we call it weak interruption. Otherwise,

if execution finishes by occurrence of the interruption, we call it strong interruption.

The former is suitable for dealing with resource sharing such as foreground execution,

whereas the latter is suitable for recovery procedures where the interrupted system

cannot proceed. In this work, we focus on weak interruptions only.

We use weak interruption composition for a situation where a subsystem interrupts

another before it finishes. Additionally, the interrupted subsystem resumes after the

execution of the interrupter subsystem. For this, we consider as possible points of

38

interruption the ones in which the systems can communicate by synchronizing actions

that may carry parameters.

For example, consider the Mouse subsystem presented in Figure 3.5 as the inter-

rupted subsystem and the Reset subsystem presented in Figure 3.6 as the interrupter

subsystem. Also consider the send and receive actions that are present in both models

either as input or output actions (the corresponding transitions are marked as dotted

lines in order to be highlighted).

Figure 3.5 shows an example of TIOSTS through the Mouse subsystem, which is

responsible for defining a simple mouse behavior. The true guard enables this subsys-

tem, and the S0 location starts it, allowing the reception of the click? input action with

no urgency and storing its value in the coordinateM variable. From location S1, the

system behavior is twofold: it can execute the simpleClick! output action after more

than 2s and reset its clock with the eager deadline or execute the click? input action

within 2s and no urgency, storing the pointer position in the coordinateM variable.

From location S2, the coordinateM variable value is communicated to other subsystems

in the environment through the doubleClick! output action with delayable deadline,

also forcing parameter position to assume a value equal to the coordinateM variable

value (see guard coordinateM = position). Also, the clock is reset and the system goes

to the S0 location. Finally, the subsystem has location S3 with two transitions: i)

an incoming transition that executes the send! output action and communicates the

pointer position to other subsystems with lazy deadline; ii) an outgoing transition that

contains the receive? input action and stores the pointer position in the coordinateM

variable.

The Reset subsystem is responsible for resetting the Mouse subsystem state (Figure

3.6). It starts by receiving the current cursor position through the send? input action

and stores it in the coordinateI variable. Depending on the coordinateI variable value,

the system resets the hardware through the resetHardware! output action or it resets

the software by using the resetSoftware! output action. Finally, the receive! output

action emits the coordinateI value and indicates that the Reset subsystem is finished.

In Figure 3.7, the interruption composition Mouse send△receive Reset starts with the

Mouse behavior, but the send! output action discontinues it, beginning the execution

39

Figure 3.5: Mouse subsystem Figure 3.6: Reset subsystem

Figure 3.7: Interruption composition for the Mouse and Reset subsystems

of the Reset subsystem before the Mouse subsystem is finished. The system execution

flow returns to the Mouse subsystem when the receive output action is executed and

the coordinateI variable is reset.

We perform synchronizations of the send and the receive actions. This happens

because there is a need to communicate the Mouse subsystem values at an interruption

point delimited by the send action. After that, the Reset subsystem is executed until it

finishes and the changed values are communicated back to the first subsystem through

the receive action. From this point, the system follows its behavior.

From the example, we notice that the weak interruption operator requires the mod-

els to follow a pattern. First, the operator needs two synchronizing actions in each

40

model. Second, the interrupter system resets clock variables, before it starts, to pre-

serve the same behavior specified before the composition. Therefore, it is mandatory

to define a normal form for the interrupted and interrupter subsystems.

To introduce the normal form and the interruption operator, suppose that two

TIOSTS models S1 and S2 become part of the interruption composition S1ac1△ac2
S2

(Figure A.2). In addition, we use the a? = a! operator to define the opposite action of

a? and its label remains the same. TIOSTS S1 represents the interrupted subsystem

and it has the location l′c1 with a single incoming transition tc1 that comprises the ac1

output action, lazy deadline and parameters p1. Additionally, l
′
c1 has a single outgoing

transition t′c1 with lazy deadline, the ac2 input action, parameters p2, and assignments

A′
c1 that store values of these parameters.

TIOSTS S2 represents the interrupter subsystem and it has the special location l02

with the single outgoing transition t02 composed by the ac1 input action that receives

parameters p1 from model S1, storing these values in the A0
2 assignments. Also, location

l02 has a single incoming transition tc2 that comprises the ac2 output action with p2

parameters and deadline lazy.

The weak interruption composition S1ac1△ac2
S2 performs the synchronization on

the ac1 and ac2 actions, allowing S1 to be interrupted by S2. More specifically, the

linking of the subsystems is twofold. The operator adds the (lc1, l
0
2)

ac1!p1
−−−→ (l′c1, l

′0
2)

synchronizing transition that has the lazy deadline and the output action ac1! as an

observation point for testing purposes. This transition contains the guard Gc1 AND

Θ2 AND G0
2 to maintain subsystems conditions. Also, we add clock resetting to the

A0
2 assignment, since we want to maintain S2 clock behavior after the beginning of the

interruption. A similar process happens to the (l′c1, lc2)
ac2!p2
−−−→ (lc1, l

0
2) transition.

In summary, WIC Normal Form requires that the S1 subsystem presents: 1) A

composition location l′c1; 2) A single incoming transition to l′c1 called tc1 = (lc1, ac1, Gc1,

Ac1, dc1, l
′
c1) with an output action ac1 and no assignments; 3) A single outgoing tran-

sition to l′c1 called t′c1 = (l′c1, ac2, G
′
c1, A

′
c1, d

′
c1, lc1) with an input action ac2 and assign-

ments that correspond variables to parameters sent to S2. Subsystem S2 presents: 4)

Two composition locations l02 and lc2; 5) A single outgoing transition from l02 called

t02 = (l02, ac1, G
0
2, A

0
2, d

0
2, l

′0
2) with an input action ac1 and assignments that correspond

41

Figure 3.8: Example of weak interruption composition

variables to parameters sent to S1; 6) A single outgoing transition from lc2 called

tc2 = (lc2, ac2, Gc2, Ac2, dc2, l
0
2) with an output action ac2 and no assignments. We force

Ac1 and Ac2 assignments to be empty because the output actions associated to these

transitions transmit values previously stored in the subsystem variables. We formalize

the Weak Interruption Composition (WIC) Normal Form in Definition 10.

Definition 10. (WIC Normal Form) Let i ∈ {1, 2} and Si = 〈Vi, Pi,Θi, Li, l
0
i ,Σi, Ci, Ti〉

be two TIOSTS. S1 and S2 are in the WIC Normal Form if the following conditions

are met:

• L1 ∩ L2 = V1 ∩ V2 = C1 ∩ C2 = ∅;

• S1 must have: i) Two special locations lc1 and l′c1; ii) The l′c1 location must have

a single incoming transition tc1 = (lc1, ac1, Gc1, Ac1, dc1, l
′
c1) such that ac1 ∈ Σ!

1,

dc1 = lazy, ac1 does not appear in any other transition from S1, sig(ac1) =

〈p1c1, p
2
c1, . . . p

n
c1〉 is the list of parameters to be communicated to S2 and Ac1 = ∅;

iii) The l′c1 location must have a single outgoing transition t′c1 = (l′c1, a
′
c1, G

′
c1, A

′
c1,

d′c1, lc1) such that a′c1 ∈ Σ?
1, d

′
c1 = lazy, a′c1 does not appear in any other transition

from S1, sig(a
′
c1) = 〈p

′1
c1, p

′2
c1, . . . p

′n
c1〉 is the list of parameters to be received from

S2 and A
′
c1 = A

′C
c1 ∪A

′D
c1 such that there is no imposed condition to A

′C
c1 assignment

and there is one element in A
′D
c1 using the format x := p for each parameter p

from sig(a′c1) and variable x ∈ V1.

42

• S2 must have: i) Two special locations l02 and lc2; ii) The l02 initial location has

a single outgoing transition t02 = (l02, a
0
2, G

0
2, A

0
2, d

0
2, l

′0
2), where , d02 = lazy, a02 ∈

Σ?
2, a

0
2 = ac1, a

0
2 does not appear in any other transition from S2, sig(a

0
2) =

〈p1c1, p
2
c1, . . . p

n
c1〉, A

0
2 = A0D

2 ∪ A
0C
2 such that A0C

2 has one element for each clock

resetting from C2 and, for each parameter p from sig(a02) and variable x ∈ V2,

there is one element in A0D
2 using the format x := p; iii) The lc2 location must

have a single outgoing transition tc2 = (lc2, ac2, Gc2, Ac2, dc2, l
0
2) such that dc2 =

lazy, ac2 ∈ Σ!
2, ac2 = a′c1, ac2 does not appear in any other transition from S2,

sig(ac2) = 〈p
′1
c1, p

′2
c1, . . . p

′n
c1〉 is the list of parameters to be received from S2 and

Ac2 = ∅. 3

Besides requiring a normal form, the weak interruption composition operator uses

the sync operation, responsible for defining the set of transitions from the composed

model that do not synchronize. As input, this operation receives: i) the set of transi-

tions T1 from S1; ii) the set of transitions T2 from S2; and iii) the set Lsync of synchro-

nization locations. For example, the S1ac1△ac2
S2 system from Figure A.2 comprises the

(lc1, l
0
2), (l

′
c1, l

′0
2) and (l′c1, lc2) for Lsync locations.

Basically, the sync operation is performed in two steps. First, we add each transition

from S1 and S2 subsystems, excepting those that contain elements from Lsync. Since

each transition contains a source or a target location that belongs to Lsync, no element

is added to the set of transitions from the composed model. Figure 3.9 shows this step

result. We use dotted lines to highlight transitions from subsystems excluded by this

step.

Figure 3.9: Step 1 of the sync operator

The second step adds transitions in the composed model whose source or target

43

locations do not belong to Lsync. Consequently, transitions l1
a?
→ (lc1, l

0
2) and (lc1, l

0
2)

b?
→

l2 fill these requirements. Figure 3.10 shows the result for this step. Although we do

not add transitions whose source or target locations are (l′c1, l
′0
2) or (l′c1, lc2), we leave

them to highlight that they do not take part in any transition from the composed

model.

Figure 3.10: Step 2 of the sync operator

We present the formal rules of the sync operator in Definition 11. Step 1 comprises

rules (3.6) and (3.7), while rules (3.8) and (3.9) from Definition 11 compose step 2. For

the sake of simplification, we do not show elements (ls1, ls2) ∈ Lsync in the transitions

rule of the sync operator, but we restrict them in the beginning of this definition.

Also, given two sets Σ1 and Σ2, we use the notation Σ1\Σ2 to represent the relative

complement of Σ2 in Σ1, or Σ2 - Σ1. For the sake of simplicity, we relax pertinence rules

from set theory [Hal60; Jec78] by establishing conditions on the tuple components that

compose a transition element outside the pertinence rule. In addition, we make explicit

from which set an element belongs to. For example, if we want to represent the set of

elements of the form (l1, a1, G1, A1, d1, l
′
1) from Σ1 such that l1 = ls1, instead of using

Σ1\{(l1, a1, G1, A1, d1, l
′
1)|(l1, a1, G1, A1, d1, l

′
1) ∈ Σ1 ∧ l1 = ls1}, we present restrictions

on ls1 and use Σ1\{(l1, a1, G1, A1, d1, ls1)|(l1, a1, G1, A1, d1, ls1) ∈ Σ1}.

Definition 11. (sync Operation) Let T1 and T2 be two different sets of TIOSTS tran-

sitions and Lsync be a set of locations of the form (ls1, ls2) where ls1 ∈ L1 and ls2 ∈ L2.

Assuming that (ls1, ls2) ∈ Lsync and l1, l2 6∈ Lsync, the operation sync(T1, T2, Lsync)

returns the set obtained from the rule:

44

T1\({(l1, a1, G1, A1, d1, ls1)|(l1, a1, G1, A1, d1, ls1) ∈ T1}∪

{(ls1, a1, G1, A1, d1, l1)|(ls1, a1, G1, A1, d1, l1) ∈ T1}∪

{(ls1, as1, Gs1, As1, ds1, l
′
s1)}) ∪ (3.6)

T2\({(ls2, a2, G2, A2, d2, l2)|(ls2, a2, G2, A2, d2, l2) ∈ T2}∪

{(l2, a2, G2, A2, d2, ls2)|(l2, a2, G2, A2, d2, ls2) ∈ T2}∪

{(ls2, as2, Gs2, As2, ds2, l
′
s2)}) ∪ (3.7)

{(l1, a1, G1, A1, d1, (ls1, ls2))|(l1, a1, G1, A1, d1, ls1) ∈ T1}∪

{((ls1, ls2), a1, G1, A1, d1, l1)|(ls1, a1, G1, A1, d1, l1) ∈ T1} ∪ (3.8)

{(l2, a2, G2, A2, d2, (ls1, ls2))|(l2, a2, G2, A2, d2, ls2) ∈ T2}∪

{((ls1, ls2), a2, G2, A2, d2, l2)|(ls2, a2, G2, A2, d2, l2) ∈ T2} (3.9)

3

For subsystems S1 and S2 from Figure A.2, the sets of synchronization locations are

{lc1, l
′
c1}, {l

0
2, l

′0
2 , lc2}, respectively. In this case, sync(T1, T2, {(lc1, l

0
2), (l

′
c1, l

′0
2), (l

′
c1, lc2)})

returns: (3.6) T1 transitions, excluding those that comprise ls1 ∈ {lc1, l
′
c1} as their

source or target location and the ac1! and ac2? actions; (3.7) T2 transitions, excluding

those that have ls2 ∈ {l
0
2, l

′0
2 , lc2} as their source or target location and ac1? and ac2!

actions; (3.8) transitions eliminated in step (3.6) with location ls1 replaced by location

(ls1, ls2); (3.9) transitions excluded in step (3.7) with location ls2 replaced by location

(ls1, ls2). In summary, the resulting set of transitions contains transitions with their

locations updated by the Lsync set of locations, when applicable.

We apply the weak interruption composition operator to TIOSTS models Si, where

Si = 〈Vi, Pi,Θi, Li, l
0
i ,Σi, Ci, Ti〉, Σi = Σ?

i ∪ Σ!
i and i = 1, 2. Definition 12 presents

the formal rules for the weak interruption composition operator by using elements

presented in Figure A.2.

Definition 12. (Weak Interruption Composition) Let S1 and S2 be two TIOSTS in

the WIC Normal Form. The weak interruption composition S1ac1△ac2
S2 is defined by

〈V1 ∪ V2, P1 ∪ P2,Θ1, L, l
0,Σ, C1 ∪ C2, T 〉 where L = L1\{lc1, l

′
c1} ∪ L2\{l

0
2, l

′0
2 , lc2} ∪

{(lc1, l
0
2), (l

′
c1, l

′0
2), (l

′
c1, lc2)}, Σ = Σ1 ∪ Σ2\{a

0
2, a

′
c1} and T is the set of transitions such

that:

45

sync(T1, T2, {(lc1, l
0
2), (l

′
c1, l

′0
2), (l

′
c1, lc2)}) ∪ (3.10)

{((lc1, l
0
2), ac1, Gc1 ∧Θ2 ∧G0

2, A
0
2, lazy, (l

′
c1, l

′0
2))} ∪ (3.11)

{((l′c1, lc2), ac2, Gc2 ∧G′
c1, A

′
c1, lazy, (lc1, l

0
2))} ∪ (3.12)

{((l′c1, l
′0
2), a2, G2, A2, d2, (l

′
c1, lc2))|(l

′0
2 , a2, G2, A2, d2, lc2) ∈ T2)} (3.13)

3

The weak interruption composition does not allow intersections between the sets

of locations, variables and clocks. We exclude actions a02 and a′c1 from the set of

actions of the composed model because we replace them by actions ac1 and ac2 during

synchronization. Besides, the resulting model excludes locations which belong to the

synchronization process. In summary, the transition set T includes: (3.10) transitions

returned by the sync operation that receives the synchronizable action set and the

transition set from S1 and S2, replacing the excluded locations by the new ones of the

composed model (Definition 11); ((3.11) and (3.12)) two new transitions that link the

isolated models by performing synchronizations in the composed model and preserving

guard requirements through the conjunctions of transition guards from S1 and S2;

(3.13) transitions from S2 that are between the new composed locations and do not

synchronize. Figure 3.11 uses the S1ac1△ac2
S2 composed system from Figure A.2 to

exemplify results for each step. Transitions associated to each step are grouped by

color and line style.

Figure 3.11: Steps for the weak interruption composition

Theorem 3 shows that the weak interruption composition preserves the tioco confor-

mance relation from the subsystems to the composition result. The proof is presented

46

in Appendix A.

Theorem 3 (tioco weak interruption Composition). Let I1, I2, S1 and S2 be four

subsystems. If I1 tioco S1 and I2 tioco S2 then I1ac1△ac2
I2 tioco S1ac1△ac2

S2.

The interruption operator preserves the tioco conformance relation from subsys-

tems to the composed systems. This happens because it does not change outputs

after each trace from the two subsystems in the resulting system. In this way, if two

subsystem implementations are in conformance to their specifications, the interruption

composition of the implementations also will preserve conformance to the interruption

composition of their specifications.

Apart from tioco conformance, a test case generation process can use the composed

model to generate interruption test cases. For this, we can follow the standard process

and tool for TIOSTS presented in Chapter 2 having as input the composed TIOSTS

and a choice of test purpose that covers the interruption scenario of interest. Since

the process focuses on test purposes, it must comprise actions that belong to: i) the

synchronization set of action from the isolated models; and ii) a finishing action from

the first model. For example, the send and receive actions belong to the synchronization

set of the Mouse send△receive Reset system. Additionally, the simpleClick indicates that

the first subsystem finishes a path.

Despite the need to meet the WIC Normal Form, the interruption composition has

a wide range of applications in real-time systems. Frequently, an executing subsystem

interrupts another and the execution returns to the initial system, which describes the

behavior of the weak interruption operator. For example, the Android Platform[Dev14]

contains the Toast and Notification classes that provide notifications on an operation

executed in the meanwhile. When a user is doing some work on the internet while

a message warning appears, the developer can use the Toast Class to implement this

behavior. If the user clicks on the notification, the Message application resumes the

browser application.

47

3.3 Parallel Composition

Inspired by the message passing model of concurrency that can be found in specification

formalisms such as CSP and programming languages such as Erlang, Scala and Go,

we define a parallel composition operator. This operator can be applied to define a

system that is composed by two communicating subsystems, without shared memory,

that may either execute independently or may communicate to each other by using

messages, defined as parameterized shared actions with the same label, but opposing

input or output types. Also, during the synchronization process, an input action can

be communicated to a single output action and vice-versa.

Figure A.3 shows a simple example for the parallel composition operator. TIOSTSs

S1 and S2 synchronize on actions a and b, resulting in a conjunction of their original

guards and output actions. However, they only synchronize if they are available in

both models and in a complementary way (they have the same label with conjugated

input/output types). For example, the first action of S1 is c and the first action of S2

is the synchronizing action b?, so c remains as the first action of the resulting system.

Next, since the S1 subsystem performs the b! output action and the S2 subsystem

performs the b? input action, (l
′0
1 ,l

0
2)

b!
−→ (l01,l

′0
2) transition from the resulting system

shows a conjunction of guards. Similarly, the (l01,l
′0
2)

c
−→ (l

′0
1 ,l

′0
2) transition composes

the resulting system because the independent action c and the synchronizing action a?

are the subsystem current actions. Independent actions can be executed in any order,

so two possible paths can be executed between (l01, l3) and (l
′0
1 ,l

′0
2) locations, differing

on the order of c and f actions.

The parallel composition operator that is defined below comprises the function

op(x, y), which receives two deadlines and returns the most urgent between them, using

the lazy < delayable < eager order. For instance, if x and y assume the delayable and

eager values, the function returns eager. Also, we consider that a! is the output action

of a.

Definition 13 (Parallel Composition). Let S1 and S2 be two TIOSTS and suppose that

L1 ∩ L2 = C1 ∩ C2 = V1 ∩ V2 = Σ
?
1 ∩ Σ

?
2 = Σ

!
1 ∩ Σ

!
2 = ∅. We define S1 ‖ S2 = 〈V1 ∪

V2; P1 ∪ P2; Θ1 ∧ Θ2; L1 × L2; (l
0
1, l

0
2); Σ; C1 ∪ C2; T 〉 where Σ = Σ

!
1 ∪Σ

!
2 ∪ (Σ

?
1 \Σ

!
2

48

Figure 3.12: Toy example for the parallel composition

) ∪ (Σ
?
2 \Σ

!
1) and T is the set such that:

For a 6∈ Σ2 : (3.14)

If(l1, a,G1, A1, d1, l
′
1) ∈ T1 then

((l1, l2), a,G1, A1, d1, (l
′
1, l2)) ∈ T

For a 6∈ Σ1 : (3.15)

If(l2, a,G2, A2, d2, l
′
2) ∈ T2 then

((l1, l2), a,G2, A2, d2, (l1, l
′
2)) ∈ T

For (a ∈ Σ
?
1 ∩Σ

!
2) ∨ (a ∈ Σ

!
1 ∩Σ

?
2) : (3.16)

If(l1, a,G1, A1, d1, l
′
1) ∈ T1 ∧ (l2, a,G2, A2, d2, l

′
2) ∈ T2 then

((l1, l2), a!, G1 ∧G2, A1 ∪A2, op(d1, d2), (l
′
1, l

′
2)) ∈ T

We do not constrain parameters because their scope are local to transitions in which

they were used. Additionally, (3.14) and (3.15) are similar since they include no syn-

chronizable actions in the resulting system, making them interleaved. On the other

hand, (3.16) replaces synchronizing actions by output actions in their resulting transi-

tions because we wanted to preserve their communication to other possible subsystems.

To reflect this decision on the resulting input and output action set, we exclude input

actions that belong to the synchronizing set of both subsystems.

Although we restrict locations, clocks and variables to have distinct sets, this re-

striction brings no prejudice to practical application of the parallel operator. Since the

input action from one subsystem is synchronized to the output action from another

49

Figure 3.13: Parallel composition for Mouse and Screen specifications

one, we communicate variable values from one process to another by using the message

passing paradigm. Besides, the change of location and clock names in a model does

not affect its behavior.

We use theMouse and Screen subsystems shown in Figures 2.9 and 2.10 to introduce

a more complex example for the parallel composition operator. Figure 3.13 shows

the composition for Mouse ‖ Screen system. They synchronize on simpleClick and

doubleClick actions, imposing a conjunction of the original transitions guards and a

resulting output action. Actions such as click? from Mouse subsystem and printMenu!

from Screen subsystem can be executed independently.

According to Krichen[KT06], the tioco conformance relation has some limitations

regarding the parallel composition. So, if we compose one specification to another one in

order to form a broader system specification, and their corresponding implementations

are tioco conformant to their specifications, the resulting implementation composition

is not guaranteed to be conformant according to the tioco theory. Consequently, the

parallel composition operator does not always preserve the tioco conformance relation.

The non-conformance problem for the parallelism operator happens because the

relation allows the underspecification of input actions, that is, it affords omission of

input actions for a specification. In order to solve this issue, subsystems S1 and S2

must be input-complete, that is, every location has a transition that enables the ex-

50

Figure 3.14: Input-complete Mouse spec Figure 3.15: Input-complete Screen spec

ecution of every input action from the set of input actions. To make compositional

subsystems input-complete and allow the testing of the isolated subsystems correct for

their composition result, we propose an input-completion process based on [KT06].

Figures 3.14 and 3.15 show theMouse and Screen input-complete specifications. We

represent transitions added by the input-completion process with dotted arrows. Also,

for the sake of simplification, transitions that contain more than one action correspond

to single transitions for each action. Basically, we add transitions starting from each

location to communicate each absent input action from each specification, leading each

transition to the ldc “don’t care” location. Additionally, we add transitions with every

input and output action to the ldc location to conserve the chaotic behavior of the tioco

conformance relation.

For example, the set of input actions from the Mouse subsystem is composed by the

click? input action. Hence, each location from the input-complete Mouse specification

must have an outgoing transition that contains the click? input action and leads this

subsystem execution to location ldc1. The S1 location has the outgoing transition S1
click?position
−−−−−−−→ S2 that contains the click? input action with the clockM <= 2s guard. To

perform the input-completion process in this location, we need to insert the S1
click?
−−−→

ldc1 transition that contains the click? input actions with the clockM > 2s guard.

We formalize the input-complete system process in Definition 14. Following this

input-completion process, there will be no extra input allowed by tioco conformance

51

relation and consequently no unpredicted output action can be generated in the imple-

mentation composition result when compared to the specification composition result.

Definition 14 (Input-completion). Let S = 〈V, P,Θ, L, l0,Σ, C, T 〉 be a TIOSTS and

ldc 6∈ L. We define IC(S) = 〈V, P,Θ, LIC , l0,Σ, C, TIC〉, where LIC = L ∪ {ldc} and TIC =

T ∪ {(ldc, a, true, ∅, lazy, ldc) | a ∈ Σ} ∪ {(l, a,¬G, ∅, lazy, ldc) | a ∈ Σ? ∧ l ∈ L} such that

for each l ∈ L and each a ∈ Σ?, G = G1 ∧ G2 ∧ . . . ∧ Gi, where G1 ∧ G2 ∧ . . . ∧ Gi are the

guards of the outgoing edges of l labeled with a. If there is no edge from l labelled with a, G

assumes the false value.

Therefore, let S1, I1, S2 and I2 be four TIOSTSs such that for i = 1, 2, Si and

Ii meet conditions established in Definition 13. Thus, we have the compositionality

result of Theorem 4, whose proof is presented Appendix A.

Theorem 4 (tioco Parallel Composition). Let specifications S1, S2 and implementa-

tions I1, I2 be input-complete TIOSTS models. Also ΣS1
= ΣI1 and ΣS2

= ΣI2. If I1

tioco S1 ∧ I2 tioco S2 then I1 ‖ I2 tioco S1 ‖ S2.

Subsystems preserve the tioco conformance relation in the composed result because

the parallel operator adds extra outputs if subsystems contain non-specified inputs

that belong to the synchronization set of actions. If subsystems do not contain un-

derspecified inputs or they are input-complete, the conformance relation is preserved.

Consequently, non-conforming subsystems may lead to a conforming composed result

if the non-conformance is caused by the synchronizing actions and subsystems are not

input-complete.

If subsystems are not input-complete, the tioco conformance relation may not be

preserved from subsystems to the composed result because this conformance relation

allows underspecification of input actions, which may lead to extra outputs in the

composed result that where not present in the subsystems. Consequently, if an extra

output is produced in the composed implementation which is not present in the com-

posed specification, the tioco conformance relation is not preserved in the composed

system.

Although we restrict the usage of the parallel operator to a binary communication

where an input action corresponds to a single output action, we consider that a sys-

tem can be composed of a subsystem already composed of smaller components so that

52

output actions generated by subsystems synchronization can be synchronized to other

subsystems. Consequently, if we have a subsystem that communicates to one or more

subsystems, we maintain this behavior at some level. Besides, since we are dealing

with the message-passing paradigm, we might also use this operator in the context

of distributed systems. Furthermore, it is important to remark that even though the

input-completion constraints on implementations are rather difficult to be met in prac-

tice, the parallel compositional operator can be extensively applied for the generation

of critical test cases, as we discuss in Section 3.4.

3.4 Test Case Generation Process

This section presents a test case generation process for compositional real-time systems

that can be applied as part of integration testing activities. The focus is on incremental

integration because the binary compositional operators defined restrict models to be

combined in pairs. Figure 3.16 shows the integration testing generation process.

Figure 3.16: The integration test case generation process

The first step is to receive two specifications and a test purpose, modeled as

TIOSTSs, that will guide the generation of test cases, where the specifications may

be the result of previous composition steps. The second step is to perform the compo-

sition of the specification models, depending on the compositional operator(s) chosen,

whereas the third step is the test case generation from the composed model by using

the approach from Andrade et al. [AM13] that is implemented in the SYMBOLRT

tool [AACM12].

The definition of the test purpose is essential to an effective test case generation,

that is, selection of test cases that meet the testing objectives in a cost-effective way.

Since, during integration testing, we intend to test interactions between the subsystems,

53

we need to define test purposes that allow the automatic generation of test cases that

exercise these interactions.

For the sequential operator, it is important to guarantee that the integration actions

of interest are traversed. For example, consider the Choose and Pay subsystems from

Section 3.1. In this case, the send! action, which is the integration action, may be

required in an integration test purpose to guarantee that the integration will be reached.

Moreover, if we are interested in test cases that more completely executes the payment

flow, we must add, to the test purpose, actions of the Pay system so that only traces

that reach them are considered. Furthermore, for a finer selection of specific integration

scenarios, one might add specific actions of the composed specification models.

Figure 3.17 shows a possible test purpose for the Choose ;send Pay system from

Figure 3.4. It allows the test case generation of scenarios where the send! and finish-

System! output actions are presented in the specification, leading to the Accept verdict.

Based on them, 2 test cases can be generated2. For the sake of simplification, we show

only a part of the test cases generated by using this test purpose in Figure 3.18. As

usual, inputs were changed to outputs and vice-versa to reflect inputs and output from

the tester point of view. We can also generate test cases with a test purpose containing

the single send! action, resulting in 4 test cases that correspond to the possible traces

up to the send! action. Moreover, we can generate tests cases for the test purpose that

comprises the send! and pay! actions, focusing on check and cash options, resulting in

2 test cases.

Figure 3.17: Test purpose for the Choose;send Pay system

Regarding the parallel operator, synchronization actions as well as other actions and

parameter values may be required to shorten the number of generated test cases, since

this operator produces rather complex models with several different combinations of

2In this case, we are considering that loops are traversed only once.

54

Figure 3.18: Test cases for the Choose;send Pay system

traces, particularly when the model contains cycles. For example, if we want to perform

the integration testing of the Mouse ‖ Screen system, we can choose a test purpose with

a transition that contains either the doubleClick! or the simpleClick! output action.

Figure 3.19 shows an example of the test purpose for this system. We generated 15

test cases from it. Figure 3.20 shows simplified versions of two of these test cases.

Figure 3.19: Test purpose for Mouse ‖ Screen system

With the same system, we can use other test purposes to obtain different test cases.

For example, the parallel composition allows us to acquire 6 test cases with the adoption

of the single doubleClick! action for a test purpose, while the usage of a test purpose

composed by the simpleClick! and doubleClick! actions lead us to the generation of

45 test cases. In addition, a test purpose containing the doubleClick! and openApp!

55

Figure 3.20: Test cases for the Mouse ‖ Screen system

output actions lead us to the generation of 13 test cases.

The interruption composition follows a line of reasoning which is similar to the

sequential operator. in this way, test purposes shall comprise actions that belong to:

i) the synchronization set of action from the isolated models; and ii) a finishing action

from the first model. For example, Figure 3.21 shows a test purpose where the send and

receive actions belong to the synchronization set of the Mouse Interrupted send△receive

Reset system. Additionally, the simpleClick indicates that the first subsystem finishes

a path. By using the SYMBOLRT tool, we generated 24 test cases. Additionally, a

test purpose composed by the send, receive and doubleClick actions produces 24 test

cases.

Figure 3.21: Test purpose for Mouse Interrupted and Reset subsystems

56

Figure 3.22: Test cases for the Mouse Interrupted and Reset subsystems

We highlight that the complexity of the generated test cases is related to the tester

experience. Besides, a composed system which has an increasing number of loops

increases the number of test cases accordingly because more paths are available.

3.5 Concluding Remarks

We introduced the sequential, parallel and interruption operators by using toy examples

and applying them in simple applications. In the sequence, we presented their formal

definitions and showed that the tioco conformance relation is preserved from subsys-

tems to the composed systems when we use the sequential and interruption operator.

Conversely, a system composed by the parallel operator preserves tioco if subsystems

are input-complete. Finally, a test generation process that uses the compositional

operator was proposed. The operators were implemented in a tool that allowed the

generation of test cases for the composed systems we have shown.

57

Chapter 4

Algorithms

This chapter presents the algorithms used for the sequential, interruption and parallel

operators. We use them with the SYMBOLRT tool and let them available in our site1.

To implement them, we used the Java programming language and the TIOSTS class,

which is a simple data class that store elements from the TIOSTS model (Definition

4), as well as gets and sets methods.

Every algorithmic description follows its operator definition. Thus, we used the

toy examples previously presented to easy code explanations. Section 4.1 shows the

algorithm for the sequential operator, while Sections 4.2 and 4.3 present codes for the

interruption and parallel operators, in this order.

4.1 Sequential Composition Algorithm

The implementation for the sequential composition operator uses variables that repre-

sent elements from the operator normal form (Definition 8). Consequently, variables

names from algorithm denotes their function during the composition process. Figure

4.1 repeats the toy example for the sequential operator to review these elements.

This operator implementation is performed in the method sequentialComposition,

that receives two TIOSTS models and returns the model composed by the sequential

operator. Basically, we perform four main steps: i) Variables startup; ii) If subsys-

tems fill normal form, we create the transition from location (l0c1, l
0
2) to (lc1, l

′0
2); iii)

1Available at https://sites.google.com/site/compositionaltioco/

58

Figure 4.1: Toy example for the sequential composition

Adding T1 transitions, excepting tc1; and iv) Adding T2 transitions, excepting t02. Algo-

rithm 4.1 shows the set of instructions to compose subsystems by using the sequential

composition operator.

Algorithm 4.1: Sequential Composition

1 public TIOSTS sequentialComposition(TIOSTS model1, TIOSTS model2)

2 t02 = tiosts2.getInitialTransition();

3 compositionAction = t02.getActionName();

4 l02 = t02.getSource();

5 l02Line = t02.getTarget();

6 tc1 = getCompositionTransition(tiosts1, compositionAction);

7 lc = tc1.getTarget();

8 l0c1 = tc1.getSource();

9 actionlc = tc1.getAction();

10 actionl02 = t02.getAction();

11 if (isCompatible(tiosts1, tiosts2, lc)){

12 result = initialize(tiosts1, tiosts2, tc1, t02);

13 source = new Location(tc1.getSource()+ ”,” + t02.getSource());

14 target = new Location(tc1.getTarget()+ ”,” + t02.getTarget());

15 dataAssignments = tc1.getDataAssignments() + t02.getDataAssignments();

59

16 clockAssignments = tc1.getClockAssignments() + t02.getClockAssignments();

17 dataGuard = createDataGuard(tc1.getDataGuard(), t02.getDataGuard());

18 dataGuard = createDataGuard(dataGuard, tiosts2.getInitialCondition());

19 clockGuard = createClockGuard(tc1.getClockGuard(), t02.getClockGuard());

20 result.createTransition(source, dataGuard, clockGuard, actionlc, dataAssignments,

clockAssignments, DEADLINE LAZY, target);

21 for(Transition t:tiosts1.getTransitions()){

22 if (!t.equals(tc1)){

23 if (t.getTarget().equals(l0c1)){

24 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.getDeadline

(), source);

25 }else{

26 if (t.getSource().equals(l0c1)){

27 result.createTransition(source, t.getDataGuard(), t.getClockGuard(), t.getAction(), t.

getDataAssignments(), t.getClockAssignments(), t.getDeadline(), t.getTarget());

28 }else{

29 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.getDeadline(), t.

getTarget());

30 }

31 }

32 }

33 }

34 for(Transition t:tiosts2.getTransitions()){

35 if (!t.equals(t02)){

36 if(t.getSource().equals(l02Linha)){

37 result.createTransition(target, t.getDataGuard(), t.getClockGuard(), t.getAction

(), t.getDataAssignments(), t.getClockAssignments(), t.getDeadline(), t.

getTarget());

38 }else{

39 if(t.getTarget().equals(l02Line)){

40 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

60

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.

getDeadline(), target);

41 }else{

42 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.

getDeadline(), t.getTarget());

43 }

44 }

45 }

46 }

47 return result;

48 }

The first step is the variables startup, which is performed in lines 2-10. Following

the line order of the algorithm, we start t02 value by receiving the initial transition of the

S2, represented by model2 variable. In the sequence, we start the composition action,

l02, l
′0
2 , l

0
c1 and lc1 by using get and set methods from the TIOSTS class and basing these

choices on locations’ positions. Since we cannot predict where the tc1 is, we start it

by using the getCompositionTransition method and the label of the composition action,

which is restricted by the normal form to belong to tc1. Also, we store in variables

action from tc1 and t02 transitions in order to use them in the next steps.

The second step creates the composition transition, so that communication between

subsystems S1 and S2 is performed (lines 11-20). To perform this task, we verify if sub-

systems are compatible to the operator normal form by using the isCompatible method.

In the sequence, we initialize TIOSTS sets of variables, parameters, transitions, assign-

ments and actions by using the initialize method. Thus, we start the source, target and

other elements from this transition. In the sequence, we create the TIOSTS transition

by using the createTransition method.

The third step is responsible for including transitions from subsystem S1 in the

composed model (lines 21-33). We add each transition from S1, excepting tc1 transition

(line 22). Besides that, a special treatment is devoted to transitions whose target or

source location is l0c1: this location is replaced by the source location, recently created in

61

step ii). These set of instructions are performed in lines 23-27. Next, we add transitions

that do not use the l0c1 location as target or source locations (line 29).

In the last step, we add transitions from S2 in the composed model (lines 34-46).

First, we separate transitions whose target location is l′02 and replace them by the target

location created in step ii), which belongs to the synchronization transition (lines 39-

40). After that, we add transitions that do not contain the l′02 location in the composed

model (line 42). The result variable contains the composed model.

4.2 Interruption Composition Algorithm

The implementation of the interruption operator follows labels defined during the def-

inition and presentation of its normal form, exemplified with the aid of a toy example.

Figure 4.2 shows this example to review the names used for each element from the sub-

systems and the composed system. We suggest the reader to follow the implementation

explanation by using the toy example.

Figure 4.2: Example of weak interruption composition

The implementation of the interruption composition operator receives two models

to be composed and returns the composed model. Algorithm 4.2 shows the code. First,

we verify if subsystems S1 and S2 are compatible (line 2) in accordance to rules defined

by the WIC normal form (Definition 10). Next, the intersectionActions method receives

actions from both models and returns actions that are common to both sets (line

62

3). Since these actions labels re the same, we use them as the synchronizing action

to be used in the resulting model. Thus, we define the starting values for elements

from the resulting model in line 4. Finally, line 5 uses the sync method to update the

synchronization transition in the resulting model.

Algorithm 4.2: Interruption Composition

1 TIOSTS interruptionComposition(TIOSTS model1, TIOSTS model2){

2 if (isCompatible(model1, model2)){

3 Collection eSync = intersectionActions(tiosts1.getActions(), tiosts2.getActions());

4 result = initialize(tiosts1, tiosts2, eSync);

5 result = sync(tiosts1.getTransitions(), tiosts2.getTransitions(), eSync);

6 }

7 return result;

8 }

The syncmethod receives two sets of transitions and a set of synchronization actions,

returning a composed TIOSTS updated according to the sync operator rules (Definition

11). The implementation is divided into two steps: i) Creation of the (l′c1, lc2) and

(lc1, l
0
2) synchronization locations with the synchronization transitions and ii) Addition

of the unsynchronizable transitions from the composed model. We show the sync

operator code in Algorithm 4.3.

The creation of the synchronization locations is performed in lines 2-24. The pro-

cess repeats for each action from the eSync set of action, which contains the set of

synchronization actions (line 4). The first step is to recover the synchronization tran-

sitions from the sets of transitions T1 and T1 (lines 5 and 6). After that, we start a set

of excluded locations with locations that belonged to synchronization location so that

these locations do not belong to the composed system (line 7). Next, lines 8-10 initiate

the source and target locations with a combination of labels from the excluded locations

and add the newly created locations to the composed TIOSTS. In the sequence, we

we initiate the remaining transition elements (lines 11-24). Lines 16-22 gives a special

treatment to actions because it assures that an output action is seleced and included in

the composing transition. After that, line 23 creates the transition with each element

defined in previous lines.

63

The addition of unsynchronizable transitions from subsystems to the composed

model is performed in lines 26-69. It happens for each action from the set of synchro-

nizable actions (line 25). First, lines 29-47 adds transitions from T1. We add transitions

in the composed systems by maintaining the previous transition elements of T1, but

we replace locations lc1 and l′c1 by (l′c1, lc2) and (lc1, l
0
2), in this order. Similarly, lines

48-67 replaces the lc2 and l02 locations in T2 by (l′c1, lc2) and (lc1, l
0
2) and add them to

the resulting model.

Algorithm 4.3: sync operator

1 TIOSTS sync(Collection transitions1, Collection transitions2, Collection eSync){

2 excludedLocations = new Collection();

3 result = new TIOSTS();

4 for (Action actionSync:eSync){

5 t1Sync = recoverTransition(transitions1, actionSync);

6 t2Sync = recoverTransition(transitions2, actionSync);

7 excludedLocations.add(t1Sync.getSource(), t2Sync.getSource(), t1Sync.getTarget(),

t2Sync.getTarget());

8 source = new Location(t1Sync.getSource() +”,”+ t2Sync.getSource());

9 target = new Location(t1Sync.getTarget() +”,”+ t2Sync.getTarget());

10 result.addLocation(source, target);

11 dataGuard = t1Sync.getDataGuard() + t2Sync.getDataGuard();

12 transitionl1 = t2Sync.getSource().getInTransitions().get(0);

13 dataAssignments = createAssignments(t1Sync.getDataAssignments(), t2Sync.

getDataAssignments());

14 clockAssignments = createAssignments(t1Sync.getClockAssignments(), t2Sync.

getClockAssignments());

15 clockGuard = createClockGuard(t1Sync.getClockGuard(), t2Sync.getClockGuard());

16 if(t1Sync.getAction().getType() == ACTION OUTPUT){

17 action = result.recoverAction(t1Sync.getAction());

18 action.setParameters(t1Sync.getAction().getParameters());

19 }else{

20 action = result.recoverAction(t2Sync.getAction());

21 action.setParameters(t2Sync.getAction().getParameters());

64

22 }

23 result.createTransition(source, dataGuard, clockGuard, action, dataAssignments,

clockAssignments, DEADLINE LAZY, target);

24 }

25 for (Action actionSync:eSync){

26 tSync = recoverTransition(result.getTransitions(), actionSync);

27 t1Sync = recoverTransition(transitions1, actionSync);

28 t2Sync = recoverTransition(transitions2, actionSync);

29 for(Transition t:transitions1){

30 if (!eSync.contains(t.getAction())){

31 if(t.getTarget().equals(t1Sync.getSource())){

32 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.getDeadline

(), tSync.getSource());

33 }else{

34 if(t.getTarget().equals(t1Sync.getTarget())){

35 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.

getDeadline(), tSync.getTarget());

36 }else{

37 if(t.getSource().equals(t1Sync.getTarget())){

38 result.createTransition(tSync.getTarget(), t.getDataGuard(), t.

getClockGuard(), t.getAction(), t.getDataAssignments(), t.

getClockAssignments(), t.getDeadline(), t.getTarget());

39 }else{

40 if(t.getSource().equals(t1Sync.getSource())){

41 result.createTransition(tSync.getSource(), t.getDataGuard(), t.

getClockGuard(), t.getAction(), t.getDataAssignments(), t.

getClockAssignments(), t.getDeadline(), t.getTarget());

42 }

43 }

44 }

45 }

65

46 }

47 }

48 for(Transition t:transitions2){

49 if (!eSync.contains(t.getAction())){

50 if(t.getTarget().equals(t2Sync.getSource())){

51 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.getDeadline

(), tSync.getSource());

52 }else{

53 if(t.getTarget().equals(t2Sync.getTarget())){

54 result.createTransition(t.getSource(), t.getDataGuard(), t.getClockGuard(), t.

getAction(), t.getDataAssignments(), t.getClockAssignments(), t.

getDeadline(), tSync.getTarget());

55 }else{

56 if(t.getSource().equals(t2Sync.getTarget())){

57 result.createTransition(tSync.getTarget(), t.getDataGuard(), t.

getClockGuard(), t.getAction(), t.getDataAssignments(), t.

getClockAssignments(), t.getDeadline(), t.getTarget());

58 }else{

59 if(t.getSource().equals(t2Sync.getSource())){

60 result.createTransition(tSync.getSource(), t.getDataGuard(), t.

getClockGuard(), t.getAction(), t.getDataAssignments(), t.

getClockAssignments(), t.getDeadline(), t.getTarget());

61 }

62 }

63 }

64 }

65 }

66 }

67 }

68 return result;

69 }

66

Figure 4.3: Toy example for the parallel composition

4.3 Parallel Composition Algorithm

The parallel composition composes subsystems by synchronizing actions with the same

label and different input/output types, adding an output action to the composed sys-

tem. Also, we perform interleaving to the non-synchronizable set of actions. Figure

A.3 shows a toy example already presented in Chapter 3 to illustrate this operator

behavior. We suggest the reader to follow this section explanation by using this toy

example and Definition 13.

The implementation of the parallel composition operator receives two subsystems

and returns a composed model. It uses the isCompatible method to verify if the in-

tersection between the sets clocks, variables and locations from subsystems is empty.

If it is true, we start the sets from the composed model. Also, we defined the sets of

unsynchronizable actions from the Σ1 and Σ2 by using the minusSet method. In the

sequence, we call the parComposition method in order to build the set of transitions

and locations of the composed system. Algorithm 4.4 shows the theses steps.

Algorithm 4.4: Parallel Composition

1 TIOSTS parallelComposition(TIOSTS tiosts1, TIOSTS tiosts2){

2 if (isCompatible(tiosts1, tiosts2)){

3 result = initialize(tiosts1, tiosts2);

4 actionst1Minust2 = minusSet(model1.getActionNames(), model2.getActionNames());

5 actionst2Minust1 = minusSet(model2.getActionNames(), model1.getActionNames());

6 parComposition(tiosts1.getInitialLocation(), tiosts2.getInitialLocation(), result,

67

actionst1Minust2, actionst2Minust1);

7 }

8 return result;

9 }

We show the parComposition method in Algorithm 4.5. It receives locations and

actions from subsystems S1 and S2 and a partial version of the composed system. We

recursively build the composed system pc from two subsystems. Because of that, line

2 provides a stopping criteria by assuring that the current locations from Σ1 and Σ2

were not visited. In the sequence, lines 2 and 3 perform a combination between each

subsystems transitions of the non-visited locations to add the new transition in the

composed model. From this point, a transition action follows two cases: i) The action

belongs to the set of unsynchronizable actions from T1 or T2 and ii) The action belongs

to the synchronization set of actions.

Algorithm 4.5: par composition method

1 void parComposition(Location loc1, Location loc2, TIOSTS pc, List actionsT1, List

actionsT2){

2 if (isVisited(loc1,loc2)) return;

3 for (Transition t1 : loc1.getOutTransitions()) {

4 for (Transition t2 : loc2.getOutTransitions()){

5 action1 = t1.getAction();

6 action2 = t2.getAction();

7 if (actionsT1.contains(action1)){

8 source = new Location(loc1 + ”,” + loc2);

9 pc.addLocation(source);

10 target = new Location(t1.getTarget() + ”,” + loc2);

11 pc.addLocation(target);

12 pc.createTransition(source, t1.getDataGuard(), t1.getClockGuard(), t1.getAction(),

t1.getDataAssignments(), t1.getClockAssignments(), t1.getDeadline(), target);

13 parComposition(t1.getTarget(), loc2, pc, actionsT1, actionsT2);

14 }

15 if (actionsT2.contains(action2)){

68

16 source = new Location(loc1 + ”,” + loc2);

17 pc.addLocation(source);

18 target = new Location(loc1 + ”,” + t2.getTarget());

19 pc.addLocation(target);

20 pc.createTransition(source, t2.getDataGuard(), t2.getClockGuard(), t2.getAction(),

t2.getDataAssignments(), t2.getClockAssignments(), t2.getDeadline(), target);

21 parComposition(loc1, t2.getTarget(), pc, actionsT1, actionsT2);

22 }

23 if (canSynchronize(action1, action2)){

24 source = new Location(loc1 + ”,” + loc2);

25 pc.addLocation(source);

26 target = new Location(t1.getTarget()+ ”,” + t2.getTarget());

27 pc.addLocation(target);

28 dataAssignments = t1.getDataAssignments() + t2.getDataAssignments();

29 clockAssignments = t1.getClockAssignments() + t2.getClockAssignments();

30 dataGuard = t1.getDataGuard() + t2.getDataGuard();

31 clockGuard = t1.getClockGuard() + t2.getClockGuard();

32 parameters = action2.getParameters();

33 if (t1.getAction().getType() == ACTION OUTPUT){

34 newAction = t1.getAction();

35 }

36 if (t2.getAction().getType() == ACTION OUTPUT){

37 newAction = t2.getAction();

38 }

39 newAction.setParameters(parameters);

40 pc.createTransition(source, dataGuard, clockGuard, newAction, dataAssignments,

clockAssignments, deadlineOperator(t1.getDeadline(), t2.getDeadline()), target

);

41 parComposition(t1.getTarget(), t2.getTarget(), pc, actionsT1, actionsT2);

42 }

43 }

44 }

45 }

69

If the action belongs is not synchronizable, we perform an interleaving. If the action

belongs to the set of actions from S1, we create the source, target locations and use the

action from T1. After that, we create a transition from these elements in the composed

system and a recursive call is performed to build the remainf transitions from this

model (lines 7-14). The same happens to transitions added from T1 (lines 15-22).

On the other hand, if actions from both subsystems synchronize, we create new

source and target locations and perform unions from data and clock assignments and

parameters from transitions of S1 and S2 models (lines 24-32). In addition, lines 33-39

identifies from which subsystem the output action belongs to be further added to the

composed system. In the sequence, the transition is created in the composed systems

by using the deadline method that chooses the stricter deadline following the order

eager > delayable > lazy. Finally, the parComposition method is called again to build

the remaining model transitions (lines 40-41).

4.4 Concluding Remarks

This chapter presented the algorithmic implementations of the sequential, interruption

and parallel compositional operators. We presented each method, explaining their

detailed steps.

70

Chapter 5

Exploratory Studies

This chapter presents two exploratory studies that use the sequential, parallel and

interruption operators in two different applications. First, we show the Avionics spec-

ification (Section 5.1). In the sequence, we detail the Cell Phone application (Section

5.2).

The main objective of this study is to evaluate the generation of test cases by using

the sequential, interruption and parallel operators with respect to the applicability of

our approach in the context of the SYMBOLRT tool. We give results about each model

size and the time used to generate test cases.

For the sake of simplification, every transition from TIOSTSs of these exploratory

studies have omitted deadlines, which implies that we assume the lazy value for input

actions and delayable value for output actions. In addition, we implemented every

model in a tool and presented our results and the generated code in a web page1. We

generated test cases by using a computer with the following settings: Ubuntu 12.04

(64-bits), 12 GB RAM, 500 Gb HD, Intel Core i7-4770 processor (3.40 GHz), CVC 2.2

and UPPAAL DBM Library 2.0.7.

5.1 Avionics System

The complexity of avionics systems requires strict tests. A defect can cause a serious

disaster if it is discovered when the system is in use. Among various examples, this

1https://sites.google.com/site/compositionaltioco/

71

section presents a few parts of a mission-critical software, particularly its tracking

subsystem, which is a real-time subsystem in the avionics domain inspired by the

Generic Software Avionics Specification Report [LVLG90].

Figure 5.1 shows a block diagram for the tracking subsystem composed of three

subsystems: i) the Radar Control subsystem is used to display a radar view of the

terrain in order to detect and identify possible targets and detailed information about

them; ii) The Target Designation subsystem allows the designation of a target by

the aircrew; and iii) the Target Tracking subsystem tracks the target, depending on

the selected mode of the target designation subsystem. The last two subsystems are

sequentially composed: the Target Designation subsystem passes the mode and target

identification values through the finishTargetDesignation action that determines if the

Target Tracking subsystem is tracked by the Radar Control or HUD subsystems (which

we do not specify in this exploratory study). Similarly, the Radar communicates to the

Tracking subsystem through the targetPosition and track actions. We assume that the

three subsystems are developed separately.

Figure 5.1: Tracking system of the generic avionics specification

Figure 5.2 shows the Radar subsystem which is responsible for detecting new targets.

In the S36 location, the subsystem can receive an option through selectR? action and

store it inmodeR variable. From location S37, the subsystem allows the execution of two

branches: 1) if the modeR variable equals to groundMap option, it inputs the receive?

action and stores its value in terrainView value or 2) if modeR equals to groundSearch

option, it receives a value through range? input action and stores it in rangeContacts

variable. From the S38 location, the subsystem outputs the info parameter through

the display! output action if it is equal to terrainView variable. If the rangeContacts

72

variable value is bigger than 10 contacts and the clock is less or equal to 82ms, from

location S39, the subsystem is allowed to receive a value using the detect? input action

and stores it in the rangeContacts variable. From the S40 location, the subsystem can

receive the target coordinates through the targetPosition? input action and stores them

in azimuthR, elevationR and rangeR variables. From the S41 location, the subsystem

receives the target being tracked and stores it in the contactID variable by using the

track? input action. From the S42 location, the subsystem shows the number of the

target being tracked to other subsystems by using the display! output action.

Figure 5.2: Radar specification

The Target Designation subsystem is shown in Figure 5.3. It can work under three

modes: HUDDesignation, RadarDesignation and undesignationTarget. From the S9

location, this subsystem allows the selection of a mode and a target identifier through

the selectTD? input action, storing their values in the modeTD and targetTD variables

and goes to the S10 location. In the S10 location, the subsystem can: 1) undesignate a

target through the undesignate! output action if modeTD equals to undesignationTarget

and returns to the S10 location; 2) emit the changeModeHUD! output action to other

subsystem modules if the modeTD variable equals to HUDDesignation and goes to the

S15 location and 3) output the changeModeRadar! action to other subsystem modules

if the modeTD variable equals to radarDesignation and goes to the S11 location. In

the S11 location, the subsystem can receive the location aircraft coordinates through

the aircraftPosition? input action, storing their values in rangeTD, azimuthTD and

73

elevationTD variables and goes to the S12 location. In S12 location, the subsystem

communicates the target position using the targetPosition! output action and goes

to the S13 location. In the S13 location, the subsystem designates a target through

the designate! output action if this subsystem clock equals to 200ms and goes to

the S17 location. In the S17 location, the subsystem communicates the modeTD and

targetTD variable values through the finishTargetDesignation! output action to other

subsystems and goes to the S18 location. In the S14 location, the subsystem can update

the target location using the reticle coordinates through the reticlePositionHUD? input

action and stores their value in the azimuthTD and elevationTD variables, going to the

S15 location. In the S15 location, the subsystem can designate a target by using the

designate! output action if the clockTD variable equals to 200ms and goes to the S16

location. In the S16 location, the subsystem communicates the coordinates by using

the reticlePositionHUD! output action and goes to S17 location.

Figure 5.3: Target Designation specification

74

Figure 5.4 shows the Target Tracking specification. It also operates under the HUD-

Designation and RadarDesignation modes, previously set during the target designation

execution. From the S21 location, the subsystem can receive the operation mode and

target identification values through finishTargetDesignation? input action and stores

them in modeTT and targetTT variables, going to the S22 location. From the S22 lo-

cation, the subsystem can perform one of the following: 1) communicate its operation

change to radar mode through the changeModeRadar! output action if the modeTT

variable value equals to RadarDesignation and goes to the S23 location or 2) inform

the subsystem change to HUD mode through the changeModeHUD! output action if

the modeTT variable value equals to HUDDesignation and goes to the S24 location.

From the S23 location, the subsystem receives the aircraft coordinates and stores them

in the rangeTT , azimuthTT and elevationTT variables and goes to the S25 location.

From the S24 location, the subsystem can receive the target and aircraft locations

through the reticlePositionHOTAS? input action and stores them in the azimu-thTT ,

elevationTT and rangeTT variables, going to S25 location. In the S25 location, the

subsystem informs to other subsystems that the radar is tracking a target identified by

the targetTT variable through the track! output action and goes to the S26 location.

From the S26 location, the subsystem communicates the later coordinates through the

reticlePositionHUD! output action and goes to the S27 location. From the S27 location,

the same coordinates are updated to other modules using the update! output action if

the clock is less or equal to 40ms and goes to the S28 location. Finally, from the S28

location, the subsystem finishes through the finishTargetTracking! output action and

goes to the S29 location.

We show the sequential composition of the Target Designation and Target Tracking

subsystems in Figure 5.5. We replaced the S17, S18, S21 and S22 locations by the (S17,

S21) and (S18, S22) locations. The (S17, S21)
finishTargetDesignation!(op, info)
−−−−−−−−−−−−−−−−−−→ (S18, S22)

transition allows the communication of modeTD and targetTD variables from the Tar-

get Designation subsystem to modeTT and targetTT variables from the Target Tracking

subsystem. Thus, the added transition communicates the targetTD and modeTD vari-

ables through the finishTargetDesignation! output action and stores their values in the

modeTT and targetTT variables to be further used in the Target Tracking subsystem.

75

Figure 5.4: Target Tracking specification

The parallel composition (Target Designation ; finishTargetDesignation Target Tracking)

‖ Radar was automatically generated using the parallel operator definition from Section

3.3 and comprises 91 locations and 170 transitions. This number of system transitions

and locations is increased with regard to their subsystems because there is only the tar-

getPosition and track synchronization actions common to both of them. Consequently,

unsynchronized actions repeat their transitions with different locations along the re-

sulting system. For example, although the undesignate! output action occurs between

S10
undesignate!info
−−−−−−−−−→ S10 transition of the Target Designation subsystem, the composed

system offers the same action in transitions where source and target locations are

(S10,S36); (S10,S37); (S10,S38); (S10,S39) or (S10,S40).

Due to the definition of the sequential and parallel composition operators, we are

able to generate integration level test cases that automatically cover different combi-

nations of behaviors from the composed models. Figures 5.6 and 5.7 present the test

purposes considered for test generation of our sequential and parallel examples. They

intend to extract test cases that would not be generated if each subsystem were tested

separately. The test purpose of Figure 5.6 guided the generation of 2 test cases which

start in the Target Designation subsystem and end at Target Tracking, using the output

76

Figure 5.5: Sequential composition for the Tracking subsystem

action finishTargetDesignation! common to both of them and performing an interface

between both subsystems. This generation spent 2s. The usage of another test pur-

pose with the single finishTargetDesignation! output action also gave us 2 different

test cases after 1s of system processing.

Similarly, the test purpose of Figure 5.7 intends to generate test cases that interleave

actions from our sequential composition result and the Radar subsystem by using

the selectTD?, selectR? and undesignate! actions. This depicts a scenario where a

target is undesignated in the Target system and interleaved by the selectR? input

action from the Radar subsystem. Since we wanted to lessen the number of test cases,

some actions lead to the Reject location. With this test purpose, we acquired 14 test

cases within 21s. Another test purpose composed by the targetPosition!, track! and

finishTargetDesignation! output actions gave us 7 test cases, which were generated in

22s.

Following the same strategy, we generated 4193 test cases for the parallel com-

position system by using a test purpose composed by the targetPosition!, track!, fin-

ishTargetDesignation! and finishTargetTracking! output actions. In order to lessen

the number of test cases, this test purpose also reject some actions through the Reject

location. This increased number of test cases and their execution generation time is

proportional to the size of the parallel composed system, to paths that contain loops

77

Figure 5.6: Test purpose for the Target

system

Figure 5.7: Test purpose for Target sys-

tem ‖ Radar

Table 5.1: Test purposes and generation time of test cases

Site Identifier # Test Cases Time

FinishTargetDesignation 2 2s

SelectUndesignate 14 21s

SelectUndesignateFinish 7 22s

TargetPositionTrackFinish 4193 2.11h

and are reached by the test purpose we are using and at the same time do not finish

in a Reject location. The integration tests were generated in 2.11 hours.

Table 5.1 shows a summary of the generated test cases fro the Avionics system. We

present the used identifiers in our site to each test purpose, the number and time to

generated test cases. We observed that the time used to generate test cases increased

with the size of transitions and locations of the model. Also, it lasts longer to generate

test cases from a test purpose that contains an action belonging to paths with a big

number of transitions.

5.2 Cell Phone System

Real-time systems are usually an important part of cell phones, where applications are

often composed of features that may interact. Eldh et al. [EPHJ07] shows that more

than 38% of software faults presented by a large complex telecommunication industry

78

middleware system come from unclear specifications, happening for the first time at

integration or system level. Additionally, Lorentsen [LTX01] cites three categories of

cell phone feature interactions that are hard to test: i) feature use interaction; ii) shared

limited resources; and iii) when one feature affects another by making it unavailable.

In this section, we present an exploratory study to illustrate our approach to gen-

erate interruption testing for a cell phone system, composed of 3 features of the smart-

phone Nexus 5 with Android operating system version 4.4.3. To compose the features,

we apply the interruption operator, proposed in this paper, as well as the sequential

composition operator. Generally, the sequential operator communicates information

from one subsystem to another through a single action present in both subsystems.

It requires an ordering of interactions so that the first subsystem finishes before the

second starts.

Our goal is to extract test cases that we would not consider if we test each sub-

system separately. Therefore, we create test purposes composed by actions that cover

the integration actions of the whole model, which are sendMessageSelected, receiveIn-

terruption or sendInterruption. Moreover, we include actions that finish each scenario

of interest in order to allow the selection of a complete integration scenario as test

case (otherwise, test cases would resume immediately after the integration action exe-

cution). Since the composed model is big, we need to use the Reject location in every

test purpose to limit the number of test cases selected. To exemplify our approach,

we generate test cases by using a computer with the following settings: Ubuntu 12.04

(64-bits), SYMBOLRT 1.3, 12 GB RAM, 500 GB HD, and Intel Core i7-4770 processor

(3.40 GHz).

The Cell Phone system comprises the following items: i) the Contacts feature that

manages a cell phone agenda; ii) the Message feature whose function is to send and

show messages; iii) the Receive Call feature that manages receiving incoming calls. To

compose the system, we apply: i) the sequential composition between the Contacts

and Message features through the sendMessageSelected action; ii) the sequential com-

position between Receive Call and Message features through the sendMessageSelected

action; iii) The weak interruption composition between the resulting compositions of

i) and ii), by sendInterruption and receiveInterruption actions. Figure 5.8 shows the

79

Cell Phone system composition structure.

Figure 5.8: Cell Phone system

The TIOSTS models of the features and the composed system cannot appear in

this paper, but they are available at our web site2 along with all other artifacts of this

exploratory study. Overall, the composed system has 28 locations and 34 transitions.

Because the compositions use the sequential and interruption operators, normal

forms shall be applied to them. To highlight transitions that fill these requirements,

we use dotted lines.

The first model is the Contacts application (Figure 5.9). It models the behavior

of an ordinary contacts application, comprising the functionalities to add, delete, edit

and send message to a contact as follows.

• From location S0, the system inputs the option to be executed through the select?

input action and stores its value in optioncontacts variable with no urgency.

• From the S2 location, there can be two ways: the system executes the search-

ContactSelected! output action if the optioncontacts is equal to searchContact or

it emits the addContactSelected! output action if optioncontacts is equal to add-

Contact.

• From S3 location, the contact name and number are stored in the contactName

and numbercontacts variables through the insert? input action.

• The S4 location allows the termination of the contacts’ addition be communicated

to other subsystems through the donecontacts! output action.

2https://sites.google.com/site/compositionaltioco/

80

• In the S6 location, the system can input the name and number of the user,

storing these information in the contactName and numbercontacts and resetting

this subsystem’s clock.

• From the S7 location, the output action display! emits a contact name within 1s.

• In location S8, the input action select? stores another value for the optioncontacts

and goes to location S9.

• The S9 location allows three different behaviors: i) if optioncontacts equals to

sendMessage, the system outputs the messageAppSelected! action with this op-

tion and the current contact number and goes to location S16; ii) if optioncontacts

is equal to deleteContact, the system executes the deleteContactSelected! output

action and goes to the S13 location; iii) if optioncontacts is equal to editContact,

the system emits the editContactSelected! output action and goes to the S10

location.

• The S13 location receives the confirm? input action and stores it in the answer

variable. If answer equals to yes, from location S14, the delete input action is

executed.

• From location S15, the system can confirm that the contact was deleted by exe-

cuting the donecontacts! output action with the deleteContact value.

• The S10 location allows the storage of information in the optioncontacts and

contactName variables through the insert? input action, also resetting this sub-

system clock.

• From the S11 location, the contact number is shown through the display! output

action if the clock is less or equal to 1s.

• Finally, from location S12, the edition termination of the current contact is com-

municated to other subsystems through the donecontacts! output action.

The Message application offers the features of showing a message or typing data to

be sent later (Figure 5.10).

81

Figure 5.9: Contacts subsystem

• In the initial S17 location, the messageAppSelected? input action receives the

option and phone number, storing these data in the choice and phoneNumber

variables and resets the clock.

• From location S18, there are two possible ways: i) if choice equals to searchMes-

sage, the phone number is sent to other subsystems through the showMessage!

output action, going to location S22 or ii) if choice equals to composeMessage,

the type? input action receives data and stores in the message variable, going to

the S19 location.

• From location S22, the end of the searchMessage process is communicated to

other subsystems through the doneMessage! output action within 2s.

• The S19 location allows the message content and the phone number be sent

through the transmit! output action, resetting the system clock.

• Finally, from location S20, the system communicates that the message was sent

82

Figure 5.10: Message subsystem

to other subsystems.

The Receive Call application is responsible for allowing a cell phone to receive a

call as follows.

• The S24 initial location allows the reception of the numberCall and optioncall

variables through the callSelected? input action.

• From location S25, the system outputs the callReceived! action if optioncall equals

to receiveCall.

• The S26 location allows the system to receive an option within 1s and stores

this value in optioncall variable. From location S27, the system can: i) reject

a call through the reject! output action if optioncall is equal to rejectCall and

goes to location S28; ii) start a conversation through the talk! output action

if optioncall equals to acceptCall and goes to location S30 and iii) activate the

Message application through the messageAppSelected! and inform the option

sendMessage and the phone number being called.

• The S30 location communicates the acceptCall option to other subsystems through

the doneCall! output action.

• From location S28, the system informs to other subsystems that the rejectCall

process was finished.

To illustrate the possible test case scenarios that the tester can create from the com-

posed model, we describe 4 examples of test purposes with the corresponding generated

83

Figure 5.11: Receive Call subsystem

Figure 5.12: Test purpose (a) Figure 5.13: Test purpose (b)

test cases in our site. For each test purpose, the Reject location leads to situations we

want to ignore and the Accept location indicates that test cases following that path shall

be generated. For example, the test purpose (a) from Figure 5.12 leads the generation

of test cases that contain the sequence of output actions sendInterruption!, callSe-

lected!(op, number), messageAppSelected!(op, number) and doneMessage!(op). On the

other hand, this same test purpose ignores the generation of test cases that comprise

the sequence of output actions sendInterruption!, callSelected! and receiveInterrup-

tion!. In this way, we test the scenario where the system lets the user accept the call

and send a message to this calling number.

84

Figure 5.14: Test purpose (c) Figure 5.15: Test purpose (d)

The test purpose (b) ignores each test case that leads to the sequences: i) sendInter-

ruption! and talk!(number); ii) sendInterruption!, reject!(number), receiveInterruption!

and deleteContactSeleted!; iii) sendInterruption!, reject!(number), receiveInterruption!

and messageAppSelected!(op, number). Meanwhile, this test purpose guides the gen-

eration of test cases that contain the sequence sendInterruption!, reject!(number), re-

ceiveInterruption!, editContactSeleted! and display!(info). Hence, we test scenarios

where the user rejects the call and edits the contact after that. Figure 5.13 shows the

corresponding TIOSTS model.

We show test purpose (c) in Figure 5.14 that guides the generation of test cases

where the user accepts a call and deletes a contact, in this order. It allows the gen-

eration of test cases that comprise the sequence of actions sendInterruption!, donecall

when the option acceptCall is selected, receiveInterruption!, deleteContactSeleted! and

delete!(name). It also ignores two sequences of actions: i) sendInterruption!, donecall

when the option acceptCall is selected, receiveInterruption! andmessageAppSelected!(op,

number); and ii) sendInterruption!, donecall when the option acceptCall is selected, re-

ceiveInterruption! and editContactSeleted!.

The test purpose (d) allow the generation of test cases where the user rejects a

call and send a message to that number after that (Figure 5.16). This TIOSTS

guides the generation of test cases that contain the sequence sendInterruption!, re-

85

Figure 5.16: Test case 0 from test purpose (a)

ject!(number), receiveInterruption!, messageAppSelected!(op, number) and showMes-

sageNumber. Meanwhile, it ignores test case generation that contain four sequences of

actions.

We cannot show complete test case examples because of the space required for its

presentation. However, we present a partial description of test case 0 generated from

test purpose (a). Inputs were changed to outputs and vice-versa to reflect inputs and

output from the tester point of view. The full model of this test case is available at

our site.

We present the identification of each test purpose (used in our site) along with the

number of generated test cases and the computation cost in Table 5.2. In the first

scenario, the SYMBOLRT tool generates 12 test cases in 44s. The second scenario

returns 12 test cases in 38s. The third scenario generates 12 test cases in 37s. Finally,

SYMBORLT tool generates 4 test cases in 9s for the fourth scenario.

We implement the system in the Android platform. Moreover, we automate the

execution of test cases by using the Junit framework [Fra14a] and the Robotium frame-

work [Fra14b] under the Eclipse platform. During test case execution, from a startup

activity, Contact and Receive Call activities start. Junit assertions, along with usual

86

Table 5.2: Test purposes and generation time of test cases

Test Purpose Site Identifier # Test Cases Spent Time

(a) sendInterruptionDoneMessage 4 9s

(b) interruptionRejectDelete 12 37s

(c) interruptionEditDisplay 12 38s

(d) interruptionShowMessageNumber 12 44s

conditions checking, checks also if the correct activity starts at the expected time of

composition. Robotium captures user clicks and searches for strings in the screen to

capture message and context changing between applications. Robotium also simulates

phone call receiving.

5.3 Concluding Remarks

We applied the sequential, parallel and interruption operators through realistic exam-

ples. The Avionics system combines subsystems through the sequential and parallel

operators. The Cell Phone system composes subsystems using the interruption and

sequential operators. Along with test cases generated, we introduced hints on the se-

lection of test cases for these systems and exemplified how we use them in complex

applications.

These exploratory studies intended to evaluate the applicability of our integration

testing approach to real-time systems. We showed results towards the generation of

integration test cases. The time used to generate test cases increases with the number

of transitions and locations of a composed model. In addition, big test cases last longer

to be generated than small ones.

87

Chapter 6

Related Works

To base our research, we performed a systematic review on compositional models

[Dam11] and identified few works focusing on the conformance testing for composi-

tional real-time systems. As far as we know, there is no study that aims to generate

test cases from compositional and timed models. Since these systems comprise sym-

bolic timed requirements, the Section 6.2 included conformance testing of untimed and

compositional models.

Moreover, because we did not identify works that focus on symbolic untimed sys-

tems composed by interruptions, we focus on works that do not take composition into

account but address the outcomes of interruptions in reactive systems (Section 6.1).

6.1 Model-based Interruption Testing

Andrade et al. published some papers towards model-based testing of reactive systems.

Their main feature is that they react to external events. In their first work, Andrade

and Machado [AM08] propose a symbolic transition system that stores inputs and

outputs. The Input/Output Symbolic Transition Systems (IOSTS) is composed by

the following sets: input, output and internal actions; locations; typed variables; and

parameters that are communicated through actions.

The test process is guided by test purposes that have the main function of reducing

the generation of the test cases. Test cases are IOSTS models that leads execution to

verdicts, which assume the values Pass, Fail or Inconclusive. These verdicts have the

88

same meaning as in our work.

Also, they use conformance testing to verify if a specification is in accordance to

an implementation by executing test cases. They name their conformance relation as

ioco. In this way, an implementation is in conformance to a specification if for all traces

of the specification, the set of output actions of the specification contains the set of

output actions of the implementation. Interrupt-driven reactive systems is achieved by

adding actions with the label “interrupt” in a test purpose to generate test cases. This

approach was used with the STG tool to perform a case study that uses a subsystem

of a cell phone application.

In addition, Andrade and Machado [AM12; AM09] present the Annotated Labeled

Transition System (ALTS). It is a kind of LTS with specific labels called annotations.

These labels delimits the start and the end of an interruption. The evolution of this

work is threefold: i) presentation of algorithms to translate high level specifications

into the ALTS models, ii) instantiation of a CSP formal model to ALTS test cases, and

iii) presentation of a detailed case study.

Another extension of Andrade’s work [AMAA09] present the TIOSTS model, that

adds clocks to IOSTS. In the sequence, they adapt their strategy to comprise the

notion of time, including the definition of test cases and the tioco conformance relation.

They generate, implement and run test cases by using a real-time operating system.

Additionally, they present some rules to transform the sequence, component and the

state machine diagrams from UML to TIOSTS models.

The interruption testing approach used by these works start from an untimed model

which evolves to a timed symbolic transition system. If we take the timed model into

account, Andrade’s work differs from our work because their model include a set of

internal actions. Also, subsystems cannot use an operator. Their interrupt-driven

strategy is based on rules that represent interruptions in a single model. In spite of our

work, they do not study compositional issues and consequences about the conformance

relations on interruptions.

89

6.2 Model-based Compositional Testing

We split compositional model-based testing approach in untimed (Sections 6.2.1 to

6.2.6) and timed (Sections 6.2.7 to 6.2.9).

6.2.1 Bijl et al.

Bijl et al. [BRT04] work on compositional properties for conformance testing of untimed

systems. They use the Input-Output Transition System (IOTS), which is a input-

complete LTS. This model considers internal actions by using the τ action. Also, it

allows quiescence, meaning that it contains states where no outputs are enabled and

the system is forced to wait until an input is provided.

The composition of IOTS is performed by using the hiding and parallel operators.

The hiding operator replaces each action from a predefined set by the τ action. A

consequence from this composition is that hidden actions cannot be seen by subsystems

which are outside the composition. Oh the other hand, the parallel operator follows

the same line of reasoning of other common operators, where uncommon action to both

systems are interleaved by a Cartesian product and common actions are synchronized,

resulting in an output action in the composed system. They restrict the operator to a

binary parallel composition, forcing the correspondence between synchronizing actions

to happen in pairs. Initial results show that even if subsystems are livelock-free, the

composed system may not be.

The authors present the ioco conformance relation that is suitable for IOTS, proving

some properties for the compositional operators. They point out that the hiding and

parallel operators do not preserve the conformance relation from subsystems to the

composed system because ioco allows underspecification of inputs. Nevertheless, this

limitation is surpassed by restricting subsystems in two ways: i) use an input-complete

process to avoid underspecification of inputs (named demonic completion) or ii) define

a conformance relation weaker than ioco to preserve conformance from subsystems to

the composed system. Following the first idea, they suggest an input-complete process

that leads non-specified inputs to states that do not belong to the original subsystems.

Once that the underspecification of inputs is avoided, the ioco conformance relation is

90

preserved from subsystems to the composed system.

From this perspective, they conclude that inferring ioco conformance from subsys-

tems is suitable to prove properties on the composed systems, reducing efforts and

costs. They suggest that systems can be composed by the parallel operator, and a

second step is to apply the hiding operator to isolate actions from other systems. The

hiding of actions delimits system components, which simplifies the testing process of

complex systems.

When compared to our work, Bijl et al. present a model that is not symbolic and

does not store time requirements, so the state explosion problem remains unsolved and

real-time systems cannot be tested. Although they contribute with a testing approach,

they do not implement it in a tool. However, their approach can be adapted to ours

by creating a hiding operator to TIOSTS models.

6.2.2 Daca et al.

Daca et al. [DHKN14] propose a new approach to preserve the ioco conformance

relation from subsystems to the composed system in the context of IOLTS systems.

They use the IOLTS model, which is an LTS that comprises internal actions, quiescence

and input and output actions.

They define new versions of the parallel and hiding operators inspired by contract-

based design and interface theories. These operators are suitable for subsystems that

allow underspecification of input actions and work by suppressing inputs and outputs

that lead to incompatible interactions between subsystems. With this, they show that

the their operators preserves the ioco conformance relation from subsystems to the

composed system. Besides that, they formalize their approach, applied in a case study

and compare with the demonic input-completion proposed by Bijl et al. [BRT04].

Results show that they generated composed systems with fewer transitions and states,

lessening the effort to generate test cases.

When compared to our approach, Daca et al. work present similar issues to Bijl et

al.. The restriction of the untimed and non-symbolic model limits its usage to real-time

systems with the state explosion problem. However, we believe that their approach to

preserve conformance from subsystems to the composed can be adapted to our strategy.

91

6.2.3 Sampaio et al.

Sampaio et al. [SNM09] use the CSP language that combines processes by using com-

positional operators. They establish compositional properties for the cspio conformance

relation based on traces model of the CSP language. However, if we take semantics

into consideration, input and output actions do not differ.

The authors define the I/O process as the basic element of a new algebra based

on CSP. They compare the ioco conformance relation presented in [BRT04] and cspio.

They map LTS to CSP processes and show that ioco is equivalent to cspio. The mapping

preserves LTS traces and quiescent states. In the sequence, they define the I/O parallel,

I/O hiding and I/O choice operators that belong to this algebra and define trace

semantics of some CSP operators. Finally, they prove that I/O operators preserve the

cspio conformance relation from input-complete subsystems to the composed system.

An extension of this work is presented in [SNMI14]. They define the I/O hiding

operator and state general compositionality properties for each operator by requiring

input-completeness of composites. Regarding the I/O choice operator, they relax this

property when an implementation conforms to a set of partial specifications. In ad-

dition, they mechanize proofs by using and automatic theorem prover. At last, they

evaluate test cases effectiveness by using a cell phone application and fault-based test-

ing. They show that the ioco and cspio approaches achieve similar performance in

terms of time.

Because Sampaio et al.’s work focuses on the ioco conformance relation, we observe

some similarities to our work. They define a set of compositional operators for I/O

processes, including the parallel operator. Yet, they relate their theory to conformance

testing, use mechanized proofs and demonstrate practical implications of their theory.

Nevertheless, our operators are suitable for timed symbolic models. Since they use

CSP refinement to test systems and we generate test cases from models, we consider

both works different.

92

6.2.4 Briones

Most authors require that subsystems be input-enabled to infer ioco conformance from

subsystems to the composed system. Nevertheless, Briones [Bri10] presents a solution

which focuses on assume-guarantee reasoning. Knowing that subsystems follow a pat-

tern, this work uses the divide and conquer approach to conclude some behavior on

the composed system.

The author gives assumptions on the parallel and hiding operators when used with

IOTS models. However, if subsystems are strongly convergent (they do not have infi-

nite sequences of actions), the composed system may not be. Regarding the parallel

operator, given four IOTS models A, S, i1 and i2 under some restrictions, if i1 ‖ A ioco

S ∧ i2 ioco A, then i1 ‖ i2 ioco S. As a consequence, if A is provided, we can test i1

and i2 in isolation and assume that i1 ‖ i2 ioco S. Also, considering a set of actions V

and hide to be the hiding operator, if hide V in i1 ‖ A ioco S ∧ i2 ioco A, then hide V

in i1 ‖ i1. This allow the testing of interfaces between components without performing

big changes in the system.

When compared to our work, Briones uses a different conformance relation that

does not comprise time requirements and symbolic models. Although she considers

a case study, she does not implement her approach in a tool and does not show test

cases.

6.2.5 Aiguier et al.

Aiguier et al. [ABK12] model software components which are independent of any

computational structure. They use a type of algebra to model each one, comprising

determinism and non-determinism. Moreover, they define two integration operators:

Cartesian product and feedback, that can be used to build other systems by composi-

tion.

The Cartesian product operator follows the same reasoning of other operators from

Mathematics. It generates a composition where components are executed simulta-

neously when they are matched in pairs. The feedback operator is a compositional

operator where inputs and outputs from components are linked. This link can be

93

simultaneous or not, splitting this operator in two kinds. The first is the relaxed feed-

back, happening when a previous input depends on a current input. The second one

is the synchronous feedback that matches inputs when both are available.

These two integration operators compose more complex operators: sequential, syn-

chronous product and concurrent composition. The sequential operator connects two

components sequentially disposed and the second one needs the outputs of the first to

begin. The synchronous product results in a composition where components can be

executed independently or jointly and linked by input and output actions. The con-

current composition adds the execution of other component after the synchronization

is performed.

Besides defining components and operators, the authors propose the cioco con-

formance relation that is suitable for components and is based on ioco. They show

that cioco is preserved from subsystems to the composed system. However, the input-

completeness of specifications is need for the feedback operator. They define a test

framework to be used with components and cioco which is guided by test purposes.

Finally, they present detailed proofs towards their results.

Despite defining a testing framework, the authors do not implement their theory

in a tool. In addition, they do not show test cases generated from models. They

also defined the sequential operator and variations of the parallel operator, but no

definition of the interruption operator is found. In spite of our work, they are based

on components that do not handle symbolic data, focusing on a different scope.

6.2.6 Faivre et al.

Faivre et al. [FGG07] proposes an approach to deal with component-based specifica-

tions modeled by the Input/Output Symbolic Transition Systems (IOSTS). This model

embodies quiescence and internal actions. In addition, they present a conformance test-

ing theory for components with the hiding and renaming operators.

The authors show how to use components in a ioco conformance testing process

that uses symbolic execution to compute the behavior of subsystems and test purposes

to narrow test generation. Besides Fail, Pass and Inconclusive, they add the weakpass

verdict that means that the specification behavior belongs to the test purpose and

94

to a path which is not in the test purpose. This theory is exemplified in a system

representing a slot machine.

This work uses symbolic models, but time requirements are not taken into account

because the ioco conformance relation is used. Besides, to the best of our knowledge, the

authors do not present proofs nor implemented a tool to be used with their approach.

6.2.7 Olderog and Swaminathan

Olderog and Swaminathan [OS10] studied distributed real-time systems that are ex-

ecuted in multiple platforms and each action depend one of another within time. To

model system behavior, they use a version of Timed Automata. This model stores

sets of clocks, locations, actions and transitions. Besides, the model embraces sets

of invariants, which are mappings from locations to zone clocks that have the upper

bounds ≤ and <.

In order to compose subsystems, the authors define three kinds of compositional

operators: sequential, parallel and layered. The sequential and parallel operators fol-

lows the CSP style, so the sequential operator allows the execution of actions from the

first model and in the sequence includes actions from the second one. The parallel op-

erator lets common actions to both subsystems synchronize and disjoint actions follows

a Cartesian product, leading to interleaving.

The layered operator modifies the parallel operator by including the concept of

independent actions during interleaving. Independent actions fill the enabledness and

commutativity conditions. Commutativity means that two different execution order

of actions lead to the same state of the distributed system. Enabledness implies that

one action does not prevent the execution of another. Each set of independent actions

composes a layer, and the next layer is executed after the current one finishes. Besides

synchronizing actions, the layered operator takes dependent and independent actions

into account.

The authors use a real-time system that specifies an audio/video collision avoidance

protocol to perform a case study by using the parallel and sequential operators. They

use the UPPALL tool to model the protocol as a network of timed automata, resulting

in a model with 7000 locations. They reduce the number of locations from the model

95

in 300 locations by using the operators and the approach they develop.

This work is similar to our work because it defines the sequential and parallel

compositional operators for models that stores time. Nevertheless, they have a different

scope, since they focus on distributed systems and the shared memory paradigm. Also,

their model do not store data and do not allow test case generation from it. Besides,

it obligates the usage of a final location, which may be inconvenient to some systems

as there are distributed systems that continually executes.

One advantage is that their version of the sequential operator does not constrain

subsystems to fit a normal form. This happens because the final location of the first

subsystem and the first location of the second subsystem are replaced by a new location

in the composed model that links the two subsystems. On the other hand, the clocks

of the second system are not reset during the composition, changing the behavior

of the second subsystem, since the composed system force the overall clocks to start

functioning from the beginning of the first subsystem.

6.2.8 Krichen and Tripakis

Krichen and Tripakis [KT06] use the TAIO (Timed Automata with Inputs and Out-

puts) to study the conformance testing of timed systems. This model embraces sets

of: states, clocks, inputs actions, output actions and transitions.

This work aims at presenting some characteristics of the tioco conformance relation.

Among many properties, the authors show that tioco is compositional under the parallel

and hiding operators if specifications are input-complete and the intersection between

clocks is empty.

We understand that our work has a practical appeal when compared to Krichen

and Tripakis’s work because we develop case studies and an approach implemented in

a tool. In addition, the TAIO model derives from finite automata, while the TIOSTS

model derives from Transition Systems [AD94; Mil99; BK+08]. Transistion systems

characterize the notion of observation and interaction. They have syntax, that give

support for modeling, and semantics, which bases calculation. When compared to

finite automata, transition systems: i) do not contain a set of final states; ii) may

have a countable and finite set of actions and states; iii) may contain an infinite set of

96

transitions and iv) have the set of actions that may be subject to synchronization.

6.2.9 Bannour et al.

Bannour et al. [BGAL13] study compositionality properties for the tioco conformance

relation by using the parallel operator. They use TIOLTS, a timed version that extends

the LTS model. Besides, they include the notion of durations, an isomorphic set to

strictly positive real numbers that represent clock values. In this sense, this model is

a labeled transition system over actions and durations.

The compositionality of tioco is studied under a version of the parallel operator

that synchronize on common actions and perform a Cartesian product on uncommon

actions. It requires that the intersection between the set of input actions from both

models be empty, as well as the set of output actions. Besides, the set of durations

must be common to them.

The local consistency of a composed system S1 ‖ S2 states that if there are traces

which are similar in the subsystems, the system will continue these traces with the

same input and outputs, or allow for the same amounts of time to elapse. Assuming

two implementations I1 and I2, omitting some terms about time requirements from

the original definition and the local consistency of S1 ‖ S2, the authors assures that I1

tioco (S1 ‖ S2) ∧ I2 tioco (S1 ‖ S2) ⇒ (I1 ‖ I2) tioco (S1 ‖ S2). Besides, if (I1 ‖ I2)

¬tioco (S1 ‖ S), it is assumed that a subsystem implementation is not tioco conformant

to its composed specification.

An algorithm to check local consistency property is defined and the theory is illus-

trated in an example. Also, the authors present some steps towards symbolic execution

of compositional systems and how this algorithm can be used to check local consistency.

The TIOSTS model from Bannour work is similar to our version, but they add the τ

internal action. However, we did not identify the usage of parameters that communicate

variable values between subsystem, implying that they use data variables to perform

this task. Their assumption about preservation of the tioco conformance relation for

the parallel operator is different from ours because they need a common set of clocks

between subsystems. Besides, there is no work towards the sequential and interruption

operator. Finally, we did not identify the usage of a tool or test cases generated from

97

their approach.

6.3 Concluding Remarks

Model-based testing of compositional untimed systems has been extensively addressed

in the literature. Most works intend to verify conformance of the composed implemen-

tation by assuring properties on the subsystems. The main advantage of this approach

is to avoid building the composed system, lessening costs and computational effort.

Table 6.1 shows a summary of related works. We compare them according to the

following items: model, conformance relation, compositional operator(s) and if the

approach uses or not a tool. Most works use the ioco conformance relation, symbolic

models, and few of them use tools integrated to their approach. Moreover, all the works

that make use of compositional operators also adopt versions of the parallel operator.

Frequently, the preservation of conformance relations from subsystems to the com-

posed system is assumed to be correct under restricted conditions. Some works assume

specifications to be input-complete to avoid a common problem of conformance re-

lations based on ioco: the underspecification of inputs, leading to an unpredictable

behavior. The solution to this problem is threefold: i) the specification is changed

to an input-complete process, ii) inputs are pruned or iii) subsystems must fill some

conditions to be part of a compositional system.

Some research has been devoted to model-based testing of compositional real-time

systems. Nevertheless, since tioco is an extension of ioco, the underspecification of

inputs is a problem from tioco which is inherited from ioco. Hence, applications of

these proposed solutions in the tioco theory needs further investigation.

To the best of our knowledge, there are three works that study compositional prop-

erties of the tioco conformance relation: Olderog and Swaminathan, Bannour et al.

and Krichen and Tripakis. All of them use the parallel operator to study the outcomes

of tioco under compositionaly, but they used different pre-conditions for subsystems.

While Krichen and Tripakis and Olderog and Swaminathan’s work require the set of

clocks from both subsystems to be empty, Bannour et al. assume the same set of

clocks.

98

Table 6.1: Summary of works

Work Model Conformance

relation

Compositional

operator(s)

Tool

Andrade et al. IOSTS ioco No Yes

Bijl et al. IOTS ioco Parallel and hid-

ing

No

Daca et al. IOLTS ioco Parallel and hid-

ing

No

Sampaio et al. I/O process cspio Parallel, hiding

and choice

Yes

Briones IOTS ioco Parallel and hid-

ing

No

Aiguier et al. Components cioco Feedback and

Cartesian prod-

uct

No

Faivre et al. IOSTS ioco Hiding and re-

naming

No

Olderog and

Swaminathan

TA tioco Sequential, par-

allel, layered

No

Krichen and Tri-

pakis

TAIO tioco Parallel and hid-

ing

No

Bannour et al. TIOSTS tioco Parallel No

99

Chapter 7

Concluding Remarks

This chapter sums up our main contributions (Section 7.1) and suggests future works

(Section 7.2).

7.1 Main Results

The main goal of this research is to provide a framework for composing timed and

symbolic models that represent real-time systems. The composed specifications are

used to generate test cases. Subsystems use the TIOSTS model, which is a symbolic

transition system that stores data and clock information [AMJM11]. To compare

implementations and specifications, we use the tioco conformance relation. We define

the sequencial, interruption and parallel operators and restrict our study to real-time

systems that use the message-passing communication paradigm. Moreover, we infer

compositional properties on these operators and provide an integration testing strategy

suitable to the composed systems.

In this context, we answer the research questions from Section 1.2 by using the

results presented in Chapters 3 and 5 as follows:

Research Question 1 How symbolic models of real-time systems that abstract data

and time can be composed?

We presented the parallel, sequential and interruption operators for the TIOSTS

model and introduced them by examples. The sequential operator resembles system

100

level composition of subsystems that represent independent activities where one sub-

system uses a final result produced by another. The parallel operator can be applied

to compose subsystems whose execution is independent (in terms of resource sharing)

but communication is required based on synchronization of input-output actions. The

interruption operator is used when the interrupted system resumes its execution after

interruption handling finishes.

Research Question 2 What are the main challenges to infer conformance of the

composed system based on conformance of composites?

We used the tioco conformance relation to study implications of conformance from

subsystems to the composed systems. The preservation of the conformance relation

depends on the compositional operator. The sequential and interruption operators

preserve the conformance relation as long as subsystems fill predefined normal forms.

Conversely, the parallel operator preserves the conformance relation if subsystems are

input-complete and implementations and specifications have the same set of outputs.

Research Question 3 How can integration test cases be generated from composed

models?

We use the test generation process described by Andrade et al [AM13] to generate

test cases. It requires two main inputs: a specification and a test purpose. We generate

specifications by using our compositional operators and giving advices on how to choose

test purposes that lead to integration test cases.

Since we are restricting systems to the message-passing paradigm, we identified

subsystems interactions by determining the synchronizing actions they have in com-

mon. So, if an action from different subsystems has the same label and conjugated

input/output action types, we assume that these subsystems synchronize on them.

Hence, these actions are used to build the test purposes that guide the generation of

the interaction test cases.

Unfortunately, the tioco conformance relation is not preserved from its isolated sub-

systems to the composed system. Nevertheless, this does not mean that composition

is useless, since the purposes of composition for testing are twofold: inferring confor-

mity of the composed implementation with regard to the composed specification and

101

generating integration test cases. The latter can be always performed in spite of the

former.

And so we performed composition of subsystems to be used in a test case gener-

ation process. This work provides fundamental background towards an approach to

test compositional real-time systems. It contributes to improve the applicability of

the TIOSTS model in the context of integration testing, focusing on interruption, se-

quential and parallel compositions. In addition, it defines compositional properties of

the tioco conformance relation from subsystems to the composed system. Finally, it

presents an input-completion approach that may be applied to subsystems when the

tioco conformance relation is inferred from subsystems to the composed systems.

Our work has some limitations. First, we do not use test purposes with time re-

quirements in our test generation strategy because of some limitations the temporal

properties may provide. Second, we do not offer a declarative notation for the compo-

sitional operator to be used with the tool because of lack of specialized people to give

code support during the development of this work. In addition, our tool is restricted

to deterministic real-time systems because we use an offline approach to generate test

cases, limiting the algorithms used in the test case generation process [HLM+08]. Fi-

nally, our composition scope is restricted to two subsystems because the operators we

propose are binary, allowing only two subsystems to be composed.

7.2 Future Works

After presenting our contributions, we point out some future works:

Extension of our compositional framework If we take into account compositional

approaches from conventional language specifications, we can define other com-

positional operators to be used with the TIOSTS model. First, we suggest the

addition of the renaming operator, which is responsible for replacing a set of

actions by others. The second may be the choice operator, allowing two subsys-

tems to be composed by more branches while corresponding each one to a single

action. The third is the if-else operator that resembles to a boolean conditional

command from classic programming languages. The fourth is the timeout oper-

102

ator that interrupts a subsystem depending on which time is passed, in contrast

to the interruption operator that interrupts a subsystem if an action is executed.

Finally, the hiding operator may be added to this framework in order to allow

some actions to be internal to a subsystem. However, before adding this operator,

we need to modify the TIOSTS definition to include the internal action τ .

Solutions to surpass non-conformity We indicate the adoption of approaches to

overcome the non-conformance problem that tioco presents for some composi-

tional operators [KT06; BGAL13], allowing compositions to be more widely ap-

plicable. Alternatively to using the input-completion process presented in Section

3.3, we suggest the adaptation of approaches presented for the ioco conformance

relation to our work, like the definition of a weaker conformance relation (pre-

sented in [BRT04]) or the use of friendly environments (defined in [DHKN14]).

Perform further exploratory studies We suggest the application of the operators

and the testing approach to more exploratory studies in order to identify limita-

tions and outcomes.

Implementation of a testing architecture Since we provide the generation of mod-

els that represent test cases, we suggest the development of a testing architecture

under the Android platform [Dev14] that supports compositional test case im-

plementation and execution. Along with this work, we suggest the definition of

transformation rules from TIOSTS to commands from the Android platform and

the development of frameworks devoted to the application of these operators in

other practical software development environments.

Detailed proofs We suggest to detail proofs by using an automated theorem prover

to guarantee proofs validity.

103

Bibliography

[98914a] ISO/IEC 9899:1990. http://www.iso.org/iso/iso_catalogue/

catalogue_ics/catalogue_detail_ics.htm?csnumber=17782, 2014.

Accessed: 12-15.

[98914b] ISO/IEC 9899:2011. http://www.iso.org/iso/home/store/

catalogue_ics/catalogue_detail_ics.htm?csnumber=57853, 2014.

Accessed: 12-15.

[AACM12] Wilkerson L. Andrade, Diego R. Almeida, Jeanderson B. Cândido, and

Patŕıcia D. L. Machado. SYMBOLRT: A Tool for Symbolic Model-Based

Test Case Generation for Real-Time Systems. In 19th Tools Session of

the 3rd Brazilian Conference on Software: Theory and Practice (CBSoft

2012), pages 31–37, 2012. Best Tool Award.

[ABK12] Marc Aiguier, Frédéric Boulanger, and Bilal Kanso. A formal abstract

framework for modelling and testing complex software systems. Theoret-

ical Computer Science, 455:66–97, October 2012.

[AD94] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical

computer science, 126(2):183–235, 1994.

[AM08] Wilkerson Lucena Andrade and Patricia Duarte Lima Machado. Model-

ing and testing interruptions in reactive systems using symbolic models.

SAST, 8:34–43, 2008.

[AM09] Wilkerson Lucena Andrade and Patricia Duarte Lima Machado. Inter-

ruption Testing of Reactive Systems. Formal Methods: Foundations and

Applications, pages 37–53, 2009.

104

[AM12] Wilkerson Lucena Andrade and Patricia Duarte Lima Machado. Test-

ing interruptions in reactive systems. Formal Aspects of Computing,

24(3):331–353, 2012.

[AM13] W.L. Andrade and P.D.L. Machado. Generating test cases for real-time

systems based on symbolic models. Software Engineering, IEEE Trans-

actions on, 39(9):1216–1229, Sept 2013.

[AMAA09] Wilkerson Lucena Andrade, Patricia Duarte Lima Machado, Everton Le-

andro Galdino Alves, and Diego Rodrigues Almeida. Test case generation

of embedded real-time systems with interruptions for FreeRTOS. In For-

mal Methods: Foundations and Applications, pages 54–69. Springer, 2009.

[AMJM11] Wilkerson L. Andrade, Patricia D. L. Machado, Thierry Jéron, and Herve

Marchand. Abstracting time and data for conformance testing of real-time

systems. In Proceedings of the 2011 IEEE ICST Workshops, pages 9–17,

Washington, DC, USA, 2011. IEEE.

[BBJ02] George Boolos, John P Burgess, and Richard C Jeffrey. Computability

and logic. Cambridge university press, 2002.

[BCDK12] G Blair, G Coulouris, J Dollimore, and T Kindberg. Distributed Systems:

Concepts and Design. Boston: Addison-Wesley, 2012.

[bG14] Language Standards Supported by GCC. https://gcc.gnu.org/

onlinedocs/gcc/Standards.html, 2014. Accessed: 12-15.

[BGAL13] B. Bannour, C. Gaston, M. Aiguier, and A. Lapitre. Results for composi-

tional timed testing. In Software Engineering Conference (APSEC, 2013

20th Asia-Pacific, volume 1, pages 559–564, Dec 2013.

[Bin00] Robert Binder. Testing Object-oriented Software Testing: Models, Pat-

terns, and Tools. Addison-Wesley Professional, 2000.

[BJSK11] Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez Krichen.

Off-line test selection with test purposes for non-deterministic timed au-

105

tomata. In Proceedings of TACAS’11/ETAPS’11, pages 96–111. Springer-

Verlag, 2011.

[BK+08] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking,

volume 26202649. MIT press Cambridge, 2008.

[Bri10] L B Briones. Assume-guarantee reasoning with ioco testing relation. on

Testing Software and Systems: Short Papers, pages 103–108, 2010.

[BRT04] Machiel Bijl, Arend Rensink, and Jan Tretmans. Compositional testing

with ioco. In Alexandre Petrenko and Andreas Ulrich, editors, Formal Ap-

proaches to Software Testing, volume 2931 of Lecture Notes in Computer

Science, pages 86–100. Springer Berlin Heidelberg, 2004.

[BY04] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and

tools. Lectures on Concurrency and Petri Nets, pages 87–124, 2004.

[CT05] Richard H Carver and Kuo-Chung Tai. Modern multithread-

ing: implementing, testing, and debugging multithreaded Java and

C++/Pthreads/Win32 programs. John Wiley & Sons, 2005.

[Dam11] Adriana Carla Damasceno. A Systematic Review on Compositional Mod-

els. Technical Report SPLAB-2011-003, Available at http://splab.

computacao.ufcg.edu.br/publications/technical-reports, 2011.

[Dev14] Android Developers. http://developer.android.com/, 2014. Accessed:

2014-06-04.

[DFM09] Adriana Damasceno, Adalberto Farias, and Alexandre Mota. A mecha-

nized strategy for safe abstraction of csp specifications. In Formal Meth-

ods: Foundations and Applications, pages 118–133. Springer, 2009.

[DHKN14] Przemyslaw Daca, Thomas A Henzinger, Willibald Krenn, and Dejan

Ničković. Compositional specifications for ioco testing. In Proceedings

of IEEE International Conference on Software Testing, Verification and

Validation, volume 7, pages 373–382. IEEE, 2014.

106

[DMJ07] Márcio Eduardo Delamaro, José Carlos Maldonado, and Mario Jino. In-

trodução ao teste de software. Elsevier, 2007.

[DNSVT07] A.C. Dias Neto, R. Subramanyan, M. Vieira, and G.H. Travassos. A

survey on model-based testing approaches: a systematic review. In Pro-

ceedings of the 1st ACM international workshop on Empirical assessment

of software engineering languages and technologies: held in conjunction

with the 22nd IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE) 2007, pages 31–36. ACM, 2007.

[EPHJ07] Sigrid Eldh, Sasikumar Punnekkat, Hans Hansson, and Peter Jönsson.

Component testing is not enough-a study of software faults in telecom

middleware. In Testing of Software and Communicating Systems, pages

74–89. Springer, 2007.

[FGG07] Alain Faivre, Christophe Gaston, and Pascale Le Gall. Symbolic Model

based Testing for Component Oriented Systems. Testing of Software and

Communicating Systems, pages 90–106, 2007.

[Fra14a] JUnit Framework. http://junit.org/, 2014. Accessed: 2014-06-04.

[Fra14b] Robotium Framework. https://code.google.com/p/robotium/, 2014.

Accessed: 2014-06-04.

[Gal04] Daniel Galin. Software quality assurance: from theory to implementation.

Pearson education, 2004.

[Gar05] Angelo Gargantini. Conformance testing. In Manfred Broy, Bengt Jon-

sson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner,

editors, Model-Based Testing of Reactive Systems, volume 3472 of Lecture

Notes in Computer Science, pages 87–111. Springer Berlin Heidelberg,

2005.

[Hal60] Paul Richard Halmos. Naive set theory. Springer Science & Business

Media, 1960.

107

[HLM+08] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen,

Paul Pettersson, and Arne Skou. Testing real-time systems using UP-

PAAL. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman,

editors, Formal Methods and Testing, volume 4949 of LNCS, pages 77–117.

Springer, 2008.

[IM04] WT Ingram and William Mahavier. Mathematics and computer science.

2004.

[Jec78] Thomas J Jech. Set theory, volume 79. Academic press, 1978.

[JP14] Standard Edition 8 API Specification Java Platform. http://docs.

oracle.com/javase/8/docs/api/, 2014. Accessed: 2014-06-04.

[Kic14] Nico Kicillof. What is model-based testing?, October 2014. Avail-

able at http://blogs.msdn.com/b/specexplorer/archive/2009/10/

27/what-is-model-based-testing.aspx.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, July 1976.

[Kop11] H. Kopetz. Real-time systems: design principles for distributed embedded

applications, volume 25. Springer, 2011.

[KT06] Moez Krichen and Stavros Tripakis. Interesting properties of the real-

time conformance relation tioco. Theoretical Aspects of Computing, pages

317–331, 2006.

[KT09] M. Krichen and S. Tripakis. Conformance testing for real-time systems.

Formal Methods in System Design, 34(3):238–304, 2009.

[Lap09] P.A. Laplante. Real-Time Systems Design & Analysis. Wiley-India, 2009.

[Li03] Jing Li. Real time concepts for embedded systems. Taylor & Francis US,

2003.

[LTX01] Louise Lorentsen, Antti-pekka Tuovinen, and Jianli Xu. Modelling Feature

Interactions in Mobile Phones. FICS, 2001.

108

[LVLG90] C.D. Locke, D.R. Vogel, L. Lucas, and J.B. Goodenough. Generic avionics

software specification. Technical report, DTIC Document, 1990.

[M+65] Gordon E Moore et al. Cramming more components onto integrated cir-

cuits, 1965.

[Mil99] Robin Milner. Communicating and mobile systems: the pi calculus. Cam-

bridge university press, 1999.

[OS10] Ernst-Rüdiger Olderog and Mani Swaminathan. Layered composition for

timed automata. In Proceedings of the 8th international conference on

Formal modeling and analysis of timed systems, FORMATS’10, pages 228–

242, Berlin, Heidelberg, 2010. Springer-Verlag.

[Pac11] Peter Pacheco. An introduction to parallel programming. Elsevier, 2011.

[PHL+11] Jan Peleska, Artur Honisch, Florian Lapschies, Helge Löding, Hermann

Schmid, Peer Smuda, Elena Vorobev, and Cornelia Zahlten. A real-world

benchmark model for testing concurrent real-time systems in the automo-

tive domain. In Burkhart Wolff and Fatiha Zäıdi, editors, Testing Software

and Systems, volume 7019 of Lecture Notes in Computer Science, pages

146–161. Springer Berlin Heidelberg, 2011.

[Sca14] SCARLETT Scalable and Reconfigurable Eletronics Platforms and Tools.

http://www.scarlettproject.eu, 2014. Accessed: 2014-06-04.

[SNM09] A. Sampaio, S. Nogueira, and A. Mota. Compositional verification of

input-output conformance via csp refinement checking. Formal Methods

and Software Engineering, pages 20–48, 2009.

[SNMI14] Augusto Sampaio, Sidney Nogueira, Alexandre Mota, and Yoshinao Isobe.

Sound and mechanised compositional verification of input-output confor-

mance. Software Testing, Verification and Reliability, 24(4):289–319, 2014.

[Tan07] Andrew S Tanenbaum. Modern operating systems. Prentice Hall Press,

2007.

109

[TR11] Omer Nguena Timo and Antoine Rollet. Test selection for data-flow re-

active systems based on observations. In 2011 IEEE Fourth International

Conference on Software Testing, Verification and Validation Workshops

(ICSTW), pages 1–8. IEEE Computer Society, March 2011. 7th Workshop

on Advances in Model Based Testing (A-MOST 2011).

[Tre99] J. Tretmans. Testing concurrent systems: A formal approach. CON-

CUR’99 Concurrency Theory, pages 779–779, 1999.

[UL07] Mark Utting and Bruno Legeard. Practical Model Based Testing: A Tools

Approach. Elsevier, 2007.

[Val98] Antti Valmari. The state explosion problem. In Wolfgang Reisig and

Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, vol-

ume 1491 of Lecture Notes in Computer Science, pages 429–528. Springer

Berlin Heidelberg, 1998.

[Vea13] Margus Veanes. Applications of symbolic finite automata. In Implemen-

tation and Application of Automata, pages 16–23. Springer, 2013.

[vSBS10] Sabrina von Styp, Henrik Bohnenkamp, and Julien Schmaltz. A con-

formance testing relation for symbolic timed automata. In Krishnendu

Chatterjee and Thomas Henzinger, editors, Formal Modeling and Anal-

ysis of Timed Systems, volume 6246 of LNCS, pages 243–255. Springer

Berlin / Heidelberg, 2010.

[You08] Michal Young. Software testing and analysis: process, principles, and

techniques. John Wiley & Sons, 2008.

[ZHHL11] Yongxin Zhao, Yanhong Huang, Jifeng He, and Si Liu. Formal Model

of Interrupt Program from a Probabilistic Perspective. 2011 16th IEEE

International Conference on Engineering of Complex Computer Systems,

16:87–94, April 2011.

110

Appendix A

Proofs

We present proofs for theorems on compositionality properties of the tioco conformance

relation and the sequential, interruption and parallel operators, introduced in Chapter

3. The style of our proofs follows a textual representation, which is based on Krichen

and Tripakis [KT09], Bjil et al. [BRT04] and the general guidelines presented by [IM04].

Proofs are conducted on the numbered cases the operator may result when com-

posing subsystems. These steps are strongly based on the normal forms and definitions

of each operator (Chapter 3). Supporting operators and background definitions – for

instance traces and TIOLTS definitions – are introduced in Section 2.3.2.2. Since toy

examples were used to introduce normal forms and operators definition, we repeat them

in each section and suggest the reader to follow proof steps based on them.

A.1 Theorem 2

In general terms, proof of Theorem 2 is divided in five steps: i) Assume that subsystem

implementations are tioco conformant to their subsystem specifications, ii) Apply tioco

definition Assumption i), iii) Correspond the TIOSTS model used in the sequential

operator definition to the TIOLTS model used by the tioco definition, iv) Use previous

steps to prove that every possible trace of the composed implementation is contained in

the composed specification, using the normal form of the operator, which is exemplified

in Figure A.1.

111

Figure A.1: Toy example for the sequential composition

Theorem 2 (tioco Sequential Composition). Let S1 and S2 be specifications and I1,

I2 be implementations modeled by TIOSTSs that meet Definition 9. If I1 tioco S1 ∧I2

tioco S2 then I1;ac1 I2 tioco S1;ac1 S2.

Proof. According to Definition 7, we need to prove that:

∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after σ1) ∧

∀ σ2 ∈ Traces(S2): Out(I2 after σ2) ⊆ Out(S2 after σ2) ⇒

∀ σ ∈ Traces(S1;ac1 S2): Out(I1;ac1 I2 after σ) ⊆ Out(S1;ac1 S2 after σ)

To correspond TIOLTS states (Definition 5) used by Traces to TIOSTS locations

(Definition 4) used by the sequential operator and improve this proof readability, let

TIOLTS [[S1;ac1 S2]] = 〈S, S
0, Act, T 〉 and S(l0

c1
,l0
2
) = {〈l, ν, ψ〉|〈l, ν, ψ〉 ∈ S ∧ 〈l, ν, ψ〉

〈a,γ〉
−→

〈(l0c1, l
0
2), ν

′, ψ′〉}. In addition, σ, ρ ∈ Traces(S1;ac1 S2) and σ = ρ · a. By Definition 6,

S1;ac1 S2
ρ·a
→ and ρ · a ∈ Traces(S1 ;ac1 S2). From Definition 9, σ is fivefold:

i) σ = ǫ

We replace σ by ǫ in Definition 7, resulting in Out(I1 after σ1) ⊆ Out(S1 after σ1)

∧ Out(I2 after σ2) ⊆ Out(S2 after σ2) ⇒ Out(I1;ac1 I2 after ǫ) ⊆ Out(S1;ac1 S2

after ǫ). Since ǫ belongs to any set of traces, this trivially holds.

ii) σ = ρ · a with a ∈ Σ1 ∧ s 6∈ S(l0
c1
,l0
2
)

112

We use (3.1) from Definition 9, resulting in ρ = σ1 and σ1 · a ∈ Traces(S1 ;ac1 S2).

Because we assume that ∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after σ1),

we have ∀ σ1 · a ∈ Traces(S1 ;ac1 S2): Out(I1;ac1 I2 after σ1 · a) ⊆ Out(S1;ac1 S2

after σ1 · a) and, by Definition 7, I1;ac1 I2 tioco S1;ac1 S2.

iii) σ = ρ · a with a ∈ Σ1 ∧ s ∈ S(l0
c1
,l0
2
)

We use (3.3) from Definition 9, resulting in ρ = σ1, a 6= ac1 and σ1 · a ∈ Traces(

S1 ;ac1 S2). Since we assume ∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after

σ1) and S1 and S2 follow SC normal form from Definition 8, we have ∀ σ1 · a ∈

Traces(S1;ac1 S2): (S1;ac1 S2 after σ1 · a) = {〈l, ν, ψ〉|l = (l0c1, l
0
2)}. Thus, ∀ σ1 · a ∈

Traces(S1;ac1 S2): Out(S1;ac1 S2 after σ1 · a) = {〈a, γ〉|a = ac1)}.

In addition, assuming that I1 and I2 follow SC normal form from Definition 8

and ∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after σ1), we have ∀ σ1 · a ∈

Traces(I1;ac1 I2): Out(I1;ac1 I2 after σ1 · a) = {〈a, γ〉|a = ac1)}. Finally, ∀ σ1 · a ∈

Traces(S1;ac1 S2): Out(I1;ac1 I2 after σ1 · a) = Out(S1;ac1 S2 after σ1 · a). Hence,

∀ σ1 · a ∈ Traces(S1;ac1 S2): Out(I1;ac1 I2 after σ1 · a) ⊆ Out(S1;ac1 S2 after σ1 · a)

and, by Definition 7, I1;ac1 I2 tioco S1;ac1 S2.

iv) σ = ρ · a with a = ac1

We use (3.5) from Definition 9, resulting in ρ = σ1 and σ1 ·ac1 ∈ Traces(S1 ;ac1 S2).

Since we assume ∀ σ1 ∈ Traces(S2): Out(I2 after σ1) ⊆ Out(S2 after σ1) and S1

and S2 follow Definition 8, ∀ σ1 · ac1 ∈ Traces(S1;ac1 S2): (S1;ac1 S2 after σ1 · ac1) =

{〈l, ν, ψ〉|l = (lc1, l
0′

2)}. Because we use (3.4) and (3.5) from Definition 9, ∀ σ1 · ac1

∈ Traces(S1 ;ac1 S2): Out(S1;ac1 S2 after σ1 · ac1) = Out (S2 after ac1).

Moreover, assuming that Out(I2 after σ1) ⊆ Out(S2 after σ1) and I1 and I2 follow

Definition 8, we have Out(I1;ac1 I2 after σ1 · ac1) = Out (S2 after ac1). Thus, ∀

σ1 ·ac1 ∈ Traces(S1;ac1 S2): Out(I1;ac1 I2 after σ1 ·ac1) = Out(S1;ac1 S2 after σ1 ·ac1)

and ∀ σ1 · ac1 ∈ Traces(S1;ac1 S2): Out(I1;ac1 I2 after σ1 · ac1) ⊆ Out(S1;ac1 S2 after

σ1 · ac1). By Definition 7, I1;ac1 I2 tioco S1;ac1 S2.

v) σ = ρ · a with a ∈ Σ2\{ac1}

113

Figure A.2: Example of weak interruption composition

We use (3.2) from Definition 9, resulting in ρ = σ1 · ac1 · σ2 and σ1 · ac1 · σ2 · a ∈

Traces(S1 ;ac1 S2). Because we assume that ∀ σ1 ∈ Traces(S1): Out(I1 after σ1)

⊆ Out(S1 after σ1), ∀ σ2 ∈ Traces(S2): Out(I2 after σ2) ⊆ Out(S2 after σ2) and

Definition 8 constrains clocks from C2 to restart from the transition that contains

the ac1 action, we have ∀ σ1 · ac1 · σ2 · a ∈ Traces(S1 ;ac1 S2): Out(I1;ac1 I2 after

σ1 · ac1 · σ2 · a) ⊆ Out(S1;ac1 S2 after σ1 · ac1 · σ2 · a) and, by Definition 7, I1;ac1 I2

tioco S1;ac1 S2.

A.2 Theorem 3

Similar to the sequential operator, proof of Theorem 3 is divided into three steps:

i) Assume that subsystem implementations are tioco conformant to their subsystem

specifications, ii) Apply tioco definition to Assumption i, iii) Use previous steps and

the normal form of the interruption operator (Figure A.2) to prove that traces of the

composed specification contain traces of the composed implementation.

Theorem 3 (tioco weak interruption Composition). Let I1, I2, S1 and S2 be four

subsystems. If I1 tioco S1 and I2 tioco S2 then I1ac1△ac2
I2 tioco S1ac1△ac2

S2.

Proof. According to Definition 7, we need to prove that:

114

∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after σ1) ∧

∀ σ2 ∈ Traces(S2): Out(I2 after σ2) ⊆ Out(S2 after σ2) ⇒

∀ σ ∈ Traces(S1ac1△ac2
S2): Out(I1ac1△ac2

I2 after σ) ⊆ Out(S1ac1△ac2
S2 after σ)

Let σ, ρ ∈ Traces(S1ac1△ac2
S2). By Definition 6, S1ac1△ac2

S2
σ
→. From this point,

σ is fourfold:

i) σ = ǫ

We replace σ by ǫ in Definition 7, resulting in Out(I1 after σ1)⊆ Out(S1 after σ1) ∧

Out(I2 after σ2) ⊆ Out(S2 after σ2)⇒ Out(I1ac1△ac2
I2 after ǫ) ⊆ Out(S1ac1△ac2

S2

after ǫ). Since ǫ belongs to any set of traces, this trivially holds.

ii) σ = ρ · a with a ∈ (Σ1\{ac1, a
′
c1} ∪ Σ2\{ac2, a

0
2})

We use (3.10) or (3.13) from Definition 12, resulting in ρ · a ∈ Traces(S1 ac1
△ac2

S2). Because we assume that ∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after

σ1) ∧ ∀ σ2 ∈ Traces(S2): Out(I2 after σ2) ⊆ Out(S2 after σ2) and we require that

S1ac1△ac2
S2 and I1ac1△ac2

I2 fill WIC normal form from Definition 10, we have ∀

ρ · a ∈ Traces(S1 ac1
△ac2

S2): Out(I1ac1△ac2
I2 after ρ · a) ⊆ Out(S1ac1△ac2

S2 after

ρ · a) and, by Definition 7, I1ac1△ac2
I2 tioco S1ac1△ac2

S2.

iii) σ = ρ · a with a = ac1

We use (3.11) from Definition 12, resulting in ρ ·ac1 ∈ Traces(S1 ac1
△ac2

S2). Since

we assume ∀ σ2 ∈ Traces(S2): Out(I2 after σ2) ⊆ Out(S2 after σ2) and S1 and S2

follow WIC normal form from Definition 10, where clocks from C2 are constrained

to restart from the transition that contains the ac1 action, ∀ ρ · ac1 ∈ Traces(S1

ac1
△ac2
S2): (S1ac1△ac2

S2 after ρ · ac1) = {〈l, ν, ψ〉|l = (l′c1, l
′0
2)}. Because we use

(3.11) from Definition 12, ∀ ρ · ac1 ∈ Traces(S1 ac1
△ac2

S2): Out(S1ac1△ac2
S2 after

ρ · ac1) = Out(PS1 ac1
△ac2

S2
), with PS1 ac1

△ac2
S2

= {〈l, ν, ψ〉|l = l
′0
2 ∧ l ∈ LS1 ac1

△ac2
S2
}.

In the sequence, assuming that Out(I2 after σ2) ⊆ Out(S2 after σ2) and I1 and

I2 follow Definition 10, where clocks from C2 are constrained to restart from the

transition that contains the ac1 action, we have Out(I1ac1△ac2
I2 after ρ · ac1) =

Out(PI1 ac1
△ac2

I2), with PI1 ac1
△ac2

I2 = {〈l, ν, ψ〉|l = l
′0
2 ∧ l ∈ LI1 ac1

△ac2
I2
}.

115

Thus, ∀ ρ·ac1 ∈ Traces(S1ac1△ac2
S2): Out(I1ac1△ac2

I2 after ρ·ac1)⊆Out(S1ac1△ac2
S2

after ρ · ac1). Consequently, ∀ ρ · a ∈ Traces(S1 ac1
△ac2

S2): Out(I1ac1△ac2
I2 after

ρ ·a) ⊆ Out(S1ac1△ac2
S2 after ρ ·a). By Definition 7, I1ac1△ac2

I2 tioco S1ac1△ac2
S2.

iv) σ = ρ · a with a = ac2

We use (3.12) from Definition 12, resulting in ρ ·ac2 ∈ Traces(S1 ac1
△ac2

S2). Since

we assume ∀ σ1 ∈ Traces(S1): Out(I1 after σ1) ⊆ Out(S1 after σ1) and S1 and

S2 follow WIC normal form from Definition 10, ∀ ρ · ac2 ∈ Traces(S1 ac1
△ac2
S2):

(S1ac1△ac2
S2 after ρ · ac2) = {〈l, ν, ψ〉|l = (lc1, l

0
2)}. Because we use (3.10) and

(3.11) from Definition 12, ∀ ρ · ac2 ∈ Traces(S1 ac1
△ac2

S2): Out(S1ac1△ac2
S2 after

ρ ·ac2) = Out(PS1 ac1
△ac2

S2
), with PS1 ac1

△ac2
S2

= {〈l, ν, ψ〉|l = lc1∧ l ∈ LS1 ac1
△ac2

S2
}.

In the sequence, assuming that Out(I1 after σ1) ⊆ Out(S1 after σ1) and I1 and

I2 follow Definition 10, we have Out(I1ac1△ac2
I2 after ρ · ac2) = Out(PI1 ac1

△ac2
I2),

with PI1 ac1
△ac2

I2 = {〈l, ν, ψ〉|l = lc1 ∧ l ∈ LI1 ac1
△ac2

I2
}.

Thus, ∀ ρ·ac2 ∈ Traces(S1ac1△ac2
S2): Out(I1ac1△ac2

I2 after ρ·ac2)⊆Out(S1ac1△ac2
S2

after ρ · ac2). Consequently, ∀ ρ · a ∈ Traces(S1 ac1
△ac2

S2): Out(I1ac1△ac2
I2 after

ρ ·a) ⊆ Out(S1ac1△ac2
S2 after ρ ·a). By Definition 7, I1ac1△ac2

I2 tioco S1ac1△ac2
S2.

A.3 Theorem 4

We use two lemmas to base the proof of Theorem 4. Lemma 1 proves that, if two

subsystems are input-complete, the system which is composed by the parallel operator

is also input-complete.

Lemma 1. If S1 and S2 are two input-complete TIOSTS, S1 ‖ S2 is also input-

complete.

Proof. A location l of S1 ‖ S2 is a pair (l1, l2) where l1 ∈ L1 and l2 ∈ L2. By assumption,

S1 and S2 are input-complete with relation to Σ?
1 and Σ?

2 in this sequence. Thus,

∀ ai ∈ Σ?
i , li

a
→ with i = 1, 2. From this point, we identify two cases:

116

i) (a 6∈ Σ2) ∨ (a 6∈ Σ1)

For each ((l1, l2), a, G,A, d, (l
′
1, l

′
2)) ∈ T , a = a1 or a = a2. Hence, a ∈ S1 ‖ S2 and

l
a
→ holds.

ii) (a ∈ Σ ?
1 ∩Σ

!
2) ∨ (a ∈ Σ !

1 ∩Σ
?
2)

For each ((l1, l2), a, G,A, d, (l
′
1, l

′
2)) ∈ T , a 6∈ Σ?

1 ∩ Σ?
2. Hence, this trivially holds.

Lemma 2 shows that traces of an input-complete specification contains the traces

of an in an input-complete implementation if and only if the implementation is tioco

conformant to the specification.

Lemma 2. Let I and S be two input-complete TIOSTS such that ΣI = ΣS . Thus:

I tioco S ⇔ Traces(I) ⊆ Traces(S).

Proof. We follow a similar line of reasoning as the one presented by Bijl et al [BRT04]

in the scope of IOTS models. The proof is twofold:

i) I tioco S ⇒ Traces(I) ⊆ Traces(S)

Let x ∈ Out(I after σ), then I
σ·x
−→, which implies σ · x ∈ Traces(I). By Def-

inition 7, ∀ σ ∈ Traces(S): Out(I after σ) ⊆ Out(S after σ). Hence, x

∈ Out(S after σ) and S
σ·x
−→, from which it follows that σ · x ∈ Traces(S)

ii) Traces(I) ⊆ Traces(S) ⇒ I tioco S

Let σ ∈ Traces(I). By induction on the structure of σ, we have:

- Basic step: σ = ǫ

ǫ ∈ Traces(S) trivially holds. Hence ǫ ∈ Traces(S): Out(I after σ) ⊆ Out(S after σ),

which implies I tioco S by Definition 7.

- Induction step: We identify two cases:

(a) σ = ρ · a with a ∈ Σ?
I

Since σ ∈ Traces(I), σ ∈ Traces(S). So, ∃ S ′ : S
ρ
→ S ′ and because of the

assumption ΣI = ΣS , S
′ a
→ always holds. Hence, ρ · a ∈ Traces(S): Out(I

after σ) ⊆ Out(S after σ), which implies by Definition 7 that I tioco S.

117

Figure A.3: Toy example for the parallel composition

(b) σ = ρ · x with x ∈ Σ!
I

If I
ρ·x
−→, this implies that ρ · x ∈ Traces(I) and x ∈ Out(I after ρ · x).

Since Traces(I) ⊆ Traces(S), we have S
ρ·x
−→ and x ∈ Out(S after ρ · x).

Consequently, ∀ρ · x ∈ Traces(S):Out(I after ρ · x) ⊆ Out(S after ρ · x),

which implies I tioco S by Definition 7.

Proof of the compositionality property for the parallel operator is composed by the

steps: i) Assume that subsystem specifications are tioco conformant to their subsys-

tem implementations, ii) Assume that subsystems are input-complete, iii) From Lemma

1, infer that the composed implementation and the composed specification are input-

complete, iv) Use previous steps, Lemma 2 and the parallel operator definition to prove

that traces of the composed specification contain traces of the composed implementa-

tion. Since the parallel operator has three different rules to build the set of transitions

from the composed system (Figure A.3), the cases from the proof correspond to them.

Theorem 4 (tioco Parallel Composition). Let specifications S1, S2 and implementa-

tions I1, I2 be input-complete TIOSTS models. Also ΣS1
= ΣI1 and ΣS2

= ΣI2. If I1

tioco S1 ∧ I2 tioco S2 then I1 ‖ I2 tioco S1 ‖ S2.

Proof. The proof of Theorem 4 follows a similar line of reasoning as the one presented

by Krichen and Tripakis [KT06] for the parallel synchronization operator in the scope

of TAIO models. Accordingly, considering Lemma 2, we need to prove that:

118

Traces(I1) ⊆ Traces(S1) ∧ Traces(I2) ⊆ Traces(S2) ⇒

Traces(I1 ‖ I2) ⊆ Traces(S1 ‖ S2)

Let σ, ρ ∈ Traces(I1 ‖ I2). From Definition 13, σ is fourfold:

i) σ = ǫ

ǫ ∈ Traces(I1 ‖ I2) and hence I1 ‖ I2
ǫ
→ I ′1 ‖ I

′
2 by (3.16). Since ǫ ∈ Traces(S1 ‖

S2) by the definition of a general set, this trivially holds.

ii) σ = ρ · a with a 6∈ Σ2. Because a 6∈ Σ2, we use (3.14), which results ρ · a ∈

Traces(I1 ‖ I2). Since we assume that Traces(I1) ⊆ Traces(S1) and ΣI1 = ΣS1
,

S1 ‖ S2
ρ·a
−→, which implies that ρ ·a ∈ Traces(S1 ‖ S2). Consequently, Traces(I1 ‖

I2) ⊆ Traces(S1 ‖ S2).

iii) σ = ρ · a with a 6∈ Σ1. We use (3.15) from Definition 13. The next steps are

analogous to ii).

iv) σ = ρ · a with (a ∈ Σ?
1 ∩ Σ!

2) ∨ (a ∈ Σ!
1 ∩ Σ?

2). Because (a ∈ Σ?
1 ∪ Σ!

2) ∨ (a ∈

Σ!
1 ∪ Σ?

2), we use (3.16), which results ρ · a ∈ Traces(I1 ‖ I2). Since Traces(I1)

⊆ Traces(S1) ∧ Traces(I2) ⊆ Traces(S2), a is synchronizable in I1 ‖ I2 and a ∈

Σ!
1 ∪ Σ!

2. In addition, I1 and I2 are input-complete, so I1 ‖ I2 is input-complete

by Lemma 1. Similarly, S1 ‖ S2 is input-complete. By the input-completeness and

synchronization of S1 ‖ S2, S1 ‖ S2
ρ·a
−→ holds and Traces(I1 ‖ I2) ⊆ Traces(S1 ‖

S2).

119

