

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE TECNOLOGIA E RECURSOS NATURAIS UNIDADE ACADÊMICA DE ENGENHARIA CIVIL CURSO DE ENGENHARIA CIVIL

VANESSA DE MORAIS BATISTA

RELATÓRIO DE ESTAGIO SUPERVISIONADO

CAMPINA GRANDE- PB 2009

VANESSA DE MORAIS BATISTA

RELATÓRIO DE ESTAGIO SUPERVISIONADO

Relatório de Estágio Supervisionado apresentado no curso de graduação de Engenharia Civil à disciplina Estágio Supervisionado.

Orientador: João Batista Queiroz de Carvalho.

CAMPINA GRANDE- PB 2009

RELATÓRIO DE ESTAGIO SUPERVISIONADO

Data da entrega: 14/12/2009

Vanessa de Morais Batista

Vanessa de Morais Batista

Discente

Prof. João Batista Queiroz de Carvalho

Supervisor Acadêmico

Milton dos Santos Silva

Engenheiro Responsável

Biblioteca Setorial do CDSA. Julho de 2021.

Sumé - PB

A Deus, pelas bênçãos concedidas nessa conquista.

A minha família, que com amor alicerçou minha vida.

AGRADECIMENTOS

A Deus o Criador, que nos momentos mais difíceis jamais me desamparou.

Aos meus pais, pelo esforço incondicional que fizeram para a conquista desse sonho.

A minha irmã Andreza, pelo exemplo de amizade e amor.

Ao meu namorado Eduardo, pela dedicação, companheirismo e paciência.

Aos parentes e amigos, por todos os momentos de apoio.

Aos mestres, pelos ensinamentos e incentivos.

A todos que direto ou indiretamente contribuíram para a realização deste trabalho.

SUMÁRIO

Conteúdo

APRESENTAÇÃO	7
1.0 INTRODUÇÃO	8
OBJETIVOS	9
Geral	9
Específicos	9
2.0 DESENVOLVIMENTO	10
2.1 Conceituação das Atividades	10
2.2 Histórico sobre Infra-Estrutura Urbana	
2.3 Classificação	17
2.3.1 Classificação segundo os subsistemas técnicos setoriais	17
2.3.2 Classificação segundo a localização dos elementos que compõem os subsistema	s 27
2.4 Descrição das Atividades	29
2.4.2 Sistemas de controle	29
2.4.3 Produtividade	29
3.0 CONSIDERAÇÕES FINAIS	31
REFERÊNCIAS BIBLIOGRAFICAS	32
ANEXO FOTOGRÁFICO	33

APRESENTAÇÃO

Este relatório trata do registro de estágio supervisionado do curso de Engenharia Civil, haja vista a necessidade de uma experiência prática, sendo possível aplicar parte dos conhecimentos adquiridos até este momento da graduação, o que possibilitou um aprofundamento teórico-prático e enriquecedor na formação acadêmica e profissional.

O estágio foi realizado na Construtora Santa Bárbara Engenharia no período de 12 de agosto de 2009 a 05 de dezembro do mesmo ano, supervisionada pelo Engenheiro Civil responsável técnico da obra Milton dos Santos Silva e orientado pelo professor João Batista Queiroz de Carvalho.

O material aqui apresentado é o resultado de observações pessoais e estudos feitos pelo autor, com intuito de divulgar esses conhecimentos, visando relatar o conhecimento adquirido com a prática durante esse tempo de atividade acerca de projetos físicos e orçamentários de obras de saneamento em vias públicas.

1.0 INTRODUÇÃO

A construção civil é um setor da economia formado por uma enorme quatidade de atividades. É tão grande que é chamado de "macro-complexo da construção", ou seja, é um conjunto de atividades econômicas, diferentes e interligadas umas às outras.

Para se ter uma idéia do tamanho da construção civil em termos econômicos, basta dizer que ela representa aproximadamente 16% do PIB brasileiro. É o segundo maior setor econômico do país pois, a primeira é a agroindústria. Sua potencialização ocorre cada vez mais em virtude dos avanços tecnológicos.

Neste relatório serão apresentadas algumas atividades desenvolvidas no estágio supervisionado, nas áreas de saneamento, drenagem e infra-estrutura.

OBJETIVOS

Geral

O objetivo deste trabalho é fazer uma ligação em torno da aplicação dos conhecimentos adquiridos durante a graduação, com a prática vivenciada no campo de estágio.

Específicos

- Desenvolver a capacidade de solucionar problemas;
- Buscar um melhor aproveitamento dos recursos básicos da obra
- Criar senso prático na execução de obras;
- Primar para que a obra seja executada de acordo com o projeto estabelecido;
- Obter uma visão crítica e fundamentada a cerca do projeto a ser desenvolvido.

2.0 DESENVOLVIMENTO

2.1 Conceituação das Atividades

Os termos construção civil e engenharia civil são originados de uma época em que só existiam apenas duas classificações para a engenharia sendo elas civil e militar, cujo conhecimento, por exemplo, de engenharia militar, era destinada apenas ao militares e a engenharia civil destinada aos demais cidadãos. Com o tempo, a engenharia civil, que englobava todas as áreas, foi se dividindo e hoje conhecemos várias divisões, como por exemplo, a engenharia elétrica, mecânica, materiais, minas, química, naval, etc. Exemplos como engenharia naval, dão origem à construção naval, mas ambas eram agrupadas apenas na grande área da civil.

A evolução das cidades corresponde a modificações quantitativas e qualitativas na gama de atividades urbanas e, conseqüentemente, surge a necessidade de adaptação tanto dos espaços necessários a essas atividades, como da acessibilidade desses espaços, e da própria infra-estrutura que a eles serve.

O crescimento físico da cidade, resultante do seu crescimento econômico e demográfico, se traduz numa expansão da área urbana através de loteamentos, conjuntos habitacionais, indústrias, diversos equipamentos urbanos, e/ou em adensamento, que se processa nas áreas já urbanizadas e construídas, muitas vezes resultando em renovações urbanas, quando construções existentes são substituídas por outras, mais adequadas às novas atividades pretendidas, em locais dos quais são expulsas as atividades anteriores.

Assim, a localização das atividades urbanas procura levar em consideração:

- a) A necessidade efetiva de espaços adaptados a essas atividades. Para tanto, podem ser aproveitados espaços vagos em edificações existentes, criados espaços através de reformas ou da construção de edificações novas em terrenos vazios em áreas obtidas pela destruição ou remoção das edificações existentes;
- b) A acessibilidade desses espaços, ou seja, a facilidade de deslocamento de pessoas ou cargas entre eles e outros locais de interesse na cidade e na região. Isto é de fundamental importância, pois uma atividade não se desenvolve isolada na cidade: ela se interrelaciona com uma série de outras atividades, e sem essas ligações ela não consegue subsistir.;
- c) Similarmente, os subsistemas de infra-estrutura (como se verá mais adiante), tanto na rede de distribuição, como ainda nos equipamentos de produção ou tratamento, devem

apresentar possibilidades de utilização de capacidade ociosa ou de sua ampliação, de forma a evitar sobrecargas que impeçam a manutenção dos padrões de atendimento previstos;

d) No caso de áreas residenciais, devem ser consideradas também as necessidades quanto a equipamentos sociais urbanos: creches, clubes sociais, centros de ações sociais, centro médico, hospitais, centros culturais, escolas, entre outros.

Assim, o espaço urbano não se constitui simplesmente pela tradicional combinação de áreas edificadas e áreas livres, interligadas através dos sistemas viários. Outros sistemas são desenvolvidos para melhorar o seu desempenho. Neste texto será tratada a questão dos sistemas de infra-estrutura.

Infra-estrutura urbana pode ser conceituada como um sistema técnico de equipamentos e serviços necessários ao desenvolvimento das funções urbanas, podendo estas funções ser vistas sob os aspectos social, econômico e institucional. Sob o aspecto social a infra-estrutura urbana visa promover adequadas condições de moradia, trabalho, saúde, educação, lazer e segurança. No que se refere ao aspecto econômico, a infra-estrutura urbana deve propiciar o desenvolvimento das atividades produtivas, isto é, a produção e comercialização de bens e serviços. E sob o aspecto institucional, entende-se que a infra-estrutura urbana deva propiciar os meios necessários ao desenvolvimento das atividades político-administrativas, entre os quais se inclui a gerência da própria cidade.

Na realidade, o sistema de infra-estrutura urbana é composto de subsistemas, e cada um deles tem como objetivo final a prestação de um serviço, o que é fácil de perceber quando se nota que qualquer tipo de infra-estrutura requer, em maior ou menor grau, algum tipo de operação e alguma relação com o usuário, o que caracteriza a prestação de um serviço. Por outro lado, ainda que o objetivo dos subsistemas de infra-estrutura seja a prestação de serviços, sempre há a necessidade de investimentos em bens ou equipamentos, que podem ser edifícios, máquinas, redes de tubulações ou galerias, túneis, e vias de acesso, entre outros. Um subsistema de abastecimento de água de uma cidade, por exemplo, possui uma dimensão física, constituída por equipamentos de captação, reservatórios, estações de tratamento e rede de distribuição. Por outro lado, esse mesmo subsistema também expressa a prestação de um serviço, que é constituído de atividades de operação e manutenção, medição de consumo e cobrança de tarifas, controle da qualidade da água e atendimento ao público, entre outros.

2.2 Histórico sobre Infra-Estrutura Urbana

Pode-se dizer que esse termo é definido pelo conjunto de diversos elementos estruturais, exercendo funções em diferentes campos, sendo os mais comuns aqueles referentes aos sistemas viários, de esgotos e de fornecimento de energia de uma cidade ou região.

Estes elementos, no seu todo, podem ser designados de infra-estruturas civis, infraestruturas municipais ou obras públicas, se bem que possam ser desenvolvidas e geridas tanto
pela iniciativa privada como por empresas públicas. Noutros campos, infra-estrutura pode
designar as tecnologias da informação, canais de comunicação formais ou informais,
ferramentas de desenvolvimento de software, redes políticas e sociais ou sistemas de crença
partilhadas por membros de grupos específicos. Estas acepções gerais trazem subjacente o
conceito de que as infra-estruturas constituem um quadro organizacional e uma estrutura de
suporte do sistema ou organização em causa, seja uma nação, uma cidade ou uma corporação.

A existência das redes de infra-estrutura nas cidades é tão antiga como as mesmas, uma vez que forma parte indissolúvel delas. Obviamente, a primeira rede a aparecer é a rede viária, onde se percebe a evolução do perfil dos calçamentos desde as antigas vias romanas até o surgimento do automóvel quando se produz a maior evolução dos tipos de pavimentos. A seguir, aparecem as redes sanitárias, das quais existem excelentes exemplos em Jerusalém e Roma antiga e, finalmente, as redes energéticas, em fins do século XIX (Mascaró, 1987).

As referências relativas a esgotamento sanitário consideram a Cloaca Máxima de Roma, construída no século VI a.c. como o primeiro sistema de esgoto planejado e implantado no mundo.

Seguindo a prática Romana, os primeiros sistemas de esgotos, tanto na Europa como nos Estados Unidos foram construídos para coleta e transporte de águas pluviais. Foi somente em 1915 que se autorizou, em Londres, o lançamento de efluentes domésticos nas galerias de águas pluviais e, em 1847 tornou-se compulsório o lançamento de todas as águas residuárias das habitações nas galerias públicas de Londres(Azevedo Netto, etal. 1983).

Na época do apogeu imperial romano, havia mais de 50 km de grandes aquedutos e 350 km de canalizações d'água na cidade de Roma. As canalizações principais, geralmente em alvenaria de pedra, levavam água até depósitos abobadados de alvenaria conhecidos como "castelos de água" que, em número de 250, se espalhavam pela cidade. Desses depósitos saía

uma série de tubos de latão, aos quais se soldavam tubulações de chumbo que levavam a água sob pressão (por ação da gravidade) para palácios, fontes, residências, etc. Ou seja, uma verdadeira rede d'água potável que daria inveja a muitas cidades "modernas" de hoje. A água era cobrada do usuário na proporção do diâmetro do tubo que o abastecia. Possuía Roma: 19 aquedutos que forneciam 1.000.000 m³/dia à cidade, esgotos dinâmicos e ruas pavimentadas para atender cerca de 1.000.000 de habitantes (Ferrari, 1991).

Povos de outras latitudes também se preocuparam com este serviço público. Os germanos, por exemplo, utilizaram a madeira (pela sua abundância local) para fazer tubulações de água e abastecer assim suas cidades. A adaptação de cada uma das redes de serviços às disponibilidades locais de materiais e mão-de-obra é uma restrição econômica que hoje nem sempre é levada em consideração. No século XIX, a máquina a vapor passa a permitir o transporte de grandes cargas a grandes distâncias e, assim como se internacionalizou a tecnologia de edificação, se internacionalizou também a tecnologia das redes urbanas. A relativa liberalização das restrições de materiais locais tem seus aspectos positivos, mas apresenta também fortes aspectos negativos: por exemplo, os pavimentos das ruas se internacionalizaram nos seus materiais, desenho e tecnologia, perdendo-se algumas vezes, porém, interessantes e econômicas soluções locais. O asfalto se difunde de Paris, Londres e Nova Iorque, até Rio, Brasília e São Paulo, independentemente de disponibilidades (é um derivado de petróleo) e de climas (a cor escura o leva a absorver o calor do sol), e passa a ser quase a única solução para pavimentos urbanos, pelo "status" de modernidade que confere à maioria das cidades do mundo (Mascaró, 1987).

O abastecimento de água trouxe a preocupação pela eliminação dos líquidos residuais, e há indícios que egípcios, babilônios, assírios e fenícios tinham redes de esgoto; mas a primeira rede claramente organizada que se conhece é a de Roma, composta de uma série de ramais que se uniam até formar uma coletora mestra, que, com um desenho relativamente similar ao dos aquedutos levava para longe da cidade as águas servidas. Na Europa aparece a primeira legislação regulamentando os esgotos em Londres, em 1531, posterior à primeira lei sanitária urbana da Inglaterra, de 1338, aprovada por um parlamento reunido em Cambridge (Mumford, 1982). Em 1835, na Alemanha (depois da peste da cólera), se constituem comissões para debater, estudar e estabelecer normas para os esgotos das cidades alemãs. As galerias de esgotos de Paris são famosas pelo seu desenho e dimensões. Na Inglaterra aparece, em 1876, a primeira legislação contra a poluição causada por esgotos lançados nos rios e outros corpos d'água.

Nestes três exemplos (esgotos, água potável e pavimentação) as inovações de engenharia conhecidas em cidades e regiões mais antigas foram convertidas em grandes formas coletivas, servindo às massas urbanas. Mas, como freqüentemente acontece nas aplicações da engenharia, os benefícios físicos não se estendiam a todos os espaços urbanos: os grandes esgotos de Roma não eram ligados às privadas acima do primeiro andar (Mumford, 1982).

As redes de energia nas cidades são posteriores; a primeira a aparecer foi a de gás. A primeira companhia de distribuição de gás, como serviço público, foi criada na Inglaterra, em 1812, para atender à cidade de Londres. Nos Estados Unidos foram feitas tentativas em Massachusetts, Rhode Island e Filadelfia em 1815. O gás distribuído na época era fabricado a partir da destilação do carvão; o objetivo foi primeiro a iluminação pública e logo a residencial. Por volta de 1840 aparecem os primeiros fogões a gás. Em 1821, em Fredonia (Nova Iorque), foi perfurado o primeiro poço de gás natural, e pouco depois começava sua distribuição na cidade. As tubulações de distribuição de gás inicialmente eram de madeira. O gasoduto que levava o gás para Rochester, Estado de Nova Iorque, era de pinho branco e media 40 km de comprimento, mas os vazamentos eram tão grandes que a linha foi abandonada em poucos anos. Em 1834 foi construída em Nova Jersey a primeira fábrica de tubos de ferro fundido e, em 1891, feita a primeira tubulação em aço, mais eficiente e econômica, para levar gás a Chicago.

No Brasil, o gás foi introduzido inicialmente em São Paulo. Na década de 1860, todas as ruas do bairro da atual Praça da Sé eram iluminadas a noite por duzentos lampiões. A empresa originalmente criada pelo empresário Afonso Milliet foi transferida posteriormente para uma companhia inglesa. Paralelamente à conclusão da ampliação da Casa das Retortas, no ano de 1889, o governo prosseguia estimulando o uso do gás canalizado na província. Em 1897, a Companhia de Gás foi isenta de pagamento de impostos estadual e municipal e a ela foi conferido o poder de desapropriação para fins de utilidade pública. Quatro anos antes, foi baixada uma lei permitindo que os combustores instalados em postes públicos fossem colocados nas paredes das construções particulares sempre que tal medida beneficiasse o trânsito do sistema de transporte, constituída na sua maioria por cavalos e carroças. Para a ocasião, eram medidas de grande alcance que chegaram a provocar sérias polêmicas, especialmente entre os políticos. Em 1936, foram desativados os últimos lampiões de gás em São Paulo. A partir daí o uso do gás ficou restrito à produção de calor. Mesmo assim seu consumo manteve-se em expansão permanente. Por mais de um século (1871/1974) foi

utilizado gás de carvão mineral. Em 1972 começou a ser utilizado gás produzido a partir do petróleo, hoje substituído por gás natural, trazido de jazidas através de canalizações.

Em fins do século XIX aparecem as redes de energia elétrica, primeiro para iluminar o centro das cidades (entrando em colisão com a rede de gás) e logo depois para substituir os cavalos que puxavam os bondes. A partir de sua introdução, a rede de eletricidade experimentou um grande desenvolvimento. São estas duas redes (eletricidade e gás) que permitem que as cidades mudem de função e passem de centros administrativos ou de intercâmbio a centros de produção. São as duas redes do período industrial (Mascaró, 1987).

A atividade econômica, em conjunto com a evolução social, ocasiona um aumento nas migrações, que gera um crescimento populacional localizado e, conseqüentemente, uma escassez de habitações. Para suprir a necessidade de habitações, há um aumento na área urbana, geralmente com falta de infra-estrutura devido à falta de recursos para a administração da cidade. Neste contexto surgem as favelas, os cortiços e casas precárias da periferia; sendo, normalmente, constituídas por uma ou mais edificações construídas em lote urbano cujo acesso e uso comum dos espaços não edificados e instalações sanitárias, circulação e infraestrutura, no geral, são precários. Isto pode ocasionar a poluição da água devido às condições precárias de saneamento, culminando em doenças. (ABIKO, 1995 e ZMITROWICZ, 2002).

Sendo assim, a infra-estrutura urbana tem como objetivo final a prestação de um serviço, pois por ser um sistema técnico, requer algum tipo de operação e algum tipo de relação com o usuário.

O sistema de infra-estrutura urbana é composto de subsistemas que refletem como a cidade irá funcionar. Para o perfeito funcionamento da cidade são necessários investimentos em bens ou equipamentos que devem apresentar possibilidades de utilização da capacidade não utilizada ou de sua ampliação, de forma a evitar sobrecargas que impeçam os padrões de atendimento previstos.

Os sistemas de abastecimento d'água, de esgotos sanitários, de drenagem de águas pluviais e de coleta de lixo compõem a definição do que é saneamento básico, já que eles são essenciais para a saúde da população se bem executados.

Podemos classificar os sistemas de drenagem de acordo com suas dimensões, em dois sistemas são eles:

 A microdrenagem que, através de pequenas e médias galerias inclui a coleta e afastamento das águas superficiais ou subterrâneas. A macrodrenagem abrange, além da microdrenagem, as galerias de grande porte (D > 1,5m) e os corpos receptores tais como canais e rios canalizados.

Quanto ao sistema de esgoto de acordo com sua origem podem ser classificados assim:

- esgoto sanitário ou doméstico ou comum: composto toda a vazão esgotável
 originada do desempenho das atividades domésticas, tais como lavagem de piso e de roupas,
 consumo em pias de cozinha e esgotamento de peças sanitárias, como por exemplo,
 lavatórios, bacias sanitárias e ralos de chuveiro;
- esgoto industrial: aquele gerado através das atividades industriais, salientandose que uma unidade fabril onde seja consumida água no processamento de sua produção, gera um tipo de esgoto com características inerentes ao tipo de atividade (esgoto industrial) e uma vazão tipicamente de esgoto doméstico originada nas unidades sanitárias (pias, bacias, lavatórios, etc);
- esgoto pluvial: tem a sua vazão gerada a partir da coleta de águas de escoamento superficial originada das chuvas e, em alguns casos, lavagem das ruas e de drenos subterrâneos ou de outro tipo de precipitação atmosférica.

O conjunto de condutos e obras destinados a coletar e transportar as vazões para um determinado local de convergência dessas vazões é denominado de Rede Coletora de Esgotos. Portanto, por definição, a rede coletora é apenas uma componente do sistema de esgotamento. Segue os tipos de sistemas de esgotos:

- Sistema de esgotamento unitário, ou sistema combinado no qual as águas residuárias, de infiltração e pluviais veiculam por um único sistema;
- Sistema de esgotamento separador parcial, em que apenas uma parcela da água proveniente de telhados e pátios das economias são encaminhadas juntamente com as águas residuárias e de infiltração do subsolo para um único sistema de coleta e transporte de esgotos;
- Sistema separador absoluto onde as águas residuárias e as de infiltração veiculam em um sistema independente, conhecido como esgoto sanitário. Já as águas pluviais são coletadas e transportadas em um sistema de drenagem pluvial totalmente independente.

2.3 Classificação

O sistema de infra-estrutura urbana pode ser classificado, para sua melhor compreensão, de várias maneiras: subsistemas técnicos setoriais e posição dos elementos (redes) que compõem os subsistemas, entre outros.

2.3.1 Classificação segundo os subsistemas técnicos setoriais

A engenharia urbana é a arte de conceber, realizar e gerenciar sistemas técnicos. O termo sistema técnico tem dois significados: o primeiro enquanto rede suporte, isto é, uma dimensão física, e o segundo enquanto rede de serviços. Nesta ótica, portanto, procura-se integrar, no conceito de sistema técnico, sua função dentro do meio urbano, o serviço prestado à população e seus equipamentos e rede física.

Esta conceituação facilita a identificação dos subsistemas urbanos, a partir dos subsistemas técnicos setoriais. A classificação a seguir reflete a visão de como a cidade funciona e todos os subsistemas técnicos a seguir relacionados são denominados, no seu conjunto, de sistemas de infra-estrutura urbana:

a) Subsistema Viário: é composto de uma ou mais redes de circulação, de acordo com o tipo de espaço urbano, sendo complementado pelo subsistema de drenagem de águas pluviais, que assegura o uso sob quaisquer condições climáticas.

Segundo Puppi (1988), o subsistema viário urbano deve se amoldar à configuração topográfica a ser delineada tendo-se em vista:

- Os deslocamentos fáceis e rápidos, obtidos com percursos os mais diretos possíveis, entre os locais de habitação e os de trabalho e de recreação, e com comunicações imediatas do centro com os bairros e destes entre si;
- O propiciamento das melhores condições técnicas e econômicas para a implantação dos equipamentos necessários aos outros subsistemas de infra-estrutura urbana;
 - A constituição racional dos quarteirões, praças e logradouros públicos;
- A conjugação sem conflitos ou interferências anti-funcionais da circulação interna com a do subsistema viário regional e interurbano;
- A limitação da superfície viária e seu desenvolvimento restrito ao mínimo realmente necessário, em ordem a se prevenir trechos supérfluos e se evitarem cruzamentos arteriais excessivos ou muito próximos.

Além disso, as vias que constituem o subsistema viário, deverão conter as redes e equipamentos de infra-estrutura que compõem seus demais subsistemas, em menor ou maior

escala. O subsistema viário é composto de uma ou mais redes de circulação, de acordo com o tipo de espaço urbano (para receber veículos automotores, bicicletas, pedestres, entre outros). Complementa este subsistema o subsistema de drenagem de águas pluviais (que será visto mais adiante), que assegura ao viário o seu uso sob quaisquer condições climáticas.

De todos os subsistemas de infra-estrutura urbana, o viário é o mais delicado, merecendo estudos cuidadosos porque (Mascaró, 1987):

- É o mais caro dos subsistemas, já que normalmente abrange mais de 50% do custo total de urbanização;
 - Ocupa uma parcela importante do solo urbano (entre 20 e 25%);
- Uma vez implantado, é o subsistema que mais dificuldade apresenta para aumentar sua capacidade pelo solo que ocupa, pelos custos que envolvem e pelas dificuldades operativas que cria sua alteração;
- É o subsistema que está mais vinculado aos usuários (os outros sistemas conduzem fluídos, e este, pessoas).

Pode-se encontrar nesse subsistema vias de diversas dimensões e padrões, em função do volume, velocidade e intensidade do tráfego, sentido do fluxo (que pode ser unidirecional ou bidirecional) e das interferências que pode ter o tráfego, tais como cruzamentos, estacionamentos e garagens, entre outros. Em função desses fatores, as vias podem ser classificadas da seguinte forma:

- Vias locais apresentam utilização mista, isto é, são utilizadas tanto por veículos como por pedestres, sendo que os veículos são, predominantemente, os dos próprios moradores da rua;
- Vias coletoras ligam vias locais de setores ou bairros com as vias arteriais e servem também ao tráfego de veículos de transporte coletivo;
- *Vias arteriais* são, em geral, denominadas avenidas, interligam áreas distantes; podem possuir volume e velocidade de tráfegos elevados e suas pistas são unidirecionais;
- Vias expressas são de alta velocidade, unidirecionais, não possuem cruzamentos e podem ter também mais de duas pistas de rolamento e acostamento, não sendo indicadas para tráfego de pedestres.

O perfil de via atual privilegia os veículos automotores e desconsidera o pedestre, embora deva ser previsto, em algumas destas vias, o tráfego de veículos e pedestres. Assim, as vias urbanas atuais constituem-se, basicamente, de duas partes diferenciadas pelas funções que desempenham (Mascaró, 1987):

- O leito carroçável, destinado ao trânsito de veículos e ao escoamento das águas pluviais através do conjunto meio-fio x sarjeta e boca-de-lobo, e deste para a galeria de esgoto pluvial;
- os passeios adjacentes ou não ao leito carroçável, destinados ao trânsito de pedestres e limitados fisicamente pelo conjunto meio-fio x sarjeta.

Além dessas tipologias, têm-se as ciclovias, que são vias destinadas ao trânsito de bicicletas. Têm a função de proteger o trânsito destes veículos ao mesmo tempo em que os removem das vias de maior movimento de automóveis. Possuem a limitação dos fatores topográficos e da falta de espaço físico em áreas já urbanizadas.

Devido ao grande desembolso necessário para a implantação das vias que compõem este subsistema, a manutenção das mesmas carece de um capítulo à parte. A manutenção pode ser considerada de duas formas:

- Manutenção preventiva compõe-se de métodos e processos, geralmente de custos relativamente baixos, que visa permitir o bom funcionamento da via durante sua vida útil para a qual fora projetada. Pinturas periódicas das faixas, verificação e troca de placas de sinalização danificadas, pequenos reparos nas pistas e limpeza da faixa de domínio fazem parte desta forma de manutenção.
- Manutenção corretiva é necessária quando a via apresenta-se danificada por agentes de tráfego (automóveis, ônibus, caminhões) ou por agentes naturais (inundações, escorregamentos de aterros) que impeçam ou dificultem o trânsito normal na mesma. As patologias mais comuns são: buracos na pista, destruição das proteções laterais, desplacamento e deterioração dos pavimentos, entre outros.
- b) Subsistema de drenagem pluvial: Este subsistema tem como função promover o adequado escoamento das massas líquidas provenientes das chuvas que caem nas áreas urbanas, assegurando o trânsito público e a proteção das edificações, bem como evitando os efeitos danosos das inundações.

Nas cidades medievais, onde o tráfego maior era de pedestres, as águas pluviais escoavam por sobre o pavimento das vias, geralmente em sua parte central. Com o passar do tempo e o aumento das cidades, além do advento dos veículos automotores, este processo de drenagem fora substituído pelo uso de galerias pluviais subterrâneas, onde as medidas e as formas dessas galerias respondiam à dupla função de escoar os esgotos (parte inferior das galerias) e as águas pluviais (seção plena durante as chuvas), além da previsão de uma área para circulação de pessoas, permitindo realizar tarefas de inspeção e limpeza, na época de estiagem. Este processo combinado de escoamento de águas pluviais e de esgotos, chamado

de Sistema Unificado, está sendo abandonado em todo o mundo, em função da dificuldade e impedimento para o tratamento dos esgotos além de favorecer o surgimento de vetores e doenças infecto-contagiosas. (Mascaró, 1987).

O subsistema de drenagem de águas pluviais constitui-se, atualmente, de duas partes (Mascaró, 1987):

- Ruas pavimentadas, incluindo as guias e sarjetas;
- Redes de tubulações e seus sistemas de captação.

Assim, tem-se:

- Meio fios e guias: são elementos utilizados entre o passeio e o leito carroçável, dispostos paralelamente ao eixo da rua, construídos geralmente de pedra ou concreto prémoldado e que formam um conjunto com as sarjetas. É recomendável que possuam uma altura aproximada de 15 cm em relação ao nível superior da sarjeta. Uma altura maior dificultaria a abertura das portas dos automóveis, e uma altura menor diminuiria a capacidade de conduzir as águas nas vias.
- Sarjetas: São canais, em geral de seção transversal triangular, situados nas laterais das ruas, entre o leito viário e os passeios para pedestres, destinados a coletar as águas de escoamento superficial e transportá-las até às bocas coletoras(Figura 1).

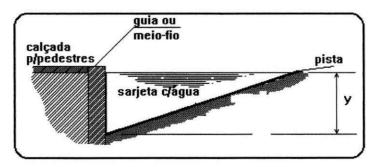


Figura 1- Sarjeta triangular.

Sarjetões: são calhas geralmente construídas do mesmo material das sarjetas e
com forma de "V", situadas nos cruzamentos de vias e que dirigem o fluxo de águas
perpendiculares. Um dos pontos críticos desse sistema ocorre nos cruzamentos de ruas, onde
as águas, dentro do possível, não devem atrapalhar o tráfego (Figura 2).

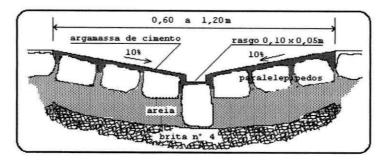


Figura 2- Sarjetão típico em paralelepípedos

 Bocas de lobo: são estruturas hidráulicas para captação das águas superficiais transportadas pelas sarjetas e sarjetões; em geral situam-se sob o passeio ou sob a sarjeta (Figura 3).

Figura 3- Boca coletoca sob passeio.

- Galerias: são condutos destinados ao transporte das águas captadas nas bocas coletoras até os pontos de lançamento; tecnicamente denominada de galerias tendo em vista serem construídas com diâmetro mínimo de 400mm.
- Poços de visita: são elementos do subsistema de drenagem de águas pluviais que possibilitam o acesso às canalizações, para limpeza e inspeção. São necessários quando há mudança de direção ou declividade na galeria, nas junções de galerias, na extremidade de montante, ou quando há mudança de diâmetro das galerias. As paredes são executadas, geralmente, em tijolos ou concreto, o fundo em concreto e a tampa em ferro fundido de acordo com a figura abaixo (Figura 4).

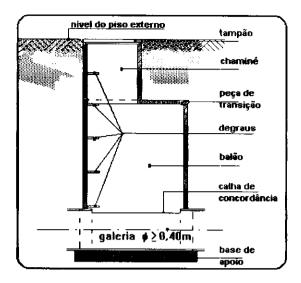


Figura 4- Poço de visita típico.

Bacias de estocagem: são reservatórios superficiais ou subterrâneos que, ao acumular o excesso de água proveniente de chuvas fortes, permitem o seu escoamento pelas galerias ou canais existentes, em fluxos compatíveis com as suas capacidades, evitando extravasamentos sobre os leitos viários nos fundos de vale.

O traçado da rede de canalizações que compõem este subsistema é função das características topográficas e do subsistema viário da área a ser drenada. O dimensionamento da rede (canalizações, guias e sarjetas) assim como dos equipamentos de infra-estrutura necessários ao funcionamento desse subsistema depende:

- Do ciclo hidrológico local: quanto mais chuva, maior é o subsistema;
- Da topografia: quanto maiores os declives, mais rápido se dão os escoamentos;
- Da área e da forma da bacia: quanto maior a área, mais água é captada;
- Da cobertura e impermeabilização da bacia: quanto menos água for absorvida pelo terreno, mais deve ser esgotada;
 - Do traçado da rede: interferências com as redes de outros subsistemas.
- c) Subsistema de abastecimento de água: O provimento de toda a população de água aprazível aos sentidos e sanitariamente pura, bastante para todos os usos, é a finalidade de um subsistema de abastecimento de água. A qualidade e a quantidade da água são, pois, as duas condições primordiais a serem observadas (Puppi, 1981). Só a água potável, isto é, a que perfaz determinados requisitos físicos, químicos e biológicos, tem garantia higiênica. Entre nós, é a única a ser oferecida à população, para todos os usos, mesmo para aqueles em que águas de qualidade inferior poderiam ser admitidas sem riscos sanitários. A água destinada à

bebida e alimentação é a que apresenta maior exigência de qualidade, sendo elevado seu custo de potabilização. Este problema tem sido resolvido, em alguns casos, pelo uso de purificadores domiciliares, solução parcial e elitista do problema. Em outros casos (pouco comum no Brasil), pela construção de duas redes de água, uma potável e outra para rega de jardins, enchimento de piscinas, uso industrial, incêndio, entre outros (Mascaró, 1987).

O subsistema de abastecimento de água compõe-se, geralmente, das seguintes partes:

 Captação: o processo de captação consiste de um conjunto de estruturas e dispositivos construídos junto a um manancial para a captação de água destinada a esse subsistema.

Os mananciais utilizados para o abastecimento podem ser as águas superficiais ou subterrâneas. No caso das águas superficiais (rios, lagos e córregos) com capacidade adequada, a captação é direta. Naqueles cuja vazão é insuficiente em alguns períodos do ano, torna-se necessário construir reservatórios de acumulação. Os mananciais subterrâneos são mais caros, devendo-se evitar sua utilização indiscriminadamente –ver figura abaixo-(Mascaró, 1987).

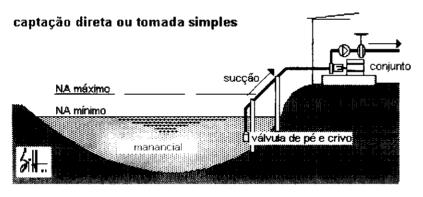


Figura 5- Desenho ilustrativo de captação direta ou tomada simples.

• Adução: o processo de adução é constituído pelo conjunto de peças especiais e obras de arte destinadas a ligar as fontes de água bruta (mananciais) às estações de tratamento, e estes aos reservatórios de distribuição. Para o traçado das adutoras levam-se em conta fatores como: topografia, características do solo e facilidades de acesso. De um modo geral, procura-se evitar sua passagem por regiões acidentadas, terrenos rochosos e solos agressivos, como os pântanos, que podem prejudicar a durabilidade de certos tipos de tubulações. Também devem ser evitados trajetos que impliquem em obras complementares custosas ou que envolvam despesas elevadas de operação e manutenção. Os materiais normalmente utilizados em adutoras são concreto, ferro fundido, aço e, em menor escala, cimento amianto (Mascaró, 1987). O cimento amianto foi o primeiro material com fibras para a construção

civil a ser empregado, permanecendo em uso até hoje, apesar da possibilidade de apresentar riscos à saúde, quando o amianto é manuseado inadequadamente. (Agopyan & Derolle, 1988).

- Recalque: quando o manancial ou o local mais adequado para a captação estiverem a um nível inferior que não possibilite a adução por gravidade, é preciso o emprego de um equipamento de recalque, constituído por um conjunto de motor, bomba hidráulica e acessórios (Puppi, 1981). Os sistemas de recalque são muito utilizados atualmente, seja para captar a água de mananciais, seja para reforçar a capacidade das adutoras, ou para recalcar a água a pontos distantes ou elevados, acarretando o encarecimento do subsistema de abastecimento de água (Mascaró, 1987). Em cidades de topografia acidentada, é recomendável usar redes divididas em partes independentes, de forma a poder aproveitar a adução por gravidade para partes delas, recalcando-se a água somente onde for necessário.
- Tratamento: os recursos hídricos mais indicados para o suprimento de uma cidade, principalmente as águas naturais de superfície, raramente satisfazem todos os requisitos do ponto de vista qualitativo. Entretanto, se não forem potáveis, são potabilizáveis, isto é, podem ter as suas qualidades melhoradas dentro dos padrões higiênicos recomendados mediante um tratamento parcial ou completo, de acordo com a procedência das impurezas e com a intensidade da poluição ou da contaminação. Assim, a necessidade e abrangência dos processos de tratamento recomendáveis são definidas através dos dados relativos à qualidade da água no manancial e sua variação durante o ano (Mascaró, 1987). O tratamento da água é dispendioso e deverá compreender apenas os processos imprescindíveis à obtenção da qualidade desejada, a custos mínimos. Estes processos de tratamento podem ser: sedimentação simples, aeração, coagulação, decantação, filtração, desinfecção, alcalinização, fluoretação, amolecimento, remoção de impurezas, entre outros. Veja na figura abaixo um desenho ilustrativo mostrando as fases do tratamento da água.

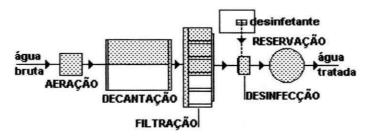


Figura 6- Esquema de uma estação de tratamento de água.

• Distribuição: é constituída pelos reservatórios, que recolhem a água aduzida e a tratada, e pela rede de tubos que a conduzem para o consumo, ou rede de distribuição.

Embora a água possa ser conduzida diretamente da adutora à rede de distribuição, a utilização de reservatórios é prática usual e geral. Oferece diversas vantagens, entre as quais se destacam: um melhor e mais seguro provimento para o consumo normal e para as suas variações, o atendimento de consumos de emergência e/ou consumos esporádicos, como o do combate a incêndios; a manutenção de uma pressão suficiente em todos os trechos da rede de distribuição, entre outros (Mascaró, 1987). Por outro lado a rede de distribuição é a parte propriamente urbana e a mais dispendiosa de todo esse subsistema. Com os seus ramais instalados ao longo das ruas e logradouros públicos, a interdependência entre a rede hidráulica e a rede viária requer um cuidadoso estudo no planejamento urbanístico. No caso mais geral, que é o de sua instalação em uma cidade ou zona urbana pré-existente, seu traçado está previamente definido, ficando subordinado à configuração das vias públicas, nem sempre favorável a um melhor escoamento. Estas redes são constituídas por uma seqüência de tubulações de diâmetros decrescentes, com início no reservatório de distribuição. Peças de conexão dos trechos ou ramais, válvulas, registros, hidrantes, aparelhos medidores e outros acessórios necessários completam-na.

Os materiais mais freqüentemente empregados nas tubulações que compõem este subsistema são o ferro fundido, o PVC (e, ainda, o cimento-amianto). Eles são utilizados em função das qualidades mínimas necessárias ao funcionamento das redes (pressões interna e externa, qualidade da água transportada principalmente antes do tratamento, entre outras), acarretando, assim, menores custos de instalação e operação. Outro aspecto importante para se obter economia na execução e manutenção das redes é a profundidade de colocação das tubulações. Recomenda-se que estas tubulações não sejam colocadas em grandes profundidades, já que as de esgotos devem estar sempre abaixo da rede de distribuição de água, por razões de segurança e higiene (Puppi, 1981).

d) Subsistema de esgotamento sanitário: Uma vez utilizada, a água distribuída à população se deteriora, tornando-se repulsiva aos sentidos, imprestável mesmo a usos secundários, e nocivos, em consequência da poluição e da contaminação. O seu imediato afastamento e um destino tal que não venha a comprometer a salubridade ambiental são providências que não podem ser postergadas (Puppi, 1981).

Este subsistema constitui-se no complemento necessário do subsistema de abastecimento de água. Porém, as divergências são flagrantes e profundas, considerando que funciona em sentido inverso, iniciando um onde o outro termina. A cada trecho da rede de distribuição de água deve corresponder o da rede coletora de água servida, ambas com exercício em marcha. Os fluxos, contudo, são opostos e de características diversas: o de água

potável sob pressão, em conduto forçado e com vazão decrescente; o de esgoto, sob pressão atmosférica, em conduto livre e com vazão crescente.

O subsistema de esgotos sanitários compreende, geralmente, a rede de canalizações e órgãos acessórios, órgãos complementares e dispositivos de tratamento dos esgotos, antes de seu lançamento no destino final. Assim, tem-se:

Redes de esgoto sanitário: são formadas por canalizações de diversos diâmetros e funções, entre as quais se destacam por ordem crescente de vazão e de seqüência de escoamento: ligações prediais, coletores secundários, coletores primários, coletores tronco, interceptores e emissários. Canalizações especiais, por vezes, podem ser necessárias, como os sifões invertidos e outras. A escolha dos materiais utilizados nas tubulações das redes deve levar em consideração as condições locais (solo), as facilidades de obtenção e disponibilidade dos tubos, e os custos dos mesmos. Normalmente, são utilizados tubos de seção circular, cujos materiais mais comuns são: cerâmica, concreto simples ou armado, cimento-amianto, ferrofundido e PVC (Mascaró, 1987).

- Ligações prediais: são constituídas pelo conjunto de elementos que têm por finalidade estabelecer a comunicação entre a instalação predial de esgotos de um edifício e o sistema público correspondente.
- Poços de visita: destinam-se à concordância, inspeção, limpeza e desobstrução dos trechos dos coletores; para isso devem ser instalados nas extremidades das canalizações, nas mudanças de direção, de diâmetro e de declividade, nas intersecções e a cada 100 m, aproximadamente, nos trechos longos.
- Tanques flexíveis: ou de descarga automática periódica, servem para a lavagem
 dos coletores em trechos de pequena declividade e onde haja a possibilidade de depósitos e
 riscos de obstruções. Estão cada vez mais em desuso por possibilitarem a contaminação da
 rede de água potável e por razões de ordem econômica.
- Estações elevatórias: são indispensáveis em cidades ou áreas com pequena declividade e onde for necessário bombear os esgotos até locais distantes. A construção destas estações só se justifica quando não é possível o esgotamento por gravidade. Estas estações têm custo inicial elevado e exigem despesas de operação e manutenção permanentes.
- Estações de tratamento: são instalações destinadas a eliminar os elementos poluidores, permitindo que as águas residuárias sejam lançadas nos corpos receptores finais em condições adequadas. O tratamento das águas residuárias exige, para cada tipo de esgoto (doméstico, industrial, entre outros), um processo específico, devendo ser realizado na medida das necessidades e de maneira a assegurar um grau de depuração compatível com os corpos

d'água receptores. Estas estações são geralmente concebidas de modo a possibilitar a sua execução em etapas, não somente em termos de vazão, mas também em função do tratamento. Assim, os processos mais comuns para tratamentos de esgotos são: gradeamento, desarenação, flutuação, sedimentação, coagulação, irrigação, filtração, desinfecção, desodorização, digestão, entre outros.

e) Subsistema energético: É constituído fundamentalmente por dois tipos de energias: a elétrica e a de gás. São as duas formas de energia que mais se usam nas áreas urbanas no mundo, por serem de fácil manipulação, limpas e relativamente econômicas. A utilização destas duas fontes de energia vem aumentando desde o começo deste século, tendo se acentuado este crescimento a partir de 1973, com a crise do petróleo. Em nível mundial, nas malhas urbanas, a energia elétrica destina-se à iluminação de locais e movimentação de motores, e a energia do gás à produção de calor (como cozinhar, esquentar água, aquecer ambientes) (Mascaró, 1987).

Com relação às redes que compõem este subsistema, a elétrica pode ser aérea ou subterrânea, sendo esta última solução a mais cara. Nas áreas urbanas de baixa densidade e nas de pouco poder aquisitivo, a rede elétrica aérea é a solução obrigatória pelo seu menor custo, embora produza poluição visual e apresente menor segurança que a subterrânea. A rede de gás é sempre subterrânea e apresenta estruturas, materiais e diâmetros das tubulações similares aos da rede de água. Devido à sua periculosidade, sua localização é a mais isolada possível em relação às demais redes subterrâneas e às edificações.

f) Subsistemas de comunicações: Este subsistema é, sem dúvida, o que mais se desenvolve atualmente, a uma velocidade muito grande. Depois do acelerado processo de "encurtamento" de distâncias via aumento da velocidade de transporte (melhoria das vias e mais potência dos veículos), chega a vez de "diminuir" o mundo, melhorando drasticamente a comunicação. Compreende a rede telefônica e a rede de televisão a cabo. As conexões são feitas por condutores metálicos, e, mais recentemente, de fibras óticas, cabos terrestres ou submarinos e satélites. As redes de infra-estrutura que compõe este subsistema (cabeamento e fios) seguem especificações similares aos do sistema energético; os satélites fazem parte da engenharia aeroespacial.

2.3.2 Classificação segundo a localização dos elementos que compõem os subsistemas

A classificação aqui apresentada leva em consideração, basicamente, a localização das redes que compõem os diversos subsistemas de infra-estrutura urbana. Estas redes, para

constituir um sistema harmônico, devem ser concebidas como tal, ou seja, como um conjunto de elementos articulados entre si e com o espaço urbano que as contenha.

Mas a desarticulação entre empresas de serviços públicos é grande e se traduz em uma séria desordem do subsolo urbano e efeitos estéticos e urbanísticos desagradáveis, acarretando maiores custos de implantação e operação, dificultando as necessárias renovações e ampliações próprias de cada rede. Esta desarticulação ocorre principalmente devido à falta de um cadastro geral que contenha as localizações, precisas, de todas as redes e seus equipamentos complementares. Este cadastro geral seria "alimentado" periodicamente por cada concessionária de serviços públicos, de forma a mantê-lo sempre atualizado. Uma das maneiras de se evitar problemas é localizar as redes a diferentes níveis e em diferentes faixas, segundo suas características. Os níveis usados para localizar as redes, e que dão origem à classificação por localização das mesmas, são os seguintes (Mascaró, 1987):

- a) Nível aéreo: É muito frequente a aparição de conflitos sérios devido à ausência de uma adequada planificação entre redes aéreas (eletricidade, TV a cabo, telefone, etc.) e as copas das árvores.
- b) Nível da superficie do terreno: Neste nível, é importante evitar a interferência das raízes das árvores nos pavimentos, o que ocorre com freqüência; no caso de proximidade entre eles, usam-se espécies com raízes superficiais. O uso de árvores de folhas caducas (que perdem sua folhagem no outono) na proximidade de bueiros ou bocas-de-lobo pode prejudicar o bom funcionamento de galerias de águas pluviais.
- c) Nível subterrâneo: Neste nível é importante que as raízes não fiquem a uma pequena distância das redes de infra-estrutura; caso contrário, será necessário construir um pequeno muro enterrado a fim de dificultar o crescimento das raízes que prejudicam a tubulação.

Nesse nível devem ser equacionadas também as interferências técnicas entre os diversos subsistemas, como o de água e o de esgoto (possibilidade de contaminação da rede de água pelo vazamento de esgotos) e os de energia elétrica e gás canalizado (explosões ocasionadas por faíscas da rede elétrica na presença de vazamentos nas tubulações de gás). Ficam evidentes os benefícios sócio-econômicos resultantes de uma boa organização dos três níveis de localização dos subsistemas que compõem a infra-estrutura urbana, por exemplo, por meio da fixação de faixas, horizontais e verticais, aéreas e subterrâneas, nas quais se localizaria cada uma destas redes, compatibilizadas com a presença da arborização urbana.

2.4 Descrição das Atividades

Durante o estágio, foi possível desenvolver atividades como: acompanhamento de serviços de drenagem, esgotamento sanitário, controle tecnológico e levantamento quantitativos de materiais necessários à execução da obra.

2.4.1 Esgotamento sanitário

As áreas a serem beneficiadas pelas redes de esgoto, apresentavam difíceis condições devido principalmente à falta de alinhamento das ruas e faixas de servidão entre as casas, caracterizando assim o uso inadequado do solo. Essas condições tornavam as áreas urbanísticas dependentes de tecnologia apropriadas à topografia de terrenos com alta declividade, impondo uma resposta voltada para sua estabilidade e com garantia de que os dispositivos de coleta e transporte dos esgotos fossem resistentes às situações de uso e as elevadas velocidades de fluxo. As intervenções realizadas em saneamento básico nas áreas urbanísticas foram antecedidas por um planejamento inicial que consideraram bacias e microbacias de esgotamento como unidades de coleta independentes de forma a permitir que sua implantação se fizesse de forma parcial e por etapas.

A estruturação dos sistemas de esgotamento compreendeu além da rede de coleta destinação final dos esgotos, as soluções internas individuais de cada domicílio, fazendo com que cada uma das unidades habitacionais fossem beneficiadas de instalações sanitárias mínimas, elevando o padrão de higiene dos moradores e permitindo sua ligação, de forma adequada, ao sistema implantado.

2.4.2 Sistemas de controle

No que se refere aos sistemas de controle podemos constatar preços de equipamentos e máquinas pesadas aprendendo como funciona o horímetro de cada uma, junto ao seu acompanhamento diário. Tal procedimento é de fundamental importância para a vida das indústrias da construção civil, pois são nestes sistemas que se fundamentam toda a manutenção de fornecedores e insumos necessários a continuação da obra.

2.4.3 Produtividade

De fundamental importância para a obra, a verificação da produtividade mostra de forma geral o real desenvolvimento das atividades, visto que os prazos de conclusão da mesma, como também, o combate aos desperdícios de insumos e material humano fazem todo o diferencial na gestão dos recursos. Pois, a preocupação quanto ao uso excessivo de materiais e componentes faz parte dos debates deste segmento industrial há muito tempo, e a cada dia ganha mais notoriedade em vista que o cuidado ambiental se torna prioridade no controle e na execução das obras.

2.4.4 Controle tecnológico

O controle tecnológico do concreto deve ser realizado tanto pelas empresas de serviço de concretagem como pelas próprias construtoras, por meio da contratação de laboratório especializado, para verificar se o material recebido está de acordo com as especificações do projeto estrutural. Trata-se de garantir as propriedades do concreto de acordo com norma específica, a NBR 12.655 "Concreto — Preparo, Controle e Recebimento". O controle tecnológico do concreto envolve a composição (traço), o preparo, o controle dos agregados, o recebimento do concreto e suas propriedades no estado fresco e endurecido.

Com o controle tecnológico o engenheiro projetista pode detectar problemas comuns durante a execução de uma obra e corrigi-los a tempo de tornarem-se prejudiciais à estrutura.

2.4.5 Pavimentação de ruas

Os serviços de recomposição nas vias abertas para a colocação dos sistemas de drenagem e esgotamento sanitário foram realizados mediante o mesmo tipo de material do pavimento ora retirado. Tal recomposição obedeceu a critérios de projeto como inclinação e compactação definidas.

3.0 CONSIDERAÇÕES FINAIS

No decorrer deste relatório, o conteúdo ora exposto resume as atividades desempenhadas na Santa Bárbara Engenharia ao longo dos quatro meses de estágio nesta.

Engenheiros, projetistas e executivos encontraram algumas dificuldades no decorrer da obra, no entanto, os conhecimentos adquiridos e a prática possibilitaram meios para dar enfrentamento aos problemas existentes.

O acompanhamento pessoal do engenheiro é de suma importância na execução da obra, bem como a análise e o entendimento do projeto a ser executado. Assim, faz-se necessária a presença em obras de engenharia, de profissionais com formação técnica e com capacidade acurada e percepção de conciliar qualidade executiva, lucratividade, bem-estar e segurança aos funcionários, preservação do meio ambiente e produtividade, de forma a facilitar o cumprimento dos prazos, procurando contribuir para satisfação dos clientes.

REFERÊNCIAS BIBLIOGRAFICAS

BORGES, A. C. Prática das pequenas construções. Editora Blucher, 9º Ed.

TSUTIYA, M. T. – Coleta e Transporte de Esgoto Sanitário/ Milton Tomoyuki Tsutiya, Pedro Alem Sobrinho-1ª Ed. – São Paulo : Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo, 1999. 548p.

FERNANDES, Carlos. - Esgotos Sanitários, Ed. Univ./UFPB, João Pessoa, 1997, 435p. Reimpressão Jan/2000.

AGOPYAN, V. Estudo dos Materiais de construção civil – Materiais Alternativos. In: Tecnologia de Edificações/Projeto de Divulgação Tecnológica Lix da Cunha. São Paulo, PINI/IPT, 1988.

MASCARÓ, J.L. Manual de loteamentos e urbanizações. Porto Alegre, SAGRA/ D.C. Luzzato, 1994.

PUPPI, I.C. Estruturação sanitária das cidades. Curitiba, UFPR/SP - CETESB, 1891.

PORTO, Rodrigo de Melo. Hidráulica Básica. 2 ed. EESC USP. Projeto Reenge. São Carlos – SP.

IMPARATO, I.; ABIKO, A.K. Urbanização, Abastecimento de Água e Saneamento. DEGRADADAS, 2., Salvador, 1993. Anais, Brasília, PNUD/MBES, 1994.

CONSTRUBUSINESS/99. (1999). *Habitação, Infra-estrutura e Emprego.* 3º Seminário da Indústria Brasileira de Construção. FIESP/CIESP. São Paulo.

MARRARA, Thiago. Bens públicos, Domínio Urbano, Infra-estruturas. Editora Forum, Belo Horizonte, 2007, 360p.

ANEXO FOTOGRÁFICO

Figura 7- Escoramento de vala

Figura 8 - Escavação em rocha branda

Figura 9 - Assentamento de tubo PVC sobre colchão de areia

Figura 10 - Apiloamento do material de aterro da vala

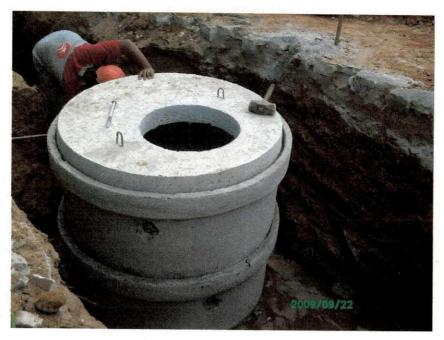


Figura 11 - Execução do poço de visita

Figura 12 - Ligações domiciliares

Figura 13 - Controle tecnológico

Figura 14 - Recomposição de pavimento em paralelepípedo