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Resumo

Ferramentas como ErrorProne, ReSharper e PMD ajudam os programadores a detectar e/ou

remover automaticamente vários padrões de códigos suspeitos, possíveis bugs ou estilo de

código incorreto. Essas regras podem ser expressas como quick fixes que detectam e ree-

screvem padrões de código indesejados. No entanto, estender seus catálogos de regras é

complexo e demorado. Nesse contexto, os programadores podem querer executar uma edição

repetitiva automaticamente para melhorar sua produtividade, mas as ferramentas disponíveis

não a suportam. Além disso, os projetistas de ferramentas podem querer identificar regras

úteis para automatizarem. Fenômeno semelhante ocorre em sistemas de tutoria inteligente,

onde os instrutores escrevem transformações complicadas que descrevem "falhas comuns"

para consertar submissões semelhantes de estudantes a tarefas de programação. Nesta tese,

apresentamos duas técnicas. REFAZER, uma técnica para gerar automaticamente transfor-

mações de programa. Também propomos REVISAR, nossa técnica para aprender quick fixes

em repositórios. Nós instanciamos e avaliamos REFAZER em dois domínios. Primeiro, dados

exemplos de edições de código dos alunos para corrigir submissões de tarefas incorretas,

aprendemos transformações para corrigir envios de outros alunos com falhas semelhantes. Em

nossa avaliação em quatro tarefas de programação de setecentos e vinte alunos, nossa técnica

ajudou a corrigir submissões incorretas para 87% dos alunos. No segundo domínio, usamos

edições de código repetitivas aplicadas por desenvolvedores ao mesmo projeto para sintetizar

a transformação de programa que aplica essas edições a outros locais no código. Em nossa

avaliação em 56 cenários de edições repetitivas de três grandes projetos de código aberto em

C#, REFAZER aprendeu a transformação pretendida em 84% dos casos e usou apenas 2.9

exemplos em média. Para avaliar REVISAR, selecionamos 9 projetos e REVISAR aprendeu

920 transformações entre projetos. Atuamos como projetistas de ferramentas, inspecionamos

as 381 transformações mais comuns e classificamos 32 como quick fixes. Para avaliar a

qualidade das quick fixes, realizamos uma survey com 164 programadores de 124 projetos,

com os 10 quick fixes que apareceram em mais projetos. Os programadores suportaram

9 (90%) quick fixes. Enviamos 20 pull requests aplicando quick fixes em 9 projetos e, no

momento da escrita, os programadores apoiaram 17 (85%) e aceitaram 10 delas.
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Abstract

Tools such as ErrorProne, ReSharper, and PMD help programmers by automatically

detecting and/or removing several suspicious code patterns, potential bugs, or instances of

bad code style. These rules could be expressed as quick fixes that detect and rewrite unwanted

code patterns. However, extending their catalogs of rules is complex and time-consuming. In

this context, programmers may want to perform a repetitive edit into their code automatically

to improve their productivity, but available tools do not support it. In addition, tool designers

may want to identify rules helpful to be automated. A similar phenomenon appears in

intelligent tutoring systems where instructors have to write cumbersome code transformations

that describe “common faults” to fix similar student submissions to programming assignments.

In this thesis, we present two techniques. REFAZER, a technique for automatically generating

program transformations. We also propose REVISAR, our technique for learning quick fixes

from code repositories. We instantiate and evaluate REFAZER in two domains. First, given

examples of code edits used by students to fix incorrect programming assignment submissions,

we learn program transformations that can fix other students’ submissions with similar faults.

In our evaluation conducted on four programming tasks performed by seven hundred and

twenty students, our technique helped to fix incorrect submissions for 87% of the students. In

the second domain, we use repetitive code edits applied by developers to the same project to

synthesize a program transformation that applies these edits to other locations in the code.

In our evaluation conducted on 56 scenarios of repetitive edits taken from three large C#

open-source projects, REFAZER learns the intended program transformation in 84% of the

cases and using only 2.9 examples on average. To evaluate REVISAR, we select 9 projects, and

REVISAR learns 920 transformations across projects. We acted as tool designers, inspected

the most common 381 transformations and classified 32 as quick fixes. To assess the quality

of the quick fixes, we performed a survey with 164 programmers from 124 projects, showing

the 10 quick fixes that appeared in most projects. Programmers supported 9 (90%) quick fixes.

We submitted 20 pull requests applying our quick fixes to 9 projects and, at the time of the

writing, programmers supported 17 (85%) and accepted 10 of them.
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Chapter 1

Introduction

As software evolves, programmers edit the source code to add features, fix bugs, or refactor

it. Many such edits have already been performed in the past by the same programmers in

a different codebase location, or by other programmers in a different program/codebase.

For instance, to apply an API update, a programmer needs to locate all references to the

old API and consistently replace them with the new API [83, 148]. As another example, in

programming courses, student submissions that exhibit the same fault often need similar

fixes. For large classes such as Massive Open Online Courses (MOOCs), manually providing

feedback to different students is an unfeasible burden on the teaching staff.

Since applying repetitive edits manually is tedious and error-prone, programmers often

strive to automate them. The space of tools for automation of repetitive code edits contains

Integrated Development Environments (IDEs), static analyzers, and various domain-specific

engines. IDEs, such as Visual Studio [87] or Eclipse [35], include features that automate

some code transformations, such as adding boilerplate code (e.g., equality comparisons) and

code refactoring (e.g., Rename, Extract Method). Static analyzers, such as ReSharper [51],

Coverity [6], ErrorProne [39], and Clang-tidy [38] automate the removal of suspicious

code patterns, potential bugs, and verbose code fragments. In an education context, Auto-

Grader [135] uses a set of transformations provided by an instructor to fix common faults in

introductory programming assignments.

Other tools do not apply repetitive edits but make programmers aware of code patterns that

could be problematic. For instance, static analyzers such as Checkstyle [14], PMD [120], and

FindBugs [4] warn about a bad code pattern, allowing programmers to fix them before they

1
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cause problems later in the software evolution. For example, PMD can detect instances where

the method size is used to check whether a list is empty and proposes to replace such instance

with the method isEmpty. For the majority of collections, these two ways to check empti-

ness are equivalent, but for other certain collections—e.g., ConcurrentSkipListSet—

computing the size of a list is not a constant-time operation [105]. We refer to this kind of

edit patterns as quick fixes.

1.1 Problem

All aforementioned tool families rely on predefined catalogs of recognized rules, which are

hard to extend. Furthermore, since the number of possible rules for a language such as Java

is huge, it unfeasible to enumerate all possible rules that could be useful for programmers.

Thus, the catalog of rules of code analysis tools may be incomplete.

In this context, there are two problems (i) programmers may want to perform a repetitive

edit into their code automatically to improve their productivity, but available tools do not

support it, and (ii) it is difficult for designers of code analysis tools to identify rules that could

be helpful to be automated. In the first problem, we want to provide a few examples since

programmers may not like to provide many examples to perform transformations. In the

second, it is needed to identify what programmers are performing on their source code to

identify transformations that would be likely to be helpful for them.

We start by describing the first problem in Section 1.1.1. Then, we describe the problem

of discovering quick fixes to be included in the catalog of rules of code analysis tools in

Section 1.1.2.

1.1.1 Automating edits

Our key observation is that code edits gathered from repositories and version control

history constitute input-output examples for learning program transformations.

The main challenge of example-based learning lies in abstracting concrete code edits into

classes of transformations representing these edits. For instance, Figure 1.1a shows sim-
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ilar edits performed by different students to fix the same fault in their submissions for a

programming assignment. Although the edits share some structure, they involve different

expressions and variables. Therefore, a transformation should partially abstract these edits as

in Figure 1.1d.

However, examples are highly ambiguous, and many different transformations may satisfy

them. For instance, replacing <name> by <exp> in the transformation will still satisfy the

examples in Figure 1.1a. In general, learning either the most specific or the most general

transformation is undesirable, as they are likely to respectively produce false negative or false

positive edits on unseen programs. Thus, we need to (i) learn and store a set of consistent

transformations efficiently, and (ii) rank them with respect to their trade-offs between over-

generalization and over-specialization. Here, a consistent transformation is the one that

produces the intended output of each input example. To resolve these challenges, we leverage

state-of-the-art software engineering research to learn such transformations automatically

using Inductive Programming (IP), or Programming-by-Example (PBE) [44], which has been

successfully applied to many domains, such as text transformation [42], data cleaning [66],

and layout transformation [26].

To motivate the problem, we start by describing two motivating examples of repetitive

program transformations. First, we present a motivating example on the domain of program-

ming courses. Then, we present a motivating example on the domain of applying repetitive

edits to open-source C# projects.

Fixing programming assignment submissions

In introductory programming courses, assignments are often graded using a test suite, provided

by the instructors. However, many students struggle to understand the fault in their code when

a test fails. To provide more detailed feedback (e.g., fault location or its description), teachers

typically compile a rubric of common types of faults and detect them with simple checks.

With a large variety of possible faults, manually implementing these checks can be laborious

and error-prone.

However, many faults are common and exhibit themselves in numerous unrelated student

submissions. Consider the Python code in Figure 1.1a. It describes two submission attempts to

solve a programming assignment in the course “The Structure and Interpretation of Computer
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1 def product(n, term):

2 total, k = 1, 1

3 while k<=n:

4 - total = total*k

5 + total = total*term(k)

6 k = k+1

7 return total

(a) An edit applied by a student to fix the pro-
gram.

1 def product(n, term):

2 if (n==1):

3 return 1

4 - return product(n-1, term)*n

5 + return product(n-1,

term)*term(n)

(b) An edit applied by another student fixing the same
fault.

(c) Similar tree edits applied in (a) and (b), respectively. Each edit inserts a concrete subtree
to the right-hand side of the ∗ operator. The two edits share the same structure but involve
different variables and expressions.

(d) A rewrite rule that captures the two edits in (a) and (b).

Figure 1.1: An example of a common fault made by different students, two similar edits that
can fix different programs, and a program transformation that captures both edits.

Programs” (CS61A) at the University of California, Berkeley,1 an introductory programming

class with more than 1,500 enrolled students. In this assignment, the student is asked to

write a program that computes the product of the first n terms, where term is a function.

The original code, which includes line 4 instead of line 5, is an incorrect submission for

this assignment, and the subsequent student submission fixes it by replacing line 4 with

line 5. Notably, the fault illustrated in Figure 1.1 was a common fault affecting more than one

hundred students in the Spring semester of 2016, and Figure 1.1b shows a recursive algorithm

proposed by a different student with the same fault.

To alleviate the burden of compiling manual feedback, we propose to automatically

learn the rubric checks from the student submissions. Existing tools for such automatic

learning [82, 83] cannot generate a transformation that is general enough to represent both the

edits shown in Figure 1.1c due to their limited forms of abstraction.

1http://cs61a.org/
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Repetitive codebase edits

The second motivating example is found in Roslyn, Microsoft’s library for compilation and

code analysis for C# and VB.NET. Consider the edits shown in Figure 1.2, where, for every

comparison instance with an object returned by the method CSharpKind, the programmer

replaces the == operator with an invocation of the new method IsKind, and passes the

right-hand side expression as the method’s argument. Such refactoring is beyond abilities of

IDEs due to its context sensitivity.

When we analyzed the revision 8c146442 in the Roslyn repository, we observed that the

programmer applied this edit to 26 locations in the source code. However, the transformation

generated by our solution (Chapter 5) applied this edit to 718 more locations. After we

presented the results to the Roslyn programmers, they confirmed that the locations should

have been covered in the original revision.

1 - while (receiver.CSharpKind() == SyntaxKind.ParenthesizedExpression)

2 + while (receiver.IsKind(SyntaxKind.ParenthesizedExpression))

3
4 - foreach (var m in modifiers) {

5 - if (m.CSharpKind() == modifier) return true;

6 - }

7 + foreach (var m in modifiers) {

8 + if (m.IsKind(modifier)) return true;

9 + }

Figure 1.2: Repetitive edits applied to the Roslyn source code to perform a refactoring.

1.1.2 Learning quick fixes

So far, we describe the problem of allowing programmers to perform edits that are not

included in the catalog of code analysis tools. Now, we describe the problem of discovering

quick fixes.

As discussed, the code analysis tools rely on a predefined catalog of quick fixes (usually

expressed as rules), each used to detect and potentially fix a pattern. This catalog has to

be updated often due to the addition of new language features (e.g., new constructs in new

versions of Java), new style guidelines, or simply due to the discovery of new bad patterns.

However, the task of coming up with what transformations are useful, what transformations

2https://github.com/dotnet/roslyn/commit/8c14644



1.1 Problem 6

are common, and integrating these transformations in the code analysis tools is challenging,

time-consuming, and is currently performed in an ad-hoc fashion—i.e., new rules for quick

fixes are added on a by-need basis. For these tools, some rules are detected by analyzing bug

reports. For instance, the null pointer exception detector in FindBugs tool was inspired by a

bug in Eclipse 2.1.0 (bug number 35769). Other rules are identified by other programmers and

submitted as pull requests for analysis. For instance, ErrorProne often receives pull requests

to improve its catalog.

The lack of a systematic way of discovering new quick fixes makes it hard for code

analyzers to stay up-to-date with the latest code practices and language features.

In this problem, we also have the challenge of abstracting concrete code edits into classes

of transformations representing these edits and the challenge of examples’ ambiguity since

different transformations may satisfy them (see Section 1.1.1). However, we have additional

challenges (i) we want to learn the examples in an unsupervised way without programmers’

guidance, and (ii) we want to scale since we may have to analyze many examples to learn the

transformations.

Our key observation is that we can “discover” quick fixes by observing how programmers

modify code in real repositories with large user bases. In particular, a transformation that

is performed by many programmers across many projects is likely to reveal a good quick

fix.

We start by describing a motivating example of an edit that occurs across projects.

Motivating example

Consider the edit applied to the code in Figure 1.3. The edit was performed in the Apache

Ant source code.3 In the presented pattern, the original code contains three expressions of

the form x.equals("str") that compare a variable x of type string to a string literal

"str". Since the variable x may contain a null value, evaluating this expression may cause

a NullPointerException. In this particular revision, a programmer from this project

addresses the issue by exchanging the order of the arguments of the equals method—i.e.,

3https://github.com/apache/ant/commit/b7d1e9b
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by calling the method on the string literal. This edit fixes the issue since the equals checks

whether the parameter is null. This type of edit is a common one, and we discovered

it occurs in three industrial open source projects across GitHub repositories: Apache Ant,

Apache Hive, and Google ExoPlayer. Given that the pattern appears in such large repositories,

it makes sense to assume that it could also be useful to other programmers who may not know

about it. Despite its usefulness, a quick fix rule for this edit is not included in the catalog of

largely used code analysis tools, such as ErrorProne, FindBugs, and PMD. Remarkably, even

though the edit is applied in Google repositories, this pattern does not appear in ErrorProne, a

code analyzer developed by Google that is internally run on the Google’s code base.

1 //...

2 - } else if (args[i].equals("--launchdiag")) {

3 + } else if ("--launchdiag".equals(args[i])) {

4 launchDiag = true;

5 - } else if (args[i].equals("--noclasspath")

6 - || args[i].equals("-noclasspath")) {

7 + } else if ("--noclasspath".equals(args[i])

8 + || "-noclasspath".equals(args[i])) {

9 noClassPath = true;

10 - } else if (args[i].equals("-main")) {

11 + } else if ("-main".equals(args[i])) {

12 //...

Figure 1.3: Concrete edits applied to the Apache Ant.

1.2 Solution

We now describe two solutions to deal with the problem of the incompleteness of code analysis

tools. In Section 1.2.1, we describe our solution to perform repetitive edits that are not in the

catalog of code analysis tools. To solve this problem, we want to provide a few examples since

programmers may not like to provide many examples to perform transformations. Moreover,

few examples increase the number of transformations that satisfy them. We need to search

this space to identify the correct one. The most general or the most specific transformation is

undesirable.

In Section 1.2.2, we describe our solution to discover transformations that could be helpful

to be included in the catalog of code analysis tools. To solve this problem, we have to compare

a huge number of edits to identify the ones that describe transformations. In the previous
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problem, we usually have few examples that are instances of the same repetitive edit. Here, the

edits interchange repetitive edits that could come from different programmers, revisions, and

projects. Therefore, many different combinations of concrete edits will need to be compared

to identify the ones that describe the same transformation. Therefore, maintaining a space

of possible transformations would not scale for that problem. In this problem, we focus on

finding the least general transformation, and we rely on the assumption that we have enough

examples to abstract concrete edits into the correct transformations.

1.2.1 Automating edits

To deal with the problem of allowing programmers to perform repetitive edits that are not in

the catalog of code analysis tools, we propose REFAZER,4 an IP technique for synthesizing

program transformations from examples. REFAZER is based on the PROSE [121] Inductive

Programming framework. This framework has been successfully used in the data wrangling

domain. For instance, FlashFill and FlashExtract are examples of techniques that use this

framework. FlashFill is a feature in Microsoft Excel 2013 that synthesizes string transforma-

tion macros from input-output examples while FlashExtract is a tool for data extraction from

semi-structured text files, deployed in Microsoft PowerShell for Windows 10.

We specify a Domain-Specific Language (DSL) that describes a rich space of program

transformations that commonly occur in practice. In our DSL, a program transformation is

defined as a sequence of distinct rewrite rules applied to the Abstract Syntax Tree (AST).

Each rewrite rule matches some subtrees of the given AST and outputs modified versions

of these subtrees. For instance, in REFAZER, the transformation in Figure 1.1 is described

as a rewrite rule shown in Figure 1.1d. This rewrite rule pattern matches any subtree of the

program’s AST whose root is a * operation with a variable as the second operand and inserts

a term application on top of that variable. Notice that the rewrite rule abstracts both the

variable name and the first operand of the * operator. Additionally, we specify constraints

for our DSL operators based on the input-output examples to reduce the search space of

transformations, allowing PROSE to efficiently synthesize them. Finally, we define functions

to rank the synthesized transformations based on their DSL structure.

4http://www.dsc.ufcg.edu.br/~spg/refazer/
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Additionally, we use synthesis algorithms to create the set of programs following this DSL.

The synthesis problem starts with an example-based specification that contains inputs and

desired outputs. REFAZER uses PROSE, which synthesizes a set of programs following the

DSL structure. All programs in this set are consistent with the example-based specification.

The methodology used by PROSE is backpropagation [121]. In this methodology, a synthesis

problem for a rule in the DSL is reduced to several subproblems for each parameter of

this rule, which are then solved recursively. The backpropagation algorithm uses modular

operator-specific annotations called witness functions. Although PROSE includes many

generic operators such as Filter and Map, most operators in the DSL are domain-specific.

Therefore, the synthesis designer has to have non-trivial domain-specific insight to create

witness functions for the backpropagation procedure.

Finally, we define ranking algorithms. The number of transformations learned could be

huge (> 1020). Even though the learned transformations are all consistent with the input-

output examples, some of these program transformations may be incorrect to unseen instances.

Thus, we need to favor the transformations that have a high likelihood of it being correct in

general.

1.2.2 Learning quick fixes

So far, we described a solution to allow programmers to perform edits that are not included in

the catalog of code analysis tools. Now, we describe a solution for learning quick fixes that

could be useful to be added to the catalog of code analysis tools.

To resolve this problem, we propose REVISAR,5 a technique for learning quick fixes from

code repositories. Given code repositories as input, REVISAR identifies transformations by

comparing consecutive revisions in the revision histories. The most common transformations—

i.e., those performed across multiple projects—can then be inspected to detect useful ones

and add the corresponding rules to code analyzers. For example, REVISAR was able to

automatically analyze the concrete edits in Figure 1.3 and generate the quick fix in Figure 1.4.

We also sent pull requests applying this quick fix to other parts of the code in the Apache Ant

and Google ExoPlayer projects, and these pull requests were accepted.

5https://reudismam.github.io/Revisar/
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1 @BeforeTemplate

2 boolean before(String v1,

3 StringLiteral v2) {

4 re turn v1.equals(v2);

5 }

1 @AfterTemplate

2 boolean after(String v1,

3 StringLiteral v2) {

4 re turn v2.equals(v1);

5 }

Figure 1.4: quick fix for the concrete edits in Figure 1.3.

Since we are interested in detecting patterns appearing across projects and revisions,

REVISAR has to analyze large amounts of code, a task that requires efficient and precise

algorithms. REVISAR focuses on edits performed to individual code locations and uses

GumTree [31], a tree edit distance algorithm, to efficiently extract concrete abstract-syntax-

tree edits from individual pairs of revisions—i.e., sequences of tree operations such as insert,

delete, and update. REVISAR then uses a greedy algorithm to detect subsets of concrete edits

that can be described using the same transformation. To perform this last task efficiently,

REVISAR uses a variant of a technique called anti-unification [63], which is commonly used

in inductive logic programming. Given a set of concrete edits, the anti-unification algorithm

finds the least general generalization of the two edits—i.e., the largest pattern shared by the

edits.

Revisar follows Refaster [148] syntax (see Figure 1.4). The left-hand side (i.e., annotated

with @BeforeTemplate) matches nodes to be edited. In the presented transformation, the

before version matches a call to the equals method where v1 is a String and v2 is a

string literal. The after version (i.e., annotated with @AfterTemplate) is also a call to the

equals method, but exchanges the order of the equals method elements.

1.3 Evaluation

We now describe the evaluation of our techniques. We start with the evaluation of REFAZER.

Then, we describe the evaluation of REVISAR.
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1.3.1 REFAZER

We evaluated REFAZER in two domains: learning transformations to fix submissions for

introductory programming assignments and learning transformations to apply repetitive edits

to large codebases.

Our first experiment is motivated by large student enrollments in Computer Science

courses, e.g., in MOOCs, where automatically grading student submissions and providing per-

sonalized feedback is challenging. In this experiment, we mine submissions to programming

assignments to collect examples of edits applied by students to fix their code. We then use

these examples to synthesize transformations, and we try using the learned transformations to

fix any new students’ submissions with similar types of faults. We say that a submission is

“fixed” if it passes the set of tests provided by course instructors. Synthesized fixes can then be

used for grading or turned into hints to help students locate faults and correct misconceptions.

In our evaluation conducted on 4 programming tasks performed by 720 students, REFAZER

synthesizes transformations that fix incorrect submissions for 87% of the students.

Our second experiment is motivated by the fact that certain repetitive tasks occurring

during software evolution, such as complex forms of code refactoring, are beyond the capabil-

ities of current IDEs and have to be performed manually [47, 62]. In this experiment, we use

repetitive code edits applied by programmers to the same project to synthesize a program trans-

formation that can be applied to other locations in the code. We performed a study on three

popular open-source C# projects (Roslyn [128], Entity Framework [27], and NuGet [102]) to

identify and characterize repetitive code transformations. In our evaluation conducted on 56

scenarios of repetitive edits, REFAZER learns the intended program transformation in 84%

of the cases using 2.9 examples on average. The learned transformations are applied to as

many as 60 program locations. Moreover, in 16 cases REFAZER synthesized transformations

on more program locations than the ones present in our dataset, thus suggesting potentially

missed locations to the programmers.

So far, we describe the REFAZER evaluation. Now, we talk about REVISAR evaluation.



1.3 Evaluation 12

1.3.2 REVISAR

We evaluated the effectiveness of REVISAR and used it to mine transformations from nine

popular Java GitHub projects, each one containing between 1,062 and 13,790 revisions.

REVISAR was able to learn 28,842 transformations, which covered 158,906 out of 240,612

edits. Several patterns were learned from edits appearing in different revisions and different

projects. We manually analyzed the results and saw that, most of the times, REVISAR correctly

learned the patterns intended by the programmers. In some cases REVISAR learned overly

specific patterns—e.g., it did not abstract a variable.

We then acted as developers of code analyzers and inspected the transformations learned

by REVISAR to find the ones that describe quick fixes. First, we focused on the following

research question: (RQ1) Can REVISAR be used to discover common quick fixes? Of the

patterns learned by REVISAR, we manually inspected the 381 ones that occurred across

most projects. After merging similar patterns and removing patterns that did not represent

quick fixes (e.g., renaming object to obj), we derived a catalog of 32 quick fixes—

i.e., edits that, based on the Java literature, improved the quality of the code in terms of

correctness/performance/readability.

Since the creation of our catalog involved manual selection, we wanted to know the

opinion of other programmers about the quick fixes discovered by REVISAR. Hence we asked

(RQ2) Are programmers interested in applying quick fixes discovered by REVISAR? To

answer this question, we performed two studies. First, we conducted an online survey with

164 (8.2% response rate on 2,000 survey request) randomly selected programmers from 124

different projects, including projects from Google, Facebook, and Apache Foundation. In

this survey, we showed the programmers 10 out of the 32 quick fixes in our catalog. Our

selection included both quick fixes missed and included in code analyzer tools. In this way,

we could assess whether programmers that use code analyzers agreed with the usefulness

of the quick fixes applied by the analyzer. Overall, programmers supported 9 (90%) quick

fixes in our catalog. To better answer RQ2, we submitted 20 pull requests to 12 distinct

projects, performing the quick fixes that were approved in the survey. In 10/20 (50%) cases

the programmers found the quick fix to be useful and accepted the pull request. In 7 of the

10 remaining cases, programmers supported the quick fixes, but did not merge them because

they requested further discussion or the quick fixes were not performed on critical locations
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in their code—i.e., the programmers already had checks in place to avoid the effect of the bad

code patterns. The remaining 3 pull requests were ignored. Remarkably, following one of

our pull requests, the developers of the code analyzer PMD added one of our rules to their

library.

1.4 Contributions

This thesis makes the following contributions:

• REFAZER, a novel technique that leverages state-of-the-art IP methodology to efficiently

solve the problem of synthesizing transformations from examples (Chapter 4);

• An evaluation of REFAZER in the context of learning fixes for students’ submissions to

introductory programming assignments (Section 4.2.1);

• An evaluation of REFAZER in the context of learning transformations to apply repetitive

edits in open-source industrial C# code (Section 4.3.1);

• REVISAR, a fully automatic novel and unsupervised technique for mining code reposi-

tories to identify repetitive Java transformations (Chapter 5);

• A comprehensive evaluation of REVISAR on nine large GitHub code repositories where

REVISAR learned 920 new edits across projects, many of which were confirmed to be

of good quality (Section 5.4);

• An evaluation of ten of our transformations with programmers from open source

repositories (Section 5.5.2).

1.5 Organization

We organize this thesis as follows: In Chapter 2, we present the background to understand this

thesis. We explain the concept of program synthesis and inductive programming synthesis.

We also show a state-of-the-art framework in domain-specific program synthesis. Additionally,

we describe the concept of program transformation and state-of-the-art algorithms to compute
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edit operations in trees. In Chapter 3, we discuss a state-of-the-art of techniques to do

transformations in software systems. In Chapter 4, we show REFAZER, our technique to

learn syntactic program transformations based on examples. We also discuss the evaluation

of this technique. In Chapter 5, we explain REVISAR, our technique for learning quick

fixes from repositories along with its evaluation. In Chapter 6, we present the conclusion

of this thesis. Finally, in Appendix A, we present the search string to select the works in

our state-of-the-art. In Appendix B, we describe the catalog of transformations identified by

REVISAR. In Appendix C, we show the survey used to evaluate REVISAR.



Chapter 2

Background

In this chapter, we present the background to understand this work. In Section 2.1, we present

program synthesis, inductive programming, and domain-specific inductive synthesis. We

also present a meta-framework for domain-specific synthesis by examples. In Section 2.2,

we overview program transformations and present state-of-the-art techniques in program

transformation. Finally, in Section 3, we present the state-of-the-art related to program

transformation in software engineering.

2.1 Program synthesis

Program synthesis [41] is the process of learning programs specified in some form (e.g.,

logical specification and input-output examples). It can be seen as a search problem to find the

desired program given a specification. In this search problem, specification is a mechanism

in which users define their intent — i.e., define the task to be automated. The search space

bounds possible generated programs. Here, a challenge is how to define a search space that

is expressive enough to do intended tasks but restricted enough for efficient synthesis [44].

Moreover, search techniques explore search space to find the desired program.

Program synthesis can roughly be classified in deductive or inductive synthesis. Deductive

synthesis uses theorem-proving and the intent is given by declarative and logical specifica-

tion [76, 121]. The advantage of deductive synthesis is performance since it only relies on

valid programs (i.e., programs following the specification) and does not backpropagate with

invalid programs. Nevertheless, it requires specialized knowledge to write specifications [121].

15
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Whereas, inductive synthesis, more known as inductive programming (IP), uses input-output

examples to learn programs. The advantage of inductive programming is specification since

examples are, usually, easy to provide. Nevertheless, examples are an incomplete specifi-

cation. Thus, the number of programs consistent with the examples could be huge. In this

work, we use examples to synthesize program transformations. Thus, we focus on inductive

programming and discuss areas related to this kind of synthesis.

2.1.1 Inductive programming

Inductive programming, also known as Programming-by-Example (PBE), denotes a sub-area

of program synthesis in which the specification is given by examples [43]. It has been an

active research area in the AI and HCI communities for over a decade [71]. IP techniques have

recently been developed for various domains including interactive synthesis of parsers [68],

imperative data structure manipulations [136], and network policies [154]. Furthermore, IP

has been extensively applied to the domain of data wrangling: a process that converts data

between formats (e.g., FlashExtract [66] and FlashFill).

An advantage of inductive programming is that it allows users with limited or no back-

ground in programming to do complex tasks. For instance, 99% [43] of the population lack

programming background but do tedious, time-consuming, and repetitive tasks (e.g., format

spreadsheet cells). To do such tasks, users often use specialized forums. They post questions

(usually with examples) related to the problem, and an expert provides a program to do the

target task. IP can play a role of a specialist, helping users in their tasks. An example of a

technique that has been helping users to do tedious and time-consuming tasks in spreadsheets

using inductive programming is FlashFill [42], which is an IP technique for doing string

transformations using input-output examples. For instance, Figure 2.1 illustrates a task that

normalizes names in an input column using examples. The user only needs to give a few

examples in the output column; FlashFill induces a program transformation to fill the other

cells of the output column automatically.

Nevertheless, examples are an incomplete specification. Thus, the number of correct

programs in the examples could be huge. Here, a challenge is how to efficiently store and

search for the program that is correct to seen inputs (i.e., examples) and also has a higher

probability to be correct on unseen inputs.
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Figure 2.1: Normalizing names by examples using FlashFill.

Domain-specific inductive synthesis

Domain-specific inductive synthesis is a sub-area of inductive programming that learns

programs based on a domain-specific language (DSL). In contrast to a general-purpose

language (GPL) (e.g., Java), a DSL focuses on a specific application domain [86]. Thus, it is

optimized to that domain. Nevertheless, designing a domain-specific language synthesizer is

a non-trivial task. It often requires four tasks [44]:

• Problem definition: identify the domain of tasks to automate and collect real scenarios

of these tasks;

• Domain-specific language: propose a DSL expressive enough to do real scenarios of

repetitive tasks but restricted enough for efficient learning from examples;

• Synthesis: design algorithms to synthesize DSL programs from examples. Synthesis

algorithm may return programs that match examples;

• Ranking: design ranking algorithm to rank programs returned by the synthesizer.

For instance, consider the Java language; although developers could think in many ways

to write a program that does the task of normalizing names (Figure 2.1). The space of

possible programs to explore in Java is prohibitive. Thus, Java is expressive for that task, but

a synthesizer is unable to learn a program in a feasible time.

Next, we describe a meta-framework that allows the development of applications in

domain-specific inductive synthesis.

2.1.2 PROSE

Microsoft Program Synthesis using Examples (PROSE) denotes a meta-framework for domain-

specific inductive synthesis. Problems in domain-specific inductive synthesis often share
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properties (e.g., algorithms, operators, and rules). Nevertheless, synthesis is time-consuming:

besides designers must know the domain, the DSL is coupled with implementation. Thus,

small changes in the DSL may require non-trivial changes in implementation. PROSE allows

synthesis by providing infrastructure to learn, rank, and run programs.

In PROSE, an application designer defines a DSL for desired tasks. The synthesis problem

is given by a spec ϕ, which contains a set of program inputs and constraints on desired

program’s outputs on these inputs (e.g., examples of these outputs). PROSE synthesizes a set

of programs in the DSL that are consistent with ϕ, combining deduction, search, and ranking:

• Deduction is a top-down walk over the DSL grammar, which iteratively backpropa-

gates the spec ϕ on the desired program to necessary specs on the subexpressions of

this program. In other words, it reduces the synthesis problem to smaller synthesis

subproblems using a divide-and-conquer dynamic programming algorithm over the

desired program’s structure.

• Search is an enumerative algorithm, which iteratively constructs candidate subexpres-

sions in the grammar and verifies them for compliance with the spec ϕ [2].

• Ranking is a process of picking the most robust program from the synthesized set of

programs that are consistent with ϕ. Because examples are highly ambiguous, such a set

may contain up to 1020 programs [121], and quickly eliminating undesirable candidates

is paramount for a user-friendly experience.

Besides the DSL, synthesis designers define backpropagation procedures (witness func-

tions), semantic algorithms (semantic functions), and ranking strategies (ranking functions)

for each DSL operator.

• Witness functions. In PROSE, a witness function ωF is a backpropagation procedure,

which, given a spec ϕ on a desired program on kind F(e), deduces a necessary (or even

sufficient) spec ϕe = ωF(ϕ) on its subexpression e.1 Witness functions enable efficient

top-down synthesis algorithms of PROSE.

1Another view on witness functions ωF is that they simply implement inverse semantics of F, or a generaliza-
tion of inverse semantics w.r.t. some constraints on the output of F instead of just its value.
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• Ranking functions. Since example-based specifications are incomplete, the synthesized

abstract transformation may not do the desired transformation on other input programs.

We specify ranking functions that rank a transformation based on its robustness (i.e.,

likelihood of it being correct in general).

Although PROSE supports some operators (e.g., Filter and Map), synthesis designers

must define witness, semantics, ranking functions for most of the DSL operators. PROSE

divides synthesis problem in smaller sub-problem over a version space algebra (VSA).

DSL syntax

A DSL defines the syntax of possible programs. Listing 2.2 shows the DSL for FlashFill

SubStr operator. A DSL is written in a context-free grammar (CFG) and is composed by

symbols and operators. Each DSL line defines a rule that associates a symbol on the left-hand

side (LHS) to operators in the right-hand side (RHS). For instance, the expr symbol is

defined in terms of operator SubStr. In this DSL, SubStr extracts a substring between

position expressions p1 and p2. Position p is either an absolute or a relative position to the kth

occurrence of a position sequence defined by the regex pair (r1, r2). Position sequence (r1, r2)

is the set of positions p in a string such that the left side of p matches with r1 (a prefix), and

the right side of p matches with r2 (a suffix)— see Section 2.1.2 for an example.

expr ::= SubStr(x, pos, pos)

pos ::= AbsPos(x, k) | RelPos(x, r1, r2, k)

k := int

r := regex

Figure 2.2: Grammar for SubStr operator.

Semantic functions

The semantic functions define behavior for DSL operator. For example, SubStr semantic

receives input string x and two positions pos1 and pos2 and returns the substring of x that

starts at the pos1 and ends at pos2 (Algorithm 1). AbsPos semantic functions return the
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string index k if k ≥ 0 or (length(x)+ k+ 1), otherwise (Algorithm 2). Algorithm 3 illustrates

semantic function for RelPos operator. It returns the kth index in x that has r1 from the left

and r2 from the right.

1: result += x.SubStr(pos1, pos2)

2: return result

Algorithm 1: Semantic function SubStr(x, pos1, pos2).

1: result += k >= 0 ? k : (length(x) + k + 1)

2: return result

Algorithm 2: Semantic function for operator AbsPos(x, k).

1: matches += all indexes in x that matches r1 from left and r2 from right
2: result += matches[k]

3: return result

Algorithm 3: Semantic function RelPos(x, r1, r2, k).

Version space algebra

In this section, we present the structure used by PROSE to efficiently store programs, a version

space algebra [65] (VSA). This structure consists of version spaces (VS), which represent a

set of subprograms/subexpressions of a program that satisfies the examples from the most

specific subprogram/subexpression to the most general one. To form a new VS, algebra

operators such as join and union combine the subprograms in a VS. Moreover, a VSA can

be seen in a tree-like structure where nodes represent subprograms or a program if the node

is the root of the tree. Each child node represents the VS for a subexpression of an operator.

Since algebra operators (e.g., Cartesian product) can be applied to children of a VS to obtain a

new VS, a VSA store an exponential number of programs. Nevertheless, the space of possible

programs is polynomial. Union and Join operators are defined as follows:

Union operator Let v1 and v2 be version spaces with equal domain and range d(v1) = d(v2)

and r(v1) = r(v2). Union operator returns v1 ∪ v2.

Join operator Let v1 and v2 be version spaces. Let E1 = {ei}
|E1|

i=1
be training examples (i, o) to

learn v1 and let E2 = {ei}
|E2|

i=1
be training examples (i, o) to learn v2. Join operator returns

Cartesian product v1 ⊲⊳ v2, such that v1 satisfies E1 and v2 satisfies E2.
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To illustrate a VSA, consider the following problem: given people names, extract the last

name, illustrated in Figure 2.3. In Figure 2.4, we present the VSA that represents programs

that are consistent with the two first cells in Figure 2.3 as examples. These two examples

generate twelve programs, which are represented succinctly in the VSA. SubStr version

space joins first and second position version space. This version space is composed by the

Cartesian product (i.e., join operation) of the first and second parameter of the SubStr

operator. The first position returns four programs and the second position returns three.

Thus, this version space generated 4 × 3 = 12 programs. Version space for each position

unites AbsPos and RelPos version space. The VSA for the first position (i.e., AbsPos

| RelPos) generated four programs. This VSA space is composed by the union of the

programs for the possible pos operators (i.e., AbsPos on the left and RelPos on the right).

The AbsPos operator returns an empty set because there is no k such that k matches the first

position to extract the last name from the first cell and matches the first position to extract the

last name from the second cell. Whereas, RelPos identifies four possible patterns to match

the first position both on the first cell and the second cell. For instance, the first pattern in this

set matches with a position that contains space (s+) on the left and word (w+) on the right.

The VSA to extract the second position undergoes the same process. This version space unites

AbsPos and RelPos. The AbsPos version space contains a single element that contains a

k = −1 to match the end of the string. Additionally, RelPos contains two patterns to match

the end of the string. Given the first element in this VSA, we have program SubStr(x,

RelPos(x, s+, w+, 1), AbsPos(x, -1)), which extracts the substring between

the first occurrence of pattern [s+, w+] and string end.

Figure 2.3: Data for the extract last name problem.
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Version space

Version space

Output program
Output program
Substring(x, pos, pos);

Output program
Output program
AbsPos(k) | RelPos(x,rr)

Output program
Output program
AbsPos(k) | RelPos(x,rr)

Version space

Version space

program
program
AbsPos(k) 

program
program

Version space

program
program

program
program

Version space Version space

AbsPos(7)
RelPos(x, (s+, w+), 1)
RelPos(x, (s+, .+), 1)
RelPos(x, (.+, w+), 1)
RelPos(x, (.+, .+), 1)

RelPos(k) 

AbsPos(7)
RelPos(x, (w+, $), 1)
RelPos(x, (.+, $), 1)

RelPos(k) 

AbsPos(7)
AbsPos(-1)

AbsPos(k) 

Figure 2.4: Version space algebra for the extract last name problem.

Witness functions

A witness function ωF is a backpropagation procedure, which, given a spec ϕ on a desired

program on kind F(e), deduces a necessary (or even sufficient) spec ϕe = ωF(ϕ) on its

subexpression e. For example, the SubStr operator (Figure 2.2) requires two ωFs, one for

each parameter/subexpression of the SubStr operator. Each ωF deduces the specification for

SubStr to the specification to learn its correspondent parameter/subexpression. For instance,

Algorithm 4 shows ωF for the first position. This ωF requires an example-based spec ϕ for

the SubStr operator of the form (Pi,Po) where Pi denotes the input string (e.g., the first

cell in Figure 2.3 column A) and Po denotes the output string (e.g., the first cell in Fig 2.3

column B). The goal of this ωF is to deduce the specification for the first position expression

given the specification for learning a SubStr operator. The first position expression requires

a position. Thus, the ωF for the first position generates input-output examples of the form

(Pi, Po) where Pi is the input string and Po is a position, which is the desired specification

for the first subexpression of the SubStr operator. To this end, ωF for first position of

SubStr operator evaluates all occurrences of Po on Pi (line 4) and returns start index for

each occurrence (line 6). Similarly, Algorithm 5 shows ωF for second position. Instead of

returning start index, it returns final occurrence index.
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Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: occurrences := all matches of Po in Pi

5: for all occurrence ∈ occurrences do

6: examples += Pi.IndexO f (occurrence)

7: result[Pi] += examples
8: return result

Algorithm 4: Witness function to first parameter of operator SubStr(x, pos, pos).

Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: occurrences := all matches of Po in Pi

5: for all occurrence ∈ occurrences do

6: examples += Pi.IndexO f (occurrence) + length(occurrence)

7: result[Pi] += examples
8: return result

Algorithm 5: Witness function to second parameter of operator SubStr(x, pos, pos).

Furthermore, Algorithm 6 shows ωF for AbsPos operator. The goal of this ωF is to

deduce the specification for the k parameter. It requires an example-based spec ϕ of the form

(Pi,Po) where Pi denotes the input string and Po is a list of positions inside input, returned by

previous ωF ( Algorithm 4). This ωF evaluates to the k index inside input from left to right

and vice-versa (line 6).

Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: positions := Po

5: for all pos ∈ positions do

6: examples += pos ∪ pos − length(Pi) − 1

7: result[Pi] += examples
8: return result

Algorithm 6: Witness function to first parameter of operator AbsPos(x, k).

Algorithm 7 shows ωF for first parameter of RelPos operator. The goal of this algorithm

is to deduce the specification for left side regex r. Similar to the previous ωF, it requires an

example-based spec ϕ of the form (Pi,Po) where Pi denotes the input string and Po is a list of
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positions inside input. This ωF outputs a regex list that matches Pi from the left of position

pos (line 6). Similarly, Algorithm 8 shows ωF for second parameter. Instead of returning a

regex list that matches the left of pos, it returns a regex list that matches right of pos. Finally,

Algorithm 9 shows ωF from third parameter of RelPos operator.

Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: positions := Po

5: for all pos ∈ positions do

6: examples += regex list that match left of pos on Pi

7: result[Pi] += examples
8: return result

Algorithm 7: Witness function to first parameter of operator RelPos(x, r, r, k).

Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: positions := Po

5: for all pos ∈ positions do

6: examples += regex list that match right of pos on Pi

7: result[Pi] += examples
8: return result

Algorithm 8: Witness function to second parameter of operator RelPos(x, r, r, k).

Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: positions := Po

5: for all pos ∈ positions do

6: examples += index of pos in positions
7: result[Pi] += examples
8: return result

Algorithm 9: Witness function to third parameter of operator RelPos(x, r, r, k).

Ranking functions

Since example-based specifications are incomplete, the number of transformations learned

could be huge (> 1020). Although all the learned transformations edit correctly the provided
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input-output examples, some of these transformations may incorrectly edit instances lacked

in the input-output example specification (i.e., the program does not follow the user’s intent).

Thus, we need to favor the transformations that are robust (i.e., likelihood of it being correct

in general). The goal of the ranking functions is to select robust transformations from the

program space. To illustrate this concept, we present ranking functions for the FlashFill

DSL in Algorithm 10, Algorithm 11, and Algorithm 12. These ranking functions compute

their score recursively based on the score for ranking functions for their subexpressions. For

simplicity, ranking function for AbsPos returns 0 and ranking function for RelPos returns

1. Furthermore, the SubStr operator returns the sum of the score of its subexpressions. The

intuition here is that programs that compute the position relative to a pattern have a higher

probability of getting the correct position for unseen input than programs that just return a

position. Although we show ranking functions that compute the score recursively based on

the score of the subexpressions of an operator, ranking functions also could be computed

based on the properties of the generated program. To design of ranking functions, we could

recur to experts or compute these values empirically.

1: result += scorepos1 + scorepos2)

2: return result

Algorithm 10: Ranking function for SubStr(scorex, scorepos1, scorepos2).

1: result := 0

2: return result

Algorithm 11: Ranking function for AbsPos(scorex, scoreposk).

1: result := 1

2: return result

Algorithm 12: Ranking function for RelPos(scorex, scorer1, scorer2, scorek).

2.2 Program transformation

In this section, we overview program transformation. In addition, we present four state-of-

the-art algorithms for representing tree edits. In Section 2.2.1, we present Zhang and Sasha
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algorithm. In Section 2.2.2, we present Chawathe et al. algorithm. In Section 2.2.3, we

present ChangeDistiller. Finally, in Section 2.2.4, we present GumTree.

A transformation is a structure that abstracts edits in the source code, allowing it to be

applied in other contexts during the software development. For example, modern IDEs,

include in their refactoring suites a set of transformations to help developers to edit the source

code, such as rename and extract method refactorings. Usually, a transformation could be

described by the edit operations that are done in a tree to get another tree: a process known as

computing the edit script. An edit script is a mechanism that computes the difference between

versions of the same tree. Since an AST is a tree that represents source code, an edit script

can be seen as the problem to compute the difference between two ASTs. The edit script is

composed by a list of edit operations. In general, the edit script problem aims to minimize

edit operations that when applied to source AST (T1) produce target AST (T2). Basic edit

operations are the following:

• Insert(x, p, k): Insert a leaf node x on parent p at kth position;

• Delete(x): Delete a leaf node x from source tree;

• Update(x, w): Update a leaf node x to leaf node w;

• Move(x, p, x): Move subtree x to be kth child of parent p.

In general, the edit script problem could be divided into subproblems of mapping nodes

from T1 and T2 and finding edit operations that produces T2 when applied to T1 [13]. State-of-

the-art techniques to compute edit scripts include Zhang and Shasha (Section 2.2.1), Chawathe

et al. [13], ChangeDistiller [33], and GumTree [31].

2.2.1 Zhang and Shasha

Zhang and Shasha [155] is an algorithm that computes minimum edit scripts of ordered trees.

An ordered tree is a tree that preserves the left-to-right order of sibling nodes. Since an AST

preserves the left-to-right order of sibling nodes, this algorithm may be used to compute the

minimum edit script for two ASTs. Zhang and Shasha extend the edit script problem of string

domain to the edit script problem for tree domain. Edit script problem for string domain is
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limited to tree domain since strings do not preserve the ancestor-descendant relationship, but

trees do. To compute edit script for ASTs, this algorithm compares ordered forest from AST

nodes. An ordered forest is a structure that maintains root nodes from two node positions

i and j when AST is traversed in some order — e.g., post-ordering adopted in Zhang and

Shasha. For instance, Figure 2.5 (right) shows the forest computed from position 1 to 7 from

left AST. Along the algorithm, Zhang and Shasha maintain a list l of the leaf most descendant

9

3

1 2

8

76

4 5

3

1 2
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4 5 7

Figure 2.5: Example of a forest for an AST.

of subtree root at node x and a list keyroots of key roots. For instance, Figure 2.6 illustrates

the leaf most descendant from nodes 1, 3, and 9. Moreover, a node x is a key root if there is no

k such that k > x and l(x) = l(k), formally: keyroot(x) =
{

∄k ∈ k > x | l(x) = l(k)
}

. Figure 2.7

shows key roots from before/after ASTs.
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Figure 2.6: Example of leaf most descendants. In this example, the node number 1 is leaf
most descendants of nodes number 1, 3, and 9.

The algorithm goal is to minimize edit operations to convert AST T1 to T2. In this

process, it associates costs for edit operations (i.e., insert, delete, and update) and uses
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Figure 2.7: Trees to compute edit script, showing key roots.

dynamic programming to compute edit script. Algorithm 13 shows the main algorithm.

Line 1 processes list l and keyroots . At line 4, it calls Algorithm 14 to build tdist table. In

Algorithm 14, lines 1 – 5 compute f dist three base cases. The first base case occurs when

T1 and T2 are empty. Thus, no operations are learned. The second base case occurs when T1

contains nodes and T2 is empty. In this case, the minimum edit script contains only delete

operations. The last base case occurs when T1 is empty and T2 contains nodes. Here, edit

script contains only insert operations. At line 9, if i1 is an AST and j1 is an AST, f dist table is

updated with the cheapest operation (i.e., delete, insert or update, respectively). Otherwise, the

update operation bases on tdist table and f dist will be the cheapest of these three operations.

Given tdist table, edit script is computed using Levenshtein [16] algorithm.

Input: Trees T1 and T2

Output: Tree dist table tdist
1: Preprocessing {compute l and keyroots}
2: for all i ∈ keyroots(T1) do

3: for all j ∈ keyroots(T2) do

4: treedist(i, j)

Algorithm 13: Zhang and Shasha algorithm.
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Input: i ∈ keyroots(T1) and j ∈ keyroots(T2)

Output: Tree distance table tdist
1: f dist(∅, ∅) = 0 {preprocess forest dist fdist.}
2: for all i1 ∈ range(l(i)..i) do

3: f dist(T1 [(l(i)..i1] ,∅) = f dist(T1 [ (l(i)..i1 − 1 ] ,∅) + γ(T1 [ i1 ]→ Λ)

4: for all j1 ∈ range(l( j).. j) do

5: f dist(∅,T2

[

(l( j).. j1
]

) = f dist(∅,T2

[

(l( j).. j1 − 1
]

) + γ(Λ→ T2

[

j1
]

)

6: for all i1 ∈ range(l(i)..i) do

7: for all j1 ∈ range(l( j).. j) do

8: if i1 is a tree and j1 is a tree then

9: f dist(T1 [(l(i)..i1] ,T2

[

(l( j).. j1
]

= min{
10: f dist(T1 [ (l(i)..i1 − 1 ] ,T2

[

(l( j).. j1
]

) + γ(T1 [ i1 ]→ Λ)

11: f dist(T1 [ (l(i)..i1 ] ,T2

[

(l( j).. j1 − 1
]

) + γ(Λ→ T2

[

j1
]

)

12: f dist(T1 [ (l(i)..i1 − 1 ] ,T2

[

(l( j).. j1 − 1
]

) + γ(T1 [ i1 ]→ T2

[

j1
]

)}

13: tdist
[

i1, j1
]

= f dist(T1 [(l(i)..i1] ,T2

[

(l( j).. j1
]

14: else

15: f dist(T1 [(l(i)..i1] ,T2

[

(l( j).. j1
]

= min{
16: f dist(T1 [ (l(i)..i1 − 1 ] ,T2

[

(l( j).. j1
]

) + γ(T1 [ i1 ]→ Λ)

17: f dist(T1 [ (l(i)..i1 ] ,T2

[

(l( j).. j1 − 1
]

) + γ(Λ→ T2

[

j1
]

)

18: f dist(T1 [ (l(i)..l(i1) − 1 ] ,T2

[

(l( j)..l( j1) − 1
]

) + tdist(i1, j1])}

Algorithm 14: Algorithm to compute treedist.

2.2.2 Chawathe et al.

Chawathe et al. [13] is a traditional algorithm for computing edit script. It divides this problem

on the subproblem of finding a matching and the subproblem of computing a minimum edit

script. The matching problem bases on the leaf nodes similarity and non-leaf nodes similarity:

Leaf matching : Given leaf nodes x ∈ T1 and y ∈ T2. Nodes (x, y) match if their labels

match l(x) = l(y) and their similarity exceeds a threshold λ, formally sim(x, y) > λ,

satisfying 0 ≤ λ ≤ 1.

Non-leaf matching : Given non-leaf nodes x ∈ T1 and y ∈ T2. Nodes (x, y) ∈ M match

if their labels match l(x) = l(y) and their similarity exceeds a threshold λ, formally
common(x,y)

max(|x|,|y|))
> λ, satisfying 0.5 ≤ λ ≤ 1. common(x, y) denotes x and y common nodes.

Algorithm 16 shows matching algorithm. Line 1 is a preprocessing step that sets mapping

M to empty. The algorithm matches nodes based on their labels. For each label l, line 3

chains T1 and T2 (i.e., traverse nodes in order). Lines 4 – 5 use longest common subsequence

algorithm (LCS) to match nodes from T1 and T2 based on label. The matched nodes accord-

ingly with LCS are added to M. The aim is to compute the minimum edit script. Thus, the
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LCS provides a configuration that maximizes the matching between T1 and T2. The more

similar are T1 and T2, the less the number of edit operations. Lines 6 – 8 process each node

that remains unmatched based on leaf and non-leaf similarity. This matching is based on the

first matching of a node x in T1 with a node y in T2. For a good matching, Chawathe et al.

require that, for any leaf x ∈ T1 and y ∈ T2, x match at most a node y and vice-versa. When a

node match multiple nodes, the matching may be made with the incorrect node and the edit

script may contain more edit operations that the minimum to convert source AST T1 to target

T2. In Section 2.2.3, we discuss a case where this assumption fails.

Input: Trees T1 and T2

Output: Matching M
1: M = ∅
2: for all l ∈ labels do

3: S1 = chain(T1, l), S2 = chain(T2, l)
4: lcs = LCS(S1, S2, equal)
5: for all (x, y) ∈ lcs do add (x, y) to M
6: for all x <M and x ∈ S1 do

7: if y <M and y ∈ S2 and equal(x, y) then

8: add (x, y) to M

Algorithm 15: Matching Chawathe et al. algorithm.

Edit script algorithm (Algorithm 15) uses M to compute edit operations. Line 1 is a

preprocessing step that sets edits E to empty. Lines 2 – 14 denote the first phase of the

algorithm that computes insert, update, and move edit operations. In this first phase, line 2

traverses T2 in breadth first search. Line 6 adds an inserted operation if x is unmatched. The

rationality for this operation is that if a node is lacked in T2, it must be inserted in T1 to

produce T2. If the value of two matched nodes differs, line 10 adds an update operation.

The reason for this operation is that if two nodes match together, but differ in their values,

an update operation must be added to T1 to produce the corresponding value of the node

in T2. Line 13 adds a move operation when node parents do not match. The rationality for

this operation is that if the parent of x and the parent of y do not match, but x and y do

match, the node x must be moved to some location in T1 such that their parent matches. The

second phase of the algorithm computes delete operations. For each unmatched node x ∈ T1,

lines 15 – 17 add a delete operation. The rationality for this operation is that if a node x is

present on T1, but not present on T2 it must be removed from T1 to produce T2. At the end,

T1 and T2 are isomorphic since each operation is applied to T1 besides being added to E.
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Input: Trees T1 and T2 and M
Output: Edit Script E

1: M
′

=M, E = ∅
2: for all x ∈ T2 breadth first search do

3: y = p(x) and z is the partner of y in M
′

4: if x has no partner in M
′

then

5: k = FindPos(x) and create a node w based on x
6: add Insert(w, z, k) to E, add (w, x) to M

′

, and apply Insert(w, z, k) to T1

7: else

8: w = the partner of x in M
′

and v =the partner of p(w) in M
′

9: if v(x) differs from v(w) then

10: add Update(w, v(x)) to E and apply Update(w, v(x)) to T1

11: if (y, v) <M then

12: k = FindPos(x) and z is the partner of y in M
′

13: add Move(w, z, k) to E and apply Move(w, z, k) to T1

14: Align children (w, x)

15: for all w ∈ T2 post-order traversal do

16: if w has no partner in M
′

then

17: add Delete(w) to E and apply Delete(w) to T1)

Algorithm 16: Edit Script Chawathe et al. algorithm.

2.2.3 ChangeDistiller

ChangeDistiller [13] is an algorithm to extract fine-grained changes for ASTs. It identifies

fine-grained source code changes based on a taxonomy of code changes [32]. This taxonomy

contains 35 kinds of transformations for object-oriented programming. This algorithm

improves Chawathe et al. algorithm for computing edit script for ASTs. Since Chawathe et

al. is an algorithm applicable for all kinds of trees, it may present suboptimal results when

applied to ASTs. One reason for this phenomenon is that Chawathe et al. quality depends

on similarity functions and a threshold that are difficult to adjust to adequate for all kind of

trees. Thus, in some kinds of trees Chawathe et al. often do not compute the minimum edit

script. For instance, in small trees, the mismatch on leaves may be propagated to inner nodes,

leading to a mismatch in high-level nodes. Figure 2.8 shows a good matching that Chawathe

et al. is unable to compute using a threshold of 0.6. To compute the mapping, Chawathe et al.

traverses in bottom-up from left to right (i.e., in order traversal). Here, foo.GetHuga()

matches in tree T2, but foo.doNothing() does not. The dissimilarity from the bottom

nodes is propagated to the inner nodes. Using the non-leaf similarity function, the Then does

not match since common(Then,Then)

max(2,2)
=

1
2
= 0.5. The same occurs with the If statement. Another

scenario where Chawathe et al. produces suboptimal results is when assumption 1 fails (i.e.,
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one node matches multiple nodes.). Figure 2.9 shows an example where a node matches

multiple nodes. Nodes are matched from the left to the right, thus Node 1 and Node 3 matches,

and Node 2 is discarded.

if

Then

MI MI

if

Then

MI MI

(a > b) (a > b)

foo.GetHuga(); foo.doNothing(); foo.GetHuga(); foo.bar();

Figure 2.8: An example of a match for a small tree.

if

Then

MI

(a > b)

foo.GetHuga();

B

MI if

Then

MI

(a > b)

foo.GetHuga();

B

MI

MI
println foobar

println foo println foo

1 2

3

Figure 2.9: An example where a node x in T1 matches multiples nodes in T2.

To improve Chawathe et al., ChangeDistiller extends Chawathe et al. in four aspects.

First, it customizes leaf node matching. Additionally, it customizes inner node matching. It

also introduces the concept of best match. Finally, it uses a dynamic threshold based on the

number of node descendants.

To customize leaf node match, ChangeDistiller compares strings based on bi-gram similar-

ity (Eq. 2.1) instead of string similarity based on Levenshtein algorithm ( Eq. 2.2). Bi-grams

uses a sliding window over a string for each pair of characters (e.g., “ve”, “er”, “rt”, “ti”,
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“ic”, “ca”, “al” is the bi-gram of vertical). The key idea to use bi-gram is that develop-

ers often change word orders (e.g., verticalDrawAction to DrawVerticalAction).

For this kind of change, Levenshtein distance D(x, y) is not suitable since it is based on

LCS. The more different the strings, the more operations to convert strings. The LCS from

verticalDrawAction to DrawVerticalAction is verticalAction. Thus, four

deletes are needed to remove draw and four inserts are needed to write draw. Using f = 0.6,

verticalDrawAction and DrawVerticalAction do not match using Levenshtein

similarity.

simngram =
2 ∗ |ngram(x)

⋂

ngram(y)|

|ngram(x)
⋃

ngram(y)))|
(2.1)

sim(x, y)Lev = 1.0 −D(x, y)/max(|x|, |y|) (2.2)

To compare inner nodes, Chawathe et al. only uses leaf node descendants. Although

this strategy is suitable for flat trees (e.g., LATEX document), in software engineering inner

node descendants also play a hole on similarity. Thus, to customize inner node matching,

ChangeDistiller uses both inner and leaf node descendants using Dice function 2.3:

simDice =
2 ∗ |nodes(x)

⋂

nodes(y)|

|nodes(x)
⋃

nodes(y)))|
(2.3)

When a node x in T1 matches multiples node in T2, ChangeDistiller uses the best matching

instead of the first match. In addition, ChangeDistiller uses a dynamic threshold based on tree

size ( f = 0.6 if n > 4 and f = 0.4, otherwise).

Edit operations are based on a taxonomy of code changes for object-oriented programming.

This taxonomy includes 35 distinct changes for object-oriented programming.

2.2.4 GumTree

GrumTree [31] is an edit script algorithm based on developers’ viewpoint of source code

edits. Developers often want an edit script that reflects their edits instead of the shortest

edit script [31]. GumTree focuses on mapping. It applies Chawathe et al. to compute edit

operations. Mapping is divided into top-down and bottom-up phases: the top-down phase
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finds isomorphic subtrees by decreasing height. The bottom-up phase compares nodes based

on common descendants from top-down phase. This mapping aligns with developers way to

edit source code. First, they search for large pieces of matching code. Then, they search for

precise differences in matched nodes [31].

Algorithm 17 shows the top-down algorithm. It includes two priority queues based on

height (L1 for T1 and L2 for T2). Line 1 empties mapping M and auxiliary mapping A. A

maintains nodes from T1 or T2 that match multiples nodes. Line 2 pushes root of T1 and T2

to its priority queue. Lines 3 to 18 execute while L1 and L2 contain nodes with height larger

than a threshold. If height of L1 peek is larger than height of L2 peek, descendants of L1 peek

are added to L1. If L2 peek is larger than L1 peek, descendants of L2 peek are added to L2.

Method open adds descendants of a node to the priority queue. The pop function returns all

the node with height in the head of the priority queue (line 10). For pair of nodes (t1, t2) with

same height from L1 and L2, line 12 verifies whether t1 and t2 are isomorphic. If t1 or t2

matches a single node, all the pairs of isomorphic nodes of s(t1) and s(t2) to M. Otherwise,

(t1, t2) are added to A. Line 17 and line 18 add descendants of unmatched nodes to L1 and

L2, respectively. Lines 20 – 23 add pair of isomorphic nodes (t1, t2) from A with the highest

similarity accordingly with Dice function.

Algorithm 18 shows bottom-up algorithm. Line 1 iterates from T1 nodes that are un-

matched and contain matched descendants s(t1) nodes. Line 2 selects the node t2 ∈ T2 with

the highest Dice. Line 4 adds (t1, t2) to M if their dice exceeds a threshold. Line 6 collects the

mapping of a minimum edit script algorithm without move (GumTree adopts RTED [119]). If

nodes contain the same label and are unmatched, GumTree adds (ta, tb) to M.
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Input: Trees T1 and T2, priority queues L1 and L2

Output: Matching M
1: M = ∅, A = ∅
2: push(root(T1),L1), push(root(T2),L2)

3: while min(peekMax(L1), peekMax(L2)) > minHeight do

4: if peekMax(L1) , peekMax(L2) then

5: if peekMax(L1) > peekMax(L2) then

6: for all t ∈ pop(L1) do open(t,L1)

7: else

8: for all t ∈ pop(L2) do open(t,L2)

9: else

10: H1 = pop(L1), H2 = pop(L2)

11: for all (t1, t2) ∈ H1 ×H2 do

12: if isomorphic(t1, t2) then

13: if ∃tx ∈ T2 | isomorphic(t1, tx)∧ tx , t2 or ∃tx ∈ T1 | isomorphic(tx, t2)∧ tx , t1 then

14: add(A, (t1, t2))

15: else

16: add all pair of isomorphic nodes in s(t1) and s(t2) to M
17: for all t1 ∈ H1 | (t1, tx) < A

⋃

M do open(t1,L1)

18: for all t2 ∈ H2 | (tx, t2) < A
⋃

M do open(t2,L2)

19: sort(t1, t2) ∈ A using dice(parent(t1), parent(t2),M)

20: while size(A) , 0 do

21: (t1, t2) = remove(A, 0)

22: add all pair of isomorphic nodes in s(t1) and s(t2) to M
23: A = A \ {(t1, tx ∈ A)}, A = A \ {(tx, t2 ∈ A)}

Algorithm 17: GumTree top-down algorithm.

Input: Trees T1 and T2 and M
Output: Matching M

1: for all t1 ∈ T1 | t1 <M ∧ t1 has matched children, in post-order do

2: t2 = candidate(t1,M)

3: if t2 , null and Dice(t1, t2,M) > minDice then

4: add(M, (t1, t2))

5: if max(|s(t1)|, |s(t2)|) < maxSize then

6: R = opt(t1, t2)

7: for all (ta, tb) ∈ R do

8: if ta, tb <M ∧ l(ta) = l(tb) then

9: add(M, (ta, tb))

Algorithm 18: GumTree bottom-up algorithm.



Chapter 3

State-of-the-art

In this chapter, we present the state-of-the-art about program transformations. This state-of-

the-art is collected using a systematic review. In Section 3.1, we present the background,

motivation, goal, and research question of this state-of-the-art. In Section 3.2, we present

the review methods, including our research strategy, search string, selection methodology,

quality assessment, inclusion and exclusion criteria, extracted information, and execution. In

Section 3.3, we present the results of our systematic review. Finally, in section 3.4, we discuss

the works in our state-of-the-art.

3.1 Motivation

During software evolution, developers may do repetitive edits [58,91,96,124,144]. These edits

are identical or similar to different codebase locations, which may occur as developers add

features, refactor, or fix a bug. An example of them is an API replacement where developers

must find old API usages and replace it by the new one. Since some repetitive edits are

recurring, IDEs automate, in the refactoring suites, common transformations (e.g., rename

refactoring). A transformation generalizes developer concrete edits in an abstraction to be

applied to other codebase locations.

However, developers still do many transformations absent in IDEs. These edits are often

done manually, which is time-consuming and error-prone. To help developers to apply

repetitive edits, some techniques were proposed. Nguyen et al. [94] present a recommender

to automate repetitive edits based on properties of these edits. Meng et al. [83] propose

36
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a technique that uses two or more examples of edited methods to learn a transformation

that locates and edits target methods of the repetitive edit. Raychev et al. [125] propose an

approach that uses refactorings from IDEs to compose complex refactorings.

Researchers also reviewed techniques for repetitive edits. Monperrus [89] write a bibliog-

raphy on automatic software repair. Zibran and Roy [156] survey clone management. Park

et al. [118] present an empirical study on supplementary bug fixing. Mens and Tourwé [85]

and Pakdeetrakulwong et al. [117] present techniques to recommend source code edits. These

works focus on specific transformations, and many of them are not conducted in a systematic

way. Furthermore, Kim et al. [58] study techniques to automatize repetitive edits, but this

study is restricted to a few pre-selected papers.

In this section, we present a systematic review of techniques to do repetitive edits. These

edits could occur horizontally (i.e., across commits/revisions) or vertically (i.e., on a single

commit/revision).

Our goal is to characterize techniques to transform software code on perspective of

repetitive edits. Formally, we have:

Goal : analyze techniques to transform source code for the purpose of characterizing them

with respect to technique properties from the point of view of software developers in

the context of software evolution.

3.1.1 Review questions

We base our review on Kitchenham and Charters [60] guidelines to do systematic reviews in

software engineering. Our research question is the following:

• RQ 01: what are the techniques to do transformations in software engineering?

We collect studies to directly answer our RQ (i.e., primary studies). In addition, we collect

studies that review primary studies (i.e., secondary studies) such as systematic literature

review, mapping study, and surveys.
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3.2 Review methods

We first conduct an exploratory study. This study aims to select studies to base our review.

It helps to define places to search for studies (i.e., databases) and terms to build our search

string (e.g., major terms and synonyms). Table 3.1 shows works on this exploratory study.

Table 3.1: Studies from the exploratory study.

Reference Name

Nguyen et al. [94] A Study of Repetitiveness of Code Changes in Software Evolution

Ray et al. [124] The Uniqueness of Changes: Characteristics and Applications

Meng et al. [83] LASE: Locating and Applying Systematic Edits by Learning from

Examples

Robbes and Lanza [126] Example-based Program Transformation

Raychev et al. [125] Refactoring with Synthesis,

Kim and Meng [58] Recommending Program Transformations to Automate Repetitive

Software Changes

Nguyen et al. [98] A Graph-Based Approach to API Usage Adaptation

Bravenboer et al. [8] Stratego/XT 0.17. A language and toolset for program transforma-

tion

Cordy [15] Source Transformation, Analysis and Generation in TXL

Boshernitsan et al. [58] Aligning Development Tools with the Way Programmers Think

about Code Changes

Toomim et al. [144] Managing Duplicated Code with Linked Editing

3.2.1 Search strategy

To select studies for our SLR, we apply the following methodology:

a) We derive from population, intervention, and outcome major terms for our search string.

b) We identify alternative spelling and synonym for major terms.

c) We identify databases to apply the search string.

d) We build a search string for each database.



3.2 Review methods 39

e) We do the search.

f) We do backward snowballing (i.e., analyze works in reference section) and forward

snowballing (i.e., analyze who cited this work). For backward snowballing, we analyze

related works. Based on Kitchenham Brereton [61], for forward snowballing, we select

critical works (10% of total) based on number of citations by year and collect works

citing it.

Regard the item a), search terms derive from population, intervention, and outcome.

Population is who/what intervention affects. Intervention is what is being studied, and outcome

denotes observed results. Our population is software engineers (target of transformation

techniques). Intervention is techniques to do transformation, and outcome is technique

transformations. To answer the b), we use our exploratory study to identify synonyms and

alternative spelling, which are shown in Table 3.2.

Table 3.2: Synonyms and alternative spelling.

Value Alternative Spelling and Synonyms

Software engineer Developer, programmer
Systematic change Repetitive edit, repetitive change, non-unique change, duplicate

change, systematic edit, linked edit, refactoring
Technique Tool, recommender, algorithm, synthesizer

For item c), we identify databases. Based on [61], we choose ACM and IEEE along with

ScienceDirect, Engineering Village, and Scopus. Table 3.3 shows these databases.

Table 3.3: Criteria for our systematic review.

Feature Value

Language English
Search method The work must be available online.

Databases

IEEE Explore
ACM Digital Library
ScienceDirect
Engineering Village
Scopus

SR evaluation Author
Publication year After 2005
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3.2.2 Search string

Search strings may vary among databases. Default search string for our SLR is the following:

(“software engineering” OR developer OR programmer) AND (“systematic change” OR

“program repair” OR “API usage adaptation” OR “Code change” OR “program change”

OR “program transformation” OR “script transformation” OR “source transformation” OR

“code transformation” OR “repetitive change” OR “non-unique change” OR “duplicated

change” OR “duplicated code” OR “systematic edit” OR “linked edit” OR “refactoring”

OR “bug-fix”) AND (technique OR tool OR recommender OR algorithm OR synthesizer)

For each database, we search based on title, abstract, and meta-data. If databases lack

these characteristics, we search based on the full text (if allowed) or default (otherwise).

• IEEE Explorer: we use advanced search and do three searches based on title, abstract,

and meta-data. This database restricts search string to 15 terms. Since we have more

than 15 terms, we do different search and concatenate results.

• ACM Digital Library: we use advanced search and do three searches based on title,

abstract, and meta-data.

• ScienceDirect: we use advanced search. we select “Computer Science” for area and

do the search.

• Engineering Village: we use advanced search. We select “Computer Science” for area

and do the search.

• Scopus: we access search area and do the search.

3.2.3 Selection methodology

We use the StArt [64], a tool for conducting systematic review. We divided our methodology

in selection and extraction stage as follows. For each database, we searched based on database

syntax (see Section 3.2.2). On selection stage, we analyze title and abstract. If the work fits an

exclusion criterion, we reject; otherwise, we accept it. On extraction stage, we scan the work.

If work fits an exclusion criterion, we reject; otherwise, we analyze full text and classify it.

Finally, we write the report based on accepted PSs.



3.2 Review methods 41

3.2.4 Quality assessment

We base on Kitchenham and Charters [60] quality assessment. We remove works focused

on automatic program repair since extensive study focuses on it [89] that by itself can be a

systematic review. We also discard works on clone removal. In addition, we remove works

on transformations for a too specific problem (stylized edits) [83]. For instance, works in

concurrent transformations [9, 131, 149], removal of security issues [53, 75], refactoring of

web applications [95], refactoring to aspects [77, 145, 146], refactoring C macros [79, 113],

refactoring product lines [132], among others. Table 3.4 shows our quality criteria.

Table 3.4: Quality assessment score.

Id Criterion Score Score response

Empirical study

01 Clear, unambiguous Yes = 1, No = 0

02 Full work (≥ 8 pages) Yes = 1, No = 0

03 Besides Fowler catalog Yes = 1, No = 0

04 Automate transformations Yes = 1, No = 0

05 Many transformations Yes = 1, No = 0

Theoretical study

06 Clear Yes = 1, No = 0

07 Well referenced Yes = 1, No = 0

Total quality score

3.2.5 Inclusion and exclusion criteria

We are interested in works related to software engineering, answering our RQ. The inclusion

and exclusion criteria for our systematic review can be found on Table 3.5. In particular, we are

interested in systematic change studies. Works that apply identical or similar transformation

throughout the source code.
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Table 3.5: Inclusion and exclusion criteria.

Feature Value

Inclusion criteria
a) The work answers our research question
b) The study has a high quality

Exclusion criteria

a) The work does not deal with systematic changes
b) The work is external to software engineering
c) The document does not make part of a conference
or journal
d) The document is unavailable online

Study type Cases studies, empirical studies, and second studies
Duplicate studies Select the most recent version

3.2.6 Information extraction

From PSs, besides the standard data (e.g., title, author, and proceeding) shown in Table 3.6,

we collect data to answer our RQ. For secondary studies, we collect PSs that contributes to

answer our RQ.

To answer our RQ, we collect:

1. Locations: we collect location strategy (i.e.., manual, semi-automatic, or automatic).

2. Transformation: we collect edit strategy (i.e., manual, semi-automatic, or automatic).

3. Location template: we collect template learning for location (i.e., manual, semi-

automatic, or automatic).

4. Transformation template: we collect template for transformation (i.e., manual, semi-

automatic, or automatic).

5. Transformation scope: we collect transformation scope (e.g., method, API, and refac-

toring).

6. Manipulation: we collect technique manipulation (i.e., text, syntax, semantic).

7. Language: we collect target language (e.g., Java, C#, C).

8. Input: we collect input (e.g., input-output examples, history, before-after API).

9. Output: we collect output (e.g., modification list, modified source code).

10. Learning: we collect learning (i.e., on-line, off-line).



3.2 Review methods 43

11. Reuse: we collect whether transformation could be reused.

12. Catalog-bounded: we collect whether transformation catalogs bound techniques.

13. Abstraction: we collect elements abstracted.

14. Interaction: we collect developers’ interaction model.

15. Technique scope: we collect technique scope (e.g., method body, attribute, or class).

16. Context: we collect whether technique models context.

17. Similarity: we collect whether technique does similar or identical transformations.

18. Multiple or single: we collect whether technique works on single or multiple files.

For example-based techniques, we collect:

19. Number of examples: we collect number of examples.

20. Example selection methodology: we collect example selection methodology.

If any feature is absent, we set NP value. If feature could not be identified, we set a NA

value.

Table 3.6: Default information collected from each primary study.

Item Description

Item type Study type (e.g., journal, conference)
Title Study title
Author(s) Study author(s)
Publication Study series
Volume Study volume
Issue Study issue
Pages Study pages
Year Study year
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3.2.7 Execution

Form 11 shows extracted data for each PS in the final list of works. In the selection stage, we

selected 4,741 works. From these works, 2,849 were rejected, 1,319 were duplicated, and 573

were accepted. From the 573 works for the extraction stage, 362 were accepted, 173 were

rejected, and 40 were duplicated. Due to the large number of accepted works (573), we apply

further filtering. First, we reject works based on publication year. We only accepted works

published after 2005. Second, we reject works based on quality criteria. We only accept

works with maximum quality score. Finally, we end up with 51 PSs.

3.3 Results

We select 51 works on total. Figure 3.1 summarizes PSs based on events.

Figure 3.1: Number of PS for each event.

1https://goo.gl/wBV7dR
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3.4 Discussion

In this section, we present the primary studies selected to be included in the list of works for our

systematic review. Techniques to automate transformations range from PBE (Section 3.4.1),

linked editing (Section 3.4.2), API usage (Section 3.4.3), bug fixing (Section 3.4.4), complex

refactoring (Section 3.4.5), and complex transformations (Section 3.4.6).

3.4.1 Programming by examples

PBE techniques use developers’ edits or modification from repositories to learn transforma-

tions to edit other code locations.

Automatic transformation techniques

Lase [83] is a technique for doing repetitive edits using examples. Developers give two or

more edited methods as examples, and Lase creates a context-aware abstract transformation

that could be applied to other locations in codebase. It uses clone detection and dependence

analysis to identify methods where transformation should be applied. Andersen and Lawall [3]

present spdiff, a technique that extracts common edits from two versions of source files. Then,

it learns a transformation that could be applied to other codebase locations. The key idea of

Meng et al. [81] is to remove code clones from the source code based on examples. Their

technique (Rase) combines refactorings (e.g., extract method, add parameter, introduce exit

label) to extract and remove similar code. It extracts common code from clones and creates a

new method that abstract clones, removing them from code. Kessentini et al. [55] propose

a technique to remove design defect from the source code. Their technique receives defect

examples and quality metrics to learn rules to refactor source code.

Edit-based techniques

Some techniques require that developers indicate locations where transformations could

be applied. Sydit [82] receives one or more edited methods as examples and learned a

transformation to apply to locations indicated by developers. Santos et al. [130] propose

MacroRecorder, a technique that records developers code edit events from IDE to reproduce

them in other code locations. MacroRecorder semi-automatically learns a transformation and

allows the developers to customize the transformation.
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Semi-automatic techniques

Some techniques help developers to write their own transformations. Boshernitsan et al. [7]

present iXj, a technique that semi-automatically allows developers to specify transformations.

Based on mental models of developer interaction, they developed a visual tool that allows

developers to specify transformations. Rosemari [142] is a semi-automatic technique that

migrates programs for annotated version of a framework based on examples. It infers

refactoring rules from two versions of a single class provided by developers. Developers

configure transformations inferred by Rosemari, which refactor the source code automatically.

Refactoring

Other techniques use developers’ edits on IDE to recommend refactorings. BeneFactor [37]

is a technique that detects whether developers are applying a refactoring and can finish the

refactoring to developers. BeneFactor uses developers’ edits as example and automatically

detects whether developers are applying a refactoring. If this occurs, BeneFactor identify the

refactoring and can finish the refactoring.

3.4.2 Linked editing

Managing clones is expensive. The main bottleneck relies in update code clones. Linked

editing techniques offer strategies to update clones. JSync [97] and Clever [100] are techniques

for clone management. These techniques detect code clones, detect edits in clones, and notify

developers for clone inconsistencies. CloneTrack [22] is a technique that uses clone region

descriptors (CRDs) to management of code clones. CRDs combine syntactic, structural, and

lexical information to represent code clones in codebase. CloneTrack uses output of a clone

detection technique and produces CRDs to represent clone regions. Developers can specify

clones to track, and the technique notifies developers for modification and supports update in

these clones. The key idea of Wit et al. [20] is to keep track copy and paste operations as clone

relations. Their technique (CloneBoard) detects when developers edit a clone relation and

shows clones in the relation. It semi-automatically supports update of clones in this relation.
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3.4.3 API usage

Source code often uses external API providers. These providers should maintain external

APIs unchanged, but sometimes it does not happen [153]. Thus, clients need to update usage

to conform new API. In addition, developers often need code completion systems to guide

them to use an API. IDEs provide code completion systems, but IDEs’ recommendations

often rank suggestions based on alphabetic order, which does not fit API context.

DSL-based API adaptation

To help clients to adapt API, providers may give tools to automate it (e.g., Microsoft

wizard, which helps in migrating Visual Basic to Visual Basic.Net [70]). However, providing

a transformation tool is difficult, and developers often migrate API manually. To help

developers, some studies use transformation DSL. Nita and Notkin [101] present twinning,

a technique to update API by mapping usage between two codebase versions. Developers

write rules describing correspondences usage in these versions to update code. Patl [147] is a

DSL that allows developers to write rules for a transformation where many invocations from

old API are replaced by many invocations to new API (many-to-many mapping). The key

idea for Li et al. [70] is a type-safe transformation DSL for API migration. Their technique

(Swin) avoids type bugs in transformed program. This language updates code where one

method invocation in old API usage is replaced by one or multiple invocations in the new

API usage (one-to-many mapping). Wu et al. [151] present CMIT, a transformation language

for API adaptation. CMIT allows transformation where a sequence of method invocation is

considered together during transformation (compositional-mapping).

Automatic and semi-automatic API adaptation

To reduce the burden of writing transformations since developers have to learn how to use a

DSL, some techniques analyze code usage from new and old API to update API. Nguyen et

al. [98] present LibSync, a technique that recommends locations and edits for API adaptation.

LibSync uses clients that migrated the API to learn transformations. LibSync compares two

library versions to identify edits, extract templates for the usage, and build patterns of API

usage. Based on these patterns, it recommends API adaptation. The key idea of Dagenais

and Robillard [18] is to suggest updates based on adaptations of the own framework. Their

technique (SemDiff) analyzes framework source code, identifies edits (e.g., method additions
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and deletions) and, based on these edits and methods removed from framework, recommends

replacements. Similarly, Xing and Stroulia [153] present DiffCatchUp, a technique that

recognizes API changes and support client update based on examples from framework source

code. The key idea of Cossette et al. [17] is to help developers to migrate API when framework

updates are undocumented or incomplete. In this case, developers must discover how to use

new API. They propose Umani, a technique that discovers replacements for breaking APIs

based on structural similarity from new API and old API. Other techniques are semi-automatic.

Kapur et al. [54] propose Trident, a technique for API migration. After selection a code

fragment, developers configure refactorings and Trident shows all locations following the same

pattern. Then, developers select locations that need to be edit and configure transformation to

be applied.

Code completion based on statistical models

Another way to help developers in API usage is using code-completion. Some techniques

use high repetitiveness of code edits [36, 47] to build statistical models for code completion.

Nguyen et al. [92] present APIRec, a technique that recommends API usage based on

repetitiveness of code edits. APIRec is trained in a corpus of repetitive edits, learn a statistical

model based on the co-occurrence of fine-grained changes, and recommends API calls based

on edit context. GraLan and ASTLan [93] are graph-based and AST-based techniques that

recommend the next element (e.g., API method, field access, and related control units) based

on statistical models of code usage. These techniques are based on n-gram, which is a

statistical model that assumes a sequence from right to left, and next elements depend only on

current context. They consider source code properties that are difficult model in n-gram (i.e.,

API usage often lacks order, repetitive code often interleaves with project specific code, and

elements could be apart from one another).

Mining repository for code completion

Other works mines repositories to recommend code completion. Nguyen et al. [94] mined

repositories to identify characteristics of repetitive edits, focusing in three dimensions: size,

type, and general/fixing edits. They build a recommender system based on these characteristics.

Ray et al. [124] studied edits characteristics of unique/repetitive edit from repository (e.g.,

extent of unique edits, who introduce unique edits, and where the edits take place). They

propose two recommender systems. The first recommends previous edits when developers



3.4 Discussion 49

select a fragment of code to edit. The second recommends edits that co-occurred when

developers do a repetitive edit.

Code completion based on standard machine learning algorithm

Other techniques uses standard machine techniques in code completion. Bruch et al. [11]

present three code completion systems based on repositories using K-nearest neighbor algo-

rithm. These systems search for code fragments that use variable of the same type of variable

developers want a recommendation. Each code completion systems recommend based on

specific metric: frequency of method calls, rule mining, and the closest code fragment.

3.4.4 Bug fixing

Bugs are frequent along software development. Although developers try to remove bugs for

source code, many bugs persist in systems bug reports. Human resources are often insufficient

to remove all bugs, ever for well know bugs (e.g., Windows 2000 was shipped with thousands

of well knows bugs) [56]. Bug fixing techniques help developers to remove bugs from code.

Recurring bug fixing

Some bugs re-occur [59]. Thus, developers may fix these bugs similarly. To help developers,

some techniques were proposed. Nguyen et al. [99] present FixWizard, a semi-automatic

technique to fix recurring bugs based on properties of recurring fixes (e.g., why, where,

and how fixes occur and how to detect fixes). FixWizard identifies target locations, detects

recurring fixes, and recommends fixing edits. BugFix [50] is a technique that uses association

rules to help developers to fix a bug. This tool suggests fixes by analyzing historic of bug

fixing scenarios. Association rules map debugging scenarios with respective fixing scenarios.

BugFix uses these rules to suggest a ranked list of fixes. The key idea of Kim et al. [56]

is to use human-written patches to repair programs. They analyze 62,652 human-written

and identified ten common fixing templates. Their technique (Par), detects bug locations

using a fault location technique [67] and uses these fixing templates to repair program. Liu et

al. [72] propose R2Fix, a technique for automatic program repair that learns patches from bug

reports. R2Fix analysis bug reports, identify common bugs, and recommends program repairs.

This technique contains a bug classifier, a parameter extractor that extracts pattern based on

bug reports, and a patch generator. Long and Rinard [74] present Prophet, a technique for
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automatic program repair that learns a probabilistic application-independent model of correct

code from a set of successful human patches.

Semi-automatic techniques for bug fixing

Some techniques are semi-automatic. Xia and Lo [152] present SupLocator, a technique that

recommends target methods of supplementary bugs fixings. To identify target methods, this

technique uses six edit relationships: method invocation, method containment, inheritance,

co-change, context similarity, and name similarity. SupLocator builds a graph for each

relationship and uses a genetic algorithm to recommend target methods of supplementary

fixes. PatternBuild is a semiautomatic technique to help developers to resolve bugs that

propagate over codebase. PatternBuild receives a bug version of project and a version with

one or more fixed instances. PatternBuild allows developers to specify a bug pattern based on

bug version and a fixing pattern based on fixed version. This technique searches for locations

target of fixing based on the bug pattern. It shows these locations to developers that can

resolve bug using the fixing pattern. Sun et al. [141] present a semi-automatic technique that

helps developers to fix a bug that propagates over codebase. This technique offers basic rules

to fix bugs based on three type of bug fixing usage: precondition, which requires checking

input parameters before calling the function; post-condition, which requires checking return

after calling the function; and call-pair, which requires that two functions be called together

in a particular order. Developers can compose complex rules based on these rules. This

technique detects rule violations and suggests fixing.

3.4.5 Complex refactoring

IDEs provide refactorings, but developers often refactor manually. Besides knowing that

refactoring automatically is faster than by hand, developers need to know that the refactoring

exists, the refactoring name, and how to apply it [34]. In addition, IDEs refactoring suites

are often limited. For complex refactorings, developers have to refactor manually or imple-

ment their own refactoring [69]. Refactoring by hand is error-prone and time-consuming.

Specifying a refactoring requires knowing to represent a program and available APIs.

Search-based techniques

Some works search over a space of complex refactoring, selecting a refactoring that optimizes
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a function. Recon [90] is a technique that formulates refactorings as an optimization problem

to find best refactoring sequence for source code. Recon uses developers’ context and meta-

heuristics to compute a refactoring sequence that affects elements in developer’s context.

Based on interaction traces, Recon generated an abstract model of source code. This technique

detects anti-patterns and searches for refactoring sequences to fix these anti-patterns. O’Keeffe

and Cinnéide [103] present a technique that formulates refactorings as a search problem.

Based on design quality function, this technique selects the best refactoring candidate over a

space of design refactorings.

Multi-objective refactoring

Traditional refactorings aim to improve code quality by changing internal structure, but

maintaining external behavior or refactored program. Some studies investigate other criteria

besides code quality. Ouni et al. [111] present an approach that recommends a refactoring

sequence based on multi-objective criteria. Over a space of refactoring sequences, this

approach searches for a refactoring sequence that improves design quality, preserves design

coherence and consistency of refactored program, minimizes code edits, and maximizes

consistency with developers’ history. Ouni et al. [112] propose a multi-objective approach to

recommend a refactoring sequence based on three criteria: minimize code-smells, maximize

use of developers’ history, and preserve construct semantics. The key idea of Ouni et al. [110]

is to use recorded edits from developers to recommend a refactoring sequence. They propose

a multi-objective approach to find the best refactoring sequence that maximizes use of past

refactorings, minimizes semantic errors, and minimizes defects.

Program language for complex refactoring

Some researchers allows developers to write their own refactoring using a DSL. Li and

Thompson [69] present a framework that allows developers to write their own complex refac-

torings. The framework is built on Wrangler refactoring tool. Developers write refactorings

using Erlang syntax, making it suitable for developers familiar with Erlang. RefaCola [139] is

a refactoring DSL that allows writing refactoring with constraint. The key idea of Ruhroth et

al. [129] is to allow developers to write refactoring for any language that follows Backus-Naur-

Form. They present ReL, a domain specific language for refactoring that allows developers

to specify refactoring and execute refactorings in source code.
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Learning refactoring from developer edits

Some works use developers’ edits to learn complex refactorings. Raychev et al. [125] propose

ReSynth, a technique that synthesizes a refactoring sequence. Developers active ReSynth,

edit code base, and call ReSynth to complete refactoring. Given before/after version, ReSynth

computes edits to synthesize a refactoring sequence. ReSynth requires developers to provide

a successors function describing how to refactor a program. WitchDoctor [34] is a technique

that detects a refactoring while developers edit code and recommends a refactoring before

developers complete refactoring. They key idea of Hayashi et al. [45] is to learn a refactoring

sequence based on developers’ edits on repositories. This technique identifies locations and

applies refactoring automatically.

Complex refactoring

Some techniques analyze source code to identify complex refactoring. Alkhalid et al. [1]

propose a technique that clusters code at function/method level to suggest refactoring. This

technique reprocesses code using an Adaptive K-nearest Neighbor to cluster source code.

This technique shows clusters for developers that could apply extract method to refactoring

code. R3 [57] is a technique that encodes Java entities in a database and maps refactorings

in database to the source code. R3 compose complex refactoring as a sequence of primitive

refactorings. Refactorings are applied to database. Source code is edited when developers

modify pretty-printing ASTs mapped on database.

3.4.6 Complex transformations

Besides refactoring, developers may apply other transformations (e.g., add a feature, or

fix a bug). Some techniques allow developers to apply complex transformations. Some

researchers use a DSL for complex transformations. Cordy [15] present TXL, a DSL for

source transformations. TXL requires specification of DSL structure and transformation

rules. Based on these rules, TXL applies transformations and outputs transformed versions.

Stratego/XT [8] is an infrastructure for program transformations. Stratego/XT uses Stratego, a

DSL for program transformations and XT, an environment for development of transformations.

Erwig and Ren [28] present a DSL for program transformation. They show language elements

and an application of this DSL to update lambda calculus programs.
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3.4.7 Validation

In this section, we present the validation process of our systematic review. To validate our

protocol, we conduct a pilot study following our protocol. We used this pilot study to review

of the search string and databases. We have a set of works relevant to our study in the folder

Relevant Papers2. Our study must select this set of works. If work in this folder is not returned,

we added this work to our exploratory study, refine our search string and do a new search. We

do this process until we select all works in relevant works folder.

2goo.gl/W4IKEr



Chapter 4

REFAZER

In this chapter, we describe our technique for synthesizing program transformations from

input-output examples. REFAZER builds on PROSE (Section 2.1.2), a framework for program

synthesis from examples and under-specifications as explained in Section 2.1.2. In this

framework, application designers create a DSL for the specific domain. Given a spec ϕ with

inputs and constraints on the desired outputs, PROSE synthesizes programs in the DSL that

are consistent with ϕ, combining deduction, search, and ranking.

REFAZER consists of three main components, which are illustrated in Figure 4.1:

• A DSL for describing program transformations. Its operators partially abstract the edits

provided as examples. The DSL is expressive enough to capture common transforma-

tions but restrictive enough to allow efficient synthesis.

• Witness functions. In PROSE, a witness function ωF is a backpropagation procedure,

which, given a spec ϕ on a desired program on kind F(e), deduces a necessary (or even

sufficient) spec ϕe = ωF(ϕ) on its subexpression e. Witness functions enable efficient

top-down synthesis algorithms in PROSE. 1

• Ranking functions. Since example-based specifications are incomplete, the synthesized

abstract transformation may not perform the desired transformation on other input pro-

grams. We specify ranking functions that rank a transformation based on its robustness

(i.e., likelihood of it being correct in general).

1Another view on witness functions ωF is that they simply implement inverse semantics of F, or a generaliza-
tion of inverse semantics w.r.t. some constraints on the output of F instead of just its value.

54
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Figure 4.1: The workflow of REFAZER. It receives an example-based specification of edits
as input and returns a set of transformations that satisfy the examples.

4.1 A DSL for AST transformations

In this section, we present our DSL for program transformations, hereinafter denoted LT. It

is based on tree edit operators (e.g., Insert, Delete, Update), list processing operators

(Filter, Map), and pattern-matching operators on trees. The syntax ofLT is formally given

in Figure 4.2.

transformation ::= Transformation(rule1, . . . , rulen)

rule ::= Map(λx→ operation, locations)

locations ::= Filter(λx→ Match(x, match), AllNodes())

match ::= Context(pattern, path)

pattern ::= token | Pattern(token, pattern1, . . . , patternn)

token ::= Concrete(kind, value) | Abstract(kind)

path ::= Absolute(s) | Relative(token, k)

operation ::= Insert(x, ast, k) | Delete(x, ref)

| Update(x, ast) | Prepend(x, ast)

ast ::= const | ref

const ::= ConstNode(kind, value, ast1, . . . , astn)

ref ::= Reference(x, match, k)

Figure 4.2: A core DSL LT for describing AST transformations. kind ranges over possible
AST kinds of the underlying programming language, and value ranges over all possible ASTs.
s and k range over strings and integers, respectively.

A transformation T on an AST is a list of rewrite rules (or simply “rules”) r1, . . . , rn.

Each rule ri specifies an operation Oi that should be applied to some set of locations in the
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input AST. The locations are chosen by filtering all nodes within the input AST w.r.t. a

pattern-matching predicate.

Given an input AST P, each rewrite rule r produces a list of concrete edits that may be

applied to the AST. Each such edit is a replacement of some node in P with a new node. This

set of edits is typically an overapproximation of the desired transformation result on the AST;

the precise method for applying the edits is domain-specific (e.g., based on verification via

unit testing). We discuss the application procedures for our studied domains in Chapter 4.2.

In the rest of this subsection, we focus on the semantics of the rules that suggest the edits.

A rewrite rule consists of two parts: a location expression and an operation. A location

expression is a Filter operator on a set of sub-nodes of a given AST. Its predicate λ x→

Match(x, Context(pattern, path)) matches each sub-node x with a pattern expression.

Patterns

A pattern expression Context(pattern, path) checks the context of the node x against a

given pattern. Here pattern is a combination of Concrete tokens (which match a concrete

AST) and Abstract tokens (which match only the AST kind, such as IfStatement). In

addition, a path expression specifies the expected position of x in the context that is described

by pattern, using a notation similar to XPath [150]. This allows for a rich variety of possible

pattern-matching expressions, constraining the ancestors or the descendants of the desired

locations in the input AST.

Example 1. Figure 4.3 shows a transformation that describes our running example from

Figure 1.2. This transformation contains one rewrite rule. Its location expression is

Filter(λx→ Context(π, Absolute("")))

where

π = Pattern(== ,Pattern(. , te, tm), te)

te = Abstract(<exp> )

tm = Concrete(<call> ,"CSharpKind()")

The path expression Absolute("") specifies that the expected position of a location x in

π should be at the root – that is, the pattern π should match the node x itself.
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(a) A synthesized AST transformation.

1 while (receiver.CSharpKind() ==

2 SyntaxKind.ParenthesizedExpression) {...}

3 ...

4 foreach (var m in modifiers) {

5 if (m.CSharpKind() == modifier) {return true;}

6 };

7 ...

8 if (r.Parent.CSharpKind() ==

9 SyntaxKind.WhileStatement) {...}

(b) A C# program used as an input to the transformation.

(c) A list of edits produced after instantiating (a) to (b).

Figure 4.3: An example of a synthesized transformation and its application to a C# program,
which results in a list of edits.
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Operations

Given a list of locations selected by the Filter operator, a rewrite rule applies an operation

to each of them. An operation O takes as input an AST x and performs one of the standard

tree edit procedures [119, 155] on it:

• Insert some fresh AST as the kth child of x;

• Delete some sub-node from x;

• Update x with some fresh AST;

• Prepend some fresh AST as the preceding sibling of x.

An operation creates fresh ASTs using a combination of constant ASTs ConstNode and

reference ASTs Reference, extracted from the location node x. Reference extraction uses

the same pattern-matching language, described above. In particular, it can match over the

ancestors or descendants of the desired reference. Thus, the semantics of reference extraction

Reference(x, Context(pattern, path), k) is:

1. Find all nodes in x s.t. their surrounding context matches pattern, and they are located

at path within that context;

2. Out of all such nodes, extract the kth one.

Example 2. For our running example from Figure 1.2, the desired rewrite rule applies the

following operation to all nodes selected by the location expression from Example 1:

Update(x, ConstNode(<call> , "IsKind", ℓ1, ℓ2))

where

ℓ1 = Reference(x,Context(π1, s1), 1)

ℓ2 = Reference(x,Context(π2, s2), 1)

π1 = Pattern(. , te, tm)

π2 = Pattern(== ,Pattern(. , te, tm), te)

s1 = Absolute("1") s2 = Absolute("2")
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and te and tm are defined in Example 1. This operation updates the selected location x with a

fresh call to IsKind, performed on the extracted receiver AST from x, and with the extracted

right-hand side AST from x as its argument.

4.1.1 Synthesis algorithm

We now describe our algorithm for synthesizing AST transformations from input-output

examples. Formally, it solves the following problem: given an example-based spec ϕ, find

a transformation T ∈ LT that is consistent with all examples (Pi,Po) ∈ ϕ. We denote this

problem as T � ϕ. A transformation T is consistent with ϕ if and only if applying T to Pi

produces the concrete edits that yield Po from Pi.

Recall that the core methodology of PBE in PROSE is deductive synthesis (i.e., backprop-

agation). In PROSE, a problem of kind F(T1,T2) � ϕ is reduced to several subproblems of

kinds T1 � ϕ1 and T2 � ϕ2, which are then solved recursively. Here ϕ1 and ϕ2 are fresh specs,

which constitute necessary (or even sufficient) constraints on the subexpressions T1 and T2

in order for the entire expression F(T1,T2) to satisfy ϕ. In other words, the examples on an

operator F are backpropagated to examples on the parameters of F.

As discussed previously, the backpropagation algorithm relies on a number of modu-

lar operator-specific annotations called witness functions. Even though PROSE includes

many generic operators with universal witness functions out of the box (e.g., list-processing

Filter), most operators inLT are domain-specific, and therefore require non-trivial domain-

specific insight to enable backpropagation. The key part of this process is the witness function

for the top-level Transformation operator.

The operator Transformation(rule1, . . . , rulen) takes as input a list of rewrite rules

and produces a transformation that, on a given AST, applies these rewrite rules in all applicable

locations, producing a list of edits. The backpropagation problem for it is stated in reverse:

given examples ϕ of edits performed on a given AST, find necessary constraints on the rewrite

rules rule1, . . . , rulen in the desired transformation.

The main challenges that lie in backpropagation for Transformation are:

1. Given an input-output example (Pi,Po), which often represents the entire codebase/-

namespace/class, find examples of individual edits in the AST of Pi;
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2. Partition the edits into clusters, deducing which of them were obtained by applying the

same rewrite rule;

3. For each cluster, build a set of operation examples for the corresponding rewrite rule.

Finding individual edits

We resolve challenge 1 by calculating tree edit distance between Pi and Po. Note that the

state-of-the-art Zhang-Shasha tree edit distance algorithm [155] manipulates single nodes,

whereas our operations (and, consequently, examples of their behavior) manipulate whole

subtrees. Thus, to construct proper examples for operations in LT, we group tree edits

computed by the distance algorithm into connected components. A connected component of

node edits represents a single edit operation over a subtree.

Partitioning into rewrite rules

To identify subtree edits that were performed by the same rewrite rule, we use the DB-

SCAN [29] clustering algorithm to partition edits by similarity. Here we conjecture that

components with similar edit distances constitute examples of the same rewrite rule.

Algorithm 19 describes the steps performed by the witness function for

Transformation. Lines 2-6 perform the steps described above: computing tree edit

distance and clustering the connected components of edits. Then, in lines 7-11, for each simi-

lar component, we extract the topmost operation to create an example for the corresponding

rewrite rule. This example contains the subtree where the operation was applied in the input

AST and the resulting subtree in the output AST.

4.1.2 Ranking

The last component of REFAZER is a ranking function for transformations synthesized by

the backpropagation algorithm. Since LT typically contains many thousands of ambiguous

programs that are all consistent with a given example-based spec, we must disambiguate

among them. Our ranking function selects a transformation that is more likely to be robust on

unseen ASTs – that is, avoid false positive and false negative matches. REFAZER selects the

transformation on the top even if other transformations contain the same score. The ranking

is based on the following principles:
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Input: Example-based spec ϕ
1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do

3: examples := empty list of refined examples for edits
4: operations := TREEEDITDISTANCE(Pi, Po)
5: components := CONNECTEDCOMPONENTS(operations)
6: connectedOpsByEdits := DBSCAN(components)
7: for all connectedOps ∈ connectedOpsByEdits do

8: ruleExamples := MAP(connectedOps,
λ ops→ create a single concrete operation based on ops)

9: examples += ruleExamples
10: result[Pi] += examples
11: return result

Algorithm 19: Backpropagation procedure for the DSL operator Transformation(rule1,
. . . , rulen).

• Favor Reference over ConstNode: a transformation that reuses a node from the

input AST is more likely to satisfy the intent than one that constructs a constant AST.

• Favor patterns with non-root paths (i.e., patterns that consider surrounding context of a

location). A transformation that selects its locations based on surrounding context is

less likely to generate false positives.

• Among patterns with non-empty context, favor the shorter ones. Even though con-

text helps prevent underfitting (i.e., false positive matches), over-specializing to large

contexts may lead to overfitting (i.e., false negative matches).

We defined these heuristics based on the literature. For instance, Gulwani [42] defines a

ranking strategy that favors reusing input data (i.e., SubStr operator) instead of constants (i.e.,

ConstStr). On the other hand, Nguyen [98] points out that the context helps to create more

accurate code refactorings.

4.2 Evaluation

In this section, we present two empirical studies to evaluate REFAZER. First, we present

an empirical study on learning transformations for fixing student submissions to introduc-

tory Python programming assignments (Section 4.2.1). Then, we present an evaluation of
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REFAZER on learning transformations to apply repetitive edits to open-source C# projects

(Section 4.3.1).

4.2.1 Fixing introductory programming assignments

In this study, we use REFAZER to learn transformations that describe how students modify

an incorrect program to obtain a correct one. We then measure how often the learned

transformations can be used to fix other students’ incorrect submissions. Transformations that

apply across students are valuable because they can be used to generate hints to students on

how to fix bugs in their code; alternatively, they can also help Teaching Assistants (TAs) with

writing better manual feedback.

Our goal is to investigate both the overall effectiveness of our technique, and to what

extent learned transformations in an education scenario are problem-specific, or general in

nature. Formally, we have:

Goal : analyze REFAZER for the purpose of fixing bugs in students’ programming assign-

ments with respect to effectiveness and the extent the learned transformations are

problem-specific or general in nature from the point of view of teachers and TAs in the

context of education scenario.

If most transformations are general purpose, instructors might be able to provide them

manually, once. However, if most transformations are problem-specific, automated techniques

such as REFAZER will be especially valuable. Concretely, we address the following research

questions:

RQ1 How often can transformations learned from student code edits be used to fix incorrect

code of other students in the same programming assignment?

Given a programming assignment, students can submit multiple solutions until get

all test cases passing. We measure for how many of the students, REFAZER can find

transformation to fix the incorrect submission before the student submit the correct one,

and how many submissions were required to find the fix for each student.

RQ2 How often can transformations learned from student code edits be used to fix incorrect

code of other students who are solving a different programming assignment?
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Transformations learned for one programming assignment can potentially be useful for

another assignment. To answer this research question, we evaluate how often we can

fix student solutions by using transformations learned from other assignments.

Experiment units

We collected data from the introductory programming course CS61A at UC Berkeley. As

many as 1,500 students enroll in this course per semester, which has led the instructors to

adopt solutions common to MOOCs such as autograders. For each homework problem, the

teachers provide a black-box test suite and the students use these tests to check the correctness

of their programs. The system logs a submission whenever the student runs the provided

tests for a homework assignment. This log thus provides a history of all submissions. Our

benchmark comprises four assigned problems (see Table 4.1).

The Product assignment asks the students to write a product function product(n,

term) function that returns term(1) * . . . * term(n). In the Accumulate assign-

ment, students have to write a more general function that works for other kinds of operations

besides product, accumulate(combiner, base, n, term) that returns the result

of combining the first n terms in a sequence and base is the base case. The terms to be com-

bined are term(1), term(2), . . . , term(n) and combiner is a two-argument

commutative function. On the other hand, The Repeated assignment asks students to imple-

ment a function repeated(f, n)(x) returns f(f(. . .f(x). . .)), where f is applied

n times. repeated(f, n) returns another function that can then be applied to another x

argument. Moreover, the G(n) function return
∑3

i=1 i · G(n − i).

For each problem, students had to implement a single function in Python. We filtered the

log data to focus on students who had at least one incorrect submission, which is required

to learn a transformation from incorrect to correct state. We analyzed 21,781 incorrect

submissions from up to 720 students.

Experimental procedure

For each problem, each student in the data set submitted one or more incorrect submissions

and, eventually, a correct one. We used the last incorrect submission and the correct one

as input-output examples to synthesize a program transformation and used the synthesized

transformation to attempt fixing other student submissions. By selecting a pair of incorrect

and correct submissions, we learn a transformation that changes the state of the program from
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incorrect to correct, fixing existing faults in the code. Students may have applied additional

edits, such as refactorings, though. The transformation thus may contain unnecessary rules to

fix the code. By learning from the last incorrect submission, we increase the likelihood of

learning a transformation that is focused on fixing the existing faults. We left for future work,

an investigation of the results when we choose a pair of incorrect and correct submission with

the minimum number of edits between them.

The experiments were performed on a PC with a Core i7 processor and 16GB of RAM,

running Windows 10.

Research method

For RQ1, we considered two scenarios: Batch and Incremental. In the Batch scenario,

for each assignment, we synthesize transformations for all but one student in the data set

and use them to fix the incorrect submissions of the remaining student, in a leave-one-out

cross-validation – i.e., we attempt to fix the submission of a student using only transformations

learned using submissions of other students. This scenario simulates the situation in which

instructors have data from one or more previous semesters. In the Incremental scenario, we

sort our data set by submission time and try to fix a submission using only transformations

learned from earlier timestamps. This scenario simulates the situation in which instructors

lack previous data. Here the technique effectiveness increases over time. For RQ2, we use all

transformations learned in Batch from one assignment to attempt to fix the submissions for

another assignment. We selected four combinations of assignments for this experiment, and

we evaluated the submissions of up to four hundred students in each assignment.

We used the teacher-provided test suites to check whether a program was fixed. Therefore,

our technique relies on test cases for evaluating the correctness of fixed programs. While

reliance on tests is a fundamental limitation, when fixes are reviewed in an interactive setting,

our technique can be used to discover the need for more test cases for particular assignments.

In general, each synthesized rule in the transformation may apply to many locations in the

code. In our experiments, we apply each synthesized transformation to at most five hundred

combinations of locations. For instance, a transformation could add a single statement

to a code location or could perform many edits at multiple code locations of the student

programming assignment. If a transformation can be applied to further locations, we abort

and proceed to the next transformation.
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Table 4.1: Our benchmarks and incorrect student submissions.

Assignment Students Incorrect submissions

Product product of the first n terms 549 3,218
Accumulate fold-left of the first n terms 668 6,410

Repeated function composition, depth n 720 9,924
G G(n) =

∑3
i=1 i · G(n − i) 379 2,229

4.3 Results and discussion

In the Batch scenario, REFAZER generated fixes for 87% of the students. While, on average,

students took 8.7 submissions to finish the assignment, the transformations learned using RE-

FAZER fixed the student submissions after an average of 5.2 submissions. In the Incremental

scenario, REFAZER generated fixes for 44% of the students and required, on average, 6.8

submissions to find a fix. The results suggest that the technique can be useful even in the

absence of data from previous semesters but using existing data can double its effectiveness.

Table 4.2 summarizes the results for both scenarios.

Although we only used students’ last incorrect submissions and their corresponding

correct submissions as examples for learning transformations, we could find a transformation

to fix student solutions 3.5 submissions before the last incorrect submission, on average. This

result suggests that REFAZER can be used to provide feedback to help students before they

know how to arrive at a correct solution themselves. In addition, providing feedback about

mistakes can be more important for students struggled with their assignments. Figure 4.4

shows the 50 students with the highest number of submissions for the two hardest assignments.

Each column shows chronological submissions for one student, with the earliest submissions

at the top and the eventual correct submission at the bottom. Red indicates an incorrect

submission; blue shows the first time REFAZER was able to fix the student’s code (we only

show the earliest time and do not re-test subsequent incorrect submissions). As we can see in

the charts, students took dozens (up to 148) submissions. In many cases, REFAZER provided

a fix after the student attempted half of the submissions. For the students where REFAZER

was not able to learn a program transformation that fixes their programming assignment, the

other students’ submissions did not provide hints on how to fix them. It could be caused by

student programming style or the student was getting far away from the correct answer.
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Table 4.2: Summary of results for RQ1. “Incorrect submissions” = mean (SD) of submissions
per student; “Students” = % of students with solution fixed by REFAZER; “Submissions” =
mean (SD) of submissions required to find the fix.

Assignment
Incorrect
submissions

Batch Incremental

Students Submissions Students Submissions

Product 5.3 (8.2) 501 (91%) 3.57 (6.1) 247 (45%) 4.1 (6.7)
Accumulate 8.9 (10.5) 608 (91%) 5.4 (7.9) 253 (38%) 7.5 (9.8)

Repeated 12.7 (15.3) 580 (81%) 8 (10.3) 340 (47%) 9.6 (11.5)
G 5.5 (9.4) 319 (84%) 1.4 (1.7) 174 (46%) 4.1 (7)

Total 8.7 (12) 2,008 (87%) 5.2 (8.1) 1,014 (44%) 6.8 (9.7)

The transformations learned by REFAZER contain edits with different granularity, ranging

from edits to single nodes in the AST, e.g., updating a constant, to edits that add multiple

statements, such as adding a base case, a return statement, or even replacing an iterative

solution by a recursive one. On average, the tree edit distance between the AST of an incorrect

submission and the fixed one was 4.9 (σ = 5.1). However, REFAZER did learn some larger

fixes. The maximum tree edit distance was 45. We left for future work, an investigation on

the impact of the number of edits on the usefulness of the program transformation. We also

noticed transformations containing multiple rules that represent multiple mistakes in the code.

Most learned transformations are not useful among different programming assignments

Using transformations learned from other assignments we fixed submissions for 7-24% of

the students, which suggests that most transformations are problem-specific and not common

among different assignments, as shown in Table 4.3. Column Original Assignment shows the

assignments where REFAZER learned the transformations, and Target Assignment shows the

assignments where the transformations were applied to. Accumulate was the assignment with

most fixed submissions. The Accumulate function is a generalization of the Product function,

used to learn the transformations, which may be the reason for the higher number of fixed

faults. In general, the results suggest that different assignments exhibit different fault patterns;

therefore, problem-specific training corpora are needed. This finding also suggests that other

automatic grading tools that use a fixed or user-provided fault rubric (e.g., AutoGrader [135])

are not likely to work on arbitrary types of assignments.

Qualitative feedback from teaching assistants

To validate the quality of the learned transformations, we built a user interface that allows one
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Student #16 had 64 submissions until they solved the problem.  
Our technique found a transformation that would have fixed 
their code after 24 submissions, or 42 submissions earlier.

(b) Assignment “Repeated”

Figure 4.4: Analysis of the first time REFAZER can fix a student submission for the 50
students with most attempts for two benchmark problems. Blue: submissions that might be
avoided by showing feedback from a fix generated by REFAZER.

Table 4.3: Summary of results for RQ2.

Original Assignment Target Assignment Helped students

Product G 28 out of 379 (7%)
Product Accumulate 94 out of 400 (24%)
Product Repeated 43 out of 400 (11%)

Accumulate G 33 out of 379 (9%)
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to explore, for each transformation, the incorrect submissions that can be fixed with it. We

asked a TA of the CS61a course to analyze the fixes found using REFAZER. The TA confirmed

that fixes were generally appropriate, but also reported some issues. First, a single syntactic

transformation may represent multiple distinct mistakes. For instance, a transformation that

changes a literal to 1 was related to a bug in the stopping condition of a while loop in one

student’s code; and also to a bug in the initial value of a multiplication which would always

result in 0 in another student’s code. In this case, the TA found it hard to provide a meaningful

description of the fault beyond “replace 0 with 1”. If fixes are used to generate feedback, TAs

will need additional tools to merge or split clusters of student submissions using approaches

such as the one performed in MistakeBrowser [46], a mixed-initiative approach, that uses

teacher expertise to better leverage the fixes produced by REFAZER. Finally, some fixed

programs passed the tests but the TA noticed some faults remained due to missing tests.

4.3.1 Applying repetitive edits to open-source C# projects

In this study, we use REFAZER to learn transformations that describe simple edits that have

to be applied to many locations of a C# codebase. We then measure how often the learned

transformation is the intended one and whether it is correctly applied to all the required code

locations. Formally, we have:

Goal : analyze REFAZER for the purpose of performing repetitive edits with respect to

identify how often the learned transformation is the intended one and whether it is

correctly applied to all the required code locations from the point of view of developers

in the context of software evolution.

Concretely, we address the following question:

RQ3 Can REFAZER synthesize transformations with repetitive edits to large open-source

projects? We learn transformations based on developers edits in the source code, and

we use REFAZER to perform the edits to other locations in the source code. We compare

the edits performed by REFAZER with the edits performed by the developers.

Benchmark

We manually inspected 404 revisions from three open-source projects: Roslyn, Entity
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Framework, and NuGet. The projects’ sizes range from 150,000 to 1,500,000 lines of code.

Starting from the most recent revision, we inspected each revision diff files—i.e., the code

before and after the edits. If similar edits appeared three or more times into the same commit,

we classified the edit as repetitive. We identified 56 scenarios: 27 in Roslyn, 12 in Entity

Framework, and 17 in NuGet.

The number of edited locations in each scenario ranges from 3 to 60 (median = 5). Each

project contains at least one scenario with more than 19 edited locations. In 14 (25%) out

of the 56 scenarios, there are edited locations in more than one file, which is harder for

developers to handle correctly. Finally, in 39 (70%) out of the 56 scenarios, the edits are

complex and context-dependent, meaning that a simple search/replace strategy is not enough

to correctly apply the edits to all the necessary locations. For instance, the transformation

that replaces the equals methods that use CSharpKind() to use IsKind() could not be

performed with a copy and paste because the edits are not identical, requiring the abstraction

and manipulation of some subtrees of the input-output examples. We measured the size of the

edits used as input-output examples by calculating the tree edit distance between the input

AST and the output AST. On average, the distance was 13.0 (σ = 13.6). The maximum

distance was 76.

Experimental setup

We selected the examples for REFAZER as follows. First we randomly sort the edits described

in the diff information. Next we incrementally add them as examples to REFAZER: after

each example, we check whether the learned transformation correctly applies subsequent

edits. If the transformation misses an edit or incorrectly applies it according to the diff

information, we take the first discrepancy in the edit list and provide it as the next example.

If the transformation applies edits not presented in the diff, we manually inspect them to

check whether the developer missed a location or the locations were incorrectly edited. The

experiments were performed on a PC with a Core i7 processor and 16GB of RAM, running

Windows 10.

Table 4.4: Evaluation Summary. Scope = scope of the transformation; Ex. = examples;
Dev. = locations modified by developers; REFAZER = locations modified by REFAZER.
Outcomes: ✓ = it performed the same edits as the developers; ★ = it performed more edits
than the developers (manually validated as correct); ✗ = it performed incorrect edits; “—” =
it did not synthesize a transformation.
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Id Project Scope Ex. Dev. REFAZER Outcome

1 EF Single file 2 13 13 ✓

2 EF Single file 5 10 10 ✓

3 EF Multiple files 3 19 20 ★

4 EF Single file 3 4 4 ✓

5 EF Single file 3 3 3 ✓

6 EF Single file 2 3 3 ✓

7 EF Single file 2 4 10 ★

8 EF Multiple files 2 8 8 ✓

9 EF Single file 2 3 3 ✓

10 EF Single file 2 12 12 ✓

11 EF Multiple files 4 5 5 ✓

12 EF Single file 2 3 3 ✓

13 NuGet Single file 2 4 4 ✓
14 NuGet Multiple files 2 4 16 ✗

15 NuGet Single file 3 3 3 ✓

16 NuGet Multiple files 2 31 88 ★

17 NuGet Single file 3 3 3 ✓
18 NuGet Multiple files 4 8 14 ✗
19 NuGet Single file 4 14 43 ✗

20 NuGet Single file 2 4 4 ✓
21 NuGet Multiple files 5 5 13 ✗

22 NuGet Single file 3 3 3 ✓

23 NuGet Single file 3 5 5 ✓

24 NuGet Single file 2 3 3 ✓

25 NuGet Single file 3 4 4 ✓
26 NuGet Single file 2 9 32 ✗

27 NuGet Single file 3 4 4 ✓

28 NuGet Multiple files 3 4 10 ★
29 NuGet Multiple files 4 12 79 ✗

30 NuGet Single file 2 3 21 ★

31 Roslyn Multiple files 5 7 7 ✓

32 Roslyn Multiple files 3 17 17 ✓

33 Roslyn Single file 3 6 6 ✓

34 Roslyn Single file 2 9 9 ✓

35 Roslyn Multiple files 3 26 744 ★

36 Roslyn Single file 2 4 4 ✓

37 Roslyn Single file 4 4 4 ✓

38 Roslyn Single file 8 14 14 ✓
39 Roslyn Single file 2 60 — —
40 Roslyn Single file 3 8 8 ✓

41 Roslyn Multiple files 3 15 15 ✓

42 Roslyn Single file 2 7 7 ✓
43 Roslyn Single file 5 13 14 ✗

44 Roslyn Single file 2 12 12 ✓

45 Roslyn Single file 2 4 4 ✓

46 Roslyn Single file 2 5 5 ✓

47 Roslyn Single file 2 3 3 ✓

48 Roslyn Single file 4 11 11 ✓

49 Roslyn Single file 2 5 5 ✓

50 Roslyn Single file 2 3 5 ★

51 Roslyn Single file 2 5 5 ✓

52 Roslyn Single file 2 3 3 ✓

53 Roslyn Single file 4 6 6 ✓
54 Roslyn Multiple files 2 15 49 ✗

55 Roslyn Single file 3 4 4 ✓
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56 Roslyn Single file 2 4 4 ✓

Results

Table 4.4 summarizes our results. REFAZER synthesized transformations for 55 out of 56

scenarios. In one case, Refazer is not able to learn the transformation. This occurs because the

edits in the diff are not consistent. For the same input, the developers provide distinct outputs.

In the case Refazer where not able to learn the transformation. In 40 (71%) scenarios, the

synthesized transformations applied the same edits as developers, whereas, in 16 scenarios, the

transformations applied more edits than developers. We manually inspected these scenarios,

and conclude that seven transformations were correct (i.e., developers missed some edits). We

reported them to the developers of the respective projects. As of this writing, they confirmed

three of these scenarios. In one of them, developers merged our pull request. In another one,

they are not planning to spend time changing the code because the non-changed locations did

not cause issues in the tests. We show this transformation on Figure 4.5. In the last scenario,

developers confirmed that other locations may need similar edits, but they did not inform us

whether they will apply them.

1 - c => Assert.Throws<DataException>(() =>

2 - c()).InnerException.ValidateMessage("CommitFailed"),

3 + c => Assert.Throws<DataException>(() =>

4 + ExtendedSqlAzureExecutionStrategy.ExecuteNew(c)).

5 + InnerException.ValidateMessage("CommitFailed"),

6
7 - c => Assert.Throws<CommitFailedException>(() =>

8 - c()).ValidateMessage("CommitFailed"),

9 + c => Assert.Throws<CommitFailedException>(() =>

10 + ExtendedSqlAzureExecutionStrategy.ExecuteNew(c)).

11 + ValidateMessage("CommitFailed"),

Figure 4.5: Issue submitted to NuGet project to use the method
(ExtendedSqlAzureExecutionStrategy.ExecuteNew) consistently.

In nine scenarios (16%), additional edits were incorrect and revealed two limitations of

the current DSL. First, some edits require further analysis to identify locations to apply them.

For example, in scenario 18, developers replaced the full name of a type by its simple name.

However, in some classes, this edit conflicted with another type name. The second limitation

relates to our tree pattern matching. Some examples produced templates that were too general.

For example, if two nodes have different numbers of children, we can currently only match
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them based on their types. To support this kind of pattern, we plan to include additional

predicates in our DSL such as Contains, which does not consider the entire list of children,

but checks if any of the children match a specific pattern.

Our technique, on average, required 2.9 examples to synthesize all transformations in a

diff. The number of required examples may vary based on example selection. Additionally,

changes in the ranking functions preferring more general patterns over more restrictive ones

can also influence the number of examples.

4.3.2 Threats to validity

Construct validity

With respect to construct validity, our initial baseline is the diff information between revisions.

Some repetitive edits may have been performed across multiple revisions, or developers may

not have changed all possible code fragments. Therefore, some similar edits in each scenario

may be unconsidered. To reduce this threat, we manually inspect REFAZER’s additional edits.

Additionally, we select the scenarios of repetitive edits manually. This selection may favor

our technique. To reduce this bias, two researches analyzed these revisions.

Internal validity

Concerning internal validity, example selection may affect the number of examples needed to

perform transformations. To avoid bias, we randomly selected the examples. Additionally,

we performed this experiment three times and did not find significant changes in the required

number of examples.

External validity

For the education domain evaluation, we use four programming assignments to learn fixes for

students’ submissions. This number of programming assignments could be small. To reduce

this threat, we select assignments that have a large number of students enrolled (up to 720

students). Although related to the same programming assignment, students may solve their

programming assignments in many ways, such as recursive or interactive solutions. Thus,

these programming assignments may represent a large number of transformations. In addition,

we complement these edits with repetitive edit scenarios.

In the open source project evaluation, we select repetitive edits scenarios for three open

source projects. This number may not reflect all repetitive edits that developers could perform.
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To reduce this bias, we select projects from different domains: compilers, database, and library

management. Additionally, our database of repetitive edits is small. To reduce this bias, we

select a number of repetitive scenarios consistent with those from the literature [82, 83]. In

addition, we include edits from two distinct domains: education and open source projects.

4.4 Answer to the researches questions

RQ1 How often can transformations learned from student code edits be used to fix incorrect

code of other students in the same programming assignment?

In the Batch scenario, REFAZER generated fixes for 87% of the students. On average

students used 8.7 submissions to finish the assignment, and REFAZER fixed the student

submissions after 5.2 submissions on average. In the Incremental scenario, REFAZER

generated fixes for 44% of the students. REFAZER required, on average, 6.8 submissions

to find a fix.

RQ2 How often can transformations learned from student code edits be used to fix incorrect

code of other students who are solving a different programming assignment?

Using transformations learned from other assignments, we fixed submissions for 7-24%

of the students. This suggests that most transformations are problem-specific and not

common among different assignments.

RQ3 Can REFAZER synthesize transformations with repetitive edits to large open-source

projects?

REFAZER synthesized transformations for 55 out of 56 scenarios. In 71% of the sce-

narios, the synthesized transformations applied the same edits as developers. However,

in 16 scenarios, the transformations applied more edits than developers. We conclude

that seven transformations were correct. We reported them to the developers of the

respective projects, and they confirmed three of these scenarios.
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4.5 Concluding remarks

We presented REVISAR, a technique for synthesizing syntactic transformations from examples.

Given a set of examples consisting of program edits, REVISAR synthesizes a transformation

that is consistent with the examples. Our synthesizer builds on the state-of-the-art program

synthesis engine PROSE. To enable it, we develop (i) a novel DSL for representing program

transformations, (ii) domain-specific constraints for the DSL operators, which reduce the

space of search for transformations, and (iii) ranking functions for transformation robustness,

based on the structure of the synthesized transformations. We evaluated REVISAR on two

applications: synthesizing transformations that describe how students “fix” their programming

assignments and synthesizing transformations that apply repetitive edits to large codebases.

Our technique learned transformations that automatically fixed the program submissions of

87% of the students participating in a large UC Berkeley class and it learned the transforma-

tions necessary to apply the correct code edits for 84% of the repetitive tasks we extracted

from three large code repositories.

Currently, REFAZER learns transformations for C# and Python, but it can be extended to

support other programming languages by changing the language compiler/interpreter. We left

for future work an investigation of how it can be adapted to other programming paradigms

such as logic and functional.
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REVISAR

We now describe REVISAR, our technique for learning quick fixes from code repositories.

Given repositories as input, REVISAR: (i) Identifies concrete code edits by comparing pairs of

consecutive revisions (Section 5.1), and (ii) Clusters edits into sets that can be described using

the same transformation (Section 5.2 and 5.3), Figure 5.1 shows the work-flow of REVISAR.

Before describing the details of REVISAR, we clarify that, since we are interested in detecting

transformations that are common between different projects, in this thesis, we only focus

on individual transformations—i.e., we do not capture multiple patterns that may depend on

each other. Individual transformations are also the most common cases of quick fixes in code

analyzers. Our infrastructure can be extended to accommodate more complex transformations

in the future.

Repositories Extracting 
AST edits

Clustering 
edits

Learning 
transformations

A

B C

Transformation 
inspection

Transfor
mation

Transfor
mation

Transfor
mation

Figure 5.1: REVISAR’s work-flow.

5.1 Extracting concrete AST edits

The initial input of REVISAR is a set revs = {R1, . . . ,Rn} where each Ri is a revision history

r1r2 · · · rk from a different project (i.e., a sequence of revisions). For each pair (ri, ri+1) of

75



5.1 Extracting concrete AST edits 76

consecutive revisions, REVISAR analyzes the differences between the Abstract Syntax Trees

(ASTs)1 of ri and ri+1 and uses a Tree Edit Distance (TED) algorithm to identify a set of tree

edits {e1, e2, ..., el} that, when applied to the AST ti corresponding to ri yields the AST ti+1

corresponding to ri+1. In our setting, an edit is one of the following:

insert(x, p, k): insert a leaf node x as kth child of parent p. The current children at positions

≥ k are shifted one position to the right.

delete(x): delete a leaf node x from source tree. The deletion may cause new nodes to

become leaves when all their children are deleted. Therefore we can delete a whole tree

through repeated bottom-up deletions.

update(x, w): replace a leaf node x by a leaf node w.

move(x, p, k): move tree x to be the kth child of parent p. The current children at positions

≥ k are shifted one position to the right.

Given a tree t, let s(t) be the set of nodes in the tree t. Intuitively, solving the TED problem

amounts to identifying a partial mapping M : s(t) 7→ s(t′) between source tree t and target

tree t′ nodes. The mapping can then be used to detect which nodes are preserved by the edit

and in which positions they appear. When a node n ∈ s(t) is not mapped to any n′ ∈ s(t′),

then n was deleted.

Of the many tools that are available for computing tree edits over Java source code,

REVISAR builds on GumTree [31], a tool that focuses on finding edits that are representative

of those intended by programmers instead of just finding the smallest possible set of tree edits.

To give an example of edits computed by GumTree, let’s look at the first two lines in Figure 1.3.

Figure 5.2 illustrates the ASTs corresponding to args[i].equals("-launchdiag")

and "-launchdiag".equals(args[i]), respectively.

MethodInvo

args[i]equals"--launchdiag"

MethodInvo

args[i]equals"--launchdiag"

Figure 5.2: Before-after version for the first edited line of code.

1REVISAR uses Eclipse JDT [25] to extract partial type annotations of the ASTs. In our implementation, we
use these type annotations to create a richer AST with type information—i.e., every node has a child describing
its type. For simplicity, we omit this detail in the rest of the section.
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To produce the modified version of the code in line 2 at Figure 1.3, GumTree learned four

edits:

insert("-launchdiag", MethodInvo, 0)

insert(equals, MethodInvo, 1)

delete(equals)

delete("-launchdiag")

Basically, these edits move the string literal "-launchdiag" and the equals node so

that they appear in front of args[i]. When run on the code in Figure 1.3, GumTree also

learns edits for the other lines of code.

For our purposes, the edits computed by GumTree are at too low granularity since they

modify nodes instead of expressions. Concretely, we are interested in detecting edits to entire

subtrees—e.g., an edit to a method invocation args[i].equals("-launchdiag")

instead of individual nodes inside it. REVISAR identifies subtree-level edits by grouping edits

that belong to the same connected components. Concretely, REVISAR identifies connected

components by analyzing the parent-child and siblings relationships between the nodes

appearing in the tree edits. Two edits e1 and e2 belong to the same component if (i) the two

nodes x1 and x2 modified by e1 and e2 have the same parent, or (ii) the x1 (resp. x2) is the

parent of x2 (resp. x1). For instance, the previously shown edits are associated to two nodes

x1 = "-launchdiag" and x2 = equals. These nodes are connected since they have the

same parent node—i.e., the method invocation.

Once the connected components are identified, REVISAR can use them to identify tree-to-

tree mappings between subtrees inside the original and modified trees. We call this mapping

a concrete edit. A concrete edit is a pair (i, o) consisting of two components (i) the tree i in

the original version of the program, and (ii) the tree o in the modified version of the program.

This last step completes the first phase of our algorithm, which, given a set of revisions

{R1, . . . ,Rn}, outputs a set of concrete edits {(i1, o1), . . . , (ik, ok)}.
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5.2 Learning transformations

Once REVISAR has identified concrete edits—i.e., pairs of trees {(i1, o1) . . . (in, on)}—it tries

to group “similar” concrete edits and generate a transformation consistent with all the edits in

each group. An transformation is a rule r = τi 7→ τo with two components: (i) the template

τi, which is used to decide whether a subtree t in the code can be transformed using the rule

r, (ii) the template τo, which describes how the tree matching τi should be transformed by r.

In this section, we focus on computing r from a set of concrete edits {(i1, o1) . . . (in, on)}. We

assume that we are already given a group of concrete edits that can be described using the

same transformation. We will discuss our clustering algorithm for creating the groups in the

next section.

A template τ is an AST where leaves can also be holes (variables) and a tree t

matches the template τ if there exists a way to assign concrete values to the holes in

τ and obtain t—denoted t ∈ L(τ). Given a template τ over a set of holes H, we use

α to denote a substitution from H to concrete trees and α(τ) to denote the applica-

tion of the substitution α to the holes in τ. Figure 5.3 shows the first two concrete

edits from Figure 1.3 and the templates τi and τo describing the transformation ob-

tained from these examples. Here, the template τi matches any expression calling the

method equals with first argument args[i] and any possible second argument.

The two substitutions α1={?1="-launchdiag"} and α2={?1="-noclasspath"}

yield the expressions α1(τi) =args[i].equals("-launchdiag") and

α2(τi) =args[i].equals("-noclasspath"), respectively. The template τo

is similar to τi and note that the hole ?1 appearing in τo is the same as the one appearing in τi.

args[i].equals("--launchdiag")

args[i].equals(?1) ?1.equals(args[i])

"--launchdiag".equals(args[i])

args[i].equals("--noclasspath") "--noclasspath".equals(args[i])�� template �� template
Figure 5.3: Concrete edits and their input-output templates.
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In the rest of the section, we describe how we obtain the transformation from the concrete

edits. We start by describing how the input template τi is computed. Our goal is to compute

a template τi such that every AST i j can match the template τi—i.e., i j ∈ L(τi). In general,

the same set of ASTs can be matched by multiple different templates, which could contain

different numbers of nodes and holes. Typically, a template with more concrete nodes and

fewer holes is more precise—i.e., will match fewer concrete ASTs—whereas a template

with few concrete nodes will be more general—e.g., ?1.equals(?2) is more general than

arg[i].equals(?1). Among the possible templates, we want the least general template,

which preserves the maximum common nodes for a given set of trees. The idea is to preserve

the maximum amount of shared information between the concrete edits. Even when an

edit is too specific, we will obtained the desired template when provided with appropriate

concrete edits. In our running example, when encountering an expression of the form

x.equals("abc"), we will obtain the desired, more general template ?1.equals(?2).

Remarkably, the problem we just described is tightly related to the notion of anti-

unification often used in logic programming [5]. Given two trees t1 and t2, the anti-unification

algorithm produces the least general template τ for which there exist substitutions α1 and α2

such that α1(τ) = t1 and α2(τ) = t2. Among anti-unification algorithm, we use Baumgartner

and Kutsia [5], which runs in O(n2). Using this algorithm, we can generate the least general

templates τi and τo that are consistent with the input and output trees in the concrete edits.

For now, the two templates will have distinct sets of holes.

At this point, we have the template for the inputs τi and the template for the output

τo. However, REVISAR needs to analyze whether these templates describe an edit pattern

r = τi 7→ τo—i.e., whether there is a way to map the holes of τi to the ones of τi. For instance,

let’s look at Figure 5.4. Although we can learn templates τi and τo, these templates cannot

describe an edit pattern since it is impossible to come up with a mapping between the holes of

the two templates that is consistent with all the substitutions—i.e. in this case, the substitution

for ?1 in τi is incompatible with the substitution for for ?2 in τo (i.e., "-noclasspath" is

mapped to "-main", but the content of these substituting trees differs).

Definition 1. Given a set of concrete edits S = {(i1, o1), . . . , (in, on)}, we say that a transfor-

mation r = τi 7→ τo, is consistent with S if: (i) the set of holes in τo is a subset of the set the
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holes appearing in τi (ii) for every (ik, ok) there exists a substitution αk such that αk(τi) = ik

and αk(τo) = ok.

To illustrate the definition, the concrete edits in Figure 5.3 form a valid transformation

because the hole ?1 maps to the same concrete nodes with the same value in τi and τo.

Therefore, computing a transformation simply boils down to finding a mapping between the

holes in the templates τi and τo obtained from the anti-unification algorithm. This mapping

can be computed by finding, for every hole ?2 in τo, a hole ?1 in τi that applies the same

substitution with respect to all the concrete edits. Since the templates are the least general, if

no such mapping exists, there exists no transformation consistent with the concrete edits.

Theorem 5.2.1 (Soundness and Completeness). Given a set of concrete edits S =

{(i1, o1), . . . , (in, on)}, REVISAR returns a transformation r = τi 7→ τo consistent with S

if and only if some transformation r′ = τ′
i
7→ τ′o consistent with S exists.

Proof. By construction, REVISAR only returns transformations consistent with S. To prove

completeness, we show that if there exists a transformation r′ consistent with S, REVISAR

will also find some transformation r consistent with S. Let r′ = τ′
i
7→ τ′o be a transformation

consistent with S and let {α1, . . . , αn} be the substitution for the two templates. The template

τ′
i

(resp. τ′o) has to be more general than τi (resp. τo) or equal to i because a less general

template would not be consistent with the examples due to the properties of anti-unification.

Let ? be a hole τ′
i

and let t j = α j(?) be the tree assigned by the j-th substitution for every

j ≤ n. Let t(?1, . . . , ?k) be the tree obtained by anti-unifying all the t j, where the tree contains

holes ?1, . . . , ?k as leaves. If t(?1, . . . , ?k) is just a single hole, the hole ? will also appear

in the same position in the template obtained from REVISAR through anti-unification (i.e.,

this hole position is the least general). If t(?1, . . . , ?k) contains concrete nodes (not holes),

we can replace ? in τ′
i

with t(?1, . . . , ?k) and obtain a template consistent with S. Similarly,

we can change or substitute to account for the new introduced holes. Now we have new

substitutions α′
j

for all the new holes in the modified template and can do the same for τ′o.

To complete our proof we need to show that there exists a mapping between the holes in the

two new templates. If a hole ? appearing in both input and output templates was expanded to

t(?1, . . . , ?k), the mapping obtained from the new extended substitutions will still be a correct

one. This concludes the proof. �
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args[i].equals("--launchdiag")

args[i].equals(?1) ?2.equals(args[i])

"--launchdiag".equals(args[i])

args[i].equals("--noclasspath") "-main".equals(args[i])�� template �� template
Figure 5.4: Incompatible concrete edits.

Producing executable transformations Refaster [148] is a subset of the code analyzer

ErrorProne [39] from Google for describing simple transformations for Java expressions.

When permitted by the syntax of Refaster, REVISAR automatically compiles transformations

to Refaster rules, which are user-readable and can be executed in ErrorProne. A Refaster

transformation is described using (i) a before template to pattern-match target locations, and

(ii) an after template to specify how these locations are transformed. More practically, a

Refaster transformation is a compilable class with multiple methods. All methods contain the

same return type and list of arguments. One method is annotated with @AfterTemplate

and the other methods are annotated with @BeforeTemplate. For each transformation r =

τi 7→ τo generated by REVISAR, we use the template τi to generate the @BeforeTemplate

and the output τo to generate an @AfterTemplate. The holes in a template are represented

as Java variables and are added as parameters for the before and after methods. As Refaster

uses Java instead of a domain-specific language, rules are easy to understand for any Java

programmer.

Like any tool, Refaster has its limitations. In particular, it cannot describe transformations

that require knowing the AST type of a node. For instance, the transformation Figure 1.4

requires knowing that an AST node is a literal besides knowing that its type is String. This

edit cannot be represented exactly in Refaster. In addition, Refaster can only modify expres-

sions that appear inside a method body and it is not suitable to express fixes to expressions

outside a method body (e.g., global field declarations.).



5.3 Clustering concrete edits 82

Input: Set of templates {(i1, o1) . . . (in, on)}

1: clusters = ∅
2: for all (ik, ok) in {(i1, o1) . . . (in, on)} do

3: cluster_candidates = ∅
4: for all cluster c in clusters do

5: r = τi 7→ τo := compute_template((ik, ok), c)
6: if r is a transformation then

7: cluster_candidates.add(c)
8: costc := add_cost((ik, ok), c)
9: best = argmin(cluster_candidates)

10: if a best cluster exists then

11: best.add((ik, ok))
12: else

13: clusters.append(new cluster((ik, ok)))
14: return clusters

Algorithm 20: Greedy clustering.

5.3 Clustering concrete edits

In this section, we show how REVISAR groups concrete edits into clusters that share the

same transformation. REVISAR’s clustering algorithm receives a set of concrete edits

{(i1, o1) . . . (in, on)} and uses a greedy algorithm(Algorithm 20). The clustering algorithm

starts with an empty set of clusters(Line 1). Then, for each concrete edit (ik, ok) and for

each cluster c, REVISAR checks, using the algorithm from Section 5.2, if adding (ik, ok) to

the concrete edits of cluster c gives a transformation. When this happens, the cluster c is

added to a set of cluster candidates and the cost of adding (ik, ok) to c is computed(Lines 2–8).

REVISAR then adds (ik, ok) to candidate cluster of minimum cost, or it creates a new cluster

with just (ik, ok) if no candidate exists(Lines 9–13). The cost of this algorithm is O(n2) since

we have to perform a linear search for all the concrete edits, and another linear search for

each cluster to identify in which one each concrete edit should be included. The number of

clusters is always less than the number of concrete edits.

The cost of adding an edit (ik, ok) to cluster c is computed as follows. Let τ be the

template for the cluster c. To compute the cost, REVISAR anti-unifies τ and the tree in

the concrete edit we are trying to cluster. Let αk be the substitution for the result of the

anti-unification and let αk(?i) be the tree substituting hole ?i. We define the size of a tree

as the number of leaf nodes inside it, which intuitively captures the number of names and

constants in the AST. We denote the cost of an anti-unification as the sum of the sizes
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of each αk(?i) minus the total number of holes (the same metric proposed by Bulychev

et al. [12] in the context of clone detection). Intuitively, we want the sizes of substitu-

tions to be small—i.e., we prefer more specific templates. For instance, assume we have

a cluster consisting of a single tree args[i].equals("-launchdiag"). Upon re-

ceiving a new tree args[i].equals("-noclasspath"), anti-unifying the two trees

yields the template args[i].equals(?1) with substitutions α1={?1="-launchdiag"}

and α2={?1="-noclasspath"}. We have concrete nodes "-launchdiag" and

"-noclasspath" each of size one, and for a single hole ?1. The cost will be 2 − 1 = 1.

The final cost of adding an edit to a cluster is the sum of the cost to anti-unify τi and ik and

the cost to anti-unify τo and ok.

Predicting promising clusters When analyzing large repositories, the total number of

concrete edits may be very large and it will be unfeasible to compare all the possible edits to

compute the clusters. To address this problem, REVISAR only cluster concrete edits which

are “likely ” to produce a transformation. In particular, REVISAR uses d-caps [30, 63, 96],

an effective technique for identifying repetitive edits. Given a number d ≥ 1 and a template

τ, a d-cap is a tree-like structure obtained by replacing all subtrees of depth d and left nodes

in the template τ with holes. The d-cap works as a hash-index for sets of potential clusters.

For instance, let’s look at the left-hand side of Figure 5.2, which is the tree representation

of the node args[i].equals("-launchdiag"). A 1-cap replaces all the nodes at

depth one with holes. Four our example, args[i], equals, and "-launchdiag" will

be replaced with holes, outputting the following d-cap ?1.?2(?3). REVISAR uses the d-caps

as a pre-stepin Algorithm 20. For all concrete edits that have the same d-cap for the input tree

ik and for the output tree ok, REVISAR uses the clustering algorithm described in Section 5.3 to

compute the clusters for all concrete edits in these d-cap. This heuristic makes our clustering

algorithm practical as it avoids considering all possible example combinations. However, it

also comes at the cost of sacrificing completeness—i.e., two concrete edits for which there

exists a common transformation might be placed in different clusters. We will further discuss

this limitation in the rest of the thesis.
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5.4 Effectiveness of REVISAR

In this section, we evaluate how effective REVISAR is at learning edit patterns from software

repositories.

Benchmarks and Results We selected 9 popular GitHub Java projects (Table 5.1) from

a list of previously studied projects [133]. The project selection influences quantity and

quality of discovered patterns. We select mature popular projects that have long history

of edits, experienced developers who detect problems during code reviews, and several

collaborators (avg. 89.11) with different levels of expertise (low expertise collaborators likely

submit pull-requests that need quick fixes). Analyzing many projects is prohibitive given

our resources, thus we selected a subset of projects with various sizes/domains. We favored

projects containing between 1,000 and 15,000 revisions, so that we had a sample large enough

to identify many patterns but not too big due to the time required to evaluate all revisions.

The projects have size ranging from 24,753 to 1,119,579 lines of code. In total, the sample

contains 43,113 revisions. We performed the experiments on a PC running Windows 10 with

a processor Core i7 and 16GB of RAM. We obtained the revision histories of each repository

using JGit [52]. As described in § 5, REVISAR uses GumTree to compute concrete edits.

REVISAR took 5 days to analyze the 9 projects (approximately 10 seconds per revision). This

time is dominated by the time to checkout revisions, a process that can be done incrementally

for future projects.

It took us about three days to manually analyze the 381 edit patterns. For each pattern, we

checked whether it was useful, and if it was already known through online resources. Since

we focused on small quick fixes, checking whether it was a repeated pattern was usually fast.

Checking usefulness was also fast since the rationales of the patterns were well described

on the online documentation. Regarding packaging, when patterns were supported by the

Refaster syntax, integrating a pattern in Refaster took 10-30 minutes. 17 edits could not be

integrated due to the limitations of Refaster.

REVISAR found 240,612 edits which were clustered in 105,705 clusters. 28,842 of these

clusters contained more than one edit, which allowed REVISAR to generalize the examples to

an edit pattern. The chart in Figure 5.5 shows the number of edits per pattern for edit patterns

containing 20 or more edits. The most common pattern has 1,503 concrete edits.
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Table 5.1: Projects used to detect edit patterns.

Projects Edits LOCs Revisions
Hive 94,921 1,119,579 11,467
Ant 49,680 137,203 13,790

Guava 28,784 325,902 4,633
Drill 26,173 350,756 2,902

ExoPlayer 20,726 85,305 3,875
Giraph 8,836 99,274 1,062
Gson 4,435 24,753 1,393
Truth 3,857 27,427 1,137

ErrorProne 3,200 116,023 2,854
Total: 240,612 2,286,222 43,113
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900 edit patterns with more than 19 concrete edits

Figure 5.5: Distribution of concrete edits per edit pattern.



5.5 Usefulness of the edit patterns learned by REVISAR 86

REVISAR identified 28,842 common edit patterns in 43,113 revisions from 9 GitHub

Java projects.

Discussion We manually investigated some of the learned patterns to analyze on how well

REVISAR generalized concrete edits. Many patterns indeed describe logical edits made by

programmers (further discussed in the next section). However, we also found instances of

overly specific patterns. First, although the d-cap analysis helped predicting clusters, we

observed that some clusters that were deemed different due to the d-cap analysis could still be

merged together to yield a single edit pattern. As a result, some edit patterns were over-specific.

For instance, in the StringBuffer to StringBuilder quick fix, both the left-hand side

and the right-hand side could not become a hole without losing the edit pattern. We also

found multiple patterns that represented similar conceptual patterns. As expected, we did

not observe overly general patterns, which were prevented by the anti-unification algorithm.

Finally, we inspected edits that REVISAR could not generalize to an edit pattern. From the

sample we analyzed, we observed these edits either required a more complex edit-pattern

format than the one we consider in this thesis or were too specific for the context where they

were applied, the latter being the more common case.

5.5 Usefulness of the edit patterns learned by REVISAR

In this section, we present a mixed study to evaluate how programmers perceive the edits

learned by REVISAR. In particular, we focus on the following research questions:

RQ1: Can REVISAR be used to discover common quick fixes?

RQ2: Are developers interested in applying quick fixes discovered by REVISAR?

First, discovering common new quick fixes will help in extending the catalog of quick

fixes in existing code analyzers. Second, understanding the usefulness of common quick fixes

that are already present in existing code analyzers can help the programmers of these tools

prioritize their work as well as motivate programmers in adopting such tools. In § 5.5.1, we

describe our study to identify the most common edits performed by programmers according
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to REVISAR and then present two studies in Sections 5.5.2 and 5.5.3 to answer our second

research question.

5.5.1 Catalog of quick fixes

In this experiment, we acted as developers of code analyzers and inspected the edit patterns

learned by REVISAR to find which ones were quick fixes. So far, of the patterns learned by

REVISAR, we manually inspected the top-381 ones that occurred across most projects since

they were more likely to be of interest to general programmers. We performed this analysis

to identify edits that could be helpful for general programmers, but our technique also could

be used to train new programmers to follow the code standard of a particular company. For

instance, by investigating the quick fixes for a particular project/company. These clusters

cover more than 8,173 concrete edits (i.e., our patterns cluster many concrete edits, thus

simplifying their analysis). We only analyzed 381 out of 28,000+ due to time constraints.

To classify an edit pattern as a quick fix, we analyzed whether the edit pattern had a clear

motivation and these motivation could be of interest for general developers. Since REVISAR

does not learn dependencies between edit patterns, some of the single edit patterns did not

have a clear meaning because they were part of a larger edit pattern. Additionally, we found

many renaming operations (e.g., renaming obj to object), which improve readability, but are

specific to certain variable names. Since these last patterns are not applicable to general

programs we did not include them in our catalog. Finally, we merged patterns that represent

the same quick fix. At the time of writing, we derived a catalog of 32 quick fixes from the edit

patterns discovered by REVISAR. For 15/32 quick fixes, REVISAR was also able to generate

an executable ErrorProne rule. Next we present further details for the 10 patterns we used in

our survey. 9/32 fixes are covered by existing tools.

1. String to character In Java, we can represent a character both as a String or a character.

For operations such as appending a value to a StringBuffer, representing the value as a

character improves performance (see Quick Fix 1). This edit improved the performance of

some operations in the Guava project by 10-25% [122].

2. Prefer string literal equals method (discussed Section 1) Invoking equals on a null

variable causes a NullPointerExceptionWhen comparing the value in a string variable
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Table 5.2: quick fixes. Number of projects associated to each quick fix. Number of edits that
generate the edit pattern corresponding to the quick fix and number of revisions associated to
the edit pattern.

Quick Fix Projects Edits revisions
01 3 61 9
02 3 78 7
03 3 17 4
04 2 3 2
05 3 11 5
06 3 75 7
07 7 172 10
08 3 102 5
09 7 863 90
10 4 15 4
11 3 10 3
12 6 45 8
13 3 21 4
14 4 37 11
15 4 4 4
16 8 171 29
17 4 24 4
18 3 7 4
19 2 3 2
20 5 145 121
21 4 10 8
22 2 3 3
23 5 44 11
24 2 4 3
25 7 237 100
26 2 2 2
27 3 22 10
28 3 7 5
29 6 18 10
30 4 18 9
31 3 12 4
32 2 2 2

Average: 3,84 70,10 15,62

1 StringBuffer sb =

2 new StringBuffer();

3 sb.append("a");

1 StringBuffer sb =

2 new StringBuffer();

3 sb.append(’a’);

Quick Fix 1: String to character.
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to a string literal, programmers can overcome this exception by invoking the equals method

on the string literal since the String equals method checks whether the parameter is

null. Quick Fix 2 shows an edit to use the equals method of a string literal.

1 void bar(String s) {

2 i f (s.equals("str")) {

3 //...

1 void bar(String s) {

2 i f ("str".equals(s)) {

3 // ...

Quick Fix 2: Prefer string literal equals method.

3. Avoid FileInputStream and FileOutputStream These classes override the

finalize method. As a result, their objects are only cleaned when the

garbage collector performs a sweep [23]. Since Java 7, programmers can use

Files.newInputStream/Files.newOutputStream to improve performance as

recommended in this Java JDK bug-report [49]. Quick Fix 3 shows an edit to use

Files.newOutputStream.

1 void bar(String p,

2 byte[] content)

3 throws IOException {

4 FileOutputStream os =

5 new FileOutputStream(p);

6 //...

1 void bar(String p,

2 byte[] content)

3 throws IOException {

4 OutputStream os=Files.

5 newOutputStream(Paths.get(p));

6 //...

Quick Fix 3: Avoid FileInputStream/FileOutputStream.

4. Use valueOf instead wrapper constructor When creating a new Integer, one can use

the valueOf method or the constructor. The method valueOf can improve performance

since it caches frequently requested values [106] (Quick Fix 4). This edit pattern is included

in the Sonar catalog of rules. The same edit also applies for types such as Byte, Short, and

Long, etc.

1 Integer a =

2 new Integer(1);

1 Integer a =

2 Integer.valueOf(1);

Quick Fix 4: Use valueOf instead wrapper constructor.

5. Use collection isEmpty method Using the method isEmpty to check whether a col-

lection is empty is preferred to checking that the size of the collection is 0. For most

collections these constructions are equivalent, but for others computing the size could be

expensive. For instance, in the class ConcurrentSkipListSet, the size method is not

constant-time [105]. This edit pattern is included in the PMD catalog of rules (Quick Fix 5).
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1 List foo = getList();

2 i f (foo.size() == 0) {

3 % //..

1 List foo = getList();

2 i f (foo.isEmpty()) {

3 % //...

Quick Fix 5: Use collection isEmpty method.

6. StringBuffer to StringBuilder These classes have the same API, but StringBuilder is

not synchronized. Since synchronization is rarely used [107], StringBuilder offers high

performance and is designed to replace StringBuffer in single threaded contexts [107].

Since this edit pattern requires knowing whether the applications uses synchronization, it does

not appear in any code analyzer. Quick Fix 6 shows an edit to use StringBuilder.

1 StringBuffer a =

2 new StringBuffer();

1 StringBuilder a =

2 new StringBuilder();

Quick Fix 6: StringBuffer to StringBuilder.

7. Infer type in generic instance creation Since Java 7, programmers can replace type

parameters to invoke the constructor of a generic class with an empty set (<>), diamond

operator [108] and allow inference of type parameters by the context. This edit ensures the

use of generic instead of the deprecated raw types [109]. The benefit of the diamond operator

is clarity since it is more concise(Quick Fix 7).

1 List<String> a = new

2 ArrayList<String>();

1 List<String> a = new

2 ArrayList<>();

Quick Fix 7: Infer type in generic instance creation.

8. Remove raw type A raw type is a generic type without type parameters, which was used

in version of Java prior to 5.0 and is allowed to ensure compatibility with pre-generics code.

Since type parameters of raw types are unchecked, the catch of unsafe code is deferred to

runtime [109] and the Java compiler issues warnings for them [109]. Quick Fix 8 shows an

edit that removes a raw type.

1 List<String> a = new

2 ArrayList();

1 List<String> a = new

2 ArrayList<>();

Quick Fix 8: Remove raw type.
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9. Field, parameter, and variable could be final The final modifier can be used in fields,

parameters, and local variables to indicate they cannot be re-assigned [123]. This edit improves

clarity and it helps with debugging since it shows what values will change at runtime. In

addition, it allows the compiler and virtual machine to optimize the code [123]. The edit

pattern that adds the final modifier is included in PMD catalog of rules [120]. IDEs such

as Eclipse [35] and NetBeans [48] can be configured to perform this edit automatically on

saving. Quick Fix 9 adds the final modifier to a local variable.

1 String a = "a"; 1 f i n a l String a = "a";

Quick Fix 9: Field, parameter, and variable could be final.

10. Avoid using strings to represent paths Programmers sometimes use String to represent

a file system path even though some classes are specifically designed for this task—e.g.,

java.nio.Path. In this cases, it is useful to change the type of the variable to Path.

First, strings can be combined in an undisciplined way, which can lead to invalid paths.

Second, different operating systems use different file separators, which can cause bugs. Since

detecting this pattern requires a non-trivial analysis, code analyzers do not include it in their

rules. Quick Fix 10 shows an edit to use a specific class to represent a path.

1 p r i v a t e String path; 1 p r i v a t e Path path;

Quick Fix 10: Avoid using strings to represent paths.

5.5.2 A survey of programmers’ opinion about our catalog

We conducted a survey to assess programmers’ opinions about the catalog of the edit patterns

presented in Section 5.5.1. We only evaluated 10/32 in our survey to keep the survey small

and increase the completion rate. We believe there are many other useful patterns in the set

and we plan to build visualization tools to help us browse them.

Survey planning To recruit participants, we sent e-mails to 2,000 programmers randomly

selected from 124 popular GitHub Java projects, including projects from Google, Facebook

and Apache Foundation. We divided the survey into two main sections. The first section asks
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one question for each of the 10 edit patterns. Each questions shows a code pattern on the

left-hand side (A) and one on the right-hand side (B). One of the two (either (A) or (B)) is

the good and the other the bad code pattern. The 10 edits include both edit patterns missed

and included in code analyzer tools. In this way, we can verify aspects such as whether

programmers that use code analyzer tools that include a pattern still choose the bad version of

it. For each question, we asked for a preference using a Likert Scale with options: strongly

prefer (A), prefer (A), it does not matter, prefer (B), and strongly prefer (B). We used text

boxes after each question to allow programmers to explain their choices. All programmers

answered the same questions in the same order. The second section asks general information:

(i) How many of the code patterns shown in the first section have you used in your code before?

(ii) How would you rate your knowledge of the effects caused by using the different code

patterns? and (iii) How long have you been working/have worked with Java? Furthermore,

we ask programmers what code analyzers they are familiar with among Checkstyle, PMD,

FindBugs, Coverity, ErrorProne, and IntelliJ IDE; we added a text box for other tools.

Quantitative analysis Overall, 164 (8.2%) programmers completed the survey. Most of

them (72%) have more than five years of experience, and we refer to these programmers as

experts. In addition, 75.5% of programmers in general used 6 or more of the code patterns in

their code before. Programmers also indicate a high or very high knowledge of the effects

caused by different code patterns in 72.4% of the cases. We refer to these programmers as

informed programmers.

The results of the survey are shown in Figure 5.6. For all edit patterns, the difference

between the preferences (sum of prefer and strongly prefer) for the two patterns is statistically

significant using Wilcoxon signed-rank test with 95% significance (p-value = 0.05). For

nine edit patterns, programmers prefer or strongly prefer the good code pattern suggested

by our edit pattern (90%). The only exception is the pattern String to character, for which

programmers tend to prefer the String to the character version.

For most quick fixes (90%), programmers agree with the suggested edits.

When looking only at experts’ answers, we observe the same results for all patterns but

the first one, for which we do not find a statistical difference. However, when considering
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6.11%

26.83%

18.32%

34.13%

14.61%

Strongly prefer good

Prefer good

It does not matter

Prefer bad

Strongly prefer bad

(a) Quick Fix 1.

42.1%

22.6%

1.8%

14.6%

18.9%

(b) Quick Fix 2.

15.88%

29.87%

17.68%

31.07%

5.49%

(c) Quick Fix 3.

28.03%

31.73%

12.81%

18.92%

8.51%

(d) Quick Fix 4.

52.45%

40.24%

5.51%

1.8%

0%

(e) Quick Fix 5.

43.94%

28.03%

20.72%

6.11%

1.2%

Strongly prefer good

Prefer good

It does not matter

Prefer bad

Strongly prefer bad

(f) Quick Fix 6.

68.37%

20.72%

1.2%

7.31%

2.4%

(g) Quick Fix 7.

49.4%

25.6%

6.1%

14.6%

4.3%

(h) Quick Fix 8.

21.32%

33.53%

11.61%

25.03%

8.51%

(i) Quick Fix 9.

21.98%

46.95%

15.88%

13.99%

1.2%

(j) Quick Fix 10.

Figure 5.6: Preference of programmers for each quick fix.

only answers from non-experts, we cannot find statistical differences for Quick Fixs 2, 3,

4, and 9—i.e., the answers of experts differ from the answers of non-experts. This result

supports our hypothesis that experts have a common wisdom that other programmers (e.g.,

non-experts) lack. We observe similar results between informed programmers and uninformed

programmers, which supports the hypothesis that the participants’ preferences are related to

the impact the code pattern has in the quality of their code.

Experts and informed programmers tend to prefer better code patterns compared to

non-experts and uninformed programmers.

Most programmers use IDEs to detect edit patterns and perform quick fixes (82.5%).

Most of them use IntelliJ (72.5%). Programmers also mention code analyzer tools, such

as Checkstyle (50.3%), Sonar (49.7%), FindBugs (42.5%), and PMD (30.7%). Most pro-

grammers use multiple tools to detect edit patterns (59%). Only 0.6% of the programmers

uses a single code analyzer, and no programmer uses Checkstyle or PMD as the only code

analyzer. This indicates that programmers often use multiple tools to maintain their code. In

addition, only 17% of the programmers indicate the use of the IDE alone without specifying

any code analysis tool integrated with it. IDEs are not typically designated for detecting

patterns. Figure 5.7 shows the distribution of the answers for tools.

A minority of the programmers (12%) does not indicate any tool, which hints at a low

knowledge of the implications of using some different patterns. In fact, 60% of the users who

did not know any tool selects average to very low knowledge of the effect of edit patterns. This

is a large number since, in general, 72.4% of the total programmers indicates the contrary—

i.e., a high or very high knowledge of the implications of the different patterns. We also



5.5 Usefulness of the edit patterns learned by REVISAR 94

observe that programmers who do not use any tools are less experienced Java programmers

(65% experts instead of 72%). For programmers who do not use any tool, the difference

in answers for Quick Fixs 1, 2, 3, 4, 9, and 10 is not statistically significant. Additionally,

for programmers that use only the IDE, the difference for Quick Fixs 1, 2, 3, 4, and 9 is

not statistically significant. This result suggests that the IDE alone without any additional

integrated code analysis is not the most suitable tool to detect edit patterns.

Programmers who use more tool support to detect and apply code patterns tend to prefer

better code patterns compared to non-experts and uninformed programmers.

3.4%

2%

2.6%

6.5%

8%

30.7%

42.5%

49.7%

50.3%

72.5%

Others

NetBeans

Coverity

ErrorProne

Eclipse

PMD

FindBugs

Sonar

Checkstyle

IntelliJ

Figure 5.7: Distribution of answers for tools.

Qualitative analysis To understand additional reasons behind why programmers preferred

one code pattern over another, we analyzed the explanations they wrote.

We observe some programmers favor readability over other benefits that edit patterns may

provide, which leads them to not choose the code patterns suggested by our edit patterns. For

instance, in edit pattern String to character, a participant answered:

“B is technically more efficient but A is likely more consistent with all your

other [c]ode (where you rarely deal in characters) so let the compiler sort the

optimization out” (sic).

For the edit Field, parameter, and variable could be final, programmers also indicate that

having final everywhere can be noisy, as we can see in the answer of one of the participants.
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“Although it is definitely preferable for all locals to be effectively final, explicitly

marking them as such adds a lot of noise.”

Programmers may favor readability of their original code over other benefits provided by

edit patterns.

We also observe that programmers may prefer a good code pattern without fully under-

standing its benefits. For instance, for the edit Use valueOf instead wrapper constructor a

participant mentions:

“Prefer constructors to standard objects, though truth be told idk [I Don’t Know]

what valueOf does beside return a new Integer” (sic).

In fact, valueOf does not return a new Integer, but caches frequently requested

values. This means some programmers are unaware of the effects of some code patterns.

Among the programmers that use a tool that detects this pattern, 23.19% still choose the

wrong option. Some programmers suggest Integer a = 1, which the compiler translates

to use valueOf [104].

For the edit Avoid FileInputStream and FileOutputStream, programmers indicate other

reasons for choosing the good pattern. Most programmers indicate that the modified version

is better because it uses a general type OutputStream instead of FileOutputStream.

Some programmers prefer some code patterns for different reasons than those the patterns

are designed for.

Finally, we observe static analyzers plays an important role in teaching good practices to

programmers. A participant wrote:

“I forget why, but I’m pretty sure that B is better. PMD enforces it at my

company”.

Static analysis tools can teach programmers to recognize good code patterns.
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5.5.3 Pull Requests

To further assess the perceived usefulness of our edit patterns, we submitted pull requests to

identify whether programmers want to perform the edit in their code.

Planning We selected 12 Java code projects from different domains such as databases,

servers, and library management. We also chose both traditional software projects and

projects for code analysis tools such as PMD, Checkstyle, and ErrorProne. Five of the projects

were chosen from the 9 projects we learned patterns from. The full list of selected projects

is shown in Table 5.3. From the 10 edits in our survey, we selected 6 of them. We selected

Table 5.3: Projects used to submit pull requests.

Project Edit Pattern Status
VoltDB Quick Fix 8 Open

Ant Quick Fix 4 Merged
Ant Quick Fix 6 Open
Ant Quick Fix 5 Merged
Ant Quick Fix 2 Merged
Ant Quick Fix 1 Open
Drill Quick Fix 4 Merged
Hive Quick Fix 4 Open

Checkstyle Quick Fix 6 Merged
ErrorProne Quick Fix 4 Merged
ErrorProne Quick Fix 2 Rejected
ExoPlayer Quick Fix 2 Merged

Libgdx Quick Fix 6 Open
Libgdx Quick Fix 2 Rejected
PMD Quick Fix 5 Merged
PMD Quick Fix 1 Merged

RStudio Quick Fix 5 Merged
RStudio Quick Fix 1 Rejected

Sonarqube Quick Fix 1 Open
Spotbugs Quick Fix 6 Rejected

edit patterns to include both edit patterns that appear in existing code analysis tools (3) and

edits that do not appear in any tool (3). In this process, we selected edit patterns that were

likely to appear in open source code repositories. We submitted pull requests related to these

patterns to the selected projects. For each edit patterns, we performed up to 4 pull requests.

Since we wanted to receive a quick feedback from programmers about the edit patterns, we

applied them to just a subset of locations per project since a large number of edits would

have required a careful analysis and code review. We targeted 20 locations but if a single file

contained more than 20 possible locations, we applied the edit pattern to all of them.
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Results and Discussion At the time of writing, programmers found 10/20 (50%) of our pull

requests useful and accepted them. Of the accepted requests, 6 were for patterns appearing

in existing code analysis tools and 4 were for patterns that do not appear in any tool. Both

traditional software projects and projects for code analysis tools accepted some pull requests.

For the latter category, ErrorProne and Checkstyle accepted one pull request each, and PMD

accepted two. Curiously, some of the pull requests fixed issues that their own static analysis

tool could have detected. This may indicate issues in how programmers run static analysis

tools. For instance, some pull requests fixed issues in test projects, which may not be inspected

often by programmers and tools. Remarkably, the programmers of PMD found the string to

character edit, which we applied to their code, to be particularly useful and they will include

it in PMD 6.2.0 as a new rule.

Programmers rejected 4/20 (20%) of our pull requests, but they showed support for the

edit patterns we proposed. In one case, our pull request intend to improve performance, but

programmers indicated that the edits were not performed on critical locations and they will

instead welcome edits to critical paths. In other two cases, we performed an edit to prevent

a NullPointerException, but the locations where we performed the edits already

included null checks. In the last case, we performed an edit to improve performance for

Java code that is later translated to JavaScript. Although the edit improves performance in

Java, the same does not apply to other languages.

For 3/20 (15%) of our pull requests, programmers supported our edits, but the pull requests

are still open. In one case, the programmers required us to provide a test suite to demonstrate

the gain in performance. In another case, we edited the code to use StringBuilder, which

improves performance but is not thread-safe. Thus, we need further analysis to decide what

locations are safe and can be edited. In the last case, programmer reacted positively to our

edit but have not accepted the pull request yet. Finally, 3/20 (15%) of our pull requests do not

receive answers yet.

Programmers were positive towards 70% of the pull requests and one of the edit patterns

was integrated in PMD.
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5.5.4 Threats to validity

With respect to construct validity, our edit patterns are based on the edits programmers perform

in open source repositories. These programmers may not be experts and their edits may not

reflect good edit patterns. To reduce this threat, we validated the edit patterns learned from

the source code using resources such as programming communities and the literature (e.g.,

Eckel [24]). Concerning internal validity, the edit patterns are classified manually, which may

impact on the number of edits classified as useful. To reduce this threat, we evaluate our edit

patterns using different validation approaches. We performed a survey to retrieve the opinion

of programmers along GitHub, and we submitted pull requests applying our edit patterns to

source code repositories. In addition, we select a sample in our catalog of edit patterns to

evaluate both the survey and to submit pull requests. The choice of the edit patterns may affect

the opinion of the programmers. To reduce this threat, we select edit patterns considering

different aspects (e.g., edit included or missed by code analysis tools). Concerning external

validity, we selected 9 projects to extract the code edit patterns. We also selected 12 projects

to submit pull requests. These projects may not be representative of all the projects on GitHub.

To reduce this threat, we selected projects from different domains such as databases, servers,

and library management. When we performed the pull request, we selected both projects that

we have used to extract the edit patterns or not. In this way, we could validate the technique

not only with programmers that have seen the edit patterns before, but also general with

general programmers. In addition, we only select a sample of learned code edit patterns. This

may not reflect all edit patterns that could be useful to programmers. To reduce this threat, we

select edit patterns that occur across more projects.

5.6 Related Work

Discovering code patterns Many systems have been recently proposed to mine code trans-

formations and edit patterns from code. Molderez et al. [88] learn AST-level tree transfor-

mations that are used to automate repetitive code edits. It learns rules in the form of tree

edits. Since the same pattern can be described with different tree edits, two patterns that are

deemed equivalent by REVISAR can be deemed nonequivalent in [31]. Moreover, it abstracts

the list of tree edits of a transformation into a set of edits, losing information that is important
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when automating the transformation as done by REVISAR. Finally, the edits learned by it

are not publicly available and were not evaluated through a survey. Brown et al. [10] learn

token-level syntactic transformations—e.g., delete a variable or insert an integer literal—from

online code commits and use them to generate new candidate mutations for mutation testing.

Unlike REVISAR, can only mine token level transformations over a predefined set of syntactic

constructs and cannot unify across multiple concrete edits. Negara et al. [91] mine code

interactions directly from the IDE to detect repetitive edit patterns and finds 10 new refactoring

patterns. REVISAR does not use continuous interaction data from an IDE and only makes

use of public data available on online repositories. Despite this fact, REVISAR discovered

(at least) 9 new useful quick fixes. Other tools [73, 138] mine fine-grained repair templates

from StackOverflow the Defect4j bug data-set. REVISAR extracts edit patterns from online

repositories and not blogs or repair data sets. Combining the two techniques to discover what

patterns are useful is an interesting research direction. In summary, our paper differs from

prior work in that (i) REVISAR mines new edit patterns in a sound and complete fashion (with

respect to the syntax of edit patterns), (ii) by analyzing the edit patterns REVISAR mined, we

discovered quick fixes and assessed their usefulness through a formal evaluation.

Some techniques use repetitiveness of code edits [36, 47] to build statistical models for

code completion. APIRec [92] is trained on a corpus of repetitive edits to learn a statistical

model based on the co-occurrence of fine-grained changes. APIRec can then recommend

API calls based on edit context. GraLan and ASTLan [93] are graph-based and AST-based

techniques that recommend the next token based on statistical models. Our technique analyzes

edit patterns from unsupervised data and not from curated data. Moreover, we perform a

formal study of the usefulness of quick fixes we discovered.

Learning transformations from examples Several techniques use user-given examples

to learn repetitive code edits for refactoring [3, 83, 127], for removing code clones [81], for

removing defects from code [55], and for learning ways to fix command-line errors [19]. All

these techniques rely on the user-given examples and all the given examples should describe

the same intended transformation. This extra information allows the tools to perform more

informed types of rule extraction. Instead, REVISAR uses fully unsupervised learning and
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receives concrete edits as input that describe different transformations. Moreover, REVISAR

is sound and complete for our edit-pattern format thanks to the use of anti-unification.

Program repair Several tools for program repair learn useful fixing strategies by mining

code. FixWizard [99] is a semi-automated technique for detecting and fixing common bugs.

FixWizard identifies target locations, detects fixes, and recommends fixing edits. BugFix [50]

uses association rules to help to fix a bug. An association rule is a machine learning technique

to discover interesting relations among variables. It suggests fixes by analyzing historic of bug

fixing scenarios. Association rules map debugging scenarios to fixing scenarios. It uses these

rules to suggest a list of fixes. Kim et al. [56] use human-written patches to repair programs.

They analyze 62,652 human-written patches and identified ten common fixing templates. Its

technique detects bug locations using a fault location technique [67] and uses these fixing

templates to repair program. Liu et al. [72] propose R2Fix, a technique that learns patches

from bug reports. R2Fix analysis bug reports, identify common bugs, and recommends

program repairs. This technique contains a bug classifier, a parameter extractor that extracts

pattern based on bug reports, and a patch generator. Long and Rinard [74] present Prophet, a

technique for automatic program repair that learns a probabilistic application-independent

model of correct code from a set of successful human patches. All these tools either rely on

a predefined set of patches or learn patches from supervised data—e.g., learn how to fix a

NullPointerException by mining all concrete edits that were performed to resolve

that type of exception. Unlike these techniques, we analyze fully unsupervised set of concrete

code edits and we propose a sound and complete technique for mining edit patterns. Moreover,

REVISAR learns arbitrary quick fixes that can improve code quality and not just ones that

are used to repair buggy code. Since we do not have a notion of correct edit pattern (i.e.,

there is no bug to fix), we also analyze the usefulness of the learned quick fixes through a

comprehensive evaluation and user study, a component that is not necessary for the code

transformations used in program repair.
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5.7 Concluding remarks

We presented REVISAR, a technique for automatically discovering common Java code edit

patterns in online code repositories. REVISAR (i) identifies edits by comparing pairs of

revisions in input revision histories, (ii) clusters edits into sets that can be abstracted into the

same edit pattern, and (iii) for each cluster, learns an edit pattern. Finally, when possible, it

compiles the edit pattern to executable code in the Google’s ErrorProne extension of the Java

compiler. We used REVISAR to mine quick fixes from nine popular Java projects from GitHub

and REVISAR successfully learned 920 edit patterns that appeared in more than one projects.

So far, upon manual inspection, we identified 32 quick fixes. To assess whether programmers

would like to apply these quick fixes to their code, we performed an online survey with 164

programmers showing 10 of our quick fixes. Overall, programmers supported 90% of our

quick fixes. For such quick fixes, we issued pull requests in various repositories and 50%

were accepted so far. Moreover, PMD will include one of the quick fixes we discovered in

their next release.



Chapter 6

Conclusion

Tools such as ErrorProne [39], ReSharper [51], Coverity [6], FindBugs [4], PMD [120],

and Checkstyle [14] help programmers by automatically detecting and/or removing several

suspicious code patterns, potential bugs, or instances of bad code style. However, extending

these catalogs of transformations is complex and time-consuming. In this context, program-

mers may want to perform a repetitive edit into their code automatically to improve their

productivity, but available tools do not support it. In addition, designers of code analysis tools

may want to identify rules that could be helpful to be automated.

To deal with the problem of allowing programmers to perform repetitive edits that are not

in the catalog of code analysis tools, we presented REFAZER, a technique for synthesizing

syntactic transformations from examples. Given a set of examples consisting of program edits

REFAZER synthesizes a transformation that is consistent with the examples. Our synthesizer

builds on the state-of-the-art program synthesis engine PROSE. To enable it, we develop (i) a

novel DSL for representing program transformations, (ii) domain-specific constraints for the

DSL operators, which reduce the space of search for transformations, and (iii) ranking func-

tions for transformation robustness, based on the structure of the synthesized transformations.

We evaluated REFAZER in two applications: synthesizing transformations that describe how

students “fix” their programming assignments and synthesizing transformations that apply

repetitive edits to large codebases. Our technique learned transformations that automatically

fixed the program submissions of 87% of the students participating in a large UC Berkeley

class and it learned the transformations necessary to apply the correct code edits for 84% of

the repetitive tasks we extracted from three large code repositories.

102



103

In addition to being a useful tool, REFAZER makes two novel achievements in PBE. First,

it is the first application of backpropagation-based PBE methodology to a domain unrelated

to data wrangling or string manipulation. Second, in its domain it takes a step towards

development of fully unsupervised PBE, as it automates extraction of input-output examples

from the datasets (that is, students’ submissions or programmers’ modifications). We hope

that with our future work on incorporating flow analyses into witness functions, REFAZER

will become the first major application of inductive programming that leverages research

developments from the entire field of software engineering.

To discover useful edit patterns that could be useful to be added to the catalog of code

analysis tools, we propose REVISAR, a technique for automatically discovering common Java

code edit patterns in online code repositories. Given code repositories as input, REVISAR

identifies simple edit patterns by comparing consecutive revisions in the revision histories.

The most common edit patterns—i.e., those performed across multiple projects—can then be

inspected to detect useful ones and add the corresponding rules to code analyzers.

Since we are interested in detecting patterns appearing across projects and revisions,

REVISAR has to analyze large amounts of code, a task that requires efficient and precise

algorithms. REVISAR focuses on edits performed to individual code locations and uses

GumTree [31], a tree edit distance algorithm, to efficiently extract concrete abstract-syntax-

tree edits from individual pairs of revisions—i.e., sequences of tree operations such as insert,

delete, and update. REVISAR then uses a greedy algorithm to detect subsets of concrete

edits that can be described using the same edit pattern. To perform this last task efficiently,

REVISAR uses a variant of a technique called anti-unification [63], which is commonly used

in inductive logic programming. Given a set of concrete edits, the anti-unification algorithm

finds the least general generalization of the two edits—i.e., the largest pattern shared by the

edits. Thanks to this formal result, REVISAR is sound and complete with respect to the rule

format it adopts—i.e., if there is a rule consistent with a given set of concrete edits, REVISAR

will find it.
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6.1 Follow up approaches

In this thesis, we focus our evaluation on how a transformation learned from programming

assignments can help students with incorrect solutions. Some works use program synthesis

to help teachers to generate hints. Although REFAZER is capable of fixing students bugs

automatically, it lacks the domain knowledge of a teacher and can, therefore, generate

functionally correct but stylistically bad fixes. To address this limitation, MistakeBrowser [46],

a mixed-initiative approach, uses teacher expertise to better leverage the fixes produced by

REFAZER. MistakeBrowser clusters incorrect submissions for the student submission history.

Each cluster is based on common bugs among students. Then, teachers provide hints for

the incorrect submission, and MistakeBrowser propagates teachers hints to the incorrect

submissions in the same cluster. MistakeBrowser requires data about the programming

assignment submissions from the previous semesters. Sometimes, instructors lack this

information. In this case, teachers can write examples to correct incorrect submission, and use

REFAZER to fix the students’ programming assignments. This is the idea of FixPropagator [46].

This technique can learn code transformations from teachers’ bug fixes for correcting students’

submissions. The teachers provide examples of bug fixings for students’ programming

assignments and provide hints for the provided fixes. Then, Refazer learns programming

transformations to correct the bug in the students’ programming assignments and propagates

the fixes along with the feedback to other students with similar incorrect submission. The

last tool is TraceDiff [137], which helps students to debug the code. It shows the trace of the

incorrect and correct versions of the code. Thus, students can understand why the code is

incorrect.

6.2 Future work

In this section, we present the future work to be done after this thesis. In this thesis, we

use positive examples (i.e., examples of what programmers want to perform) to synthesize

program transformations. Another kind of example that could also be used along the synthesis

process is negative examples (i.e., examples of edits that programmers do not want to perform).

Different from positive examples, negative examples specify what users do not want. Some
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techniques use negative examples to bound the space of possible transformations. For instance,

FlashExtract uses negative examples to remove incorrect transformations from synthesized

list of transformations. All transformations that produce an output that is in the list of negative

examples given the input are removed from the transformation list. As another example,

FlashProg interacts with end-users that may provide negative examples to get to the desired

transformation. However, these studies investigate the use of negative examples on the

data-wrangling domain.

These results from the data-wrangling domain suggest that negative examples also could

be beneficial in the process of learning program transformations for source code. For instance,

if programmers want to perform a repetitive edit, but they have already performed this

transformation manually to some locations in the source code, they probably will not want

that this transformation be performed to edited locations. In this scenario, programmers may

provide locations where they already have applied the transformation as negative examples,

and REFAZER could use this information to refine synthesized program transformations list.

In this future work, we want to use the support to negative examples of the PROSE frame-

work and modify our witness functions to accept this kind of specification. In this process,

we will allow programmers to give negative examples implicit or explicit. To detect implicit

negative examples, we want to use some heuristics. For instance, FlashExtract analyzes

the examples provided by programmers. If programmers provide two or more examples,

FlashExtract automatically adds the regions between the examples as a negative example to

refine the transformation list, so that any transformation that selects regions between these

examples is excluded. The explicit negative example are provided by programmers before the

program transformations are learned or after the best-ranked program transformation shows

potential case of repetitive edits to programmers. In the last case, programmers could select

some of these edits as negative examples to refine the program transformations.

Moreover, we identified cases where REFAZER was unable to perform the desired transfor-

mations. As future work, we plan to increase the expressivity of our tree pattern expressions

to avoid selecting incorrect locations due to over-generalization. Currently, the generalization

is based on rigid alignment between nodes in two trees. For instance, if two nodes have the

same parent, but have different numbers of children, we can currently only match them with

respect to their type, which may be too general. To support this kind of pattern, we plan to
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include additional predicates in our DSL such as Contains, which does not consider the

entire list of children, but checks if any of the children match a specific pattern.

Additionally, we aim at investigating the use of control-flow and data-flow analysis for

identifying the context of the transformation. For instance, REFAZER may introduce a name

into the source code, but this node may also be defined in the source code. With data and

control-flow analysis, we want to analyze the context where REFAZER is performing the

transformation to avoid compilation errors due to a situation like this one.

We also plan to extend our DSL to support type analysis and preconditions for each

transformation. Currently, REFAZER only uses the name and label of the nodes in the source

code. We also want to investigate the type of the expression. For instance, the programmer may

want to perform a transformation, but he only wants to perform this transformation to certain

overloaded method. Without type checking, we are unable to perform this transformation.

Thus, we want to add type checking to our language to analyze the type of the expression.

Additionally, we want to investigate the use of variables. Some pattern re-occurs within

the same transformation. If we can abstract this occurrence in a variable operator, we can only

match this tree a single type. The other matches may reuse the previously learned variable. If

the examples to learn a transformation were so distinct among themselves, we cannot learn a

transformation. Furthermore, the examples may diverge in terms of applied edits; that is, one

example may have an update operation and a delete operation, and the other example may

have just an update operation. We will extend the DSL operators to group examples according

to their similarities and learn transformations for each group of examples separately.

Although REFAZER is capable of fixing student bugs automatically, it lacks the domain

knowledge of a teacher and can therefore generate functionally correct but stylistically bad

fixes. To address this limitation, we have recently built a mixed-initiative approach that uses

teacher expertise to better leverage the fixes produced by REFAZER [46]. Teachers can write

feedback about an incorrect submission or a cluster of incorrect submissions. The system

propagates the feedback to all other students who made the same mistake.

In this thesis, we have the history of submissions of each student for a programming

assignment. For each student who completed the assignment and had at least one incorrect

submission, we select the last pair of submissions, the incorrect and the correct ones, and we

use it as examples of bug fixes. However, we do not investigate the learning of bug fixes from
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non-consecutive pair of submissions. In this case, students may have applied additional edits,

such as refactorings. Although learning from the last incorrect submission, we increase the

likelihood of learning a transformation that is focused on fixing the existing faults, learning

from non-consecutive submissions, we increase the number of learned rules and, therefore,

can fix the bug of with a few number students’ submissions. Thus, in this future work, we want

to perform an evaluation of learning larger transformations from earlier incorrect submissions

to correct submissions, and how these transformations can help to fix larger conceptual faults

in the code.

We also want to improve our ranking functions. In this thesis, we use some heuristics

for ranking the programming transformations, such as preferring some operators over others.

In future, we want to use machine learning techniques for learning the ranking models

automatically. In this direction, some techniques were proposed. Singh and Gulwani [134]

present a machine learning technique for ranking transformations. Since the examples are

a kind of incomplete specification, the number of learned transformations could be huge.

Thus, evaluating all transformations against the ranking functions may be prohibitive. In this

scenario, they propose a gradient descendent approach to rank the program transformation at

the VSA level. Menon et al. [84] present a probabilistic model that ranks programs based on

the feature of the provided input-output examples. These works focus on the data-wrangling

domain. As future work, we want to investigate the use of machine learning techniques to

rank our program transformations.

Additionally, we want to investigate how programmers could interact with RE-

FAZER/REVISAR. In thesis, we focus on learning transformations and leave the interaction

models as future work. Among the studies that investigate this problem, FlashProg [78]

learns transformations and when two transformations produce different results for the same

input, it shows to the user cases in which these two transformations differ and ask him which

one produces the desired result. This work focuses on the data-wrangling domain. Another

problem is how to present the result of program transformations to programmers. In software

engineering, the works focus on the development of techniques. The interaction model in these

techniques is minimal or nonexistent. In this work, we want to investigate how programmers

could interactive with our technique. We want to perform a formative study showing different



6.2 Future work 108

interaction models to programmers. Using the data from this formative study, we aim to

develop a interaction model for REFAZER.

Regarding REVISAR, our work mine transformations that can be integrated in code ana-

lyzers and opens many research directions. Currently our technique requires the programmers

of code analyzers to manually investigate what edit patterns are useful while it would be

desirable to design an automated approach for checking usefulness based on crowd-sourcing

(e.g., see [140]) or on mining StackOverflow blog posts (e.g., see [73]).

Additionally, REVISAR tackles individual edits, but it would desirable to extend it to more

complex types of edit patterns. We plan to draw inspiration from the program repair literature

and consider concepts such as contexts and dependencies between edits. For instance, when

programmers change the source code to use List instead of Vector, they also need to edit

specific Vector usage to the List usage. For example, the Vector API contains methods

(e.g., addElement) that required to be changed to their correspondent methods in the List

API (e.g., add). In this case, the dependencies among edits is needed to preserve the type

correctness of the program. To do so, we could we type constraints that had been used in the

refactoring domain to express the type correctness of the program [143]. The type constraints

specify a set of rules that defines when the program is type correct. When some rules are

broken, it implies that a set of additional transformations must be performed to make the

program type correct again.

Furthermore, since our goal is to discover patterns that exploit unknown features of

programming language, it would be beneficial to mine edit patterns for other programming

languages, such as C# and Python. Last, our study covers only a limited set of repositories

and it will be interesting to see if analyzing different repositories yields new quick fixes.
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Appendix A

Search string for each datasource

In this Chapter, we present the search string for each datasource. In Section A.1, we present

the search strings for ACM. In Section A.2, we present the search string for Scopus. In

Section A.3, we present the search string for Engineering village. In Section A.4, we present

the search string for ScienceDirect. Finally, we Section A.5, we present the search string for

IEEE.

A.1 ACM search string for RQ 01

We divide the search string for ACM into three search strings based on work title (Sec-

tion A.1.1), abstract (Section A.1.2), and keywords (Section A.1.3).

A.1.1 ACM search string based on title

"query": acmdlTitle:("software engineering" OR developer OR programmer) AND acmdlTi-

tle:("systematic change" OR "program repair" OR "API usage adaptation" OR "Code change"

OR "program change" OR "program transformation" OR "script transformation" OR "source

transformation" OR "code transformation" OR "repetitive change" OR "non-unique change"

OR "duplicated change" OR "duplicated code" OR "systematic edit" OR "linked edit" OR

"refactoring" OR "bug-fix") AND acmdlTitle:(technique OR tool OR recommender OR

algorithm OR synthesizer)

"filter": owners.owner=HOSTED
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A.1.2 ACM search string based on abstract

"query": recordAbstract:("software engineering" OR developer OR programmer) AND

recordAbstract:("systematic change" OR "program repair" OR "API usage adaptation" OR

"Code change" OR "program change" OR "program transformation" OR "script transfor-

mation" OR "source transformation" OR "code transformation" OR "repetitive change" OR

"non-unique change" OR "duplicated change" OR "duplicated code" OR "systematic edit"

OR "linked edit" OR "refactoring" OR "bug-fix") AND recordAbstract:(technique OR tool

OR recommender OR algorithm OR synthesizer)

"filter": owners.owner=HOSTED

A.1.3 ACM search string based on keywords

"query": keywords.author.keyword:("software engineering" OR developer OR program-

mer) AND keywords.author.keyword:("systematic change" OR "program repair" OR "API

usage adaptation" OR "Code change" OR "program change" OR "program transforma-

tion" OR "script transformation" OR "source transformation" OR "code transformation"

OR "repetitive change" OR "non-unique change" OR "duplicated change" OR "duplicated

code" OR "systematic edit" OR "linked edit" OR "refactoring" OR "bug-fix") AND key-

words.author.keyword:(technique OR tool OR recommender OR algorithm OR synthesizer)

"filter": owners.owner=HOSTED

A.2 Scopus search string for RQ 01

TITLE-ABS-KEY ( "software engineering" OR developer OR programmer ) AND TITLE-

ABS-KEY ( "systematic change" OR "program repair" OR "API usage adaptation" OR "Code

change" OR "program change" OR "program transformation" OR "script transformation" OR

"source transformation" OR "code transformation" OR "repetitive change" OR "non-unique

change" OR "duplicated change" OR "duplicated code" OR "systematic edit" OR "linked

edit" OR "refactoring" OR "bug-fix" ) AND TITLE-ABS-KEY ( technique OR tool OR

recommender OR algorithm OR synthesizer ) AND ( LIMIT-TO ( SUBJAREA , "COMP" ) )
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A.3 Engineering village search string for RQ 01

((("software engineering" OR developer OR programmer) AND ("systematic change" OR

"program repair" OR "API usage adaptation" OR "Code change" OR "program change" OR

"program transformation" OR "script transformation" OR "source transformation" OR "code

transformation" OR "repetitive change" OR "non-unique change" OR "duplicated change"

OR "duplicated code" OR "systematic edit" OR "linked edit" OR "refactoring" OR "bug-fix")

AND (technique OR tool OR recommender OR algorithm OR synthesizer) WN KY))

A.4 ScienceDirect search string for RQ 01

TITLE-ABSTR-KEY("software engineering" or developer or programmer ) and TITLE-

ABSTR-KEY( "systematic change" or "program repair" or "API usage adaptation" or "Code

change" or "program change" or "program transformation" or "script transformation" or

"source transformation" or "code transformation" or "repetitive change" or "non-unique

change" or "duplicated change" or "duplicated code" or "systematic edit" or "linked edit" or

"refactoring" or "bug-fix" ) and TITLE-ABSTR-KEY ( technique or tool or recommender or

algorithm or synthesizer )[All Sources(Computer Science)]

A.5 IEEE search string for RQ 01

We divide the search string for IEEE into two search strings based on work abstract (Sec-

tion A.5.1) and title and keywords (Section A.5.2).

A.5.1 IEEE search string based on abstract

We break our default search string in three search strings because the database allows a

maximum of 15 search terms and the search string have more terms that this number.

("Abstract":.QT.software engineering.QT. OR "Abstract":developer OR "Ab-

stract":programmer) AND ("Abstract":.QT.systematic change.QT. OR "Ab-

stract":.QT.program repair.QT. OR "Abstract":.QT.API usage adaptation.QT. OR

"Abstract":.QT.code change.QT. OR ."Abstract":QT.program change.QT. OR "Ab-
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stract":.QT.program transformation.QT. OR "Abstract":.QT.script transformation.QT.)

AND ("Abstract":technique OR "Abstract":tool OR "Abstract":recommender OR "Ab-

stract":algorithm OR "Abstract":synthesizer)

("Abstract":.QT.software engineering.QT. OR "Abstract":developer OR "Ab-

stract":programmer) AND ("Abstract":.QT.source transformation.QT. OR "Ab-

stract":.QT.code transformation.QT. OR "Abstract":.QT.repetitive change.QT. OR

"Abstract":.QT.non-unique change.QT. OR "Abstract":.QT.duplicated change.QT. OR

"Abstract":.QT.duplicated code.QT. OR "Abstract":.QT.systematic edit.QT.) AND ("Ab-

stract":technique OR "Abstract":tool OR "Abstract":recommender OR "Abstract":algorithm

OR "Abstract":synthesizer)

("Abstract":.QT.software engineering.QT. OR "Abstract":developer OR "Ab-

stract":programmer) AND ("Abstract":.QT.linked edit.QT. OR "Abstract":.QT.refactoring.QT.

OR "Abstract":.QT.bug-fix.QT.) AND ("Abstract":technique OR "Abstract":tool OR

"Abstract":recommender OR "Abstract":algorithm OR "Abstract":synthesizer)

A.5.2 IEEE search string based on title and keywords

The search string for document title and keywords follows the same pattern from the abstract

(Section A.5.1). The only difference is the substitution of the keyword Abstract by Document

Title and Author Keywords, respectively.



Appendix B

Catalog

In this section, we present a catalog of common code edits that programmers perform in Java.

We now describe REVISAR, our technique for automatically discovering common Java code

edits in code repositories. Given repositories as input, REVISAR: (i) Identifies concrete code

edits by comparing pairs of consecutive revisions, (ii) Clusters edits into sets that can be

described using the same code transformation and learns an abstract transformation for each

cluster.

B.1 String to character

In Java, we can represent a character both as a String or a character. For operations such

as appending a value to a StringBuffer, representing the value as a character improves

performance. This edit improved the performance of some operations in the Guava project by

10-25% [122]. Figure B.1 shows an example of an edit that changes the code from the string

notation to the character notation.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 S t r i n g B u f f e r sb =
4 new S t r i n g B u f f e r ( ) ;
5 sb . append ("a" ) ;
6 / / . . .
7 }
8 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 S t r i n g B u f f e r sb =
4 new S t r i n g B u f f e r ( ) ;
5 sb . append (’a’ ) ;
6 / / . . .
7 }
8 }

Figure B.1: Quick Fix 1: String to character
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B.2 Prefer string literal equals method

Invoking equals on a null variable causes a NullPointerException When compar-

ing the value in a string variable to a string literal, programmers can overcome this exception

by invoking the equals method on the string literal since the String equals method

checks whether the parameter is null. Figure B.2 shows an edit that change a code snippet

to use the equals method of a string literal.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g s ) {
3 i f ( s . e q u a l s ("str" ) ) {
4 / / . . .
5 }
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g s ) {
3 i f ("str" . e q u a l s ( s ) ) {
4 / / . . .
5 }
6 }
7 }

Figure B.2: Quick Fix 2: Prefer string literal equals method

B.3 Avoid using FileInputStream/FileOutputStream

These classes override the finalize method. As a result, their objects are only cleaned

when the garbage collector performs a sweep [23]. Since Java 7, programmers can use

Files.newInputStream/Files.newOutputStream to improve performance as

recommended in this Java JDK bug-report [49]. Figure B.3 shows an example of an edit that

changes a code snippet that creates an object of the type FileOutputStream to use the

Files.newOutputStream method.

B.4 Use valueOf instead wrapper constructor

When creating a new Integer, one can use the valueOf method or the constructor. The

method valueOf can improve performance since it caches frequently requested values [106].

This edit pattern is included in the Sonar catalog of rules. The same edit also applies for types

such as Byte, Short, and Long, etc. Figure B.4 shows an example of an edit that changes a

code snippet that uses the constructor of the wrapper of a primitive type to use the valueOf



B.5 Use collection isEmpty 134

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g p ,
3 b y t e [ ] c o n t e n t )
4 th r o ws IOExcep t ion {
5 F i l e O u t p u t S t r e a m os =
6 new F i l e O u t p u t S t r e a m ( p ) ;
7 os . w r i t e ( c o n t e n t ) ;
8 os . c l o s e ( ) ;
9 / / . . .

10 }
11 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g p ,
3 b y t e [ ] c o n t e n t )
4 th ro ws IOExc ep t ion {
5 Outpu tS t r eam os = F i l e s .
6 newOutputSt ream ( P a t h s
7 . g e t ( p ) )
8 os . w r i t e ( c o n t e n t ) ;
9 os . c l o s e ( ) ;

10 / / . . .
11 }
12 }

Figure B.3: Quick Fix 3: Avoid using FileInputStream/FileOutputStream

method. The example in this figure shows an edit in the variable of type Integer, but the

same applies for other wrapper types such as Float, Long, Double, among others.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 I n t e g e r a =
4 new I n t e g e r ( 1 ) ;
5 / / . . .
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 I n t e g e r a =
4 I n t e g e r . va lueOf ( 1 ) ;
5 / / . . .
6 }
7 }

Figure B.4: Quick Fix 4: Use valueOf instead wrapper constructor

B.5 Use collection isEmpty

Using the method isEmpty to check whether a collection is empty is preferred to checking

that the size of the collection is 0. For most collections these constructions are equiv-

alent, but for others computing the size could be expensive. For instance, in the class

ConcurrentSkipListSet, the size method is not constant-time [105]. This edit pattern

is included in the PMD catalog of rules. Figure B.5 shows an example an edit that changes

the an code snippet to use the isEmpty method.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t foo = g e t L i s t ( ) ;
4 i f ( foo . s i z e ( ) == 0) {
5 / / . . .
6 }
7 }
8 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t foo = g e t L i s t ( ) ;
4 i f ( foo . i sEmpty ( ) ) {
5 / / . . .
6 }
7 }
8 }

Figure B.5: Quick Fix 5: Use collection isEmpty

B.6 StringBuffer to StringBuilder

These classes have the same API, but StringBuilder is not synchronized. Since synchro-

nization is rarely used [107], StringBuilder offers high performance and is designed to

replace StringBuffer in single threaded contexts [107]. Since this edit pattern requires

knowing whether the applications uses synchronization, it does not appear in any code an-

alyzer. Figure B.6 shows an example of an edit that changes the code from the use of the

StringBuffer type to the use of the StringBuilder type.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 S t r i n g B u f f e r a =
4 new S t r i n g B u f f e r ( ) ;
5 / / . . .
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 S t r i n g B u i l d e r a =
4 new S t r i n g B u i l d e r ( ) ;
5 / / . . .
6 }
7 }

Figure B.6: Quick Fix 7: StringBuffer to StringBuilder

B.7 Infer type in generic instance creation

Since Java 7, programmers can replace type parameters to invoke the constructor of a generic

class with an empty set (<>), diamond operator [108] and allow inference of type parameters

by the context. This edit ensures the use of generic instead of the deprecated raw types [109].

The benefit of the diamond operator is clarity since it is more concise. Figure B.7 shows

an example of an edit that change a code snippet to use the diamond operator in a variable

declaration. Instead of using the type parameter <String>, programmers can use the

diamond to invoke the constructor of List generic class.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t < S t r i n g > a = new
4 A r r a y L i s t < S t r i n g > ( ) ;
5 / / . . .
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t < S t r i n g > a = new
4 A r r a y L i s t < >() ;
5 / / . . .
6 }
7 }

Figure B.7: Quick Fix 7: Allow type inference for generic instance creation

B.8 Remove raw type

A raw type is a generic type without type parameters, which was used in version of Java prior

to 5.0 and is allowed to ensure compatibility with pre-generics code. Since type parameters

of raw types are unchecked, the catch of unsafe code is deferred to runtime [109] and the Java

compiler issues warnings for them [109]. Figure B.8 shows an example of an edit that change

the code to remove an use of a raw type.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t < S t r i n g > a = new
4 A r r a y L i s t ( ) ;
5 / / . . .
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t < S t r i n g > a = new
4 A r r a y L i s t < >() ;
5 / / . . .
6 }
7 }

Figure B.8: Quick Fix 8: Remove raw type

B.9 Field, parameter, local variable could be final

The final modifier can be used in fields, parameters, and local variables to indicate they

cannot be re-assigned [123]. This edit improves clarity and it helps with debugging since

it shows what values will change at runtime. In addition, it allows the compiler and virtual

machine to optimize the code [123]. The edit pattern that adds the final modifier is included

in PMD catalog of rules [120]. IDEs such as Eclipse [35] and NetBeans [48] can be configured

to perform this edit automatically on saving. Figure B.9 shows an example of an edit that

adds the final modifier to a local variable. Variable a is assigned a single time, so it can be

declared final.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 S t r i n g a = "a" ;
4 / / . . .
5 }
6 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 f i n a l S t r i n g a = "a" ;
4 / / . . .
5 }
6 }

Figure B.9: Quick Fix 9: Field, parameter, local variable could be final

B.10 Avoid using strings to represent paths

Programmers sometimes use String to represent a file system path even though some

classes are specifically designed for this task—e.g., java.nio.Path. In this cases, it

is useful to change the type of the variable to Path. First, strings can be combined in an

undisciplined way, which can lead to invalid paths. Second, different operating systems

use different file separators, which can cause bugs. Since this pattern is very hard to detect,

code analyzers do not include it in their rules. Figure B.10 shows an example of an edit that

changes a code snippet that uses a string to represent a path to the use of a specific class for

this purpose.

1 p u b l i c c l a s s Foo {
2 p r i v a t e S t r i n g p a t h ;
3 / / . . .
4 }

1 p u b l i c c l a s s Foo {
2 p r i v a t e Pa th p a t h ;
3 / / . . .
4 }

Figure B.10: Quick Fix 10: Use Path to represent file path

B.11 Prefer Class<?>

Java prefers Class<?> over plain Class although these constructions are equivalent [24].

The benefit of Class<?> is clarity since programmers explicitly indicates that they are

aware of not using a prior to Java 5 Java construction. The Java compiler generates a warning

on the use of Class. Figure B.11 shows an edit that change the code to use Class<?>.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 C l a s s a = S t r i n g . c l a s s ;
4 / / . . .
5 }
6 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 Class <?> a = S t r i n g . c l a s s ;
4 / / . . .
5 }
6 }

Figure B.11: Quick Fix 11: Prefer Class<?>

B.12 Use variadic functions

Variadic functions denote functions that use variable-length arguments (varargs) [21]. This

feature was introduced in Java 5 to indicate that the method receives zero or more arguments.

Prior to Java 5, if a method receives a variable number of arguments, programmers have to

create overload method for each number of arguments or to pass an array of arguments to the

method. The benefit of using varargs is simplicity since programmers do not need to create

overload methods and use the same notation independently of the number of arguments. For

the compiler perspective, the method receives an array as parameter. Figure B.12 shows an

example of an edit that change the code from the use of the array notation to use the use of

the Variadic functions.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g [ ] s ) {
3 / / . . .
4 }
5 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g . . . s ) {
3 / / . . .
4 }
5 }

Figure B.12: Quick Fix 12: Use variadic functions

B.13 Prefer string constant equals method

The equals method is widely used in software development. Some usages can cause

NullPointerException due to the right-hand side of the equals method object ref-

erence being null. When using the equals method to compare some variable to a string

constant, programmers could overcome null point errors by allowing the string constant

to call the equals method because a constant is rarely null. Since Java String equals

method checks for null, we do not need to check for null explicitly when calling the
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equals method of a string literal. Figure B.13 shows an example of an edit that change an

code snippet to use the equals method of a string constant.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g s ) {
3 i f ( s . e q u a l s (CONST) ) {
4 / / . . .
5 }
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g s ) {
3 i f (CONST . e q u a l s ( s ) ) {
4 / / . . .
5 }
6 }
7 }

Figure B.13: Quick Fix 13: Prefer string literal equals method

B.14 Add @Nullable for parameters that accept null

In Java, programmers could annotate a parameter with @Nullable to indicate that the

method, as well as all its overrides, accepts null for that parameter. This annotation helps

code analyzer tools such as FindBugs and Checker Framework to better analyze the code [114].

Figure B.14 shows an example of an edit to a code snippet to use the @Nullable annotation.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( S t r i n g a ) {
3 / / . . .
4 }
5 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( @Nullable S t r i n g a ) {
3 / / . . .
4 }
5 }

Figure B.14: Quick Fix 14: Add @Nullable for parameters that accept null

B.15 Use primitive type termination in literals

In Java, all non-float point literals are evaluated to int and all float point literals are eval-

uated to float. This behaviour could lead to numeric errors. For instance, consider this

example took from a development forum (Figure B.15). In this example, a receives the

value -1846840301 and b receives the value 370370362962963 although they intent
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to represent the same value. Figure B.16 shows an example of an edit that change a code

snippet to use the primitive type letter termination.

1 long a = 33333333 ∗ 11111111; / / o v e r f l o w s
2 long b = 33333333L ∗ 11111111L ;
3 System . o u t . p r i n t l n ("a= "+new BigDecimal ( a ) ) ;
4 System . o u t . p r i n t l n ("b= "+new BigDecimal ( b ) ) ;
5 System . o u t . p r i n t l n ("a == b is " + ( a == b ) ) ;

Figure B.15: An example of a numeric problem associated with numeric literal use.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 long a = 33333333;
4 / / . . .
5 }
6 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 long a = 33333333L ;
4 / / . . .
5 }
6 }

Figure B.16: Quick Fix 15: Use primitive type termination in literals

B.16 Promote inner class

Inner classes are an important feature of Java. As a design principle classes should be declared

final. If programmers want to re-use an inner class, it may be the case to promote the inner

class to a regular class. Figure B.17 shows an example that removes the use an inner class to

use two distinct classes.

1 / / f i l e Foo . j a v a
2 c l a s s Foo {
3 c l a s s Bar {
4 / / . . .
5 }
6 / / . . .
7 }

1 / / f i l e Foo . j a v a
2 c l a s s Foo {
3 / / . . .
4 }
5 / / f i l e Bar . j a v a
6 c l a s s Bar {
7 / / . . .
8 }

Figure B.17: Quick Fix 16: Promote inner class
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B.17 Cannot use casts or instanceof with parameterized

types

Java compiler erases all type parameters in generic code. Therefore, it is not possible to

verify for a generic type which parameterized type is being used at run-time. Trying use

instanceof to check a generic type will generate a compiler-time error. To perform

this verification, Java recommends the use of an unbounded wildcard <?> to verify the

generic type. Programmer also could use a raw type instead of an unbounded wilcard <?>.

Figure B.18 shows an example an edit to a code snippet that changes a code snippet that uses

instanceof with a raw type to use the unbounded wildcard.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t < S t r i n g > foo = g e t L i s t ( ) ;
4 i f ( foo i n s t a n c e o f L i s t ) {
5 / / . . .
6 }
7 }
8 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 L i s t < S t r i n g > foo = g e t L i s t ( ) ;
4 i f ( foo i n s t a n c e o f L i s t <? >) {
5 / / . . .
6 }
7 }
8 }

Figure B.18: Quick Fix 17: Use collection isEmpty

B.18 Use Stopwatch

Java programmers often measure time using System.nanoTime(). An alternative ap-

proach for this task is to use a Stopwatch. The latter has some benefits: programmers can

substitute the source that measures time to improve performance. Second, the result of a

Stopwatch is more interpretable than the System.nanoTime, which meaning can only

be understood when compared to another call to System.nanoTime [40]. Figure B.19

shows an example of an edit that change a code snippet to use a Stopwatch.

B.19 Use HH in SimpleDateFormat

We could configure a SimpleDataFormat in different ways. Some configurations may

lead to bugs. For instance, it causes a bug in the Ant project [80]. In some module of



B.20 Remove this for unambiguous variables 142

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 long s t a r t T i m e =
4 System . nanoTime ( ) ;
5 doSomething ( ) ;
6 long endTime =
7 System . nanoTime ( ) ;
8 long t o t a l T i m e =
9 endTime− s t a r t T i m e ;

10 l o g . i n f o ("time: " + t o t a l T i m e )
;

11 }
12 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 S topwatch s t o p w a t c h =
4 Stopwatch . c r e a t e S t a r t e d ( ) ;
5 doSomething ( ) ;
6 long m i l l i s =
7 s t o p w a t c h . e l a p s e d (

MILLISECONDS) ;
8 l o g . i n f o ("time: " + s t o p w a t c h

) ;
9 }

10 }

Figure B.19: Quick Fix 18: Use Stopwatch

this project, SimpleDataFormat uses the 12h-format (hh). As a result, sometimes the

chronological order of revisions is broken since a revision at 14:20 (becomes 02:20), which

is before a revision at 07:00. Change the SimpleDataFormat instance from hh:mm to

24h-format (HH:mm) fix the bug. Figure B.20 shows an example of an edit that changes a

code snippet that uses the 12h-format to use the HH 24th-format.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 SimpleDateFormat a =
4 new SimpleDateFormat
5 ("yyyy/MM/dd hh:mm:ss" ) ;
6 / / . . .
7 }
8 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 SimpleDateFormat a =
4 new SimpleDateFormat
5 ("yyyy/MM/dd HH:mm:ss" ) ;
6 / / . . .
7 }
8 }

Figure B.20: Quick Fix 19: Use HH in SimpleDateFormat

B.20 Remove this for unambiguous variables

Basically, the this keyword could be used in three situations (i) in a get and set method

when the method already defines a parameter with the same name (ii) when it is need to

pass the current version of the object for other classes (iii) when it is need to call alternative

constructor of a class hierarchy [115]. Out of these three situations the this keyword could

be removed. Figure B.21 shows an example of an edit to remove the this keyword.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 t h i s . a = 0 ;
4 / / . . .
5 }
6 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 a = 0 ;
4 / / . . .
5 }
6 }

Figure B.21: Quick Fix 20: Remove this for unambiguous variables.

B.21 Use modern log framework instead of Log4J

The Log4j project has been deprecated. Instead of using this logging framework, it is

suggested to use moderns frameworks such as SLF4J and Logback [116]. Figure B.22

shows an edit that changes the usage of Log4j to use SLD4J framework.

1 i m p o r t o rg . apache . l o g 4 j . Logger ;
2 p u b l i c c l a s s Foo {
3 s t a t i c f i n a l Logger LOGGER =
4 Logger . g e t L o g g e r ( MyClass . c l a s s

) ;
5 }

1 i m p o r t o rg . s l f 4 j . ∗ ;
2 p u b l i c c l a s s Foo {
3 s t a t i c f i n a l Logger LOGGER =
4 Logger . g e t L o g g e r ( MyClass .

c l a s s ) ;
5 }

Figure B.22: Quick Fix 21: Use modern log framework instead of Log4J.

B.22 Remove redundant cast

Some casts could be unnecessary and could be removed to make the source code more

concise. Given the importance of this edit, IDEs such as Eclipse allow programmers to

remove redundant cast automatically. Figure B.23 shows an example of an edit to remove a

redundant cast.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 I n t e g e r a =
4 ( I n t e g e r ) I n t e g e r . va lueOf ( 1 ) ;
5 }
6 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 I n t e g e r a =
4 I n t e g e r . va lueOf ( 1 ) ;
5 }
6 }

Figure B.23: Quick Fix 22: Remove redundant cast.

B.23 Use Vector methods compatible with Java Collec-

tions interface

Since Java 4, the Vector type defines methods with the same interface of the List type.

Changing the code to use the method compatible with the List type improves maintenance

of the source code. For instance, Vector offers the method removeAllElements()

to remove all the elements in it, but it also provides the method clear, which is identical

in functionality. In the future, if programmers decide to replace the use of the Vector

to use ArrayList, the other locations will have to be modified accordingly when using

removeAllElements, but no modification is needed when the code uses clear. Fig-

ure B.24 shows an edit to update the Vector method to use one compatible with the List

type.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 Vector < I n t e g e r > v =
4 new Vector < >() ;
5 / / . . .
6 v . r emoveAl lE lemen t s ( ) ;
7 }
8 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 Vector < I n t e g e r > v =
4 new Vector < >() ;
5 / / . . .
6 v . c l e a r ( ) ;
7 }
8 }

Figure B.24: Quick Fix 23: Use Vector methods compatible with Java Collections interface.
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B.24 Replace Google Truth.FailureStrategy to Google

Truth.FailureMetadata

In Google Truth, the FailureMetadata was designated to replace the use of

FailureStrategy. The use of FailureMetadata removes some of the problems in

FailureStrategy. It also enables new features introduced in Google Truth. Figure B.25

shows an edit that replaces the use of FailureStrategy to FailureMetadata.

1 i m p o r t com . g oo g l e . common . t r u t h .
2 F a i l u r e S t r a t e g y ;
3 p u b l i c c l a s s Foo {
4 vo id b a r ( F a i l u r e S t r a t e g y
5 f a i l u r e S t r a t e g y ) {
6 / / . . .
7 }
8 }

1 i m p o r t com . g oo g l e . common . t r u t h .
2 F a i l u r e M e t a d a t a ;
3 p u b l i c c l a s s Foo {
4 vo id b a r ( F a i l u r e M e t a d a t a
5 f a i l u r e M e t a d a t a ) {
6 / / . . .
7 }
8 }

Figure B.25: Quick Fix 24: Replace Google Truth.FailureStrategy to Google
Truth.FailureMetadata.

B.25 Remove default value for default initializer

The types in Java have default initializers. For instance, when we have an object of type

boolean, it is initialized by default with false. We can also initialize a boolean variable

explicitly with a false value, but as the type already has its default value as false, the

explicit initialization is redundant and should be removed. Figure B.26 shows an example of

an edit to remove the value, which is already provided by the compiler.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 b o o l e a n b = f a l s e ;
4 }
5 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 b o o l e a n b ;
4 }
5 }

Figure B.26: Quick Fix 25: Remove default value for default initializer.
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B.26 Update Calcite library

The versions of Calcite previous to 1.4.0 may cause stack overflow error. This bug is caused

by some method in this library that calls itself recursively. To fix this bug programmer need

to update this library to 1.4.0 or later version.

1 p u b l i c c l a s s Foo {
2 Double b a r ( RelNode r e l ,
3 I m m u t a b l e B i t S e t groupKey ,
4 RexNode p r e d i c a t e ) {
5 / / . . .
6 r e t u r n
7 s u p e r . g e t D i s t i n c t R o w C o u n t (
8 r e l , groupKey ,
9 p r e d i c a t e ) ;

10 / / . . .
11 }
12 }

1 p u b l i c c l a s s Foo {
2 Double b a r ( RelNode r e l ,
3 Re lMetada taQuery mq ,
4 I m m u t a b l e B i t S e t groupKey ,
5 RexNode p r e d i c a t e ) {
6 / / . . .
7 r e t u r n
8 s u p e r . g e t D i s t i n c t R o w C o u n t (
9 r e l , mq , groupKey ,

10 p r e d i c a t e ) ;
11 / / . . .
12 }
13 }

Figure B.27: Quick Fix 26: Update Calcite library.

B.27 Use trace instead of debug, when want to log precise

data

When we are logging the application with Log4J, SLF4J, and other logging frameworks,

we can decide to use the debug or trace options. The trace option provides more data about

problems that could occur in the source code. It could be helpful to identify the presence of

some bugs. However, it has a negative impact on the performance since we have more data to

store and to process. Therefore, when analyzing bugs in the source code, it could be helpful

to use the trace option instead of the debug option. Figure B.28 shows an example of an edit

that replaces the use of the debug option to the use of the trace option.
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 i f ( l o g . i sDebugEnab led ( ) ) {
4 l o g . debug ("some text" ) ;
5 }
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 i f ( l o g . i s T r a c e E n a b l e d ( ) ) {
4 l o g . t r a c e ("some text" ) ;
5 }
6 }
7 }

Figure B.28: Quick Fix 27: Use trace instead of debug, when want to log precise data.

B.28 If an error is thrown, use Throwable instead of

Exception

In Java, we can have problems caused by an Error or an Exception. Therefore, it needs

to deal with them appropriately. When we also want to capture errors besides exception, we

should use the specific types or use general classes such as Throwable, which captures

both errors and exceptions. Figure B.29 shows an edit to replace the use of an Exception

to use Throwable.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 t r y {
4 / / . . .
5 } c a t c h ( E x c e p t i o n e ) {
6 / / . . .
7 }
8 }
9 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 t r y {
4 / / . . .
5 } c a t c h ( Throwable e ) {
6 / / . . .
7 }
8 }
9 }

Figure B.29: Quick Fix 28: If an error is thrown, use Throwable instead of Exception.

B.29 Return a boolean instead of void

In cases of method that returns nothing (void), it may be desirable to return a boolean

status of the result of running the method (i.e., true in case the method executes successfully
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and false in case we have some problem). Figure B.30 shows an example of an edit to

return a boolean instead of void.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 / / . . .
4 r e t u r n ;
5 }
6 }

1 p u b l i c c l a s s Foo {
2 b o o l e a n b a r ( ) {
3 / / . . .
4 r e t u r n t r u e ;
5 }
6 }

Figure B.30: Quick Fix 29: Return a boolean instead of void.

B.30 Remove non-reachable @SuppressWarning

In Java, we could use the @SuppressWarnings annotation to control the warnings gen-

erated by the compiler. As the software evolves, the code that caused the compiler to

generate some warning could ends up being removed. Therefore, this annotation needs

to be removed to reflect the state of the code. Figure B.31 shown an edit to remove the

@SuppressWarnings annotation.

1 p u b l i c c l a s s Foo {
2 @SuppressWarnings
3 ( {"rawtypes" ,"unchecked"} )
4 vo id b a r ( ) {
5 L i s t < S t r i n g > a = new
6 A r r a y L i s t < >() ;
7 / / . . .
8 }
9 }

1 p u b l i c c l a s s Foo {
2 @SuppressWarnings
3 ( {"unchecked"} )
4 vo id b a r ( ) {
5 L i s t < S t r i n g > a = new
6 A r r a y L i s t < >() ;
7 / / . . .
8 }
9 }

Figure B.31: Quick Fix 30: Remove non-reachable @SuppressWarning

B.31 Use fail instead of assertTrue(false)

Programmers can use both fail or assertTrue(false) to evaluate a test. These

constructions are equivalent in functionality, but fail describes the intent more clearly.

Figure B.32 shows an edit to use fail instead of assertTrue(false).
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1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 / / . . .
4 f a i l ("exception" ) ;
5 / / . . .
6 }
7 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 / / . . .
4 a s s e r t T r u e ("exception" , f a l s e

) ;
5 / / . . .
6 }
7 }

Figure B.32: Quick Fix 31: If an error is throw, use Throwable instead of Exception.

B.32 Do not use new as argument of a method call.

We could both create a new instance of a class and reuse this instance along the code or we

use the new operators without storing them in a variable. The first options improve readability

of the code by making it more concise. Figure B.33 shows an edit to use an object stored in a

variable.

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 I n t e g e r a = I n t e g e r . va lueOf ( 1 )

;
4 / / . . .
5 a . compareTo ( new I n t e g e r ( 2 ) ) ;
6 / / . . .
7 }
8 }

1 p u b l i c c l a s s Foo {
2 vo id b a r ( ) {
3 I n t e g e r a = I n t e g e r . va lueOf

( 1 ) ;
4 / / . . .
5 I n t e g e r b = new I n t e g e r ( 2 ) ;
6 a . compareTo ( b ) ;
7 / / . . .
8 }
9 }

Figure B.33: Quick Fix 32: Do not use new as argument of a method call.



Appendix C

Survey

You are being invited to participate in this survey because you have contributed in some way

to a public repository. To answer this survey, you should take around 5-10 minutes. The goal

of this survey is to analyze developers’ perception of small-grained code patterns in source

code. A code pattern denotes a usage that improves some aspects of the source code, such as

enhance code style, remove error-prone code, and increase performance.

It consists of three parts:

(i) Choose the code snippet that you prefer (10 questions)

(ii) Participant Background (4 questions)

(iii) Additional Comments (2 questions)

All the data from this survey is anonymous and we might report them in academic

publications.

Section 1

1 - Which code snippet do you prefer?

150



151

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

2 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.
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3 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

4 - Which code snippet do you prefer?

◦ Strongly prefer (A)
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◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

5 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter
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◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

6 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

7 - Which code snippet do you prefer?
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◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

8 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)
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◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

9 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.
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10 - Which code snippet do you prefer?

◦ Strongly prefer (A)

◦ Prefer (A)

◦ It does not matter

◦ Prefer (B)

◦ Strongly prefer (B)

Please, let us know if you have any additional comments about this Java code pattern.

Section 2 — Background Information

11 - How many of the code snippets shown in questions 1-10 have you used in your code

before?

◦ 0

◦ 1-2

◦ 3-5
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◦ 6-10

12 - How would you rate your knowledge of the effects caused by using the different code

snippets (i.e., (A) vs (B)) shown in questions 1-10?

◦ Very high

◦ High

◦ Average

◦

◦ Very low

13 - How long have you been working/have worked with Java?

◦ Less than a year

◦ 1-2 years

◦ 3-5 years

◦ More than five years

14 - Do you use any tool(s) to identify opportunities of using code patterns shown in snippet

(A) or (B) in your code? Which one(s)?

2 Checkstyle

2 PMD

2 FindBugs

2 Sonar

2 Coverity

2 ErrorProne

2 IntelliJ
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2 Other

Section 3 — Additional Comments

15 - Please, let us know if you have any additional comments about Java code patterns.

16 - If you would like to receive the results of our survey, please include your email address.


