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Abstract

In this thesis, we generalise Shannon’s zero-error capacity of discrete memoryless chan-
nels to quantum channels. We propose a new kind of capacity for transmitting classical
information through a quantum channel. The quantum zero-error capacity (QZEC) is
defined as being the maximum amount of classical information per channel use that can
be sent over a noisy quantum channel, with the restriction that the probability of er-
ror must be equal to zero. The communication protocol restricts codewords to tensor
products of input quantum states, whereas collective measurements can be performed
between several channel outputs. Hence, our communication protocol is similar to the
Holevo-Schumacher-Westmoreland protocol. We reformulate the problem of finding the
QZEC in terms of graph theory. This equivalent definition allows us to demonstrate
some properties of ensembles of quantum states and measurements attaining the QZEC.
We show that the capacity of a d-dimensional quantum channel can always be achieved
by using an ensemble of at most d pure quantum states, and collective von Neumann
measurements are necessary and sufficient to attain the channel capacity. We discuss
whether the QZEC is a non-trivial generalisation of the classical zero-error capacity. By
non-trivial we mean that there exist quantum channels requiring two or more channel uses
in order to reach the capacity, and the capacity can only be attained by using ensembles
of non-orthogonal quantum states at the channel input. We also calculate the QZEC of
some quantum channels. We show that finding the QZEC of classical-quantum channels
is a purely classical problem. In particular, we exhibit a quantum channel for which we
claim the QZEC can only be reached by a set of non-orthogonal states. If the conjecture
holds, it is possible to give an exact solution for the capacity, and construct an error-free
quantum block code reaching the capacity. Finally, we demonstrate that the QZEC is
upper bounded by the Holevo-Schumacher-Westmoreland capacity.
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Resumo

Nesta tese, a capacidade erro-zero de canais discretos sem memoria é generalizada para
canais quanticos. Uma nova capacidade para a transmissao de informagao classica através
de canais quanticos é proposta. A capacidade erro-zero de canais quanticos (CEZQ) é
definida como sendo a méxima quantidade de informacao por uso do canal que pode ser
enviada através de um canal quantico ruidoso, considerando uma probabilidade de erro
igual a zero. O protocolo de comunicacao restringe palavras-cédigo a produtos tensoriais
de estados quanticos de entrada, enquanto que medicoes coletivas entre varias saidas do
canal sao permitidas. Portanto, o protocolo empregado ¢ similar ao protocolo de Holevo-
Schumacher-Westmoreland. O problema de encontrar a CEZQ é reformulado usando
elementos da teoria de grafos. Esta definicao equivalente é usada para demonstrar pro-
priedades de familias de estados quanticos e medicoes que atingem a CEZQ. E mostrado
que a capacidade de um canal quantico num espaco de Hilbert de dimensao d pode sempre
ser alcangada usando familias compostas de, no méximo, d estados puros. Com relagao
as medicoes, demonstra-se que medicoes coletivas de von Neumann sao necessérias e su-
ficientes para alcancar a capacidade. E discutido se a CEZQ é uma generalizacdo nio
trivial da capacidade erro-zero classica. O termo nao trivial refere-se a existéncia de
canais quanticos para os quais a CEZQ s6 pode ser alcangada através de familias de es-
tados quanticos nao-ortogonais e usando coédigos de comprimento maior ou igual a dois.
E investigada a CEZQ de alguns canais quanticos. E mostrado que o problema de calcu-
lar a CEZQ de canais classicos-quanticos é puramente classico. Em particular, é exibido
um canal quantico para o qual conjectura-se que a CEZQ s6 pode ser alcangada usando
uma familia de estados quanticos nao-ortogonais. Se a conjectura é verdadeira, é possivel
calcular o valor exato da capacidade e construir um co6digo de bloco quantico que alcanca
a capacidade. Finalmente, é demonstrado que a CEZ(Q ¢ limitada superiormente pela

capacidade de Holevo-Schumacher-Westmoreland.
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Chapter 1

Resumo detalhado em Portugués

1.1 Introducao

1.1.1 Transmissao de informacao classica através de canais quan-

ticos

Uma das problematicas mais estudadas em teoria da informagao quantica é o conceito
de capacidade de canais quanticos [1, 2|. De forma geral, a capacidade de um canal é
definida como sendo o supremo das taxas alcancéaveis, i.e., o supremo das taxas em que a
informacao pode ser transmitida confiavelmente através do canal.

A mecéanica quantica prové diversos recursos que permitem definir capacidade de canais
quanticos de varias maneiras [1, 2|. Para um canal quantico dado, a capacidade pode
assumir diferentes valores dependendo: (a) do tipo de informagao a ser transmitida —
classica ou quéantica; (b) recursos externos, como entrelagamento ou realimentacao; e (c)
do protocolo de comunicacao. O protocolo de comunicacao determina os procedimentos
de codificagao, medicao e decodificacao dos estados quanticos na saida do canal.

Nesta tese, serao consideradas capacidades de canais quanticos sem memoria para a
transmissao de informacao classica. De acordo com o protocolo, as capacidades podem

ser agrupadas em trés categorias:

1. palavras-codigo sao restritas a produtos tensoriais e medigoes sao feitas individual-

mente na saida do canal [3, 4, 5, 6];

2. palavras-codigo sao restritas a produtos tensoriais, enquanto que medicoes entre-

lagadas entre vérias saidas do canal sdo permitidas |7, 8, 9, 10];

3. sao permitidas palavras-codigo entrelacadas, como também medigoes coletivas na

saida do canal [11].
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Exemplos de capacidades que empregam o protocolo 1 sdo a capacidade one-shot |3, 4,
5| e a capacidade adaptativa de Shor [6]. A principal capacidade que emprega o protocolo
2 & a capacidade de Holevo-Schumacher-Westmoreland (HSW) [7, 8], que é considerada
uma generalizagao da capacidade ordinéaria de Shannon.

As capacidades que empregam o protocolo 3 estao diretamente conectadas a um dos
problemas em aberto mais importantes da teoria da informacao quéntica: a conjectura de
Holevo [7]. Esta conjectura afirma que a utilizagdo de estados entrelagados entre varios
usos do canal nao aumenta a capacidade de canais quanticos sem memoria. Entretanto,
é sabido que palavras-codigo entrelacadas podem aumentar a capacidade HSW de canais

quénticos com memoria [11].

1.1.2 Capacidade erro-zero de canais classicos

Em 1956, oito anos apoés seu primeiro trabalho introduzindo a teoria da informagao e a
capacidade de canais, Shannon [12]| demonstrou que era possivel transmitir informagao
sem erro através de um canal discreto sem memoria (DSM), ao invés de permitir uma
probabilidade de erro assintoticamente pequena [13|. A capacidade erro-zero foi definida
como sendo o supremo das taxas em que informagcao pode ser transmitida através de um
canal DSM com probabilidade de erro igual a zero.

No artigo original, Shannon sugeriu que a capacidade erro-zero poderia ser descrita
usando elementos da teoria de grafos. Ao associar um grafo com um canal DSM, ele
introduziu uma nova quantidade, a capacidade de Shannon de um grafo [14, 15, 16].
Diferentemente da capacidade ordinaria, calcular a capacidade erro-zero é um problema
combinatorial. Devido a sua natureza restritiva — uma probabilidade de erro igual a
zero € imposta, a teoria da informacao de erro-zero é freqiientemente desconhecida dos
pesquisadores em teoria da informacao. Entretanto, seus métodos possuem importantes
aplicagoes em combinatoéria e teoria de grafos.

Esta tese propoe uma generalizacao da capacidade erro-zero para canais quanticos.
Inicialmente, é definido um c6digo quantico de erro-zero, como também os procedimentos
de codificagao e decodificagdo. Entao, a capacidade erro-zero quéantica é definida como
sendo o supremo das taxas em que informacao cléssica pode ser transmitida sem erro
através de um canal quantico sem memoria. O problema de encontrar a capacidade erro-
zero quantica é reformulado em termos da teoria de grafos. Sao investigadas propriedades
de estados quanticos e medigoes que atingem a capacidade erro-zero quantica. Através
de um exemplo, ¢é conjecturado que a capacidade erro-zero quantica ¢ uma generalizacao
nao-trivial da capacidade erro-zero classica. Por tultimo, é mostrado que a capacidade

HSW ¢é um limitante superior da capacidade erro-zero quéantica.
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1.1.3 Organizagao da tese

As contribuigoes sao apresentadas no Capitulo 6. Leitores familiarizados com a teoria da
informacao quéntica e a teoria da informagao de erro-zero classica podem ler diretamente

o Capitulo 6. Esta tese esta organizada como segue:

Os Capitulos 3 e 4 contém conceitos de informagao quantica relacionados a tese. A
Secao 3.2 objetiva introduzir a notacao de Dirac, ao mesmo tempo que discute conceitos
importantes em informacao quéantica, como operadores unitarios e produtos tensoriais.
Os quatro postulados da mecéanica quantica sao apresentados na Secao 3.3, seguidos de
uma discussao sobre o formalismo dos operadores de densidade. Uma breve revisao das
capacidades classicas de canais quanticos ¢ dada no Capitulo 4. O Capitulo 5 traz um
resumo das principais defini¢oes e resultados da teoria da informacao de erro-zero classica.
A Secao 5.2 introduz a capacidade erro-zero. Uma abordagem baseada na teoria de grafos
¢ discutida na Secao 5.2.2. Na Secao 5.3 ¢é definida a funcao teta de Lovasz, que é usada
para calcular a capacidade erro-zero do pentagono. As Segoes 5.4 e 5.5 ilustram o quao

diferente é o comportamento da capacidade erro-zero face a capacidade ordinéria.

A capacidade erro-zero quéantica (CEZQ) é introduzida no Capitulo 6. Na Se¢ao 6.2 ¢
definido um co6digo de erro-zero quantico, bem como a CEZQ. Uma defini¢ao equivalente
para a CEZQ em termos da teoria de grafos é apresentada na Segao 6.2.1. A Secao 6.3 é
dedicada ao estudo de estados quanticos e medigoes que atingem a capacidade. A CEZQ
de alguns canais quanticos é calculada na Secao 6.5. E mostrado um exemplo de um canal
quantico em que conjectura-se que a capacidade erro-zero s6 possa ser alcancada usando
uma familia de estados quanticos nao-ortogonais. Finalmente, a Se¢ao 6.6 apresenta um

limitante superior para a CEZQ: a capacidade de Holevo-Schumacher-Westmoreland |7, 8|.

No Capitulo 7 é feito um resumo das contribuigoes e sao dadas algumas dire¢oes para

trabalhos futuros.

1.2 Fundamentos da mecanica quantica
Esta secao introduz a mecénica quantica de forma breve e objetiva. Uma abordagem mais

detalhada pode ser encontrada em livros especificos [17, 2.

1.2.1 Postulados da mecanica quantica

Os postulados da mecéanica quantica sao discutidos brevemente nas segoes seguintes.
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Espacgo de estados

Postulado 1 Associado a todo sistema qudntico estd um espaco vetorial complero com
produto interno, i.e., um espaco de Hilbert, chamado de espaco de estado do sistema
qudantico. O estado do sistema qudntico € completamente descrito pelo vetor de estado,

que € um vetor unitdario pertencente ao espago de estado do sistema.

O sistema quéntico mais simples é o qubit, que é uma referéncia a bit qudntico. O
qubit pertence ao espago de estado de dimensao dois. Portanto, qualquer qubit pode ser

escrito como
[v) = al0) +b|1), (1.1)

em que a, b sao nimeros complexos. Uma das propriedades mais interessantes dos sistemas

quanticos é que o estado |0) pode coexistir com o estado |1) num estado de superposigao:

) = al0) + bJL).

Evolucgao

Postulado 2 A evolucao de um sistema qudntico isolado € descrita por transformagoes
unitdrias. O estado do sistema Y1) no tempo ty estd relacionado com |1)s), que € o estado
do sistema no tempo to, por meio de um operador unitirio U, que depende somente dos

tempos 11 e is,

1h2) = Ulyr). (1.2)
Na maioria dos textos sobre mecanica quantica, a evolucao é descrita por uma equacao
diferencial
L d|)
— =H 1.3
i = H|), (13)

em que h é chamada de constante de Planck e H é um operador Hermitiano do sistema
quéantico fechado, conhecido como Hamiltoniano do sistema. A equacgao acima é creditada

ao fisico austriaco Erwin Schrodinger.

Medigoes

Quando sistemas quanticos sao expostos a um ambiente externo, sua evolucao pode nao
mais ser unitaria. O postulado seguinte descreve o comportamento de sistemas quanticos

quando sujeitos a medigoes.
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Postulado 3 As medicoes em sistemas qudnticos sao descritas por um conjunto de ope-
radores de medi¢ao {M,,}, os quais atuam no espago de estado do sistema medido. Se o
estado do sistema qudntico antes da medigao € 1)), entao a probabilidade de se obter uma

saida m € dada por

p(m) = (Y| M My |¢). (1.4)
O estado do sistema apds a medicdo serd

Y') = Mulvh (1.5)

(| MMy 1))

Como a soma das probabilidades deve ser igual a um, os operadores de medi¢ao devem

satisfazer a equagao de completude
> MiM, =1 (1.6)

O postulado acima descreve medi¢oes quanticas de forma mais geral. No entanto,
existem dois casos particulares que sao de interesse para esta tese, as medigoes projetivas
e as medigdes POVM (Positive Operator-Valued Measurements).

As medigoes projetivas, ou medi¢oes de von Neumann, sao descritas por um conjunto
de projetores { P, }, satisfazendo > P, = 1 e P,P; = §,;P;. Ao se medir o estado [¢), a
probabilidade de se obter a saida m é dada por p(m) = (| P,,|¢). Dado que m ocorre, o
estado do sistema apds a medicao seré |¢) = %.

As medigoes POVM sdo descritas por operadores de medigao tais que E,, = M| M,,
(geralmente ndo se tem acesso aos operadores M,,). A probabilidade de obter a saida
m dado que o estado |¢)) é medido é dada por p(m) = (Y|E,|¢¥). O conjunto {E,,} é
comumente chamado de POVM. Note que, no caso das medi¢coes POVM, nao é possivel
escrever o estado de saida em fungao do estado original. Entretanto, na maioria das apli-
cagoes em teoria da informacao quantica, o estado do sistema resultante nao é importante,

e sim as probabilidades associadas a cada um deles.

Sistemas quanticos compostos

Diversos sistemas quéanticos podem interagir para formar sistemas compostos. O postu-

lado seguinte descreve o espago de estado de sistemas compostos.

Postulado 4 O espaco de estado de um sistema qudntico composto € o produto tensorial
dos espagos de estado dos sistemas fisicos individuais. Adicionalmente, se n sistemas sao

preparados cada um no estado |¢;), entdo o estado do sistema global é [1)1) ® |the) ® -+ - ®
|thn).-
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As notagdes seguintes sdo usadas para representar sistemas compostos: [) = |¢1) ®

[t2) @ -+ @ [thn) = [Y1)[h2) - [¥hn) = [1t2 .. ¢hn).

1.2.2 O operador de densidade

O estado de um sistema quantico é dito ser puro quando pode ser representado por um
vetor unitario num espago de Hilbert. No entanto, existem situacoes em que o sistema
quantico em questao pode estar em qualquer um dos estados puros [¢1), [1)s), ..., com
probabilidades py, po, . ... O formalismo usado para lidar com esta situagao é o operador
de densidade.

Definicao 1 (Operador de densidade [2]) Considere que um sistema qudntico estd
num estado |1;) com probabilidade p;. O operador de densidade que descreve o sistema €

definido como sendo
PEZPi|@/}i><¢i|- (L.7)

Neste caso, o sistema é dito estar num estado misto. O operador de densidade é tam-
bém chamado de matriz de densidade do sistema. Operadores de densidade sao matrizes
bem caracterizadas: possuem traco igual a um, tr [p] = 1, e também sdo operadores posi-
tivos. Claramente, a matriz de densidade de um sistema puro [¢) é dada por p = |¢)(¢|.
Ainda, dada uma matriz de densidade p, o sistema esta num estado puro se e somente se
tr [p?] = 1. Caso contrério, se tr [p?] < 1, o sistema est4 num estado misto.

O formalismo de vetores e de matrizes de densidade sao equivalentes. Portanto, os

postulados da mecanica quantica podem ser enunciados em termos de operadores de

densidade.

1.3 Capacidades de canais quanticos

Sera feito nesta se¢ao um resumo das principais capacidades canais quanticos possuem
para a transmissao de informacao classica. Antes, porém, é dada uma definicdo da en-
tropia de von Neumann e de canais quanticos. E importante salientar que todas as
capacidades discutidas nesta se¢ao permitem uma probabilidade de erro de decodificacao

assintoticamente nula, ou seja, embora pequena ela é diferente de zero.

1.3.1 Entropia de von Neumann

A entropia de von Neumann entropy [2, pp. 510] é uma generalizagdo da entropia de

Shannon para estados quanticos. A entropia de von Neumann de um estado p é definida
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como sendo
S(p) = —tr [plogp], (1.8)

em que o logaritmo é tomado na base 2. Num espaco de Hilbert de dimensao d, o
méaximo valor da entropia é logd, correspondente ao estado p = 1,/d, que é chamado
de completamente despolarizado. A entropia relativa é definida de maneira anéloga a
entropia de Shannon,
S(pllo) = tr[plog p] — tr [ploga]. (1.9)
Como no caso classico, a entropia relativa é ndo negativa, S(p||o) > 0.
A entropia de von Neumann possui algumas propriedades interessantes, dentre elas:
(1) a entropia é nao negativa e zero se e somente se p ¢ um estado puro; (2) se um
sistema composto AB estd num estado puro, entdo S(A) = S(B); e (3) suponha que p;

sao probabilidades e p; possuam seus suportes em subespacos ortogonais. Entao,

S (Z pipi) = H(p) + ZpiS(,o». (1.10)

Por analogia & entropia de Shannon, define-se as entropias de von Neumann con-
junta e condicional, como também a informacao mutua relacionada a sistemas compos-
tos. A entropia conjunta S(A, B) de um sistema composto AB ¢ definida por S(A, B) =

B

—tr [pAB log pAB], em que p*P é o operador de densidade do sistema AB. A entropia

condicional e a informacao mitua sao definidas respectivamente como

S(A|B) = S(A,B) - S(B), (1.11)
S(A:B) = S(A)+S(B) - S(A, B) (1.12)
— S(A) — S(A|B) = S(B) — S(B|A). (1.13)

Um resultado bastante 1til é que a entropia de von Neumann ¢ subaditiva |2, pp.515]:
S(A,B) < S(A) + S(B), com igualdade se e somente se pap = pa ® pg. Outras pro-

priedades da entropia de von Neumann podem ser encontradas em Nielsen e Chuang [2].

1.3.2 Canais quanticos

Suponha que um sistema quantico p inicialmente fechado interaja com um sistema aberto,
chamado de ambiente. Suponha ainda que, apés a interagao, o sistema volte ao seu estado
fechado. Em geral, o estado final do sistema, denotado por £(p), ndo pode ser relacionado
com o estado p por meio de uma transformacao unitaria. O formalismo usado para lidar
com esta situagao é conhecido como operagao quantica, que ¢ um mapeamento do conjunto
de operadores do espago de estado de entrada para operadores do espaco de estado de

saida com as propriedades seguintes |2, pp. 367|:
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1. tr [E(p)] € a probabilidade que o processo representado por £ ocorra, dado que p é

o estado inicial. Assim, 0 < tr [£(p)] < 1 para qualquer estado p.

2. £ é um mapeamento linear e convexo no conjunto dos operadores de densidade, i.e.,

para probabilidades p;,
) (ZPU%) = Zpic‘:(pi)- (1.14)

3. £ ¢ um mapeamento completamente positivo, de forma que £(p) seja positivo para

qualquer operador positivo p.

A prova do teorema abaixo pode ser encontrada em Nielsen e Chuang |2, pp. 368].

Teorema 1 Um mapeamento £ satisfaz as propriedades 1, 2 e 3 se e somente se
E(p) =Y EipE] (1.15)

para algum conjunto de operadores {E;} tal que ), EZTEZ <1

Canais quanticos sao modelados por operagoes quanticas que preservam o trago dos
operadores de densidade. Ou seja, canais quéanticos sao operagoes quanticas lineares,
completamente positivas e que preservam o traco. Neste caso, a restricao imposta aos
operadores {E;} é >, E;r E; = 1. Canais quanticos sao definidos para um estado de
entrada p que é uma matriz de densidade. No caso em que o estado de entrada é puro

|1}, basta representa-lo usando o formalismo dos operadores de densidade, p = [1) (¢].

1.3.3 Capacidades classicas de canais quanticos
A capacidade one-shot Cy 1(€)

Considere uma fonte quantica que emite estados p; com probabilidades p;. Suponha que
ap6s cada emissao os estados sao medidos, e que X e Y sao variaveis aleatorias associ-
adas aos indices dos estados e as saidas das medicoes, respectivamente. A informacao
acessivel [3, 4, 5] é definida como sendo 0o maximo da informagao muatua I(X;Y'), em que

o maximo ¢é tomado sobre todas as medi¢goes POV Ms:
Iee = max I(X;Y). (1.16)

{Mm}

O limitante de Holevo é um resultado bastante interessante e ttil em teoria da in-
formagao quantica. Ele é um limitante superior para a informacao acessivel. Defina a

quantidade de Holevo como sendo

XZS(P)—ZPiS(Pi)a (1.17)
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em que p =y p;p;. O limitante de Holevo afirma que I,.. < x. A igualdade se observa
desde que todos os estados quanticos comutem entre si [2, pp. 77].
A capacidade C1(€) ¢ definida como sendo a informacao acessivel de uma familia de

estados quanticos na saida do canal quantico.

Definicao 2 (Capacidade Cy,(€) [18, 19]) Seja E(-) um canal quantico como definido
na Segio 4.2.2. A capacidade Cy1(E) € definida com sendo o mdzimo da informagao
acessivel na saida de um canal qudntico, em que o mdximo € tomado sobre todas as
familias na entrada do canal.
Cra(€) = max Loce,,, (1.18)
{papa}

em que Iy, € ainformacao acessivel da familia {E(py), ps}-

A capacidade de Holevo-Schumacher-Westmoreland

Considere o problema de enviar uma mensagem classica escolhida aleatoriamente de um
conjunto {1,...,2"%} por meio de um canal quantico. No protocolo é permitido que Alice
prepare palavras-codigo como sendo produtos tensoriais e que Bob possa realizar medig¢oes
coletivas na saida do canal. A capacidade () (£) é a analoga quantica da capacidade

ordinaria de Shannon.
Teorema 2 (Holevo-Schumacher-Westmoreland |7, 8]) A capacidade HSW de um
canal qudantico € é

C1,(€) = max [S (5 <szpz>> - Zpis(f(m))] : (1.19)

{pi;pi}

O mdximo € tomado sobre todas as familias {p;, p;} de estados qudnticos de entrada.

A capacidade adaptativa

A capacidade adaptativa de um canal quantico, definida por Shor [6], é derivada da
capacidade C}; pela mudanga no protocolo de comunicacao. Com relagao as medigoes, ¢
permitido que Bob realize medicoes adaptativas nos estados recebidos: ele faz medic¢oes
num estado de saida que somente reduz parcialmente o estado. Em seguida, ele faz
uso da saida da medicao para definir medi¢oes em outros estados. Bob pode retornar e
realizar outras medi¢oes no estado parcialmente reduzido, em que esta ultima medicao
pode depender de todas as outras.

A taxa de informacdo para uma dada codificacao e uma estratégia de medicao é a
informacao mutua entre as palavras-codigo preparadas por Alice e as saidas das medigoes,

dividido pelo niimero de estados usados na palavra-codigo (usos do canal).
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Definicao 3 A capacidade adaptativa Cy 4 € definida como sendo o supremo das taxas
de informacao sobre todas as codificacoes e estratégias de medi¢ao que usam operagoes
qudnticas locais com relacao aos estados separados, bem como computacao cldassica para

coordend-los.

No seu trabalho, Shor mostrou que a capacidade adaptativa é um limitante superior

para a capacidade C; e que ela propria ¢ limitada pela capacidade HSW.

Capacidade auxiliada por entrelagamento

O fendémeno do entrelacamento é um dos recursos mais impressivos da mecanica quan-
tica. Suas aplicacoes incluem, por exemplo, o teletransporte de estados quénticos e a
codificacao superdensa. O teletransporte pode ser visto como uma forma de elevar de
zero a meio qubit por uso a capacidade quantica de um canal classico. Por outro lado,
a codificagao superdensa dobra a capacidade classica de um canal quantico perfeito |2,
pp. 26]. Em ambos os casos, um par EPR, que é um estado quantico maximamente
entrelacado, deve ter sido compartilhado previamente entre o transmissor e o receptor.
Bennett et. al. |9, 10] mostraram que entrelagamento compartilhado entre transmissor e
receptor pode aumentar a capacidade HSW de canais quanticos. A chamada capacidade
auxiliada por entrelagamento é a maxima taxa de transmissao de informacao classica num
cenario em que uma quantidade arbitraria de estados entrelacados é compartilhada entre

o transmissor e o receptor.

Defini¢ao 4 (Capacidade auxiliada por entrelagamento [9]) A capacidade auxili-
ada por entrelagcamento de um canal qudntico € é

Cp(€) = max S(p) + 5(E(p)) = S((E @ I)(®y)), (1.20)

peH'Ln

em que p € H;, € a matriz de densidade sobre os estados de entrada, ®, € um estado
puro sobre o produto tensorial dos espagos de estado Hi, ® Hp tal que trg [®,] = p. Hi,
€ o espaco de estado de entrada e Hr € o espago de referéncia. O terceiro termo do lado
direito da equacio, S((E ®TI)(P,)), denota a entropia de von Neumann da purificacdo [2,
pp. 109] ®, de p sobre o sistema de referéncia Hgr, metade do qual (H;,) foi enviado
através do canal quantico £, enquanto que a outra metade (Hg) foi enviado através do
canal identidade (esta parte corresponde & por¢io do estado entrelagado que Bob possuia

no inicio do protocolo).

Para transmitir informagcao usando o protocolo acima, Alice e Bob “consomem” entre-
lagamento. Em geral, S(p) qubits de entrelagamento (i.e., pares EPR) por uso do canal

sao necessarios para atingir a capacidade auxiliada por entrelacamento.
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1.4 Teoria da informacao de erro-zero

1.4.1 Capacidade ordinaria de canais classicos

Considere que um sistema A (Alice) deseja se comunicar com um sistema B (Bob). Fun-
damentalmente, a comunicacao entre Alice e Bob é bem sucedida quando uma sinalizacao
por parte de Alice induz um estado fisico desejado em Bob. A anélise quantitativa de um
sistema de sinaliza¢ao para prover comunicacao é feita usando um arcabouco matemaético
introduzido por Claude E. Shannon em 1948 [13]. A ferramenta matemaética usada para

descrever o meio em que a informagao é transmitida é o canal de comunicagao.

Defini¢ao 5 (Canal discreto sem memoria [20]) Considere um alfabeto de entrada
X e um alfabeto de saida Y. Um canal classico discreto sem memdria (DSM) C : X —
Y, denotado por (X,p(y|z),Y), € definido por uma matriz estocdstica cujas linhas sao
indexadas por elementos do conjunto finito X, enquanto que as colunas sao inderadas
por indices de Y. O elemento (x,y) da matriz estocdstica € a probabilidade p(y|z) que
y € YV seja recebido quando x € X € transmitido. O canal é dito ser sem memdria se a
distribuicao de probabilidade da saida depende somente da entrada naquele tempo, e que

ela € condicionalmente independente de entradas ou saidas prévias.

Defini¢ao 6 (Capacidade de canais DSM) A capacidade informacional de canais dis-

cretos sem memoria € dada por

C=maxI(X,Y), (1.21)

p(z)

em que o mdzximo € tomado sobre todas as distribui¢oes de entrada p(x). 1(X,Y) € a
informagao mutua entre as varidveis aleatorias X e Y que representam a entrada e a

saida do canal DSM, respectivamente.

Para enunciar o teorema da codificacao de Shannon, é necessario definir um codigo
(M,n) para um canal DSM:

Definigao 7 Um cddigo de blocos (M,n) para um canal DSM (X, p(y|x),Y) é composto

Como Seque:

1. Um conjunto de indices {1,..., M}, em que cada indice estd associado a uma men-

sagem cldssica.
2. Uma fungao de codificagao

X" {1, MY — X
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originando palavras-cédigo x' = X"(1),...,x™ = X"(M). Um livro de cddigos € o

conjunto de todas as palavras-codigo.
3. Uma fungao de decodificacao
g:Y"—=A{1,..., M},
que mapeia cada palavra-codigo recebida numa mensagem do conjunto {1,..., M}.

A probabilidade de erro do cédigo ¢ dada por P, = Pr (¢g(Y") # i| X" = X"(i)), e
a taxa de transmissao da informagao é R = %logM bits por simbolo. O teorema da
codificagao de canal garante a existéncia de codigos que alcangam a capacidade do canal

com uma probabilidade de erro arbitrariamente pequena.

Teorema 3 (Codificagao de canal [20]) Todas as tazas abaizo da capacidade C' sao
alcangdveis, ou seja, existe uma seqiéncia de codigos tal que a probabilidade média de
erro tende a zero quando o comprimento do codigo tende para infinito. Equivalentemente,
qualquer seqiiéncia de codigos com uma probabilidade de erro assintoticamente baiza possui

taza R < C.

1.4.2 A capacidade erro-zero

O teorema da codificagao de canal afirma que existe uma probabilidade de erro positiva
mesmo para as melhores familias de c6digos. Shannon mostrou que era possivel transmitir
informagao sem erro através de canais DSM. Shannon [12] definiu um codigo (M, n) de
erro-zero da mesma forma que um codigo de blocos (M, n), mas com a restri¢ao seguinte

a probabilidade de erro:
Pr (g(Y") #4| X" =X"(1)=0Vie{l,...,M}, (1.22)

que garante a inexisténcia de erros de decodificacao. Dois simbolos de entrada z;,z; € S
sao ditos ser nao-adjacentes (ou distinguiveis) se existe pelo menos um simbolo y € Y
tal que ambas p(y|z;) e p(y|z;) sdo diferentes de zero. Caso contrario, os simbolos sao
adjacentes. Dado que uma seqiiéncia de n simbolos x = z1x5 ...z, ¢ transmitida por um
canal DSM, a seqiiéncia y = 419> . ..y, é recebida com probabilidade

n

P (ylx) = Hp(yzm) (1.23)

i=1
Se duas seqiiéncias x’ e x” podem ambas resultar numa seqiiéncia y com probabilidade

positiva, entao as seqiiéncias sao ditas ser indistinguiveis ou adjacentes, ja que o decodi-

ficador nao consegue distingui-las na saida do canal. Caso contrario, as seqiiéncias sao
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nao-adjacentes. As seqiiéncias x’ e x” sdo distinguiveis se e somente se existir pelo menos
um indice 1 <7 < n tal que 2} e 2/ sdo ndo-adjacentes. Pode-se pensar nas distribui¢oes
p(y|z) e p"(-|x) como vetores de dimensdo |X| e |X|", respectivamente. Assim, duas

seqiiéncias x', x” € X" sao distinguiveis se os vetores correspondentes sao ortogonais.

Definicao 8 (Capacidade erro-zero) Defina N(n) como a cardinalidade mdzima de
um conjunto de vetores mutuamente ortogonais entre p™(-|x), x € X". A capacidade
erro-zero de um canal (X, p(y|x),)) € dada por
1
Co = limsup—log N(n). (1.24)

Intuitivamente, Cy € a taxa mdxima de transmissao de informacao sem erro do canal.

Devido ao fato de que N(n) ser supermultiplicativo, o limite superior coincide com o

supremo (em n) dos nimeros = log N (n).

O mapa de reducao de adjacéncia

O calculo da capacidade erro-zero de alguns canais simples pode ser feito usando o conceito
de mapeamento de reducao de adjacéncia, que é uma funcgao f : X — X com a propriedade

de que se z; e z; sao ndo-adjacentes no canal, entdao f(x;) e f(z;) s@o nao-adjacentes.

Teorema 4 Seja (X, p(y|x),Y) um canal DSM. Se todos os simbolos X podem ser ma-
peados usando um mapa de reducao de adjacéncia f num subconjunto X' C X de simbolos

nao-adjacentes, entao Cy = log |X'|.

Relacao com a teoria de grafos

O problema de calcular a capacidade erro-zero de canais DSM pode ser reformulado usando
elementos da teoria de grafos. Dado um canal (X, p(y|x),)) é possivel construir um grafo
caracteristico G como segue. Tome tantos vértices quanto for o nimero de simbolos em
X e conecte dois vértices se os simbolos correspondentes sao nao-adjacentes. Defina o
n-ésimo produto de Shannon de G como sendo um grafo para o qual V(G") = A*"
e {x/,x"} € E(G") se para pelo menos um 1 < i < n as i-ésimas coordenadas de x’
e x" satisfazem {}, 27} € E(G). E facil verificar que o nimero maximo de seqiiéncias
distinguiveis de comprimento n é o nimero de clique de G", i.e, N(n) = w(G"). Portanto,
a capacidade erro-zero é dada por

Co= stllp % logw(G™). (1.25)
Seja x(G) o numero croméatico do grafo caracteristico G. Shannon [12] demonstrou o

seguinte resultado:
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Teorema 4’ Seja (X, p(y|x),Y) um canal DSM e G o grafo caracteristico correspondente.
Se w(G) = x(G), entao Cy = x(G).

Originalmente Shannon usou uma abordagem diferente, mas equivalente, para rela-
cionar a capacidade erro-zero e grafos. Para um dado canal DSM (X, p(y|z), ), é possivel
associar uma matriz de adjacéncia como segue:

1 se x; é adjacente a x; ouse 1 =j
Ay = ’ 1.26
ij = (1.26)
0 caso contrério,
em que z;,x; € X. Shannon definiu um grafo de adjacéncia em que os vértices sao
simbolos do conjunto X e dois vértices sao conectados se os simbolos correspondentes
sao adjacentes. Este grafo é complementar ao grafo caracteristico. Entao foi mostrado o

resultado seguinte [21]:

Teorema 4” Seja G o grafo de adjacéncia de um canal DSM (X, p(y|x),Y). Se G pode
ser coberto por N (1) cliques, entao Cy = log N(1).

1.4.3 Funcao teta de Lovasz

A conexao entre a capacidade erro-zero e a teoria de grafos motivou a defini¢ao de estru-
turas interessantes na teoria de grafos. Uma delas é a fungao teta de Lovasz [21], que é um
funcional que pode ser calculado em tempo polinomial e seu valor se encontra entre duas
grandezas com complexidades NP-completas: o ntimero de clique e o nimero cromatico
de um grafo [22].

Dado um canal DSM (X, p(y|x),)) e um grafo de adjacéncia G correspondente com
vértices X', uma representagao ortonormal de G é um conjunto de |X| vetores v,, num
espago Euclidiano tal que se z;, z; € X sao nao-adjacentes, entao v, e v, sao ortogonais.
O walor de uma representagao é definido como sendo

) 1
e e (cTv,,)%
x;
em que o minimo é tomado sobre todos os vetores unitarios c. O vetor ¢ que alcanca
o minimo ¢ chamado de handle da representagao. A fungdo 6(G) de Lovéasz é definida
como sendo o minimo valor sobre todas as representacoes de G. A representacao é dita

ser Otima se ela alcanga o valor minimo. Lovasz provou o resultado seguinte:

Teorema 5 ([21]) A capacidade erro-zero de um canal DSM (X, p(y|z),Y) € limitada

superiormente pelo logaritmo da funcgao 6 do seu grafo de adjacéncia G:

Co <logd(G). (1.27)
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A definicao da funcao # abriu caminho para a resolu¢ao de um problema apontado
por Shannon mas que so viria a ser resolvido treze anos depois: o célculo da capacidade
erro-zero do canal DSM que origina o pentagono como grafo caracteristico. No seu artigo,
Shannon [12] mostrou que a capacidade do pentdgono Gs era tal que 3 log5 < Cp(Gs5) <
log g Lovész entao construiu uma representacao ortonormal para o pentdgono e mostrou
que o valor daquela representacao coincidia com o limite inferior encontrado por Shannon,

provando assim que a capacidade erro-zero do pentégono era Cy(Gs) = %log 5.

1.5 Capacidade erro-zero de canais quanticos

1.5.1 Capacidade erro-zero quantica

Dado um canal quantico, investiga-se qual a méxima quantidade de informagcao por uso do
canal que Alice pode transmitir para Bob com uma probabilidade de erro igual a zero. A
comunicagao ¢ feita considerando o seguinte protocolo: o alfabeto da fonte é um conjunto
S = {p1,...,;m} de estados de dimensdo d, em que d é a dimensdo do canal quantico;
Alice prepara palavras-c6digo que sao produtos tensoriais de estados do alfabeto da fonte
e medigoes coletivas sao permitidas na saida do canal. Essencialmente, este protocolo é
similar ao da capacidade HSW [7, 8]. Um co6digo de bloco quantico de erro-zero é definido

COomo segue.

Definigao 9 Um cddigo de bloco de erro-zero quantico (K,,n) é composto de:

1. um conjunto de indices {1,..., K,}, em que cada indice estd associado a uma men-

sagem cldssica,
2. uma funcao de codificag¢ao
X" {1,... K,} — 8", (1.28)
levando a palavras-codigo quanticas py = X™(1),...,pg, = X"(IK,);
3. uma func¢ao de decodificagcao
g:{1,....m}—{1,..., K,}, (1.29)

que associa deterministicamente uma saiday € {1,...,m} de uma medi¢ao POVM

a uma mensagem cldssica com a sequinte propriedade

PrglY =y)#iX"=X"(4)=0Vie{l,...,K,}. (1.30)
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A taxa desse codigo é dada por R, = %log K, (bits por uso do canal).

Definigdo 10 A capacidade erro-zero de um canal qudantico £(-), denotada por C©)(E),
€ o supremo das taxas alcan¢dveis com probabilidade de erro igual a zero,

1
CO(&) = sup sup — log K, (1.31)
S n N

em que K, € o nimero mdximo de mensagens cldssicas que o sistema pode transmitir sem

erro quando um cédigo de bloco quantico de erro-zero (K,,n) e alfabeto S é usado.

Por definicao, dois estados quanticos p;, p; € S sao ditos ser nao-adjacentes em &
se E(pi) e E(p;) sao distinguiveis. Caso contrario eles sdo adjacentes. Usa-se a notacao
piLep; para denotar que p; ¢ nao-adjacente a p;. Da mesma forma, duas seqiiéncias de
produtos tensoriais p;, p; € S®" sdo nao-adjacentes se elas sao distinguiveis na saida do

canal. Caso contrario elas sao adjacentes.

Proposicao 1 Para um dado canal qudntico £ e um codigo com alfabeto S = {p1,...,m},
i pj € S sao nao-adjacentes se e somente se para ao menos um 1 <k <mn, p; € nao-

adjacente a pj, .

Proposigao 2 A capacidade erro-zero qudantica de um canal £ € maior que zero se e

somente se existe pelo menos dois estados p;, p; € S tais que p; Lep;.

Relacao com a teoria de grafos

A capacidade erro-zero quantica (CEZQ) é redefinida usando elementos da teoria de
grafos. Dado um canal quantico £ e um conjunto § = {p1,...,p} de estados de en-

trada, é possivel construir um grafo caracteristico G como segue:

V(G) = {1,....1}, (1.32)
E(G) = {(i,));piLeps; pipj € Sii # j} (1.33)

Defina o n-ésimo produto de Shannon de G, G", como sendo o grafo

vig") = {1,....0" (1.34)
E@G") = {(i1...in,J1--Jn); piyLepj, para ao menos um 1 < k < n;
Pirs Pji. € ’S} (135>

Sendo assim, o niimero méximo de mensagens que o sistema pode transmitir sem erro

usando um codigo quantico de erro-zero com alfabeto S é dado pelo nimero de clique de

g", w(g").
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Definigao 11 A capacidade erro-zero de um canal quantico £ € dada por

1
C9(&) = supsup - logw (G"), (1.36)
S n

em que o supremo € tomado sobre todos os conjuntos S de estados de entrada e w(G™) € o
numero de clique do grafo n-ésimo produto de Shannon de G, que é o grafo caracteristico

associado ao conjunto S.

1.5.2 Estados quanticos que atingem a CEZQ

E sabido que a capacidade de HSW [7, 8] pode ser sempre alcancada usando no maximo d?
estados puros [2, pp. 555]. Um resultado analogo é mostrado para a capacidade erro-zero

quantica.

Proposicao 3 A capacidade erro-zero de um canal qudntico £ num espago de Hilbert de
dimensao d pode sempre ser alcangada por um conjunto S composto de, no mdximo, d

estados qudnticos puros, i.e., S = {p; = |v;)(v;|}L,.

E importante ressaltar que, na demonstragao do resultado acima, foi necessério definir

o conceito de grafo k-clonado. Seja G = (V, F) um grafo nao-direcionado tal que V' =
{0,...,0—=1} e EC{(i,7);i,5 € V;i # j}. Para cada vértice ¢ € V(G), denote por N (i)

o conjunto de vizinhos de 1,
N(i) = {j € V(G); (i,)) € E(G)}. (1.37)

Definicao 12 O grafo k-clonado de G, denotado por G', é um grafo com | + 1 vértices
obtido de G “clonando” o vértice k de G':

1. V(G") =A0,...,1}, em que l € o rétulo do vértice clonado;

2. E(G'")=E(G)U{(l,7);7 € N(k)}, i.e., ambos os vértices | e k possuem os mesmos

vizinhos.

Teorema 6 Para todo n, w(G™) = w(G™).

O teorema implica que a capacidade erro-zero (classica ou quéntica) de um canal
associado com o grafo GG é igual a capacidade erro-zero do canal associado com . Uma

versao menos restritiva do teorema também foi mostrada.

Corolario 1 Suponha que ao invés de clonar um vértice de G, todo um subgrafo induzido
de G seja clonado, dando origem a um novo grafo G'. Entdo, w(G™) = w(G"™) para todo

n.
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Corolario 2 Na defini¢ao de grafo k-clonado, suponha que o conjunto de arestas do grafo
k-clonado seja tal que E(G") = E(G)U{(l,75);j € N()}, em que N(I) C N(k). i.e., o
vértice | de G' possui 0s mesmos vizinhos do vértice original k em G, mas o tiltimo pode

ter outros vizinhos. Entdo, w(G'™) = w(G™) ainda se verifica para todo n.

1.5.3 Medicgoes que alcancam a CEZQ

Suponha que a CEZQ seja alcangada para um conjunto S = {p1,...,p} e um dado n.
Entao, o conjunto S®" possui exatamente K, = w(G") palavras-codigo nao-adjacentes

entre si, i.e., todos os estado quanticos

E(p) = E(p,) ®E(pr,) @ -+ @ E(p1,)

}; v
E(y) = E(p2,) ®E(pa,) ®--- R E(pa,)
P

(1.38)
Epr,) = Elpr,,)®@E(pK,,) @ ®E(pK,,)

J/

—~
Py,

sao dois a dois ortogonais no espaco de Hilbert de saida de dimensao d". Defina P; como
sendo o projetor sobre o subespago de Hilbert gerado pelos estados no suporte de £(p;).

O conjunto

P={P,...,Px,, Pk, 1}, (1.39)
P, 41 = ll—zfinl P;, ¢ uma medicao de von Neumann (projetiva) que permite distinguir as
K, seqiiéncias de estados quanticos. Portanto, medigoes projetivas coletivas sao suficientes
para decodificar qualquer coédigo quantico de erro-zero. Ainda, foi mostrado que tais

medicoes sao necessarias para alcangar a CEZQ.

1.5.4 Exemplos
Canal de troca de bit

O canal de troca de bit num espaco de Hilbert de dimensao dois,

E(p) =pp+ (1 —p)XpX, (1.40)

possui capacidade erro-zero igual a C°(€) = %log(Q) = 1 bit por uso. A capacidade é

alcancada por um conjunto de estados S = {|v1), |v2)} em que

o) = —=(0) + [1))

2
(10) = I1)).

[vg) =

5l-5

2
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O canal de despolarizacao

O canal de despolarizagao num espago de Hilbert de dimensao d,

£(p) = pyla+ (1 —p)p, (1.41)

possui capacidade erro-zero quantica igual a zero desde que 0 < p < 1, visto que quaisquer
dois estados quanticos de entrada, p;, p;, nao podem ser distinguidos na saida do canal,

ou seja, sao adjacentes.

Capacidade erro-zero de canais classicos-quanticos

Na literatura, um canal quantico £ para qual o estado (1 ® &£)(I") é sempre separavel
(mesmo para um I entrelagado) é chamado de canal de quebra de entrelagamento [23, 24],

e pode ser sempre escrito na forma
E(p) =Y _oitr[pXi], (1.42)

em que {0;} é uma familia fixa de estados quénticos e {X;} define uma medigado POVM.
O canal é chamado de cldssico-quantico (c-q) se X; = |¢;) (1], em que {|¢;)} é uma base

ortonormal, i.e., os elementos de POVM sao projetores de dimensao um.

Proposicao 4 Seja ., um canal quantico c-q num espago de Hilbert de dimensao d
definido por {o;} e {X; = [} (WYL ,, em que {|1;)} é uma base ortonormal. Entio a

capacidade erro-zero qudntica pode sempre ser alcancgada pelo conjunto

S=Al¢),. ... [va)}- (1.43)

O resultado afirma que calcular a CEZ(Q de um canal c-q é um problema completa-
mente classico, sendo necessério somente explicitar as relagoes de adjacéncia entre os esta-
dos do conjunto S que define as medigoes POVM. Explicitadas as relagoes de adjacéncia, o

grafo caracteristico G ¢ encontrado e a CEZQ sera dada por C°(&,_,) = sup,, + logw(G").

Um canal classico-quantico particular

Considere o canal c-q de dimensao 5 definido por

Vi1 mod 5
|<7,A>:|f‘>+|”\/§mo ) o lodo] e Xi— |l 0<i<d,  (144)

em que {|0),...,]4)} é a base computacional do espago de Hilbert de dimensao 5.
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O conjunto S que alcanga a capacidade é dado por & = {]0),...,|4)}. Os estados
correspondentes na saida do canal sdo £(|i)) = 0;. As relagoes de adjacéncia sao dadas
por

0)Lef2)  [0)Lef3)  [1)Lel3)

1) Lel4) 2) Lel4).

Neste caso, o conjunto S que atinge a CEZQ da origem ao pentadgono como grafo ca-
racterfstico. Portanto, a CEZQ do canal em questdo é dada por C0O(&) = Cy(Gs) =
%log5 bits/uso. Apesar da capacidade do canal ser alcangada usando um conjunto de
estados quanticos dois a dois ortogonais, sao necessarios dois usos do canal para atingir a

CEZQ. Um codigo quantico de erro-zero que alcanga a capacidade é dado por

7s = |2)14)
75 = [9)3).

Py = [1)]2),
3)[1),

1= 10)[0),

P = (1.45)

Estados quanticos nao-ortogonais atingindo a CEZQ

Esta secao discute um exemplo de um canal quantico ilustrando que a CEZQ pode ser
uma generalizacao nao-trivial da capacidade erro-zero de Shannon para canais quanticos.
Por generalizagao nao-trivial entende-se que existem canais quanticos para os quais a
capacidade é alcangada para dois ou mais usos do canal (n > 1) e que a capacidade s6
pode ser alcangada por um conjunto S contendo estados nao-ortogonais.

Seja £(+) um canal quantico com operadores de Kraus {Fy, F», F3} dados por

_
0.5 0 0 0 Y= 05 0 0 0 —¥ue
05 =05 0 0 0 05 05 0 0 0
Ey=10 05 -05 0 0 E2=10 05 05 0 0
VA5T /457 V457 V457
0 0 05 —¥IT JE 0 0 05 ¥IT _ i
i 0 —0.62 -2 0 0 0 05 05 |
E3 =0.3]4) (4],
em que § = {|0),...,|4)} ¢ a base computacional do espago de Hilbert de dimensao 5.
Considere o conjunto S de estados de entrada para &:
3) +14)
S= {lm) =10}, v2) = [1), [vs) = [2), [va) = |3), |vs) = i (1.46)

O grafo caracteristico associado ao conjunto S é construido explicitando as relagoes de

adjacéncia em S, as quais sao dadas por

o) Lefvs),  vi)Lelva),  fva)Lefva),  fu2)Lefvs) e fus)Lefvs).

Estas relacoes também dao origem ao pentagono como grafo caracteristico. E interessante

notar que se o estado |vs) em S é substituido pelo estado |4), a fim de construir um
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conjunto &’ = [ de estados dois a dois ortogonais, o grafo caracteristico resultante possui
capacidade de Shannon de 1 bit/uso, i.e., menor do que a capacidade do pentagono.
Isto significa que é possivel transmitir mais informacao usando estados nao-ortogonais na
entrada do canal.

Devido a forma como o canal quéntico foi construido (cédigo-fonte transcrito no Ap-
pendix 6.A, é conjecturado que a CEQZ do canal em questao é alcangada para o conjunto
S, o que implica que a CEQZ é uma generalizagao nao-trivial da capacidade erro-zero de

Shannon.

1.5.5 Capacidade erro-zero quantica e a capacidade HSW

Nesta secdo é demonstrado que a capacidade erro-zero de canais quanticos, C'©)(€), & limi-

tada superiormente pela capacidade de Holevo-Schumacher-Westmoreland, C} o(€) [7, 8.

Teorema 7 Seja £ um canal qudntico num espago de Hilbert de dimensao d. Entao

CO(E) < CLu(8). (1.47)

1.6 Conclusoes e perspectivas

Nesta tese foi proposta uma nova capacidade para a transmissao de informagao cléassica
através de canais quéanticos. A capacidade erro-zero quantica foi definida como sendo o
supremo das taxas em que informagao classica é transmitida através de um canal quantico
ruidoso com probabilidade de erro igual a zero. A CEZQ é uma generalizacao da capaci-
dade erro-zero de canais classicos discretos sem memoria proposta por Shannon [12].

As principais contribuicoes desta tese foram:

1. foi proposta uma nova capacidade para canais quanticos;

e a capacidade erro-zero foi generalizada para canais quanticos;

e um codigo de erro-zero quantico foi formalmente definido;
2. a capacidade erro-zero quantica foi definida usando elementos da teoria de grafos;

3. foi definido o conceito de grafo k-clonado; os resultado obtidos a partir da definigao
sao tuteis tanto no calculo da capacidade erro-zero de canais quéanticos quanto de

canais classicos;

4. com relagao aos estados quanticos que atingem a CEZQ
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e foi mostrado que a capacidade erro-zero quantica pode sempre ser alcancada

por uma familia de d estados puros, em que d é a dimensao do canal quantico;
5. com relagao as medigoes que atingem a CEZQ

e foi mostrado que medigdes de von Neumann (projetivas) coletivas sdo necessarias

e suficientes para atingir a capacidade erro-zero quantica;

6. a capacidade erro-zero quantica de canais classicos-quanticos foi estudada, mostrando-
se que ela pode sempre ser alcancada usando a base ortonormal como alfabeto do

c6digo quantico, ou seja, o calculo da CEZQ de canais c-q é puramente classico;
7. alguns exemplos do calculo da capacidade erro-zero quantica foram exibidos:

e foi apresentado um canal c-q cujo conjunto S que atinge a capacidade da origem
ao pentagono como grafo caracteristico. Desta forma, a CEZQ deste canal
pode ser calculada e um codigo quantico de erro-zero que atinge a capacidade
foi explicitado;

e um exemplo de um canal quantico que da origem ao pentdgono como grafo

caracteristico para um conjunto S de estados nao-ortogonais foi mostrado;

8. com base no exemplo acima, foi conjecturado que a capacidade erro-zero quantica

é uma generalizacao nao-trivial da capacidade erro-zero de Shannon;

9. por ultimo, foi mostrado que a capacidade erro-zero quantica é limitada superior-

mente pela capacidade HSW.
Algumas propostas para trabalhos futuros sao (lista ndo-exaustiva):
1. generalizagao da funcao teta de Lovész para o caso quantico;

2. variagoes do protocolo de comunicacao — presenca de um canal de realimentagao
classico entre o receptor e o transmissor, disponibilidade de uma quantidade arbi-
traria de entrelacamento compartilhado entre o transmissor e o receptor e o caso

em que ha multiplos transmissores e receptores;

3. pode-se investigar ligagoes entre a CEZQ e a teoria de subespacos livres de deco-

eréncia e subsistemas sem ruido;

4. como a capacidade erro-zero classica possui aplicacoes na teoria de complexidade
computacional, é provavel que a CEZQ possa estar relacionada a complexidade

computacional quantica.



Chapter 2

Introduction

2.1 Classical information over quantum channels

One of the main issues in quantum information theory is the concept of quantum channel
capacity |1, 2]. In a more fundamental way, the capacity of a channel is defined as the
least upper bound of rates at which information can be transmitted through the channel
with arbitrarily high reliability.

Quantum mechanics provides many features allowing of several ways to define quan-
tum channel capacity [1, 2]. For a given quantum channel, the capacity may assume
different values depending on: (a) the kind of information to be carried — although chan-
nel signalling is always performed using quantum states, one may wish to use a quantum
channel to transmit classical messages or quantum systems, e.g., quantum states gener-
ated by a quantum source; (b) external resources, like entanglement of a feedback classical
channel from the receiver (Bob) to the sender (Alice); and (¢) the communication proto-
col. The communication protocol determines how information should be encoded at the
transmitter and decoded at the receiver end.

In this work we focus on the capacity of memoryless quantum channels to carry clas-
sical information. Several such capacities have already been defined. According to the

communication protocol, quantum channel capacities can be grouped into three categories:

1. codewords are restricted to tensor products of input quantum states and measure-

ments are performed individually at the channel output [3, 4, 5, 6];

2. codewords are restricted to tensor products of input quantum states, whereas en-

tangled measurements between several channel outputs are allowed |7, 8, 9, 10];

3. entanglement between several channel inputs is allowed, as well as collective mea-

surements at the channel output [11].

23
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Examples of capacities employing the protocol 1 are the one-shot capacity [3, 4, 5| and
the Shor’s adaptive capacity [6]. Suppose that Alice prepares states p; with probability
p; and gives a prepared state to Bob. Accessible information is the maximum amount of
information about the prepared state that Bob can extract from the received states by
performing only individual measurements. The one-shot capacity is defined as the maxi-
mum over all input ensembles {p;, p;} of the accessible information of the corresponding
output ensemble. Shor’s protocol is similar to the above, except that Bob can perform
partial measurements on one signal which only partially reduces the quantum state, use
the outcome of this measurement to determine which measurements to make on different
signals, return to redefine the measurement on the first state, and so forth. It was showed
that the adaptive capacity is always greater than or equal to the one-shot capacity.

The main example of quantum channel capacity making use of protocol 2 is the
Holevo-Schumacher-Westmoreland (HSW) capacity [7, 8]. The HSW capacity, denoted
by C1(E), is also known as the classical capacity of quantum channels. The HSW ca-
pacity is the generalisation of the Shannon’s ordinary capacity [13], in the sense that the
Shannon coding theorem can be derived from the HSW coding theorem [25, 23|. The
quantum channel coding theorem asserts that for each rate R < C o there exists a se-
quence of codes for which the error probability goes asymptotically to zero as the code
length goes to infinity. Conversely, every achievable rate R must be less than or equal to
the capacity C .

Capacities employing protocol 3 are directly connected with one of the most impor-
tant open issues in quantum information theory, the additivity conjecture of the Holevo
information [7]. The conjecture asserts that entanglement between several channel inputs
does not increase the HSW capacity of memoryless quantum channels. However, it is
known that entangled codewords may increase the HSW capacity of quantum channels

with memory [11].

2.2 Zero-error capacity of classical channels

Information theory was introduced by Claude E. Shannon in 1948 [13|. In his paper,
Shannon defined a number C' representing the capacity of a communication channel for
transmitting information reliably. He proved the existence of codes that allow reliable
transmission, provided that the communication rate is less than the channel capacity.
A randomly generated code with large block size has a high probability to be a good
code. By reliable transmission we mean that the error probability can be made as close

to zero as possible, but not actually zero. Most of information theory issues, including
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channel capacity, are based on probability theory and statistics. This asymptotic capacity
is hereafter denoted the ordinary capacity.

In 1956, eight years after his first paper introducing information theory, Shannon
demonstrated how Discrete Memoryless Channels (DMCs) could be used to transmit in-
formation in a scenario where no errors are permitted, instead of allowing an asymptoti-
cally small probability of error. The so-called zero-error capacity was defined as the least
upper bound of rates at which information can be transmitted through a DMC with a
probability of error equal to zero [12]. Korner and Orlitsky [26] pointed out some situa-
tions in which it would be interesting to consider a scenario where no transmission errors

are allowed and ask for the maximum rate at which information can be transmitted:

e Applications where no errors can be tolerated.

e In some models, only a small number of channel uses or a few source instances are
available. Therefore, we cannot appeal to results ensuring that the error probability

decreases as the number of uses or instances increases.

e The zero-error information theory can be used to study the communication com-

plexity of error-free protocols and functions.

e Functionals and methods originally used in zero-error information theory are often

applied in mathematics and computer science.

In the original paper, Shannon gave a graph theoretic approach to the zero-error
capacity. By associating a DMC with a graph, Shannon introduced a new quantity
in graph theory, the Shannon capacity of a graph [14, 15, 16]. Differently from the
ordinary capacity, finding the zero-error capacity of a DMC (or a graph) is a combinatorial
problem. Because of its restrictive nature — a vanishing probability of error is required —
the zero-error information theory is frequently unknown to many information theorists.
Nevertheless, its methods play an important role in areas like combinatorics and graph
theory.

In this work we generalise the zero-error capacity to quantum channels. Initially, we
formally define an error-free quantum code as well as the encoding and decoding proce-
dures. Then, we define the quantum zero-error capacity as the least upper bound of rates
at which classical information can be transmitted without error through a noisy memo-
ryless quantum channel. The problem of finding the zero-error capacity is reformulated
in the language of graph theory and an equivalent definition is given. We also investigate

some properties of quantum states and measurements reaching the quantum zero-error
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capacity. A mathematically motivated example is used to claim that the quantum zero-
error capacity is a non-trivial generalisation of the Shannon zero-error capacity, in the
sense that there exist quantum channels for which the capacity can only be reached by
using an ensemble of non-orthogonal quantum input states, and two or more channel uses
are necessary in order to attain the capacity, i.e., the capacity can only be reached by
using a quantum code of length two or more. We formally relate the quantum zero-error
capacity to the HSW capacity, given a proof that the former is upper bounded by the

latter.

2.3 Thesis outline

Contributions are entirely presented in Chapter 6. Readers familiarized with quantum
information and classical zero-error information theory can skip Chapters 2 to 5 and go
directly to Chapter 6. This thesis is organized as follows:

Chapters 3 and 4 give an overview of quantum information concepts related to the
thesis. Section 3.2 aims to introduce the Dirac’s notation to the reader, whereas discusses
important tools in quantum information, as unitary operators and tensor products. The
four quantum mechanics postulates are further presented in Section 3.3, followed by a
discussion about the density operator formalism. A brief survey about classical capacities
of quantum channels is given in Chapter 4. Initially, we introduce the von Neumann
entropy and we give a mathematical definition of quantum channels. Sections 4.3 to 4.6
review the one-short capacity C1(€), the Holevo-Schumacher-Westmoreland capacity
C1.00(€), the adaptive capacity Cy 4(€), and the entanglement-assisted capacity Cg(E),
respectively.

Chapter 5 introduces some definitions and results in classical zero-error information
theory. Section 5.1 presents the ordinary capacity of DMC and some examples are given.
Section 5.2 introduces the zero-error capacity, and a method for calculating the capacity
of simple channels is discussed in Section 5.2.1. Section 5.2.2 presents a graph-theoretic
approach for the zero-error capacity. The representation of a DMC using either an ad-
jacency graph or its complementary graph gives two different but equivalent ways of cal-
culating the zero-error capacity. In Section 5.3 we present the Lovasz theta function [21],
a polynomially computable functional which is sandwiched in between the clique and the
chromatic numbers of a graph. This functional was used by Lovasz to calculate de zero-
error capacity of the pentagon graph, a five vertices graph for which Shannon was not
able to give an exact value for the capacity. Sections 5.4 and 5.5 illustrate how different

is the behaviour of the zero-error capacity and the ordinary capacity.
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The quantum zero-error capacity is introduced in Chapter 6. In Section 6.2 we define
a zero-error quantum block code and we give a formal definition of the quantum zero-
error capacity. In Section 6.2.1 we present a graph-theoretic approach for the quantum
zero-error capacity and we demonstrate that the two definitions are equivalent. We study
in Section 6.3 some properties of quantum states attaining the quantum zero-error ca-
pacity. We show that the capacity can always be reached using an ensemble of at most
d pure states, where d is the dimension of the quantum channel. We also investigate in
Section 6.4 quantum measurements archiving the capacity. We have shown that collective
von Neumann measurements are necessary and sufficient in order to reach the channel
capacity. Section 6.5 gives some examples of the quantum zero-error capacity calculation.
We explicit a mathematically motivated quantum channel and we conjecture that its
zero-error capacity cannot be achieved using an ensemble of pairwise orthogonal quantum
states. Moreover, this channel requires two or more channel uses in order to transmit a
given message at higher rates. Finally, we demonstrate in Section 6.6 that the quantum
zero-error capacity is upper bounded by the HSW capacity [7, 8|.

In Chapter 7 we summarize our contributions and we give some directions for further

research and perspectives.
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Chapter 2. Introduction



Chapter 3

Fundamentals of Quantum Mechanics

3.1 Introduction

This chapter introduces quantum mechanics in a brief and objective way. However, special
attention was given to ensure that almost all concepts and definitions amongst subsequent
chapters are discussed here. A more detailed approach can be found in specific textbooks

17, 2.

3.2 Linear algebra and Hilbert spaces

Although linear algebra is a well known topic in engineering, the notation used by physi-
cists to describe quantum mechanics is different to that used in most courses of linear
algebra. As we will see among this chapter, the Dirac’s notation is more convenient to
describe quantum systems and their evolutions. Such notation is widely used by physi-
cists and it is standard in textbooks of quantum information and computation [2]. Dirac’s

notation will be gradually introduced in this chapter,

Definition 1 (Vector space [17]) Let F' be a field. A wvector space V' over F, with
elements (vectors) represented by |v), is a structure composed by a set and two binary

operations, (+) : V xV — V and () : F x V. — V| such that
L (|v) + [w)) + [1) = [v) + (lw) + 1)) for all |v), |w),|1) € V;
2. [v) + |w) = |w) + |v) for all |v), |w) € V;
3. 30 € V such that |v) + 0 = |v) for all |v) € V;
4. for any |v) € V', there exists an element |w) € V' such that |v) + |w) = 0;
5. ki (ko |v)) = (kiks) - |v) for all ky,ky € F and |v) € V;

29
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6. 1-|v)y =1|v) for all |v) € V;

7. k- (o) + |w)) = (k- |v) + (k- |w)) for all k € F, and |v), |w) € V;

8. (k1 + ko) - |vy = (ky-|v))+ (ko - |v)) for all k1, ke € F and |v) € V.
Elements of V' are referred as vectors, and 0 € V' is the zero vector of V.

In Definition 1, the symbol |v) denotes an arbitrary vector in V', where v is its label.
In the Dirac’s notation, the structure |-) is called a ket. Note that for the zero vector the
ket is not used.

A vector subspace of a space V' is a subset W of V' such that W is also a vector space,
i.e., W should satisfy all the conditions of Definition 1.

A set of nonzero vectors |v1), ..., |v,), belonging to a vector space V over a field F, is

said to be linearly independent if for any scalars aq,as,...,a, € F,
ar|vr) + aslva) 4 - - 4 aplvy) =0

implies a; = ay = -+ = a,, = 0. Otherwise, the set is called linearly depedent.

A set of vectors [ = {|v1),...,|v,)} generates the vector space V if any vector |v)
of V' can be written as a linear combination |v) = ) .a;|v;), where a; € F. A linearly
independent set (3 that generates V' is called a basis of V. The dimension of V', dim(V),
is defined as being the cardinality of a basis 3.

3.2.1 Inner product

Let V be a vector space over the field C of complex numbers. This space is particularly

important in quantum mechanics. For such space, an inner product is defined as follows.

Definition 2 (Inner product [17]) An inner product in a vector space V' over the field
C' of complex numbers is a function (, ) :V x V — C such that, for all ki, ks € C' and

|v1), [v2), [v), |w) € V', the properties below are verified:

1. (Jw), kilvr) + kalvz)) = k1 (Jw), [v1)) + k2(|w), [v2))*;

2. (Jv), |w)) = (Jw), |v))*, where (*) denotes complex conjugation;

3. (Jv),|v)) >0, e (Jv),|v)) =0 if and only if lv) = 0.

'Some authors impose the linearity condition to the first argument instead of the second.
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The above notation for inner product is not standard in quantum mechanics. Instead,
it is widely used (v|w) to denote the inner product between |v) and |w). (v| stands for
the dual vector of |v), which will be formally defined later in this section.

The vectors |v) and |w) are said to be orthogonal if the inner product (v|w) is zero.

The norm of vector |v) is defined as

o)l =V (vlv). (3.1)

A unitary vector |v) is a vector such that ||[v)|| = 1. A unitary vector |v') = |v)/|||v)]|
is referred as the normalization of |v). The set of vectors {|i)}, with indexes i, is said to
be an orthonormal set if all vector are unitary, and vectors are pairwise orthogonal, i.e.,
(i]j) = 6;;, where 4, j are chosen from the index set. An orthogonal basis for the vector
space of dimension d is a set of d pairwise orthogonal vectors. An orthogonal basis is
orthonormal if all vectors are unitary.

The following definitions are necessary to introduce Hilbert spaces.

Definition 3 (Metric [27]) A metric in a set X is a function d : X x X — R, which
associates each pair of elements x,y € X with a real number d(x,y) satisfying the following

conditions for any x,y,z € X:
1. d(z,z) = 0;
2. If x # y then d(z,y) > 0;
3. d(y,x) = d(z,y);
4. d(z,y) < d(z,2) +d(z,y).

Definition 4 (Metric spaces [27]) A metric space , denoted by (X, d), is composed by

two parts: a set X and a metric d(z,y).

Definition 5 (Cauchy sequences [17]) A sequence {z,,} in a metric space (X,d) is a

Cauchy sequence if for each € > 0 exists a N such that d(z,, x,,) < € for any n,m > N.

As an example, consider the metric space consisting of all points in the interval [0, 1],
X ={r € R:0 <z < 1}, and the usual metric, d(z,y) = |z — y|. The sequence
{1/n} = {1,1/2,1/4,...} is a Cauchy sequence. Given € > 0, choose N > 2/e. If
n,m > N, then 1/n < ¢/2 and 1/m < ¢/2. Consequently, [1/n—1/m| <1/n+1/m <e€
for all n,m > N. Moreover, the sequence is convergent, since lim, ., 1/n =0 € X [27,
pp. 116]. There exist Cauchy sequences that are divergent. Consider, for example, the

same sequence in a metric space consisting of points (0,1], X ={z € R: 0 < x < 1}, and
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the usual metric. Clearly, such sequence is a Cauchy sequence. However, the sequence is

divergent, since the point 0 does not belong to the metric space.

Definition 6 ([27]) A metric space (X, d) is complete if each Cauchy sequence in (X, d)

15 convergent.

By definition, all vector space with inner product have an associated metric, and

therefore they are metric spaces.

Definition 7 (Hilbert space [27]) A Hilbert space is a vector space, together with a

inner product, which are complete with relation to the norm defined by the inner product.

As early mentioned, we are interest here in the vector space of n-tuples of complex
numbers (21, 22, . .., 2, ), denoted by C™. The notation of column matrix will be used to

refer to such vectors,

21
lzy=1:1. (3.2)
Zn
The usual inner product in C™ is defined by
21
W= loi ow] ] (33)
Zn
where (y1,...,y,) and (z1, ..., z,) are, respectively, the vector components of |y) and |z)

with relation to the same orthonormal basis.

One can verify that the vector space C", together the inner product defined in Equa-
tion (3.3), is a Hilbert space of dimension n [17]. As we will see later, the state of a give
quantum system can be represented by a unitary vector |v) belongs to a Hilbert space
of dimension n. According with this notation, let [v) = >, v;]i) and [w) = >~ w;|j) be
representations of the vectors |v) and |w) with relation to an orthonormal basis {|i)},
respectively. Since (i|j) = d;;,

(vlw) = <Z vil), Z%U)) =Y viwylili) = ) vjw,
v J v i
wq
= [vf v,’;] e (3.4)
Wn,

Equation 3.4 shows that the inner product between two vectors is equal to the inner prod-

uct between the corresponding matrix representation with relation to a same orthonormal
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basis. Note that the dual vector (v| is as a line vector whose components are complex
conjugates of components of |v).

According to definitions above, the vectors

and 1) = [0] (3.5)

form an orthonormal basis for the Hilbert space of dimension 2, i.e., any vector

o) = H (3.6)

ai

can be written as a linear combination |v) = ag|0) + a1|1) of |0) and |1).
In quantum mechanics, the basis {|0), |1)} is called the computational basis of the 2-
dimensional Hilbert space. The computational basis for the n-dimensional Hilbert space
T

is {10), 1) o, In = 1)}, where [K) = [ay =0 @1 =0 .. ay=1 ... a,=0|

3.2.2 Linear operators

A linear operator between two vector spaces V' and W is defined as a function A : V — W

which is linear with relation to their inputs:

A <Z ai|vi>> = ZaiA|Uz‘>- (3.7)

i i
It is usual to use the notation A|v) instead of A(|v)). Two important linear operators are
the identity operator 1 and the operator 0, where 1|v) = |v) and 0|v) = 0, respectively.
The notation 1, is referred to the identity operator of the d-dimensional vector space.
An interesting representation of a linear operator, known as outer product, is obtained
via inner product. Let |v) and |w) be two vectors belonging to vector spaces V and W

with inner product, respectively. Define |w)(v| as being a linear operator from V' to W in

the following way:
(lw) () (o)) = lw)(v]o) = (v])|w). (3.8)
Dirac’s powerful notation suggests two interpretations to Equation (3.8). The first is the

application of the operator |w)(v| to the vector |[v'), and the second is the product of the

complex number (v|v') by the vector |w).

Theorem 5 (Completeness relation [2]) Let {|i;)} be an orthonormal basis for a d-

dimensional vector space V' with inner product. Then

Z %) (Y] = Ta. (3.9)
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3.2.3 Pauli operators

We introduce Pauli operators, which are four 2 by 2 matrices that play a fundamental

hole in quantum mechanics and quantum information [2].

oo=1= [1 O] : o =X = [O 1] : (3.10)

0 1 1 0
0 — 1 0

o =Y = "I and o3 =7 = : (3.11)
v 0 0 -1

3.2.4 Eigenvectors and eigenvalues

An eigenvector of a linear operator A in a vector space V' is a nonzero vector |v) such
that Ajv) = Alv). The number A is the eigenvalue associated with the eigenvector |v).
The eigenspace of A is the union of the zero vector 0 together the set of all eigenvectors
corresponding to .

The diagonal representation of an operator A in a vector space V is defined as being
A = > Nili) (Wi, where {|1;)} is a set of orthonormal eigenvectors of A with corre-
sponding eigenvalues )\;. An operator is said to be diagonalizable if it has a diagonal

representation.

3.2.5 Hermitians and unitary operators

We define in this section two important classes of operators in a Hilbert space. Let A be

an operator in V and |v), |lw) € V' two vectors that belong to V.

Definition 8 (Hermitian operator.) The unique operator AT € V such that for all
vectors |v), |w) € V,

(Jv), Ajw)) = (A'|v), [w)), (3.12)

is called the adjoint or Hermitian conjugate of A. An operator is said to be Hermitian or
self-adjoint if At = A.

From the definition, (AB)" = BYAT. By convention |[v)T = (v| , and hence (AJv))" =
(v|AT. The Hermitian conjugate of a matrix representation of an operator is the conjugate-
transpose matrix of A, AT = (A*)T, where (*) indicates complex conjugation and T
indicates transposition.

Let |1),...,|d) be an orthonormal basis for a d-dimension Hilbert subspace W of a

n-dimensional Hilbert space V.
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Definition 9 (Projector over a Hilbert subspace) The Hermitian operator

k
P =il (3.13)
i=1
is a projector onto the subspace W spanned by the vectors |1),...,|k).

It is easy to see that if |w) € W then P|lw) = |w). The orthogonal complement of P,
Q) = 1 — P, is a projector over the orthogonal subspace spanned by |k + 1),...,|n).

An operator A is said to be normal if AAT = ATA. Clearly, every Hermitian operator
is also a normal operator. An important result in linear algebra stands that every normal

operator M in a Hilbert space V' has a spectral decomposition |2, pp. 72]

M= Nl (¥, (3.14)

i=1
where [1);) are eigenvectors of M with eigenvalues \;, d is the dimension of V', and the set
of vectors {|1;)} forms an orthonormal basis for V.

Unitary operators defined below play an important hole in quantum mechanics, since

they describe the evolution of a closed quantum system.

Definition 10 (Unitary operators [2]) An operator U is unitary if UTU = UUT = 1.

Geometrically, unitary operators have the property that they preserve the inner prod-

uct between vectors, i.e., if [v), |w) € V then
(Uv), Ulw)) = (u|UTUw) = (v[Tjw) = (v|w). (3.15)

Definition 11 (Positive operators [2]) A Hermitian operator A in a Hilbert space V
is positive if, for every |v) € V', the number (v|A|v) is positive. If (v|A|v) is a real greater

than zero for every |v) # 0, then the operator A is said to be positive definite.

Positive operators have a spectral decomposition ) . A;[1;)(¢;| with nonnegative eigen-

values A;.

3.2.6 Tensor products

As we will see later in this chapter, the Hilbert space of composite quantum systems is
the tensor product of individual Hilbert spaces. Thus, tensor product is a way of putting

together two or more Hilbert spaces to produce a larger space.

Definition 12 (Tensor product [2]) Let V and W be Hilbert spaces of dimension m
and n, respectively. Then VW is a Hilbert space of dimension mn. Elements of V QW
are linear combinations of tensor products |v;) @ |w;) of elements |v;) € V and |w;) € W,

satisfying the following properties:
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P1. z(Jv) ® |w)) = (z|v)) ® |w) = |v) ® (z|w)), z € C, |v) € V and |w) € W;
P2. ([v1) + |v2)) @ [w) = |v1) @ [w) + [v2) © |w), [v1), [v2) €V and |w) € W;
P3. |v) @ (|w1) + |w2)) = |v) ® |w1) + |v) @ |wa), [v) €V, |wy), |wy) € W.
If A and B are linear operators in' V. and W, respectively, then
(A® B)(jv) ® [w)) = AJv) ® Blw), (3.16)

where |v) € V and |w) € W. Naturally,

(A® B) (Z a;lv;) ® |wi>> = Z a; Alv;) @ Blw;), (3.17)

fora; € C, |v;) € V and |w;) € W.

Depending on the context, notations to tensor product of operators and vectors can
vary. The following notations will be used in this thesis. If A and B are linear operators

in V and W, respectively, then

We often use the abbreviated form |v) ® |w) =|v)|w) = |v,w) = |vw). Therefore, if A is

an operator acting in V' and B acting in W, the following equations are equivalent:
(A® B)(|Jv) ® |lw)) = Ay By |v)|w) = Ay By |vw). (3.19)

The inner product in V ® W is defined in a natural way, i.e., in terms of inner products

in V and W, respectively.

(Z a;|v) @ |wy), Z bj|v;> ® |w;>> = Za:bj(vﬂv;)(wﬂw;), (3.20)

7

where a;,b; € C, |vy), [v}) € V and |w;), [wj) € W. From the definition of inner product,
one can verify that if |v;) and |w;) are two orthonormal basis for V' and W, respectively,
then the product |v;) ® |w;) is an orthonormal basis for V@ W.

In terms of matrix representation, the tensor product between operators A and B is
equivalent to the Kronecker product between such matrices. Therefore, if the orders of
matrices A and B are m X n and p X ¢, respectively, then

ng
A\
e Y

[ALB ApB ... ALB|]
AnB AypB ... AQnB

A®B = mp. (3.21)

AmB AneB ... Au.B

L 47
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It is easy to verify that transposition and complex conjugation are distributive with
relation to the tensor product. Moreover, the tensor product: (a) of two unitary matrices
is a unitary matrix; (b) of two Hermitian matrices is a Hermitian matrix; (c¢) of two
positive operators is a positive operator; (d) of two projectors is a projector.

Finally, the notation [¢))®" is often used to denote the n-tensor product of [¢), e.g.,

V)% = [¢) @ [¥) @ [) = [yiph).

3.3 Quantum mechanics postulates

In this section we briefly review the four postulates of quantum mechanics. A more

detailed approach can be found in Nielsen and Chuang [2].

3.3.1 State space

The first postulate establishes the mathematical environment where quantum systems are

defined. Such framework is the already mentioned Hilbert space.

Postulate 1 Associated to any isolated quantum system is a complex vector space with
inner product, i.e., a Hilbert space, called state space of the quantum system. The state of
a quantum system is completely described by their state vector, which is a unitary vector

belonging to the state space of the system.

The simplest quantum system is the qubit, which is a reference to quantum bit. The

qubit belongs to a state space of dimension two. Therefore, any qubit can be written as
[¥) = al0) +b]1), (3.22)

where a, b are complex numbers and |0), |1) are defined in Equation (3.5). The postulate
imposes unitary norm to |1), (¢|¢)) = 1, which means |a|* + |b]? = 1.

In quantum information and computation, the states |0) and |1) are, intuitively, anal-
ogous to classical bits 0 and 1, respectively. The main, fundamental difference is that the
states |0) and |1) can coexist in a same system |[¢). This property is known as superpo-
sition: |¢) = a|0) +b|1). The linear combination ), c;[t);) is referred to a superposition

of states |1¢;) with amplitudes «;.

3.3.2 Evolution

The time evolution of a closed quantum system is the subject of the next postulate.
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Postulate 2 The evolution of an isolated quantum system is described by unitary trans-
formations. The system state |¢) at the time ty is related to |19), the system state at the

time ty, by means of a unitary operator U, which only depends on times t; and ts,

|th2) = Ulthr). (3.23)

The Austrian physicist Ervin Schrédinger, in his formulation of quantum mechan-
ics, described the continuos time evolution of a closed quantum system by a differential

equation. The continuos time version of Postulate 2 is presented below.

Postulate 2’ The time evolution of an isolated quantum system |i) is described by the

Schrodinger equation,

S dlY)
=t = HIi), (3.24)

where h is the Planck constant and H is an Hermitian operator known as the Hamiltonian

of the closed quantum system.

One can readily verify 2] that the two enunciates of Postulate 2 are equivalent.

3.3.3 Measurements

When a quantum system does not interact with the external world, its evolution is com-
pletely described by unitary operations. In order to obtain some information about the
system, the experimentalist should introduce an external device which makes the system
no longer closed, and thus not necessarily subjected to unitary evolution. Postulate 3

explains the behaviour of quantum systems when they are submitted to measurements.

Postulate 3 Measurements in quantum systems are described by a set of measurement
operators {M,,} acting on the state space of the system being measured. If the state of
the quantum system before the measurement is [1)), then the probability that outcome m

occurs 1s given by

p(m) = (| M, M, [). (3.25)
The state of the system after the measurement will be
M|
) = — ) (3.26)

MMy

Because probabilities sum to one, measurement operators must satisfy the completeness

equation

> Mi M, = 1. (3.27)
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Postulate 3 is the most general description of a quantum measurement. Many physi-
cists are unfamiliar with it, specially the experimentalists. The main reason is because
they do not know how to implement such measurements using physical devices. There are
two special cases of general measurements which are important to our work: projective

and Positive Operator-Valued Measurements (POVM).

Projective measurements. A projective measurement, also called a von Neumann
measurement, is described by an observable M, which is a Hermitian operator on the state

space of the system being measured. The observable has a spectral decomposition
M =" A\nPu, (3.28)

where P, is a projector onto the eigenspace of M with eigenvalue \,,. Measurement
outcomes correspond to eigenvalue indices m. When a system in a state |1)) is observed,

the probability of get outcome m s given by

p(m) = (Y| Bnlt). (3.29)

Given that the outcome m occurred, the state of the system immediately after the mea-

surement will be

(3.30)

Instead of given an observable to describe a von Neumann measurement, one can
simply construct a list of projectors P, satisfying > P, = 1 and P,P; = §;;F;, ie.,
projectors must be pairwise orthogonal. The corresponding observable is then M =
> mmPy,. We say that a quantum system is “measured in a basis |m)”, where |m) is
an orthonormal basis, when a projective measurement with projectors P, = |m)(m| is
performed.

As an example, let P, and P_; be two projectors such that

! 1] and Plz\—><—|:1[1 _1]. (3.31)

1
P = = —
= =5 | 5

Note that because Py + P_; = 1y, the set P = {P,, P_1} defines a quantum projective
measurement. Suppose we are measuring the state |0) using P. The probability of getting

outcomes +1 and —1 are, respectively,

p(+1) = @[+)(+|¥) =1/2 and  p(=1) = (| =)(—[¢) = 1/2. (3.32)
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Given that outcome +1 occurs, the post measurement state will be
Palo) _ 1
V(D) V2

Instead, if the experimentalist gets outcome —1, the post measurement state will be

(10) +11)). (3.33)

P,jo) 1

Ve(=1) V2
Alternatively, this is equivalent to perform a measurement of the observable (Pauli oper-
ator) X on the state |0), since X = (+1)Py1 + (—=1)P_;.

(10) = 11)). (3.34)

POVM Measurements. Consider a quantum measurement as described in postu-

late 3, with measurement elements {M,,}. Define
E,, = M! M,,. (3.35)

POVM measurements are defined by a set of POVM operators {E,,}, where E,, are pos-
itive operators satisfying Y, E, = 1. The probability of get outcome m given that the

state |1) is measured is
p(m) = (Y| En ). (3.36)
The set {E,,} is often called a POVM.

Differently than general and projective measurements, we are not able to predict
the state of the post measurement quantum system once a POVM measurement is per-
formed. Fortunately, most of the applications in quantum computation and information
theory does not care about post measurement states. Instead, we are often interested in
measurement outcomes and the corresponding associated probabilities. For example, in
quantum error correction theory, the received codeword is subjected to projective mea-
surements - which are a special case of POVM measurements; outcomes correspond to
error syndromes, which are used in order to choose unitary operations, whose application
on the received state can recovery the transmitted state. Figure 3.1 illustrates a POVM
measurement apparatus. When an unknown quantum state p is measured, a led turns on

to indicate the outcome.

3.3.4 Composite quantum systems

Individual quantum systems can interact to produce composite quantum systems. The
following postulate determines the state space of the composite system as a tensor product

of individual state spaces.



3.3. Quantum mechanics postulates 41

Figure 3.1: A POVM measurement apparatus. When a quantum state is measured using

aset {F1,...,Ey,}, aled is turned on indicating the outcome.

Postulate 4 The state space of a composite quantum system is the tensor product of the
state spaces of the indivudual physical systems. Moreover, if n systems are prepared in
the state |1;), then the joint system state is [1)1) ® [1hg) @ - -+ & |1),,).

We should use any of the following equivalent notations for representing composite
systems: [)) = [¢1) @ [¢2) ® - -+ @ |thn) = |1} [Y2) - - |n) = [P19h2 ... ¢n).

Postulate 4 allows the definition of one of the most interesting concepts in quantum
mechanics - entanglement. By definition, a composite systems is said to be entangled if
we can not write the state of the whole system as a tensor product of states in each of

the individual systems. For example, consider the two qubit state

_100) +|11)
This state is entangled, since there are no single qubit states |a) and |b) for which [¢) =

|a}[b).

The Bell basis is a set of four entangled states that forms a basis for the 4-dimensional

1) (3.37)

Hilbert space:

00y + |11)

|Boo) = — 5 (3.38)
_]01) + [10)

1Bo1) = — 5 (3.39)
~]00) —o1)

Br0) = — % (3.40)

B11) = 101 ~ 10}, (3.41)

V2

The Bell basis plays an important hole in quantum computation and information appli-
cations. States in the Bell basis are also known as Einstein, Podolsky and Rosen (EPR)

pairs.



42 Chapter 3. Fundamentals of Quantum Mechanics

3.4 The density operator

Until now the state of a quantum system has been represented by a unitary vector in an
appropriated Hilbert space. Such systems are said to be in a pure state . They suggest a
situation of minimum ignorance, where there is nothing more to be determined but the
system state itself. However, there are situations where such formalism does not apply.

In particular:

e with ensembles F, where the system can be in any of the pure states |¢1), [1s), ...,

with probabilities p1, po, .. .;

e in a situation where the system (called A) is part of a larger system AB which is in

a pure, entangled state W.

Quantum systems in any of the states above are said to be in a mized state. The

mathematical formalist to deal with these situations is the density operator:

Definition 13 (Density operator [2]) Assume that a quantum system is in some state
|1;) with probability p;. The density operator describing the state of the system is defined

as being
P = sz|¢z><¢z| (3.42)

The density operator if often called the density matrix of the system. Density operators

are well characterized matrices.

Theorem 6 (Characterization of density operators [2]) An operator p is a den-

sity matriz associated with an ensemble {p;, |;)} if and only if the following are true:
1. (Trace condition) tr|p| = 1, where tr|p] stands for the trace of the operator p;
2. (Positivity) p is a positive operator.

It is straightforward to see that the density matrix of a pure system is p = |¢)(¢],
which is cleary a trace one matrix. Given a density operator p of an unknown quantum
system, how can we infer whether the system is in a pure or mixed state? It turns out
that the system is in a pure state if and only if tr [p?] = 1. In fact, tr [p?] < 1 with
equality if and only if p is pure. Since this result plays an important role in this work, we
demonstrate it below.

If p is a density operator, then p = > \;|[¢;)(¢;| . Moreover

132 = Z)\f‘wzxd}z‘



3.4. 'The density operator 43

By the trace condition, >, A\; = 1. Since 0 < \; < 0 and A2 < )\, we have

] = & [ZAMW]
~ ZA%terwiH
v
<
_ 1 (3.43)

If p is a pure state, then p = |¢) (3| and

tr [p] = tr[[Y) (¥
= (YY)
- 1 (3.44)

Conversely, if p = >, Mi1h) (4] is a state such that tr [p?] = 1, then

dN=1

Such condition is verified if and only if Ay =1 and A;x; = 0. Therefore,

p = |Ur) (V|

is a pure state.
Vector and density matrix formalisms are equivalent. Hence, one can enunciate the

four postulates of quantum mechanics in terms of density operators.

3.4.1 Quantum mechanics postulates and density operators
We revisit the four postulates of Section 3.3.

Postulate 1: Associated with any quantum system is a complex vector space with inner
product (i.e., a Hilbert space), called state space of the system. The system state is
completely described by its density operator, which is a trace one positive operator
p acting on the state space of the system. If the quantum system is in the state p;

with probability p;, then the density operator of the system is p = ). pip;.

Postulate 2: The evolution of a closed quantum system is described by unitary trans-
formations. The state p; of the system at ¢; is related to the system state p, at time

to by means of a unitary operation U, which depends only on times ¢; and t5,

po =Up U, (3.45)
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Postulate 3: Measurements in quantum systems are defined by a set {M,,} of mea-
surement operators. Operators M, act on the state space of the system being
measured. Indices m are the measurement outcomes. If the system state rather

before the measurement is p, then the probability that the outcome m occurs is
p(m) = tr [M} M,,p] . (3.46)

The state of the system immediately after the measurement is

M,,pM
o= —LmPlm (3.47)
tr | MMy
Measurement operators satisfy the completeness relation
> Mi M, = 1. (3.48)

m

Postulate 4: The state space of a composite quantum system is the tensor product of
the individual state spaces. Moreover, if we have n quantum systems, namely 1 to
n, and the system i is prepared in the state p;, then the whole state of the composite

system is p; @ p2 @ -+ @ py,.

As we already pointed out, the formulation in terms of density operators is equivalent
to the formulation in terms of state vectors. For example, assume that the evolution of a
closed quantum system is described by the unitary operator U. If the system 1 is initially
in the state |¢;) with probability p;, then the post evolution state of the system will be
Ult;) with probability p;. Therefore, the evolution of the density operator will be

p =" pilt) (W] A > Ui iU = UpU". (3.49)

3.5 Conclusions

We have given in this chapter an overview of the main aspects of quantum mechanics,
which are important to the best understanding of this thesis. We have started by defining
a Hilbert space and linear operators. Then we defined Hermitian and unitary operators,
as well as tensor products. In the second part of the chapter, we presented the four
postulates of quantum mechanics based on the Heisenberg formulation and using the
Dirac’s notation.

In the next chapter, we introduce some capacities of quantum channels for transmitting

classical information, which is the main subject of this thesis.
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Quantum channel capacities

4.1 Introduction

Given a noisy quantum channel, the maximum amount of classical information per channel
use Alice can transmit to Bob is called the classical capacity of the quantum channel. As
we already discussed in Section 2.1, the capacity depends on the communication protocol
and on available physical resources, such as entanglement.

In this chapter we begin by introducing the von Neumann entropy and the mathemat-
ical framework to describe quantum channels. Then, we present an overview of quantum
channel capacities for transmitting classical information. We emphasize that all capacities
discussed here allow for an asymptotically small probability of error whenever code rates

approach the channel capacity, even if the best coding scheme is used.

4.2 Von Neumann entropy and quantum channels

4.2.1 The von Neumann entropy

The Shannon entropy measures the uncertainty associated with a probability distribu-
tion. Quantum states are described in a similar way, where density operators replace the
distributions. In this section we introduce the von Neumann entropy |2, pp. 510], which
is a generalisation of the Shannon entropy for quantum states.

The von Neumann entropy of a quantum state p is defined as

S(p) = —tr [plogp]. (4.1)

In Equation (4.1), the logarithm is taken to base 2. The logarithm of the operator
p is calculated by taking its spectral decomposition p = >, \;|¢;) (1], where logp =

45
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> log(Ni)|wi) (¢i|. Because \; are eigenvalues of p and {|¢;)} forms an orthonormal set,

the von Neumann entropy can be written as

Sto) = =t [ SN W] 3 log Al (42

= —tr [A;log Ai|¢);) (il (4.3)
= =) Alogh, (4.4)

where Olog0 = 0. In a Hilbert space of dimension d, the maximum of the von Neumann
entropy is logd, corresponding to the quantum state p = 1;/d. In this case, we have a
maximum ignorance about the state of the system, which we call of completely depolarized
system.

The relative entropy between two quantum states p and o is defined in a similar fashion

to the relative entropy between two probability distributions,

S(pllo) = tr [plog p] — tr [ploga]. (4.5)

As in the classical case, the relative entropy can be infinite. In particular, the relative
entropy is +oo if the kernel of o (the vector space spanned by eigenvectors of o with
eigenvalues 0) has a non-trivial intersection with the support of p, the vector space spanned
by eigenvectors of p with nonzero eigenvalues. Otherwise, the relative entropy is finite.
Moreover, the relative entropy is non-negative, S(p||o) > 0.

The von Neumann entropy has some interesting properties [2]:
(1) The entropy is non-negative. S(p) is zero if and only if p is a pure state.

(2) In a Hilbert space of dimension d, the entropy takes its maximum value logd. The
state for which S(p) = logd is p = 1;/d, and corresponds to the completely depo-

larized state.
(3) Assume that the composite system AB is in a pure state. Then S(A) = S(B).

(4) Suppose that p; are probabilities and p; have their support on orthogonal subspaces.
Then

S (ZPsz) = H(p) + ZPz‘S(Pz‘)- (4.6)

By analogy with the Shannon entropy, it is possible to define the joint and conditional
von Neumann entropies, as well as mutual information for composite systems. The joint

entropy S(A, B) of a composite quantum system AB is defined as

S(A, B) = —tr [p*P log p**] (4.7)
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where pAP is the density operator of the system AB. The conditional entropy and the

mutual information are defined respectively as

S(A|B) = S(A,B)—S(B), (4.8)
S(A:B) = S(A)+S(B) - S(A, B) (4.9)
— S(A)— S(A|B) = S(B) — S(B|A). (4.10)

An useful result is the subadditivity of the entropy [2, pp.515],
S(A,B) < S(A)+ S(B), (4.11)

with equality if and only if psp = pa ® pp. Besides properties already mentioned, the

von Neumann entropy has many others that can be found in texbooks [2].

4.2.2 Quantum channels

The time evolution of a closed quantum system p is completely described by unitary
operators. If the system remains closed, it is always possible to return to the initial system
state. Suppose that a closed quantum system interacts in some way with an open system,
here called environment . Additionally, suppose that after the interaction the system
becomes closed again. We denote by £(p) the state of the system after interaction. In
general, the final state £(p) can not be related by a unitary transformation to the initial
state p. The formalism used to deal with such situation is known as quantum operations.
A quantum operation is a map £ from the set of operators of the input space H; to the
set of operators of the output state space Hy with the following properties: (for simplicity
we consider Hy = Hy = H.) [2, pp. 367]

1. tr [E(p)] is the probability that the process represented by € occurs, when p is the
initial state. Thus, 0 < tr [E(p)] < 1 for any state p.

2. &€ is a convex-linear map on the set of density operators, that is, for probabilities p;,
& (ZPiPi) = sz‘g(/)i)- (4.12)

3. £ is a completely positive map. That is, if & maps density operators of system
H; to density operators of system Ha, then £(A) must be positive for any positive
operator A. Furthermore, (Z ® £)(B) must be positive for any positive operator B

on a composite system RH;, where Z denotes the identity map on R.

The proof of the next theorem can be found in Nielsen and Chuang [2, pp. 368].
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Theorem 7 A map & satisfies properties 1, 2 and 3 if
£(p) =Y EipEl. (4.13)

for some set of operators {E;} from the input Hilbert space to the output Hilbert space,
and Y, BT E; < 1.

Quantum operations for which ), EJ FE; is strictly less than the identity are non-trace-
preserving maps. This means a map that takes trace one density matrices into operators
such that tr [E(p)] < 1. The class of non-trace-preserving maps are particularly useful
to describe process in which extra information about what occurred in the interaction is
obtained by measurement.

To model a quantum channel, it is required that the map £ takes a valid density oper-
ator p into another valid one £(p). Hence, quantum channels form a class of maps called
completely positive trace-preserving quantum operations, which are completely positive

maps that preserve the trace of operators,

1 = tr[p] (4.14)
= t[&(p)] ] (4.15)
= tr |y EpE] (4.16)
= |> ElEp|. (4.17)

Since this relationship is true for all p, we must have

> EE =1 (4.18)
Equation (4.13) is known as the operator-sum representation of the quantum channel
E. Operators in {E;} are called operation elements.
As an example, consider the depolarizing channel. In a 2-dimensional Hilbert space,
this channel leaves a qubit intact with probability p and replaces the input state by a
completely depolarized state %IIQ with probability 1 — p:

E(p) :pp+(1—p)%]12. (4.19)

Cleary, the map above is not in the operator-sum representation. However, for any qubit

p;
L, p+XpX+YpY +ZpZ

2 4 ’

(4.20)
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where X, Y and Z are Pauli operators. Therefore, the operator-sum representation of

the depolarizing channel is

1 3 1-—
&)= (+30) o+ STEXX 4 VY 4 2p2) (1.21)

with operation elements given by

1 JI=p . JI= T—
{ Z+%n2, 5 px,‘/2 pY,‘/2 pz}. (4.22)

As we have seen, a quantum channel is defined for an input mixed state p. However,
we can always represent a pure state [¢) using the density operator formalism, p =
|1} (|. Therefore, the output of the channel for an input pure state will be E(|¢)(¢¥]) =
S, Ei|) (| El. For the sake of brevity, we should write £(|¢)) instead of &(|1b) (1)]).

4.3 Accessible information and the Holevo bound

Consider a classical source emitting symbols X = 1,...,n with probabilities pq, ..., p,.
Suppose that symbols emitted by the source are used by Alice to prepare quantum states
P1,- .-, pn. After preparation, Alice gives the quantum state to Bob, which is allowed to
perform individual measurements aiming to infer the symbol emitted by the source. Define
X and Y as being random variables representing the classical source and measurement
outcomes, respectively. The accessible information [3, 4, 5| is defined as the maximum
of the mutual information 7(X;Y’), where the maximum is taken over all measurement
schemes:

lpee = max I(X;Y). 4.23
max 1(X;Y) (123)

In classical information theory, the accessible information is not interesting, since in
principle it is always possible to distinguish between classical states (e.g. two voltage lev-
els). In contrast, quantum mechanics does not allow for perfectly distinguishing arbitrary
quantum states. For example, if Alice prepares two non-orthogonal states [¢)) and |p)
with probabilities p and 1 — p, respectively, then the accessible information is strictly less
than H,, where H, = plogp — (1 — p)log(1 — p) stands for the binary Shannon entropy.

A very useful result in quantum information theory is the Holevo bound.

Theorem 8 (Holevo bound [18]) Consider a quantum memoryless source and an en-
semble {p;, p;} of quantum states. Suppose that the source emits p; with probabilities p;.

Define
x = 5S(p) = 3 _piS(p0), (4.24)
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where p =Y. pip;. Then,
Lo < x. (4.25)

The real number y is known as Holevo quantity, and it is an upper bound on the
accessible information. In terms of POVM measurements, the Holevo bound can be
enunciated in the following way:

Theorem 8 (Holevo bound [18]) Suppose that Alice prepares states p,, where X =
1,...,n, with probabilities py,...,p,. Alice gives Bob a particular state to be measured
according to a POVM {Ey} = {FE1,...,E,}. Measurement outcomes are represented by
the random variable Y. The Holevo bound asserts that, for any measurement chosen by

Bob:
I(X;Y) < S(p) = Y paS(pn), (4.26)

where p = pup,. The equality holds since all quantum states p, commutes |2, pp.
77).
The C1(€) capacity of a quantum channel, often called one-shot capacity, is defined

below.

Definition 14 ( Cy;(€) capacity [18, 19]) Let £ be a quantum channel as stated in
Section 4.2.2. The Cy 1 capacity of € is defined as the mazimum over all input ensembles
of the accessible information of the corresponding output ensemble,
0171(5) = max ]accouta (427)
{pz.,pe}

where Iy, 15 the accessible information of the ensemble {E€(p.), ps}-

The information transmission protocol of the C ; capacity has three constrains: en-
tangled states are not allowed between two or more uses of the channel; measurements
at the channel output must be individual; and adaptive measurements are denied, i.e.,
Bob is not allowed to perform a “partial” measurement over the state, use such result to
choose the next measurement and return to complete the first measurement. Adaptive
measurements are proved to improve the C ; capacity, as described in Section 4.5. The
first “1” in the index of C; refer to the first restriction on the communication protocol,

whereas the second “1” is due to the second restriction.

4.4 The Holevo-Schumacher-Westmoreland theorem

Consider the problem of sending classical messages randomly chosen from a set {1, ..., 2"}
by means of a quantum channel. Differently from the first assumption of the communica-

tion protocol of the C ; capacity, Alice is allowed to prepare codewords as tensor products
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of quantum states p; ®ps®. .., where each of the states py, po, . .. is chosen from an ensem-
ble {p;, pi}. The notation C (&) stands for the classical capacity of a quantum channel
in a scenario where Alice can not use entangled states between two or more uses of the
channel but Bob is allowed to perform collective measurements at the channel output.
This means that Bob can wait for a number of states and measure all the states together
(the “o00” in the second index of C »(€)). The C} (&) capacity is the quantum analogous
of the Shannon ordinary capacity.

The problem of finding the C »(€) capacity was studied simultaneously and indepen-
dently by Holevo [7] and by Schumacher and Westmoreland [8]. The following result is
known as the HSW theorem.

Theorem 9 (Holevo-Schumacher-Westmoreland) The C (€) capacity of a quan-

tum channel € is

Clo(€) = max [S (5 (ZPsz)) - Zpis(g(pi>>] : (4.28)

{pipi}
The mazimum is taken over all ensembles {p;, p;} of input quantum states.

The proof of the theorem makes use of random coding and typical subspaces. A
detailed demonstration can be found in Nielsen e Chuang |2, pp. 555].

As an example, consider the 2-dimensional depolarizing channel already discussed in
Section 4.2.2. Consider an ensemble {p;, [¢;)}. Then

1
E(3)(Wsl) = pltb (sl + (1 = p) 5. (4.29)
The quantum state £(|1;)(¢;]) has eigenvalues (1 + p)/2. Therefore,

1+p

ste(u) ) = 1 (52 (1.30)

which does not depend on [¢);) at all. Hence, maximization of Equation (4.28) can be done
by maximizing the entropy S <ZJ 5(|1/1j)(1bj|)). Note that if {]1;)} is a set of orthonor-
mal states, then >, E(|v)(¥;]) = pi(X2; (i) (hil) + (1 — p)Iz = Ty, which maximizes
S (Z; 5(|¢g><¢]|)) Therefore, the HSW capacity of the qubit depolarizing channel is
given by

1+p

Choo(E) =1—H, (7> . (4.31)
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4.5 The adaptive capacity

The adaptive capacity of a quantum channel, defined by Shor [6], is derived from the
(1 capacity by varying the communication protocol. In his paper, Shor illustrated the

adaptive capacity using the lifted trine states

To(a) = V1 —al000) + /a|001), (4.32)

1 3
Ti(a) = —5\/1 — «]000) + gvl — a|010) + /a|[001), (4.33)

1 V3
Tr(a) = —5\/1 — «|000) — 7\/1 — a|010) + /a|001). (4.34)
The communication protocol is similar to the C} 1, except that Bob can perform adap-
tive measurements on the received states: he makes a measurement on one state which
only partially reduces the quantum state, uses the outcome of this measurement to make
intervening measurements on other states, and returns to make a further measurement
on the reduced state of the original signal (the last measurement may depend on the

outcomes of intervening measurements).

The information rate for a given encoding and measurement strategies is the mutual
information between Alice’s prepared codewords and Bob’s measurement outcomes at the

channel output, divided by the number of states used (channel uses) in the codeword.

Definition 15 The adaptive capacity Cy 4 is defined to be the supremum of the informa-
tion rate over all encodings and all measurement strategies that use quantum operations

local to the separate states and classical computation to coordinate them.

In his paper, Shor demonstrated that the adaptive capacity considering the lifted trine
states is strictly greater that the C; capacity and less than the C) o, capacity for o > 0.
Moreover, it was shown that for any ensemble of two pure states at the channel input,

the adaptive capacity is equal to the (' ; capacity.

4.6 Entanglement-assisted capacity

Entanglement is an amazing feature of quantum mechanics. Several protocols and appli-
cations in quantum information and computation use entanglement as a physical resource.
Maybe the most interesting of such applications are teleportation and superdense cod-
ing |2, pp. 26]. In both cases, an maximally bipartite entangled state (EPR pair) is
produced, possibly by a third part, and shared along two participants, Alice and Bob.
Suppose that Alice has an unknown and arbitrary qubit state |¢)) she aims to delivery

to Bob. Although Alice owns her part of an EPR pair, Alice and Bob do not have a
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quantum channel in order to communicate the state |1)). The teleporting protocol makes
use of local measurements and a noiseless classical channel among the two participants
to teleport the Alice’s state [¢0) to Bob. The only thing Alice should do is perform a
collective measurement in the Bell basis on the state i) and her part of the EPR pair.
Then, Alice sends Bob the classical two bits corresponding to measurement outcomes. In
order to get the qubit |¢)), Bob only needs to apply one of the four Pauli operators on
his part of the EPR pair depending on the received bits. The counterpart of teleporting
is superdense coding. Given that Alice and Bob have a shared EPR pair, it is shown
that Alice can send Bob two classical bits coded into one qubit state. Straightforward we
conclude that: (a) shared entanglement can increase the quantum capacity of a noiseless
classical channel from zero to half qubit per channel use; and (b) it can duplicate the

classical capacity of a noiseless quantum channel.

Bennett and his collaborators |9, 10] have demonstrated that shared entanglement
can increase the classical capacity (HSW capacity) of noisy quantum channels. The
entanglement-assisted capacity Cr (&) of a noisy quantum channel is defined to the asymp-
totical classical information transmission rate in a scenario where an arbitrary amount of

entanglement is shared between the sender and the receiver.

Definition 16 (Entanglement-assistided capacity [9]) The entanglement-assisted ca-

pacity of a quantum channel £ is

Cu(€) = max S(p) + 5(&(p)) — S((E@L)(Dy)), (4.35)

pEHin

where p € Hyy, is a density matriz over the input states. In Equation (4.35), ®, is a pure
state over the tensor product of state spaces Hy, ® Hg such that trg [®,] = p. Hiy, is
the input state space and Hg is a space of reference. The third term on the right site of
Equation (4.35), S(E®I)(P,)), denotes the von Neumann entropy of the purification [2,
pp. 109] ®, of p over the reference system Hp, half of which (H;,) has been sent through
the channel £ while the other half (Hr) has been sent through the identity channel (this
corresponds to the portion of the entangled state that Bob holds at the start of the protocol).

The quantity being maximized in Equation (4.35) is denoted quantum mutual infor-
mation, which is a generalisation of the Shannon mutual information to quantum sys-
tems [20]. In order to transmit information using the protocol described above, Alice and
Bob “consume” entanglement. In general, S(p) qubits of entanglement (i.e., EPR pairs)

per channel use are necessary to reach the entanglement-assisted capacity.
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4.7 Conclusions

We have presented in this chapter a brief overview of classical capacities of quantum chan-
nels. We have first explained the one-shot capacity C;,. After that, we have discussed
the Holevo-Schumacher-Westmoreland capacity, which is a generalisation of the ordinary
Shannon capacity. Finally, we presented the adaptive and entanglement-assisted capac-
ities. At the beginning of the chapter, we shortly introduced the von Neumann entropy
and quantum operations, which is a formalism to model interactions of closed quantum
system with the environment. The next chapter is devoted to the zero-errro capacity of

classical channels.



Chapter 5

Zero-error information theory

5.1 Ordinary capacity of classical channels

Consider a system A hereafter referred to as Alice, and a system B hereafter referred
to as Bob. We say that Alice communicates with Bob when the physical acts of Alice
have induced a desired physical state in Bob. As this transfer of information is a physical
process, it is subject to the uncontrollable ambient noise and imperfections of the physical
signalling process itself. The communication is successful if the receiver Bob and the
transmitter Alice agree on what was sent.

The quantitative analysis of the above physical signaling system is made using a math-
ematical framework introduced by Claude E. Shannon in 1948 [13]. This framework in-
cludes a mathematical analog of the signaling systems shown in Figure 5.1. The encoder
maps source symbols from some finite alphabet into some sequence of channel symbols,
afterwards called codeword, which is sent through the channel. The channel produces an
output sequence which is random but has a probability distribution that depends on the
input sequence. From the output sequence, we attempt to recover the transmitted mes-
sage. Two input sequences are said to be confusable when these sequences induce the same
output sequence in the output. Shannon showed that we can choose a “non-confusable”
subset of input sequences in a manner that with high probability, there is only one highly
likely input that could have caused the particular output. Essentially, this means that we
can reconstruct input sequences at the output with negligible probability of error. The
maximum rate at which this can be done is called the ordinary capacity of the channel.

It is convenient to define formally a discrete memoryless channel.

Definition 17 (Discrete memoryless channel [20]) Consider an input alphabet X
and an output alphabet Y. A classical discrete memoryless channel (DMC) C : X — Y,

95
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W Xn yn 1974
Message p (y|x) Estimate

of message

Figure 5.1: A classical communication system.

denoted by (X, p(y|x),Y), is defined by a stochastic matriz whose rows are indexed by the
elements of the finite set X, while the columns are indexed by those of another finite set
Y. The (x,y)th element of the stochastic matriz is the probability p(y|x) that y € Y is
received when x € X is transmitted. The channel is said to be memoryless if the probabil-
ity distribution of the output depends only on the input at that time and is conditionally

independent of previous inputs or outputs.

Definition 18 (Information capacity) The information capacity of a classical discrete

channel is given by
C=maxI(X;Y), (5.1)

p(z)
where the mazximum is taken over all input distributions p(zx). I(X;Y) stands for the
mutual information between random variables X andY representing the input and output
of the DMC, respectively.

Example 1 (Binary erasure channel) The Binary Erasure Channel (BEC) is illus-
trated in Figure 5.2. When a bit is transmaitted through this channel, it is received un-
changed with probability 1 — p or it is lost (erased) with probability p. The BEC has two
inputs X = {0,1} and three outputs Y = {0, A, 1}, where the symbol A represents an

erasure. The capacity of the binary erasure channel is calculated as follows:

C = max[(X;Y)

p(z)

= max [H(Y) — H(Y|)
p(z

= m(aicH(Y) — H,, (5.2)
p(z

where H,, stands for the binary entropy . The output distribution p(y) depends on the
input distribution p(x) for X in the following way: Let Pr (X = 0) =0. Then Pr (Y =
0)=(1—-p), Pr(Y=A)=pand Pr(Y =1)=(1—p)(1 —9). Therefore,
¢ = maxH((1-p)d,p,(1 -p)(1-9)) - H,
= m?XHp +(1—-p)Hs; — H,
= mgxx(l —p)Hs
= 1-—p, (5.3)
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Figure 5.2: A binary erasure channel (BEC) with erasure probability p.

where the capacity is reached by 6 = 1/2.

Example 2 (The G5 channel) The discrete memoryless channel of Figure 5.3, denoted

by Gs, will play an tmportant role in the study of the zero-error capacity of DMC in

Section 5.2. This channel models a situation in which an input symbol i € {0,...,4} is

either received unchanged at the output with probability % or it is transformed into the next

symbol i +1 mod 5 with probability % The ordinary capacity of the Gs DMC' is given by
C(Gs) = max[H(X)— H(X|Y)]

p(z)

= logh — log?2
= logh/2, (5.4)

where the mazimum is achieved by a uniform probability distribution over the input.

1 *1
2 2
3 3
4 e * 4

Figure 5.3: The G5 channel.

In order to enunciate Shannon’s coding theorem, we need to define an (M, n) code for
the a DMC:

Definition 19 An (M, n) block code for a DMC (X, p(y|z),Y) is composed of the follow-

mg:

1. A set of indexes {1,..., M}, where each index is associated with a classical message.
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2. An encoding function

X" {L,..., M} — X",

yielding codewords x' = X"(1),...,xM = X™(M). A codebook is the set of all

codewords.

3. A decoding function
g:Y'—=A{1,...,M},

which maps each received codeword on a message in the set {1,..., M}.

The error probability of this code is P. = Pr (g(Y™) # i|X" = X"(4)), and its infor-
mation transmission rate is R = %

guarantees the existence of codes attaining the channel capacity with an arbitrary small

log M bits per symbol. The channel coding theorem

probability of error.

Theorem 10 (Channel coding theorem [20]) All rates below capacity C are achiev-
able, namely, there exists a sequence of codes such that the error probability goes asymp-
totically to zero as the code length tends to infinity. Conversely, any sequence of codes

with an asymptotically small probability of error must have a rate R < C.

5.2 The zero-error capacity

The channel coding theorem, presented in Section 5.1, asserts that even the best coding
scheme attaining the ordinary capacity C' allows for an asymptotically small but non-
vanishing probability of error. From now, we will be interested in the case where no
transmission errors are permitted.

Consider a classical discrete memoryless channel (X, p(y|x),)). Symbols in the input
and output alphabets will be hereafter called input and output symbols, respectively.

Shannon [12]| defined an error-free code as follows:

Definition 20 An (M,n) error-free code for the DMC (X, p(y|x),Y) in Figure 5.1 is
composed of the following:

1. A set of indexes {1,..., M}, where each index is associated with a classical message.

2. An encoding function

X" AL, M} — X

yielding codewords x* = X"(1),...,x™ = X"(M). The set of all codewords is called

a codebook.
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3. A decoding function
g: Y —=A{1,..., M},
which deterministically assigns a guess to each possible received codeword with the

following property:
Pr(g(Y") #ilX"=X"(i))=0Vie{l,...,M}. (5.5)

The only difference between Definitions 20 and 19 is the Equation (5.5) in Definition 20,
which guarantees the nonexistence of decoding errors. In the zero-error context, we are
particulary interested in symbols that can be fully distinguished at the channel output.

They are called non-adjacent symbols.

Definition 21 (Adjacency) Consider a DMC (X, p(y|x),Y). Two input symbols x;, z; €
X are said to be adjacent (or indistinguishable) if there exists an output symbol in Y which
can be caused by either of these two, i.e., there is an y € Y such that both p(y|z;) and

p(y|z;) do not vanish. Otherwise, they are said to be non-adjacent (or distinguishable).

Consider the sequence x = z125 . .. x, being transmitted through a DMC. The output

sequence y = 1%z . . . Yp is received with probability

n

p(ylx) = HP(?JJ%) (5.6)

i=1

If two sequences x’ and x” can both result in the sequence y with positive probability,
then no decoder can decide with zero probability of error which of the two sequences
has been transmitted by the sender. Such sequences will be called indistinguishable or
adjacent at the receiving end of the DMC. In fact, if all input symbols in X are adjacent
to each other, any code with more than one codeword has a probability of error great
than zero. This is equivalent to say that x’ and x” are distinguishable if and only if there
exists at least one i, 1 < i < n, such that x} and z} are non-adjacent, as illustrated in
Figure 5.4.

r o / /
X = T|T5... Ty T,

" n_1n "

o "
X' = 1Ty ... Ty T

Figure 5.4: Two distinguishable sequences x’ and x”: for at least one i, 1 < i < n, the

input symbols 2 and 2 are non-adjacent.

It is useful to think of probability distributions p(y|z) and p"(-|x) as vectors of di-

mension |X| and |X|", respectively. Using this approach, we can restate the statement
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given earlier by saying that two sequences x’, x” € X™ are distinguishable at the receiving
end of the DMC channel if and only if the corresponding vectors p™(-|x’) and p"(-|x") are

orthogonal.

Definition 22 (Zero-error capacity.) Define N(n) as the mazimum cardinality of a
set of mutually orthogonal vectors among the p"(:|x), x € X™. The zero-error capacity of
the channel (X, p(y|x),Y) is given by
1
Cy = limsup— log N(n). (5.7)

n—oo n

Intuitively, Cy is the bit-per-symbol error-free information transmission rate capability of

the channel.

The number N(n) in Equation (5.7) is super multiplicative, i.e.,
N(n+m) > N(n)- N(m). (5.8)

To verify this, let x" and x” be sequences of length n and m, respectively. Then, there exist
at least N(n) - N(m) non-adjacent sequences of length n + m, obtained by concatenating
sequences of length n with sequences of length m. Hence, we can use the Fekete’s lemma
(see [28, pp. 85|) to demonstrate that the limit superior in Equation (5.7) is a true limit

and actually coincides with the supremum of numbers + log N(n).

2
0
3
1
4 ™ 'y

w ]
—
o
~

(b)

Figure 5.5: Some discrete memoryless channels. Since we are interested on adjacency

relations, we omit the transition probabilities.

Shannon pointed out that the zero-error capacity of a DMC (X, p(y|x),)) depends
only on which symbols in X are adjacent to each other. This is a major difference between
the error-free capacity and the ordinary capacity of Definition 18, since in the latter the

capacity depends on the choice of the probability distribution of the input symbols X. It
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is easy to demonstrate that a DMC (&X', p(z|y), )) has a non-vanishing error-free capacity
if and only if there exist at least two non-adjacent symbols in X. Figure 5.5 shows some
discrete memoryless channels. For the binary symmetric channel with 0 < p < 1, the two
input symbols are adjacent yielding Cy = 0. Both channels in Figures 5.5(b) and 5.5(c)
have at most two pairs of non-adjacent symbols. For example, if we consider codewords
of length one, we can perform error-free communication by choosing to send only symbols
{0,2} or {1,3} of the channel in Figure 5.5(b). In this case, the rate of the code is
log 2 = 1 bit per channel use.

One might ask whether we can increase the transmission rate by varying the code
length or whether Cy = log N(1). It turns out that we can. Consider the sequences
{00, 12,24, 31,43} of length 2 for the G5 DMC of Figure 5.5(c). Clearly, these sequences
are pairwise distinguishable at the channel output and hence are codewords of an error-
free code of length two. The ordinary capacity of G5 was calculated in the Example 2.

Therefore, the zero-error capacity of G5 is lower and upper bounded by
1

These bounds were given by Shannon in 1956, and the problem of finding the capacity
Co(G5) remained open during twenty years until Lovasz [21] gave a brilliant solution. He

showed that the Shannon’s lower bound was tight
1
CO(G5) = 5 10g D.

We demonstrate such result in Section 5.3, where we introduce the Lovasz 6 function.
As we can see, the calculation of the zero-error capacity is a very difficult problem

even for simple channels. Although some methods we discuss in the next sections enable

the computation of the zero-error capacity of particular classes of discrete memoryless

channels, the general problem remains wide open.

5.2.1 The adjacency-reducing mapping

The calculation of the zero-error capacity of simple channels can be done using the notion
of adjacency-reducing mapping. This means a mapping f : X — X with the property
that if z; and x; are not adjacent in the channel, then f(z;) and f(z;) are not adjacent.
Given any error-free code for a channel, we can always apply such a mapping symbol by
symbol to the code in order to obtain another error-free code, since f never produces new
adjacencies. Suppose that for a given DMC the mapping f takes all symbols in X onto
a subset X’ C X of the symbols no two of which are adjacent. Clearly, there are at least

|X’|™ n-length distinguishable sequences for this channel. However, any error-free code of
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length n has at most |X’|™ sequences, given that the application of f on this code leads
to a new error-free code whose alphabet contains only |X’| symbols. These observations

imply the following theorem enunciated by Shannon:

Theorem 11 Let (X, p(y|x),)) be a discrete memoryless channel. If all symbols in X
can be mapped by an adjacency-reducing mapping f into a subset X' C X of non-adjacent

symbols, then Cy = log|X”|.

As an example, consider the DMC illustrated in Figure 5.5(b). Let f be a mapping
with f(0) =0, f(1) =0, f(2) =2 and f(3) = 2. It is easy to see that f is an adjacency-
reducing mapping satisfying the condition of Theorem 11, where X’ = {0, 2}. Therefore,
the zero-error capacity of the channel is Cy = log |X’| = 1 bit per channel use. It is
easy to see that we cannot construct an adjacency-reducing mapping f for the Gs. In his
paper, Shannon used this theorem to find the zero-error capacity of all discrete memoryless
channels up to five input symbols, except for the G5 channel. All DMCs with six input
symbols were analyzed and their zero-error capacity computed, except for four channels
whose capacity can be given in terms of Cy(Gs).

In the next section, we show how a graph (and its complement) can be associated with

a discrete memoryless channel. Theorem 11 is restated in a graph-based language.

5.2.2 Relation with graph theory

The problem of computing the zero-error capacity of discrete memoryless channels can be
reformulated in terms of graph theory. Given a DMC (X, p(y|z),)) we can construct a
characteristic graph G as follows. Take as many vertices as the number of input symbols
in X and connect two vertices with an edge if the corresponding input symbols in X" are
distinguishable. Shortly, we can say that the vertex set of G is V(G) = X and its set of
edges E(G) is composed of pairs of orthogonal rows in [p(y|x)]. The characteristic graph
of channels in Figure 5.5 are shown in Figure 5.6.

In graph theory, the order of a graph is the cardinality of its vertex set. A clique is
defined as any complete subgraph of G, and the clique number [29] of a graph G, denoted
by w(G), stands for the maximal order of a clique in G. It is easy to see that the maximum
number of non-adjacent symbols in G is w(G), Namely N(1) = w(G). For example, the
pentagon graph G5 of Figure 5.6(c) has the clique number w(G5) = 2. Note that the
vertex set of any clique corresponds to a set of distinguishable symbols in the channel.

Define the n-product G™ of the graph G as a graph for which V(G") = &A™ and
{x/,x"} € E(G") if for at least one i, 1 < ¢ < n, the ith coordinates of x' and x”
satisfy {zf, 27} € E(G). Such product of graphs, often called Shannon’s product, has

177
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0 [ ] [ ] ]_
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Figure 5.6: Characteristic graphs G of discrete memoryless channels in Figure 5.5. The
vertex set of GG is the set of input symbols X and its set of edges corresponds to all pairs

of distinguishable symbols in X.

the following meaning: the vertex set of G™ is composed of all n-length sequences, and
we connect the vertices x’ and x” if the corresponding sequences are distinguishable, as
illustrated in Figure 5.4.

It is clear that the number of distinguishable sequences of length n is the clique number
of G", i.e, N(n) = w(G™). Moreover, the sequences in the vertex set of the corresponding
complete subgraph define a n-length error-free code for the channel. Therefore, the zero-

error capacity of the DMC (X, p(y|z),Y) can be rewritten as

1
Co = sup - logw(G™). (5.10)

In graph theory, the value of Cy in Equation (5.10) refers to the Shannon capacity of the
Graph G, and is denoted by Cy(G).

The chromatic number of a graph G, denoted by x(G), is the smallest number of
colours necessary to colour the vertices of a graph so that no two adjacent vertices have
the same colour. More formally, x(G) is the smallest cardinality of a set K for which
there exists a function f : V(G) — K with the property that adjacent vertices are
mapped into different elements of K. Let (X, p(y|x),)) be a DMC for which the clique
and the chromatic numbers of the characteristic graph G are the same, w(G) = x(G).
For any colouration of G, if we define the set X’ in Theorem 11 as being the vertex set of
the maximal clique in GG, then we can always construct an adjacency-reducing mapping f
fulfilling the requirement of the theorem: all symbols whose vertices share a given colour
are mapped into the corresponding symbol in X’ that own such colour. Because different
colours are associated with non-adjacent symbols, such mapping ensures that any two non-
adjacent symbols in X will be mapped into non-adjacent ones in X’. Moreover, because
symbols in X’ correspond to the vertex set of the maximal clique, they are mutually

distinguishable. Therefore, Theorem 11 can be entirely reformulated.



64 Chapter 5. Zero-error information theory

Theorem 11’ Let (X, p(y|z),Y) be a discrete memoryless channel and G the correspond-
ing characteristic graph. If w(G) = x(G) then Cy = x(G).

The best known graphs for which w(G) = x(G) are the so-called perfect graphs [29].
A perfect graph is a graph G such that for every induced subgraph of G, the chromatic
number equals the clique number. The class of perfect graphs includes bipartite graphs,
interval graphs and wheel graphs with an odd number of vertices. The smallest vertex
set on which a graph exists with w(G) # x(G) has five vertices, and corresponds to the
pentagon graph G5 already discussed in the previous section.

Although w(G) = x(G) is a sufficient condition for w(G") = [w(G)]", Lovasz [21]
showed that it is not a necessary condition. An example is the complement of the Petersen
graph, which is isomorphic with the Kneser graph K G5 2. However, it is unknown whether
the equality logw(G’) = Co(G’) for every induced subgraph G’ C G implies that G is
perfect.

Originally, Shannon used a different but equivalent approach for relating the zero-error
capacity with elements of graph theory. For a given DMC (X, p(y|z),)), we can associate

an adjacency matrix [A;;] as follows:

1 if z; is adjacent to z; orif ¢ = 5
Ay = (5.11)
0 otherwise,
where z;, z; € X. If two channels give rise to the same adjacency matrix, then it is obvious
that an error-free code for one will be an error-free code for the other and, hence, the zero-
error capacity Cp for one will also apply to the other [12|. Such approach considers the
adjacency structure of the adjacency matrix to construct a linear graph, called adjacency
graph, which is the complementary of the characteristic graph. Therefore, both graphs
have the same vertex set X and two vertices in the adjacency graph are connected by an
edge if and only if they are not connected in the characteristic graph. Equivalently, an
edge connects two vertices in the adjacency graph if and only if the corresponding input
symbols in X are adjacent. In this case, we say that two vertices in the adjacent graph
are independent if the corresponding symbols are non-adjacent in the channel. Clearly,
there are N (1) independent vertices in G. Figure 5.7 shows the adjacency graphs of the

discrete memoryless channels of Figure 5.5.

Shannon [12] proved the following bounds on the zero-error capacity:

Theorem 12 Let (X,p(y|x),Y) be a DMC. The error-free capacity is bounded by the
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Figure 5.7: Adjacency graphs of discrete memoryless channels corresponding to the chan-
nels of Figure 5.5. These graphs are construct by taking as many vertices as the number
of symbols in X', and connecting two vertices if the corresponding symbols are adjacent

in the channel.

inequalities:

—logmin » A;;jp(x;)p(z;) < Cy < min C, (5.12)
p(zi) 7 p(ylz)

where C' is the ordinary capacity of any discrete memoryless channel with stochastic ma-
triz p(y|x) giving rise to the adjacency matriz A;;; p(x;) stands for the input probability

distribution.

The proof of the theorem can be found in [12]|. Although the upper bound is fairly obvious,

it has an interesting formulation in graph theory [30] according to which
Co < log X*(G), (5.13)

where x*(G) is the fractional chromatic number of the adjacency graph G, a well-studied
concept in polyhedral combinatorics [31] defined as follows. We assign nonnegative weights
p(z;) to the vertices X of G such that

> plx) <1

z;€C

for every complete subgraph C' in . This assignment is called a fractional coloring.
The fractional chromatic number is the maximum of }__ _, p(z;), where the maximum is
taken over all fractional colorings of G. Actually, the fractional chromatic number is the
solution of the real-valued relaxation of the integer programming problem that defines the
chromatic number of G [26].

Suppose that a DMC (X, p(y|z),)) gives rise to an adjacency graph G such that G
can be covered by N(1) cliques. By this we mean that there are N (1) cliques in G, namely
Ch,...,Cnq)y, in a way that their vertex sets, V(C),...,V(Cnq), form a partition of
V(G). Theorem 11 can be rewritten as [21].
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Theorem 11” Let G be the adjacency graph of a discrete memoryless channel (X, p(y|z), V).
If G can be covered by N(1) cliques, then Cy =log N(1).

Figure 5.8 illustrates Theorem 11”. The maximum number of independent vertices in
the adjacency graph of Figure 5.8(a) is N(1) = 2, e.g., 0 and 3. An adjacency-reducing
mapping f for the corresponding DMC takes f(0) = f(1) = f(2) =0and f(3) = f(4) = 3.
This mapping can be readily obtained by associating 0 and 3 with vertices of the order-2
and order-3 cliques, respectively. The cube graph has N(1) = 4, and can be covered by
four clique of order 2 as illustrated in Figure 5.8(b). Therefore, the zero-error capacity of

the equivalent DMC is Cy = log4 = 2 bits per channel use.

Figure 5.8: Graphs that can be covered by a number of cliques. (a) An adjacency graph
with two independent vertices. This graph can be covered by two cliques and therefore
there is an adjacency reducing map satisfying the requirement of Theorem 11. (b) The

cube graph can be covered by four cliques of order two.

5.3 Lovasz theta function

The redefinition of the zero-error capacity in terms of graph has yielded interesting con-
structions in combinatorics and graph theory. An example of such constructions is the
Lovasz theta function #. The functional # has many application in computer science
and combinatorics. Particulary, the 6 function is a polynomially computable functional
sandwiched in between two NP-complete problems in graph theory: the clique and the
chromatic numbers of a graph [22].

The very nice formulation we present in this section was used to compute the zero-
error capacity of the pentagon graph. Such graph plays a crucial role in our study of the
zero-error capacity of quantum channels. More precisely, we studied a quantum channel
for which its zero-error capacity is given by the capacity of the pentagon graph G. Most

of the following development can be found in [21].
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Given a DMC (X, p(y|z),Y) and the corresponding adjacency graph G with vertex set
X, an orthonormal representation of G is a set of |X| vectors v,, in an Euclidian space,
such that if z;, x; € X are non-adjacent, then v,, and v, are orthogonal. The value of
an orthonormal representation is defined as

) 1

where the minimum is taken over all unitary vectors c. The vector c yielding the minimum
is called the handle of the representation. The Lovész 6(G) function of a graph is defined
as the minimum value over all representations of G, and a representation is called optimal

if it attains this minimum value. Lovész proved the following result:

Theorem 13 ([21]) The zero-error capacity of a DMC (X, p(y|x),Y) is upperbounded
by the logarithm of the 0 function of its adjacency graph, G:

Co <logb(G). (5.14)

Proof. First, we should note that if G and H are two graphs, and GH is their product
as defined in Section 5.2.2, then 0(GH) < 6(G)0(H). Let {v,;} and {u,~} be optimal
orthonormal representations of G and H with handles ¢ and d, respectively. It is easy
to see that {v, ® uwy} is an orthonormal representation of GH and ¢ ® d is a unitary

vector. Therefore,

1

max 2

5,25 ((C ® d)T(Vx; ® ux}’))
1 1

= maXx max

z (CTVmi>2 :1:3" (dTux3,)2

— 0(G)0(H).

O(GH) <

By definition, if G is an adjacency graph and {v,,} is an optimum representation with
handle ¢, then there are N(1) vectors {vy,,..., Vs, } pairwise orthogonal in this rep-

resentation, where N (1) is the maximum number of independent vertices in G. Hence,

N(1)

1=|lc||*> Z v, )? > m (5.15)

Equation (5.8) implies N(1)" < N(n). Finally,

Co= sup log N(n) < sup log 0(G") < sup log@(G)" = log0(G).



68 Chapter 5. Zero-error information theory

Figure 5.9: A spherical triangle delimited by the vectors vy, vy and the handle c. In a
plane normal to the handle, the angle between two consecutive projections v/;, v/ 11 mod 5

of the vectors v; is 27 /5. The spherical angle ZA is the angle between the vectors v';
and V'3, i.e., ZA =47/5 .

Theorem 13 allows of the calculation of the zero-error of the pentagon graph. Re-
member that Shannon was only able to give lower and upper bounds for the capacity,
5logh < Co(G5) <log 3.

Construct an orthonormal representation for the pentagon G5 of Figure (5.7)(c) as fol-
lows. Consider an umbrella whose handle and five ribs have unitary length. Let vg, ..., v4
be the ribs and c the handle, as vectors oriented away from their common point. Open
the umbrella to the point where the maximum angle between the ribs is 7/2. Note that
the angle between two consecutive ribs must be the same, and that the angle between
alternate ribs must be 7/2. It is clear that {vy, ..., v4} forms an orthonormal representa-
tion of G5. Figure 5.9 illustrates this scenario, at which we plot the handle ¢ and the two
orthogonal vectors vi and vs. The extremities of the six vectors are points on a unitary
three-dimensional sphere centered in 0, and the points defined by the handle and any two
alternated vectors delimit a spherical triangle identical to the triangle ABC' of Figure 5.9.

We are interested in the value of the representation, i.e.,

. 1
T 02524 (v, )2
Note that c’v; stands for the cosine of the angle between the handle and the rib v;,

namely c?v; = cos(a). Let 3 = 7/2 be the angle between v; and v3. The first spherical

cosine theorem states that

cos(f3) = cos?(a) + sin?(a) cos(LA).
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Because angles o between the ribs and the handle are the same, the spherical angle /A
is the angle between the projection of the vectors v; and v3 on the plane normal to the

handle ¢, i.e., ZA = 4x /5. Finally, we can write
0 = cos®(a) + sin?(a) cos(47/5),
which gives cos?(a) = (c’v;)? = 1/4/5. Hence,

Co(Gs) <log(G5) < log < ) —log V5 = %log 5.

cos?(a)

The opposite inequality is known and the Shannon’s lower bound is tight.

The definition of 6(G) is not unique. In his paper [21]|, Lovasz pointed out four
equivalent definitions for 6(G). For example, he showed that (&) is the minimum of the

X
ij=1

largest eigenvalue of any symmetric matrix (a;;) such that a;; = 1if ¢ = j or if z;
and x; are non-adjacent. Although the Lovasz 6 function behaves very beautifully, the
value of log 6(G) is generally different from the capacity. A new bound on the zero-error
capacity was derived by Haemers [15], and it is sometimes better but quite often much
worse than 0(G). A quadratic matrix of order |X| is said to fit the graph G if its diagonal
entries are all nonzero and the element a;; is zero if and only if the symbols z; and z;
are adjacent in the channel. Haemers proved that the logarithm of the ranking of any
these matrix upper-bounds the zero-error capacity of G. This result was illustrated with
some examples for which his bound is better that 8(G). However, this is not true for the
pentagon graph Gj.

In the next two sections we present two variants of the original problem: the zero-error
capacity of DMC with feedback and the zero-error capacity of sum and product of discrete

memoryless channels.

5.4 Channels with complete feedback and list codes

A complete feedback is characterized by a noiseless channel from the receiver to the sender,
as illustrated in Figure 5.10. It is assumed that the actual received symbol is sent back
immediately and noiselessly to the transmitter, which can use the feedback information
in order to choose which symbol to transmit next. Although feedback can help in simpli-
fying encoding and decoding processes, it was proved that this additional resource cannot
increase the ordinary capacity of a discrete memoryless channel |20, pp.212|. Surprisedly,
Shannon and Elias [12| showed that feedback may increase the zero-error capacity of such

channels.
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hi(W,y* )
W ¢ Yi W
Message pylz) Estimate
A of message

Figure 5.10: A discrete memoryless channel with feedback.

We define an error-free block code as a sequence of mappings h;(W,y*~!), where each
h; is a function only of the message W and the previous received symbols vy, yo, ..., y;i—1,
and a sequence of decoding functions g : Y" — {1,..., M}. We define the probability
of error as P = Pr{W # W} and we require r™ = . Although the following result

appeared in a Shannon’s paper [12], it is due to Shannon and P. Elias.

Theorem 14 Let (X, p(y|z),Y) be a discrete memoryless channel and define S, = {z; €
X|p(y;lz;) > 0}, the set of input symbols which cause output y; with positive probability.
Let 11 be the set of probability functions P defined on subsets of X. Then, the zero-error
capacity of the DMC with feedback Cyp s zero if all input symbols in X are pairwise

adjacent. Otherwise

Co < Cor = —min max log Z (5.16)

Pell y;ey
’ 3&,651,]

As an example, consider the DMC of Figure 5.5(c). The zero-error capacity of this
channel is Cy = log /5 ~ 1.161 bits per symbol. By symmetry, the minmax distribution
P in Theorem 14 is the uniform with p(x;) = 1/5, ¢ = 0,...,4. Then, the zero-error
capacity of the pentagon with feedback is

Cor = —log 2/5 ~ 1.322.

The zero-error capacity of discrete memoryless channels with feedback is related to
list decoding, a well-studied topic in information theory [32]. In the zero-error context,
an error-free list code of size L and blocklength n for the DMC (X, p(y|x),)) is a set
C C X" such that for every y € Y

{xeC:p"(ylx) >0} < L.

Intuitively, for every transmitted codeword x, the decoder should decide on a list of at
most L transmitted codewords. For a DMC (X, p(y|z),Y), let N(n, L) be the maximum
cardinality of a list code C C &A™ with list size L and blocklength n. The list code capacity
Co, of list size L of the DMC (X, p(y|x),Y) is
1
Co.r = limsup—log N(n, L).

n—oo n
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Then, the list code zero-error capacity of the channel is defined as
00700 = sup CO,L~ (517)
L

Note that the problem of finding the zero-error capacity of a DMC is a special case of the
list code zero-error capacity with L = 1. Elias [33] demonstrated that Equations (5.16)
and (5.17) are equivalent. Namely, the zero-error capacity of a DMC with feedback is
equal to the list code zero-error capacity. Essentially, a feedback code can be viewed as a

sequence of list codes with successively reduced list sizes.

5.5 The sum and product of channels

Consider two discrete memoryless channels (X, p(y1|z1), Y1) and (Xy, p(ya|x2), Vo) with
zero-error capacities Cp, and Cy,, respectively. We are interested in transmitting informa-
tion using the two channels and we ask for the zero-error capacity of the joint system [12].
Basically, there are two natural ways of assembling two channels to form a single channel,
which we call the sum and the product of two channels.

The sum of two channels is a new channel (X} 11Xy, p(y1|z1) ® p(ye|x2), Y1 L1 Vs) where
the stochastic matrix of the sum channel is the direct sum of the two stochastic matrices,
and the input (output) set is the disjoint union of &; ())) and Xy ()s), respectively.
Intuitively, the sum channel behaves as (X3, p(y1]z1), V1) if an input symbol z;, € &) is
used, otherwise, it behaves as (X5, p(ya|z2), V). This corresponds physically to a situation
where either of two channels may be used but not both. Analogously, the product channel
is a new DMC (X} X Xs, p(y1]1) @ p(ye|z2), V1 X Vo) where the stochastic matrix is the
direct product of the two matrices, and the input (output) set is the cartesian product
of X1 (V1) and Xy ()%s), respectively. In this case, we can think of the product DMC
as of a nonstationary memoryless channel over which transmission is governed in strick

alternation by the stochastic matrices p(y1|x1) and p(ysz|za):

p<y1i7y2i xli"rQi) :p<y1i xli)p<y21’ in)'

Consider two DMCs, (X1, p(y1]z1), V1), (Xs, p(ya|z2),Vs), and let C;, Cy be their corre-
sponding ordinary capacities. It is well known [13] that the ordinary capacity of the sum
channel is C'; = log (exp C + exp (). For the product channel, the ordinary capacity is
proved to be Cy = Cy + (5.

The error-free communication capacity of the sum and product channels was studied
by Shannon [12|. If Cy, and Cj, denote the zero-error capacity of the sum and product

channels, respectively, then Shannon demonstrated that

Co, > log (exp Cy, + exp Cy,) (5.18)
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and

Co. > Co, + Co,, (5.19)

with equality if and only if the adjacent graph G of either of the two channels can be
coloured using a(G) colours. In an analogy with the ordinary capacity, Shannon conjec-
tured that, in fact, equalities always holds for zero-error capacities. The product channel
conjecture was implicitly disproved in a example of Haemers [15]. More recently, Alon [16]
proved the existence of channels for which Cy, > Cj, + Cp,. Such results, together with
those of Section 5.4, suggest that the zero-error capacity behaves quite different from the

ordinary capacity.

5.6 Conclusions

We have presented in this Chapter a survey of fundamental concepts in zero-error informa-
tion theory. We have started by presenting the ordinary capacity of discrete memoryless
channels, for which a small probability of error is allowed even if we make use of the
best coding scheme to encode information. Next, the zero-error capacity of a DMC was
introduced and a method to calculate the capacity of simple channel has been derived.
The problem of finding the zero-error capacity was reformulated in terms of graph
theory. It was shown how several results in zero-error theory can be restated in a graph
language. The most famous upper bound on the zero-error capacity, the Lovasz 6 function,
was presented and used to calculate the zero-error capacity of the pentagon graph, a
problem that remained open during more than twenty years. This example is particulary
interesting because we have found a quantum channel for which its zero-error capacity
equals the capacity of the pentagon. Finally, we presented two variations of the original
problem: the zero-error capacity of a DMC with feedback and the zero-error capacity of

sum and products of discrete memoryless channels.



Chapter 6

Zero-error capacity of quantum

channels

6.1 Introduction

As we have already mentioned in Section 2.1, quantum channel capacities to carry classical
information allow for an asymptotically small probability of error, even when the best
quantum coding scheme is used. Such capacities include the one-shot capacity |[3, 4, 5], the
HSW capacity |7, 8|, the adaptive capacity [6] and the entanglement-assisted capacity [9,
10]. The main reason of having a non-vanishing error probability is the decoding process,
which is based on the concept of typical sequences and typical Hilbert subspaces [2]. More
specifically, a received quantum codeword of a sufficiently long random code always has a
high probability of belonging to a given Hilbert subspace, called typical subspace. An error
is detected when the respective output codeword belongs to the orthogonal subspace, also
called non-typical subspace. Although the probability of a received quantum codeword
does not belong to a typical subspace is small, it is always different from zero. Hence,
ordinary quantum error-correction schemes [34, 35| consist of embedding, in a controlled
way, a given quantum state into another state that belongs to a higher dimensional Hilbert
space. Depending on the encoding strategy, errors due to decoherence in the encoded

stated might be detected and corrected in order to recovery the original quantum state.

Quantum perfect transmission, computing and storage are not a recent subject in
quantum information and computation. In 1997, Zanardi et al [36, 37| pointed out that
the symmetry between some quantum states and the environment might provide a new
strategy for protecting quantum states from decoherence. Instead of use an active error
detection/correction scheme, the authors showed that in the presence of a “coherent”

environmental noise, where the original state and the environment share some kind of

73
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symmetry, one can design states that are immune to the noise rather than states that
can be easily corrected. Hence, their approach consists in a passive, i.e., a intrinsic
stabilization of quantum information. More recently, Kribs et. al. [38, 39| described a
mathematical framework, called operator quantum-error correction, that incorporates the

two techniques of error prevention/correction under a single approach.

An algebraic study of symmetries in the Zanardi model motivated the definition of
the so called decoherence-free subspaces (DFS) [40], which are subspaces of the whole
system’s Hilbert space that are not affected by the noise under certain assumptions about
the symmetry of the noise processes. Bacon et. al. [41] developed a general formalism,
called noiseless subsystems, to find Hamiltonians involving one- and two-qubits interac-
tions, which can be used to implement universal quantum gates without leaving a given
decoherence-free (noiseless) subspace. Therefore, when computation is performed in this
manner, the system is never exposed to errors. Such approach leads to a naturally fault

tolerant quantum computation [42, 43, 44].

Although concepts of noiseless quantum codes and fault tolerant quantum computation
are well developed, a number to quantify the maximum amount of classical information
per channel use that can be sent without error through a noisy quantum channel was not
defined until now. In this thesis, we generalise the concept of classical zero-error capacity
to include quantum channels, in a scenario where they are used to transmit classical
information. We define the quantum zero-error capacity as the supremum of rates at
which classical information can be transmitted through a noisy quantum channel with a

probability of error equal to zero.

Since our first paper in 2005 [45], some developments have been made by other re-
searches. In a recent work, Beigi and Shor [46] demonstrated that finding the quantum
zero-error capacity is a QMA-complete problem [47]. An interesting feature of quan-
tum channels concerning the quantum zero-error capacity was pointed out by Duan and
Shi [48]. The authors found a quantum channel allowing of perfect classical information
transmission (i.e., quantum zero-error capacity greater than zero) once the channel is used
two times, whereas no information could be sent in a single use of the channel. In their
work, the communication protocol involves two senders and two receivers, where senders,

as well as receivers, are able to exchange classical information between them.

In the next section, we first describe the zero-error communication protocol, which is
similar to the HSW protocol. Then, a quantum error-free block code is formally defined.
Once we define a protocol and a quantum code, we are able to quantity the maximum
amount of error-free classical information per channel use that a quantum channel can

transmit, i.e, the quantum zero-error capacity.
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6.2 Quantum zero-error capacity

Given a quantum channel, we ask for the maximum amount of classical information per
channel use Alice can transmit to Bob with a zero probability of error. Consider a d-
dimensional quantum channel £ = {F,} modelled by a linear, completely positive trace-
preserving quantum operation. Hereafter, we denote S a subset of input quantum states of
dimension d for £. States p; € S are referred as input states. Figure 6.1 is a block diagram
of a quantum communication system enabling Alice to transmit classical messages to Bob
with a zero probability of error. Initially, Alice chooses a message from a set {1,..., K,}
of K,, classical messages. Then, the encoder maps such message onto a n-tensor product
of quantum states in §. The d"-dimensional encoded state is called a quantum code-
word. The quantum codeword is transmitted through a noisy quantum channel £. At
the receiver end, Bob performs a Positive Operator-Valued Measurement (POVM) on the
whole received state. Measurement outcomes are arguments of a decoding function. The
decoder should decide which message was sent by Alice with the property that no errors

are allowed.

S = {pi} yefl,...,m

Figure 6.1: General representation of a quantum zero-error communication system.

The error-free communication protocol can be summarized as follows:

e The source alphabet is aset S = {p1, ..., g} of d-dimensional input quantum states;

e in order to be transmitted through a quantum channel, classical messages are

mapped onto quantum codewords, which are tensor products of quantum states

in S;

e although input states are not allowed to be entangled between two or more channel

uses, collective POVM measurements are authorized at the quantum channel output.
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As we will see, such measurements are necessary and sufficient in order to reach the

quantum zero-error capacity.

Essentially, the proposed protocol is similar to the protocol employed by the Holevo-
Schumacher-Westmoreland [7, 8] capacity. In order to generalise the zero-error capacity

for quantum channels, we should define a quantum error-free block code.

Definition 23 ((K,,n) error-free quantum block code) An (K,,n) error-free quan-

tum block code for a quantum channel € is composed of the following:
1. A set of indexes {1, ..., K,}, where each indez is associated with a classical message.

2. An encoding function
X" {1, K, — S, (6.1)

yielding quantum codewords py = X"(1),...,px, = X"(K,). The set of all quantum

codewords 1s called a quantum codebook.

3. A decoding function
g:{l,....m}—{1,..., K,}, (6.2)

which deterministically assigns a guess to each possible measurement outcome y €
{1,...,m} performed by a POVM P = {M,...,M,}. The decoding function has
the following property:

Pr(glY =y) £ilX"=X"(i)=0Vie{l,... Ky} (6.3)

The reason why we put an index n in K, is to remember that a given error-free
quantum code of length n has exactly K,, codewords. It is easy to see that the transmission

rate of a (K, n) error-free quantum block code is
1 :
R, = —log K, (bits per channel use).
n
Definition 24 is a generalisation of the zero-error capacity for quantum channels.

Definition 24 (Quantum zero-error capacity (QZEC)) Let & be a linear, completely
positive trace-preserving quantum operation representing a noisy quantum channel. The
zero-error capacity of £(-), denoted by C©) (), is the least upper bound of achievable rates
with probability of error equal to zero. That is,

1
CO(&) = supsup — log K,,, (6.4)
S

n N
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where K, stands for the mazximum number of classical messages that the system can
transmit without error, when a (K,,n) error-free quantum block code with input alphabet

S is used.

A fundamental property of quantum systems concerns the distinguishibility of two
quantum states [2]. In a given Hilbert space of dimension d, two quantum states p;
and po are perfectly distinguishable if and only if the Hilbert subspaces spanned by the
supports of p; and py are orthogonal. Equivalently, if p; is non-orthogonal to ps then
such states are indistinguishable. It is clear that in a d-dimensional Hilbert space there
are at most d pairwise distinguishable quantum states. Given a quantum channel £, we
are particularly interested in input quantum states p; and p; which are distinguishable at

the channel output.

Definition 25 (Non-adjacent quantum states) Consider a quantum channel € and
a set S of input states. Two quantum states p;,p; € S are said to be non-adjacent
with relation to € if E(p;) and E(p;) are distinguishable. Otherwise, they are said to be

adjacent. For short, we should use p; Lgp; to denote that p; is non-adjacent to p;.

For the classical case, Shannon showed that the zero-error capacity of a discrete memo-
ryless channel depends only on the adjacency relations between input symbols. Moreover,
it was demonstrated that the classical zero-error capacity is greater that zero if and only
if there exist at least two non-adjacent input symbols in X. In order to demonstrate an
analogous result for the quantum zero-error capacity, we need to investigate adjacency

between two tensor product sequences of input states.

Consider aset S = {p1, ..., p} of input quantum states for a quantum channel £. The
set of all n-tensor products is denoted by S¥". Let p; = p;, ®- - -®p;, and p; = pj, ®@- - -Qpj,
be two n-tensor products of quantum states in §. We say that p; is non-adjacent to p;
if £(p;) and £(p;) are distinguishable, i.e, if £(p;) and £(p;) have orthogonal supports.

Otherwise, they are said to be adjacent in £.

Proposition 15 For a given quantum channel € and a set S = {p1,...,p} of input
quantum states, let p;, p; € S®™ be two tensor product sequences of n states. Sequences
pi and p; are non-adjacent in € if and only if for at least one k, 1 < k < n, p;, s

non-adjacent to pj, .

Proof. Because the quantum channel is memoryless, we can write the channel output
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E(pi) = Elpn)®-® ® - ®E(pi,)
E(py) = Elpj) ®-® ® - @ E(pj,)

Figure 6.2: Two distinguishable tensor product sequences £(p;) and £(p;). The distin-
guishibility of the sequences depends only on the distinguisibility of states £(p;;). Essen-
tially, this means that a quantum channel has a nonzero error-free capacity if and only if

there exists a set S of input states containing at least two non-adjacent states, p; L¢p;;

as illustrated in Figure 6.2. If p; L¢p; then

tr[E(p)E(p)] = tr[(@c‘?(mk))( 5(%))]

n

— H tr [E(pi, )E(pj,)]

k=1

= 0,

3

which means that p;, L¢p;, for at least one k, 1 < k& < n. The proof of the converse is
trivial. W
Proposition 15 guarantees that the distinguishibility of any two n-tensor product se-

quences depends only on adjacency relations of states p; € S.

Proposition 16 A quantum channel £ has a non-vanishing zero-error capacity if and

only if there exists a set S containing at least two non-adjacent states, p; Lep;, pi, pj € S.

Proof. Suppose that C(©(£) > 0. In this case, it should exist at least two codewords,
p; and p;, of a (K,,n) quantum error-free code with alphabet S such that p; L¢p,;. By
Proposition 15, p;, Lepj, for at least one k, 1 < k < n, p;,,p;, € S. The converse is
trivial. W
The previous analysis allows for a comprehensive understanding of the quantum zero-
error capacity. Let & be a d-dimensional quantum channel. Fix a set of input quantum
states S = {p1,...,m} for £. By Definitions 23 and 25, the maximum number of classical
messages Alice can transmit to Bob without error using an (K3, 1) error-free quantum code
with alphabet § is K7, the maximum number of pairwise non-adjacent quantum states in
S. More specifically, if we consider subsets &' C S such that Vp;, p; € S';1 # j; piLep;,
then
K, = max IS < d. (6.5)
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Analogously, if n-tensor products of states in S are considered, then we have [" possible
sequences, namely, py, ..., pm. Clearly, the maximum number of classical messages Alice
can communicate to Bob using a (K, n) error-free quantum code with alphabet S will be
the maximum number of pairwise non-adjacent sequences, denoted by K,. The zero-error
capacity of the quantum channel will be the supremum of the information transmission

rate over all sets S of input states and code length n.

6.2.1 A graph-theoretic approach

Developments in the previous section allow of a nice interpretation of the zero-error ca-
pacity in terms of graph theory. Given a quantum channel £ and a set of input states
S ={p1,...,m}, we can construct a characteristic graph G as follows: The vertex set of
G is the index set of &, and two vertices are connected if the corresponding input states

in § are non-adjacent. Mathematically,

V(G) = {1,...,1}, (6.6)
E(G) = {(i,5);piLeps; pipi € S;i# j} (6.7)

It is easy to see that quantum states corresponding to vertices in any complete subgraph of
G are mutually non-adjacent. Therefore, the maximum number of pairwise non-adjacent
states in S is the clique number of G, w(G), which is the maximum cardinality of any
complete subgraph of G. Define a n-product G" of G as a graph whose vertex set and the

set of edges are given by

v(g") = A{1,...,0}", (6.8)
EG") = (1. in,J1---Jn); pi,Lepj, for at least one k,1 < k < n;
Pirs Py € ’S} (69)

If we denote S®" the set of all n-tensor product sequences of states in S, then the vertex
set of G™ is the index set of S®", whereas the set of edges is composed of pairs of such
indexes whose corresponding sequences are non-adjacent in the channel £. It turns out
that the maximum number of messages we can transmit without error with a (K,,n)
error-free quantum code with alphabet S is the clique number of G", w(G™). Moreover,
an error-free codebook is given by sequences of the corresponding vertices in the maximal
clique of G". If we consider the supremum over all possible sets of input states S, we
get an alternative and equivalent definition of the zero-error capacity in terms of graph

theory.



80 Chapter 6. Zero-error capacity of quantum channels

Definition 26 (Equivalent definition of the QZEC) The zero-error capacity of a quan-
tum channel £ is given by

CO(&) = supsup = logw (G"), (6.10)
S n

n

where the supremum is taken over all sets S of input states, and w(G") is the clique

number of the n—product of the characteristic graph G associated with S.

The quantum error-free capacity may also be interpreted as the supremum over zero-
error capacities of classical discrete memoryless channels. For each set S = {p1,...,p} of
input states for a given quantum channel £, we can associate an adjacency matrix A(S)
(see Section 5.2.2), which is a [ x [ matrix defined as follows:

A(S), = 1 if p; is adjacent to p; or if ¢ = j (6.11)

0 otherwise.

A given adjacency matrix may correspond to an infinity number of classical DMCs. Shan-
non [12] has showed a procedure to find a DMC (X, p(y|z), S) that gives rise to a particular
adjacency matrix A. Moreover, he demonstrated that discrete memoryless channels giv-
ing rise to a given adjacency matrix have the same zero-error capacity. If we denote
Co(A(S)) the zero-error capacity of any equivalent DMC obtained from the A(S), then a
straightforward consequence of the Equation (6.10) is that

Co(€) = Sgp Co(A(S)). (6.12)

These equivalent definitions of the quantum zero-error capacity are used to prove most
of our results in the next sections.

The next section investigates quantum states and measurements attaining the quan-
tum error-free capacity. It is showed that we only need to consider pure quantum states
at the channel input in order to reach the supremum in Equation (6.10). Moreover,
we demonstrate that the capacity can always be reached by using a set S of at most d
pure states. Concerning the measurements, we prove that collective measurements are

necessary to attain the quantum zero-error capacity in Definition 24.

6.3 Quantum states achieving the QZEC

In this section we discuss some properties of quantum states reaching the quantum zero-
error capacity, namely, quantum states in the set S achieving the supremum in Equa-
tion (6.4). It is well-known that the Holevo-Schumacher-Westmoreland (HSW) capac-

ity |7, 8] can be reached using an ensemble {p;, p;} of at most d* pure quantum states |2,
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pp. 555]. We use the equivalent definition of the quantum zero-error capacity to obtain

an analogous result for the quantum case.

Proposition 17 The zero-error capacity of quantum channels € can be achieved by a set

S composed only of pure quantum states, i.e., S = {p; = |vi)(vi|}.

Proof.  Consider a quantum channel £ with operation elements {E,}, as defined in
Section 4.2.2. Suppose that the set S = {p1,...,p} achieving the supremum in Equa-
tion (6.4) may contain mixed states. We call G the characteristic graph associated with
S. To demonstrate the proposition, we show that it is always possible to obtain a set
S’ from S, such that &’ contains only pure states and S’ also achieves the supremum in
Equation (6.4).

Let p; €S, pi =, Xi,|vi,)(vi, |, be an input quantum state. Then, the output of the

channel when p; is transmitted is given by

E(p) = Y EupiE]

= B DNl (|
= 3> MEdvi ) (v |EL (6.13)

Bt

As we already explained in Section 6.2, the trace tr [£(p;)E(p;)] gives the adjacency
relation between p; and p;. if p; = > \; |v;,)(v;,| then

r[EP)E(P)] = tr | DY N Balvi) (i ELY 0 N Byl (v, | B
a T b s

= [ S S A Bl ) o [ BByl ) v | ]
L a r b s

= > Al | Bl Efv)l . (6.14)
a,r,b,s
Without loss of generality (w.l.o.g), define a new set &' = {|vy,),...,|v,)}, where

|vi,) € supp p; is a pure state in the support of p;. Call G’ the characteristic graph due to
S’. Our aim is to demonstrate that replacing p; with |v;,) does not create new adjacencies.

To visualize this, note that

tr (o )E(vn))] =t | D Ealvi){va | EL Y Eplvg,) (v, B

=t | DD Baloi ) (vi | ELBuvy,) (v, | B
L a b

= > Il | B Eylv;,) 1> (6.15)
a,b
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It is known that if p; Lep; then tr [E(p;)€(p;)] = 0. This means that (v; | El Fy|v;,) = 0 for
all indexes r and s in Equation (6.14). Therefore, tr [€(|v;,))E(Jvj,))] = 0 and |v;,) Le|v),).
It is clear that the characteristic graph G’ can be obtained from G by (probably) adding
a number of edges but never deleting edges. In addition, adding edges never decreases
(and may increase) the clique number of a graph [29], i.e., w(G) < w(G’). Therefore,

sup % logw(G") < sup % logw(G™).

n

Because S attains the supremum in Equation (6.4),
1 n 1 m
Co(€) = sup logw(G") = sup —logw(G™),

which means that S’ does attain and the result follows. B

It is clear that adjacency relations between input states play a crucial role in calculating
the quantum error-free capacity. By definition, if two input states |v;),|v;) € S are non-
adjacent, then the Hilbert subspaces spanned by the eigenvectors in the support of £(|v;))
and £(|v;)) are orthogonal. Moreover, as we show below, if |v;) L¢|v;) then |v;) and |v;) are
essentially orthogonal. To demonstrate this, we make use of the trace distance between

quantum states o1 and o9 |2, pp.403],
1
D(oy,09) = §tr |op — o9 .

The trace distance is maximum and equal to one if and only if o; and o9 have orthogonal
supports. Assuming that |v;) and |ve) are non-adjacent pure states, the trace distance

between their images is D(E(|v1)), E(Jve))) = 1. Because quantum channels are contrac-

tive [2, pp. 406, i.e., D(Jv1), |v2)) = D(E(Jv1)), E(|v2))),
1> D(|v1), |v2)) = D(E(Jv1)), E([v2))) = 1, (6.16)

which means that D(|v1), |v2)) = 1 and |v;) is orthogonal to |ve). Intuitively, this means
that quantum channels can not take confoundable states into non-confoundable ones.

Consider a qubit channel and an orthonormal basis for the 2-dimensional Hilbert space.
Our results allow for the analysis of such channels in a zero-error context: either the zero-
error capacity is equal to one bit per use or to zero. This is because these channels have
at most two pairwise orthogonal input states, |v1),|vs), and if we take any other state
|vg), it will be non-orthogonal to |v;) and |vg) and therefore adjacent.

The above discussions might give the impression that the quantum error-free capacity
would be a trivial generalisation of the classical zero-error capacity. By trivial, we mean

that

e the capacity is archived using a error-free quantum block code of length one, and
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e the supremum in Equation (6.10) can always be achieved by a set S of mutually

orthogonal quantum states.

Surprisedly, there are quantum channels for which the number of non-adjacent codewords
behaves unexpectedly when the length of the quantum block code is increased. For a
quantum channel exhibited in Section 6.5.5, we claim that the QZEC can only be reached

by a set of non-orthogonal quantum states.

6.3.1 The cardinality of the set S achieving the QZEC

Our next result shows that the quantum zero-error capacity can always be achieved by a
set S of at most d pure states, where d is the dimension of the input Hilbert space. In
order to prove this, we need before demonstrate an interesting and useful result to both
classical and quantum zero-error information theory.

Let G = (V,FE) be an undirected graph such that V' = {0,...,l — 1} and E C
{(i,7);1,5 € V;i # j}. As we have already seen, the Shannon’s n-product of G is defined

as follows:
V(G") = {0,...,1—1}"
EG™) = (1. tnyJ1---Jn); ik, Jr) € E(G) for at least one k,
1<k<n}. (6.17)
For each vertex i € V(G), we denote by N (i) the set of neighbours of :
N(i) = {j € V(G); (i,)) € E(G)}. (6.18)

Let w(G™) be the clique number of G™ | i.e., the size of the largest clique in G™. We are
interested in determining the clique number of a graph Gj obtained from G in a special

way:
Definition 27 The k-FEztended-by-cloning graph (EbC) of G, denoted by Gy, is a graph

with | + 1 vertices which is obtained from G by “cloning” the vertex k of G:

1. V(Gg) ={0,...,1}, where | stands for the label of the “cloned” vertex;

2. E(Gy) = E(G)U{(l,7);7 € N(k)}, i.e., both vertices | and k have the same neigh-

bours.

As an example, let G be the graph illustrated in Figure 6.3(a). Note that in the 3-EbC
graph G35 of Figure 6.3(b), the cloned vertex 5 has the same neighbours of the original

vertex 3.
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Figure 6.3: (a) A graph G. (b) The 3-extended-by-cloning graph G3

Theorem 18 For any n, w(G") = w(G}).

The theorem implies that the zero-error capacity of a (classical or quantum) channel
associated with the graph G}, is equal to the zero-error capacity of a channel associated
with G.

Proof. Let S’ C {0,...,{}" be the vertex set of a maximal order clique in G}. By
definition, vertices in S’ are n-tuples elements of V' (Gy) such that, for any two sequences in
S’, there exists at least one position where the corresponding vertices in GGy, are neighbours.

From S’, we construct a subset of vertices S of G™ as follows. For any sequence in
S’ containing the vertex [ in one or more positions, we replace [ by the original vertex k.
An observation shows that all new sequences of S are pairwise distinct, otherwise there
would exist at least two sequences belonging to S’ for which, in each position, either they
are equal or one has [ and the other has k. However, from item 2 of Definition 27, [ and
k are not connected in Gj,.

To accomplish the proof, we just need to show that S forms a clique in G". Any two
sequences in S, say a and b, come from the corresponding sequences a’ and b’ in S’, whose
corresponding vertices are connected in G, since S’ forms a clique. Therefore, there is at
least one index ¢ for which the vertex a] is connected to b, in Gj. Moreover, it turns out
that either both a; and 0] are different from I — and hence a; = a} and b; =} so a and b
are connected in S — or w.lo.g. a, =1 and a; = k from which we conclude that a and b
are connected in S.

Finally, we can write w(G™) > w(GY}). Since the inverse inequality is trivial, the
equality holds. W

Given a graph G = (V, E), a vertex-induced subgraph H of G (often called induced
subgraph) is a subset of vertices of G together with all edges whose endpoints are both
in this subset. There are two important results which are immediately consequences of
Theorem 18.

Corollary 19 Suppose that instead of cloning a vertex of G we clone any vertez-induced
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subgraph of G to produce a new graph G'. By cloning the subgraph we means that vertices
of the subgraph in the cloned graph has the same corresponding neighbours in the original

graph. Then, w(G™) = w(G") for every n.

The proof of Corollary 19 is analogous to the proof of Theorem 20.

Corollary 20 In Definition 27, if we maintain V (Gy~) = {0, ..., 1} but replace the state-
ment (2.) with

2* E(Gy) = E(G)U{(l,j);j € N(I)}, where N(I) C N(k). i.e., the vertex | in Gy~ has
the same neighbours of the vertex k in G, but the latter is allowed to have more.

(Note that vertices | and k should never be connected).
Then, w(G}.) = w(G™) still holds.

Proof. Note that the graph Gy« can be obtained from the k-EbC Gy, of G by probably
deleting some edges. Then w(G}.) < w(G}) < w(G™). The inverse inequality is trivial.
|

Theorem 18, together with Corollary 20, gives a simple criterion to analyze the zero-
error behavior of a quantum channel when a quantum state is “appended” to the set S,
since adding a state to S is equivalent to add a vertex on the corresponding characteristic
graph. Below, we show that the zero-error capacity of a quantum channel can always be
reached by a set of at most d quantum states, where d is the dimension of the quantum

channel.

Proposition 21 The zero-error capacity of a d-dimensional quantum channel can always

be achieved by a set of at most d pure quantum states.

We first note that there are channels that need exactly d quantum states to reach the
capacity, e.g., the identity channel. In order to demonstrate Proposition 21, we only need
to prove that, give any set S containing d quantum states, we cannot do better if we add
a state to the set §. The only assumption we make about the set S is that S is a set
of linearly independent states. Therefore, we do not assume that S is a set of pairwise
orthogonal quantum states.

The main idea of the proof is the following. We add a new state |o) to S. Then, we
investigate adjacency relations between |o) and states in S.

Let S = {|¢1),...,|vq) } be alinearly independent set of quantum pure states. Because
S is a basis for the Hilbert space of dimension d, the added state |o) is a superposition of

states in S. W.l.o.g, let

o) = Z%’W%‘) (6.19)
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be a superposition state of the first k states of S. Clearly, |o) is non-orthogonal to |1);),

i < k, and therefore it is adjacent to such states. Consider a quantum state |¢,,), m > k.

Lemma 22 [¢),,) Le|t), i =1,...,k, if and only if |0) Le|tm).

Proof. of Lemma 22. We first prove the direct part. For all i,

tr [E([¢a) (i) E([¢m) (Yml)] = 0.

Consider the spectral decomposition E([¢,) (Vm|) = >, Az|z)(z|. Then,

o [E(a) (WDE(m) (m)] =t |E(a) (i) D Aal) (2l
= ZAx<w|5(lwi>(zbi|)lx>
_—
Because &(|v;) (¥4]) is positive,
Ao(z|E(|1hi) (Wil )|z) = 0
for all z. Moreover, for all a and i = 1,... .k,
Al E([i) (Wil ) = Aolal D Balts) (Wi E)|x)
= > Ao{a| Bl ) (03] ED)|2)
= > All{@| Bl |
_ 0
which means that A,||(z|E,|v;)|| = 0 for all a, z and i = 1,..., k. Finally,

tr [E@)E([Wm) ()] = D Aalzl€(0)]2)

k
= D @D B Y wallen) (Wi Ef|x)

ij=1

— Z Z Z ;a5 Ay (x| Ea ) (0] Bl | x)

a i,

= 0,

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)
(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

since all (complex) numbers \,(z|E,|¢;) have real and imaginary parts equal to zero. The

converse part is straightforwardly obtained by developing Equation (6.29). B
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Proof. (of Proposition 21) Let |o) = Zle a;|1;) be the “appended” state to the set
S =A{|Y1),...,|va)}. Let G’ be the characteristic graph related to {|¢n), ..., |[¢a), o)}
Then, by the Lemma 22, the set of neighbours of |o) is given by

N(o) = {j: [;)) Lely)Vi=1,... kije {k+1,... d}}. (6.33)

Therefore, the result follows, since N (o) C N(1) and G’ can be viewed as G« in the sense

of Corollary 20. H

6.4 Measurements reaching the capacity

We discuss in this section quantum measurements attaining the quantum zero-error capac-
ity. As it was defined, the quantum error-free capacity is the maximum transmission rate
R = %log K, of any error-free quantum code of length n and alphabet S = {py,..., i}
This implies that, for a given n attaining the supremum in Equation (6.4), there ex-

ists an error-free quantum code whose codebook contains K, codewords of length n,

{ﬁhﬁ% e 7pKn}7 SUCh that

E) = Elpn)®E(p,) ®---@E&(p1,),

N

-~

P

E) = E(p2) ®E(P2,) ® - R E(ps,),

N

-~

P>

(6.34)
Epk,) = Elpr,,) @E(pK,,) @ ®E(pK,,)

N J/

~~
Py,

are pairwise orthogonal quantum states in the output Hilbert space of dimension d".
Define P; the projector onto the Hilbert subspace spanned by quantum states in the
support of £(p;). It is clear that

P:{Pl,...,PKn,PKn_H}, (635)

Pg, 1 =1- Efi”l P;, is a von Neumann measurement allowing of the distinguishibility of
the K, classical messages. Therefore, collective measurements are sufficient to decode any
error-free quantum code. It is well-known that measurements performed between several
channel outputs are required in order to achieve the Holevo-Schumacher-Westmoreland
capacity [2]. Essentially, this means that the mutual information between the input and
the output may increase if we make collective measurements instead of individual mea-
surements. A natural question is whether or not individual measurements are sufficient

to decode an error-free quantum code. Equivalently, we ask if Bob can always distinguish
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between the K, orthogonal tensor product sequences E(p;) = @ _, £(pi,) by means of

individual measurements P on each state €(p;, ). As we argue below, the answer is not.

Quantum state discrimination is an important branch of quantum information theory.
The general problem consists in determining, with maximum accuracy, the state of a
given quantum system chosen from a finite set of quantum states. A variant on the main
problem consists in distinguishing multipartite orthogonal quantum states, in a scenario
where the compound quantum system, composed of several parts, is held by separated
observers [49, 50]. Participants are only allowed to perform individual measurements but
they can exchange an arbitrary amount of classical information in order to discriminate
the given quantum state. We are interested in the case where global multipartite states

are restricted to be tensor products of each shared state [49, 50].

The individual-measurements based decode scheme for a quantum zero-error block
code can be viewed as a particular case of the discrimination protocol studied in [49, 50|,
where all individual measurement on the states £(p;,) should be performed using the
same POVM P, Bennett et. al. [51] analyzed an example in which two participants,
Alice and Bob, are each given a three-state particle and their goal is to distinguish which
of nine orthogonal product states in {|11),..., o)}, [:) = |a;) ® |3;), the composite
quantum system was prepared in. Because the nine joint quantum states were pairwise
orthogonal, they could be reliably distinguished by a collective measurement on both par-
ticles. However, the nine states were not orthogonal as individually seen by Alice and
Bob. Bennett et. al. showed that such joint states could not be reliably distinguished
by any sequence of individual measurements, even allowing an arbitrary amount of clas-
sical communication between Alice and Bob. This example shows that we cannot always
distinguish between states of an orthogonal set of tensor product states using individ-
ual measurements. Therefore, individual measurements are not sufficient to attain the

quantum zero-error capacity of Definition 24.

6.5 Examples

6.5.1 Bit flip channel

The bit flip channel is a 2-dimensional quantum channel which leaves an input state p

intact with probability p, and invert the qubit with probability 1 — p.

E(p) =pp+ (1 —p)XpX. (6.36)
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This channel has two orthogonal, non-adjacent input states given by
1

v)) = —=

| 1> \/ﬁ
1

|U2> = \/5

The zero-error capacity is achieved by & = {|v1), |v2)}, which implies that the zero-error

capacity is trivially calculated: C°(€) = 1log(2) = 1 bits per use.

(10) + 1)),

(10) = I1)).

6.5.2 Depolarizing channel

The depolarizing channel in a d-dimensional Hilbert space models a scenario where an in-
put state p is either carried out intact with probability p or it is replaced by the completely
mixed state 1, with probability 1 — p [2]:

1
E(p) =p la+ (L =p)p, (6.37)
where 1, is the identity operator of dimension d. For this channel, any two input states

p; and p; are adjacent for a given 0 < p < 1. To demonstrate this, we write

tr[E(p)E(p;)] = tr Kppl +(1 —p)éﬂd) <p,02 +(1 —p)éﬂd)]
1—p) (1- p)?

= ftr {thr [p1p2] + MTptr [p1 + pa] + ]

> 0 (6.38)

since 0 < p < 1. Therefore, the error-free capacity of the d-dimensional depolarizing

channel is zero.

6.5.3 Zero-error capacity of classical-quantum channels

In the literature, a quantum channel £ for which the quantum state (1 ® £)(I') is al-
ways separable (even for entangled I') is called entanglement breaking channel [24]. This
important class of quantum channel was first introduced by Holevo [23]. Horodecki et.

al [24] showed that any entanglement breaking channel can be written in the Holevo form:
E(p) =) aitr [pXi], (6.39)

where {0;} is a fixed family of quantum states and {X;} defines a POVM measurement.
The channel is called classical-quantum (c-q) if X; = |¢;)(¢4|, where {|¢;)} is an or-
thonormal basis, i.e., POVM elements are one dimensional projectors. In contrast, if

o; = |1;) (1] then it is called a quantum-classical (q-c) channel.
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(Classical-quantum channels have the property that interference due to superpositions
at the channel input are never destroyed at the channel output. To see this, consider
a c-q channel defined by an ensemble {0;} and a POVM with operators X; = |1;) (1.
Suppose that a superposition state |[v) = ). v;|1;) is sent through the channel. The
density operator at the channel input is p, = >, Vi3 1) (5] The output state will be

Elpy) = Zm‘tf[f)v|¢z‘><¢i|]
= ZWHMWQW

= > @ilvvple) (el li)os

i gk

= ) |lvilPos. (6.40)

Remember that to find the quantum zero-error capacity, one needs to maximize over
all sets of input states S. We show below that the zero-error capacity of d-dimensional

classical-quantum channels can be attained by the set

S= {|?/)1>>--->|1/)d>}> (641)

where {|¢;)} is an orthonormal basis whose one-dimensional projectors define the POVM
of the c-q channel.

Given an arbitrary set S of input states for a c-q channel &, we can construct a
characteristic graph G, and the maximum information transmission rate Rs using zero-

error quantum codes with alphabet § is given by:

1
Rs = sup — logw(G"). (6.42)

n
Straightforwardly, the zero-error capacity of &, is given by

Co(E) = sup Rs. (6.43)
S

In order to show that S in Equation (6.41) attains the capacity, we need to show the

following:
Proposition 23 For a d-dimensional c-q channel defined by {o;} and {X; = |;) (|},

sup Rs (6.44)
SilS|<d

can always be archived by the set
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First of all, note that for any state belongs to S,

E([Yi)) = o4, (6.46)

whereas if |v) is a linear combination of {|;) }, then the output is given by Equation (6.40).
Second, we remember that two vertices u and v are connected in the characteristic graph
if and only if tr [E(Ju))E(|v))] = 0, i.e., the corresponding output states have orthogonal
supports.
Proof. The result follows by construction. Let k be the maximum number of pairwise
orthogonal states in {0;}, say {o1,...,0%}, k < d. Due to Equation (6.46), the maximum
rate Rg, for any code with |S| < k is achieved by the set S = {|¢1),...,|¢x)}, since
the characteristic graph Gy due to S is a complete graph. If k < d, we should append
another pure state |v) to Sk until & = d. The state to be added must lead to a graph
G (k41 With as more connected vertices as possible, i.e, £(|v)) must have its support
orthogonal to as many supp o;, i < k, as possible. Suppose that |v) is a linear combination
of {|¢;)}. Then, E(|v)) = >, pioi. If p; > 0Vi then |v) is adjacent to all states in
Sk. Because interference due to superpositions of {|i;)} are never destroyed at channel
output, the state |v) must be any of the |¢),,), m > k, belonging to S\Sy such that the
set {J; [tm)Leltj); 1 < j < k} has maximum cardinality, since E(G 1)) = E(Gw)) U
{(4,9); [i)Le|;); 1 < j < k}. The new set will be Spr1 = {|¥1), ..., [¥k+1)}, where
the appended state [t),,) has index k + 1 in Spy1. Clearly, Rs,,, > Rs,. Repeating this
process will give S; =S. B

What this means is that finding the quantum zero-error capacity of c-q channels is a
completely classical problem: we just need to explicit adjacency relation between states
in § in order to determine the characteristic graph G. Then, a maximization is taken
over all n: C°(&) = sup,, = logw(G™). Moreover, the zero-error capacity of a c-q channel
can always be reached by a set of pairwise orthogonal states, since S = {|¢)} is an

orthonormal basis for the d-dimensional Hilbert space.

6.5.4 A particular classical-quantum channel

Consider the 5-dimensional c-q channel defined by

li)+]i+1 mod 5)

|Ui> = \/5

where {|0),...,]4)} is the computational basis for the Hilbert space of dimension 5. The

yop=og){os]  and Xy =[i)(i], 0<i<4, (647)

set § that achieves the zero-errro capacity is given by

S=1{[0),...,[4)Y. (6.48)
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10)

3) 2)

1) [4)

Figure 6.4: Characteristic graph corresponding to the set S attaining the zero-error ca-

pacity of the c-q channel.
The corresponding output states are

&) = Zcrjl|<ilj>||2-

= 0.

(6.49)

Now we can write down the adjacency relations between states in S. The state |0) is

non-adjacent to states |2) and |3). To see this note that

£(0)) = o= <|O>¢+§|1>) <<0|;§<1|>

= 20)(0] + [0){1] + [1)(0] + 1)1

E(I2) = o2 = (\2>;§|3>) <<2|;§<3|)

_ %(|2><2|+|2><3|+|3><2|+|3><3|)

and

have orthogonal supports, as well as £(|0)) and £(|3)). Therefore,
0)Lel2),  10)Lel3).
Straightforwardly, one can verify that
[DLel3),  |1)Lel4) and  [2)Lel4).

The characteristic graph related to S is shown in Figure 6.4(a).

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

Surprisedly, the S attaining the capacity gives rise to the pentagon as characteristic

graph. Therefore, the capacity of the corresponding c-q channel is

1
COE) = Cy(G5) = 3 log 5 bits/use.

(6.56)
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Although the capacity is reached by a set of pairwise orthogonal states, it is necessary
two or more uses of the channel in order to attain the zero-error capacity. A quantum

code of length two reaching the capacity is presented below:

P = [2)14)
Ps = [4)13).

p1=10)[0), 7y = [1)]2),

pa = [3)[1), (6.57)

The next example presents a mathematically motivated channel that we claim the

capacity can only be attained by a set of non-orthogonal states.

6.5.5 Non-orthogonal states attaining the QZEC

We discuss in this section an example of a quantum channel whose zero-error capacity
is conjectured to be non-trivial. By non-trivial we mean that the supremum in Equa-
tion (6.4) is attained for n > 1 and states in the set S reaching the QZEC contains
non-orthogonal states. The following example is mathematically motivated, and has no
physical meaning. However, it is interesting because the quantum channel we constructed
gives rise to the pentagon as the characteristic graph for a set S containing non-orthogonal
quantum states. Moreover, if the conjecture holds then the capacity cannot be reached
by using a set of mutually orthogonal quantum states.

Let £ be a quantum channel with Kraus operators { Ey, Es, F3} given by

[ /49902 | [ /49902 |

05 0 0 0 VO 05 0 0 0 /100

05 =05 0 0 0 05 05 0 0 0
Eir=10 05 =05 0 0 E2=10 05 05 0 0

V45T /457 V457 457
0 0 05 —¥IT Vi 0 0 05 YET _vIT
289
i 0 062 —2% 0 0 0 05 05 |
E3 =0.3|4)(4],
where 8 = {]0),...,]4)} is the computational basis for the Hilbert space of dimension five,

as in the example of Section 6.5.4. It is easy to see that > ElF, = 1, which means that
£ is a completely positive trace-preserving quantum operation representing a physical
process. The quantum channel was constructed using Matlab®, wherein the .m file is
given at Appendix 6.A.

Consider the following set S of input states for &:

M} . (6.58)

V2

In order to construct the characteristic graph G, we need to explicit all adjacency relations

S = {|v1> =10), [v2) = [1), [vs) = [2), [v4) = [3), [vs) =

between states in S. If the channel output £(]v;)) is calculated for every |v;) € S, one
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"U1> |0>

|04) |vs) 3) 2)

|02) [v5) 1) [4)
(a) (b)

Figure 6.5: (a) Characteristic graph G for the subset S containing non-adjacent input
states. (b) Characteristic graph for a subset &’ of mutually orthogonal input states. In
this case the transmission rate is less than C)(pentagon) for any zero-error quantum

code with alphabet S'.

can verify that

o) Lelv), o) Lelva),  |va) Lefva),
|vg) Le|vs), and lvg) Le|vs).

Surprisedly, these relations give rise to the pentagon as characteristic graph, as it is
illustrated in Figure 6.5(a).

Note that if we make use of codewords of length one, we can only transmit at most two
error-free classical messages through this quantum channel, e.g., by choosing |v;) and |v3)
or |vy) and |vg). Moreover, following the initial Shannon construction, we can construct
a quantum error-free codebook of length two containing five non-adjacent codewords:

pr= o) |vr), Py = [v2)|vs), D3 = [vs)|vs)

Py = lva)|v2), D5 = [vs)|va)- (6.59)

The quantum channel discussed above behaves very interestingly because the pentagon
is obtained using a set of non-orthogonal quantum states at the channel input. Suppose
that we replace the state |vs) in & with the state |4) in order to construct a new set
S’ = (3 of pairwise orthogonal states. In this case, a calculation shows that the states |2)
and |4) are adjacent and the corresponding characteristic graph is given in Figure 6.5(b).
The Shannon capacity of this graph is already known [12] and equal to 1 bit per use.
Therefore, the maximum rate of any zero-error quantum code with alphabet S’ is one and
hence less than the capacity of the pentagon. Finally, we conjecture that one can not do

better by taking another set &', specially if it is composed of pairwise orthogonal states.
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6.6 Zero-error capacity and HSW capacity

Quantum channels have a number of capacities that depends fundamentally on the kind
of information to be carried (classical or quantum) and on the communication protocol.
For example, suppose that Alice and Bob agree on a protocol where codewords are tensor
products of quantum states, and decoding is performed using measurements entangled
across multiple uses of the channel. In this case, the capacity of the quantum channel
for transmitting classical information with a negligible probability of error is given by
the Holevo-Schumacher-Westmoreland theorem [7, 8]. Bennett et. al. |9, 10] showed
that Alice and Bob can do better if they make use of an arbitrary amount of shared
entanglement. The so called entanglement-assisted capacity is proved to be an upper
bound of the HSW capacity [9].

We demonstrate below that the error-free capacity of a given quantum channel is upper
bounded by the HSW capacity C; (), i.e.,

COE) < CLoo(€) = max Xipipi}s
{pi,pi}

where
X{pipi} =S <5 (ZP@Pz)) — ZP@S(g(Pi)) (6.60)

stands for the y quantity.

The HSW protocol states that codewords are composed of signal states p;, where the
probability of using p; is p;. Note that the maximum is taken over all ensembles {p;, p;}
of possible input states p; to the channel. The coding theorem says that if Alice and Bob
agree on a quantum code with rate less than or equal to the HSW capacity, it is possible
to transmit classical information reliably through a quantum channel with a probability
of error asymptotically zero (not actually zero).

Let R be the rate of any error-free quantum code. We assume that Alice sends to
Bob messages chosen randomly and uniformly from the set {1,...,2"%} i.e., if we define
X as a random variable representing indexes of classical messages, then X is uniformly

distributed over {1,...,2"%}. As a straightforward consequence we have
H(X) =nR, (6.61)

where H stands for the classical Shannon entropy [20]. Now we take Y as a random
variable representing the output when Bob performs measurements described by a POVM

{M;}. By the definition of mutual information,

nR = H(X)=HX|Y)+I(X,Y). (6.62)
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Because we are making use of an error-free quantum code, there are no decoding errors.
Then, given an output word y, there is no uncertainty about the classical message actually
sent, i.e., H(X]|Y) = 0. Suppose that Alice encodes the message i as p; = p;, ® - -+ ® p;, .
Applying the Holevo bound we get

nkR = I(X,Y) (6.63)

2nR 2nR

< 5[ omm) | - Y 5sE). (6.64

1=1 1=1

Remember that £(p;) = E(pi,) @ --- @ E(ps,,). Hence, we can apply the subadditivity of
the entropy, S(A, B) < S(A) + S(B) |2, pp. 515]:

2nR 2nR n

nR = Z S Z QiR sz Z InR Z S pZJ (6'65>

n onR onR

= Z S Z2n35(l)z‘j) —ZQTL—RS(E(/)@)) : (6.66)

j=1 i=1 i=1

Because the capacity in Eq. (6.60) is calculated by taking the ensemble that gives the
maximum, we can conclude that each term on the right side of (6.66) is less than or equal
to C1,00(&). Then,

nR < nCi () (6.67)

and the inequality follows for all zero-error quantum block codes of length n and rate R.
This is an intuitive result, since one would expect to increase the information transmission

rate whenever a small probability of error is allowed.

Example 3 Consider the quantum channel of Section 6.5.5 and the set S of non-orthogonal
states giving rise to the pentagon as characteristic graph. Obuviously, we do not know if S
attains the supremum in Equation (6.10). However, if S does attain then the zero-error
capacity of € s %log 5. In this case, a simple calculation shows that the x quantity for
the family {S,p; = 1/5} is greater than Co(Gs), i.e

X(s1/5) = é[s (5 <Z|vi)(vi|>> Z E(Jvi) (wi]) ]

= 1.53
> Cy(Gs)
— 1.16. (6.68)
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6.7 Conclusions

We have introduced in this chapter a new kind of capacity of quantum channels. The
quantum zero-error capacity was defined as the least upper bound of rates at which clas-
sical information can be transmitted through a noisy quantum channel with a probability
of error equal to zero. The communication protocol is essentially the same protocol of the
Holevo-Schumacher-Westmoreland capacity |7, 8|, except that no transmission errors are
allowed. The quantum zero-error capacity is a generalisation of the classical zero-error

capacity defined by Shannon [12].



Appendix

6.A Matlab m-file

The matlab m-file below was used to find the quantum channel of the example in Sec-
tion 6.5.5.

%

% Find a quantum channel whose zero—error capacity 1is

% reached by wusing a set of non—orthogonal input states.

%

% Clear the workspace

clear all;

% Define wvariables
syms al a2 a3 a4 ab a6 a7 a8 a9 al0 all al2 zero real;

syms c2 n real;

% Computational basis for the 5—dimensional Hilbert space
vl = [1;0;0;0;0];

v2 = [0;1;0;0;0];

v3 = [0;0;1;0;0];

vd = [0;0;0;1;0];

vh = [0;0;0;0;1];

ub = 1/sqrt (2)%[0;0;0;1;1];

% ... and the corresponding density matrices
Pl=vlxvl’;
P2=v2xv2’;

98
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P3=v3x*v3’;
Pd=v4xv4d
P5=vbx*xv)H '
Ub=ubx*ub’;

% Projectors with some desired properties
P12 = P1 + P2;
P23 = P2 + P3;
P34 = P3 + P4;
P45 = P4 + P5;
P51 = P5 + P1;

% Variable initializations in order to simplify system of equation
E3 = zeros(5);
E2 = zeros(5);

n= 0.5;
ab= 0.62;
a3= sqrt((1—ab5°2 — n"2)/2);
c2 = 0.3;
zero = 0;

% Kraus operators

El=1]al 000 a2; al al 0 0 0; 0 al al 0 0; ...,
0 0 al —a3 a3; 0 0 0 a4 al];

E2 =] al 0 0 0 —a2; al —al 0 0 0; 0 al —al 0 0; ...,
0 0 al a3 —a3; 0 0 0 ab a6];

E3=[00000;00000;00000O0; ...,
0000O0; 0000 c2];

% Avoid the channel to own 3 pairwise mon—adjacent input states
Condicoes (:,:,1) = E1xP1«El1’ + E2xP1xE2’ + E3%P1«E3’ — ...
P12x(E1xP1xE1’" + E2«P1xE2’ + E3xP1xE3’)xP12;
Condicoes (:,:,2) = E1xP2xE1’ + E2«P2«E2’ + E3xP2xE3’ —
P23x(E1xP2xE1’ + E2«P2xE2’ + E3xP2xE3’)xP23;
Condicoes (:,:,3) = E1xP3xEl1’" + E2xP3xE2’ + E3x%P3xE3’ — ...
P34x(E1xP3xE1’ + E2+P3xE2’ + E3xP3%E3’)xP34;
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Condicoes (:,:,4) = ElxP4xE1’" + E2xP4xE2’ + E3xP4xE3’" — ... |
P45x (E1xP4xE1’ + E2«P4xE2’ + E3xP4xE3’)x P45,

Condicoes (:,:,5) = ElxUbxE1l’ + E2xU5xE2’ + E3xU5xE3’ — ...
P51%(E1xU5xE1’ + E2+U5xE2’ 4 E3xU5%E3’)*P51;

% Completude condition \|\sum_ k E k'E k = 1
Condicoes (:,:,6) = E1’xE1 + E2'xE2 + E3’+«E3 — eye(5);

% OrdemC —> Order of matrices E i e P_i
% nCondicoes —> Number of conditions

[i OrdemC nCondicoes| = size (Condicoes);

% ArgumentoSolve groups all nonzero conditions

Y

ArgumentoSolve = ’solve (;

% Prepare solve argument
for k = 1:nCondicoes
for i=1:0rdemC
for j=1:0rdemC

if Condicoes(i,j,k) "= zero
ArgumentoSolve = [ArgumentoSolve, 'Condicoes(’ ,...
num2str(i),’,’ ;num2str(j),’,’ ,num2str(k),’),’|;
end
end

end

end
% Replace last comma with a parenthesis
i = length (ArgumentoSolve);

ArgumentoSolve (1,i) = 7)7;

% Now solve the system equation

Sol = eval (ArgumentoSolve);

% Format the output
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Variaveis = fieldnames(Sol);

for i=1:length(Variaveis)
ArgumentoEval = [char(Variaveis(i)) '=_Sol.’ ...,
char ( Variaveis (i)),’ (7);7];
eval (ArgumentoEval);

end
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Chapter 7

Conclusions and Perspectives

7.1 Conclusions

In this work we have proposed a new kind of capacity for quantum channel, namely,
the quantum zero-error capacity, which was defined as the least upper bound of rates at
which classical information can be transmitted without error through a noisy quantum
channel. The quantum zero-error capacity is a generalisation of the zero-error capacity
of classical discrete memoryless channels. The error-free capacity can also be viewed as
a particular case of the Holevo-Schumacher-Westmoreland capacity |7, 8|, in a scenario

where no transmission errors are allowed.

Initially, we formally defined an error-free quantum code and the concept of non-
adjacent input states. We have established a necessary and sufficient condition for a
quantum channel to have a positive zero-error capacity. We also reformulated the problem
of finding the quantum zero-error capacity in the language of graph theory, and we have
shown that the two definitions are equivalent. This equivalence in the definitions led to

an interpretation of the quantum zero-error capacity in terms of zero-error capacities of

DMCs.

Next, we have studied quantum states and measurements attaining the quantum zero-
error capacity. We have shown that the channel capacity can be reached by using an
ensemble of pure states. In the literature, there exists a similar result about the HSW
capacity [2, pp. 555]. We also defined the concept of k-extended-by-cloning graph and we
have demonstrated that the Shannon capacity of a k-EbC graph is equal to the Shannon
capacity of the original graph. This was used to show that the quantum zero-error capac-
ity can always be reached by a set of at most d pure states. Concerning measurements,
we have shown that collective von Neumann measurements are sufficient to attain the

quantum zero-error capacity. Next, we investigated the error-free capacity of some quan-
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tum channels. For classical-quantum (c-q) channels, which are a class of entanglement-
breaking channels, we have determined the set & achieving the capacity; an example of a
particular c-q channel was given for which we were able to calculate the capacity. We also
have exhibited a quantum channel whose zero-error capacity is claimed to be non-trivial,
in the sense that the quantum zero-error capacity can only be reached by using a set of
non-orthogonal quantum states, and we need to make two or more uses of the channel in
order to attain the capacity. Furthermore, the quantum channel we have exhibited gives
rise to the pentagon as characteristic graph for the ensemble of non-adjacent quantum
states.

Finally, we have related the quantum zero-error capacity to the HSW capacity, by
showing that the former is upper bounded by the latter.

7.2 Perspectives

We give below a (non-exhaustive) list of topics that can be investigated in the quantum

ZEro-error scenario.

7.2.1 A generalisation of the Lovasz’s theta function

Lovéasz’s theta [21] is a polynomially computable functional which is an upper bound
of the zero-error capacity of discrete memoryless channels. It would be interesting to
verify the existence of a generalisation of such functional to quantum information theory.
Classically, Lovasz’s theta function is defined as being the value of an orthonormal vector
representation of the adjacency graph associated with a DMC. A non-trivial generalisation
should consider an orthonormal representation obtained (in some way) from quantum
channel operators {E;}.

Recently, Beigi and Shor [46] studied the complexity of computing the zero-error ca-
pacity of quantum channels. The authors showed that the quantum zero-error capacity
belongs to a class of problems called QMA-complete. QMA is the class of problems that
can be solved by a quantum algorithm in polynomial time given that a quantum witness is
available. Authors restricted themselves to entanglement-breaking channels [24]. A poly-
nomial computable generalisation of the Lovazs theta function would be an interesting

tool to investigate the zero-error capacity of quantum channels.

7.2.2 Variations in the communication protocol

In a recent paper, Duan and Shi [48] have showed an interesting feature of quantum chan-

nels concerning the quantum zero-error capacity. Initially, senders and receivers share an
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arbitrary amount of entanglement. In a scenario where m senders want to transmit infor-
mation to n receivers, authors described a protocol that enable, for a particular quantum
channel, two senders and two receivers to exchange information with zero probability of
error. What is interesting is that senders can only transmit information if they make two
or more uses of the channel, i.e, no information can be transmitted with a single use of the
channel. This behaviour contrasts significantly with the classical case, where information
can be transmitted in a single use if and only if it can be transmitted in multiple uses.
Another possibility is investigate feedback channels as an extra resource. Because
classical feedback can increase the zero-error capacity of classical DMC [12]|, one may
expect that the same is true in the quantum case. We remember that the Shannon’s
feedback protocol described in Section 5.4 requires the transmission (from the receiver to
the sender) of each actual received symbol, which is used to choose the next symbol to
be transmitted. Nevertheless, this feedback protocol cannot be directly employed in the
quantum case because measurements must be performed collectively on the whole received
quantum codeword. Therefore, a different feedback strategy must be adopted in order to
investigate the quantum zero-error capacity with feedback. We could also investigate the
scenario where an arbitrary amount of shared entanglement among the sender and the

receiver is available.

7.2.3 Decoherence-free subspaces and noiseless subsystems

Apart from studies of quantum error-correction codes, some researches allowed for the de-
velopment of an alternative “passive” error prevention scheme, in which logical qubits are
encoded within subspaces which do not decohere for reasons of symmetry [37, 36]. The ex-
istence of such Decoherence-Free Subspaces (DFS) has been shown by projection onto the
symmetric subspace of multiple copies of a quantum computer [52|, and by use of a group-
theoretic argument [36]. Further works suggested that universal quantum computation is
possible within these subspaces [40, 42]. The so-called Noiseless Subsystems (NS) [44] are
a generalisation of DFS, in which quantum information is encoded in a specific sector of
a given quantum system. This sector remains invariant to decoherence. We should study
relations between the theory of noiseless subsystems (including noiseless quantum codes)

and the zero-error capacity of quantum channels.

7.2.4 Graph states

The quantum error-free capacity has a nice formulation in terms of graph. It would be
interesting to investigate whether there exist connections between the zero-error capac-

ity and other areas of quantum information whose properties can be stated in terms of
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graphs, e.g., quantum Fourier transform in a one-way computer [53, 54| and quantum
error correction codes [55]. We should pay a special attention to the theory of graph
states |56, 57, 58|. A graph state is a pure multipartite quantum state of a distributed
quantum system that corresponds to a graph, where vertices take the role of quantum spin
systems (qubits) and edges represent Ising interactions between pairs of such quantum

systems.
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