Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática

Existência de Soluções de Equilíbrios tipo *Instanton* para uma Equação de Evolução com Convolução

por

Hildênio José Macêdo

sob orientação do

Prof. Dr. Severino Horácio da Silva

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCT - UFCG, como requisito parcial para obtenção do título de Mestre em Matemática.

 $^{^\}dagger Este$ trabalho contou com apoio financeiro da SEDUC: Secretaria de Educação do Ceará.

Existência de Soluções de Equilíbrios tipo *Instanton* para uma Equação de Evolução com Convolução

por Hildênio José Macêdo

Dissertação apresentada ao Corpo Docente do Programa de Pós-Graduação em Matemática - CCT - UFCG, como requisito parcial para obtenção do título de Mestre em Matemática.

Área de Concentração: Matemática Aplicada

Aprovada por:

Prof. Dr. Antonio Ronaldo Gomes Garcia

Prof. Dr. Aldo Trajano Louredo

Prof. Dr. Severino Horácio da Silva
Orientador
Universidade Federal de Campina Grande
Centro de Ciências e Tecnologia
Programa de Pós-Graduação em Matemática
Curso de Mestrado em Matemática

Maio/2011

Resumo

Na presente dissertação, estudamos a existência e unicidade de solução para o problema de Cauchy associado a equação de evolução não local

$$\frac{\partial m(x,t)}{\partial t} = -m(x,t) + \tanh(\beta(J \star m)(x,t)).$$

Exibimos um funcional energia, associado a esta equação, e verificamos que ele satisfaz a propriedade de Lyapunov. Além disso, usamos este funcional para mostrar a existência e estabilidade local de uma solução de equilíbrio referida na literatura como *instanton*. **Palavras chave**: Problema de Cauchy; Funcional energia; Equilíbrios tipo *instanton*.

Abstract

In this work we prove existence and uniqueness of solution for the Cauchy problem corresponding to nonlocal evolution equation

$$\frac{\partial m(x,t)}{\partial t} = -m(x,t) + \tanh(\beta(J \star m)(x,t)).$$

We exhibit an energy functional associated to this equation, and verify that it satisfies the Lyapunov property. Moreover, use this function to show the existence and local stability of a equilibrium solution reported in the literature as *instanton*.

Key Words: Cauchy problem; Energy functional; Equilibrium type *instanton*;

Agradecimentos

- A Deus, por ter concedido mais esta vitória em minha vida intelectual. A Ele toda minha honra e adoração.
- A Minha esposa, Corrinha, pela compreensão, carinho, amor e todo apoio prestado no decorrer desta trajetória.
- Aos meus filhos, Hádley e Sibelle, por terem ajudado na dinâmica do lar e pela obediência, mesmo na minha ausência.
- Aos meus pais, Cícero e Santana, por todo o cuidado dispensado na minha criação e educação. Agradeço ainda a minha Avó (in Memorian), D. Senhorinha, pelo incentivo e investimento financeiro na minha vida estudantil. Aos meus irmãos, Marta, Marcos, Hildegardo, Eduardo, Margarete, Aldenise, Altemar, Alexandro e Fabiana, pelo apoio e incentivo.
- Ao meu orientador, Prof. Severino Horácio, pela dedicada orientação. Agradeço por ter dispensado parte do seu tempo, e até fora de tempo, para o bom andamento deste trabalho. As lições, que com ele aprendí, são de grande valor para minha vida profissional.
- Aos professores da banca examinadora, Aldo Trajano e Antonio Ronaldo, por terem aceitado a tarefa de ler e contribuir com sugestões que enriqueceram esta dissertação.

Agradeço aos meus professores do mestrado, Brandão, Claudianor e Aparecido, pelos valiosos ensinamentos durante este curso.

- Aos colegas do mestrado, Annaxsuel, Antonio Igor e Cláudio pelo apoio e amizade. Sou grato especialmente a Denilson, Kelmen e Jussier pelo companheirismo e parceria, durante esse período de convivência sob o mesmo teto.
- Agradeço aos meus irmãos na fé, da Igreja Batista, pelas constantes orações em meu favor.
- Aos meus professores, da Universidade Regional do Cariri-URCA, Mário, Zelálber, Carlos Alberto, Wilsom, Evandro e Paulo César pela parcela de contribuição na minha formação. Agradeço ainda aos colegas da graduação Ében e Joancelmo.
- Ao colega Thiago, hoje Prof. da URCA, pelo material de estudo fornecido que muito me ajudou nesta caminhada. Agradeço também aos coordenadores e professores do IFCE-Juazeiro pela compreensão.
- Ao Governo do Estado do Ceará, Cid Ferreira Gomes e a CREDE 19, principalmente as coordenadoras, Jôse e Edna, por todo apoio prestado. Sou grato aos colegas professores da Escola Maria Amélia Bezerra, pelo incentivo.
- A todos do DME da UFCG, especialmente Salete, Severina (Dona Du), Suenia, Argentina (in Memorian) e Andrezza.
 - Ao CNPq/INCTMat pelo apoio.
 - Enfim, a todos que de alguma forma ajudaram para a realização deste trabalho.

Dedicatória

À minha esposa Corrinha e aos meus filhos Hádley e Sibelle.

"Não que sejamos capazes, por nós, de pensar alguma coisa, como de nós mesmos; mas a nossa capacidade vem de Deus".

II Coríntios 3:5

Lista de Figuras

Figura 1: Equilíbrios Constantes	9
Figura 3.1: Densidade de Entropia	33
Figura 3.2: Densidade de Energia	33

Conteúdo

	Intr	odução	7
1	Preliminares		
	1.1	Teorema de Existência e Unicidade em Espaços de Banach	11
	1.2	Convolução de Funções	21
2	Pro	priedades Básicas da Equação de Evolução	25
	2.1	Boa Posição	25
	2.2	Equicontinuidade das Órbitas	29
3 Existência de um Funcional Energia			32
	3.1	Propriedades Topológicas do Funcional Energia	33
	3.2	Teorema de Comparação	42
	3.3	Propriedade de Lyapunov para o Funcional Energia	45
4	Exis	stência e Estabilidade Local de Instanton	53
	4.1	Existência de <i>Instanton</i>	53
	4.2	Estabilidade do <i>Instanton</i>	59
A	Alg	uns Resultados Básicos	66
Bi	sibliografia		

Introdução

Nesta dissertação estudamos a equação de evolução (2), descrita abaixo, a qual é usada no estudo de sistemas de *spin* com dinâmica de Glauber e interações de Kac, onde ela surge como limite contínuo de modelos probabilísticos, (veja [4], [6], [7], [8], [17] e [18]).

Uma configuração spin é uma especificação do valor do spin no reticulado $\mathbb{Z}^d,$ ou seja, é uma função

$$\sigma: \mathbb{Z}^d \to \{-1,1\}.$$

O valor $\sigma(x)$, do spin em x, é uma função da configuração σ , assim uma variável aleatória do espaço $\{-1,1\}^{\mathbb{Z}^d}$. Para todo $\gamma \in (0,1]$, a dinâmica de Glauber é o único processo de Markov no espaço $\{-1,1\}^{\mathbb{Z}^d}$ cujo pré gerador é o operador L_{γ} , que atua nas funções f da seguinte forma

$$L_{\gamma}f(\sigma) = \sum_{x \in \mathbb{Z}^d} c(x, \sigma)[f(\sigma^x) - f(\sigma)], \quad \sigma \in \{-1, 1\}^{\mathbb{Z}^d}.$$

Sendo σ^x dado por

$$\sigma^{x}(y) = \begin{cases} \sigma(y), & \text{se } y \neq x \\ -\sigma(x) & \text{se } y = x \end{cases}$$

e

$$c(x,\sigma) = \frac{1}{2}[1 - \sigma(x)tanh(\beta h_{\gamma}(x,\sigma))],$$

é a taxa de giro do spin em x, da configuração σ . Na expressão de $c(x,\sigma),\ h_{\gamma}$ é dado por

$$h_{\gamma}(x) = (J_{\gamma} \circ \sigma)(x),$$

onde

$$(J_{\gamma} \circ \sigma)(x) = \sum_{y \neq x} J_{\gamma}(x, y)\sigma(y),$$

é a convolução discreta de J_{γ} com σ . A dinamâmica de Glauber está relacionada ao conceito da Medida de Gibbs que é uma medida de probabilidade em $\{-1,1\}^{\mathbb{Z}^d}$ que satisfaz a equação

$$\mu_{\beta,h,\gamma}(\sigma(x) = \pm 1 | \{\sigma(y), \ y \neq x\}) = \frac{e^{\pm \beta h_{\gamma}(x)}}{e^{-\beta h_{\gamma}(x)} + e^{\beta h_{\gamma}(x)}}.$$

Um potenecial de Kac é a função $J_{\gamma}: \mathbb{Z}^d \times \mathbb{Z}^d \to \mathbb{R}$ tal que,

$$J_{\gamma}(x,y) = \gamma^d J(\gamma |x - y|).$$

Finalmente, para qualquer função f em \mathbb{Z}^d seja

$$\mathcal{A}_{\gamma,x,b_0}(f) = \frac{1}{|B_{\gamma,x,b_0}|} \sum_{y \in B_{\gamma,x,b_0}} f(y), \tag{1}$$

onde

$$B_{\gamma,x,b_0} = \{y : |y - x| \le \gamma^{-b_0}\} \quad 0 < b_0 < 1.$$

A magnetização do bloco spin em um tempo $t \ge 0$, é a expressão em (1) com $f = \sigma(\cdot, t)$.

Em [7], é demonstrado que a magnetização do bloco $spin \mathcal{A}_{\gamma,x,b_0}$, (equação (1) com $x = \gamma^{-1}r$), converge em probabilidade, quando $\gamma \to 0$, para m(r,t) onde m satisfaz a equação

$$\frac{\partial m(r,t)}{\partial t} = -m(r,t) + \tanh(\beta(J \star m)(r,t)). \tag{2}$$

Na equação (2), m é uma função real definida em $\mathbb{R} \times \mathbb{R}_+$, β é uma constante nãonegativa, $J \in C^2(\mathbb{R})$ é uma função par não-negativa com suporte no intervalo [-1,1] e integral igual a 1. O símbolo \star denota o produto convolução na primeira variável, isto é,

$$(J \star m)(x,t) = \int_{\mathbb{R}} J(x-y)m(y,t)dy.$$
 (3)

Uma solução de equilíbrio de (2) é uma solução que é constante com relação a t. Daí, se m é uma solução de equilíbrio de (2), então m satisfaz

$$m(x) = \tanh(\beta(J \star m)(x)). \tag{4}$$

A equação (2), é usada no estudo de separação de fases da matéria, onde m é interpretado como a densidade de magnetização e β^{-1} como o produto da temperatura absoluta pela constante de Boltzmann.

Se $\beta \leq 1$, a equação (2) tem apenas um equilíbrio (veja [8]). Se $\beta > 1$, a equação (2) possui três equilíbrios constantes, a saber 0 e $\pm m_{\beta}$, sendo m_{β} solução positiva da equação

$$m_{\beta} = \tanh(\beta m_{\beta}). \tag{5}$$

Na figura 1, os equilíbrios constantes $-m_{\beta}$, 0 e $+m_{\beta}$ são representados pelas interseções dos gráficos da função indentidade com o da $\tanh(x)$.

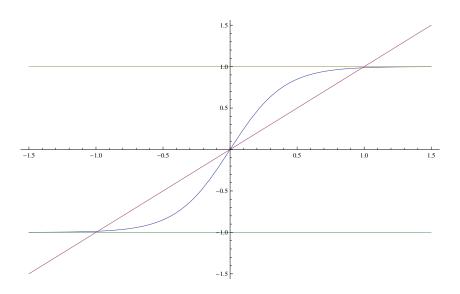


Figura 1: Equilíbrios Constantes.

A temperatura crítica corresponde em $\beta = 1$ e quando $\beta > 1$ existem duas fases termodinâmicas puras com magnetização, iguais a $+m_{\beta}$ e $-m_{\beta}$. Assim, as fases puras, neste contexto, são soluções de equilíbrio de (2) e as interfaces, que são regiões entre as duas fases puras são defindas como *instantons*.

Outras aplicações da equação (2) estão relacionadas a modelos de dinâmica populacional e redes neurais, veja em [6].

O objetivo deste trabalho consiste em mostrar a existência de uma solução de equilíbrio de (2), referida na literatura como *instanton*. Para tanto usamos um funcional energia, o qual satisfaz a propriedade de Lyapunov de decrescer ao longo de soluções de (2). Para isso seguimos os artigos de pesquisa [4] e [6] e resultados clássicos de [5] e [11].

Esta dissertação está organizada como segue: no Capítulo 1, apresentamos alguns conceitos e resultados preliminares. No Capítulo 2, estudamos algumas propriedades da equação de evolução (2). No capítulo 3, exibimos um funcional energia e estudamos suas propriedades. No Capítulo 4, usamos o funcional energia para mostrar a existência de *instanton* e concluímos este capítulo mostrando a estabilidade local do *instanton*. Finalmente, no apêndice exibimos alguns resultados básicos que de alguma forma foram necessário para a realização deste trabalho.

Capítulo 1

Preliminares

Neste capítulo, consideramos alguns resultados clássicos da literatura os quais são usados para fundamentar os diversos teoremas que figuram nos capítulos posteriores. Destacamos o Teorema de Picard em espaços de Banach e a Desiguladade de Young generalizada.

1.1 Teorema de Existência e Unicidade em Espaços de Banach

Nesta seção consideramos em um espaço de Banach $\mathcal B$ a equação diferencial

$$\dot{x} = f(t, x), \tag{1.1}$$

sendo

$$f: I \times \mathcal{B} \rightarrow \mathcal{B}$$

 $(t, x) \mapsto f(t, x)$

onde $I \subset \mathbb{R}$ e \dot{x} denota a derivada de x com relação a variável t.

Uma função continuamente diferenciável $\phi:I\subset\mathbb{R}\to\mathcal{B}$ é dita solução de (1.1) no intervalo I se:

(i) o gráfico de ϕ em I, isto é, $\{(t,\phi(t)); t\in I\}$ está contido no domínio de f;

(ii)
$$\frac{d}{dt}\phi(t)=f(t,\phi(t))$$
 para todo $t\in I.$

O problema de Cauchy para (1.1) com condições iniciais (t_0, x_0) é denotado por

$$\dot{x} = f(t, x), \ x(t_0) = x_0.$$
 (1.2)

Lema 1.1.1 O problema (1.2) é équivalente a

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s))ds,$$
(1.3)

onde f é contínua em $I \times \mathcal{B}$.

Prova. De fato, integrando de t_0 a t ambos os lados de (1.2), temos

$$\int_{t_0}^t \dot{x}(s)ds = \int_{t_0}^t f(s, x(s))ds.$$

Daí,

$$x(t) - x(t_0) = \int_{t_0}^t f(s, x(s)) ds.$$

Portanto,

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.$$

Reciprocamente, derivando (1.3) temos

$$\frac{d}{dt}x(t) = \frac{d}{dt}x(t_0) + \frac{d}{dt}\int_{t_0}^t f(s, x(s))ds.$$

Logo,

$$\dot{x} = f(t, x(t)), \ x(t_0) = x_0.$$

Quando $\mathcal{B} = \mathbb{R}^n$, temos o clássico Teorema de Picard que garante existência e unicidade para (1.2), mais precisamente, temos o seguinte resultado:

Teorema 1.1.2 Seja f contínua e lipschitziana em $\Omega = I_a \times B_b$, onde $I_a = \{t; |t - t_0| \leq a\}, B_b = \{x; |x - x_0| \leq b\}.$ Se $|f| \leq M$ em Ω com $M \in \mathbb{R}_+$, existe uma e somente uma solução de (1.2) em I_{α} , onde, $\alpha = \min\{a, b/M\}$.

Prova. Veja [21].

No que segue, discutiremos um resultado que generaliza o Teorema de Picard.

Teorema 1.1.3 (Existência Local) Suponha que numa vizinhança do ponto (t_0, x_0) a função

$$f: [t - \delta, t + \delta] \times \mathcal{B} \rightarrow \mathcal{B}$$

 $(t, x) \mapsto f(t, x)$

onde \mathcal{B} é um Espaço de Banach e f é continua em t e satisfaz a condição de Lipschitz na segunda variável, isto é, existe $M \in \mathbb{R}_+$ tal que

$$||f(t,x) - f(t,y)|| \le M||x - y||.$$
 (1.4)

Então, existe uma vizinhança de t₀ em que o problema de Cauchy

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases} \tag{1.5}$$

tem uma única solução.

Prova. Seguimos nesta demonstração a idéia dada por Daleckiï e Kreïn em [5]. Como f é contínua em t, então dado $\xi > 0$ existe $\epsilon > 0$ tal que

$$||f(t,x) - f(t_0,x)|| \le \xi \tag{1.6}$$

sempre que $|t-t_0| \le \epsilon$. Além disso, já que $x \in \mathbf{B}_{\eta}(x_0)$ (bola de centro em x_0 e raio η), para algum $\eta > 0$, usando a hipótese de f ser lipschitz na segunda variável, temos

$$||f(t,x) - f(t,x_0)|| \le M||x - x_0|| \le M\eta.$$
(1.7)

Note que, pela norma da soma

$$||(t,x) - (t_0,x_0)|| = ||(t-t_0,x-x_0)|| = |t-t_0| + ||x-x_0|| < \epsilon + \eta.$$
 (1.8)

Usando (1.6) e (1.7), obtemos

$$||f(t,x) - f(t_0,x_0)|| = ||f(t,x) - f(t,x_0) + f(t,x_0) - f(t_0,x_0)||$$

$$\leq ||f(t,x) - f(t,x_0)|| + ||f(t,x_0) - f(t_0,x_0)||$$

$$\leq M\eta + \xi = .$$

Portanto, chamando $\tau = M\eta + \xi$, segue que

$$||f(t,x) - f(t_0,x_0)|| \le \tau,$$

sempre que

$$||(t,x) - (t_0,x_0)|| \le \epsilon + \eta,$$

isto é, f é contínua numa vizinhança de (t_0, x_0) , por conseguinte f é limitada nesta vizinhança (veja [14] Teorema 2 p.225). Logo, existe $M_1 > 0$ tal que

$$||f(t,x)|| \le M_1 < \infty. \tag{1.9}$$

Agora, seja $\delta = \min\left(\epsilon, \frac{\eta}{M_1}\right)$ e denote por $C_{\delta}(\mathcal{B})$ espaço de Banach das funções contínuas x que são definidas para $|t - t_0| \leq \delta$ assumindo valores em \mathcal{B} , ou seja,

$$x: [t_0 - \delta, t_0 + \delta] \rightarrow \mathcal{B}$$

$$t \mapsto x(t)$$

com norma

$$|||x||| = \sup_{|t-t_0| \le \delta} ||x(t)||. \tag{1.10}$$

Seja

$$\mathbf{B}_{\eta} = \{ x \in C_{\delta}(\mathcal{B}) : |||x - x_0||| \le \eta \}.$$

Seja T um operador sobre \mathbf{B}_{η} dado por

$$(Tx)(t) = x_0 + \int_{t_0}^{t} f(s, x(s))ds.$$

Note que, $\forall x(t) \in \mathbf{B}_{\eta}$ tem-se $T(\mathbf{B}_{\eta}) \subset \mathbf{B}_{\eta}$. De fato, temos que

$$\|(Tx)(t) - x_0\| = \left\| \int_{t_0}^t f(s, x(s)) ds \right\|$$

$$\leq \int_{t_0}^t \|f(s, x(s))\| ds$$

$$\leq \int_{t_0}^t M_1 ds$$

$$= |t - t_0| M_1$$

$$\leq \delta M_1.$$

Daí,

$$||(Tx)(t) - x_0|| \le \delta M_1$$
 (1.11)

De (1.10) e (1.11) temos

$$||Tx - x_0|| = \sup_{|t - t_0| \le \delta} ||(Tx)(t) - x_0||$$

 $< \delta M_1.$

Logo,

$$||Tx - x_0|| \le \frac{\eta}{M_1} M_1 = \eta.$$

Portanto,

$$T: \mathbf{B}_{\eta} \subset \mathcal{B} \to \mathbf{B}_{\eta}$$
.

Além disso, para x_1 e x_2 em \mathbf{B}_{η} , da hipótese de f ser Lipschitz, temos

$$||(Tx_{2})(t) - (Tx_{1})(t)|| = \left\| \int_{t_{0}}^{t} f(s, x_{2}(s)) ds - \int_{t_{0}}^{t} f(s, x_{1}(s)) ds \right\|$$

$$\leq \int_{t_{0}}^{t} ||f(s, x_{2}(s)) - f(s, x_{1}(s))|| ds$$

$$\leq \int_{t_{0}}^{t} M ||x_{2}(s) - x_{1}(s)|| ds$$

$$\leq \int_{t_{0}}^{t} M ||x_{2} - x_{1}|| ds.$$

Logo,

$$||Tx_2 - Tx_1|| \le M(t - t_0) ||x_2 - x_1||. \tag{1.12}$$

Estimando agora a composição $\|(T^2x_2)(t)-(T^2x_1)(t)\|$ e usando (1.12) obtemos

$$||T(Tx_{2})(t) - T(Tx_{1})(t)|| = \left\| \int_{t_{0}}^{t} [f(s, Tx_{2}(s)) - f(s, Tx_{1}(s))] ds \right\|$$

$$\leq \int_{t_{0}}^{t} ||f(s, Tx_{2}(s)) - f(s, Tx_{1}(s))|| ds$$

$$\leq \int_{t_{0}}^{t} M||(Tx_{2})(s) - (Tx_{1})(s)|| ds$$

$$\leq \int_{t_{0}}^{t} MM(s - t_{0}) ||x_{2} - x_{1}|| ds$$

$$= M^{2} ||x_{2} - x_{1}|| \int_{t_{0}}^{t} (s - t_{0}) ds.$$

Assim,

$$||T(Tx_{2})(t) - T(Tx_{1})(t)|| \leq M^{2}||x_{2} - x_{1}|| \left[\int_{t_{0}}^{t} s ds - \int_{t_{0}}^{t} t_{0} ds\right]$$

$$= M^{2}||x_{2} - x_{1}|| \left[\frac{s^{2}}{2}|_{t_{0}}^{t} - t_{0}s|_{t_{0}}^{t}\right]$$

$$= M^{2}||x_{2} - x_{1}|| \left[\frac{t^{2}}{2} - \frac{t_{0}^{2}}{2} - tt_{0} + t_{0}^{2}\right]$$

$$= M^{2}||x_{2} - x_{1}|| \left[\frac{t^{2} - 2tt_{0} + t_{0}^{2}}{2}\right]$$

$$= M^{2}||x_{2} - x_{1}|| \left[\frac{t^{2} - 2tt_{0} + t_{0}^{2}}{2}\right]$$

$$= M^{2}\frac{(t - t_{0})^{2}}{2!}||x_{2} - x_{1}||.$$

Daí,

$$||(T^2x_2)(t) - (T^2x_1)(t)|| \le M^2 \frac{(t-t_0)^2}{2!} ||x_2 - x_1||.$$

Seguindo este procedimento, para a n-ésima composição, teremos

$$\|(T^n x_2)(t) - (T^n x_1)(t)\| \le \frac{1}{n!} M^n (t - t_0)^n \|x_2 - x_1\|.$$

Portanto,

$$|||(T^n x_2) - (T^n x_1)||| \le \frac{(M\delta)^n}{n!} |||x_2 - x_1|||.$$

Como, para n suficientemente grande $0 < \frac{(M\delta)^n}{n!} < 1$, pois n! cresce mais rapidamente do que $(M\delta)^n$, segue do Corolário A.0.4 que o operador T possui um único ponto fixo, isto é, existe um único $x \in \mathbf{B}_n$ tal que (Tx)(t) = x(t). Logo,

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds$$
 e $x(t_0) = x_0$.

Portanto, pelo Lema 1.1.1 segue que x(t) satisfaz (1.2).

Observação 1.1 O Teorema 1.1.3 afirma somente a existência de soluções em uma certa vizinhança do ponto t_0 . Mas, tendo construído uma solução no intervalo $[t_0 - \delta, t_0 + \delta]$, podemos tentar estender um pouco mais adiante. É óbvio que podemos continuar tal procedimento indefinidamente se, por exemplo, as condições (1.4) e (1.9) são satisfeitas para todo t e $x \in \mathcal{B}$ com mesmas constantes M e M_1 . Em particular se as condições (1.4) e (1.9) estão satisfeitas para todo $t \in [\alpha, \infty)$, $||x - x_0|| \le \eta$, para algum $\alpha \in \mathbb{R}$, e a solução x de (1.1) é tal que $||x(t) - x_0|| \le \eta_0 < \eta$, então podemos estender indefinidamente quando $t \to \infty$.

Se impormos exigências de caráter global sobre f, podemos conseguir soluções globais sem hipótese prévia no seu comportamento.

Teorema 1.1.4 (Existência Global) Suponha que exista um domínio $[a,b] \times \mathcal{B}$ em que a função f é contínua em t e satisfaz a condição de Lipschitz (1.4). Então para todo $(t_0, x_0) \in [a, b] \times \mathcal{B}$, o problema de Cauchy (1.5) possui uma única solução $\phi : [a, b] \to \mathcal{B}$ tal que $x = \phi(t)$.

Prova. A prova é análoga à prova do Teorema 1.1.3. Basta notar que:

- (i) a hipótese do teorema implica na limitação de f em $[a,b] \times S$, onde S é um subconjunto compacto arbitrário de \mathcal{B} , e que
- (ii) o papel de \mathbf{B}_{η} é feito pelo espaço $C(\mathcal{B})$, das funções contínuas $x:[a,b]\to\mathcal{B}$ munido da norma

$$|||x||| = \sup_{t \in [a,b]} ||x(t)||.$$

Portanto, segue-se o resultado.

Observação 1.2 Note que se a equação (1.1) for autônoma, ou seja, f não depende explicitamente de t, então f é contínua em t para todo $t \in \mathbb{R}$ e, portanto, os Teoremas 1.1.3 e 1.1.4 se aplicam. Em particular, se f é globalmente Lipschitz, temos que existe e é única, solução do problema de Cauchy (1.5),(veja [1]).

Para o caso particular de sistemas autônomos, temos o clássico resultado, devido a Cauchy, Lipschitz e Picard, dado abaixo:

Teorema 1.1.5 (Cauchy, Lipschitz, Picard) Sejam \mathcal{B} um Espaço de Banach e $F: \mathcal{B} \to \mathcal{B}$ uma aplicação tal que F(0) = 0 e

$$||F(x) - F(y)|| \le L||x - y||, \quad \forall x, y \in \mathcal{B} \quad (L \in \mathbb{R}_+).$$

Então, para todo $x_0 \in \mathcal{B}$, existe $x \in C^1([0,\infty),\mathcal{B})$ tal que

$$\begin{cases} \frac{dx}{dt} = F(x) \\ x(0) = x_0. \end{cases} \tag{1.13}$$

Prova. Pelo Lema 1.1.1, resolver (1.13) é equivalente a achar $x \in C^1([0,\infty),\mathcal{B})$ tal que

$$x(t) = x_0 + \int_0^t F(x(s))ds.$$
 (1.14)

Defina,

$$\mathbf{E} = \{ x \in C^1([0, \infty), \mathcal{B}) : \sup_{t > 0} e^{-kt} ||x(t)|| < \infty \},$$

para alguma constante k > 0, a ser fixada posteriormente.

Afirmação 1: E é um Espaço de Banach com a norma

$$||x||_{\mathbf{E}} = \sup_{t>0} e^{-kt} ||x(t)||, \quad k>0.$$

De fato, seja (x_n) uma sequência de Cauchy em **E**. Dado $\epsilon > 0 \quad \exists n_0 \in \mathbb{N}$ tal que

$$||x_m - x_n||_{\mathbf{E}} = \sup_{t \ge 0} e^{-kt} ||x_m(t) - x_n(t)|| < \epsilon, \quad \text{para} \quad m, n > n_0.$$
 (1.15)

Daí,

$$e^{-kt} ||x_m(t) - x_n(t)|| < \epsilon$$
, para todo $m, n > n_0$, $t \ge 0$. (1.16)

Para cada $t \in [0, \infty)$, fixado, segue de (1.16) que, a sequência $(x_1(t), x_2(t), \ldots)$ é de Cauchy em \mathcal{B} . Assim, existe $x^t \in \mathcal{B}$ tal que

$$x_n(t) \to x^t$$
 quando $n \to \infty$.

Defina

$$x:[0,\infty)\to\mathcal{B},$$

tal que

$$x(t) = x^t = \lim_{n \to \infty} x_n(t), \quad \forall t \ge 0.$$

Afirmação 2: $x \in \mathbf{E} \in x_n \to x \text{ em } \mathbf{E}$.

De fato, começamos notando que, como x_n é uma sequência de Cauchy em \mathbf{E} , x_n é limitada em \mathbf{E} (veja Teorema A.0.12). Daí, existe uma constante c > 0 tal que

$$||x_n||_{\mathbf{E}} = \sup_{t \ge 0} e^{-kt} ||x_n(t)||$$

$$< c.$$

Por outro lado, pela definição de supremo, temos

$$e^{-kt} ||x_n(t)|| \le \sup_{t \ge 0} e^{-kt} ||x_n(t)||$$

= $||x_n||_{\mathbf{E}}$.

Daí,

$$e^{-kt}||x_n(t)|| \le c,$$

para todo $n \in \mathbb{N}, \ t \geq 0$ e k > 0 fixo. Passando ao limite nesta última desigualdade, quando $n \to \infty$, obtemos

$$e^{-kt}||x(t)|| \le c.$$

Donde,

$$||x||_E = \sup_{t>0} e^{-kt} ||x(t)|| \le c.$$

Para concluírmos a afirmação é suficiente verificarmos que

$$x_n \to x$$
, uniformemente em $[0, \infty)$.

Para isso, note que, dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$||x_m(t) - x_n(t)|| < \frac{\varepsilon}{2}, \tag{1.17}$$

para todo $m,n\geq n_0$ e qualquer $t\in [0,\infty)$. Então, fazendo $m\to\infty$ em (1.17) concluímos que, para $n>n_0$

$$||x(t) - x_n(t)|| \le \frac{\varepsilon}{2} < \varepsilon,$$

para todo $t \in [0, \infty)$, ou seja $x_n \to x$ uniformemente em $[0, \infty)$.

Além disso, para todo $x \in \mathbf{E}$, a função

$$(\Phi x)(t) = x_0 + \int_0^t F(x(s))ds,$$

pertence a **E**. De fato,

- (i) a continuidade de Φ segue do fato de termos uma soma de funções contínuas.
- (ii) Mostraremos que $\|\Phi(x)\|_{\mathbf{E}} < \infty$. Com efeito,

$$\|\Phi(x)\|_{\mathbf{E}} = \sup_{t \ge 0} e^{-kt} \| (\Phi x) (t) \|$$
$$= \sup_{t \ge 0} e^{-kt} \| x_0 + \int_0^t F(x(s)) ds \|.$$

Daí,

$$\|\Phi(x)\|_{\mathbf{E}} \le \sup_{t>0} e^{-kt} \|x_0\| + \sup_{t>0} e^{-kt} \left\| \int_0^t F(x(s)) ds \right\|.$$

A primeira parcela do lado direito desta última desigualdade, claramente é finita.

Para mostrarmos a finitude da segunda parcela, começamos observando que,

$$\sup_{t>0} e^{-kt} \left\| \int_0^t F(x(s)) ds \right\| \le \sup_{t>0} e^{-kt} \int_0^t \|F(x(s))\| ds.$$

Mas,

$$\int_{0}^{t} ||F(x(s))|| ds \le \int_{0}^{t} L||x(s)|| ds.$$

Multiplicamos a expressão acima pelo número positivo e^{-kt} obtemos,

$$e^{-kt} \int_0^t ||F(x(s))|| ds \le \int_0^t e^{-kt} L ||x(s)|| ds$$
$$= \int_0^t L e^{-kt} e^{ks} e^{-ks} ||x(s)|| ds.$$

Daí,

$$\sup_{t \ge 0} e^{-kt} \int_0^t \|F(x(s))\| ds \le L \|x\|_{\mathbf{E}} \int_0^t e^{-kt} e^{ks} ds
= L \|x\|_{\mathbf{E}} e^{-kt} \int_0^t e^{ks} ds
= L \|x\|_{\mathbf{E}} e^{-kt} \left[\frac{1}{k} e^{ks} \Big|_0^t \right]
= L \|x\|_{\mathbf{E}} e^{-kt} \left[\frac{e^{kt}}{k} - \frac{1}{k} \right]
= L \|x\|_{\mathbf{E}} \left[\frac{1}{k} - \frac{e^{-kt}}{k} \right].$$

Portanto,

$$\sup_{t \ge 0} e^{-kt} \int_0^t ||F(x(s))|| ds \le L ||x||_{\mathbf{E}} \frac{1}{k} < \infty.$$

Afirmação: Se escolhermos k > L, Φ é uma contração.

De fato,

$$\|\Phi(x(s)) - \Phi(y(s))\| = \left\| \int_0^t [F(x(s)) - F(y(s))] ds \right\|$$

$$\leq \int_0^t \|F(x(s)) - F(y(s))\| ds$$

$$\leq \int_0^t L \|x(s) - y(s)\| ds.$$

Daí, multiplicando ambos os lados por e^{-kt} e procedendo como em (ii), obtemos

$$\|\Phi(x) - \Phi(y)\|_{\mathbf{E}} \le \frac{L}{k} \|x - y\|_{\mathbf{E}}.$$

Portanto, se k > L, Φ é uma contração, logo possui um único ponto fixo x, o qual satisfaz (1.14) e consequentemente satisfaz (1.13).

Unicidade: Sejam $x \in \bar{x}$, duas soluções de (1.13). Sendo

$$\varphi(t) = ||x(t) - \bar{x}(t)||,$$

temos, por (1.14),

$$\varphi(t) = \|x(t) - \bar{x}(t)\|$$

$$\leq \int_0^t \|F(x(s)) - F(\bar{x}(s))\| ds$$

$$\leq L \int_0^t \|x(s) - \bar{x}(s)\| ds$$

$$= L \int_0^t \varphi(s) ds.$$

Logo,

$$\varphi(t) \le L \int_0^t \varphi(s) ds, \quad \forall t \ge 0.$$

Portanto, pelo Lema de Gronwall (Lema A.0.6), $\varphi \equiv 0$.

1.2 Convolução de Funções

Nesta seção definimos o produto convolução de funções e estudamos algumas de suas propriedades.

Definição 1.1 Dadas duas funções f e g em \mathbb{R} , definimos o produto convolução entre f e g pela expressão

$$(f \star g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy,$$

para os pontos x tais que a integral exista, isto é, a função $y \in \mathbb{R} \mapsto f(x-y)g(y)$ seja integrável.

Proposição 1.2.1 O produto convolução satisfaz as seguintes propriedades:

- (i) $f \star q = q \star f$:
- (ii) $f \star (g+h) = f \star g + f \star h$;
- (iii) $(f \star g) \star h = f \star (g \star h)$.

Prova. Para verificarmos (i), fazemos a mudança de variável z = x - y e obtemos

$$(f \star g)(x) = \int_{\mathbb{R}} f(x - y)g(y)dy$$
$$= \int_{\mathbb{R}} f(z)g(x - z)dz$$
$$= (g \star f)(x).$$

No caso da propriedade (ii) temos,

$$[f \star (g+h)](x) = \int_{\mathbb{R}} f(x-y)[(g+h)(y)]dy$$
$$= \int_{\mathbb{R}} f(x-y)[g(y)+h(y)]dy$$
$$= \int_{\mathbb{R}} f(x-y)g(y)dy + \int_{\mathbb{R}} f(x-y)h(y)dy$$
$$= (f \star g)(x) + (f \star h)(x).$$

Finalmente, usando (i) e o Teorema de Fubini, obtemos

$$[(f \star g) \star h](x) = \int_{\mathbb{R}} (f \star g)(x - y)h(y)dy$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(z)g(x - y - z)dz h(y)dy$$

$$= \int_{\mathbb{R}} f(z) \left(\int_{\mathbb{R}} g(x - z - y)h(y)dy \right) dz$$

$$= \int_{\mathbb{R}} f(z)(g \star h)(x - z)dz$$

$$= \int_{\mathbb{R}} (g \star h)(x - z)f(z)dz$$

$$= [(g \star h) \star f](x)$$

$$= [f \star (g \star h)](x).$$

o que justifica (iii).

No que segue veremos dois resultados importantes envolvendo este conceito.

Teorema 1.2.2 (Veja [9], p.242.) Se $f \in L^1(\mathbb{R}^n)$, $g \in C^1(\mathbb{R}^n)$ e $D_x g$ for limitada, então $f \star g \in C^1(\mathbb{R})$ e $D_x (f \star g) = f \star (D_x g)$.

Prova. Defina

$$\varphi(x) = \int_{\mathbb{R}} g(x - y) f(y) dy.$$

Daí, pela regra de Leibniz (Teorema A.0.8), temos

$$\varphi'(x) = \int_{\mathbb{R}} g_x(x - y) f(y) dy. \tag{1.18}$$

Note que a integral em (1.18) converge uniformemente em $-\infty < x < +\infty$, pois g_x é limitada e $f \in L^1$. Portanto,

$$D_x(f \star g)(x) = \varphi'(x)$$

$$= \int_{\mathbb{R}} g_x(x - y) f(y) dy$$

$$= [(D_x g) \star f](x)$$

$$= [f \star (D_x g)](x).$$

Combinando o Teorema 1.2.2 com a Proposição 1.2.1 é imediato o seguinte resultado:

Corolário 1.2.3 Sejam f, g duas funções de classe C^1 com $f, g \in L^1$ e $D_x f$ e $D_x g$ limitadas. Então

$$D_x(f \star g) = (D_x f) \star g = (D_x g) \star f.$$

Teorema 1.2.4 (Desigualdade de Young Generalizada) Sejam $X = \mathbb{R}^n$, C > 0 e $1 \le p \le \infty$. Suponha g uma função contínua em $X \times X$ tal que

$$\sup_{x \in X} \int_{X} |g(x,y)| dy \le C, \quad \sup_{y \in X} |g(x,y)| dx \le C.$$

Se $f \in L^p(X)$, a função Tf definida por

$$(Tf)(x) = \int_X g(x,y)f(y)dy$$

está bem definida q.t.p, $Tf \in L^p(X)$ e $||Tf||_p \le C||f||_p$.

Prova. Suponha 1 e seja <math>q o expoente conjugado de p, isto é, $\frac{1}{p} + \frac{1}{q} = 1$. Então, pela desigualdade de Hölder

$$|(Tf)(x)| \leq \left[\int_X |g(x,y)| dy \right]^{\frac{1}{q}} \left[\int_X |g(x,y)| |f(y)|^p dy \right]^{\frac{1}{p}}$$
$$\leq C^{\frac{1}{q}} \left[\int_X |g(x,y)| |f(y)|^p dy \right]^{\frac{1}{p}}.$$

Elevando ambos os lados a potência p, integrando e usando Teorema de Fubini, temos

$$\int_{X} |(Tf)(x)|^{p} dx \leq C^{\frac{p}{q}} \int_{X} \int_{X} |g(x,y)| |f(y)|^{p} dy dx
\leq C^{\frac{p}{q}+1} \int_{X} |f(y)|^{p} dy.$$

Portanto,

$$||Tf||_p \le C^{\frac{1}{p} + \frac{1}{q}} ||f||_p$$

= $C||f||_p$.

Esta estimativa implica, em particular, que a integral definida em (Tf)(x) converge absolutamente q.t.p, de modo que o teorema está provado para o caso 1 . O caso <math>p = 1 é similar, porém mais fácil e requer somente a hipótese $\int_X |g(x,y)| dx \leq C$, e o caso $p = \infty$, somente a hipótese $\int_X |g(x,y)| dy \leq C$.

Teorema 1.2.5 (Desigualdade de Young) (Veja [9], p.241.) Se $f \in L^1$ e $g \in L^p$, então $f \star g \in L^p$ e

$$||f \star g||_p \le ||f||_1 ||g||_p.$$

Prova. Basta aplicar o Teorema 1.2.4 com g(x,y) = f(x-y).

Capítulo 2

Propriedades Básicas da Equação de Evolução

Neste capítulo, consideramos a equação de evolução não local

$$\frac{\partial m(x,t)}{\partial t} = -m(x,t) + \tanh(\beta(J \star m)(x,t)), \tag{2.1}$$

cuja idéia geral de sua dedução foi considerada na introdução, e estudamos algumas de suas propriedades.

Seguindo [6], vamos procurar soluções m de (2.1) no espaço das funções contínuas e limitadas, $C_b(\mathbb{R})$, com norma do sup, $||m||_{\infty} \leq 1$ e que são diferenciáveis em relação a t. Assim, em toda esta seção, m(x,t) e u(x,t) denotarão duas soluções de (2.1), com condições iniciais $m_0 = m(\cdot,0)$ e $u_0 = u(\cdot,0)$, respectivamente em $C_b(\mathbb{R})$.

2.1 Boa Posição

Nesta seção provamos que o problema de Cauchy para (2.1) em $C_b(\mathbb{R})$ está bem posto com soluções globalmente definidas.

Teorema 2.1.1 A função $F: C_b(\mathbb{R}) \to C_b(\mathbb{R})$ definida pelo o lado direito de (2.1), isto \acute{e} ,

$$F(m) = -m + \tanh \beta (J \star m)$$

é globalmente lipschitziana.

Prova. Dadas $m, u \in C_b(\mathbb{R})$, temos

$$|(Fm)(x) - (Fu)(x)| = |u(x) - m(x) + \tanh \beta (J \star m)(x) - \tanh \beta (J \star u)(x)|$$

$$\leq |m(x) - u(x)| + |\tanh \beta (J \star m)(x) - \tanh \beta (J \star u)(x)|$$

$$\leq |m(x) - u(x)| + |\beta (J \star m)(x) - \beta (J \star u)(x)|$$

$$= |m(x) - u(x)| + \beta \left| \int_{\mathbb{R}} m(y)J(x - y)dy - \int u(y)J(x - y)dy \right|$$

$$\leq |m(x) - u(x)| + \beta \int_{\mathbb{R}} |J(x - y)||m(y) - u(y)|dy.$$

Daí

$$|(Fm)(x) - (Fu)(x)| \leq |m(x) - u(x)| + \beta \int_{\mathbb{R}} |J(x - y)| |m(y) - u(y)| dy$$

$$\leq ||m - u||_{\infty} + \beta \int_{\mathbb{R}} |J(x - y)| ||m - u||_{\infty} dy$$

$$= ||m - u||_{\infty} + \beta ||m - u||_{\infty} \int_{\mathbb{R}} J(x - y) dy.$$
 (2.2)

Note que

$$\int_{\mathbb{R}} J(x-y)dy = 1.$$

De fato, sendo J par e $\int_{\mathbb{R}} J(x) dx = 1$, fazendo a mudança de variável y-x=z, temos

$$\int_{\mathbb{R}} J(x-y)dy = \int_{\mathbb{R}} J(y-x)dy$$
$$= \int_{\mathbb{R}} J(z)dz$$
$$= 1.$$

Daí, tomando o supremo em (2.2), obtemos

$$||F(m) - F(u)||_{\infty} \le (\beta + 1)||m - u||_{\infty}.$$

Logo, F(m) é globalmente Lipschitz.

Observação 2.1 Segue da Observação 1.2 que o problema de Cauchy para (2.1) admite uma única solução e que tal solução é globalmente definida.

Teorema 2.1.2 A solução de (2.1) é dada por

$$m(x,t) = e^{-t}m(x,0) + \int_0^t e^{-(t-s)} \tanh(\beta(J \star m)(x,s))ds,$$
 (2.3)

para todo $x \in \mathbb{R}$ e todo $t \ge 0$.

Prova. De fato, de (2.1) temos

$$\frac{\partial m(x,t)}{\partial t} + m(x,t) = \tanh(\beta(J \star m)(x,t)).$$

Multiplicamos ambos os lados desta última igualdade pelo número positivo e^t , obtemos

$$\frac{\partial m(x,t)}{\partial t}e^t + m(x,t)e^t = e^t \tanh(\beta(J \star m)(x,t)). \tag{2.4}$$

Note que o lado esquerdo de (2.4) representa a derivada em relação a t de $[m(x,t)e^t]$. Assim temos,

$$\frac{d}{dt} \left[m(x,t)e^t \right] = e^t \tanh\{\beta(J \star m)(x,t)\}.$$

Integrando esta última expressão no intervalo de zero a t obtemos,

$$e^{t}m(x,t) = m(x,0) + \int_{0}^{t} e^{s} \tanh\{\beta(J \star m)(x,s)\}ds.$$

Logo

$$m(x,t) = e^{-t}m(x,0) + \int_0^t e^{-(t-s)} \tanh\{\beta(J \star m)(x,s)\}ds.$$

Teorema 2.1.3 O conjunto

$$\mathcal{U} = \{ u \in C_b(\mathbb{R}) : ||u||_{\infty} \le 1 \}$$

é invariante para (2.1), ou seja, se $m(\cdot,t)$ é solução de (2.1) com condição inicial $m(\cdot,0) \in \mathcal{U}$, então $m(\cdot,t) \in \mathcal{U}$.

Prova. Seja $m(\cdot,t)$ a solução de (2.1) em $C_b(\mathbb{R})$ com condição inicial $||m(\cdot,0)||_{\infty} \leq 1$. Sendo $\tanh z < 1$, para todo z temos por (2.3)

$$|m(\cdot,t)| \leq e^{-t}|m(\cdot,0)| + \int_0^t e^{-(t-s)}|\tanh(\beta(J\star m)(x,s))|ds$$

$$\leq e^{-t}|m(\cdot,0)| + \int_0^t e^{-(t-s)}ds$$

$$= e^{-t}|m(\cdot,0)| + e^{-t}\int_0^t e^sds$$

$$= e^{-t}|m(\cdot,0)| + e^{-t}(e^t - 1).$$

Logo,

$$|m(\cdot,t)| \le e^{-t}|m(\cdot,0)| + 1 - e^{-t}.$$
 (2.5)

De (2.5) temos

$$||m(\cdot,t)||_{\infty} \le e^{-t} ||m(\cdot,0)||_{\infty} + 1 - e^{-t}.$$

Daí, sendo $||m(\cdot,0)||_{\infty} \le 1$ segue que $||m(\cdot,t)||_{\infty} \le 1$, como queríamos, e o teorema fica provado.

Teorema 2.1.4 A solução de (2.1) em \mathcal{U} é contínua com relação a condição inicial para todo t em limitados de \mathbb{R} .

Prova. Sejam m(x,t) e v(x,t) duas soluções de (2.1) em \mathcal{U} com condições iniciais m(x,0) e v(x,0), respectivamente. Então por (2.3) temos:

$$|m(x,t) - v(x,t)| \le |m(x,0) - v(x,0)| + \int_0^t e^{-(t-s)} |J \star [m(x,s) - v(x,s)]| ds.$$

Já que

$$|J \star [m(x,s) - v(x,s)]| = \left| \int_{\mathbb{R}} J(x-y)[m(y,s) - v(y,s)] dy \right|$$

$$\leq \int_{\mathbb{R}} |J(x-y)| |m(y,s) - v(y,s)| dy$$

$$\leq \int_{\mathbb{R}} |J(x-y)| ||m(\cdot,s) - v(\cdot,s)||_{\infty} dy$$

$$\leq ||m(\cdot,s) - v(\cdot,s)||_{\infty} \int_{\mathbb{R}} |J(x-y)| dy$$

$$= ||m(\cdot,s) - v(\cdot,s)||_{\infty}.$$

Então,

$$|m(x,t)-v(x,t)| \le |m(x,0)-v(x,0)| + \int_0^t e^{-(t-s)} ||m(\cdot,s)-v(\cdot,s)||_{\infty} ds.$$

Daí,

$$e^{t}|m(x,t) - v(x,t)| \le e^{t}|m(x,0) - v(x,0)| + \int_{0}^{t} e^{s}||m(\cdot,s) - v(\cdot,s)||_{\infty} ds.$$

Logo,

$$e^{t} \|m(\cdot,t) - v(\cdot,t)\|_{\infty} \le e^{t} \|m(\cdot,0) - v(\cdot,0)\|_{\infty} + \int_{0}^{t} e^{s} \|m(\cdot,s) - v(\cdot,s)\|_{\infty} ds.$$

Portanto, pelo Lema de Gronwall Generelizado, (veja Lema A.0.7), temos

$$e^{t} \| m(\cdot, t) - v(\cdot, t) \|_{\infty} \le e^{t} \| m(\cdot, 0) - v(\cdot, 0) \|_{\infty} e^{t},$$

ou seja,

$$||m(\cdot,t) - v(\cdot,t)||_{\infty} \le e^t ||m(\cdot,0) - v(\cdot,0)||_{\infty}.$$

Observação 2.2 Segue dos Teoremas 2.1.1, 2.1.2, 2.1.3 e 2.1.4 que o problema de Cauchy,

$$\frac{\partial m(x,t)}{\partial t} = -m(x,t) + \tanh(\beta(J \star m)(x,t)); \quad m(x,0) = m(x),$$

está bem posto em U com soluções globalmente definidas.

2.2 Equicontinuidade das Órbitas

Nesta seção estudamos os pontos limites das órbitas de (2.1). Dois resultados são abordados, sendo que o Teorema 2.2.1, a seguir, tem sua importância associada ao Corolário 2.2.2, pois o mesmo é usado na demonstração da existência do *instanton*.

Teorema 2.2.1 Seja $\psi(x,t) := m(x,t) - e^{-t}m(x,0)$ e denote por ψ' sua derivada com relação a x. Então, para qualquer $t \geq 0$ tem-se

$$\|\psi'(\cdot,t)\|_{\infty} \le \beta \|J'\|_{L^1} := \beta \int_{\mathbb{R}} |J'(x)| dx.$$

Prova. Por (2.3) temos,

$$\psi(x,t) = e^{-t}m(x,0) + \int_0^t e^{-(t-s)} \tanh\{\beta(J \star m)(x,s)\}ds - e^{-t}m(x,0)$$
$$= \int_0^t e^{-(t-s)} \tanh\{\beta(J \star m)(x,s)\}ds.$$

Agora, derivando sob sinal de integração em relação a x, (veja Regra de Leibniz, conforme Teorema A.0.8), obtemos,

$$\frac{\partial}{\partial x}\psi(x,t) = \int_0^t e^{-(t-s)} \mathrm{sech}^2(\beta(J\star m)(x,s)) \frac{\partial}{\partial x} \{\beta(J\star m)(x,s)\} ds.$$

Assim,

$$\left| \frac{\partial}{\partial x} \psi(x,t) \right| \leq \int_0^t e^{-(t-s)} |\operatorname{sech}^2(\beta(J \star m)(x,s))| \beta \left| \frac{\partial}{\partial x} \int_{\mathbb{R}} J(x-y) m(y,s) dy \right| ds$$
$$= \int_0^t e^{-(t-s)} |\operatorname{sech}^2(\beta(J \star m)(x,s))| \beta \left| \int_{\mathbb{R}} J'(x-y) m(y,s) dy \right| ds.$$

Logo, sendo $\operatorname{sech}(z) \leq 1$, segue que

$$|\psi'(x,t)| \leq \int_0^t e^{-(t-s)} \beta \int_{\mathbb{R}} |J'(x-y)| |m(y,s)| dy ds$$

$$\leq \int_0^t e^{-(t-s)} \beta \int_{\mathbb{R}} |J'(x-y)| \sup_y |m(y,s)| dy ds.$$

Desta última desigualdade obtemos

$$|\psi'(x,t)| = \int_0^t e^{-(t-s)} \beta \int_{\mathbb{R}} |J'(x-y)| ||m(\cdot,s)||_{\infty} dy ds$$

$$= \int_0^t e^{-(t-s)} \beta ||m(\cdot,s)||_{\infty} \int_{\mathbb{R}} |J'(x-y)| dy ds$$

$$= \beta ||m(\cdot,s)||_{\infty} ||J'||_{L^1} \int_0^t e^{-(t-s)} ds$$

$$= \beta ||m(\cdot,s)||_{\infty} ||J'||_{L^1} e^{-t} (e^t - 1).$$

Usando que $\|m(\cdot,s)\|_{\infty} \leq 1$ e $\left(1-\frac{1}{e^t}\right) \leq 1$, obtemos o resultado, ou seja,

$$\|\psi'(\cdot,t)\|_{\infty} \le \beta \|J'\|_{L^1}.$$

Corolário 2.2.2 (Pontos Limite das Órbitas) Dada qualquer sequência (t_n) crescente para o infinito, existe uma função $m^* \in C_b(\mathbb{R})$, $||m^*||_{\infty} \leq 1$, e uma subsequência (s_n) tal

$$\lim_{n \to \infty} m(x, s_n) = m^*(x),$$

uniformemente sobre compactos.

Prova. A família $\psi(x,t) = m(x,t) - e^{-t}m(x,0)$ é equilimitada e equicontínua em $\mathbb{R} \times \mathbb{R}_+$. De fato,

(i) ψ é equilimitada, pois de (2.3) temos,

$$\begin{aligned} |\psi(x,t)| &= |m(x,t) - e^{-t}m(x,0)| \\ &\leq \int_0^t |e^{-(t-s)} \tanh\{\beta(J\star m)(x,s)\}| ds \\ &= \int_0^t e^{-(t-s)} |\tanh\{\beta(J\star m)(x,s)\}| ds \\ &\leq \int_0^t e^{-(t-s)} ds \\ &< 1. \end{aligned}$$

(ii) Para mostrarmos a equicontinuidade, começamos observando que

$$\frac{d}{dt}\psi(x,t) = -m(x,t) + \tanh\{\beta(J \star m)(x,t)\} + e^{-t}m(x,0)$$

$$= -e^{-t}m(x,0) - \int_0^t e^{-(t-s)} \tanh\{\beta(J \star m)(x,s)ds$$

$$+ \tanh\{\beta(J \star m)(x,t)\} + e^{-t}m(x,0)$$

$$= \tanh\{\beta(J \star m)(x,t)\} - \int_0^t e^{-(t-s)} \tanh\{\beta(J \star m)(x,s)\}ds.$$

Logo, usando que $|\tanh(z)| < 1$, obtemos

$$\left| \frac{d}{dt} \psi(x,t) \right| \leq |\tanh\{\beta(J \star m)(x,s)\} - \int_0^t e^{-(t-s)} \tanh\{\beta(J \star m)(x,s)\} ds|$$

$$\leq |\tanh\{\beta(J \star m)(x,s)\}| + \int_0^t e^{-(t-s)} |\tanh\{\beta(J \star m)(x,s)\}| ds$$

$$\leq 1 + \int_0^t e^{-(t-s)} ds.$$

Daí, sendo $\int_0^t e^{-(t-s)} \leq 1$ resulta que

$$\left| \frac{d}{dt} \psi(x, t) \right| \le 2. \tag{2.6}$$

Agora, usando o Teorema do Valor Médio temos

$$\begin{aligned} |\psi(x,t) - \psi(y,r)| &\leq |\psi(x,t) - \psi(y,t)| + |\psi(y,t) - \psi(y,r)| \\ &\leq |\psi'(\theta,t)||x - y| + \left|\frac{d}{ds}\psi(y,s)\right||t - r| \end{aligned}$$

para algum θ entre x e y e algum s entre t e r. Logo, do Teorema 2.2.1 e da desigualdade (2.6) segue que

$$|\psi(x,t) - \psi(y,r)| \le \beta ||J'||_{L^1} |x-y| + 2|t-r|.$$

Pelo estudo feito sobre ψ , segue do Teorema de Arzelà-Ascoli (veja Teorema A.0.11) que existe uma subsequência desta, a qual designamos por $\psi(x, t_k)$, que converge uniformemente quando $k \to \infty$ para todo x em compacto. A partir disto, considerando subsequências de subsequências tomadas em $t \in \mathbb{R}_+$ que, pelo procedimento diagonal (veja demonstração do Teorema A.0.15), obteremos a subsequência (s_n) descrita no enunciado, bem como a conclusão do corolário.

Capítulo 3

Existência de um Funcional Energia

Neste capítulo, seguindo [4] e [6], exibimos um funcional energia para equação (2.1) e mostramos algumas de suas propriedades. Além disso, enunciamos e demonstramos o Teorema de Comparação, onde o mesmo é usado na prova do Teorema 3.3.1. Finalmente, na demonstração do Teorema 3.3.2, verificamos que o ponto crítico do funcional energia é uma solução de equilíbrio de (2.1).

Continuamos usando a notação $\mathcal{U} = \{u \in C_b(\mathbb{R}) : ||u||_{\infty} \leq 1\}$. Definimos o funcional $\mathcal{F} : \mathcal{U} \to [0, \infty)$ por

$$\mathcal{F}(m) = \int_{\mathbb{R}} [f(m(x)) - f(m_{\beta})] dx + \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x - y) [m(x) - m(y)]^2 dx dy, \qquad (3.1)$$

onde $f:[-1,1]\to\mathbb{R}$ é a densidade de energia do sistema (veja Figura 3.2) dada por

$$f(m) = -\frac{1}{2}m^2 - \beta^{-1}i(m),$$

e $i:[-1,1]\to\mathbb{R}$ a densidade de entropia do sistema (veja Figura 3.1) definida por

$$i(m) = -\frac{1+m}{2} \ln\left(\frac{1+m}{2}\right) - \frac{1-m}{2} \ln\left(\frac{1-m}{2}\right).$$

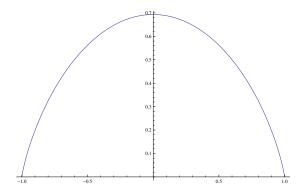


Figura 3.1: Densidade de Entropia

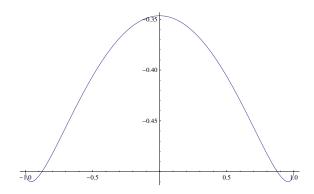


Figura 3.2: Densidade de Energia

3.1 Propriedades Topológicas do Funcional Energia

Nesta seção, seguimos com algumas adaptações, a prova de semicontinuidade inferior do funcional \mathcal{F} dada em [4].

Começamos observando que o conjunto \mathcal{U} é convexo e, na topologia fraca do $L^2_{loc}(\mathbb{R})$, compacto . Nesta topologia $m_n \to m$ se, para cada R > 0, $m_n(x)$, $|x| \leq R$, converge fracamente para m(x), quando $n \to \infty$, em $L^2([-R, R])$.

Teorema 3.1.1 O funcional \mathcal{F} é finito se, existem σ_{\pm} , $|\sigma_{\pm}| = 1$ tal que

$$(m - \chi_{\sigma}) \in L^2(\mathbb{R}), \tag{3.2}$$

onde $\chi_{\sigma} = \sigma_{-}m_{\beta}\mathbf{1}_{x\leq 0} + \sigma_{+}m_{\beta}\mathbf{1}_{x>0}$, com $\mathbf{1}_{A}$ indicando a função característica do conjunto A e σ uma configuração de spin.

Prova. Suponha $(m - \chi_{\sigma}) \in L^2(\mathbb{R})$. Usando o fato de que f tem mínimo quadrático em $\pm m_{\beta}$, existe b > 0 tal que

$$f(m) - f(m_{\beta}) \le b \min\{(m - m_{\beta})^2; (m + m_{\beta})^2\}.$$

Daí,

$$\mathcal{F}(m) = \int_{\mathbb{R}} [f(m(x)) - f(m_{\beta})] dx + \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x - y) [m(x) - m(y)]^2 dx dy$$

$$\leq b \int_{\mathbb{R}} (m(x) - m_{\beta})^2 dx + \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x - y) [m(x) - m(y)]^2 dx dy.$$

Notando que $(A+B)^2 \le 2(A^2+B^2)$, temos

$$\mathcal{F}(m) \leq b \int_{\mathbb{R}} (m(x) - m_{\beta})^{2} dx + \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x - y) [(m(x) - \chi_{\sigma}(x)) + (\chi_{\sigma}(x) - m(y))]^{2} dx dy$$

$$\leq b \int_{\mathbb{R}} (m(x) - m_{\beta})^{2} dx + \frac{1}{2} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x - y) [((m(x) - \chi_{\sigma}(x))^{2} + (\chi_{\sigma}(x) - m(y))^{2}] dx dy.$$

Sendo $(m - \chi_{\sigma}) \in L^2(\mathbb{R})$ e do fato que $\int J(x - y) dx = 1$, segue que $\mathcal{F}(m) < \infty$. Como queríamos.

Observação 3.1 A recíproca deste resultado também é válida e sua demonstração, fundamentada em resultados de probabilidade, não será feita por fugir dos propósitos deste trabalho, podendo ser vista em [4]. Mais precisamente temos o seguinte resultado: existe d > 0 e σ_{\pm} , $|\sigma_{\pm}| = 1$ tal que $d||m - \chi_{\sigma}|| \leq \mathcal{F}(m)$, ou seja, $\mathcal{F} < \infty$ implica que $(m - \chi_{\sigma}) \in L^2(\mathbb{R})$.

Teorema 3.1.2 O funcional \mathcal{F} é semicontínuo inferiormente na topologia fraca de $L^2_{loc}(\mathbb{R})$.

Prova. Devemos mostrar que se $m_n \to m$ (fraco em $L^2_{loc}(\mathbb{R})$), quando $n \to \infty$, então

$$\liminf_{n \to \infty} \mathcal{F}(m_n) \ge \mathcal{F}(m).$$
(3.3)

Esta afirmação é sempre válida se $\lim_{n\to\infty} \mathcal{F}(m_n) = \infty$. Consideremos então

$$\liminf_{n \to \infty} \mathcal{F}(m_n) = \alpha < \infty.$$
(3.4)

Pela Observação 3.1, existe d > 0 tal que $d||m - \chi_{\sigma}||_{L^2} \leq \mathcal{F}(m) < \infty$. Então, existem $C < \infty$, $\sigma^{(n)}$ e n^* de modo que, para $n \geq n^*$ tem-se que

$$\int [(m_n - \chi_{\sigma^{(n)}})(x)]^2 dx \le C.$$

Recorde que na topologia fraca de $L^2_{loc}(\mathbb{R})$ a bola fechada é compacta, daí existe σ e uma subsequência n_k de modo que: (i) $\sigma^{(n_k)} = \sigma$ e (ii) $(m_{n_k} - \chi_{\sigma})$ converge fraco em

 $L^2(\mathbb{R})$. Denotemos este limite por $(m - \chi_{\sigma}) \in L^2(\mathbb{R})$. Observamos agora que, se uma função ψ está em $L^2(\mathbb{R})$, então, dado $\zeta > 0$, existe R > 0 tal que para qualquer L > 0, tem-se $L < l \le L + R$ para o qual

$$\|\psi\|_{[l,l+1]} < \zeta^2,$$

onde para um dado intervalo I,

$$\|\psi\|_I = \int_I \psi(x)^2 dx.$$

Fixe uma sequência $\zeta_i \searrow 0$, com $i \geq 1$, então para cada i existem:

- (i) uma subsequência $n_k^{(i)}$ de $n_k^{(i-1)}$ que converge para $[m-\chi_\sigma]\in L_2(\mathbb{R})$
- (ii) duas sequências $l_{\pm}^{(i)}$ estritamente crescente para ∞ de modo que

$$||m_{n_k}^{(i)} - \chi_{\sigma}||_{[l^{(i)}, l^{(i)} + 1]} < \zeta_i^2 \quad \forall k$$
(3.5)

$$||m_{n_k}^{(i)} - \chi_{\sigma}||_{[-l^{(i)} - 1, -l^{(i)}]} < \zeta_i^2 \quad \forall k.$$
(3.6)

Agora fixamos i, um elemento $n \in n_k^{(i)}$, chamamos $I = [-l_-^{(i)}, l_+^{(i)}]$, I^c seu complementar em \mathbb{R} e finalmente definimos

$$\mathcal{F}_{I}(m) = \int_{I} [f(m(x)) - f(m_{\beta})] dx + \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy \qquad (3.7)$$

е

$$\mathcal{F}_{I}^{0}(m) = -\beta^{-1} \int_{I} [i(m(x)) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} \int_{I} J(x - y) [m(x)m(y) - m_{\beta}^{2}] dx dy - \int_{I} \int_{I^{C}} J(x - y) [m(x)m(y) - \frac{1}{2}m(x)^{2}] dx dy.$$
(3.8)

Então,

$$\mathcal{F}(m) = \int_{I} [f(m(x)) - f(m_{\beta})] dx + \int_{I^{C}} [f(m(x)) - f(m_{\beta})] dx$$

$$+ \frac{1}{4} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x - y) [m(x) - m(y)]^{2} dx dy$$

$$= \int_{I} [f(m(x)) - f(m_{\beta})] dx + \int_{I^{C}} f(m(x)) - f(m_{\beta})] dx$$

$$+ \frac{1}{4} \int_{\mathbb{R}} \left[\int_{I} J(x - y) [m(x) - m(y)]^{2} dy + \int_{I^{C}} J(x - y) [m(x) - m(y)]^{2} dy \right] dx$$

$$= \int_{I} [f(m(x)) - f(m_{\beta})] dx + \int_{I^{C}} [f(m(x)) - f(m_{\beta})] dx$$

$$+ \frac{1}{4} \int_{\mathbb{R}} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy + \frac{1}{4} \int_{\mathbb{R}} \int_{I^{C}} J(x - y) [m(x) - m(y)]^{2} dx dy.$$

Daí,

$$\mathcal{F}(m) = \int_{I} [f(m(x)) - f(m_{\beta})] dx + \int_{I^{C}} f(m(x)) - f(m_{\beta})] dx$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy + \frac{1}{4} \int_{I^{C}} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy$$

$$+ \frac{1}{4} \int_{I^{C}} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy + \frac{1}{4} \int_{I^{C}} \int_{I^{C}} J(x - y) [m(x) - m(y)]^{2} dx dy.$$

Portanto,

$$\mathcal{F}(m) = \mathcal{F}_{I}(m) + \mathcal{F}_{I^{C}}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x) - m(y)]^{2} dx dy.$$
 (3.9)

Note agora que, de (3.9) obtemos

$$\mathcal{F}(m) = \mathcal{F}_{I^{C}}(m) + \mathcal{F}_{I}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) m(y)^{2} dx dy, \tag{3.10}$$

pois sendo

$$\mathcal{F}_{I}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x-y)[m(x) - m(y)]^{2} dx dy = \mathcal{F}(m) - \mathcal{F}_{I^{C}}(m)$$

temos,

$$\mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) = \int_{I} \left[-\frac{1}{2} m(x)^{2} - \beta^{-1} i(m)(x) + \frac{1}{2} m_{\beta}^{2} + \beta^{-1} i(m_{\beta}) \right] dx$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy$$

$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x) - m(y)]^{2} dx dy$$

$$= -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} (m(x)^{2} - m_{\beta}^{2}) dx$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x) - m(y)]^{2} dx dy$$

$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x) - m(y)]^{2} dx dy.$$

Daí, desenvolvendo os quadrados, obtemos

$$\mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) = -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})dx - \frac{1}{2} \int_{I} (m(x)^{2} - m_{\beta}^{2})dx$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x)^{2} + m(y)^{2} - 2m(x)m(y)] dxdy$$

$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x)^{2} + m(y)^{2} - 2m(x)m(y)] dxdy.$$

Logo,

$$\mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) = -\beta^{-1} \int_{I} [i(m) - i(m_{\beta}] dx - \frac{1}{2} \int_{I} (m(x)^{2} - m_{\beta}^{2}) dx$$

$$- \frac{1}{4} \int_{I} \int_{I} J(x - y) 2m(x) m(y) dx dy$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy$$

$$- \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) 2m(x) m(y) dx dy$$

$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy$$

$$= -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} (m(x)^{2} - m_{\beta}^{2}) dx$$

$$- \frac{1}{2} \int_{I} \int_{I} J(x - y) m(x) m(y) dx dy$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy$$

$$- \int_{I} \int_{I^{C}} J(x - y) m(x) m(y) dx dy$$

$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy.$$

Como $\int_I J(x-y)dy = 1$, temos

$$\mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) = -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} \int_{I} J(x - y) (m(x)^{2} - m_{\beta}^{2}) dx dy$$

$$- \frac{1}{2} \int_{I} \int_{I} J(x - y) m(x) m(y) dx dy + \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x)^{2} + (y)^{2}] dx dy$$

$$- \int_{I} \int_{I^{C}} J(x - y) m(x) m(y) dx dy + \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy$$

$$= -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} \int_{I} J(x - y) [m(x) m(y) - m_{\beta}^{2}] dx dy$$

$$- \frac{1}{2} \int_{I} \int_{I} J(x - y) m(x)^{2} dx dy + \frac{1}{4} \int_{I} \int_{I} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy$$

$$- \int_{I} \int_{I^{C}} J(x - y) m(x) m(y) dx dy + \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) [m(x)^{2} + m(y)^{2}] dx dy.$$

Então,

$$\mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) = -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} \int_{I} J(x - y) [m(x)m(y) - m_{\beta}^{2}] dx dy$$

$$- \frac{1}{2} \int_{I} \int_{I} J(x - y)m(x)^{2} dx dy + \frac{1}{4} \int_{I} \int_{I} J(x - y)m(x)^{2} dx dy$$

$$+ \frac{1}{4} \int_{I} \int_{I} J(x - y)m(y)^{2} dx dy - \int_{I} \int_{I^{C}} J(x - y)m(x)m(y) dx dy$$

$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y)m(x)^{2} dx dy + \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y)m(y)^{2} dx dy$$

$$= -\beta^{-1} \int_{I} [i(m) - i(m_{\beta})] dx - \frac{1}{2} \int_{I} \int_{I} J(x - y)[m(x)m(y) - m_{\beta}^{2}] dx dy$$

$$- \frac{1}{4} \int_{I} \int_{I} J(x - y)m(x)^{2} dx dy + \frac{1}{4} \int_{I} \int_{I} J(x - y)m(y)^{2} dx dy$$

$$- \int_{I} \int_{I^{C}} J(x - y)[m(x)m(y) - \frac{1}{2}m(x)^{2}] dx dy + \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y)m(y)^{2} dx dy.$$

Portanto,

$$\mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) = \mathcal{F}_{I}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x-y)m(y)^{2} dx dy.$$

Recorde agora que, J(x)=0 se |x|>1, pois o suporte da função J está em [-1,1], e note que $\chi_{\sigma}\geq\chi_{\sigma}-|m|$. Como $(|m|-\chi_{\sigma})^2\geq0$ temos,

$$|m|^{2} \geq 2|m|\chi_{\sigma} - \chi_{\sigma}^{2} + 2\chi_{\sigma}^{2} - 2\chi_{\sigma}^{2}$$

$$= \chi_{\sigma}^{2} + 2|m|\chi_{\sigma} - 2\chi_{\sigma}^{2}$$

$$= \chi_{\sigma}^{2} + 2\chi_{\sigma}(|m| - \chi_{\sigma})$$

$$\geq \chi_{\sigma}^{2} + 2(\chi_{\sigma} - |m|)(|m| - \chi_{\sigma})$$

$$= \chi_{\sigma}^{2} - 2(|m| - \chi_{\sigma})(|m| - \chi_{\sigma})$$

$$= \chi_{\sigma}^{2} - 2(|m| - \chi_{\sigma})^{2}$$

$$\geq \chi_{\sigma}^{2} - 2(|m - \chi_{\sigma}|)^{2}.$$

Onde na última desigualdade usamos que $-(|m|-|\chi_{\sigma}|)^2 \ge -|m-\chi_{\sigma}|^2$. Daí,

$$\int_{I} \int_{I^{C}} J(x-y)m(y)^{2} dxdy \geq \int_{I} \int_{I^{C}} J(x-y)[\chi_{\sigma}^{2}(y) - 2(m(y) - \chi_{\sigma}(y))^{2}] dxdy
= \int_{I} \int_{I^{C}} J(x-y)\chi_{\sigma}^{2}(y) dxdy
- 2 \int_{I} \int_{I^{C}} J(x-y)(m(y) - \chi_{\sigma}(y))^{2} dxdy.$$

Uma vez que $\int_I J(x-y)dx = 1$ e $-\|m-\chi_\sigma\| \ge -\zeta_i$ por (3.5). Escolhendo I de tal sorte que

$$\int_{I} \int_{I^{C}} J(x-y)m(y)^{2} dx dy \ge \int_{I} \int_{I^{C}} J(x-y)\chi_{\sigma}^{2}(y) dx dy - 2\zeta_{i}.$$
 (3.11)

Logo,

$$\mathcal{F}(m) \geq \mathcal{F}_{I^{C}}(m) + \mathcal{F}_{I}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x-y) \chi_{\sigma}^{2}(y) dx dy - 2\zeta_{i}$$

$$\geq \mathcal{F}_{I}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x-y) \chi_{\sigma}^{2}(y) dx dy - 2\zeta_{i}. \tag{3.12}$$

Usando a definição da aplicação contínua $E(\cdot|\cdot)$, (ver[4] p.68) dada por

$$E(m_{I}|m_{I^{C}}) = -\frac{1}{2} \int_{I} \int_{I} J(x-y)m(x)m(y)dxdy - \int_{I} \int_{I^{C}} J(x-y)m(x)m(y)dxdy, \ \forall m \in \mathbb{N}$$

vemos que,

$$\mathcal{F}_{I}^{0}(m) = E(m_{I}|m_{I^{C}}) - \beta^{-1} \int_{I} [i(m(x)) - i(m_{\beta})] dx + \frac{1}{2} \int_{I} \int_{I} J(x - y) m_{\beta}^{2} dx dy$$
$$+ \frac{1}{2} \int_{I} \int_{I^{C}} J(x - y) m(x)^{2} dx dy$$

é semicontínuo inferiormente, pois $E(\cdot|\cdot)$ é contínuo e i(m) é convexo, (veja Teorema A.0.16). Agora, tomando limite em (3.12) ao longo da subsequência n_k^i , temos

$$\alpha = \liminf_{n \to \infty} \mathcal{F}(m_n) \ge \liminf_{n \to \infty} \mathcal{F}_{\mathcal{I}}^{0}(m_n) + \frac{1}{2} \int_{I} \int_{I^C} J(x-y) \chi_{\sigma}^2 dx dy - 2\zeta_i.$$

Logo, sendo \mathcal{F}_I^0 semicontínuo inferiormente, temos

$$\alpha = \liminf_{n \to \infty} \mathcal{F}(m_n) \ge \mathcal{F}_{\mathcal{I}}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^C} J(x - y) \chi_{\sigma}^{2}(y) dx dy - 2\zeta_i. \tag{3.13}$$

Como $(m - \chi_{\sigma}) \in L^{2}(\mathbb{R})$, dado $\epsilon > 0$ existe L, tal que se B é um intervalo unitário externo a [-L, L], tem-se

$$||m - \chi_{\sigma}||_{B} \le \epsilon^{2}.$$

Sendo $l_{\pm}^{(i)} \to \infty$, quando $i \to \infty$, dado $\epsilon > 0$, se i é suficientemente grande obtemos, com um argumento análogo usado para conseguir (3.12),

$$\int_{I} \int_{I^{C}} J(x-y)\chi_{\sigma}^{2}(y)dxdy \ge \int_{I} \int_{I^{C}} J(x-y)m(y)^{2}dxdy - 2\epsilon.$$
(3.14)

Note agora que, somando em ambos os lados de (3.10), $-2\zeta_i - 2\epsilon$, obtemos

$$\mathcal{F}(m) - \mathcal{F}_{I^C}(m) - 2\zeta_i - 2\epsilon = \mathcal{F}_I^0(m) + \frac{1}{2} \int_I \int_{I^C} J(x - y) m(y)^2 dx dy - 2\zeta_i - 2\epsilon$$

e de (3.13) e (3.14) resulta que

$$\alpha \geq \mathcal{F}_{I}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x-y) \chi_{\sigma}^{2}(y) dx dy - 2\zeta_{i}$$

$$\geq \mathcal{F}_{I}^{0}(m) + \frac{1}{2} \int_{I} \int_{I^{C}} J(x-y) m(y)^{2} dx dy - 2\zeta_{i} - 2\epsilon$$

$$= \mathcal{F}(m) - \mathcal{F}_{I^{C}}(m) - 2\zeta_{i} - 2\epsilon.$$

Logo,

$$\alpha \ge \mathcal{F}(m) - \mathcal{F}_{I^C}(m) - 2\zeta_i - 2\epsilon. \tag{3.15}$$

Como $(m - \chi_{\sigma})$ está em $L^{2}(\mathbb{R})$, fazendo $i \to \infty$, tem-se $\zeta_{i} \to 0$ e de $I = [-l^{(i)}, l^{(i)}]$ resulta em $\mathcal{F}_{I^{C}}(m) \to 0$, daí $\alpha \geq \mathcal{F}(m)$, como queríamos.

Teorema 3.1.3 Suponha que $m \in C_b(\mathbb{R})$ e que (3.2) é válido. Então, $(m(\cdot,t)-\chi_{\sigma}) \in L^2(\mathbb{R})$, para todo $t \geq 0$, e $||m(\cdot,t)-\chi_{\sigma}||_{L^2}$ é limitado para t em compacto.

Prova. Chamando $m_{\sigma} = m - \chi_{\sigma}$, temos

$$m_{\sigma} + \chi_{\sigma} = m$$
 e $e^{-t}m(x,0) = e^{-t}m_{\sigma}(x,0) + e^{-t}\chi_{\sigma}(x)$.

Daí,

$$m_{\sigma}(x,t) = m(x,t) - \chi_{\sigma}(x)$$

$$= e^{-t}m(x,0) + \int_{0}^{t} e^{-(t-s)} \tanh(\beta(J \star m)(x,s))ds - \chi_{\sigma}(x)$$

$$= e^{-t}m_{\sigma}(x,0) + e^{-t}\chi_{\sigma}(x) + \int_{0}^{t} e^{-(t-s)} \tanh(\beta(J \star m)(x,s))ds - \chi_{\sigma}(x)$$

$$= e^{-t}m_{\sigma}(x,0) + \int_{0}^{t} e^{-(t-s)} \tanh(\beta(J \star m)(x,s))ds + e^{-t}\chi_{\sigma}(x) - \chi_{\sigma}(x).$$

Sendo

$$e^{-t}\chi_{\sigma}(x) - \chi_{\sigma}(x) = -\int_0^t e^{-(t-s)}\chi_{\sigma}(x)ds,$$

resulta

$$m_{\sigma}(x,t) = e^{-t}m_{\sigma}(x,0) + \int_{0}^{t} e^{-(t-s)}[\tanh(\beta(J \star m)(x,s) - \chi_{\sigma}(x)]ds.$$

Usando que

$$\tanh(\beta \chi_{\sigma}(x)) = \chi_{\sigma}(x),$$

obtemos

$$m_{\sigma}(x,t) = e^{-t}m_{\sigma}(x,0) + \int_0^t e^{-(t-s)} \left[\tanh(\beta(J \star m)(x,s) - \tanh(\beta\chi_{\sigma}(x)) \right] ds.$$

Logo,

$$||m_{\sigma}(\cdot,t)||_{L^{2}} \le e^{-t}||m_{\sigma}(\cdot,0)||_{L^{2}} + \int_{0}^{t} e^{-(t-s)}||\Lambda(\cdot,s)||_{L^{2}}ds,$$
 (3.16)

onde

$$\Lambda(x,s) = |\tanh(\beta(J \star m)(x,s) - \tanh(\beta\chi_{\sigma}(x))|. \tag{3.17}$$

Por outro lado, temos que a equação (3.17) satisfaz

$$\Lambda(x,s) \le |\beta(J \star m)(x,s) - (\beta \chi_{\sigma}(x))|. \tag{3.18}$$

Note ainda que

$$\beta(J \star |m_{\sigma}|) + \beta|\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x)| = \beta[J \star |m - \chi_{\sigma}(x)| + |\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x)|$$

$$= \beta[|(J \star m)(x) - (J \star \chi_{\sigma})(x)|]$$

$$+ |\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x)|]$$

$$\geq \beta|(J \star m)(x) - \chi_{\sigma}(x)|.$$

Assim em (3.18) teremos,

$$\Lambda(x,s) < \beta(J \star |m_{\sigma}|) + \beta|\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x)|.$$

Mas $|\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x)| \leq m_{\beta}$, pois para x no suporte de J temos

$$\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x) = \begin{cases} 0, & \text{se } |x| \le 1\\ m_{\beta}, & \text{se } |x| > 1. \end{cases}$$
 (3.19)

Então,

$$\|\Lambda(\cdot, s)\|_{L^{2}} \leq \beta \|J \star |m_{\sigma}|(\cdot, s)\|_{L^{2}} + \beta \|\chi_{\sigma} - (J \star \chi_{\sigma})\|_{L^{2}}$$

$$\leq \beta \|J \star |m_{\sigma}|(\cdot, s)\|_{L^{2}} + \sqrt{2}\beta m_{\beta}$$

já que,

$$\|\chi_{\sigma} - (J \star \chi_{\sigma})\|_{L^{2}}^{2} = \int_{\mathbb{R}} |\chi_{\sigma}(x) - (J \star \chi_{\sigma})(x)|^{2} dx$$

$$\leq \int_{|x| \leq 1} m_{\beta}^{2} = 2m_{\beta}^{2}.$$

Voltando a (3.16) e usando a Desigualdade de Young, (veja Teorema 1.2.5), obtemos

$$||m_{\sigma}(\cdot,t)||_{L^{2}} \leq e^{-t}||m_{\sigma}(\cdot,0)||_{L^{2}} + \int_{0}^{t} e^{-(t-s)}[\beta||J \star |m_{\sigma}|(\cdot,s)||_{L^{2}} + \sqrt{2}\beta m_{\beta}]ds$$

$$\leq e^{-t}||m_{\sigma}(\cdot,0)||_{L^{2}} + \int_{0}^{t} e^{-(t-s)}[\beta||J||_{L^{1}}||m_{\sigma}(\cdot,s)||_{L^{2}} + \sqrt{2}\beta m_{\beta}]ds.$$

$$= e^{-t}||m_{\sigma}(\cdot,0)||_{L^{2}} + \int_{0}^{t} e^{-(t-s)}\beta||m_{\sigma}(\cdot,s)||_{L^{2}}ds + \int_{0}^{t} e^{-(t-s)}\sqrt{2}\beta m_{\beta}ds.$$

$$= e^{-t}||m_{\sigma}(\cdot,0)||_{L^{2}} + (1-e^{-t})\sqrt{2}\beta m_{\beta} + \int_{0}^{t} e^{-(t-s)}\beta||m_{\sigma}(\cdot,s)||_{L^{2}}ds$$

$$\leq e^{-t}||m_{\sigma}(\cdot,0)||_{L^{2}} + \sqrt{2}\beta m_{\beta} + \int_{0}^{t} e^{-(t-s)}\beta||m_{\sigma}(\cdot,s)||_{L^{2}}ds.$$

Assim,

$$e^{t} \|m_{\sigma}(\cdot,t)\|_{L^{2}} \leq \|m_{\sigma}(\cdot,0)\|_{L^{2}} + e^{t} \sqrt{2}\beta m_{\beta} + \int_{0}^{t} e^{s}\beta \|m_{\sigma}(\cdot,s)\|_{L^{2}} ds.$$

Usando o Lema de Gronwall Generalizado (ver Lema A.0.7), obtemos

$$||m_{\sigma}(\cdot,t)||_{L^{2}}e^{t} \leq (||m_{\sigma}(\cdot,0)||_{L^{2}} + \sqrt{2}\beta m_{\beta}e^{t})e^{\beta t}.$$

Portanto,

$$||m_{\sigma}(\cdot,t)||_{L^{2}} \le (||m_{\sigma}(\cdot,0)||_{L^{2}})e^{(\beta-1)t} + \sqrt{2}\beta m_{\beta}e^{\beta t}.$$

Assim, $m_{\sigma}(\cdot,t) \in L^2(\mathbb{R})$ para todo $t \geq 0$ e $||m_{\sigma}(\cdot,t)||_{L^2} = ||m(\cdot,t) - \chi_{\sigma}||_{L^2}$ é limitada para t em compactos, como queríamos demonstrar.

3.2 Teorema de Comparação

Nesta seção, enunciamos e demonstramos um dos principais resultados desta dissertação. Este teorema será usado frenquentemente em resultados subsequentes.

Definição 3.1 Uma função v é uma subsolução do problema de Cauchy (2.1) com condição inicial $m_0 = m(\cdot,0)$, se v é continuamente diferenciável em relação a t, $||v(\cdot,t)||_{\infty} \leq 1$ para todo t, $v(x,0) \leq m(x,0)$, para todo x e

$$\frac{\partial v(x,t)}{\partial t} \le -v(x,t) + \tanh\{\beta(J \star v)(x,t)\},\tag{3.20}$$

 $\forall x \in \mathbb{R} \ e \ \forall t \geq 0$. Analogamente, $w \ \acute{e} \ uma \ supersolução \ se \ tem \ as \ mesmas \ propriedades acima invertendo a desigualdade, isto <math>\acute{e}, \ w(x,0) \geq m(x,0)$ e satisfaz (3.20).

Teorema 3.2.1 (Comparação) Sejam v e w, respectivamente, uma subsolução e supersolução, do problema de Cauchy (2.1) com condição inicial $m(\cdot,0)$, então $\forall x \in \mathbb{R}$ e $\forall t \geq 0$, temos

$$v(x,t) \le m(x,t) \le w(x,t). \tag{3.21}$$

Prova. Seja T > 0 e denote por \mathcal{M} o espaço $C_b(\mathbb{R} \times [0, T])$ munido com a norma do sup. Defina a aplicação $G: M \to M$ por

$$(G(f))(x,t) = e^{-t}f(x,0) + \int_0^t e^{-(t-s)}\tanh\{\beta(J\star f)(x,s)\}ds$$
 (3.22)

Note que G é monotônico não-decrescente, isto é, $G(f) \geq G(g)$, se $f \geq g$ e (G(f))(x,0) = f(x,0). De fato, de $f \geq g$ temos $e^{-t}f(x,0) \geq e^{-t}g(x,0)$ e como $J \star f \geq J \star g$, tem-se $\beta J \star f \geq \beta J \star g$ acarretando em $\tanh\{\beta(J \star f)(x,s)\} \geq \tanh\{\beta(J \star g)(x,s)\}$ e daí concluímos que $G(f) \geq G(g)$. É óbvio que G(f)(x,0) = f(x,0). Além disso, se $\beta T < 1$, G é uma contração sobre qualquer subconjunto de funções em \mathcal{M} com mesmo valor em t = 0. Com efeito, sejam f e g em $C_b(\mathbb{R} \times [0,T])$, com f(x,0) = g(x,0), $\forall x$. Então,

$$|G(f)(x,t) - G(g)(x,t)| = \left| \int_0^t e^{-(t-s)} \tanh\{\beta(J \star f)(x,s)\} ds - \int_0^t e^{-(t-s)} \tanh\{\beta(J \star g)(x,s)\} ds \right|$$

$$= \left| \int_0^t e^{-(t-s)} \left[\tanh\{\beta(J \star f)(x,s)\} - \tanh\{\beta(J \star g)(x,s)\} \right] ds \right|$$

$$\leq \int_0^t e^{-(t-s)} \left| \tanh\{\beta(J \star f)(x,s)\} - \tanh\{\beta(J \star g)(x,s)\} \right| ds.$$

Daí,

$$|G(f)(x,t) - G(g)(x,t)| \le \int_0^t e^{-(t-s)} \beta |(J \star f)(x,s) - (J \star g)(x,s)| ds.$$
 (3.23)

Agora, note que

$$|(J \star f)(x,s) - (J \star g)(x,s)| = \left| \int_{\mathbb{R}} J(x-y)f(y,s)dy - \int_{\mathbb{R}} J(x-y)g(y,s)dy \right|$$

$$= \left| \int_{\mathbb{R}} J(x-y)[f(y,s) - g(y,s)]dy \right|$$

$$\leq \int_{\mathbb{R}} |J(x-y)[f(y,s) - g(y,s)]|dy. \tag{3.24}$$

Tomando a norma do sup em (3.23) e usando (3.24), obtemos

$$||G(f) - G(g)||_{\infty} \leq \int_0^t e^{-(t-s)} \beta ||f - g||_{\infty} ds$$

$$\leq \int_0^t \beta ||f - g||_{\infty} ds$$

$$= t\beta ||f - g||_{\infty}$$

$$\leq T\beta ||f - g||_{\infty}.$$

Logo, se $\beta T < 1$, temos que G é uma contração. Assim, se m(x,t) é solução de (2.1) com condição inicial $m_0 = m(x,0)$, temos

$$\lim_{n \to \infty} G^n(m_0) = m. \tag{3.25}$$

A mesma expressão mantém-se válida para uma solução u, com condição inicial $u_0 \leq m_0$. Daí, sendo G monotônico, segue que $G(u_0) \leq G(m_0)$. Assim, passando ao limite como em (3.25), segue que $u \leq m$, em $\mathbb{R} \times [0, T]$.

Agora, se v é uma subsolução de (2.1), segue de (3.24) que

$$e^t \frac{\partial v(x,t)}{\partial t} + e^t v(x,t) \le e^t \tanh\{\beta(J \star v)(x,t)\}.$$

Daí obtemos,

$$\frac{d}{dt} \left(e^t v(x,t) \right) \le e^t \tanh\{\beta (J \star v)(x,t)\}.$$

Integrando de 0 a t, resulta

$$e^t v(x,t) - v(x,0) \le \int_0^t e^s \tanh\{\beta(J \star v)(x,s)\} ds.$$

Logo

$$v(x,t) \leq e^{-t}v(x,t) + \int_0^t e^{-(t-s)} \tanh\{\beta(J \star v)(x,s)\} ds$$

= $G(v)(x,t)$ (3.26)

Como G é monotônico, de (3.26) temos:

$$v \leq G(v) \Rightarrow G(v) \leq G^{2}(v) \Rightarrow v \leq G^{2}(v)$$

$$v \leq G^{2}(v) \Rightarrow G(v) \leq G^{3}(v) \Rightarrow v \leq G^{3}(v)$$

$$\vdots$$

$$v \leq G^{n-1}(v) \Rightarrow G(v) \leq G^{n}(v) \Rightarrow v \leq G^{n}(v). \tag{3.27}$$

Passando ao limite, na última desigualdade de (3.27), temos

$$v \le \lim_{n \to \infty} G^n(v) = z$$

onde $z = \lim_{n \to \infty} G^{n+1}(v)$. Pela continuidade de G, G(z) = z pois,

$$G(z) = G(\lim_{n \to \infty} G^n(v)) = \lim_{n \to \infty} G(G^n(v))$$
$$= (\lim_{n \to \infty} G^{n+1}(v))$$
$$= z$$

Logo, z é solução de (2.1) em $\mathbb{R} \times [0, T]$, com condição inicial $z(\cdot, 0) = v(\cdot, 0)$. Portanto, se $z(\cdot, 0) = v(\cdot, 0) \leq m(\cdot, 0)$ então,

$$v \le z \le m$$
 em $\mathbb{R} \times [0, T]$.

Daí

$$v(x,t) \le m(x,t), \quad \forall (x,t) \in \mathbb{R} \times [0,T].$$

Com o mesmo argumento, podemos mostrar para a supersolução. Assim (3.21) vale para $0 \le t \le T$. Analogamente, o resultado pode ser extendido para [T, 2T], pois a estimativa não depende da condição inicial. O mesmo para [2T, 3T] e, por um processo de iteração a prova é concluída.

3.3 Propriedade de Lyapunov para o Funcional Energia

Nesta seção, mostramos que o funcional energia se comporta como um funcional de Lyapunov (veja [12]). Em seguida, consideramos o Teorema (3.3.2) que é usado no capítulo 4 na demonstração do teorema de existência de *instanton*.

Teorema 3.3.1 Suponha que $m(\cdot,0) \in C_b(\mathbb{R})$, com $||m(\cdot,0)||_{\infty} \leq 1$, e admita ainda que (3.2) vale. Então, $\mathcal{F}(m(\cdot,t))$ está bem definido para todo $t \geq 0$, é derivável com relação a t, se t > 0, com

$$\frac{d}{dt}\mathcal{F}(m(\cdot,t)) = -I(m(\cdot,t)) \le 0, \tag{3.28}$$

onde para qualquer $h \in C_b(\mathbb{R})$, com $||h||_{\infty} < 1$, tem-se

$$I(h) = \int_{\mathbb{R}} [(J \star h)(x) - \beta^{-1} \operatorname{arctanh}(h(x))] [\tanh \beta (J \star h)(x) - h(x)] dx.$$
 (3.29)

O integrando em (3.29) é uma função não-negativa em $L^1(\mathbb{R})$, quando $h = m(\cdot,t)$. Finalmente, para todo $t_0 \ge 0$ e todo $t \ge t_0$,

$$\mathcal{F}(m(\cdot,t)) - \mathcal{F}(m(\cdot,t_0)) = -\int_{t_0}^t I(m(\cdot,s))ds \le 0$$
(3.30)

Prova. Assuma primeiro que, dado t > 0, existe $\epsilon > 0$ tal que $||m(\cdot, s)||_{\infty} \le 1 - \epsilon$, onde s varia num pequeno intervalo finito Δ contendo t. Para $s \in \Delta$, escrevemos

$$\mathcal{F}(m(\cdot,s)) := \int \phi(x,s)dx \quad \text{e} \quad I(m(\cdot,s)) := \int \iota(x,s)dx \tag{3.31}$$

Para cada $s \in \Delta$, $\iota(\cdot, s) \in L^1(\mathbb{R})$ e $\sup_{s \in \Delta} \|\iota(\cdot, s)\|_{L^1} < \infty$. De fato, vamos escrever $\iota(\cdot, s)$ como um produto de funções e usarmos o Teorema 3.1.3 para garantir que cada fator está em $L^2(\mathbb{R})$,

$$\iota(x,s) = \underbrace{\left[(J \star m)(x) - \beta^{-1} \operatorname{arctanh}(m(x)) \right]}_{1^{0} fator} \underbrace{\left[\tanh \beta (J \star m)(x,s) - m(x,s) \right]}_{2^{0} fator}. \tag{3.32}$$

Note que usando $m_{\beta} = \tanh(\beta m_{\beta})$ temos,

$$[\tanh \beta (J \star m)(x,s) - m(x,s)] = [\tanh \beta (J \star m)(x,s) - \tanh(\beta J \star \chi_{\sigma})] + [\chi_{\sigma}(x) - m(x,s)].$$
(3.33)

Pelo Teorema 3.1.3, $(\chi_{\sigma} - m) \in L^2(\mathbb{R})$. Por outro lado,

$$[\tanh \beta (J \star m)(x,s) - \tanh(\beta J \star \chi_{\sigma})] \in L^2(\mathbb{R})$$

pois

$$|\tanh \beta (J \star m)(x,s) - \tanh(\beta J \star \chi_{\sigma})| \le \beta |(J \star m) - (J \star \chi_{\sigma})|$$

= $\beta |J \star (m - \chi_{\sigma})| \in L^{2}(\mathbb{R})$

já que $(m - \chi_{\sigma}) \in L^2(\mathbb{R})$ e J é limitada. Assim, concluímos que o 2° fator em (3.32) é uma função de $L^2(\mathbb{R})$.

Quanto ao primeiro fator, $[(J \star m)(x,s) - \beta^{-1}arc\tanh(m(x,s))]$, sabemos que arctanh não tem derivada limitada próximo de ± 1 . Mas, usando a hipótese inicial que as funções m que estamos considerando satisfazem:

$$\|m(\cdot,s)\|_{\infty} \leq 1-\epsilon, \quad \text{para algum} \quad \epsilon > 0, \ s \in \Delta$$

segue que para tais funções m, o arctanh $(m(\cdot,s))$ tem derivada limitada. Assim

$$[(J \star m)(x,s) - \beta^{-1}\operatorname{arctanh}(m(x,s))] = \frac{1}{\beta}[\beta(J \star m)(x,s) - \operatorname{arctanh}(m(x,s))]$$
$$= \frac{1}{\beta}[\operatorname{arctanh}(\tanh\{\beta(J \star m)(x,s)\})$$
$$- \operatorname{arctanh}(m(x,s))].$$

Daí,

$$|(J\star m)(x,s)-\beta^{-1}\mathrm{arctanh}(m(x,s))|\leq \frac{1}{\beta}|\tanh\beta(J\star h)(x,s)-m(x,s)|\in L^2(\mathbb{R})$$
pelo argumento anterior. Portanto, $\iota(\cdot,s)\in L^1(\mathbb{R})$.

Além disso, $\phi(x,s)$ é, para cada x, diferenciável em s com $\iota(\cdot,s)$ sua derivada parcial, pois

$$\frac{d}{ds}\mathcal{F}(m(\cdot,s)) = \underbrace{\frac{d}{ds} \int_{\mathbb{R}} [f(m(x,s)) - f(m_{\beta})] dx}_{\mathcal{F}_{1}} + \underbrace{\frac{1}{4} \underbrace{\frac{d}{ds} \int_{\mathbb{R}} \int_{\mathbb{R}} J(x-y) [m(x,s) - m(y,s)]^{2} dx dy}_{\mathcal{F}_{2}} \qquad (3.34)$$

Daí temos,

$$\frac{d}{ds}\mathcal{F}_1(m(\cdot,s)) = \int_{\mathbb{R}} \left[-m(x,s) \frac{\partial m}{\partial s} - \beta^{-1} i'(m(x,s)) \right] dx. \tag{3.35}$$

Agora, observe que

$$i'(m) = -\left[\frac{1}{2}\frac{\partial m}{\partial s}\ln\left(\frac{1+m}{2}\right) + \frac{1+m}{2}\frac{2}{1+m}\frac{1}{2}\frac{\partial m}{\partial s} - \frac{1}{2}\frac{\partial m}{\partial s}\ln\left(\frac{1-m}{2}\right)\right]$$

$$- \left[\left(\frac{1-m}{2}\right)\left(\frac{2}{1-m}\right)\left(-\frac{1}{2}\right)\frac{\partial m}{\partial s}\right]$$

$$= -\left[\frac{1}{2}\frac{\partial m}{\partial s}\ln\left(\frac{1+m}{2}\right) + \frac{1}{2}\frac{\partial m}{\partial s} - \frac{1}{2}\frac{\partial m}{\partial s}\ln\left(\frac{1+m}{2}\right) - \frac{1}{2}\frac{\partial m}{\partial s}\right]$$

$$= -\left[\frac{1}{2}\frac{\partial m}{\partial s}\left(\ln\left(\frac{1+m}{2}\right) - \ln\left(\frac{1-m}{2}\right)\right)\right]$$

$$= -\left[\frac{1}{2}\frac{\partial m}{\partial s}\left(\ln\left(\frac{1+m}{1-m}\right)\right)\right].$$

Portanto.

$$i'(m(x,s)) = -\frac{\partial m}{\partial s} \operatorname{arctanh}(m(x,s)). \tag{3.36}$$

Para obter (3.36), usamos que

$$\frac{1}{a}\operatorname{arctanh}\left(\frac{u}{a}\right) = \frac{1}{2a}\ln\left|\frac{a+u}{a-u}\right|, \quad |u| < a.$$

Substituindo (3.36) em (3.35), obtemos

$$\frac{d}{dt}\mathcal{F}_1(m(\cdot,s)) = \int_{\mathbb{R}} \left[-m(x,s) \frac{\partial m}{\partial s} + \beta^{-1} \frac{\partial m}{\partial s} \operatorname{arctanh} \left(m(x,s) \right) \right] dx. \tag{3.37}$$

Por outro lado,

$$\frac{d}{dt}\mathcal{F}_{2}(m(\cdot,s)) = \frac{1}{4}\frac{d}{dt}\int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)[m(x,s)-m(y,s)]^{2}dxdy
= \frac{1}{2}\left[\int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)m(x,s)\frac{\partial m(x,s)}{\partial s}dxdy\right]
+ \frac{1}{2}\left[\int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)m(y,s)\frac{\partial m(y,s)}{\partial s}dxdy\right]
- \frac{1}{2}\left[\int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)m(x,s)\frac{\partial m(x,s)}{\partial s}dxdy\right]
- \frac{1}{2}\left[\int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)m(y,s)\frac{\partial m(x,s)}{\partial s}dxdy\right]
= \int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)m(x,s)\frac{\partial m(x,s)}{\partial s}dxdy
- \int_{\mathbb{R}}\int_{\mathbb{R}}J(x-y)m(y,s)\frac{\partial m(x,s)}{\partial s}dxdy
= \int_{\mathbb{R}}\left[\int_{\mathbb{R}}J(x-y)dym(x,s)\frac{\partial m(x,s)}{\partial s}\right]dx
- \int_{\mathbb{R}}\left[\int_{\mathbb{R}}J(x-y)dym(y,s)\frac{\partial m(x,s)}{\partial s}\right]dx.$$

Portanto,

$$\frac{d}{ds}\mathcal{F}_2(m(\cdot,s)) = \int_{\mathbb{R}} \left[m(x,s) \frac{\partial m(x,s)}{\partial s} \right] dx - \int_{\mathbb{R}} (J \star m)(x,s) \frac{\partial m(x,s)}{\partial s} dx.$$
 (3.38)

Substituindo (3.38) e (3.37) em (3.34), obtemos,

$$\frac{d}{ds}\mathcal{F}(m(\cdot,s)) = \int_{\mathbb{R}} \left[-m(x,s) \frac{\partial m(x,s)}{\partial s} + \beta^{-1} \frac{\partial m(x,s)}{\partial s} \operatorname{arctanh}(m) \right] dx
+ \int_{\mathbb{R}} \left[m(x,s) \frac{\partial m(x,s)}{\partial s} \right] dx - \int_{\mathbb{R}} (J \star m)(x,s) \frac{\partial m(x,s)}{\partial s} dx.$$

Daí,

$$\frac{d}{ds}\mathcal{F}(m(\cdot,s)) = \int_{\mathbb{R}} \frac{\partial m(x,s)}{\partial s} [-m(x,s) + \beta^{-1}\operatorname{arctanh}(m(x,s)) + m(x,s) - (J \star m)(x,s)] dx$$

$$= \int_{\mathbb{R}} \left[\beta^{-1}\operatorname{arctanh}(m(x,s)) - (J \star m)(x,s) \right] \frac{\partial m(x,s)}{\partial s} dx.$$

Assim,

$$\frac{d}{dt}\mathcal{F}(m(\cdot,s)) = -\int_{\mathbb{R}} [(J\star m)(x,s) - \beta^{-1}\operatorname{arctanh}(m(x,s))][-m(x,s) + \tanh\{\beta(J\star m)\}] dx$$

ou seja,

$$\frac{d}{dt}\mathcal{F}(m(\cdot,t)) = -I(m(\cdot,t)) \tag{3.39}$$

mostrando (3.28) para o caso em que $||m(\cdot,t)||_{\infty} < 1$ uniformemente quando $s \in \Delta$. A seguir, provaremos que, pelo Teorema de Comparação, isto é válido para qualquer t > 0.

De fato, como $m(x,0) \leq 1$, se chamarmos $\lambda(x,t)$ solução de (2) tal que $\lambda(x,0) \equiv 1$, isto é, constante em x, então $\lambda(x,t) = \lambda(t)$, onde

$$\frac{d}{dt}\lambda(t) = -\lambda(t) + \tanh\{\beta(J \star \lambda)(x, t)\}$$
$$= -\lambda(t) + \tanh\{\beta\lambda(t)\}$$

uma vez que $(J \star \lambda) = \lambda$, pois λ é constante em x.

Note que, $\lambda(t)$ é uma função estritamente decrescente. Do contrário teríamos

$$\frac{d}{dt}\lambda(t) \geq 0$$
$$-\lambda(t) + \tanh\{\beta\lambda(t)\} \geq 0$$
$$1 > \tanh\{\beta\lambda(t)\} \geq \lambda(t).$$

Daí, para $t = 0, 1 > \lambda(0) = 1$, ou seja, uma contradição!

Note também que, como $m(x,0) \leq 1$, tem-se $m(x,0) \leq \lambda(x,0)$. Assim, pelo Teorema de Comparação, segue que $m(x,t) \leq \lambda(x,t) = \lambda(t)$. Repetindo o mesmo argumento para $m(x,0) \geq -1$, obtemos $m(x,t) \geq -\lambda(x,t) = -\lambda(t)$. Logo,

$$|m(x,t)| \le \lambda(t).$$

Como $\lambda(0) = 1$ e λ é decrescente em t, então, $\lambda(t) < \lambda(0) = 1$. Logo, |m(x,t)| < 1, acarretando que $||m(\cdot,t)||_{\infty} < 1$ para todo t > 0 e para todo $x \in \mathbb{R}$. Consequentemente (3.28) e (3.29) é válido para todo t > 0. Para justificarmos (3.30), temos de (3.28)

$$\int_{t_0}^t \frac{d}{dt} \mathcal{F}(m(\cdot, s)) ds = -\int_{t_0}^t I(m(\cdot, s)) ds \le 0$$

de onde segue que

$$\mathcal{F}(m(\cdot,t)) - \mathcal{F}(m(\cdot,t_0)) = -\int_{t_0}^t I(m(\cdot,s)ds \le 0)$$

para $t_0 > 0$ e $t > t_0$. Pela continuidade de $\mathcal{F}(m(x,t))$ para $t \geq 0$, segue a validade para $t_0 = 0$.

Finalmente, para mostrarmos que o integrando de (3.29) é não-negativo, basta observar que os fatores $[(J \star h)(x) - \beta^{-1}\operatorname{arctanh}(h(x))]$ e $[\tanh \beta(J \star h)(x) - h(x)]$ têm o mesmo sinal.

Teorema 3.3.2 Na topologia onde a convergência é uniformemente em compactos, suponha que no fecho da órbita $m(\cdot,t)$ exista $u(\cdot)$ que satisfaz (3.2). Então, neste fecho, existe uma solução estacionária $m^*(\cdot)$ de (2.1), ou seja, $m^*(\cdot)$ satisfaz

$$m(x) = \tanh(\beta(J \star m)(x)).$$

Prova. Suponha inicialmente que para $t \geq 0$, $(m - \chi_{\sigma}) \in L^{2}(\mathbb{R})$. Sem perda de generalidade, podemos assumir que $t_{0} = 0$. De (3.30) temos,

$$\mathcal{F}(m(\cdot,t)) = \mathcal{F}(m(\cdot,0)) - \int_0^t I(m(\cdot,s))ds.$$

Daí resulta que

$$\liminf_{t \to \infty} \int_0^t I(m(\cdot, s)) ds = 0, \tag{3.40}$$

pois $I(m(\cdot,s)) \geq 0$ e se $\liminf_{t\to\infty} I(m(\cdot,s)) = a > 0$, teríamos

$$\mathcal{F}(m(\cdot,t)) = \mathcal{F}(m(\cdot,0)) - \int_0^t I(m(\cdot,s)) ds$$

$$\leq \mathcal{F}(m(\cdot,0)) - \int_0^t a ds$$

$$= \mathcal{F}(m(\cdot,0)) - at.$$

Portanto, para algum valor de t, $\mathcal{F}(m(\cdot,t)) < 0$, o que não ocorre devido a expressão do funcional \mathcal{F} definido em (3.1). Assim, de (3.40) e do Lema de Fatou (apêndice A), segue que

$$0 = \liminf_{t \to \infty} \int_0^t I(m(\cdot, s)) ds \ge \int_0^t \liminf_{t \to \infty} I(m(\cdot, s)) ds.$$
 (3.41)

Por outro lado, do Teorema 3.3.1, temos que $I(m(\cdot,t))$ é não-negativo, logo

$$0 \ge \int_0^t \liminf_{t \to \infty} I(m(\cdot, s)) ds \ge 0,$$

portanto

$$\liminf_{t \to \infty} I(m(\cdot, t)) = 0.$$

Então, existe uma sequência (t_n) crescente para o infinito, tal que

$$\lim_{n \to \infty} I(m(\cdot, t_n)) = 0. \tag{3.42}$$

Daí, pelo Corolário 2.2.2, existem uma função contínua $u(\cdot)$, $||u||_{\infty} \leq 1$ e uma subsequência (s_n) de (t_n) tal que

$$\lim_{n \to \infty} m(\cdot, s_n) = u(\cdot) \tag{3.43}$$

uniformemente em compactos. De (3.42) e mais uma vez usando o Lema de Fatou segue que,

$$I(u(\cdot)) = I(\lim_{n \to \infty} m(\cdot, s_n)) \le \lim_{n \to \infty} I(m(\cdot, s_n)) = 0.$$
(3.44)

Logo,

$$I(u(.)) \le 0,$$

de onde concluímos que $I(u(\cdot))=0$, pois I é não-negativo. Desta forma, usando a notação (3.31)

$$I(u(\cdot)) = \int \iota(x,t)dx = 0, \quad q.t.p.$$
(3.45)

Como ι é contínua e $\iota(x,t)=0,$ segue que $\iota\equiv 0,$ isto é,

$$[(J \star u)(x) - \beta^{-1}\operatorname{arctanh}(u(x))][\tanh \beta(J \star u)(x) - u(x)] = 0.$$
 (3.46)

Mas qualquer um dos fatores entre colchetes em (3.46) sendo nulo implica que

$$u(x) = \tanh \beta (J \star u)(x), \quad \forall x \in \mathbb{R},$$

mostrando que u é solução estacionária de (2.1), como queríamos. Assim, mostramos o teorema sob a hipótese de que (3.2) é satisfeita para t finito.

Assuma agora que existe uma sequência $(s_n) \to \infty$, quando $n \to \infty$, tal que (3.43) é válido com $u \in C_b(\mathbb{R})$, com norma do sup limitada por 1 e tal que (3.2) mantém-se. É suficiente mostrar que a órbita partindo de u está no fecho da órbita de $m(\cdot,t)$. A saber, precisamos provar que para qualquer t > 0,

$$\lim_{n \to \infty} m(x, s_n + t) = u(x, t) \tag{3.47}$$

uniformemente para x em compactos.

Seja $m_n(x,t)$ um conjunto de soluções de (2.1), com condição inicial $m_n(x,0)=m(x,s_n)$. Daí, passando ao limite com t>0 e usando (3.43), temos

$$\lim_{n \to \infty} m_n(x, t) = \lim_{n \to \infty} m(x, s_n + t) = u(x, t), \tag{3.48}$$

como queríamos.

Capítulo 4

Existência e Estabilidade Local de Instanton

Neste capítulo, aplicamos o funcional energia estudado no capítulo anterior para demonstrarmos a existência de uma solução de equilíbrio, conhecida na literatura como instanton. Tal solução é caracterizada por seus limites assintóticos em $\pm \infty$ serem $\pm m_{\beta}$.

4.1 Existência de *Instanton*

Como comentamos na introdução, uma solução de equilíbrio de (2.1) é uma solução que é constante com relação a t. Assim, se m é solução de (2.1), então m satisfaz

$$m(x) = \tanh\{\beta(J \star m)(x)\}. \tag{4.1}$$

Observação 4.1 Se m é solução de (4.1), então:

- (i) $w_1(x) = m(-x)$, também é solução de (4.1).
- (ii) $w_2(x) = -m(x)$, também é solução de (4.1).
- (iii) $w_3(x) = m(x-a), a \in \mathbb{R}, também é solução de (4.1).$

Prova. (i) Note que,

$$(J \star m)(-x) = (m \star J)(-x)$$

$$= \int_{\mathbb{R}} m((-x) - u)J(u)du$$

$$= \int_{\mathbb{R}} m(-x - u)J(u)du.$$

Fazendo a mudança de variável y = u + x, obtemos

$$(J \star m)(-x) = \int_{\mathbb{R}} J(y-x)m(-y)dy$$
$$= \int_{\mathbb{R}} J(x-y)m(-y)dy$$
$$= \int_{\mathbb{R}} J(x-y)w_1(y)dy$$
$$= (J \star w_1)(x).$$

Daí,

$$\beta(J\star m)(-x) = \beta(J\star w_1)(x).$$

Consequente mente,

$$\tanh(\beta(J \star m)(-x)) = \tanh(\beta(J \star w_1)(x)).$$

Sendo m solução de (4.1), temos que

$$m(-x) = \tanh(\beta(J \star m)(-x))$$

= $\tanh(\beta(J \star w_1)(x),$

ou seja,

$$w_1(x) = \tanh(\beta(J \star w_1)(x))$$

justificando (i). Para o caso (ii), temos por (4.1)

$$m(x) = \tanh(\beta(J \star m)(x)).$$

Então,

$$-m(x) = -\tanh(\beta(J \star m)(x))$$
$$= \tanh[\beta[J \star (-m))(x)]$$
$$= \tanh(\beta(J \star w_2)(x)).$$

Logo,

$$w_2(x) = \tanh(\beta(J \star w_2)(x)).$$

ou seja, w_2 é solução de (4.1). Por fim, para verificarmos (iii), começamos observando que

$$(J \star m)(x - a) = \int_{\mathbb{R}} J(x - a - y)m(y)dy.$$

 $Ent\~ao$, fazendo a mudança de variável u=y+a, obtemos

$$\int_{\mathbb{R}} J(x-a-y)m(y)dy = \int_{\mathbb{R}} J(x-u)m(u-a)du.$$

Logo,

$$(J \star m)(x - a) = (J \star w_3)(x).$$

Assim,

$$w_3(x) = m(x-a)$$

$$= \tanh \beta (J \star m)(x-a)$$

$$= \tanh \beta (J \star w_3)(x).$$

O que mostra o resultado.

Definição 4.1 Uma instanton é uma solução estacionária de (2.1), cujos limites assintóticos em $\pm \infty$ são $\pm m_{\beta}$, sendo m_{β} solução positiva de

$$m_{\beta} = \tanh(\beta m_{\beta}).$$

Teorema 4.1.1 (Existência de Instanton) Existe uma função, impar e estritamente crescente \bar{m} , solução de (4.1) a qual chamamos de instanton, que está em $C^1(\mathbb{R})$ e converge para $\pm m_\beta$ quando $x \to \pm \infty$.

Prova. Defina a função contínua $l: \mathbb{R} \to [-m_{\beta}, m_{\beta}]$ como segue

$$l(x) = \begin{cases} -m_{\beta}, & x \le -1 \\ m_{\beta}, & x \ge 1 \\ m_{\beta}x, & -1 \le x \le 1 \end{cases}$$

Seja agora, l(x,t) a solução de (2.1) com condição inicial l(x,0) = l(x). Então, temos:

(i) l(x,t) é não-decrescente.

Com efeito, l(x) é não-decrescente, pois assim foi definida. Daí tomando as iteradas a partir de l(x,0), como na demonstração do Teorema de Comparação e, sendo l(x,t) solução de (2.1), obtemos

$$\lim_{n \to \infty} G^n(l(x,0)) = l(x,t). \tag{4.2}$$

Como G é monotônica não-decrescente e l(x,0) não-decrescente, segue que l(x,t) é não-decrescente.

(ii) l(x,t) é impar.

De fato, sejam $u_1(x,t) = -l(x,t)$ e $u_2(x,t) = l(-x,t)$. Como l(x,t) é solução de (2.1), temos as seguintes afirmações:

Afirmação 1: $u_1(x,t) = -l(x,t)$ é ainda solução de (2.1). De fato,

$$\frac{\partial u_1}{\partial t}(x,t) = -\frac{\partial l}{\partial t}(x,t)$$

$$= l(x,t) - \tanh(\beta(J \star l)(x,t))$$

$$= -u_1(x,t) - \tanh(\beta(J \star l)(x,t))$$

$$= -u_1(x,t) + \tanh(\beta(J \star (-l))(x,t))$$

$$= -u_1(x,t) + \tanh(\beta(J \star u_1)(x,t)).$$

Logo

$$\frac{\partial u_1}{\partial t}(x,t) = -u_1(x,t) + \tanh(\beta(J \star u_1)(x,t))$$

e, portanto, segue a afirmação.

Afirmação 2: $u_2(x,t) = l(-x,t)$ é ainda solução de (2.1). De fato,

$$\frac{\partial u_2}{\partial t}(x,t) = \frac{\partial l}{\partial t}(-x,t)$$
$$= -l(-x,t) + \tanh((\beta(J \star l)(-x,t)).$$

Mas, como mostramos na prova de (i) (Observação 4.1), temos que $(J \star l)(-x,t) = (J \star u_2)(x,t)$. Então,

$$\frac{\partial u_2}{\partial t}(x,t) = -u_2(x,t) + \tanh(\beta(J \star u_2)(x,t).$$

E segue a afirmação 2. Por outro lado, l(x,0) = l(x) é impar pois,

$$-l(x) = \begin{cases} m_{\beta}, & x \le -1 \\ -m_{\beta}, & x \ge 1 \\ -m_{\beta}x, & -1 \le x \le 1 \end{cases}$$

е

$$l(-x) = \begin{cases} m_{\beta}, & x \le -1 \\ -m_{\beta}, & x \ge 1 \\ -m_{\beta}x, & -1 \le x \le 1 \end{cases}$$

logo, $u_1(x,0) = -l(x)$ e $u_2(x,0) = l(-x)$ e daí, $u_1(x,0) = u_2(x,0)$. Como u_1 e u_2 são soluções de (2.1) com mesma condição inicial, segue da unicidade do problema de Cauchy que $u_1(x,t) = u_2(x,t)$ para todo t. Assim, $-l(x,t) = l(-x,t) \, \forall \, x \in \mathbb{R}$ e $\forall \, t \in \mathbb{R}_+$, isto é, l(x,t) é ímpar.

Considerando agora, a órbita l(x,t), pelo Teorema 3.3.2, existe uma função contínua \bar{m} tal que $\|\bar{m}\|_{\infty} \leq 1$, que resolve (4.1), e uma sequência $t_n \to \infty$, quando $n \to \infty$, tal que

$$\lim_{n \to \infty} l(x, t_n) = \bar{m}(x) \tag{4.3}$$

uniformemente em compacto. Como \bar{m} é limite uniforme de uma sequência de funções não decrescente e ímpar, segue que \bar{m} é não-decrescente e ímpar. Além disso, por (3.30) e o fato de \mathcal{F} ser semi-contínuo inferiormente, tem-se que $\mathcal{F}(\bar{m}) < \infty$. De fato, temos que

$$\mathcal{F}(l(x,t)) - \mathcal{F}(l(x,0)) = -\int_0^t I(l(x,s))ds,$$

daí,

$$\mathcal{F}(l(x,t)) = \mathcal{F}(l(x,0)) - \int_0^t I(l(x,s))ds.$$

Procedendo como no Teorema 3.3.2 segue que

$$\liminf_{s \to \infty} I(l(\cdot, s) = 0,$$

logo, $\mathcal{F}(l(x,t)) \leq \mathcal{F}(l(x,0))$. Sendo $\bar{m}(x) = \lim_{n \to \infty} l(x,t_n)$ e \mathcal{F} semicontínuo inferiormente, temos

$$\mathcal{F}(\bar{m}) = \mathcal{F}(\lim_{n \to \infty} l(x, t_n))$$

$$= \mathcal{F}(\liminf_{n \to \infty} l(x, t_n))$$

$$\leq \liminf_{n \to \infty} \mathcal{F}(l(x, t_n))$$

$$\leq \liminf_{n \to \infty} \mathcal{F}(l(x, 0))$$

$$= \mathcal{F}(l(x, 0) < \infty,$$

pois $[l(\cdot) - \chi_{\sigma}(\cdot)] \in L^2(\mathbb{R})$. Daí $\mathcal{F}(\bar{m}) < \infty$. Assim, conforme observação 3.1 do Teorema 3.1.1, $(\bar{m} - \chi_{\sigma}) \in L^2(\mathbb{R})$, onde $\chi_{\sigma} = \sigma_{-} m_{\beta} \mathbf{1}_{x \leq 0} + \sigma_{+} m_{\beta} \mathbf{1}_{x > 0}$. Então, os limites de \bar{m} , quando $x \to \pm \infty$, são respectivamente, $\pm m_{\beta}$.

Mostraremos agora que, $\bar{m}'>0$. Suponha por contradição que, para algum x, $\bar{m}'(x)=0$. Então, derivando (4.1) temos

$$\bar{m}'(x) = \operatorname{sech}^{2} \{ \beta(J \star \bar{m})(x) \} \beta(J \star \bar{m}'(x)) = 0.$$

Como sech²{ $\beta(J \star \bar{m})(x)$ } > 0 então $\beta(J \star \bar{m}'(x)) = 0$, logo

$$\int J(y-x)\bar{m}'(y)dy = 0.$$

Já que $J \ge 0$, segue então que, $\bar{m}'(y) = 0$, se J(y-x) > 0. Note agora que, de $\beta(J\star\bar{m}'(x)) = 0$ temos,

$$J \star [\operatorname{sech}^{2}(\beta J \star \bar{m}(y))\beta \star \bar{m}'(y)] = 0.$$

Daí,

$$\int_{\mathbb{R}} J(y-z) \mathrm{sech}^2 \beta(J \star \bar{m}(z)) \beta(J \star \bar{m}'(z)) dz = 0.$$

Como sech² $\beta(J \star \bar{m}(z) > 0$, então

$$\int_{\mathbb{R}} J(y-z)(J\star \bar{m}'(z))dz = J\star (J\star \bar{m}')(y)$$
$$= (J^{*2}\star \bar{m}')(y)$$
$$= 0.$$

Assim,

$$(J^{*2} \star \bar{m}')(y) = (J \star (J \star \bar{m}'))(y)$$

$$= \int_{\mathbb{R}} J(y-z) \int_{\mathbb{R}} J(z-w)\bar{m}'(w)dwdz$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} J(y-z)J(z-w)\bar{m}'(w)dwdz$$

$$= 0.$$

Portanto, $\bar{m}'(w)=0$ nos pontos onde J(z-w)>0 e J(y-z)>0. Por iteração, \bar{m}' anula-se no conjunto

$$\{y \in \mathbb{R} : \Sigma_{n \ge 1} J^{\star n}(y - x) > 0\},\$$

onde J^{*n} denota a n-ésima convolução de J, o qual vemos que coincide com toda reta real, uma vez que J é par. Logo, $\bar{m}'(y) = 0$ para todo y, ou seja, \bar{m} é constante, o que é uma contradição.

4.2 Estabilidade do *Instanton*

Nesta seção verificamos que os instantons são localmente estáveis. Para isso necessitamos definir um conjunto $\mathcal{B}_{\delta} \subset C_b(\mathbb{R})$ conveniente e considerarmos alguns estimativas a priori.

Definição 4.2 Seja \mathcal{B}_{δ} , $\delta > 0$, o conjunto das $m \in C_b(\mathbb{R})$, $||m||_{\infty} \leq 1$, tal que para a_1 , a_2 não negativos $e \mid 0 < q_0 \leq \delta$:

$$\bar{m}(x - a_1) - q_0 \le m(x) \le \bar{m}(x - a_2) + q_0 \qquad \forall x \in \mathbb{R}. \tag{4.4}$$

Teorema 4.2.1 Existem $\delta > 0$, e constantes positivas b e λ tais que, o que segue é válido. Sejam $m_0 \in \mathcal{B}_{\delta}$ com a_1 , a_2 e q_0 como em (4.4). Considere m(x,t) solução de (2.1) com dado inicial m_0 e defina

$$a_{1}(t) = a_{1} + bq_{0}(1 - e^{-\lambda t})$$

$$a_{2}(t) = a_{2} - bq_{0}(1 - e^{-\lambda t})$$

$$q(t) = q_{0}e^{-\lambda t}.$$
(4.5)

Então, para todo $x \in \mathbb{R}$ e $t \in \mathbb{R}_+$, tem-se

$$\bar{m}(x - a_1(t)) - q(t) \le m(x, t) \le \bar{m}(x - a_2(t)) + q(t).$$
 (4.6)

Prova. Escolha δ de modo que $m_{\beta} + \delta < 1$. Mostraremos a primeira desigualdade em (4.6), ou seja,

$$\bar{m}(x - a_1(t)) - q(t) \le m(x, t),$$

a segunda desigualdade pode ser obtida de maneira análoga (considerando uma supersolução). Note que, para demonstrar a primeira desigualdade é suficiente mostrarmos que

$$v(x,t) := \bar{m}(x - a_1(t)) - q(t) \tag{4.7}$$

é uma subsolução de (2.1), contanto que os parâmetros b e λ satisfaçam condições adequadas. Visando facilitar a notação, chamamos $a(t) := a_1(t)$. Inicialmente, note que $v(\cdot,0) \leq m(\cdot,0)$ pois de (4.6) e (4.4) temos

$$v(\cdot,0) = \bar{m}(x - a(0)) - q(0)$$

$$= \bar{m}(x - (a + bq_0(1 - 1))) - q_0$$

$$= \bar{m}(x - a) - q_0$$

$$\leq m(\cdot,0).$$

Então, (4.6) seguirá do Teorema de Comparação se verificarmos que

$$\frac{\partial v(x,t)}{\partial t} \le -v(x,t) + \tanh\{\beta(J \star v)(x,t)\}. \tag{4.8}$$

A princípio, derivando v(x,t) em relação a t obtemos

$$\frac{\partial v(x,t)}{\partial t} = -\dot{q}(t) - \bar{m}'(x - a(t))\dot{a}(t) \tag{4.9}$$

onde $\dot{q}(t)$ denota a derivada em t de q(t). Precisamos mostrar que

$$-\dot{q}(t) - \bar{m}'(x - a(t))\dot{a}(t) \le$$

$$- [\bar{m}(x - a(t)) - q(t)] + \tanh\{\beta[J \star (\bar{m}(x - a(t))(x, t) - q(t))]\}.$$

Como

$$\begin{split} J\star [\bar{m}(x-a(t))-q(t)] &= J\star \bar{m}(x-a(t))-J\star q(t) \\ &= J\star \bar{m}(x-a(t))-\int J(x-y)q(t)dy \\ &= J\star \bar{m}(x-a(t))-q(t), \end{split}$$

a expressão desejada resume-se a

$$-\dot{q}(t) - \bar{m}'(x - a(t))\dot{a}(t) \le -\left[\bar{m}(x - a(t)) - q(t)\right] + \tanh\{\beta[(J \star \bar{m})(x - a(t)) - q(t)]. \quad (4.10)$$

Note que a(t) é crescente, uma vez que, $\dot{a}(t) = -bq_0(-\lambda e^{-\lambda t}) = \lambda bq_0 e^{-\lambda t} > 0$, de modo que a segunda parcela do lado esquerdo de (4.10) é sempre negativo pois do Teorema 4.1.1, $\bar{m}'(\cdot) > 0$. Esta informação será útil para o nosso propósito, mas não é suficiente porque $\bar{m}'(x) \to 0$ quando $|x| \to \infty$, isto é, quando $\bar{m}(x) \to \pm m_{\beta}$. De fato, temos argumentos diferentes dependendo dos valores de $\bar{m}(\cdot)$. Começamos com os valores próximos de $\pm m_{\beta}$, onde podemos desconsiderar completamente o segundo termo do lado esquerdo de (4.10). Precisamente, dado $t \geq 0$, consideremos todos os valores de x tais que $J \star \bar{m}(x - a(t)) \in [m_{\beta} - \epsilon, m_{\beta}]$ ou $J \star \bar{m}(x - a(t)) \in [-m_{\beta}, -m_{\beta} + \epsilon]$; onde $\epsilon > 0$ será fixado posteriormente. Escrevemos,

$$u := J \star \bar{m}(x - a(t)). \tag{4.11}$$

Note que, ao considerarmos $u \in [m_{\beta} - \epsilon, m_{\beta}]$ a segunda parcela do lado esquerdo de (4.10) tende a zero, pois $\bar{m}' \to 0$, daí para este caso (4.10) torna-se

$$-\dot{q}(t) \le -[\bar{m}(x - a(t)) - q(t)] + \tanh\{\beta[(J \star \bar{m})(x - a(t)) - q(t)]. \tag{4.12}$$

Assim, devemos mostrar que

$$-\dot{q}(t) < F(u, q(t))$$

onde F(u,q) é definido pelo lado direito de (4.12) com $u \in [m_{\beta} - \epsilon, m_{\beta}]$ como acima e $q \in [0, m_{\beta} - \delta)$. Como \bar{m} satisfaz (4.1) podemos escrever F explicitamente como segue

$$F(u,q) = -[\tanh\{\beta u\} - q] + \tanh\{\beta u - \beta q\}. \tag{4.13}$$

Mostraremos que existe c > 0 tal que

$$F(u,q) > cq \tag{4.14}$$

para todos os valores de u e q acima. Verifiquemos (4.14) para $u \in [m_{\beta} - \epsilon, m_{\beta}]$, $0 \le q \le \delta$. Derivando F com relação a q obtemos

$$\frac{\partial F}{\partial q}(u,q) = 1 - \frac{\beta}{\cosh^2\{\beta(u-q)\}}.$$
(4.15)

Recorde que, $\cosh^2(x)$ é crescente para $x \ge 0$, $\beta > 1$ e como $u \in [m_\beta - \epsilon, m_\beta]$ temos $m_\beta - \epsilon \le u \le m_\beta$. Disto, juntamente com a hipótese $0 \le q < m_\beta - \delta$ segue que

$$m_{\beta} - \epsilon - q \leq u - q \leq m_{\beta} - q,$$

multiplicando por β a desigualdade acima, temos

$$\beta(m_{\beta} - \epsilon - q) \le \beta(u - q) \le \beta(m_{\beta} - q).$$

Daí,

$$\cosh^{2}[\beta(m_{\beta} - \epsilon - q)] \leq \cosh^{2}[\beta(u - q)] \leq \cosh^{2}[\beta(m_{\beta} - q)].$$

Logo,

$$\frac{\beta}{\cosh^2[\beta(m_\beta - \epsilon - q)]} \geq \frac{\beta}{\cosh^2[\beta(u - q)]} \geq \frac{\beta}{\cosh^2[\beta(m_\beta - q)]}.$$

Equivalentemente,

$$-\frac{\beta}{\cosh^2[\beta(m_\beta - \epsilon - q)]} \le -\frac{\beta}{\cosh^2[\beta(u - q)]} \le -\frac{\beta}{\cosh^2[\beta(m_\beta - q)]}.$$

Assim, obtemos

$$0 < 1 - \frac{\beta}{\cosh^2[\beta(m_{\beta} - \epsilon - q)]} \le 1 - \frac{\beta}{\cosh^2[\beta(u - q)]}.$$
 (4.16)

Usando (4.15) e (4.16) tem-se que

$$\frac{\partial F}{\partial q}(u,q) \ge 1 - \frac{\beta}{\cosh^2[\beta(m_\beta - \epsilon - q)]} \ge c > 0 \tag{4.17}$$

para alguma constante c > 0. Usando o Teorema do Valor Médio

$$[F(u,q) - F(u,0)] = \frac{\partial F}{\partial q}(q-0)$$

e sendo F(u,0) = 0, obtemos de (4.17)

$$F(u,q) = \frac{\partial F}{\partial q} q \ge cq. \tag{4.18}$$

O que mostra (4.14) para ϵ e δ suficientemente pequenos. Se considerarmos o valor λ do Teorema 4.2.1 como sendo $\lambda = c$, obtemos

$$F(u,q) \ge \lambda q = \lambda q_0 e^{-\lambda t}$$
$$= -(-\lambda q_0 e^{-\lambda t})$$
$$= -\dot{q}(t),$$

isto é, $F(u, q(t)) \ge -\dot{q}(t)$. Desta forma, justificamos (4.10) para todo (x, t) tal que $(J \star \bar{m})(x - a(t))$ está ϵ próximo de $\pm m_{\beta}$. Para os outros valores de (x, t), existe c_1 tal que $\bar{m}' \ge c_1$. De fato, do Teorema 5.1.1, $\bar{m}'(x)$ é extritamente positiva quando x varia num compacto e o conjunto

$$\{x: |(J\star \bar{m})(x-a(t))| \le m_{\beta} - \epsilon\}$$

é limitado. Além disso, existe $\alpha>0$ tal que $F(u,q)\geq -\alpha q$. Note agora que,

$$-\bar{m}'(x-a(t))\dot{a}(t) \le 0 \tag{4.19}$$

е

$$-\dot{a}(t)\bar{m}'(x-a(t)) \le -\dot{a}(t)c_1. \tag{4.20}$$

De (4.20) e (4.19) segue que

$$-\dot{q}(t) - \bar{m}'(x - a(t))\dot{a}(t) - F(u, q) \leq -\dot{q}(t) - F(u, q) - c_1\dot{a}(t)$$

$$\leq -\dot{q}(t) - c_1\dot{a}(t) + \alpha q. \tag{4.21}$$

Seja

$$R(t) = -\dot{q}(t) - \bar{m}'(x - a(t))\dot{a}(t) - F(u, q).$$

Afirmação: $R(t) \leq 0$. De fato, recorde que

(i)
$$-\dot{q}(t) = -(-\lambda)q_0e^{-\lambda t} = \lambda q_0e^{-\lambda t}$$

(ii)
$$\dot{a}(t) = -bq_0(-\lambda)e^{-\lambda t} = bq_0\lambda e^{-\lambda t}$$

(iii)
$$q(t) = q_0 e^{-\lambda t}$$
,

substituindo em (4.21) obtemos

$$-\dot{q}(t) - c_1 \dot{a}(t) + \alpha q = \lambda q_0 e^{-\lambda t} - c_1 b q_0 \lambda e^{-\lambda t} + \alpha q_0 e^{-\lambda t}$$
$$= q_0 e^{-\lambda t} (\lambda + \alpha - c_1 b).$$

Como $q_0e^{-\lambda t} \ge 0$, então $(\lambda + \alpha - c_1b)$ é negativo para b suficientemente grande, ou seja,

$$-\dot{q}(t) - c_1 \dot{a}(t) + \alpha q \le 0$$
 para $b \approx \infty$.

Logo,

$$\underbrace{-\dot{q}(t) - \bar{m}'(x - a(t))\dot{a}(t) - F(u, q)}_{R(t)} \le 0 \quad \text{para} \quad b \approx \infty.$$

Temos, assim justificado (4.10) e o teorema fica provado.

Teorema 4.2.2 (Estabilidade Local) Para qualquer $\epsilon > 0$, existe $\zeta > 0$ tal que, se $m \in C_b(\mathbb{R})$, $||m||_{\infty} \leq 1$ e $||m - \bar{m}||_{\infty} \leq \zeta$, então $||m(\cdot, t) - \bar{m}(\cdot)||_{\infty} \leq \epsilon$ para todo $t \geq 0$.

Prova. Considere em (4.6), $a_1 = a_2 = 0$ e $q_0 = \zeta$, daí de (4.4) obtemos

$$\bar{m} - \zeta \le m(x,0) \le \bar{m} + \zeta,$$

e assim pelo Teorema 4.2.1, (4.6) continua válido. Escolhemos $\zeta \leq m_{\beta}$ e usando (4.6) com os valores de a_1 , a_2 e q_0 dados acima, temos

(i)
$$q(t) = q_0 e^{-\lambda t} = \zeta e^{-\lambda t} \le \zeta$$
.

(ii)
$$a_1(t) = a_1 + bq_0(1 - e^{-\lambda t}) = b\zeta(1 - e^{-\lambda t}) \le b\zeta$$
.

(iii)
$$a_2(t) = -b\zeta + b\zeta e^{-\lambda t} \ge -b\zeta$$
.

(iv)
$$\zeta \leq m_{\beta}$$
.

Note que de (ii) e (iii) obtemos

$$|a_i(t)| \le b\zeta \quad \text{com} \quad i = \{1, 2\}.$$
 (4.22)

De (4.6) segue que

$$m(x,t) - \bar{m}(x - a_2(t)) < q(t)$$
 (4.23)

 \mathbf{e}

$$m(x,t) - \bar{m}(x - a_1(t)) \ge -q(t).$$
 (4.24)

Assim, por (4.23), (4.24) e (i) temos

$$|m(x,t) - \bar{m}(x - a_i(t))| \le q(t) \le \zeta.$$
 (4.25)

Daí,

$$|m(x,t) - \bar{m}(x)| = |m(x,t) - \bar{m}(x - a_i(t)) + \bar{m}(x - a_i(t)) - \bar{m}(x)|$$

$$\leq |m(x,t) - \bar{m}(x - a_i(t))| + |\bar{m}(x - a_i(t)) - \bar{m}(x)|$$

$$\leq \zeta + |\bar{m}(x - a_i(t)) - \bar{m}(x)|.$$

Como existe K>0 tal que $\|\bar{m}'\|_{\infty} \leq K$, temos

$$|\bar{m}(x - a_i(t)) - \bar{m}(x)| = K|a_i(t)| \le Kb\zeta.$$
 (4.26)

Logo,

$$|m(x,t) - \bar{m}(x)| \le \zeta + Kb\zeta. \tag{4.27}$$

Portanto,

$$||m(.,t) - \bar{m}(.)||_{\infty} \le \zeta + Kb\zeta. \tag{4.28}$$

o que completa a demonstração.

Apêndice A

Alguns Resultados Básicos

Nesta seção listamos algumas definições e alguns dos resultados básicos usados nesta dissertação. As demonstrações, na maioria das vezes, serão omitidas sendo indicada apenas uma referência clássica onde elas podem ser encontradas.

Teorema A.0.3 (Lema da Contração) Seja (X,d) um espaço métrico completo e $F: X \to X$ uma contração, isto é, $d(F(x), F(y)) \le Kd(x, y)$, $0 \le K \le 1$. Existe um único ponto fixo p, por F, isto é, F(p) = p. Mais ainda, p é um atrator de F, isto é, $F^n(x) \to p$ quando $n \to \infty$, para todo $x \in X$. $F^n(x)$ é definido como $F(F^{n-1}(x))$.

Corolário A.0.4 Seja X um espaço métrico completo. Se $F: X \to X$ é contínua e, para algum m, F^m é uma contração, então existe um único ponto p fixo por F. Mais ainda, p é um atrator de F.

Teorema A.0.5 (Fubini) Para toda função contínua $f:[a,b]\times[c,d]\to\mathbb{R}$, vale

$$\int_{a}^{b} \int_{c}^{d} f(s,t)dtds = \int_{c}^{d} \int_{a}^{b} f(s,t)dsdt.$$

Prova. Veja [15] p.145.

Lema A.0.6 (Gronwall) Sejam u, v funções contínuas não negativas em [a,b] tais que, $para \alpha \geq 0$, satisfazem a

$$u(t) \le \alpha + \int_a^t v(s)u(s)ds, \quad t \in [a, b].$$

 $Ent\~ao$

$$u(t) \le \alpha e^{\int_a^t v(s)ds}$$
.

Em particular, se $\alpha = 0$ então $u \equiv 0$.

Prova. Veja [21] p.37.

Lema A.0.7 (Gronwall Generalizado) Se u, α são funções contínuas para $a \le t \le b$, $v(t) \ge 0$ integrável em [a,b] e

$$u(t) \le \alpha(t) + \int_a^t v(s)u(s)ds, \quad a \le t \le b,$$

 $ent\~ao$

$$u(t) \le \alpha(t) + \int_a^t v(s)\alpha(s) \left(\exp \int_s^t v(u)du\right) ds, \quad a \le t \le b.$$

Prova. Veja [11] p.36.

Teorema A.0.8 (Regra de Leibniz) Dado $U \subset \mathbb{R}^n$, aberto, seja $f: U \times [a,b] \to \mathbb{R}$ uma função com as seguintes propriedades:

- (i) Para todo $x \in U$, a função $t \to f(x,t)$ é integrável em $a \le t \le b$.
- (ii) A i-ésima derivada parcial $\frac{\partial f}{\partial x_i}(x,t)$ existe para cada $(x,t) \in U \times [a,b]$ e a função $\frac{\partial f}{\partial x_i}: U \times [a,b] \to \mathbb{R}$, assim definida, é contínua.

Então a função $\varphi:U\to\mathbb{R}$, dada por $\varphi(x)=\int_a^b f(x,t)dt$, possui i-ésima derivada parcial em cada ponto $x\in U$, sendo

$$\frac{\partial \varphi}{\partial x_i}(x) = \int_a^b \frac{\partial f}{\partial x_i}(x, t) dt.$$

Em suma: pode-se derivar sob sinal da integral, desde que o integrando resultante seja uma função contínua.

Prova. Veja [15] p.144.

Teorema A.0.9 (Valor Médio, de Lagrange) $Seja\ f:[a,b]\to\mathbb{R}\ contínua.\ Se\ f$ é derivável em $(a,b),\ existe\ c\in(a,b),\ tal\ que$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Prova. Veja [14] p.272.

Lema A.0.10 (Fatou) Seja (f_n) uma sequencia de funções não-negativas mensuráveis, então

$$\int (\liminf f_n) dx \le \liminf \int f_n dx.$$

Prova. Veja [2].

Teorema A.0.11 (Arzelà-Áscoli) Seja (X,d) um espaço métrico compacto. Seja ψ uma família equicontínua de funções $\phi: X \to \mathbb{R}$. Se ψ é uniformemente limitada, então toda sequencia $\{\phi_n\}$ de elementos de ψ tem uma subsequencia $\{\phi_{n_k}\}$ uniformemente convergente em X.

Definição A.1 Seja $\{f_n\}$ uma sequencia de funções definidas em $E \subset X$, onde X é um espaço métrico. Dizemos que $\{f_n\}$ é limitada em E, se para cada $x \in E$, a sequencia $\{f_n(x)\}$ é limitada. Dizemos que $\{f_n\}$ é uniformemente limitada em E se existe um número M tal que $|\{f_n(x)\}| < M$ com $x \in E$.

Definição A.2 Diz-se que uma família ψ de funções f, definidas em E, é equicontínua em E se para cada $\epsilon > 0$ existe $\delta > 0$ tal que

$$|f(x) - f(y)| < \epsilon$$

sempre que $d(x,y) < \delta$, $x,y \in E$ e $f \in \psi$. Aquí d designa a métrica em X.

Definição A.3 Seja (x_n) uma sequência de números reais. Ela se chama uma sequência de Cauchy quando cumpre a seguinte condição: dado arbitrariamente um número real $\epsilon > 0$, pode-se obter $n_0 \in \mathbb{N}$ tal que $m > n_0$ e $n > n_0$ implica $|x_m - x_n| < \epsilon$.

Teorema A.0.12 Toda sequência de Cauchy é limitada.

Teorema A.0.13 Uma sequência de funções $f_n: X \to \mathbb{R}$ é uniformemente convergente se, e somente se, é uma sequência de Cauchy.

Teorema A.0.14 Se (f_n) é uma sequência de funções contínuas em X e se $f_n \to f$ uniformemente em X, então f é contínua em X.

Teorema A.0.15 Seja K um conjunto compacto.

(i) Se $\{f_n\}$ é uma sequencia uniformemente convergente de funções contínuas em K, então $\{f_n\}$ é equicontínua em K.

(ii) Se $\{f_n\}$ é limitada e equicontínua em K, então $\{f_n\}$ contém uma subsequencia uniformemente convergente e $\{f_n\}$ é uniformemente limitada em K.

Prova. Aquí seguimos aprova dada em [19]. Dado $\epsilon > 0$, segue das hipóteses (i) que, existe um inteiro N e $\delta > 0$ tais que

$$|f_n(x) - f_N(x)| < \frac{\epsilon}{3} \quad (x \in K, \quad n > N)$$
(A.1)

е

$$|f_i(x) - f_i(y)| < \frac{\epsilon}{3} \quad (1 \le i \le N; \quad d(x, y) < \delta). \tag{A.2}$$

Em (A.2) aplicamos a propriedade de serem as funções contínuas uniformemente contínuas em conjuntos compactos. Se $x, y \in K$, $d(x, y) < \delta$ e n > N, temos

$$|f_n(x) - f_n(y)| \le |f_n(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f_n(y)| < \epsilon$$

o que, juntamente com (A.2), demonstra (i).

Admitimos, a seguir, que as hipóteses (ii) são válidas. Consideremos um subconjunto enumerável E de K tal que E seja denso em K. Um tal conjunto pode ser obtido como segue: Seja J(x,r) o conjunto de todos os pontos $y \in K$ tais que d(x,y) < r. Para cada r fixo, resulta da compacidade de K que K pode ser coberto por um número finito de conjuntos abertos $J(x_1,r)$, ..., $J(x_m,r)$. Fazendo $r=1,\frac{1}{2},\frac{1}{3},...$, obtemos uma base enumerável para K. Se considerarmos um ponto de K em cada elemento desta base enumerável, o conjunto enumerável resultante é denso em K.

Sejam $\{x_i\}$, i=1,2,3..., pontos de E dispostos em sequencia. Como $\{f_n(x_1)\}$ é limitada, existe uma subsequencia, que designaremos por $\{f_{1,k}\}$, tal que $\{f_{1,k}(x_1)\}$ converge quando $k \to \infty$.

Consideremos, agora, as sequencias $S_1, S_2, ...$, que podemos dispor como segue,

$$S_1: f_{1,1} \quad f_{1,2} \quad f_{1,3} \quad f_{1,4} \dots$$
 $S_2: f_{2,1} \quad f_{2,2} \quad f_{2,3} \quad f_{2,4} \dots$
 $S_3: f_{3,1} \quad f_{3,2} \quad f_{3,3} \quad f_{3,4} \dots$
 $S_4: f_{4,1} \quad f_{4,2} \quad f_{4,3} \quad f_{4,4} \dots$
 \dots
 $S_n: f_{n,1} \quad f_{n,2} \quad f_{n,3} \quad f_{n,4} \dots$

. .

e que tem as seguintes propriedades:

- (i) S_n é uma subsequencia de S_{n-1} para n=2,3,...,
- (ii) $\{f_{n,k}(x_n)\}$ converge, quando $k \to \infty$ (sendo $\{f_n\}$ limitada, é possível escolher S_n deste modo).
- (iii) A ordem em que as funções aparecem é a mesma em cada sequencia. Portanto, quando no quadro acima, descermos de uma linha para seguinte, as funções podem ser deslocadas para esquerda, mas nunca para direita.

Seja agora a sequencia S obtida pela diagonal do quadro acima, isto é, a sequencia

$$S: f_{1,1} \quad f_{2,2} \quad f_{3,3} \quad f_{4,4}...$$

Daí, por (iii), S é uma subsequencia de S_n para n=1,2,3,..., portanto por (ii) resulta que a subsequencia $f_{n,n}(x_i)$ converge quando $n \to \infty$ em cada $x_i \in E$.

Dado $\epsilon > 0$, como $\{f_n\}$ é equicontínua, existe $\delta > 0$ tal que se $d(x,y) < \delta$, então

$$|f_n(x) - f_n(y)| < \frac{\epsilon}{3} \quad (n = 1, 2, 3, ...).$$

Consideremos $J(x, \delta)$ com o significado que lhe foi atribuído no inicio da demonstração.

Sendo E denso em K e K compacto, existe um número finito de pontos $x_1, x_2, ..., x_p$ em E tais que

$$K \subset J(x_1, \delta) \cup ... \cup J(x_p, \delta).$$

Seja N escolhido de modo que

$$|f_{n,n}(x_i) - f_{m,m}(x_i)| < \frac{\epsilon}{3} \quad (i = 1, 2, ...p)$$

para $n \geq N, m \geq N$.

Segue-se que, para qualquer que seja $x \in K$, existe um ponto x_i , com $1 \le i \le p$, tal que $x \in J(x_i, \delta)$; portanto, se $n \ge N$, $m \ge N$, temos

$$|f_{n,n}(x) - f_{m,m}(x)| \le |f_{n,n}(x) - f_{n,n}(x_i)| + |f_{n,n}(x_i) - f_{m,m}(x_i)| + |f_{m,m}(x_i) - f_{m,m}(x)|$$

 $< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$

Assim $\{f_{n,n}\}$ converge uniformemente em K.

Para provar que $\{f_n\}$ é uniformemente limitada em K, definimos

$$\phi(x) = \sup |f_n(x)| \quad (n = 1, 2, 3, \dots). \tag{A.3}$$

dado $\epsilon > 0$, consideremos $\delta > O$ tal que se $d(x,y) < \delta$, então

$$|f_n(x) - f_n(y)| < \epsilon \quad (i = 1, 2, 3...).$$

Se fixarmos dois pontos $x \in y$, da desigualdade

$$|f_n(y)| < |f_n(x)| + \epsilon$$

resulta que

$$\phi(y) \le \phi(x) + \epsilon \tag{A.4}$$

enquanto de

$$|f_n(x)| < |f_n(y)| + \epsilon \tag{A.5}$$

resulta

$$\phi(x) \le \phi(y) + \epsilon. \tag{A.6}$$

Por (A.4) e (A.6),

$$|\phi(y) - \phi(x)| \le \epsilon$$

desde que $d(x,y)<\delta$, de modo que ϕ é contínua em K. Como K é compacto, ϕ é limitada e segue-se a conclusão.

Definição A.4 Uma função $\varphi: E \to (-\infty, +\infty]$ é dita convexa se

$$\varphi(tx+(1-t)y) \leq t\varphi(x)+(1-t)\varphi(y) \quad \forall \, x\, y \in \, E \quad \forall \, t \in (0,1).$$

Teorema A.0.16 Seja F uma função contínua e denotemos por J ao funcional

$$J(u) = \int_{\mathbb{R}} F(u) dx.$$

Então J é um funcional semicontínuo inferiormente se e somente se F é uma função convexa.

Prova. Veja [20]

Definição A.5 Uma sequência $x_n \subset X$ converge fracamente para $x \in X$ se $\lim_{n\to\infty} f(x_n) = f(x)$ para todo $f \in X'$.

Seja X um espaço de Banach e seja $f \in X'$. Denotemos por φ_f a aplicação $\varphi_f : X \to \mathbb{R}$ tal que $\varphi_f(x) = \langle f, x \rangle$. Quando f percorre X' obtemos uma família $(\varphi_f)_{f \in X'}$ de aplicações de X e \mathbb{R} .

Definição A.6 A topologia fraca $\sigma(X, X')$ em X é a topologia menos fina em X que torna contínuas todas as aplicações φ_f , com $f \in X'$.

Definição A.7 Uma função $\varphi: X \to (-\infty, +\infty]$ é dita semicontínua inferiormente se para todo $x_0 \in X$ tem-se

$$\liminf_{x \to x_0} \varphi(x) \ge \varphi(x_0).$$

Seja X um espaço de Banach e X' seu dual, com norma

$$||f||_{X'} = \sup_{x \in X \ ||x|| \le 1} |\langle f, x \rangle|.$$

Seja ainda, X'' o bidual de X com norma

$$\|\xi\|_{X''} = \sup_{f \in X'} |\langle \xi, f \rangle|.$$

Definição A.8 A aplicação $J: X \to X''$, onde para $x \in X$ fixo, a aplicação $f \mapsto \langle f, x \rangle$ de X' em \mathbb{R} é uma forma linear contínua sobre X', é dita aplicação canônica. Daí

$$\langle Jx, f \rangle_{X'', X'} = \langle f, x \rangle_{X', X} \quad \forall x \in X, \quad \forall f \in X'.$$

Definição A.9 Seja X um espaço de Banach e seja J uma aplicação canônica de X em X''. Dizemos que X é reflexivo se J(X) = X''.

Teorema A.0.17 (Veja [3]) O espaço $L^2(\Omega)$, munido com o produto interno

$$\langle f, g \rangle = \int_{\Omega} f(x)g(x)dx,$$

é um espaço de Hilbert.

Teorema A.0.18 Todo espaço de Hilbert H, é reflexivo.

Prova. Veja [13] p. 242.

Teorema A.0.19 Se X é reflexivo, então toda sequência limitada em X possui subsequência fracamente convergente.

Prova. Veja [16] p. 117.

Bibliografia

- [1] Aragão, G. S., Equações Diferenciais Ordinárias em Espaços de Banach, Dissertação de Mestrado, Universidade de São Paulo, São Paulo, (2006).
- [2] Bartle, R.G., The Elements of Integration and Lebesgue measure, New York, Wiley Classics Library Edition Published, 1995.
- [3] Brezis, H., Analyse Fonctionnelle, Théorie et Applications, Dunod, 2005.
- [4] Cassandro M., Orlandi E. e Presuti E., Interfaces and typicaal Gibbs configurations for one dimensional Kac Potentials, Probability. Theory Related Fields 96, 57-96(1993).
- [5] Daleckiï, J.L. e Kreïn, M.G., Stability of Solutions of Differential Equations in Banach Space(Translations of Mathematical Monographs v.43), American Mathematical Society, 1970.
- [6] De Masi A., Orlandi E., Presutti E. e Triolo L., Uniqueness and global stability of the instanton in non local evolution equations, Rendiconti di Matematica, Roma, Serie VII, 693-723, (1994).
- [7] De Masi A., Orlandi E., Presutti E. e Triolo L., Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7, 633-696, (1994).
- [8] De Masi A., Gobron T., e Presutti E., Travelling fronts in non local evolution equations, preprint (1993).
- [9] Folland, G.B., Real Analysis, Modern Techniques and Their Applications. John Wiley 2^a Ed., New York, 1999.

- [10] Folland, G.B., Introduction to partial differential equations 2^a ed., New Jersey, Princeton University Press 1995.
- [11] Hale, J. K., Ordsinary Differential Equations (Pure and Applied Mathematics), A Series of Texsts and Monographs, n° 21. Krieger Publishing Company Malabar, Florida, 1980.
- [12] Hale, J. K., Asymptotic behavior of dissipative Systems American Surveys and Monogragraphs, n°25, 1988.
- [13] Kreyszig, E., Introductory Functional Analysis with Applications. Wiley, New York, 1978.
- [14] Lima, E.L., Curso de Análise vol.1. 12ª ed., Rio de Janeiro, IMPA (Projeto Euclides) 2007.
- [15] Lima, E.L., Curso de Análise vol. 2 9ª ed., Rio de Janeiro, IMPA (Projeto Euclides) 2006.
- [16] Oliveira, C.R., Introdução à Análise Funcional 3ª ed., Rio de Janeiro, IMPA (Publicações Matemáticas) 2010.
- [17] Pereira, A.L. e Silva, S.H. Existence of global attractos and gradient property for class of non local evolution equation Journal Mathematical Science, n°1, (2008), 1-20.
- [18] Pereira, A.L. e Silva, S.H. Continuity of global attractor for a class of non local evolution equation Discrete and continuous dinamical systems, vol. 26, n°3 (2010), 1073-1100.
- [19] Rudin, W., Princípios de Análise Matemática, Rio de Janeiro, Ao Livro Técnico S.A (1971).
- [20] Rivera, J.E.M., Introdução a Teoria das Distribuições e equações Diferenciais Parciais, Rio de Janeiro, (2004).
- [21] Sotomayor, J., Lições de Equações Diferenciais, Rio de Janeiro, IMPA(Projeto Euclides) 1979.