
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIDADE ACADÊMICA DE SISTEMAS E COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DÉBORA LÊDA DE LUCENA SOUZA

EVALUATING LARGE AND SMALL LANGUAGE MODELS

FOR PROGRAMMING PROBLEM SOLVING

CAMPINA GRANDE - PB

2025

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

Evaluating Large and Small Language Models for

Programming Problem Solving

Débora Lêda de Lucena Souza

Dissertação submetida à Coordenação do Curso de Pós-Graduação em

Ciência da Computação da Universidade Federal de Campina Grande -

Campus I como parte dos requisitos necessários para obtenção do grau

de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Engenharia de Software

Rohit Gheyi

(Orientador)

Campina Grande, Paraíba, Brasil

©Débora Lêda de Lucena Souza, 07/02/2025

Débora Lêda de Lucena Souza

Evaluating Large and Small Language Models for
Programming Problem Solving

Dissertação apresentada ao Programa de Pós-Graduação em Ciência da Computação da Uni-

versidade Federal de Campina Grande, pertencente à linha de pesquisa de Engenharia de

Software, área de concentração Ciência da Computação, como requisito para a obtenção do

Título de Mestre em Ciência da Computação.

Aprovado(a) em: 24/02/2025

BANCA EXAMINADORA

Prof. Dr. Rohit Gheyi – UFCG

Orientador

Profª. Drª. MÁRCIO DE MEDEIROS RIBEIRO – UFAL

Examinador Interno

Prof. Dr. GUSTAVO ARAÚJO SOARES – Microsoft

Examinador Externo

i

S729e

Souza, Débora Lêda de Lucena.

 Evaluating large and small language models for programming

problem solving / Débora Lêda de Lucena Souza. – Campina Grande,

2025.

 90 f. : il. color.

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e

Informática, 2025.

 “Orientação: Prof. Dr. Rohit Gheyi”.

 Referências.

 1. Software Engineering. 2. Large Language Models. 3. Small

Language Models. 4. Code Generation. 5. Code Generation Evaluation.

I. Gheyi, Rohit. II. Título.

UFCG/BC

 CDU 004.41(043.3)
 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA SEVERINA SUELI DA SILVA OLIVEIRA CRB-15/225

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Rua Aprígio Veloso, 882, Edifício Telmo Silva de Araújo, Bloco CG1, - Bairro Universitário, Campina
Grande/PB, CEP 58429-900

Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124
Site: http://computacao.ufcg.edu.br - E-mail: secpg@computacao.ufcg.edu.br

FOLHA DE ASSINATURA PARA TESES E DISSERTAÇÕES

DÉBORA LÊDA DE LUCENA SOUZA

EVALUATING LARGE AND SMALL LANGUAGE MODELS FOR PROGRAMMING PROBLEM

SOLVING

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação como
pré-requisito para obtenção do título de
Mestre em Ciência da Computação.

Aprovada em: 24/02/2025

Prof. Dr. ROHIT GHEYI, Orientador, UFCG

Prof. Dr. MÁRCIO DE MEDEIROS RIBEIRO, Examinador Interno, UFAL

Prof. Dr. GUSTAVO ARAÚJO SOARES, Examinador Externo, MICROSOFT

Documento assinado eletronicamente por Márcio de Medeiros Ribeiro, Usuário Externo, em
15/04/2025, às 14:54, conforme horário oficial de Brasília, com fundamento no art. 8º, caput, da
Portaria SEI nº 002, de 25 de outubro de 2018.

Documento assinado eletronicamente por ROHIT GHEYI, PROFESSOR(A) DO MAGISTERIO
SUPERIOR, em 08/05/2025, às 20:32, conforme horário oficial de Brasília, com fundamento no art.
8º, caput, da Portaria SEI nº 002, de 25 de outubro de 2018.

A autenticidade deste documento pode ser conferida no site https://sei.ufcg.edu.br/autenticidade,
informando o código verificador 5264383 e o código CRC 84AD9C57.

15/07/2025, 16:15 SEI/UFCG - 5264383 - PRPG-Folha de Assinatura para Teses e Dissertações

https://sei.ufcg.edu.br/sei/documento_consulta_externa.php?id_acesso_externo=1597286&id_documento=5827950&id_orgao_acesso_externo=0&infra_hash=9… 1/2

Resumo
A transformação de linguagem natural em código está evoluindo rapidamente, impulsion-

ada por avanços em Grandes e Pequenos Modelos de Linguagem (LLMs e SLMs). Embora

demonstrem grande potencial na geração de código, a eficácia desses modelos em cenários

reais de programação ainda é incerta, especialmente considerando diferentes tipos de proble-

mas e níveis de dificuldade. Este estudo avalia a acurácia de Grandes Modelos de Linguagem

(GPT-4, LLAMA 3, CLAUDE 3 SONNET e GEMINI PRO 1.0) em 100 problemas do Leet-

Code e BeeCrowd, além de investigar o desempenho de Pequenos Modelos de Linguagem

(LLAMA 3.2 3B, GEMMA 2 9B, PHI-4 14Be DEEPSEEK-R1 14B) em 280 problemas

do Codeforces. Os resultados mostram que, no grupo de LLMs, o GPT-4 liderou com 78

soluções corretas, evidenciando maior facilidade em problemas de nível mais baixo. Já entre

os SLMs, o PHI-4 14B destaca-se ao resolver 63% dos problemas, superando significativa-

mente os outros modelos, que apresentaram taxas inferiores a 23%. Esses achados indicam o

potencial dos LLMs e SLMs como assistentes de codificação, mas também ressaltam a vari-

ação significativa nas taxas de sucesso conforme a complexidade dos problemas. Portanto,

apesar de auxiliarem de forma relevante, não devem ser adotados como soluções autôno-

mas. No caso dos SLMs, embora o PHI-4 14B apresente resultados promissores, ainda há

limitações.

iv

Abstract
The transformation of natural language into code is evolving rapidly, driven by advances

in Large and Small Language Models (LLMs and SLMs). Although it demonstrates great

potential in code generation, the effectiveness of these models in real programming scenarios

is still uncertain, especially considering different types of problem and levels of difficulty.

This study evaluates the accuracy of Large Language Models (GPT-4, LLAMA 3, CLAUDE

3 SONNET and GEMINI PRO 1.0) on 100 LeetCode and BeeCrowd problems, in addition

to investigating the performance of Small Language Models (LLAMA 3.2 3B, GEMMA 2

9B, PHI-4 14Band DEEPSEEK-R1 14B) on 280 Codeforces problems. The results show

that, in the group of LLMs, GPT-4 led with 78 correct solutions, showing greater ease in

lower-level problems. Among SLMs, PHI-4 14B stands out by solving 63% of problems,

significantly outperforming other models, which apply rates lower than 23%. These results

indicate the potential of LLMs and SLMs as settlement residents, but also highlight the sig-

nificant variation in success rates depending on the complexity of the problems. Therefore,

despite helping significantly, they should not be adopted as independent solutions. In the

case of SLMs, although PHI-4 14B presents promising results, there are still limitations.

v

Agradecimentos
Agradeço à minha família, pelo amor incondicional, paciência e por sempre estarem ao meu

lado, me incentivando e me proporcionando o apoio necessário em todos os momentos. Aos

meus irmãos, que sempre acreditaram em meu potencial e me ensinaram a perseverar, muito

obrigada.

Ao meu esposo, pela compreensão, paciência e por estar ao meu lado nos momentos

mais difíceis. Sua presença constante, apoio emocional e incentivo foram fundamentais para

o meu crescimento pessoal e acadêmico.

Aos meus amigos, que com palavras de apoio, incentivo e amizade, tornaram essa jornada

mais leve e alegre. Obrigada por sempre estarem presentes, mesmo à distância, e por me

motivarem a continuar.

Agradeço também ao meu orientador, Rohit Gheyi, por todo o apoio, orientações e ensi-

namentos que me proporcionaram ao longo do desenvolvimento deste trabalho. Sua paciên-

cia e dedicação foram essenciais para a evolução desta pesquisa.

Por fim, agradeço às agências de fomento, CAPES e CNPq, pelo apoio recebido ao longo

do meu percurso acadêmico. As ações dessas instituições de fomento são fundamentais para

a construção de uma base sólida e para o desenvolvimento da pesquisa no Brasil.

A todos que, de alguma forma, contribuíram para a realização deste trabalho, meu sincero

agradecimento.

vi

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Motivating Example . 3

1.3 Solution . 3

1.4 Evaluation . 5

1.5 Conclusions . 6

1.6 Summary of contributions . 6

1.7 Organization . 7

2 Background 8

2.1 Introduction to Language Models . 8

2.1.1 The Evolution of Language Models 8

2.1.2 Large versus Small Language Models 10

2.2 Code Generation Techniques . 12

2.2.1 Deductive Code Generation . 12

2.2.2 Inductive Code Generation . 13

2.2.3 Natural Language-based Code Generation 13

2.2.4 Language Models for Code Generation 14

2.3 Evaluation of Language Models Code Generated 14

2.3.1 Evaluation Strategies . 14

2.3.2 Code Generation Benchmarks . 15

3 Manual Evaluation of Large Language Models (LLMs) 18

3.1 Methodology . 18

vii

CONTENTS viii

3.1.1 Platforms Selection . 19

3.1.2 Problems Selection . 19

3.1.3 Large Language Models Selection 20

3.1.4 Prompt Design . 20

3.1.5 Experiment Setup . 21

3.1.6 Pilot Study . 22

3.1.7 Experiment Phases . 23

3.2 Definition . 23

3.3 Research Questions Results . 24

3.3.1 RQ1: To what extent LLMs as GPT-4, LLAMA 3, CLAUDE 3 SON-

NET, GEMINI PRO 1.0 can answer programming assignments? . . . 24

3.3.2 RQ2 What types of errors are most common in the responses gener-

ated by the models? . 25

3.3.3 RQ3 How does the performance of LLMs vary across different pro-

gramming topics? . 26

3.4 Discussion . 27

3.4.1 The Number of Attempts Required to Correctly Solve a Question . 28

3.4.2 Difficulty Levels of the Problems Answered 29

3.4.3 Evaluating Data Leakage on GPT-4 30

3.4.4 Requirement Document Analysis on Not Solved Problems by GPT-4 34

3.5 Threats to Validity . 36

3.5.1 Internal Validity . 36

3.5.2 External Validity . 37

3.5.3 Construct Validity . 37

4 Automated Evaluation of Small Language Models: Findings and Discussion 38

4.1 Methodology . 38

4.1.1 Platforms Selection . 39

4.1.2 Problems Selection . 39

4.1.3 Small Language Models Selection 41

4.1.4 Prompt Design . 41

CONTENTS ix

4.1.5 Experiment Setup . 42

4.1.6 Pilot Study . 43

4.1.7 Experiment Phases . 43

4.2 Definition . 44

4.3 Research Questions Results . 45

4.3.1 RQ4: To what extent SLMs as PHI-4 14B, LLAMA 3.2 3B, GEMMA

2 9B and DEEPSEEK-R1 14B can answer programming assignments? 45

4.3.2 RQ5: What types of errors are most common in the responses gen-

erated by the SLMs? . 46

4.3.3 RQ6: How does the performance of SLMs vary across different pro-

gramming topics? . 47

4.4 Discussion . 48

4.4.1 Self-consistency of Small Language Models for Code Generation . 48

4.4.2 Rating Levels of the Problems Answered 50

4.4.3 Costs . 52

4.4.4 Analyzing the number of passed tests on unsolved problems on PHI-

4 14B Model . 52

4.4.5 Code Analysis of PHI-4 14B’s Solutions 54

4.4.6 Evaluating PHI-4 14B after Cutoff Date 55

4.5 Threats to Validity . 57

4.5.1 Internal Validity . 57

4.5.2 External Validity . 58

4.5.3 Construct Validity . 58

5 Related work 59

6 Conclusions 64

6.1 Implications of Utilizing LLMs for Code Generation 66

6.2 Study Limitations and Future Directions 67

List of Figures

3.1 Setup of manual evaluation of Large Language Models (LLMs). 22

3.2 Types of errors generated by incorrect answers on (A) - LeetCode platform

vs (B) - BeeCrowd platform. 26

3.3 Number of correct answers per number of attempts on (A) - LeetCode plat-

form vs (B) - BeeCrowd platform. 30

3.4 Number of correct questions by difficulty levels on (A) - LeetCode platform

and (B) - BeeCrowd platform. 31

3.5 Count of correct answers before and after Metamorphic Test. 33

3.6 Example of a problem with ambiguous Requirement Document. 35

4.1 Distribution of Token Counts in Requirement Documents. 40

4.2 Problem Tag Distribution by Frequency. 40

4.3 Setup of Automated Evaluation of SLMs. 43

4.4 Percentage of submissions that resulted in an error, across 840 total submis-

sions (280 problems, each submitted three times). 46

4.5 Performance of SLMs on Codeforces problems across difficulty levels. The

x-axis represents problem difficulty levels (ratings from 800 to 2100), while

the y-axis indicates the number of problems correctly solved out of 20 per

level. 51

4.6 Number of Tests Passed in Incorrect Submissions vs Rating on Model PHI-4

14B. 53

x

List of Tables

3.1 Overview of Large Language Models: Context Window, Parameters, and

Release Information. 21

3.2 Number of problems correctly answered by GPT-4, LLAMA 3, CLAUDE 3

SONNET and GEMINI PRO 1.0. 25

3.3 Number of correct answers per topic on the LeetCode platform. 27

3.4 Number of correct answers per topic on the BeeCrowd platform. 28

3.5 Example of words changed on metamorphic test. 32

3.6 Transition Matrix with status changes before and after the Metamorphic Test. 33

3.7 Problems released after the cutoff date submitted to GPT-4. 34

4.1 Overview of SLMs: Settings, Parameters, and Release Information. 41

4.2 LLAMA 3.2 3B, GEMMA 2 9B, PHI-4 14B and DEEPSEEK-R1 14B eval-

uations for Codeforces problems. 45

4.3 Performance of LLAMA 3.2 3B (Lla), GEMMA 2 9B (Gem), PHI-4 14B

(Phi), and DEEPSEEK-R1 14B (DS) on the Top 10 topics in the selected

Codeforces problems. 48

4.4 Comparison of pass@3 and Semantic Consistency, with an analysis of model

consistency. 50

4.5 Code Structure Count of PHI-4 14B’s Solutions. 56

4.6 Evaluation of Problems Released after the Cutoff date of PHI-4 14B. . . . 56

5.1 Summary of related work on LLMs coding generation task from natural lan-

guage. 60

xi

List of Listings

1.1 Python implementation for the Mashmokh and ACM problem (Codeforces

414-B) . 4

xii

Chapter 1

Introduction

According to Uptech [101], developing software typically costs between $50,000 and

$250,000, depending on complexity and development hours, with multi-platform applica-

tions often reaching the higher end. As software development becomes more accessible, the

global developer population has grown to $19.6 million in 2024, according to JetBrains re-

port [47]. However, hiring and retaining skilled developers remains costly, with rates ranging

from $24 to $150 per hour depending on experience, location, and employment model [4].

Driven by soaring demand for top-tier talent, these expenses contribute to the broader trend

of rising IT investment, with global spending projected to reach $5.26 trillion in 2024—a

7.5% increase from the previous year, according to Gartner [32].

Given the high costs of software development and retaining skilled professionals, there

is a growing need for cost-reduction strategies—one of the most promising being automatic

code generation, which leverages large code bases to generate code from developer-specified

requirements, enabling faster and more scalable development. Automatic code generation

has evolved rapidly, from early methods using natural language inputs [61, 113] to powerful

models like CodeBERT [28] and OpenAI’s CodeX [14], which leverage large-scale pretrain-

ing to support multilingual code tasks and drive tools like Copilot.

Building upon these advanced models, the last two years have witnessed the emergence

of several sophisticated Large Language Models (LLMs) tailored for code generation tasks.

Notable examples include GPT-4 [2], GEMINI PRO 1.0 [98], LLAMA 3 [34], and CLAUDE

3 SONNET [3]. Despite their strong performance, these large models require massive param-

eter counts, leading to high computational demands during training and deployment. This

1

1.1 Problem 2

results in elevated operational costs, energy use, and carbon emissions, raising environmen-

tal concerns [88, 94, 95]. Moreover, LLMs pose security risks such as data leakage and

vulnerability to adversarial attacks, threatening privacy and sensitive information [23].

To address economic, environmental, and security concerns, researchers are increasingly

focusing on Small Language Models (SLMs), which use fewer parameters to reduce com-

putational demands, costs, carbon impact and are easily customizable. Their open-source

nature also enables local deployment and better privacy. Despite their size, recent SLMs like

PHI-4 14B [1], LLAMA 3.2 3B [66], GEMMA 2 9B [99], and DEEPSEEK-R1 14B [38]

show potential for code generation.

1.1 Problem

The rapid advancement of LLMs and SLMs has positioned them as powerful tools for au-

tomated code generation, enabling natural language-to-code translation that reduces costs,

increases productivity, and expands access to software development. However, a critical

challenge lies in reliably assessing the correctness of the code these models generate. De-

spite their widespread use, benchmarks like HumanEval [14], MBPP [7], and APPS [39]

have notable limitations [26, 48]: HumanEval offers few test cases and overly simplified

prompts; MBPP focuses on basic Python tasks; and APPS, while more complex, evaluates

only code correctness, ignoring key metrics like execution time and memory usage. More-

over, dataset-based evaluations may produce false positives, accept inefficient solutions, and

struggle with problems that allow multiple correct outputs [59].

Given these considerations, it is crucial to evaluate both LLMs and SLMs on a broader

and more challenging set of tasks, particularly within real-world competitive programming

environments. Platforms like the Codeforces Judge [17], which demand efficient algorithms,

strict execution constraints, and scalable solutions, offer a valuable setting for such assess-

ments. Evaluating models in these dynamic, high-stakes contexts allows for a more com-

prehensive understanding of their true capabilities and limitations—measuring not only cor-

rectness but also runtime and memory usage. This approach provides a more practical and

realistic evaluation, helping bridge the gap between academic benchmarks and real-world

software engineering needs.

1.2 Motivating Example 3

1.2 Motivating Example

Evaluating the correctness of code generated by language models is challenging due to the

complexity and diversity of programming tasks, which are influenced by factors like problem

difficulty, required concepts (e.g., arrays, matrices, sorting), necessary optimizations, and

the clarity of the prompt. Additionally, a language model can produce correct but inefficient

solutions and struggle with problems that have multiple valid outputs.

An illustrative example of the complexity involved in automatic code generation can be

found in problem 414-B (Elo rating 1400) from Codeforces, Listing 1.1. In this problem,

the goal is to count how many fixed-length sequences can be formed using numbers from 1

to n, such that each element divides the next— a constraint that requires not only generating

all possible combinations but also efficiently checking divisibility between consecutive ele-

ments. The solution demands a dynamic programming approach that carefully considers the

relationship between divisors and multiples, effectively illustrating the kind of algorithmic

reasoning language models must master to solve non-trivial programming tasks.

This solution was generated by the Phi-4 model and, although it produces correct results,

it fails to meet the time constraints imposed by the platform. Specifically, it successfully

passes the first four test cases but exceeds the time limit on the fifth, resulting in a Time

Limit Exceeded (TLE) error.

1.3 Solution

To address this gap, our study presents an evaluation of LLMs—including GPT-4, GEMINI

PRO 1.0, LLAMA 3, and CLAUDE 3 SONNET—and SLMs, such as PHI-4 14B, LLAMA 3.2

3B, GEMMA 2 9B, and DEEPSEEK-R1 14B. We assess their performance across multiple

dimensions: correctness, runtime and memory usage, consistency, and cost-effectiveness.

The evaluation is conducted using a diverse set of competitive programming problems

sourced from globally recognized platforms—LeetCode [56], BeeCrowd [9], and Code-

forces [17]—which are widely used by millions of programmers and serve as industry bench-

marks for algorithmic problem-solving. These problems span a broad range of topics and

difficulty levels, from basic data structures to advanced algorithmic challenges, providing a

1.3 Solution 4

1 def count_good_sequences(n, k):

2 MOD = 1000000007

3 dp = [[0 for _ in range(k + 1)] for _ in range(n + 1)]

4

5 for i in range(1, n + 1):

6 dp[i][1] = 1

7

8 for length in range(2, k + 1):

9 for end in range(1, n + 1):

10 total = 0

11 multiple = end

12 while multiple <= n:

13 total += dp[multiple][length - 1]

14 if total >= MOD:

15 total -= MOD

16 multiple += end

17 dp[end][length] = total

18

19 result = sum(dp[i][k] for i in range(1, n + 1)) % MOD

20 return result

21

22 if __name__ == "__main__":

23 import sys

24 input = sys.stdin.read

25 data = list(map(int, input().split()))

26 n, k = data[0], data[1]

27 print(count_good_sequences(n, k))

Listing 1.1: Python implementation for the Mashmokh and ACM problem (Codeforces 414-

B)

comprehensive view of each model’s coding capabilities. Ultimately, our analysis offers a

holistic assessment of the effectiveness of LLMs and SLMs in automated code generation,

shedding light on their strengths, limitations, and implications for the future of AI-assisted

programming.

By adopting this approach, we aim to derive valuable insights into the performance of

1.4 Evaluation 5

LLMs and SLMs in competitive programming. Our analysis focuses on several key aspects,

including overall accuracy rates—measuring how often a model generates a fully correct

solution that passes all test cases—and accuracy across different difficulty levels, which helps

us understand how these models perform on easy, medium, and hard problems. We also

examine common error patterns in the generated code, such as logical mistakes or syntax

issues, and evaluate the number of attempts required by LLMs to produce a correct solution,

highlighting whether success tends to occur on the first try or after multiple retries. For

SLMs, we assess consistency by determining whether correct solutions are produced reliably

across multiple runs or merely by chance. Finally, we consider the financial cost of running

SLMs in competitive programming environments to evaluate their cost-effectiveness.

1.4 Evaluation

Our research methodology consists of two complementary experiments designed to evaluate

the performance of LLMs and SLMs in solving competitive programming problems. The

first experiment focuses on LLMs and involves a manual evaluation using a curated set of

100 problems, 50 from LeetCode and 50 from BeeCrowd. Solutions generated by the mod-

els are submitted directly to the respective platforms, ensuring correctness is assessed under

real-world competitive conditions. To account for variability in model outputs, each problem

is submitted up to three times. The second experiment targets SLMs and uses an automated

evaluation framework applied to a larger dataset of 280 problems from Codeforces. This

approach streamlines the testing process by extracting problem requirements and submit-

ting them systematically, with each problem evaluated three times per model—totaling 840

submissions per model. Together, these experiments enable a thorough assessment of cor-

rectness, consistency, runtime, and computational efficiency. This methodology provides an

evaluation of the coding capabilities of LLMs and SLMs, ensuring that their performance is

assessed in a fair and reproducible manner.

1.5 Conclusions 6

1.5 Conclusions

Our findings reveal meaningful differences in the performance of LLMs and SLMs on code

generation tasks, particularly when considering problem difficulty and platform character-

istics. For instance, while LLMs like GPT-4 performed well overall, with high accuracy

on structured problems—achieving over 90% success on LeetCode—they showed a notable

drop on more open-ended tasks, with average accuracy falling to around 40% on BeeCrowd.

This contrast underscores how model performance is influenced not only by problem com-

plexity, but also by how tasks are and presented.

In the automated evaluation of SLMs on Codeforces problems, models like PHI-4 14B

showed promising capabilities, reaching a pass@3 rate above 60%, while others performed

significantly below that threshold. This stark contrast highlights the considerable perfor-

mance gap between different sizes of small models, emphasizing that while some SLMs

demonstrate promising capabilities, others still struggle to generalize effectively across di-

verse coding challenges

Overall, the study highlights that while LLMs and SLMs can serve as effective coding

assistants, their utility depends heavily on task type, clarity of the problem description, and

the underlying reasoning required. Selected models show strong potential, but ensuring code

correctness, reliability, and practical value in real-world activities demands careful validation

and testing. Moving forward, continued evaluation in realistic, high-variance programming

environments will be essential to fully understand and improve their real-world applicability.

1.6 Summary of contributions

The main contributions of this work are:

• A comparative analysis of the correctness and reliability of LLMs, including GPT-

4, GEMINI PRO 1.0, LLAMA 3, and CLAUDE 3 SONNET, in solving programming

problems.

• A comparative analysis of the correctness and reliability of SLMs, such as PHI-4 14B,

LLAMA 3.2 3B, GEMMA 2 9B and DEEPSEEK-R1 14B, in solving programming

problems.

1.7 Organization 7

1.7 Organization

This work is organized as follows: Chapter 2 provides the essential background information.

Chapters 3 and 4 present the methodology and results of the evaluation for Large and Small

Language Models, respectively. Chapter 5 offers a review of related work, and Chapter 6

concludes with a summary of the findings.

Chapter 2

Background

This chapter provides a thorough background to facilitate a deeper understanding of the con-

cepts underpinning our study. It is structured into three key sections: an introduction to Lan-

guage Models (Section 2.1), an exploration of Code Generation Techniques (Section 2.2),

and a discussion on the Evaluation of Language Models Code Generated (Section 2.3).

2.1 Introduction to Language Models

In this section, we provide an overview of the development of language models, tracing

their evolution from early models to the advent of Large Language Models (LLMs). We

will also delve into the key trends, innovations, and factors that have shaped the develop-

ment of LLMs, alongside the emergence and significance of smaller language models as an

alternative to their larger counterparts.

2.1.1 The Evolution of Language Models

Machines cannot inherently comprehend or generate human language in a meaningful way

without sophisticated artificial intelligence (AI) models. Over the years, significant advance-

ments in natural language processing (NLP) have driven the development of Large Language

Models (LLMs), enabling machines to interpret, generate, and interact using human lan-

guage [100]. However, achieving human-like proficiency in programming tasks remains a

challenge, requiring continuous refinement of model architectures, training methodologies,

8

2.1 Introduction to Language Models 9

and evaluation frameworks.

Language modeling (LM) is a key approach in enhancing the language intelligence of

machines. In general, LM focuses on estimating the generative probability of word se-

quences, allowing for the prediction of future (or missing) tokens. This field has garnered

significant attention in research, evolving through four major developmental stages [119]:

• Statistical Language Models (StatLM): Emerging in the 1990s, StatLMs [31,83,96]

use statistical methods to predict the next word in a sentence based on preceding words.

These models rely on the Markov assumption, considering only a limited number of

previous words for prediction. When a fixed number of words is used as context, they

are known as n-gram models (e.g., bigram for two words, trigram for three). However,

StatLMs struggle with large datasets, as the number of possible word combinations

grows exponentially, making accurate predictions more difficult. To address this issue,

smoothing techniques like backoff estimation [53] and Good-Turing estimation [30]

are used to adjust probabilities for unseen word combinations, improving prediction

accuracy.

• Neural Language Models (NLM): NLMs [12, 54, 70] use neural networks to pre-

dict the likelihood of word sequences. Neural networks like multi-layer perceptrons

(MLP) and recurrent neural networks (RNNs) are employed for this task. One sig-

nificant advancement introduced by these models was the idea of representing words

as vectors [12], which helps to capture the meaning of words based on the context in

which they appear. By applying this technique of learning features, a general neural

network approach was developed to create a unified and efficient solution for various

natural language processing (NLP) tasks [20]. Additionally, the word2vec [69, 71]

model was proposed to build a simple neural network that learns these word represen-

tations, and this method proved to be highly effective across various NLP tasks. These

studies marked the beginning of using language models for representation learning,

beyond just modeling word sequences, having a significant impact on the field of NLP.

• Pre-trained Language Models (PLM): A key development in this area was

ELMo [78], which aimed to improve word representations by first training a network

to understand the context of words and then adjusting it for specific tasks. Instead

2.1 Introduction to Language Models 10

of using fixed word meanings, ELMo used a bidirectional LSTM (biLSTM) network.

Following this, BERT [24] introduced a more advanced approach using the Trans-

former model [102], which allowed the network to learn from large amounts of text

data through a process called self-attention. BERT improved the understanding of

word context and provided better word representations that helped boost the perfor-

mance of many NLP tasks. This approach of “pre-training and fine-tuning” has since

been widely adopted, leading to the creation of other models like GPT-2 [81] and

BART [57], which either introduced new network designs or enhanced the pre-training

process. Fine-tuning is often necessary to adapt these pre-trained models to specific

tasks.

• Large language models (LLM): Larger language models (LLMs) tend to perform

better on various tasks as they grow in size and data, following a scaling law [52].

Researchers have tested this by training increasingly bigger models, like GPT-3 (175B

parameters) and PaLM (540B parameters), which show emergent abilities [108] com-

pared to smaller models like BERT (330M) and GPT-2 (1.5B). These larger models can

handle complex tasks, such as few-shot learning, which smaller ones struggle with. A

key example is ChatGPT, which adapts GPT models for conversation, demonstrating

impressive interaction skills. Since its release, research on LLMs has surged on the

computer science community.

2.1.2 Large versus Small Language Models

LLMs are trained on massive text corpora with tens of billions (or more) of parameters, such

as GPT-3 [51], GPT-4 [2], and LLAMA 3 [34]. The goal of LLMs is to enable machines to

understand human commands and adhere to human values. The substantial increase in model

size, dataset volume, and computational prowess has resulted in significant enhancements

across various tasks and unveiled remarkable capabilities. The number of parameters for

LLMs typically exceeds a hundred billion, and the training data is usually in the range of

a few hundred GB to a few TB. The largest version of the GPT-4 model has 1.76 trillion

parameters and uses hundreds of terabytes of text data for training. This enormous scale

allows these models to capture a broad spectrum of knowledge and perform sophisticated

2.1 Introduction to Language Models 11

tasks, including natural language understanding, code generation, summarization, and more,

often outperforming smaller models in accuracy and versatility.

Despite the progression of Language Models towards Large Language Models (LLMs),

many tasks can still be effectively handled by smaller versions of these models. While

the computational infrastructure required to run an LLM is not always accessible to ev-

eryone, and not all tasks necessitate the use of such large models, companies have responded

by releasing more compact versions of their LLMs. These smaller models, such as Phi-

4:14B [68], Llama3.2:3B [67], and Gemma2:9B [33], offer a balanced trade-off between

performance and efficiency, making them accessible for a broader range of users and tasks.

These models demonstrate that, with innovative approaches and optimized data handling,

smaller models can still achieve remarkable results while being more feasible to deploy in

resource-constrained environments.

The Phi-4 model was developed in response to recent advancements in Large Language

Models (LLMs), which have shown that improving data quality can lead to performance

gains that rival or even surpass those achieved by simply scaling computational resources,

model size, or dataset volume. Phi-4, a 14-billion parameter model, pushes the boundaries

of small language models by introducing innovative synthetic data generation techniques,

specifically designed for reasoning-intensive tasks. By optimizing its training curriculum,

fine-tuning data mixtures, and employing novel post-training strategies, Phi-4 significantly

enhances the performance of smaller models [1].

A key innovation behind Phi-4 is its use of synthetic data, which forms the majority of

its training set. This data is generated through a range of sophisticated techniques, such as

multi-agent prompting, self-revision workflows, and instruction reversal. These approaches

facilitate the creation of datasets that promote advanced reasoning and problem-solving ca-

pabilities, overcoming some of the limitations found in traditional unsupervised data sources.

As a result, Phi-4 demonstrates strong reasoning abilities, making it highly effective in tack-

ling tasks that demand complex cognitive functions [1].

Thanks to these groundbreaking methods, Phi-4’s performance on reasoning-based tasks

often rivals, or even exceeds, that of much larger models. For instance, in many widely rec-

ognized reasoning benchmarks, Phi-4 competes directly with Llama-3.1-405B, showcasing

the significant strides that smaller models have made in achieving comparable or superior

2.2 Code Generation Techniques 12

results despite their reduced parameter count [1].

2.2 Code Generation Techniques

Code generation, also known as program synthesis, refers to the automated generation of

software code based on user intent. This technique enhances developer productivity by re-

ducing manual coding and accelerating the software development lifecycle. Early research in

code generation focused primarily on deductive and inductive program synthesis, which cre-

ates code based on specifications and/or input-output pairs. With the advent of deep learning

techniques, language-based code generation, which describes user intent in natural language,

has gained significant attention [64].

2.2.1 Deductive Code Generation

Deductive synthesis relies on logical reasoning to derive a program from a specification. In

this process, the specification is typically a formal description of the desired program behav-

ior (such as expected inputs and outputs), and the system deduces a program that satisfies

these conditions. Deductive synthesis is often associated with formal logic techniques and

formal proofs, where the machine attempts to derive a correct program based on a formal

description of requirements and properties [35, 37].

Example of operation: If the problem specification indicates that given an integer, the

program should return its double, deductive synthesis would attempt to construct a program

that satisfies this condition based on known logical and mathematical rules.

The need for detailed specifications aids in minimizing logical errors. It has wide-

ranging applications in areas such as robotics [29] and software engineering [41]. For in-

stance, STRIPS [29] is an automated planner that tackles robot-related challenges, while

PROW [103] generates LISP code from specifications in predicate calculus by employing a

two-step process involving theorem proving and code generation.

2.2 Code Generation Techniques 13

2.2.2 Inductive Code Generation

Inductive program synthesis, also known as programming by example (PBE), creates pro-

grams directly from specific input-output pairs [64]. This method is simpler and more acces-

sible than deductive synthesis, and it has been widely explored. It allows users with little to

no programming experience to guide computers using examples.

Example of operation: If the problem specification provides examples such as the num-

ber 2 generating the output 4 and the number 3 generating the output 6, inductive synthesis

would attempt to deduce that the desired program is a function that doubles the input values.

For example, FlashFill [36], one of the most well-known real-world applications of pro-

gram synthesis, generates programs for spreadsheet software like Excel based on just a few

input-output examples. Similar techniques [106] are also employed to generate programs for

relational databases, particularly for tasks like schema refactoring.

2.2.3 Natural Language-based Code Generation

Natural language-based code generation has become a significant area of research, utilizing

deep learning techniques to convert natural language descriptions into functional code. These

approaches are typically divided into three main categories: sequence-based models, tree-

based models, and pre-trained models [64].

Sequence-based models treat code generation as a machine translation problem, where

the task is to convert a natural language description into code. For example, Ling et al. [61]

used a neural network with a structured attention mechanism to process semi-structured in-

puts for code generation.

Tree-based models take into account the structured nature of code by parsing it into

tree-like structures, such as Abstract Syntax Trees (ASTs). Yin et al. [114] trained an LSTM

to generate a sequence of actions that build the AST, while Rabinovich et al. [80] directly

generate the tree structure of the source code.

Pre-trained models [28,105] have emerged as another effective approach, where models

are pre-trained on large datasets and later fine-tuned for specific tasks like code generation.

These models have led to significant improvements in performance. Additionally, some

studies have explored “retrieval-augmented generatio” where the model retrieves relevant

2.3 Evaluation of Language Models Code Generated 14

code from external sources such as Stack Overflow or API documentation to enhance the

generation process. For instance, Xu et al. [111] incorporated external knowledge bases

for improved model performance, while Parvez et al. [77] introduced similar code snippets

alongside the input to train models in incorporating reusable code.

These approaches represent a broad range of strategies that are advancing the field of

natural language-based code generation, each contributing to the overall improvement of

code generation capabilities.

2.2.4 Language Models for Code Generation

Language Models (LMs) for code generation involve using LMs to produce source code

based on natural language descriptions, a task commonly referred to as natural-language-to-

code. These descriptions usually consist of programming problem statements (or docstrings)

and may also include additional programming context, such as function signatures and as-

sertions [48].

Transformer-based LMs have transformed numerous fields, with a significant impact on

code generation. Their development follows a structured process, beginning with the cura-

tion and synthesis of code data, followed by a multi-stage training pipeline that includes pre-

training, fine-tuning (instruction tuning), and reinforcement learning with various feedback

mechanisms. Additionally, advanced prompt engineering techniques enhance their effec-

tiveness. Recent innovations have introduced repository-level and retrieval-augmented code

generation, along with the emergence of autonomous coding agents [48].

2.3 Evaluation of Language Models Code Generated

To assess the performance and advantages of LLMs, strategies and benchmarks have been

introduced to facilitate empirical evaluation and analysis.

2.3.1 Evaluation Strategies

Developing effective and reliable automatic evaluation metrics for generated content has

been a persistent challenge in natural language processing (NLP) [15, 60, 76]. Initially,

2.3 Evaluation of Language Models Code Generated 15

most approaches relied on token-matching-based metrics, such as Exact Match, BLEU [76],

ROUGE [60], and METEOR [8], which are widely used in NLP text generation, to evaluate

the quality of code generation [48].

Although these metrics provide a fast and cost-effective way to evaluate generated code,

they often fail to fully capture its syntactic and functional correctness, as well as its seman-

tic properties. To address this limitation, CodeBLEU [82] was introduced, extending the

traditional BLEU metric [76] by integrating syntactic analysis through abstract syntax trees

(AST) and semantic understanding via data-flow graphs (DFG). Despite these advancements,

the metric still falls short in addressing execution errors and discrepancies in the generated

code’s execution results. To overcome these challenges, execution-based metrics have gained

traction in code generation evaluation, including pass@k [14], n@k [58], test case aver-

age [40], and pass@t [74]. Among these, pass@k has emerged as a key evaluation metric,

measuring the likelihood that at least one of k generated code samples successfully passes

all unit tests. An unbiased estimator for pass@k, introduced by [14], is defined as:

pass@k = 1−
(
n−c
k

)(
n
k

) (2.1)

Let n represent the total number of sampled candidate code solutions, k the number

of randomly selected code solutions from these candidates for each programming problem,

where n ≥ k, and c the number of correct solutions within the k selected samples.

However, execution-based methods rely significantly on the quality of unit tests and are

restricted to evaluating executable code [116]. As a result, when unit tests are not available,

token-matching-based metrics are frequently used as an alternative for evaluation. In cases

where a ground truth label is missing, unsupervised metrics like perplexity (PPL) [46] can

be applied. Perplexity measures an LLM’s uncertainty in predicting new content, offering

an indirect assessment of the model’s generalization ability and the quality of the generated

code.

2.3.2 Code Generation Benchmarks

To rigorously evaluate the effectiveness of Language Models (LMs) in code generation, the

research community has developed a diverse set of high-quality benchmarks in recent years.

2.3 Evaluation of Language Models Code Generated 16

These benchmarks, including various iterations of the HumanEval dataset and other novel

benchmarks, aim to assess a wider range of code generation capabilities in large language

models. By incorporating increasingly complex problems and augmenting test case scales,

these benchmarks provide a comprehensive framework for measuring the performance of

LLMs in producing functional, accurate, and contextually appropriate code [48].

HumanEval [14] consists of 164 manually created Python programming problems, each

containing a function signature, docstring, body, and multiple unit tests. HumanEval+ [63]

expands on the original HumanEval benchmark by scaling up the number of test cases by a

factor of 80. This increased scale enables HumanEval+ to detect a larger amount of incorrect

code generated by LLMs that may have previously gone unnoticed.

MBPP [7] consists of around 974 Python programming problems, crowdsourced and

aimed at entry-level programmers. Each problem includes an English task description, a

code solution, and three automated test cases. MBPP+ [63] builds upon MBPP by removing

poorly structured problems and correcting those with faulty implementations. Additionally,

MBPP+ significantly increases the test scale, expanding it by 35 times for enhanced test

coverage.

CoderEval [115] is a practical code generation benchmark featuring 230 Python and 230

Java programming problems. It serves to assess model performance in generating functional

code that goes beyond simple standalone functions. ClassEval [26], on the other hand, is a

manually designed benchmark with 100 classes and 412 methods aimed at evaluating LLMs

in the context of class-level code generation. The tasks in ClassEval are particularly complex,

requiring the generation of long code and detailed docstrings, making it a valuable tool for

evaluating the ability of LLMs to produce intricate and sophisticated code.

For competition code, there is APPS benchmark [40] which is composed of 10K Python

problems, spanning three levels of difficulty: introductory, interview, and competition. Each

problem is described in English, accompanied by its corresponding ground truth Python so-

lutions, and test cases defined by their inputs and outputs or function names when provided.

CodeContests [58], on the other hand, is a competitive programming dataset that includes

samples from various platforms, such as Aizu, AtCoder, CodeChef, Codeforces, and Hack-

erEarth. This dataset encompasses programming problems along with test cases presented

as paired inputs and outputs, including both correct and incorrect human solutions across

2.3 Evaluation of Language Models Code Generated 17

multiple programming languages.

Additionally, LiveCodeBench [45] is a comprehensive and contamination-free bench-

mark for evaluating a wide range of code-related capabilities of LLMs, including code gen-

eration, self-repair, code execution, and test output prediction. The benchmark continuously

gathers new coding problems from reputable contest platforms, such as LeetCode, AtCoder,

and CodeForces. The latest release of the dataset contains 713 problems, which were pub-

lished between May 2023 and September 2024.

Chapter 3

Manual Evaluation of Large Language

Models (LLMs)

In this chapter, we outline the methodology, results, and discussions of our study on Large

Language Models, which involved evaluating 100 problems from LeetCode and BeeCrowd.

Section 3.1 describes the methodology employed, while Section 3.2 defines the objectives of

our evaluation, including the research questions and performance metrics used. Section 3.3

presents the main findings, followed by Section 3.4, which offers an in-depth analysis and

interpretation of these results. Finally, Section 3.5 addresses the potential threats to the

validity of our study.

3.1 Methodology

This section outlines the methodology employed to develop the work and accomplish the set

objectives. It is organized into several subsections: Platforms Selection (Section 3.1.1), Prob-

lems Selection (Section 3.1.2), Large Language Models Selection (Section 3.1.3), Prompt

Design (Section 3.1.4), Experiment Setup (Section 3.1.5), Pilot Study (Section 3.1.6), and

Experiment Phases (Section 3.1.7).

18

3.1 Methodology 19

3.1.1 Platforms Selection

The LeetCode [56] and BeeCrowd [9] platforms were selected because they are an well-

known repository of programming problems, widely used to enhance coding skills, partici-

pate in contests, and prepare for job interviews. These platforms offer a range of problems

that simulate real-world challenges companies may face in their daily operations, with suffi-

ciently difficult tasks to thoroughly test the capabilities of Language Models.

3.1.2 Problems Selection

To conduct the Manual Evaluation of Large Language Models analysis, 100 programming

problems were manually selected to evaluate whether the GPT-4, GEMINI PRO 1.0, LLAMA

3, and CLAUDE 3 SONNET models provide correct responses. Of these, 50 problems were

sourced from LeetCode and 50 from BeeCrowd, both popular programming platforms. The

problems span across Easy, Intermediate, and Hard difficulty levels, and were chosen arbi-

trarily and manually submitted to the LLMs prompts.

The LeetCode platform categorizes its problems into difficulty levels: Easy, Intermediate,

and Hard. On the other hand, the BeeCrowd platform categorizes its problems by difficulty

level, from 1 to 10. To facilitate comparison with the LeetCode problems, the questions were

redistributed into three semantic levels, namely:

• Easy: questions from level 1 to 4;

• Intermediate: questions from level 5 to 7;

• Difficult: questions from level 8 to 10.

Given that the selected problems span Easy, Intermediate, and Hard difficulty levels, we

aimed for a thorough evaluation by arbitrarily selecting 50 problems from each platform.

These were distributed as follows: 20 from the Easy level, 15 from the Intermediate level,

and 15 from the Hard level.

Once each platform sets the level of each problem, a problem with the level “hard”

from LeetCode may not have the same level of difficulty compared with a problem from

BeeCrowd. Therefore, the problems cover various computer science domains including ar-

rays, data structures, algorithms, and graphs, among others. It is important to note that on

3.1 Methodology 20

BeeCrowd, the difficulty level is estimated using a variation of the ELO Rating System [72],

which uses the number of times the problem has been "defeated" (i.e., how many users have

solved the problem) to determine its difficulty. In this system, problems that are solved by

many users with few attempts are classified as low difficulty, while problems with more at-

tempts but fewer solutions are classified as high difficulty. The difficulty of the problems is

adjusted weekly, so their total score may vary [11]. The questions were selected arbitrarily

in January 2023 because preliminary studies involving GPT-3.5 were conducted throughout

that year, as detailed in Section 3.1.6.

3.1.3 Large Language Models Selection

The LLMs selected for evaluation in this study were chosen based on their performance and

impact in the AI field. We used tools such as LLM Arena [6], a crowdsourced open plat-

form for LLM evaluations, to guide our selection based on their rankings. Additionally, we

aimed to include one LLM from different companies and architecture to ensure representa-

tion across different developers.

The selected models are GPT-4 [2], LLAMA 3 [34], CLAUDE 3 SONNET [3], and GEM-

INI PRO 1.0 Pro [98]. As shown in Table 3.1, each one of them was developed by leading AI

companies. GPT-4, developed by OpenAI, has 1.76 trillion parameters and a context win-

dow of 8k, released in March 2023 with a cutoff in September 2021 [2]. Meta’s LLAMA 3

model has 70 billion parameters, a large context window of 128k, and was released in April

2024, with data available up until December 2023 [34]. Anthropic’s CLAUDE 3 SONNET

also features 70 billion parameters but has an even larger context window of 200k, released

in March 2024, with a cutoff date in August 2023 [3]. Google’s GEMINI PRO 1.0, with 1.56

trillion parameters, supports an impressive 1 million context window and was released in

December 2023 [19] [98].

3.1.4 Prompt Design

To submit the selected problems to LLMs, the complete text of each problem was extracted

from the respective platforms and incorporated into the LLMs’ prompts. The prompt was

carefully designed to provide clear instructions, ensuring that the models understood the task

3.1 Methodology 21

Table 3.1: Overview of Large Language Models: Context Window, Parameters, and Release

Information.

Model Name Company Number of Parameters Context Window Cutoff Date Release Date

GPT-4 OpenAI 1.76T 8k September 2021 March 2023

LLAMA 3 Meta 70B 128k December 2023 April 2024

CLAUDE 3 SONNET Anthropic 70B 200k August 2023 March 2024

GEMINI PRO 1.0 Google 1.56T 32k - December 2023

and generated relevant solutions. The following instruction was used:

Make a program that solves the following problem. The problem statement includes a de-

scription, input requirements, output specifications, and examples to aid in understanding

the problem.

Problem Statement: {Problem Statement}.

This structured approach ensured consistency across different problems while enabling

LLMs to accurately interpret and generate code solutions. Based on the provided input, the

language model produces a response code, which is then submitted to the problem platform.

The platform serves as an oracle, verifying the correctness of the LM generated solution.

3.1.5 Experiment Setup

The Manual Evaluation of Large Language Models experiment utilized BeeCrowd and Leet-

Code both as repositories of programming problems and as oracles to validate solutions

generated by the models. The models evaluated in this study were GPT-4 (default ChatGPT

version), GEMINI PRO 1.0, LLAMA 3, and CLAUDE 3 SONNET. A set of questions was

chosen arbitrarily in January 2023, with GEMINI PRO 1.0 being evaluated in February 2024,

followed by GPT-4, LLAMA 3, and CLAUDE 3 SONNET in April 2024.

To assess each problem, the full text—spanning description, examples, and constraints

was manually copied from the platform and pasted into each model’s prompt. In response,

the model produced a solution, which was then submitted back to the platform for evalua-

tion. Each solution received an “accepted” or “rejected” verdict based on the platform’s test

cases. This submission-and-verification workflow, is summarized in Figure 3.1. Although

the example in Listing 1.1 does not include an explanatory image, it is common for problem

3.1 Methodology 22

statements to contain images. However, this feature was not included for evaluation along-

side the question in any LLM, once the images only clarifies the problem statement instead

of add new information.

Figure 3.1: Setup of manual evaluation of Large Language Models (LLMs).

Given the probabilistic nature of the models used in this study, they can produce varied

responses to the same query. As a result, each LLM was given up to three attempts per

problem. This means the identical text was resubmitted for evaluation a maximum of three

times, or until a correct answer was obtained. The decision to allow three submissions was

purely experimental, with the same prompt being forwarded to the model each time. If

the response remained incorrect after the third submission, the problem was classified as

unsolved. Each problem was presented to the model in a unique prompt, which was only

reused for additional attempts if needed. No specific programming language was requested

in the prompts; however, most solutions were generated in Python.

3.1.6 Pilot Study

In this stage, a qualitative pilot study was initially conducted using only the GPT-3.5 LLM,

followed later by the GEMINI PRO 1.0. The datasets used in this study were sourced from

the LeetCode and BeeCrowd platforms, and the methodology followed is described in Sec-

tion 3.1.5. The results obtained from this pilot study were incorporated into the analysis, as

3.2 Definition 23

the studies were published across 2023 and 2024 [90] [92]. These experiments were carried

out entirely manually to ensure the validity of the manual study methodology.

3.1.7 Experiment Phases

Following the pilot study, the manual evaluation phase was broadened to incorporate ad-

ditional LLMs, including GPT-4, LLAMA 3, and CLAUDE 3 SONNET. The same set of

problems from LeetCode and BeeCrowd used in the pilot was retained to maintain consis-

tency, enabling direct comparisons of performance and reasoning across different versions

and generations of language models.

This expanded phase aimed to enhance the generality and robustness of our approach by

examining a wider range of models. By comparing outputs from models trained on different

data and employing varied architectures, the study provided deeper insights into their behav-

ior, strengths, and potential pitfalls. These findings were especially valuable for validating

the methodology on a broader scale, highlighting model-specific advantages and limitations

while informing future refinements of our experimental design.

3.2 Definition

In this section, we define the objective of our study using the GQM (Goal, Question, Metric)

method [13]. Our goal is to evaluate the effectiveness of Large Language Models (LLMs)

such as GPT-4, GEMINI PRO 1.0, LLAMA 3, and CLAUDE 3 SONNET in solving program-

ming problems sourced from platforms like LeetCode and BeeCrowd, with the purpose of

raising implications of its use in the daily routine of programmers, regarding the correctness

of the generated answers, from the perspective of researchers, in the context of automatic

code generation.

Therefore, this study aims to provide insights into the practical implications of using

LLMs in programmers’ daily workflows, with a focus on solution correctness. To achieve

this, we formulate and investigate three key research questions (RQs).

RQ1 To what extent LLMs as GPT-4, LLAMA 3, CLAUDE 3 SONNET, GEMINI PRO

1.0 can answer programming assignments?

3.3 Research Questions Results 24

To answer this question, the correct and incorrect responses provided by the platforms

LeetCode and BeeCrowd will be counted.

RQ2 What types of errors are most common in the responses generated by LLMs?

To address this question, we will examine and categorize the most frequent failures

encountered in model outputs, including syntactic issues, logical missteps, and failures

to satisfy problem constraints.

RQ3 How does the performance of LLMs vary across different programming topics?

This question aims to assess the effectiveness of LLMs across a diverse set of program-

ming topics, including graph algorithms, dynamic programming, sorting, and string

manipulation. By analyzing performance variations, we can identify strengths and

weaknesses in the models’ problem-solving capabilities across different algorithmic

domains.

3.3 Research Questions Results

This section presents the results of the manual evaluation conducted on 100 programming

problems sourced from BeeCrowd and LeetCode. The analysis primarily focuses on as-

sessing the performance of different LLMs, identifying patterns in their problem-solving

capabilities, and highlighting their strengths and limitations. While pilot studies involving

GPT-3.5 provided valuable qualitative insights, they were excluded from the quantitative

analysis to focus solely on the performance of more recently released models.

3.3.1 RQ1: To what extent LLMs as GPT-4, LLAMA 3, CLAUDE 3

SONNET, GEMINI PRO 1.0 can answer programming assign-

ments?

To answer this research question, the number of correct answers provided by each program-

ming platform was counted, as shown in Table 3.2. Specifically, GPT-4 successfully solved

100% of the programming problems from LeetCode, but only 56% in BeeCrowd. In com-

parison, LLAMA 3 and CLAUDE 3 SONNET showed similar results, solving 92% of the

3.3 Research Questions Results 25

problems on LeetCode but only 38% on BeeCrowd, indicating a significant variation in per-

formance depending on the platform. GEMINI PRO 1.0 performed similarly on LeetCode,

correctly answering 90% of the problems, but struggled on BeeCrowd, achieving only 34%

accuracy. These results emphasize that while all models perform well on LeetCode, their

effectiveness on BeeCrowd varies significantly.

Table 3.2: Number of problems correctly answered by GPT-4, LLAMA 3, CLAUDE 3 SON-

NET and GEMINI PRO 1.0.

Platform GPT-4 LLAMA 3 CLAUDE 3 SONNET GEMINI PRO 1.0

LeetCode 50/50 46/50 46/50 45/50

BeeCrowd 28/50 19/50 17/50 17/50

Total 78/100 (78%) 65/100 (65%) 63/100 (63%) 62/100 (55%)

3.3.2 RQ2 What types of errors are most common in the responses gen-

erated by the models?

The LeetCode and BeeCrowd platforms provide an output with the associated error for each

problem that is not solved. Figure 3.2 groups together all the errors recorded by each plat-

form, the main errors are Time Limit Exceeded and Wrong Answer. Time Limit Exceeded

is an error thrown when the submitted solution takes longer than the allowed time to execute

all evaluation tests [11]. On the other hand, Wrong Answer is thrown when the solution does

not produce the expected result for 100% of the test cases.

Additionally, there is also the Runtime Error, thrown in smaller quantities, which con-

cerns defining a vector or array with less capacity than required for the problem, or attempt-

ing to access an invalid memory location. Memory Limit Exceeded is generated when the

code attempts to allocate more memory than the maximum allowed for the problem. This

can occur because a very large vector or data structure is being used [11].

On the LeetCode platform, the model GPT-4 exhibited flawless performance, resulting

in its absence from Figure 3.2 (A). In contrast, the models LLAMA 3, CLAUDE 3 SONNET,

and GEMINI PRO 1.0 primarily encountered the ’Wrong Answer’ error. As illustrated in Fig-

ure 3.2 (B), on the BeeCrowd platform the models GEMINI PRO 1.0, CLAUDE 3 SONNET,

3.3 Research Questions Results 26

Figure 3.2: Types of errors generated by incorrect answers on (A) - LeetCode platform vs

(B) - BeeCrowd platform.

and LLAMA 3 frequently encounter the ’Wrong Answer’ error, indicating that their solu-

tions often fail the test cases. Conversely, GPT-3.5 and GPT-4 predominantly experience

the ’Time Limit Exceeded’ error, suggesting that their incorrect solutions do not complete

within the allotted time for executing test cases.

The range of types of errors exhibited by GPT-4 enforces a diversity of responses offered

by the model. In contrast, most of the incorrect answers provided by GEMINI PRO 1.0,

CLAUDE 3 SONNET and LLAMA 3 share the same error “Wrong answer,” indicating that the

model consistently makes the same type of mistake.

3.3.3 RQ3 How does the performance of LLMs vary across different

programming topics?

The LeetCode and BeeCrowd platforms provide information about the topics covered in each

question, allowing for the assessment of the topics addressed. Tables 3.3 and 3.4 groups

together the main topics addressed in the questions discussed in this study. It is notable that

3.4 Discussion 27

Table 3.3: Number of correct answers per topic on the LeetCode platform.

Topics GPT-4 LLAMA 3 CLAUDE 3 SONNET GEMINI PRO 1.0

Array 17 16 17 16

String 10 9 8 8

Hash Table 6 6 6 6

Linked List 6 5 5 5

Math 6 5 5 5

Tree 3 3 3 3

Backtracking 1 1 1 1

Stack 1 1 1 1

Total 50 (100%) 46 (92%) 46 (92%) 45 (90%)

the LeetCode topics covered are widely recognized in the programming world, including

Array, String, and Math. Some problems also make use of more complex concepts, such as

dynamic programming and recursion. Nevertheless, the models achieved an accuracy rate of

95

The topics covered on BeeCrowd platform are also common in the programming world,

such as Data Structures and Libraries, Math, and Paradigms. The most covered topics are

Ad-hoc and Beginner, categories created by the platform to target problems that do not fit

into other categories and are basic enough for programming beginners [10], respectively.

When examining the topics covered, it is evident that the BeeCrowd platform questions

do not address significantly different or more complex topics compared to the LeetCode

platform questions. This suggests that the lack of appropriate responses from the models

is not due to the topic of the questions, but rather to the formulation of the questions, as

BeeCrowd is a competition-oriented platform and many of its questions are intentionally

written in a complex manner to make the challenge more offensive.

3.4 Discussion

Building upon the findings outlined in the preceding section, this section delves into various

aspects related to the performance of the models. We dig into deeper to identify the diffi-

3.4 Discussion 28

Table 3.4: Number of correct answers per topic on the BeeCrowd platform.

Topics GPT-4 LLAMA 3 CLAUDE 3 SONNET GEMINI PRO 1.0

Ad-hoc 5 2 1 1

Beginner 8 7 7 7

Data Structures and Libraries 5 3 2 3

Graph - - - -

Math 5 3 4 4

Paradigms 2 1 - -

Strings 3 3 3 2

Total 28 (56%) 19 (38%) 17(34%) 17 (34%)

culty levels of the questions that are answered correctly and incorrectly. Furthermore, we

performed a metamorphic test, analyzed the number of attempts required to correctly solve

a question, and explore the implications of utilizing models like GPT-4, GEMINI PRO 1.0,

LLAMA 3 and CLAUDE 3 SONNET for code generation. We also analyze the performance

disparity of these models across the platforms LeetCode and BeeCrowd. Additionally, we

acknowledge the limitations of our study and outline potential directions for future research.

3.4.1 The Number of Attempts Required to Correctly Solve a Question

Given that each problem was allowed a maximum of three attempts, we can analyze the ac-

curacy rate in relation to the number of submissions required for a correct solution. This

evaluation provides insights into the models’ consistency, highlighting how often they gen-

erate correct answers on the first attempt, versus requiring multiple tries to succeed.

LeetCode Questions

Figure 3.3 (A) compares the performance of GPT-4, LLAMA 3, CLAUDE 3 SONNET, and

GEMINI PRO 1.0 in solving problems from LeetCode. The x-axis of the chart represents

the number of attempts made to correctly answer the questions, while the y-axis shows the

number of questions solved correctly. LLAMA 3 and CLAUDE 3 SONNET have identical

performance per attempt, so their lines overlap in the graph.

3.4 Discussion 29

For the LeetCode platform, most problems were solved on the first attempt, with only

about 20% of the problems requiring a second or third attempt. Despite this, a significant

portion of the remaining problems were eventually solved, with GEMINI PRO 1.0 achieving

the highest success rate at 8/13 (61.54%). This highlights the importance of submitting

problems multiple times to LLMs, as their probabilistic nature allows alternative answers

suggested by the model to may be correct.

BeeCrowd Questions

Figure 3.3 (B) compares the performance of GPT-4, LLAMA 3, CLAUDE 3 SONNET, and

GEMINI PRO 1.0 in solving problems from BeeCrowd. The x-axis represents the number of

attempts made to correctly answer questions, while the y-axis shows the number of questions

answered correctly.

In the BeeCrowd results, the models solved less than 50% of the problems on the first

attempt, and their performance on subsequent attempts was also low. In this context, the

model with the highest success rate on remaining attempts was LLAMA 3, achieving a rate

of 8 out of 39 (20.51%). On the other hand, GPT-4 had the lowest success rate, solving

only 3 out of 39 (7.69%). This analysis concludes that, despite the probabilistic nature of the

models, they do not always provide correct answers, regardless of the number of attempts.

3.4.2 Difficulty Levels of the Problems Answered

As shown in Figures 3.4 (A) and (B), GPT-4 exhibited superior problem-solving perfor-

mance across both evaluated platforms. It successfully solved all 50 problems from Leet-

Code and correctly answered 28 out of 50 problems from BeeCrowd, each within a maxi-

mum of three attempts. An analysis of Figure 3.4 (B) for the BeeCrowd platform reveals a

clear trend across all the LLMs examined. As illustrated, problems categorized as Easy were

solved with the highest accuracy, followed by Medium and Hard problems. This pattern

contrasts with the results from LeetCode, where problems across all difficulty levels were

answered correctly.

3.4 Discussion 30

Figure 3.3: Number of correct answers per number of attempts on (A) - LeetCode platform

vs (B) - BeeCrowd platform.

3.4.3 Evaluating Data Leakage on GPT-4

One potential threat to validity when using foundation models is data contamination [86]. To

mitigate this risk, we apply metamorphic testing [5,16] to assess the robustness and reliability

of the models. The GPT-4, GPT-3.5, GEMINI PRO 1.0, CLAUDE 3 SONNET, and LLAMA 3

demonstrate greater efficiency, particularly in solving problems of medium and low complex-

3.4 Discussion 31

Figure 3.4: Number of correct questions by difficulty levels on (A) - LeetCode platform and

(B) - BeeCrowd platform.

3.4 Discussion 32

ity. However, they encounter significant challenges when addressing problems of medium

and high difficulty. The models’ lower-than-expected performance on the BeeCrowd plat-

form can likely be attributed to their training data. It is possible that these models included

data from LeetCode during their training, a globally popular platform, while excluding data

from BeeCrowd, which is less widely recognized internationally.

To investigate further, a Metamorphic Test was conducted using all 50 problems from

BeeCrowd problems to assess whether GPT-4 would maintain its response trend. In this

study, a Metamorphic Test entails modifying the problem descriptions by:

• Substituting certain words with synonyms,

• Replacing verbs,

• Renaming personal nouns or variables,

• Making minor changes without altering the core meaning of the problem.

For example, original phrases like “Calculate the sum of X and Y” were modified to

“Determine the total of A and B”. This ensures that the fundamental problem remains un-

changed, while its linguistic structure is altered. In this example, the words replaced are

shown in Table 3.5. After modifying some words, the reformulated requirement document is

submitted to the LLM for processing. The response generated by GPT-4 is then submitted

to the BeeCrowd platform, and its correctness is recorded for subsequent analysis.

Table 3.5: Example of words changed on metamorphic test.

Word Before Word After

Calculate Determine

X A

Y B

Sum Total

The Metamorphic Test was applied to all 50 BeeCrowd problems using the GPT-4

model. As illustrated in Figure 3.5, the number of correctly solved problems before and

after the metamorphic test is very similar, with a difference of only three problems, and

3.4 Discussion 33

Table 3.6: Transition Matrix with status changes before and after the Metamorphic Test.

From/To Right Wrong

Right 26 2

Wrong 5 17

there is no significant variation in the count by submission attempts. This aligns with the ex-

pected behavior of a probabilistic model, as discussed in Section 3.4.1, where resubmitting

a problem may lead to different outcomes.

Table 3.6 presents the Transition Matrix, comparing the status of problems before and

after the Metamorphic Test, highlighting the number of problems that changed or maintained

their status. In this analysis, 7 problems had their status altered after the Metamorphic Test,

which can be attributed to the probabilistic behavior of the model.

In conclusion, since there were no significant variations in the responses provided by

the model after the Metamorphic Test, we can infer, within this context and for the set of

problems used, that there was no data leakage or contamination between the test data and the

training data.

Figure 3.5: Count of correct answers before and after Metamorphic Test.

3.4 Discussion 34

Table 3.7: Problems released after the cutoff date submitted to GPT-4.

Contest Solved count

Codeforces 940 Div2 (Easy, Medium) 6/9

Atcoder 351 (Easy - Hard) 2/7

Atcoder 353 (Easy - Hard) 2/7

OPI PB 2024 (Easy, Medium) 5/6

Analysing GPT-4 on Contest After the Cutoff Date

To further investigate potential data leakage, problems created after the LLM’s cutoff date

were submitted to GPT-4. Since this data could not have been included in GPT-4’s training

set, it serves as a critical test. Problems were sourced from contests such as Codeforces,

Atcoder, and the Paraíba Informatics Olympiad 2024, covering a range of difficulties from

easy to hard. However, it is important to note that the difficulty level is assigned by the

respective platform. This means that an "Easy" problem on Atcoder may have a significantly

higher difficulty level compared to an “Easy” problem on LeetCode.

As demonstrated in Table 3.7, the GPT-4 model successfully solved 15 out of the 29

newly submitted problems, reflecting a moderate level of performance with fresh problems,

similar to its performance with BeeCrowd problems. This suggests that its performance is

not influenced by data leakage.

3.4.4 Requirement Document Analysis on Not Solved Problems by

GPT-4

A subset of the problems that GPT-4 did not solve was analyzed by an Olympic student to

understand the underlying reasons for their failure. It was determined that the Requirement

Documents for 5 from 13 unsolved problems were ambiguous or incomplete. Figure 3.6

illustrates a problem involving the management of an airport’s flight queue. Initially, the

description ambiguously suggests that flights from the West should be queued first, followed

by those from the North, South, and East. However, the examples clarify that the correct

approach is to queue one flight from each region in sequence. To clarify this for GPT-4, a

sentence was added to the Requirement Document: “[...] To create the queue, take one flight

3.4 Discussion 35

Problem Flying Control

Description

[...] In order to organize the flow of airplanes from an airport [...], the planes that come

from the West side have a higher priority of being placed in the takeoff or landing

queue [...]. Airplanes coming from the North and South side must be inserted in row

1 at a time. And finally, the airplanes coming from the East side.

Input

The entrance consists of an integer P , representing the cardinal point of the plane

(−4 ≤ P ≤ −1), where (−4 is East, −3 is North, −2 is South, and −1 is West). Then

the planes are entered [...].

Output

The exit consists of a line containing the aircraft lined up in the order.

Examples
Input Sample 1 Input Sample 2

-4 A1 A26 A38 A23 -4 A12 A33

-1 A80 A40 -3 A8 A33

Output Sample 1 Output Sample 2

A80 A1 A40 A26 A38 A23 A8 A12 A33 A33
Note

For example, the boys can divide the watermelon into two parts of 2 and 6 kilos

respectively (another variant — two parts of 4 and 4 kilos).

Figure 3.6: Example of a problem with ambiguous Requirement Document.

from each direction in the following order: west, north, south, and east [...].” With such

adjustments, 4 out of the 5 problematic cases were resolved.

Enhancing the clarity of the Requirement Document to reduce ambiguity does not guar-

antee that a problem will be correctly solved. However, a key insight is that unsolved prob-

lems, particularly those classified as Easy or Medium, may often stem from ambiguous or

incomplete Requirement Documents. Such cases warrant further investigation to improve

problem comprehension and solution accuracy.

3.5 Threats to Validity 36

3.5 Threats to Validity

The study on the performance of LLMs like GPT-4, GEMINI PRO 1.0, LLAMA 3 and

CLAUDE 3 SONNET in generating code from natural language descriptions, while illumi-

nating, faces some threats to its validity. These threats can be categorized into internal and

external validity threats, alongside construct and conclusion validity concerns:

3.5.1 Internal Validity

Problem Selection Bias: The programming problems selected from platforms like LeetCode

and BeeCrowd might not cover all possible types of programming challenges, or may favor

certain problem-solving paradigms. This could skew the evaluation towards models that

perform better on these specific types of problem.

Formatting Loss: The problems were submitted in a textual form, meaning the text

was copied from the platform and pasted into the prompt of the evaluated LLM. Therefore,

formatting loss may occur. To ensure consistency, the author preserved the original structure

and format of the problem as presented on the platform, making an effort not to add or

remove any line break.

Evaluation Criteria: Regarding the assessments of submissions, we assume that the

platform’s answers are correct. This approach is based on the widespread use of these plat-

forms by various developers. Any failure or error in the correction of questions would likely

be identified and reported by the community, allowing for timely correction of these issues.

Comparison Between Test Data and Training Data: The lower performance on

BeeCrowd may be due to data extraction restrictions on the site, raising doubts about model’s

access for training. In contrast, LeetCode has no such restrictions, supported by Gemini Pro’s

behavior citing LeetCode as references in its answers. To address this threat to validity, the

Session 3.4.3 was held to identify data leakage in GPT-4.

Complexity of Problem Requirement Documents: A notable observation is that many

unsolved problems originate from the BeeCrowd platform, which exhibits a higher com-

plexity level in its problem statements compared to LeetCode platform. To prevent this,

we addressed many different topics of problems, as well as different levels from different

platforms.

3.5 Threats to Validity 37

3.5.2 External Validity

Generalization to Real-world Programming: The programming problems used in the

study might not accurately reflect the complexity and diversity of real-world programming

tasks. Thus, the models’ performance in this controlled setting may not directly translate to

effectiveness in practical coding scenarios.

Evolution of Models: These AI models are rapidly evolving, with newer versions being

released frequently. The findings may quickly become outdated, limiting the generalization

of the study’s conclusions over time.

3.5.3 Construct Validity

Evaluation of Correctness: How correctness is defined and measured in solving program-

ming problems can significantly affect the outcomes. How our metric for success does not

comprehensively capture the quality of the code generated in terms of efficiency, readability,

or adherence to best practices, it may not accurately reflect the models’ true capabilities.

Difficulty Level Misclassification Threat Another threat arises from the misclassifica-

tion of difficulty levels between different platforms. In the study, problems from various

platforms such as LeetCode, Atcoder, Codeforces, and BeeCrowd were included, each with

its own system of classifying difficulty. An “easy” problem in one platform might correspond

to a "medium" or even "hard" problem on another platform, as difficulty classification is sub-

jective and context-dependent. If the difficulty levels are not appropriately accounted for or

standardized, the model’s performance could be misinterpreted, thereby affecting the con-

struct validity. In order to mitigate this, the study carefully selected a wide range of problems

from different platforms, including Codeforces, Atcoder, and BeeCrowd, covering multiple

difficulty levels (easy, medium, and hard). This broad selection aimed to provide a balanced

representation of problems from each platform, ensuring that the model’s performance could

be evaluated across various levels of complexity.

Chapter 4

Automated Evaluation of Small

Language Models: Findings and

Discussion

In this chapter, we outline the methodology, results, and discussions of our study on SLMs,

conducted using a dataset of 280 problems from Codeforces. Section 4.1 describes the

methodology employed in the study. Section 4.2 presents the objectives of our evaluation,

including the research questions and the performance metrics used to assess the models.

Section 4.3 summarizes the key results, while Section 4.4 offers a detailed analysis and dis-

cussion of the findings.

4.1 Methodology

This section outlines the methodology employed to develop the work and accomplish the set

objectives. It is organized into several subsections: Platforms Selection (Section 4.1.1), Prob-

lems Selection (Section 4.1.2), Small Language Models Selection (Section 4.1.3), Prompt

Design (Section 4.1.4), Experiment Setup (Section 4.1.5), Pilot Study (Section 4.1.6), and

Experiment Phases (Section 4.1.7).

38

4.1 Methodology 39

4.1.1 Platforms Selection

The Codeforces platform was chosen for this study due to its reputation as a prominent

repository of programming problems, commonly used to sharpen coding skills, compete in

contests, and prepare for job interviews. It offers a diverse set of problems that mirror real-

world challenges encountered by companies, with tasks that are challenging enough to rig-

orously assess the capabilities of Language Models. Recent research [27] has also leveraged

Codeforces problems to evaluate language models, as competitive programming is widely

regarded as a robust benchmark for testing both reasoning and coding proficiency [14].

4.1.2 Problems Selection

The automated evaluation aims to systematically assess the accuracy of SLMs, such as PHI-4

14B, LLAMA 3.2 3B, GEMMA 2 9B and DEEPSEEK-R1 14B, by evaluating their perfor-

mance on 280 programming problems sourced from Codeforces API. Codeforces categorizes

problem difficulty using an ELO-based rating system, ranging from 800 to 3000+. Given

the relatively small size of these models and the inherent difficulty of Codeforces problems

across rating levels, we carefully selected 20 problems from ratings 800 to 2100, prioritizing

those with the highest number of successful submissions based on the solved count met-

ric. This approach ensures a balanced and representative evaluation across varying difficulty

levels. The problems used for this analysis were selected on Dec/15/2024.

These problems exhibit a broad range of token counts, as shown in Figure 4.1, with

document requirements varying from 149 to 1,117 tokens. However, most requirements fall

within the 227–459 token range. Additionally, these problems span a wide range of topics,

as illustrated by the tag distribution in Figure 4.2, which highlights the 20 most frequently

occurring topics. Since most problems are associated with multiple topics, the total tag

count exceeds the number of problems. Notably, the “implementation” tag appears most

frequently, as it encompasses problems where the core idea is straightforward, but the actual

coding can be challenging. According to the Codeforces community, such problems often

involve lengthy code, a higher likelihood of bugs, and numerous off-by-one errors [21].

4.1 Methodology 40

Figure 4.1: Distribution of Token Counts in Requirement Documents.

Figure 4.2: Problem Tag Distribution by Frequency.

4.1 Methodology 41

4.1.3 Small Language Models Selection

The SLMs selected for evaluation in this study were chosen based on their performance

and impact in the AI field. We utilized tools such as LLM Arena [6], a crowdsourced open

platform for LM evaluations, to guide our selection based on their rankings. Additionally, we

aimed to include one LM from different companies and architecture to ensure representation

across different developers.

The small models selected for this study are LLAMA 3.2 3B [67], GEMMA 2 9B [33],

PHI-4 14B [68] and DEEPSEEK-R1 14B [38], all of which are well-known language mod-

els suitable for tasks such as code generation, refactoring, and debugging, as outlined in

Table 4.1. These models, with varying parameter sizes and context windows, are designed

for use in tasks like automated code generation, refactoring, and debugging [1, 38, 66, 79].

Table 4.1: Overview of SLMs: Settings, Parameters, and Release Information.

Model Name Company
Number of

Parameters

Context

Window
Cutoff Date Release Date

LLAMA 3.2 3B Meta 3B 128K December 2023 September 2024

GEMMA 2 9B Google 9B 8k - June 2024

PHI-4 14B Microsoft 14B 16K June 2024 December 2024

DEEPSEEK-R1 14B DeepSeek 14B 128K - January 2025

4.1.4 Prompt Design

To enhance the accuracy of problem-solving, we structured the prompt to include essen-

tial contextual information. This encompasses details about the persona, guidelines for ap-

proaching the solution, the designated programming language (Python), and a description of

the problem statement format. These elements, combined with the problem statement itself,

provide a comprehensive foundation to guide the problem-solving process effectively.

You are a highly skilled competitive programmer with 15 years of experience in the field.

Your objective is to analyze the following problem statement and to produce a Python

code solution that adheres to the requirements.

Guidelines for the solution: deliver only the Python code; Ensure the solution reads in-

put via standard input and produces outputs results via standard output; If the solution

4.1 Methodology 42

requires defining a function, ensure it is executed within the code; Avoid adding explana-

tions, comments, or unnecessary text.

The Problem Statement includes a detailed description, input and output format, and ex-

amples to clarify requirements.

{Problem Statement}

4.1.5 Experiment Setup

The automated evaluation of SLMs was designed using problems from Codeforces to assess

the performance of the PHI-4 14B, LLAMA 3.2 3B, GEMMA 2 9B and DEEPSEEK-R1

14B models. Although Codeforces offers an API for retrieving information about available

problems, it does not provide full access to problem statements or allow direct submission of

solutions. To overcome this limitation, we developed an automated tool using SeleniumBase

to extract problem statements directly from the Codeforces platform and submit the gener-

ated code through the platform’s interface. The dataset was curated in December 2024, with

problems selected based on the number of solutions submitted. According to Codeforces’

terms of use [18], web scraping is not prohibited.

To ensure a fair and consistent evaluation of the models, all executions were performed

locally using the Ollama framework [75] in Python, running on an NVIDIA GeForce RTX

3060 GPU with 12GB of VRAM (February 2025). This hardware configuration was cho-

sen to balance accessibility with computational efficiency. Each model was initialized by

specifying its name and base URL, adhering to the default configurations provided by the

LangChain Ollama API [55]. This approach ensures uniformity in execution settings, mini-

mizing variability introduced by different model configurations or custom tuning.

Ollama was used to run the models locally, while SeleniumBase handled the automated

retrieval of Codeforces problem statements and submission of solutions. Specifically, each

problem was tested three times for each model, and the resulting code solutions were con-

solidated into a single CSV file. These solutions were then automatically submitted to Code-

forces for correctness evaluation, and the returned verdicts were captured in a second CSV

file. Together, these two CSV files formed the backbone of the exploratory data analysis.

This entire process, including the extraction of problem statements, the generation of

solutions by the SLM, and the evaluation of the correctness on the Codeforces platform, was

4.1 Methodology 43

fully automated. A schematic overview is provided in Figure 4.3.

Figure 4.3: Setup of Automated Evaluation of SLMs.

4.1.6 Pilot Study

To refine the process of extracting problem statements, submitting solutions, and interacting

with Codeforces, we conducted a step-by-step experiment using a sample of 10 problems

out of the 280 selected on LLAMA 3.2 3B. During this experiment, we observed that the

problem statements extracted from the platform sometimes contained descriptive terms for

mathematical symbols, such as “le” for “≤” and “ge” for “≥”. Since our goal was to main-

tain the integrity of the statements exactly as they appeared on Codeforces, we implemented

a correction mechanism to automatically replace these textual representations with the ap-

propriate mathematical symbols.

4.1.7 Experiment Phases

Building on the insights gained from the pilot experiment, the automated tool was scaled up

to handle 280 problems, with 20 problems selected from each rating level. Additionally, three

more models, PHI-4 14B, GEMMA 2 9B and DEEPSEEK-R1 14B, were incorporated into

the evaluation process. This expanded phase aimed to systematically assess the performance

4.2 Definition 44

of smaller models across a diverse set of problem difficulties. The experiment focused on key

performance metrics such as accuracy and problem-solving consistency. Due to submission

constraints on Codeforces, the experiment was organized by rating levels for each model,

allowing for a structured and efficient testing approach.

4.2 Definition

In this section, we define the objective of our study using the GQM (Goal, Question, Met-

ric) method [13]. Our goal is to evaluate SLMs, including PHI-4 14B, LLAMA 3.2 3B,

GEMMA 2 9B and DEEPSEEK-R1 14B in solving programming problems sourced from

Codeforces platform, with the purpose of raising implications of its use in the daily routine

of programmers, regarding the correctness of the generated answers, from the perspective

of researchers, in the context of automatic code generation.

Therefore, this study aims to provide insights into the practical implications of using

SLMs in programmers’ daily workflows, with a focus on solution correctness. To achieve

this, we formulate and investigate three key research questions (RQs).

RQ4 To what extent SLMs as PHI-4 14B, LLAMA 3.2 3B and GEMMA 2 9B can an-

swer programming assignments?

To answer this question, the correct and incorrect responses provided by the Code-

forces platform will be counted.

RQ5 What types of errors are most common in the responses generated by the SLMs?

To address this question, we will examine and categorize the most frequent failures

encountered in model outputs, including syntactic issues, logical missteps, and failures

to satisfy problem constraints.

RQ6 How does the performance of SLMs vary across different programming topics?

This question aims to assess the effectiveness of SLMs across a diverse set of program-

ming topics, including graph algorithms, dynamic programming, sorting, and string

manipulation. By analyzing performance variations, we can identify strengths and

weaknesses in the models’ problem-solving capabilities across different algorithmic

domains.

4.3 Research Questions Results 45

4.3 Research Questions Results

In this chapter, we present the results obtained in the automated study carried out with 280

problems from Codeforces. The problems were analyzed with a main focus on the perfor-

mance of the models.

4.3.1 RQ4: To what extent SLMs as PHI-4 14B, LLAMA 3.2 3B,

GEMMA 2 9B and DEEPSEEK-R1 14B can answer programming

assignments?

In order to evaluate the model’s answers to programming assignments, we selected 280

Codeforces problems spanning difficulty levels from 800 to 2100, with 20 problems at each

level. To evaluate the model’s performance, we employ the pass@k metric [14], which is

widely used in evaluating code generated by models to quantify the probability that, among

k solutions generated for a problem, at least one is correct. Because each problem was

submitted to the model three times, we will present the performance metrics for pass@1,

pass@2, and pass@3.

Table 4.2: LLAMA 3.2 3B, GEMMA 2 9B, PHI-4 14B and DEEPSEEK-R1 14B evaluations

for Codeforces problems.

pass@k

Model pass@1 pass@2 pass@3

LLAMA 3.2 3B 6.4% 10.4% 11.1%

GEMMA 2 9B 8.9% 10.0% 10.4%

DEEPSEEK-R1 14B 17.5% 22.9% 23.9%

PHI-4 14B 48.9% 58.6% 63.6%

According to Table 4.2, larger models such as PHI-4 14B and DEEPSEEK-R1 14B

demonstrate significantly superior performance in solving programming problems. PHI-4

14B stands out as the best option, achieving an accuracy rate nearly three times higher than

that of the second-place model, DEEPSEEK-R1 14B. The latter ranks second, with 17.50%

in pass@1 and 23.93% in pass@3, outperforming the smaller models but still falling well

4.3 Research Questions Results 46

behind PHI-4 14B. Meanwhile, GEMMA 2 9B and LLAMA 3.2 3B show similar perfor-

mance, both with accuracy rates below 11% in pass@3, suggesting that smaller models may

not be suitable for handling complex programming tasks.

4.3.2 RQ5: What types of errors are most common in the responses

generated by the SLMs?

Figure 4.4: Percentage of submissions that resulted in an error, across 840 total submissions

(280 problems, each submitted three times).

In this section, we examine the different types of errors that arise when the SLM fails to

correctly solve a problem on the Codeforces platform. Codeforces evaluates each submis-

sion against a set of test cases and provides detailed feedback whenever a solution does not

pass all tests. Common errors include wrong answers, Time Limit Exceeded (TLE), Memory

Limit Exceeded (MLE), or runtime errors, each indicating a specific category of failure. By

analyzing these messages, we gain insights into where the solution approach breaks down

and how frequently each type of error occurs. Figure 4.4 offers a visual breakdown of the

most prevalent errors, helping us understand patterns in unsuccessful submissions and guid-

ing subsequent improvements to the SLM’s performance.

As shown in the bar chart, Wrong Answer appears most often and happens when a so-

lution fails to match the expected output for all test cases. The second most common issue

is Runtime Error, which often results from using arrays or vectors with insufficient size or

accessing invalid memory. Time Limit Exceeded and Memory Limit Exceeded also appear

frequently, occurring when solutions run longer or use more memory than Codeforces al-

lows.

4.3 Research Questions Results 47

The DEEPSEEK-R1 14B model is the only one that shows a “Not Answered” cate-

gory because it often provides only a reasoning process without a final code solution. This

happened in 35.5% of its submissions, which we classify as “Not Answered”. In addition,

DEEPSEEK-R1 14B frequently encountered compilation issues, with 16.4% of its responses

resulting in a Compilation Error, as illustrated in the chart.

4.3.3 RQ6: How does the performance of SLMs vary across different

programming topics?

In this subsection, we examine the topics covered by the programming problems included in

our study. Codeforces assigns one or more topic tags to each problem (e.g., “math,” “greedy,”

“data structure”), making it easier to identify key concepts and skills tested. This tagging

system provides valuable insight into which areas were most commonly addressed and helps

us understand the range of problem-solving techniques the solution language models had to

employ.

Table 4.3 lists the Top 10 most prevalent topics among the problems analyzed, alongside

the percentage of questions successfully solved in each category. By focusing on these high-

frequency topics, we gain a clearer picture of where the models excel and where further

improvements may be needed.

PHI-4 14B (Phi) consistently performs better than the other three models, achieving

noticeably higher success rates across every topic. This superiority is especially pronounced

in categories such as Implementation, Math and Greedy, where even the second-best model

falls significantly behind. Another key observation is that Strings appear to be a relatively

strong suit for all models, though PHI-4 14B still outperforms the others.

In contrast, certain topics like Data Structures reveal clear weaknesses in the smaller

models. Neither LLAMA 3.2 3B (Lla) nor GEMMA 2 9B (Gem) manage any success there,

while DEEPSEEK-R1 14B (DS) has limited, but non-zero, proficiency. Similarly, the Con-

structive Algorithms category remains challenging: Gem shows a modest edge over DS, yet

both lag well behind PHI-4 14B. These patterns indicate that while model size and training

strategies may offer advantages (as seen with DEEPSEEK-R1 14B and PHI-4 14B), more

targeted refinements are needed for complex problem-solving topics.

4.4 Discussion 48

Table 4.3: Performance of LLAMA 3.2 3B (Lla), GEMMA 2 9B (Gem), PHI-4 14B (Phi),

and DEEPSEEK-R1 14B (DS) on the Top 10 topics in the selected Codeforces problems.

Topics Lla Gem DS Phi

Implementation 12.1% 15.8% 29.7% 67.0%

Math 5.4% 6.2% 11.2% 50.8%

Greedy 5.8% 4.0% 8.4% 51.1%

Brute Force 8.7% 8.7% 16.7% 50.0%

Sortings 3.5% 2.6% 12.3% 57.0%

Strings 27.6% 32.2% 39.1% 65.5%

Binary Search 0.0% 1.7% 6.8% 41.0%

Constructive

Algorithms
1.0% 4.0% 4.0% 38.4%

Dynamic

Programming
1.6% 2.1% 5.3% 32.1%

Data

Structures
0.0% 0.0% 5.7% 28.4%

4.4 Discussion

Building upon the findings outlined in the preceding section, this section delves into various

aspects related to the performance of the models. We investigate the self-consistency of each

model and delve deeper to identify the difficulty levels of questions answered correctly and

incorrectly. Furthermore, we analyzed the code proposed of each model to indicate the kind

of code structures used and showcase how far a small mode can propose a complex model.

We also analyzed the count of tests passed of the incorrect responses to indicate how far the

response was from being correct.

4.4.1 Self-consistency of Small Language Models for Code Generation

In Section 4.3.1, we analyzed the rate of solved problems by SLMs using pass@k, a widely

adopted metric in code generation evaluation. pass@k quantifies the probability that, among

4.4 Discussion 49

k generated solutions for a given problem, at least one is correct. While this metric provides

insight into a model’s accuracy across multiple attempts, it does not capture how consistently

a model produces correct solutions across multiple submissions for the same problem.

To address this, we introduce the concept of consistency in solved problem rates. Since

each problem is submitted three times, we analyze how many of the solved problems have at

least two correct solutions out of those three attempts. Wang et al. and Xiong et al. [104,109]

define consistency based on the equivalence of final answers, a criterion that is inadequate for

open-ended tasks like code generation. Given that each problem was submitted three times,

it is crucial to assess how consistently a model produces correct solutions across multiple

attempts. To address this, we introduce Semantic Consistency (SC), which measures the

proportion of problems for which a model generates at least 50% correct submissions out of

three attempts, regardless of variations in syntax or implementation.

We define Semantic Consistency as follows:

Semantic

Consistency
=

(
Nproblems with ≥50% of correct submissions

Nsolved problems

)
× 100%

This metric provides a deeper understanding of model reliability, capturing the stability

of correct responses across multiple submissions. By evaluating semantic consistency, we

gain insights into how robust a model is in generating correct solutions consistently, rather

than relying on a single correct response among multiple attempts.

Table 4.4 presents pass@3 and Semantic Consistency (SC), highlighting how reliably

models generate repeatable correct solutions among the problems they successfully solved.

All models exhibit high consistency, with SC values exceeding 60%, meaning that when

a model solves a problem once, it is likely to solve it correctly multiple times. GEMMA

2 9B (86.2%) and PHI-4 14B (77.5%) show the strongest consistency, indicating that an

overwhelming majority of their solved problems were correctly answered at least twice.

DEEPSEEK-R1 14B (64.2%) and LLAMA 3.2 3B (61.3%) also maintain a moderate rate of

repeatability, reinforcing their reliability in generating stable solutions.

These results emphasize that while pass@3 measures accuracy across all problems, Se-

mantic Consistency, when analyzed within solved problems, shows that models tend to be

stable and not merely generating correct answers by chance. Even models with lower accu-

4.4 Discussion 50

Table 4.4: Comparison of pass@3 and Semantic Consistency, with an analysis of model

consistency.

Models pass@3 SC
Consistency

Analysis

LLAMA 3.2 3B 11.1% 61.3%

Moderate consistent.

A problem is correctly solved

repeated in 61.3% of cases.

GEMMA 2 9B 10.4% 86.2%

Highly consistent.

Among solved problems, 86.2%

were correctly repeated.

DEEPSEEK-R1 14B 23.9% 64.2%

Moderate consistent.

Once a problem is solved, it is

answered correctly again

in 64.2% of cases.

PHI-4 14B 63.6% 77.5%

Highly consistent.

Nearly 77.5% of solved problems

were answered correctly

more than once.

racy, like LLAMA 3.2 3B and GEMMA 2 9B, still demonstrate a moderate ability to repeat

correct answers when they do solve a problem.

4.4.2 Rating Levels of the Problems Answered

In Codeforces, problem difficulty is indicated by an ELO-based rating system, which starts

around 800 for beginner-friendly questions and extends well beyond 3000 for expert-level

challenges. In this study, we focused on ratings up to 2100, selecting 20 problems from

each rating level. We set 2100 as the cutoff because this already represents a high level of

difficulty, where problem-solving becomes significantly more challenging. Additionally, the

overall success rate across models was low at this stage, making it a natural stopping point

for our experiment.

Figure 4.5 reveals that PHI-4 14B consistently outperforms all other models across every

4.4 Discussion 51

Figure 4.5: Performance of SLMs on Codeforces problems across difficulty levels. The x-

axis represents problem difficulty levels (ratings from 800 to 2100), while the y-axis indicates

the number of problems correctly solved out of 20 per level.

rating level considered. However, there is a clear downward trend in the number of solved

problems as the difficulty rating increases, a pattern shared by all the small models. This ob-

servation underscores both the relative strengths of each SLM at lower to mid-range ratings

and the significant challenges they encounter as problem complexity grows.

Each SLM demonstrates a unique range of problem-solving capabilities, aligning with

broader performance trends. LLAMA 3.2 3B primarily succeeds in solving problems within

the 800–1000 rating range, though it also manages to solve one problem each from the 1300,

1500, and 1700 levels. GEMMA 2 9B, on the other hand, covers a slightly broader spec-

trum, effectively handling problems rated 800–1200. However, its performance declines

beyond this range, with only a single problem from the 1600 level being successfully solved.

DEEPSEEK-R1 14B effectively solves problems within the 800–1500 rating range, demon-

strating a steady problem-solving capability up to this level. PHI-4 14B, in contrast, exhibits

the widest coverage, successfully addressing problems rated 800 through 2001. However, its

performance declines sharply beyond the 1500 threshold, suggesting that while it is capable

of solving higher-rated problems, its success rate decreases significantly as problem difficulty

increases. This pattern highlights PHI-4 14B’s ability to tackle a broad range of challenges,

albeit with diminishing consistency at more advanced levels. Consequently, our assessment

highlights both the distinct strengths of each model at lower to mid-range ratings and the

4.4 Discussion 52

challenges they face as problems become increasingly complex.

4.4.3 Costs

Running language models locally using Ollama can incur costs that depend largely on the

type of GPU and the duration of its operation. In our study, we executed experiments on

an NVIDIA GeForce RTX 3060 with 12GB VRAM, which has a TDP of approximately

170W [22]. We submitted 280 problems three times for each language model, totaling 840

submissions. The processing times varied considerably among the models: LLAMA 3.2 3B

and GEMMA 2 9B each completed their runs in 0.5 hours, PHI-4 14B took 6 hours, and

DEEPSEEK-R1 14B required 72 hours.

Considering the GPU’s power consumption and an average energy rate of $0.1/kWh in

Paraíba - Brazil [89], the estimated energy costs were approximately $0.01 for LLAMA 3.2

3B and GEMMA 2 9B, $0.1 for PHI-4 14B, and $1.2 for DEEPSEEK-R1 14B. These results

not only illustrate the significant impact of model complexity on execution time, but also

emphasize the feasibility of incorporating such models into everyday engineering workflows.

4.4.4 Analyzing the number of passed tests on unsolved problems on

PHI-4 14B Model

Since the PHI-4 14B model has solved the most problems, we aim to analyze the problems

it failed to solve in order to understand how close the model was to solving these challenges.

The Codeforces API provides a field called “Passed Test Count,” which indicates the number

of tests passed by the solution. Figure 4.6 illustrates the number of tests passed by the

proposed solution of the model for those problems it did not fully solve. This analysis

helps to assess the model’s performance and provides insights into its potential for solving

unsolved problems in the future.

As previously mentioned, each problem was submitted three times, and we classify a

submission as Incorrect if it fails to achieve at least two correct answers out of three attempts.

The graph reveals a striking trend: a significant portion of the unsolved problems failed

within the first test case. A deeper analysis of the data shows that, out of 306 incorrect

submissions, 252 failed on the very first test case. This is particularly concerning, as the

4.4 Discussion 53

Figure 4.6: Number of Tests Passed in Incorrect Submissions vs Rating on Model PHI-4

14B.

4.4 Discussion 54

initial test case is typically designed to mirror the problem statement’s example, ensuring

that even basic logic is correctly implemented.

On the other hand, there are cases where the model successfully passes a significant

number of test cases but still fails to solve the problem completely. For instance, in problem

“Checkposts” with rating 1700, which contains 137 test cases, the model managed to pass

70 before encountering a Runtime Error on test 71. This suggests that the generated solution

covered a wide range of scenarios, but wasn’t robust enough to fully solve the problem.

Another example is problem “Two Substrings” with rating 1500, where the model passed

34 out of 84 test cases before failing on test 35 with Wrong Answer. Interestingly, the model

attempted three different submissions: one correct solution, one that reached 34 passed tests,

and another that succeeded in just 7 cases. This indicates that while the model can be capable

of generating solutions that perform well across multiple scenarios, it may still struggle with

edge cases, ultimately leading to an incorrect classification.

4.4.5 Code Analysis of PHI-4 14B’s Solutions

Since PHI-4 14B successfully solved most of the problems, we conducted an in-depth anal-

ysis of its generated code to identify the structures and commands it commonly employs as

solutions. To achieve this, we used Python’s Abstract Syntax Tree (AST) to systematically

parse and quantify the occurrence of different syntactic constructs. This approach allows

us to uncover patterns in the model’s coding style and gain a deeper understanding of how

PHI-4 14B structures its solutions. By examining these structural tendencies, we can assess

the model’s ability to write modular, efficient, and idiomatic Python code.

The analysis of the code structures used by the PHI-4 14B model is shown in Table 4.5

and it reveals a pattern strongly based on conditional control structures and iterative loops.

The predominant use of “if” (628 occurrences) and “else” (250 occurrences) indicates that

the model makes decisions based on logical checks, which is expected in problems involv-

ing multiple input cases. Additionally, the presence of 57 occurrences of “elif” reinforces

the idea that many solutions require more complex branching, going beyond simple binary

conditions. This suggests that the model adopts a structured approach to handling different

scenarios within a problem.

The significant number of “for” loops (452 occurrences), along with a considerable

4.4 Discussion 55

amount of “while” loops (82 occurrences), demonstrates that the PHI-4 14B model makes

extensive use of iterative structures to process data, execute repetitive operations, and nav-

igate through collections. The dominance of for loops over while loops indicates that the

solved problems generally involve iterations over known sequences (such as lists and dic-

tionaries) rather than loops based on undefined conditions. This pattern is common in tasks

involving list processing.

Regarding data structures, a moderate use of lists (193 occurrences) and dictionaries (28

occurrences) is observed, with a significantly lower frequency of sets (5 occurrences). This

suggests that the model favors ordered and indexable structures, rather than sets, which are

more suited for operations based on uniqueness. The considerable number of list compre-

hensions (55 occurrences) also indicates that the model is capable of producing more concise

and efficient code in some situations, avoiding explicit loops when appropriate.

Finally, the analysis of function declarations and imports shows that the model structures

its code in a modular manner. The presence of 330 function definitions (def) highlights

the organization of the code into reusable components, which is essential for solving more

complex problems. Additionally, the use of imports (import and from ... import) in 204

occurrences suggests that the model frequently relies on external libraries to solve problems,

which may indicate an efficient approach by leveraging pre-existing functionalities, such

as numerical or string manipulation. This demonstrates that PHI-4 14B not only writes

functional code but also employs good practices in modularity and code reuse.

4.4.6 Evaluating PHI-4 14B after Cutoff Date

Since the PHI-4 14B model has a cutoff date of June 2024, we selected a set of six problems

released on Codeforces after this date to evaluate its performance. As these problems could

not have been included in GPT-4’s training data, they serve as a crucial benchmark for as-

sessing the model’s ability to generalize to unseen challenges. The selected problems were

published in Codeforces contests held between August 2024 and February 2025. Because

these problems are newly posted, their ELO ratings may not yet accurately reflect their true

difficulty. To mitigate this uncertainty, we specifically chose the first problem from each con-

test, as these are typically the most attempted. The selected contests span difficulty divisions

ranging from Div4 to Div2.

4.4 Discussion 56

Table 4.5: Code Structure Count of PHI-4 14B’s Solutions.

Code Structure Usage Count

lambdas 4

sets 5

from_import_statements 26

dictionaries 28

list_comprehensions 55

elif_statements 57

while_loops 82

import_statements 178

lists 193

return_statements 195

else_statements 250

functions 330

for_loops 452

if_statements 628

Table 4.6: Evaluation of Problems Released after the Cutoff date of PHI-4 14B.

Number of Correct Answers PHI-4 14B Problems Divs

3 Correct Answers 2 Div4

2 Correct Answers 2 Div4, Div2

1 Correct Answer 0 -

0 Correct Answer 2 Div3, Div4

As shown in Table 4.6, the PHI-4 14B model demonstrated strong performance on Div4

problems, successfully solving all test cases in two instances and partially solving two others

(2 correct answers). This suggests that the model effectively handles introductory challenges.

Additionally, its ability to achieve 2 correct answers on a Div2 problem indicates potential

for tackling more advanced tasks, though it still struggles to comprehensively address all test

cases.

Conversely, the model failed entirely on two problems from Div3 and Div4, highlighting

4.5 Threats to Validity 57

its limitations even at intermediate difficulty levels. This pattern suggests that while PHI-4

14B can reliably solve straightforward problems, its robustness diminishes as complexity

increases.

4.5 Threats to Validity

The study on the performance of Small Language Models like LLAMA 3.2 3B, PHI-4 14B,

DEEPSEEK-R1 14B and GEMMA 2 9B in generating code from natural language descrip-

tions, while illuminating, faces some threats to its validity. These threats can be categorized

into internal and external validity threats, alongside construct and conclusion validity con-

cerns:

4.5.1 Internal Validity

Problem Selection Bias: The programming problems selected from Codeforces might not

cover all possible types of programming challenges, or may favor certain problem-solving

paradigms. This could skew the evaluation towards models that perform better on these

specific types of problem.

Formatting Loss: The problems were submitted in a textual form, meaning the text was

extracted from the platform and submitted into SLM. Therefore, formatting loss may occur.

To ensure consistency, the author preserved the original structure and format of the problem

as presented on the platform, making an effort not to add or remove any line break.

Evaluation Criteria: Regarding the assessments of submissions, we assume that the

platform’s answers are correct. This approach is based on the widespread use of the platform

by various developers. Any failure or error in the correction of questions would likely be

identified and reported by the community, allowing for timely correction of these issues.

Success Criteria: Due to the probabilistic nature of the models, a correct answer may

be generated by chance in one of the three submissions, which could introduce bias into

the results. To mitigate this, the success criterion is defined as self-consistency—requiring

that the model correctly solves at least two out of three attempts, ensuring more reliable

performance evaluation.

Complexity of Problem Requirement Documents: A notable observation is that many

4.5 Threats to Validity 58

problems originate from the Codeforces platform, which exhibits a higher complexity level

in its problem statements. To prevent this, we addressed many different topics of problems,

as well as different levels of problems.

4.5.2 External Validity

Generalization to Real-world Programming: The programming problems used in the

study might not accurately reflect the complexity and diversity of real-world programming

tasks. Thus, the models’ performance in this controlled setting may not directly translate to

effectiveness in practical coding scenarios.

Evolution of Models: These Small Language Models are rapidly evolving, with newer

versions being released frequently. The findings may quickly become outdated, limiting the

generalization of the study’s conclusions over time.

4.5.3 Construct Validity

Evaluation of Correctness: How correctness is defined and measured in solving program-

ming problems can significantly affect the outcomes. How our metric for success does not

comprehensively capture the quality of the code generated in terms of efficiency, readability,

or adherence to best practices, it may not accurately reflect the models’ true capabilities.

Chapter 5

Related work

The evaluation of LLMs’ coding capabilities has been conducted through different ap-

proaches. The first approach establishes benchmarks using datasets specifically designed

to measure the performance of LLMs, such as HumanEval, MBPP, APPS. The second ap-

proach utilizes coding competition and practice platforms like LeetCode and BeeCrowd to

directly test these capabilities [43].

Table 5.1 lists the main studies that evaluate LLMs in generating code from natural lan-

guage. This table summarizes the key topics covered in these works, including the LLMs

evaluated, the dataset used for testing, the programming language of the generated code,

count of multiple attempts at problem submission, the usage of agentic approach, usage of

metamorphic testing, and the small fix on requirement document.

The most cited models are GPT-3.5, Codex, GPT-J, GPT-4, and a variety of specialized

models like CodeBERT, GraphCodeBERT, and AlphaCode-C. The tests are conducted with

different datasets such as HumanEval, LeetCode, and CodeXGLUE, which include compet-

itive programming problems and coding challenges in various languages like Python and

Java. The research varies in terms of the number of tasks, attempts, and prompt styles used,

providing a comprehensive view of the effectiveness of LLMs in automated code production.

Additionally, the table highlights the lack of metamorphic testing, an essential technique

for evaluating the robustness and consistency of the models. None of the approaches men-

tioned use modifications to the requirements documents (RDs) to test the models’ ability to

adapt in different scenarios or fine-tune during execution, which may limit the generalization

and accuracy of the models in real-world situations. Most of the studies also do not adopt an

59

60

Table 5.1: Summary of related work on LLMs coding generation task from natural language.

Pa
pe

r
Ye

ar
Te

st
in

g
D

at
as

et
L

L
M

s
C

od
e

G
en

er
at

ed

L
an

gu
ag

e
#T

as
ks

#P
ro

m
pt

St
yl

e
#A

tt
em

pt
s

M
et

am
or

ph
ic

Te
st

Sm
al

lF
ix

on
R

D
A

ge
nt

ic
A

pr
oa

ch
R

eq
ui

re
m

en
tD

oc
um

en
tL

an
gu

ag
e

[1
4]

20
21

H
um

an
E

va
l

G
PT

-3
,C

od
ex

,G
PT

-J
Py

th
on

16
4

1
10

0
×

×
×

E
ng

lis
h

[1
17

]
20

22
C

od
eX

G
L

U
E

C
od

eB
E

R
T,

G
ra

ph
C

od
eB

E
R

T,

C
on

tr
aC

od
e,

C
od

eG
PT

,C
od

eT
5,

C
od

eT
ra

ns
,C

oT
ex

T,
PL

B
A

R
T

Ja
va

20
00

1
5

×
×

×
E

ng
lis

h

[1
10

]
20

22
H

um
an

E
va

l
C

od
ex

,G
PT

-J
,G

PT
-N

eo
,

C
od

eP
ar

ro
t,

Po
ly

C
od

er
Py

th
on

16
4

1
10

0
×

×
×

E
ng

lis
h

[8
7]

20
23

H
um

an
E

va
l,

M
B

PP

G
P

T-
4,

C
od

ex
,R

efl
ex

io
n,

Pa
rs

el
,

M
et

aG
PT

,C
O

D
E

-T
,C

O
D

E
-T

-I
te

r,

L
E

V
E

R
+

C
od

ex
,R

ev
ie

w
er

+
C

od
ex

00
2,

M
B

R
-E

xe
c,

A
lp

ha
C

od
e-

C

Py
th

on
66

4
3

1
×

×
×

E
ng

lis
h

[9
3]

20
23

C
us

to
m

iz
ed

da
ta

sc
ie

nc
e

G
PT

-3
.5

Py
th

on
10

1
1

×
×

×
E

ng
lis

h

[8
4]

20
23

C
us

to
m

iz
ed

Ja
va

sc
ri

pt
G

PT
-3

.5
Ja

va
sc

ri
pt

1
1

1
×

×
×

E
ng

lis
h

[8
5]

20
23

C
us

to
m

iz
ed

fr
om

L
ee

tC
od

e
G

PT
-3

.5
-

12
8

1
1

×
×

×
E

ng
lis

h

[6
2]

20
23

C
od

eX
G

lu
e

G
PT

-3
.5

Ja
va

10
0

4
5

×
×

×
E

ng
lis

h

[1
12

]
20

23
A

PP
S

G
PT

-3
.5

Py
th

on
44

85
1

5
×

×
×

E
ng

lis
h

[9
7]

20
23

L
ee

tC
od

e
G

PT
-3

.5
,C

la
ud

e,
Sp

ar
k,

B
in

gA
I

Py
th

on
45

1
1

×
×

×
E

ng
lis

h

[2
]

20
24

H
um

an
E

va
l,

L
ee

tC
od

e,

C
od

ef
or

ce
s

G
P

T-
4,

G
PT

-3
.5

Py
th

on
33

1
1

10
0

×
×

×
E

ng
lis

h

[3
4]

20
24

H
um

an
E

va
l,

M
B

PP
L

L
aM

A
3

Py
th

on
11

38
1

1
×

×
×

E
ng

lis
h

[3
]

20
24

H
um

an
E

va
l,

M
B

PP
,A

PP
S

G
P

T-
4,

C
L

A
U

D
E

3
S

O
N

N
E

T
,G

E
M

IN
I

P
R

O
1.

0,

G
em

in
iU

ltr
a

1.
0,

G
em

in
iP

ro
1.

5
Py

th
on

61
38

1
1

×
×

×
E

ng
lis

h

[9
8]

20
24

H
um

an
E

va
l,

N
at

ur
al

2C
od

e

G
P

T-
4,

G
PT

-3
.5

,

G
em

in
iU

ltr
a

1.
0,

G
em

in
iP

ro
1.

0
Py

th
on

33
9

1
1

×
×

×
E

ng
lis

h

[4
2]

20
24

C
us

to
m

iz
ed

fr
om

L
ee

tC
od

e,

G
ee

ks
fo

rG
ee

ks

G
P

T-
4,

G
PT

-3
.5

,C
la

ud
e

2,
G

em
in

iP
ro

1.
0,

G
em

in
iU

ltr
a

1.
0,

C
od

e
L

la
m

a,
L

la
m

a
2

Py
th

on
11

5
4

5
×

×
×

E
ng

lis
h

[5
0]

20
24

St
ac

k
O

ve
rfl

ow
G

PT
-3

.5
-

51
7

1
1

×
×

×
E

ng
lis

h

[2
6]

20
24

C
la

ss
E

va
l

G
P

T-
4,

G
PT

-3
.5

,W
iz

ar
dC

od
er

,

In
st

ru
ct

-S
ta

rC
od

er
,S

an
ta

C
od

er
,

In
st

ru
ct

-C
od

eG
en

,C
od

eG
ee

X
,

In
C

od
er

,V
ic

un
a,

C
ha

tG
L

M
,P

ol
yC

od
er

Py
th

on
10

0
3

5
×

×
×

E
ng

lis
h

[2
5]

20
24

H
um

an
E

va
l,

M
B

PP
,A

PP
S,

C
od

er
E

va
l

G
P

T-
4,

G
PT

-3
.5

,A
lp

ha
C

od
e,

In
co

de
r,

C
od

eG
ee

X
,S

ta
rC

od
er

,C
od

eG
en

,

Pa
L

M
C

od
er

,C
od

eX
,

C
od

eX
(1

75
B

)+
C

od
eT

,C
od

eL
la

m
a

Py
th

on
18

21
3

1
×

×
✓

E
ng

lis
h

[4
9]

20
24

H
um

an
E

va
l,

H
um

an
E

va
l-

X
,

M
B

PP
-S

an
iti

ze
d,

M
B

PP
-E

T,

H
um

an
E

va
l-

E
T

A
lp

ha
C

od
,I

nc
od

er
,C

od
eG

ee
X

,

C
od

eG
en

-M
on

o,
Pa

L
M

C
od

er
,

co
de

-d
av

in
ci

-0
02

Py
th

on
,J

av
a,

Ja
va

sc
ri

pt
,G

o
14

11
3

10
×

×
✓

E
ng

lis
h

[4
4]

20
24

A
PP

S,
C

od
eF

G
PT

-3
.5

Se
lf

-p
la

nn
in

g,

G
PT

-3
.5

SC
O

T,

G
PT

-3
.5

SC
O

T
&

K
ar

eC
od

er

Py
th

on
20

23
1

10
×

×
✓

E
ng

lis
h

[7
3]

20
24

Pa
rE

va
l

G
P

T-
4,

G
PT

-3
.5

,C
od

eL
la

m
a-

7B
,

C
od

eL
la

m
a-

13
B

,C
od

eL
la

m
a-

34
B

,

St
ar

C
od

er
B

as
e,

Ph
in

d-
C

od
eL

la
m

a-
V

2

C
++

,
42

0
1

20
×

×
×

E
ng

lis
h

[1
07

]
20

24

C
us

to
m

iz
ed

fr
om

de
ve

lo
pm

en
t

te
am

:p
ro

je
ct

gl
os

sa
ry

,v
is

io
n

an
d

sc
op

e,
us

e
ca

se
s

Ta
ilo

re
d

G
PT

-3
.5

Ja
va

1
1

1
×

×
×

E
ng

lis
h

61

agent-based approach, where the model interacts proactively to refine or improve the gener-

ated code based on continuous feedback, which could enhance the efficiency and quality of

the solutions generated.

Finally, the language of the requirements documents in all studies is predominantly En-

glish, reflecting the dominance of the language in LLM research for programming tasks. This

may be a limitation, especially in contexts where technical documentation is not necessarily

in English, or where other programming languages and frameworks are more prevalent. The

use of English as the standard for input data may also affect the applicability of the mod-

els in different software development contexts, raising questions about the adaptability and

transferability of models to other languages and cultures in automated coding.

In their study, Hou and Ji [43] evaluated the performance of LLMs such as GPT-4,

Claude 2, LLaMA 2, GPT-3.5, Gemini Ultra, Gemini Pro, and Code LLaMA in code gen-

eration tasks using competitive programming platforms like LeetCode and GeeksforGeeks,

with problems across three difficulty levels and allowing up to five attempts. The experiment

utilized six different prompt strategies, including main approaches like Repeated Prompt,

where the task is repeatedly presented to the LLM; Multiway Prompt, where five different

solutions are generated; Feedback Prompt, where the error message from the previous at-

tempt is used as input; and Feedback CI Prompt, where GPT-4 evaluates the test cases using

the code interpreter (CI). In contrast, our study evaluates LLMs like GPT-4, CLAUDE 3

SONNET, LLAMA 3, and GEMINI PRO 1.0 on code generation tasks for competitive pro-

gramming platforms such as LeetCode and BeeCrowd, with a maximum of three attempts,

also using problems across three difficulty levels. We employed the Feedback Prompt strat-

egy and expanded upon this research by categorizing the problems, analyzing errors raised

during failed attempts, addressing potential data leakage, making a manual analysis of the

requirement document to rephrase problems that are not solved by ambiguous statement and

publishing the dataset used.

Yan et al. [112] conducted a study to evaluate the performance of ChatGPT (GPT-3.5),

GPT-Neo, CodeRL on code generation from tasks of levels Introductory, Interview and Com-

petition. They used APPS dataset to assess the effectiveness of GPT-3.5, and compared the

solution generated by the LLMs and a ground-truth solution. Besides that, they evaluated the

code quality in terms of “code cleanness”. However, this research employs a prompt strategy

62

that provides the test cases used to evaluate the problems directly to the LLM, which may

result in biased outcomes. Additionally, the researchers do not delve deeply into the cate-

gorization of the problems, nor do they address the issue of data leakage, even though the

dataset used may have been part of GPT-3.5’s training data.

Kabir et al. [50] analyzed GPT-3.5’s responses to 517 Stack Overflow questions to assess

the correctness, consistency, conciseness, and comprehensiveness of the model’s responses

using a manual analysis. The Stack Overflow’s questions used on the study are selected

based on sub-categories such as Conceptual, How-to, Debugging, Popularity and Recency.

This research showed that 52% of them contain incorrect information, 78% are inconsistent

from human answers, 35% lack comprehensiveness, and 77% contain redundant, irrelevant,

or unnecessary information. In contrast to this study, our research utilizes a dataset of com-

petition problems from LeetCode and BeeCrowd, offering a more structured and controlled

approach to analyzing the correctness of the answers provided by the LLMs.

In the work of Sakib et al. [85], is evaluated the code correctness of solutions generated

by GPT-3.5 for LeetCode problems in two attempts. The problems range across three dif-

ficulty levels and address various topics such as Hash Table, Math, Two Pointers, Arrays,

etc. Additionally, is discussed on the study the runtime and memory usage of the solutions

proposed by the LLM. On our study, it was used the same strategy of prompt but using three

attempts to submit the problems, we also expanded upon this research by analyzing errors

raised during failed attempts, addressing potential data leakage, making a manual analysis of

the requirement document to rephrase problems that are not solved by ambiguous statement

and publishing the dataset used.

Dong et al. [25] presents an approach based on agents’ communication. They created a

self-collaboration framework for code generation employing LLMs. In this scenario, mul-

tiple LLM agents act as distinct “experts”, each responsible for a specific subtask within

a complex task, they collaborate and interact, so that different roles form a virtual team to

facilitate each other’s work. As a result, the virtual team addresses code generation tasks

collaboratively without the need for human intervention. Using this methodology, they as-

semble a team consisting of three LLM roles (analyst, coder, and tester) responsible for

software development’s analysis, coding, and testing stages. Experimental results indicate

that self-collaboration code generation relatively improves 29.9–47.1% compared to the base

63

LLM agent.

Another way to explore agentic approach was presented by Jiang et al. [49], they intro-

duced a planning stage into code generation to help the LLM understand complex intent and

reduce the challenges of problem-solving. In their work, it was proposed a self-planning

code generation approach, which consists of two phases, namely planning phase and imple-

mentation phase. Using this method, LLM plans out concise solution steps from the intent

combined with few-shot prompting. Subsequently, in the implementation phase, the model

generates code step by step, guided by the preceding solution steps. Experimental results

show that self-planning code generation achieves a improvement of up to 25.4% compared

to direct code generation, and up to 11.9% compared to Chain-of-Thought of code genera-

tion.

Most of the studies analyze coding generation task on iterative coding tasks, using

datasets like HumanEval or APPS. Going contrary to that, Nichols et al. [73] performed

an experiment to study the capabilities of state-of-the-art language models to generate paral-

lel code. In order to evaluate LLMs, they created a dataset, ParEval, consisting of prompts

that represent 420 different coding tasks related to scientific and parallel computing. In the

paper, they introduced two metrics for evaluating the runtime performance and scaling be-

havior of the generated parallel code. As a result, they found that LLMs are significantly

worse at generating parallel code than they are at generating serial code.

Exploring a different format of input for LLMs, Bingyang Wei’s study [107] presents a

“Progressive Prompting” method that enables software engineers to interact with LLMs in a

stepwise, iterative manner. This approach allows the LLM to process comprehensive project

files, including glossaries, scope, and use cases, as input. Through Progressive Prompting,

the LLM progressively addresses software development tasks, starting with interpreting the

provided requirements to identify functional requirements. It then uses these requirements

to create object-oriented models, followed by generating unit tests and code based on the

developed designs. This study highlights the potential of integrating LLMs into the software

development workflow, significantly improving both efficiency and quality.

Chapter 6

Conclusions

In this work, we conduct an in-depth analysis of the performance of several prominent LLMs

such as GPT-4, GEMINI PRO 1.0, LLAMA 3, and CLAUDE 3 SONNET in generating code

for programming challenges sourced from platforms like LeetCode and BeeCrowd. Addi-

tionally, we examine the performance of smaller LMs, including LLAMA 3.2 3B, GEMMA

2 9B, DEEPSEEK-R1 14B and PHI-4 14B, through an automated approach, with a particu-

lar emphasis on code generation tasks sourced from the Codeforces platform. This analysis

sheds light on the practical potential and advancements of Language Model technologies,

emphasizing their evolving role and influence in the field of Software Engineering.

In the analysis of Large Language Models, GPT-4 stands out with superior performance,

achieving a 78% accuracy rate in providing correct responses. In contrast, the other models

perform below 71% in terms of accuracy. The study also highlights a significant disparity

in the models’ ability to tackle problems from LeetCode and BeeCrowd platforms. Specif-

ically, while 95% of the problems from LeetCode are answered correctly, only 31% of the

BeeCrowd problems yield correct solutions. Despite demonstrating strong performance on

LeetCode, this stark contrast emphasizes the models’ weaknesses on BeeCrowd, indicating

areas in code generation that require further refinement.

The observed discrepancy in accuracy between the platforms can be attributed to the

distinct nature of their problem requirements. BeeCrowd’s challenges are often designed

for competitive programming scenarios, incorporating narrative elements with fictional and

playful components. These challenges are intentionally crafted with a level of ambiguity,

adding complexity and requiring the models to navigate through unclear or creatively con-

64

65

structed contexts. On the other hand, LeetCode’s problems are typically characterized by

straightforward, precise instructions, with a strong emphasis on assessing specific technical

skills. The absence of unnecessary complexity in LeetCode problems allows for more direct

evaluation, which likely contributes to the models’ higher success rate on this platform.

The GPT-4 model achieved 100% accuracy on problems from the LeetCode platform,

which is why no errors were recorded for this model. For the other models, across both Leet-

Code and BeeCrowd, the most frequently encountered error was “Wrong Answer” indicating

that the generated code failed to pass all test cases.

On the BeeCrowd platform, which exhibited a higher overall number of errors, additional

frequent issues emerged, such as “Time Limit Exceeded,” where the code exceeded the al-

lowed execution time, followed by “Runtime Error,” indicating failures during execution due

to factors like memory access violations or division by zero.

Regarding problem difficulty, the analyzed models exhibit a clear trend in their perfor-

mance on the BeeCrowd platform. Easy problems have the highest success rate, followed

by medium, with hard problems being the least correctly solved. However, this pattern con-

trasts with the results from LeetCode, where the models were able to correctly solve prob-

lems across all difficulty levels, demonstrating a more consistent performance regardless of

complexity.

For the Small Language Models, the evaluation was conducted using problems from the

Codeforces platform. Among the evaluated models, PHI-4 14B displayed superior perfor-

mance, successfully solving 49% of the submitted problems, including more challenging

tasks with ratings as high as 2000. In contrast, the smaller models, GEMMA 2 9B and

LLAMA 3.2 3B, showed significantly lower performance, with correct solutions for only 8%

of the problems. The LLAMA 3.2 3B model’s solutions were mostly limited to problems

with ratings ranging from 800 to 900, while GEMMA 2 9B managed to solve problems with

ratings up to 1300. This highlights the varying degrees of capability among these models,

with PHI-4 14B excelling at more complex problems, while the smaller models demon-

strated a more constrained range of successful problem-solving.

For smaller models, the most frequently encountered error across all three analyzed mod-

els is “Wrong Answer” indicating that the generated solution fails to pass all test cases. This

is followed by “Runtime Error” which often stems from issues such as defining an array

6.1 Implications of Utilizing LLMs for Code Generation 66

with insufficient capacity or attempting to access an invalid memory location, highlighting

potential weaknesses in memory management and problem constraints handling.

It is important to note that Codeforces problems are typically designed for competitive

programming, often with greater complexity and intricacy. Despite these challenges, this

analysis aims to provide insights into how different sizes of small models perform in han-

dling such problems, showcasing the varied capabilities of these models in a demanding

competitive environment.

For the Codeforces problems, we use the ELO rating system to determine difficulty lev-

els. A clear trend emerges across all three analyzed small models: as the problem rating

increases, the number of correct solutions declines. This drop becomes particularly steep

beyond the 1500 rating, where PHI-4 14B’s success rate falls from 11 correct solutions to

just 4, with no recovery beyond that point.

Our analysis highlights significant performance disparities among LLMs in code genera-

tion tasks across different platforms. GPT-4 demonstrated outstanding accuracy, particularly

on LeetCode, while other models struggled, especially with BeeCrowd problems, which

feature greater ambiguity and complexity. Among SLMs, PHI-4 14B showed the high-

est success rate, particularly in handling more challenging Codeforces problems, whereas

the smaller models, GEMMA 2 9B and LLAMA 3.2 3B, exhibited limited problem-solving

capabilities. Additionally, a consistent trend was observed across all models: as problem

difficulty increased, accuracy declined, with error patterns revealing critical areas for im-

provement, such as handling edge cases, optimizing execution time, and improving memory

management. These findings emphasize the evolving strengths and limitations of current

LLMs in software engineering tasks, underscoring the need for further advancements in

model robustness and adaptability.

6.1 Implications of Utilizing LLMs for Code Generation

The utilization of LLMs such as GPT-4, GEMINI PRO 1.0, LLAMA 3, CLAUDE 3 SONNET

in software engineering can offer several advantages but also comes with cons. For software

engineers, these models can be advantageous as they can assist in code generation, provide

solutions to programming problems, and speed up some aspects of software development.

6.2 Study Limitations and Future Directions 67

However, as evidenced, all the models do not achieve 100% accuracy, so programmers

should not see them as substitutes. They may not always produce accurate or optimal code,

and there could be challenges related to code quality, performance optimization, and security

considerations. Software engineers should not rely solely on LLM-generated code but rather

use it as a supplement to their expertise and judgment.

For students, there is the advantage of having an assistant to explain content and clarify

doubts, but there are also disadvantages, as the models evaluated here may provide incorrect

answers and the student may not be equipped to detect the error.

In summary, while LLMs can be valuable tools in software engineering for tasks such

as code generation and problem-solving, software engineers must approach their usage with

caution and critical thinking to evaluate the generated response and not use it without proper

testing.

6.2 Study Limitations and Future Directions

Despite revolutionizing the code generation landscape and delivering impressive perfor-

mance across a variety of tasks, LMs still face significant challenges that limit their ap-

plicability in real-world software development. Many of these limitations arise from the dis-

connect between academic benchmarks and practical coding environments. While models

tend to perform well on controlled datasets, their effectiveness often declines in production

settings due to factors such as ambiguous problem descriptions, computational constraints,

and the lack of deeper contextual reasoning. Overcoming these challenges requires advances

in model robustness, improved handling of edge cases, and better alignment with industry

requirements to ensure reliable and maintainable code in realistic development scenarios.

A key direction for addressing this gap lies in expanding the scope of code generation be-

yond isolated function-level tasks to repository- and system-level challenges. In day-to-day

development, programmers frequently face a broad spectrum of complex problems involv-

ing interdependent modules, architectural constraints, and domain-specific logic [58, 118].

Although LMs have shown notable success in generating self-contained code snippets, they

continue to struggle with unseen problems that demand cross-file reasoning and high-level

design decisions. Tackling such scenarios requires language models to evolve into more

6.2 Study Limitations and Future Directions 68

capable problem solvers, able to reason not only about algorithms, but also about code orga-

nization, scalability, and long-term maintainability.

As a continuation of this research, we conducted a deeper evaluation focused on SLMs,

published in a follow-up study [91]. This work benchmarked five open SLMs on a di-

verse set of Codeforces problems, extending the analysis to include multi-language exper-

iments and qualitative error inspections. Building on these insights, future work will ex-

plore the use of agent-based workflows with SLMs. Recent studies have demonstrated the

effectiveness of such approaches in tasks like test smell detection and automated refactor-

ing [65], suggesting that multi-agent collaboration could enhance the reasoning capabilities

of SLMs—particularly when tackling complex, multistep programming challenges in com-

petitive and professional environments.

Bibliography

[1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya

Gunasekar, Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann,

et al. Phi-4 technical report. arXiv preprint arXiv:2412.08905, 2024.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anad-

kat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[3] Anthropic. The Claude 3 Model Family: Opus, Son-

net, Haiku. https://paperswithcode.com/paper/

the-claude-3-model-family-opus-sonnet-haiku, 2024. Accessed

on: March 10, 2025.

[4] Appinventiv. How much does it cost to hire software developers? https://

appinventiv.com/blog/hire-software-developer/, 2024. Accessed

on: March 10, 2025.

[5] Leonhard Applis, Annibale Panichella, and Ruben Marang. Searching for quality: Ge-

netic algorithms and metamorphic testing for software engineering ML. In Proceed-

ings Of The Genetic And Evolutionary Computation Conference, pages 1490–1498,

2023.

[6] LLM arena. LMSYS chatbot arena leaderboard. https://lmarena.ai/, 2024.

Accessed on: March 10, 2025.

[7] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski,

David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program syn-

thesis with large language models. arXiv preprint arXiv:2108.07732, 2021.

69

https://paperswithcode.com/paper/the-claude-3-model-family-opus-sonnet-haiku
https://paperswithcode.com/paper/the-claude-3-model-family-opus-sonnet-haiku
https://appinventiv.com/blog/hire-software-developer/
https://appinventiv.com/blog/hire-software-developer/
https://lmarena.ai/

BIBLIOGRAPHY 70

[8] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for mt evaluation

with improved correlation with human judgments. In Proceedings of the acl workshop

on intrinsic and extrinsic evaluation measures for machine translation and/or summa-

rization, pages 65–72, 2005.

[9] BeeCrowd. BeeCrowd platform. https://BeeCrowd.com.br/, 2024. Ac-

cessed on: March 10, 2025.

[10] BeeCrowd. Categories from BeeCrowd platform. https://www.beecrowd.

com.br/judge/en/categories, 2024. Accessed on: March 10, 2025.

[11] BeeCrowd. FAQS Judge - BeeCrowd. https://www.beecrowd.com.br/

judge/en/faqs, 2024. Accessed on: March 10, 2025.

[12] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. Journal of machine learning research, 3(Feb):1137–

1155, 2003.

[13] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question metric

approach. Encyclopedia of software engineering, pages 528–532, 1994.

[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-

man, et al. Evaluating Large Language Models trained on code. arXiv preprint

arXiv:2107.03374, 2021.

[15] Stanley F Chen, Douglas Beeferman, and Roni Rosenfeld. Evaluation metrics for

language models. Journal contribution, 1998.

[16] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,

and Zhi Quan Zhou. Metamorphic testing: A review of challenges and opportunities.

ACM Computing Surveys (CSUR), 51(1):1–27, 2018.

[17] Codeforces. Codeforces platform. https://codeforces.com/, 2024. Ac-

cessed on: March 10, 2025.

https://BeeCrowd.com.br/
https://www.beecrowd.com.br/judge/en/categories
https://www.beecrowd.com.br/judge/en/categories
https://www.beecrowd.com.br/judge/en/faqs
https://www.beecrowd.com.br/judge/en/faqs
https://codeforces.com/

BIBLIOGRAPHY 71

[18] Codeforces. Terms of Use of Codeforces. https://codeforces.com/terms,

2024. Accessed on: March 10, 2025.

[19] CodingScape. The Most Powerful Large Language Mod-

els (LLMs) in 2023. https://codingscape.com/blog/

most-powerful-llms-large-language-models, 2023. Accessed

on: March 10, 2025.

[20] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. Natural language processing (almost) from scratch. arXiv preprint

arXiv:1103.0398, 2011.

[21] Codeforces Community. Implementation Tag meaning. https://codeforces.

com/blog/entry/100832, 2022. Accessed on: March 10, 2025.

[22] NVIDIA Corporation. Geforce RTX 3060 e RTX 3060 Ti. https:

//www.nvidia.com/pt-br/geforce/graphics-cards/30-series/

rtx-3060-3060ti/, 2025. Accessed on: March 10, 2025.

[23] Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy chal-

lenges of large language models: A survey. ACM Computing Surveys, 57(6):1–39,

2025.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 conference of the North American chapter of the association for

computational linguistics: human language technologies, volume 1 (long and short

papers), pages 4171–4186, 2019.

[25] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via

ChatGPT. ACM Transactions on Software Engineering and Methodology, 33(7):1–38,

2024.

[26] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Ji-

ayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models

https://codeforces.com/terms
https://codingscape.com/blog/most-powerful-llms-large-language-models
https://codingscape.com/blog/most-powerful-llms-large-language-models
https://codeforces.com/blog/entry/100832
https://codeforces.com/blog/entry/100832
https://www.nvidia.com/pt-br/geforce/graphics-cards/30-series/rtx-3060-3060ti/
https://www.nvidia.com/pt-br/geforce/graphics-cards/30-series/rtx-3060-3060ti/
https://www.nvidia.com/pt-br/geforce/graphics-cards/30-series/rtx-3060-3060ti/

BIBLIOGRAPHY 72

in class-level code generation. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering, pages 1–13, 2024.

[27] Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaev, Daniel Selsam,

David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki,

et al. Competitive programming with large reasoning models. arXiv preprint

arXiv:2502.06807, 2025.

[28] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. CodeBERT: A pre-trained model

for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[29] Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[30] William A Gale and Geoffrey Sampson. Good-turing frequency estimation without

tears. Journal of quantitative linguistics, 2(3):217–237, 1995.

[31] Jianfeng Gao and Chin-Yew Lin. Introduction to the special issue on statistical lan-

guage modeling, 2004.

[32] Gartner. Gartner forecasts worldwide it spending to grow 7.5% in 2024.

https://www.gartner.com/en/newsroom/press-releases/

2024-07-16-gartner-forecasts-worldwide-it-spending-\

protect\penalty\z@to-grow-7-point-5-percent-in-2024, 2024.

Accessed on: March 10, 2025.

[33] Google. Gemma 2:9B. https://ollama.com/library/gemma2, 2024. Ac-

cessed on: March 10, 2025.

[34] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek

Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex

Vaughan, et al. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[35] Cordell Green. Theorem proving by resolution as a basis for question-answering

systems. Machine intelligence, 4:183–205, 1969.

https://www.gartner.com/en/newsroom/press-releases/2024-07-16-gartner-forecasts-worldwide-it-spending-\protect \penalty \z@ to-grow-7-point-5-percent-in-2024
https://www.gartner.com/en/newsroom/press-releases/2024-07-16-gartner-forecasts-worldwide-it-spending-\protect \penalty \z@ to-grow-7-point-5-percent-in-2024
https://www.gartner.com/en/newsroom/press-releases/2024-07-16-gartner-forecasts-worldwide-it-spending-\protect \penalty \z@ to-grow-7-point-5-percent-in-2024
https://ollama.com/library/gemma2

BIBLIOGRAPHY 73

[36] Sumit Gulwani. Automating string processing in spreadsheets using input-output ex-

amples. ACM Sigplan Notices, 46(1):317–330, 2011.

[37] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foun-

dations and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[38] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qi-

hao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reason-

ing capability in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948,

2025.

[39] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan

Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding

challenge competence with APPs. arXiv preprint arXiv:2105.09938, 2021.

[40] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric

Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving

with the math dataset. arXiv preprint arXiv:2103.03874, 2021.

[41] Robert M Hierons, Kirill Bogdanov, Jonathan P Bowen, Rance Cleaveland, John Der-

rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause,

et al. Using formal specifications to support testing. ACM Computing Surveys (CSUR),

41(2):1–76, 2009.

[42] Wenpin Hou and Zhicheng Ji. A systematic evaluation of large language models for

generating programming code. arXiv e-prints, pages arXiv–2403, 2024.

[43] Wenpin Hou and Zhicheng Ji. Comparing large language models and human program-

mers for generating programming code. Advanced Science, 12(8):2412279, 2025.

[44] Tao Huang, Zhihong Sun, Zhi Jin, Ge Li, and Chen Lyu. Knowledge-aware code

generation with large language models. In Proceedings of the 32nd IEEE/ACM Inter-

national Conference on Program Comprehension, pages 52–63, 2024.

[45] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida

Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holis-

BIBLIOGRAPHY 74

tic and contamination free evaluation of large language models for code. arXiv

preprint arXiv:2403.07974, 2024.

[46] Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a

measure of the difficulty of speech recognition tasks. The Journal of the Acoustical

Society of America, 62(S1):S63–S63, 1977.

[47] JetBrains. The state of developer ecosystem 2024. https://www.jetbrains.

com/lp/devecosystem-data-playground, 2024. Accessed on: March 10,

2025.

[48] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on

Large Language Models for code generation. arXiv preprint arXiv:2406.00515, 2024.

[49] Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin,

and Wenpin Jiao. Self-planning code generation with Large Language Models. ACM

Transactions on Software Engineering and Methodology, 33(7):1–30, 2024.

[50] Samia Kabir, David N Udo-Imeh, Bonan Kou, and Tianyi Zhang. Is stack overflow

obsolete? an empirical study of the characteristics of ChatGPT answers to Stack Over-

flow questions. In Proceedings of the 2024 CHI Conference on Human Factors in

Computing Systems, pages 1–17, 2024.

[51] Katikapalli Subramanyam Kalyan. A survey of GPT-3 family large language models

including ChatGPT and GPT-4. Natural Language Processing Journal, 6:100048,

2024.

[52] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws

for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[53] Slava Katz. Estimation of probabilities from sparse data for the language model com-

ponent of a speech recognizer. IEEE transactions on acoustics, speech, and signal

processing, 35(3):400–401, 2003.

https://www.jetbrains.com/lp/devecosystem-data-playground
https://www.jetbrains.com/lp/devecosystem-data-playground

BIBLIOGRAPHY 75

[54] Stefan Kombrink, Tomas Mikolov, Martin Karafiát, and Lukás Burget. Recurrent

neural network based language modeling in meeting recognition. In Interspeech, vol-

ume 11, pages 2877–2880, 2011.

[55] LangChain API. Ollama LLM. https://api.python.langchain.com/en/

latest/ollama/llms/langchain_ollama.llms.OllamaLLM.html,

2025. Accessed on: March 10, 2025.

[56] Leetcode. Leetcode platform. https://leetcode.com/, 2024. Accessed on:

March 10, 2025.

[57] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-

to-sequence pre-training for natural language generation, translation, and comprehen-

sion. arXiv preprint arXiv:1910.13461, 2019.

[58] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi

Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al.

Competition-level code generation with AlphaCode. Science, 378(6624):1092–1097,

2022.

[59] Yujia Li, Yoonho Choi, Junyoung Wang, Vikranth Mehta, Maarten Bosma, Ivo Dani-

helka, Edward Grefenstette, Jakub Tomczak, and Oriol Vinyals. Competition-Level

Code Generation with AlphaCode. arXiv preprint arXiv:2203.07814, 2022.

[60] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out, pages 74–81, 2004.

[61] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Se-

nior, Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation.

arXiv preprint arXiv:1603.06744, 2016.

[62] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang,

and Meng Yan. Improving ChatGPT prompt for code generation. arXiv preprint

arXiv:2305.08360, 2023.

https://api.python.langchain.com/en/latest/ollama/llms/langchain_ollama.llms.OllamaLLM.html
https://api.python.langchain.com/en/latest/ollama/llms/langchain_ollama.llms.OllamaLLM.html
https://leetcode.com/

BIBLIOGRAPHY 76

[63] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code

generated by ChatGPT really correct? rigorous evaluation of large language models

for code generation. Advances in Neural Information Processing Systems, 36:21558–

21572, 2023.

[64] Michael R Lyu, Baishakhi Ray, Abhik Roychoudhury, Shin Hwei Tan, and Patanamon

Thongtanunam. Automatic programming: Large language models and beyond. ACM

Transactions on Software Engineering and Methodology, 2024.

[65] Rian Melo, Pedro Simões, Rohit Gheyi, Marcelo d’Amorim, Márcio Ribeiro, Gustavo

Soares, Eduardo Almeida, and Elvys Soares. Agentic SLMs: Hunting Down Test

Smells. arXiv preprint arXiv:2504.07277, 2025.

[66] Meta. Llama 3.2: Revolutionizing edge AI and vision with open, customizable mod-

els, 2024. Accessed on: March 10, 2025.

[67] Meta. Llama 3.2:3B. https://ollama.com/library/llama3.2, 2024. Ac-

cessed on: March 10, 2025.

[68] Microsoft. Phi-4:14B. https://ollama.com/library/phi4:14b, 2024.

Accessed on: March 10, 2025.

[69] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[70] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-

pur. Recurrent neural network based language model. In Interspeech, pages 1045–

1048. Makuhari, 2010.

[71] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. Advances in neural

information processing systems, 26, 2013.

[72] Raghav Mittal. What is an ELO Rating? https://medium.com/

purple-theory/what-is-elo-rating-c4eb7a9061e0, 2020. Accessed

on: March 10, 2025.

https://ollama.com/library/llama3.2
https://ollama.com/library/phi4:14b
https://medium.com/purple-theory/what-is-elo-rating-c4eb7a9061e0
https://medium.com/purple-theory/what-is-elo-rating-c4eb7a9061e0

BIBLIOGRAPHY 77

[73] Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav Bhatele.

Can large language models write parallel code? In Proceedings of the 33rd Interna-

tional Symposium on High-Performance Parallel and Distributed Computing, pages

281–294, 2024.

[74] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando

Solar-Lezama. Is self-repair a silver bullet for code generation? arXiv preprint

arXiv:2306.09896, 2023.

[75] Ollama. Ollama LLMs. https://ollama.com/, 2024. Accessed on: March 10,

2025.

[76] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[77] Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-

Wei Chang. Retrieval augmented code generation and summarization. arXiv preprint

arXiv:2108.11601, 2021.

[78] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-

moyer. Deep contextualized word representations. In Proceedings of the 2018 Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, NAACL-HLT 2018, pages 2227–2237, New Orleans,

Louisiana, USA, June 2018. Association for Computational Linguistics.

[79] PromptHackers. Comparison of gemma 2:9b vs llama 3.2:3b, 2025. Accessed on:

March 10, 2025.

[80] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code

generation and semantic parsing. arXiv preprint arXiv:1704.07535, 2017.

[81] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,

2019.

https://ollama.com/

BIBLIOGRAPHY 78

[82] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan,

Ming Zhou, Ambrosio Blanco, and Shuai Ma. CodeBLEU: a method for automatic

evaluation of code synthesis. arXiv preprint arXiv:2009.10297, 2020.

[83] Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go

from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[84] Ahmed R Sadik, Antonello Ceravola, Frank Joublin, and Jibesh Patra. Analysis of

ChatGPT on source code. arXiv preprint arXiv:2306.00597, 2023.

[85] Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM Rezaul Karim. Extending the

frontier of ChatGPT: Code generation and debugging. In 2024 International Confer-

ence on Electrical, Computer and Energy Technologies (ICECET, pages 1–6. IEEE,

2024.

[86] June Sallou, Thomas Durieux, and Annibale Panichella. Breaking the silence: the

threats of using LLMs in software engineering. In Proceedings of the 2024 ACM/IEEE

44th International Conference on Software Engineering: New Ideas and Emerging

Results, pages 102–106, 2024.

[87] Jiho Shin, Clark Tang, Tahmineh Mohati, Maleknaz Nayebi, Song Wang, and

Hadi Hemmati. Prompt engineering or fine tuning: An empirical assessment of

large language models in automated software engineering tasks. arXiv preprint

arXiv:2310.10508, 2023.

[88] Craig Smith. What Large Models Cost You—There Is No Free AI Lunch, 2023.

Accessed on: March 10, 2025.

[89] Portal Solar. Ranking of the most expensive energy tariffs in Brazil in

2024. https://www.portalsolar.com.br/noticias/mercado/

consumidor/confira-o-ranking-das-tarifas-de-energia-\

protect\penalty\z@mais-caras-do-brasil-em-2024, 2024. Ac-

cessed on: March 10, 2025.

https://www.portalsolar.com.br/noticias/mercado/consumidor/confira-o-ranking-das-tarifas-de-energia-\protect \penalty \z@ mais-caras-do-brasil-em-2024
https://www.portalsolar.com.br/noticias/mercado/consumidor/confira-o-ranking-das-tarifas-de-energia-\protect \penalty \z@ mais-caras-do-brasil-em-2024
https://www.portalsolar.com.br/noticias/mercado/consumidor/confira-o-ranking-das-tarifas-de-energia-\protect \penalty \z@ mais-caras-do-brasil-em-2024

BIBLIOGRAPHY 79

[90] Débora Souza. Comparing Gemini Pro and GPT-3.5 in algorithmic problems. In Com-

panion Proceedings of the 32nd ACM International Conference on the Foundations of

Software Engineering, pages 698–700, 2024.

[91] Débora Souza, Rohit Gheyi, Lucas Albuquerque, Gustavo Soares, and Márcio

Ribeiro. Code Generation with Small Language Models: A Deep Evaluation on Code-

forces. arXiv preprint arXiv:2504.07343, 2025.

[92] Débora Souza and Rohit Gheyi. Case study: using ChatGPT to solve programming

problems. In Extended Proceedings of the XIV Brazilian Software Conference: Theory

and Practice, pages 80–89, Porto Alegre, RS, Brazil, 2023. SBC. Awarded 1st place

at CTIC 2023.

[93] Giriprasad Sridhara, Sourav Mazumdar, et al. ChatGPT: A study on its utility for

ubiquitous software engineering tasks. arXiv preprint arXiv:2305.16837, 2023.

[94] Nature Editorial Staff. The hidden costs of AI: Why large models are more expensive

than they seem, 2025. Accessed on: March 10, 2025.

[95] Wired Staff. Generative AI and climate change are on a collision course, 2024. Ac-

cessed on: March 10, 2025.

[96] Andreas Stolcke. Srilm-an extensible language modeling toolkit. In Interspeech,

2002.

[97] Haoran Su, Jun Ai, Dan Yu, and Hong Zhang. An evaluation method for large lan-

guage models’ code generation capability. In 2023 10th International Conference on

Dependable Systems and Their Applications (DSA), pages 831–838. IEEE, 2023.

[98] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu,

Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,

et al. Gemini: a family of highly capable multimodal models. arXiv preprint

arXiv:2312.11805, 2023.

[99] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy

Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari,

BIBLIOGRAPHY 80

Alexandre Ramé, et al. Gemma 2: Improving open language models at a practical

size, 2024. URL https://arxiv. org/abs/2408.00118, 1(3), 2024.

[100] Alan M Turing. Computing machinery and intelligence. Mind, LIX(236):433–460,

1950.

[101] Uptech. Software development costs: All factors explained. https://www.

uptech.team/blog/software-development-costs, 2024. Accessed on:

March 10, 2025.

[102] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[103] Richard J Waldinger and Richard CT Lee. PROW: A step toward automatic program

writing. In Proceedings of the 1st international joint conference on Artificial intelli-

gence, pages 241–252, 1969.

[104] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought

reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

[105] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware

unified pre-trained encoder-decoder models for code understanding and generation.

arXiv preprint arXiv:2109.00859, 2021.

[106] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. Synthesizing database pro-

grams for schema refactoring. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 286–300, 2019.

[107] Bingyang Wei. Requirements are all you need: From requirements to code with

LLMs. In 2024 IEEE 32nd International Requirements Engineering Conference (RE),

pages 416–422. IEEE, 2024.

[108] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,

Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abil-

ities of large language models. arXiv preprint arXiv:2206.07682, 2022.

https://www.uptech.team/blog/software-development-costs
https://www.uptech.team/blog/software-development-costs

BIBLIOGRAPHY 81

[109] Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi.

Can LLMs express their uncertainty? an empirical evaluation of confidence elicitation

in LLMs. arXiv preprint arXiv:2306.13063, 2023.

[110] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic

evaluation of large language models of code. In Proceedings of the 6th ACM SIGPLAN

international symposium on machine programming, pages 1–10, 2022.

[111] Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig.

Incorporating external knowledge through pre-training for natural language to code

generation. arXiv preprint arXiv:2004.09015, 2020.

[112] Dapeng Yan, Zhipeng Gao, and Zhiming Liu. A closer look at different difficulty lev-

els code generation abilities of ChatGPT. In 2023 38th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE), pages 1887–1898. IEEE, 2023.

[113] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose

code generation. arXiv preprint arXiv:1704.01696, 2017.

[114] Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syn-

tax parser for semantic parsing and code generation. arXiv preprint arXiv:1810.02720,

2018.

[115] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang,

Ying Li, Qianxiang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code

generation with generative pre-trained models. In Proceedings of the 46th IEEE/ACM

International Conference on Software Engineering, pages 1–12, 2024.

[116] Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji

Wang, and Jian-Guang Lou. Large language models meet NL2Code: A survey. arXiv

preprint arXiv:2212.09420, 2022.

[117] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Lingming

Zhang. An extensive study on pre-trained models for program understanding and

generation. In Proceedings of the 31st ACM SIGSOFT international symposium on

software testing and analysis, pages 39–51, 2022.

BIBLIOGRAPHY 82

[118] Jialu Zhang, De Li, John Charles Kolesar, Hanyuan Shi, and Ruzica Piskac. Auto-

mated feedback generation for competition-level code. In Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering, pages 1–

13, 2022.

[119] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large

language models. arXiv preprint arXiv:2303.18223, 1(2), 2023.

	Introduction
	Problem
	Motivating Example
	Solution
	Evaluation
	Conclusions
	Summary of contributions
	Organization

	Background
	Introduction to Language Models
	The Evolution of Language Models
	Large versus Small Language Models

	Code Generation Techniques
	Deductive Code Generation
	Inductive Code Generation
	Natural Language-based Code Generation
	Language Models for Code Generation

	Evaluation of Language Models Code Generated
	Evaluation Strategies
	Code Generation Benchmarks

	Manual Evaluation of Large Language Models (LLMs)
	Methodology
	Platforms Selection
	Problems Selection
	Large Language Models Selection
	Prompt Design
	Experiment Setup
	Pilot Study
	Experiment Phases

	Definition
	Research Questions Results
	RQ1: To what extent LLMs as GPT-4, Llama 3, Claude 3 Sonnet, Gemini Pro 1.0 can answer programming assignments?
	RQ2 What types of errors are most common in the responses generated by the models?
	RQ3 How does the performance of LLMs vary across different programming topics?

	Discussion
	The Number of Attempts Required to Correctly Solve a Question
	Difficulty Levels of the Problems Answered
	Evaluating Data Leakage on GPT-4
	Requirement Document Analysis on Not Solved Problems by GPT-4

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Automated Evaluation of Small Language Models: Findings and Discussion
	Methodology
	Platforms Selection
	Problems Selection
	Small Language Models Selection
	Prompt Design
	Experiment Setup
	Pilot Study
	Experiment Phases

	Definition
	Research Questions Results
	RQ4: To what extent SLMs as Phi-4 14B, Llama 3.2 3B, Gemma 2 9B and DeepSeek-R1 14B can answer programming assignments?
	RQ5: What types of errors are most common in the responses generated by the SLMs?
	RQ6: How does the performance of SLMs vary across different programming topics?

	Discussion
	Self-consistency of Small Language Models for Code Generation
	Rating Levels of the Problems Answered
	Costs
	Analyzing the number of passed tests on unsolved problems on Phi-4 14B Model
	Code Analysis of Phi-4 14B's Solutions
	Evaluating Phi-4 14B after Cutoff Date

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related work
	Conclusions
	Implications of Utilizing LLMs for Code Generation
	Study Limitations and Future Directions

