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ABSTRACT

The goal of this thesis is to develop and study the structure rich of the set of

transition type solutions of some classes of elliptic PDEs of the form
~Agu+ A(z,y)V'(u) =0 in R? (PDE)

where Ag is a quasilinear operator in divergence form involving the N-function ® that
does not increase more rapidly than exponential functions, A(x,y) is periodic in all its
arguments and V' is a double-well potential with minima at ¢ = +«a. An important
prototype of V is given by V (t) = ®(|t* — a?|), which was inspired by the classical double-
well Ginzburg-Landau potential. One of our motivations for looking for such solutions
derives from a classic Allen-Cahn model of phase transitions that can be seen as a very
special case of (PDE). In our investigations, such solutions are obtained by variational
approaches using minimization methods to look for minima of an action functional on
a reasonable class of admissible functions contained in the usual Orlicz-Sobolev space
I/Vhl)f)(R2). We provide several qualitative and quantitative properties for these solutions
and a number of difficulties had to be overcome in our approach. For this reason, it
was necessary to develop new estimates by using for example Harnack type inequalities

found in [91], C* regularity by Lieberman [67] and a new uniqueness result for a class

of quasilinear ODEs of the type
—(¢(ld D) +at)V'(q) =0 in R, (ODE)

where a(t) belongs to L*(R) and ¢(t) = ®'(t)/t for t > 0.
Among the transition type solutions, heteroclinic and saddle-type solutions stand
out in this work. Moreover, in this thesis, it is also of particular interest to study the

existence of basic heteroclinic solutions for the relatively simple one-dimensional equation



(ODE), that is, to determine solutions that naturally connect the stationary points +«
and that lie between —a and «. The development of such solutions to (ODE) serves
as support for the construction of more complex solutions of spatial phase-transition
problems. In particular, serves to characterize the asymptotic behavior of the saddle-type
solution for (PDE).

Finally, we will discuss how variants of what was just described for (PDE) hold

equally well for prescribed mean curvature equation of the type

—div <L) + A(z,y)V'(u) =0 in R

V14 |Vul?

Using the cutting techniques for the differential operator involved we build auxiliary
equations of the form (PDFE) to show that such equation also has a rich variety of
transition type solutions whenever the distance between the roots of the symmetric
potential V' is small and V is similar to V(t) = (t> — a?)%. Not least, we will provide
sufficient conditions for the existence of basic heteroclinic solutions for the following
one-dimensional model

q , 1N o
_ <—1 — (q’)2> +a(t)V'(g) =0 in R.

Moreover, uniqueness results are also explored under appropriate conditions on a and V.

Keywords: Transition type solutions; Heteroclinic solutions; Saddle-type solutions;
Quasilinear Allen-Cahn equations; Prescribed mean curvature equation; Orlicz-Sobolev

spaces; Minimization methods.



RESUMO

O objetivo desta tese é desenvolver e estudar a rica estrutura do conjunto de solucoes

do tipo transicao de algumas classes de EDPs elipticas da forma
~Agu+ Az, y)V'(u) =0 em R? (EDP)

em que Ag é um operador quaselinear na forma de divergéncia envolvendo a N-fun¢ao
® que nao cresce mais rapidamente do que fung¢des exponenciais, A(z,y) é periodico
em todos os seus argumentos e V' é um potencial de pogo duplo com minimos em
t = +a. Um importante protétipo de V é dado por V(t) = ®(|t*? — o?|), que
foi inspirado no classico potencial de poco duplo de Ginzburg-Landau. Uma das
nossas motivacoes para procurar tais solucoes deriva de um modelo classico de Allen-
Cahn de transigoes de fase que pode ser visto como um caso muito especial de (EDP).
Em nossas investigacoes, tais solucoes sao obtidas por abordagens variacionais usando
métodos de minimizagao para procurar minimos de um funcional acao em uma classe
razoavel de funcoes admissiveis contida no espaco usual de Orlicz-Sobolev VVli’f(Rz).
Fornecemos diversas propriedades qualitativas e quantitativas para essas solucoes e uma
série de dificuldades tiveram que ser superadas na nossa abordagem. Por esta razao,
foi necesséario desenvolver novas estimativas usando por exemplo desigualdades do tipo
Harnack encontradas em [91], CY® regularidade por Lieberman [67] e um novo resultado

de unicidade para uma classe de EDOs quaselineares do tipo
—(o(ld)d) +a(t)V'(q) =0 em R, (EDO)

em que a(t) pertence a L*(R) e ¢(t) = ®'(t)/t para t > 0.
Dentre as solugoes do tipo transicao, destacam-se neste trabalho as solucoes

heteroclinicas e do tipo sela. Além disso, nesta tese, é também de particular interesse



estudar a existéncia de solugoes heteroclinicas bésicas para a equagao unidimensional
relativamente simples (EDO), ou seja, determinar solu¢oes que conectam naturalmente
os pontos estacionarios +a e que ficam entre —a e a. O desenvolvimento de tais
solugoes para (E'DQO) serve como suporte para a construcao de solu¢oes mais complexas de
problemas espaciais de transicao de fase. Em particular, serve para caracterizar o
comportamento assintotico da solugao do tipo sela para (EDP).

Por fim, discutiremos como variantes do que acabamos de descrever para (EDP) se

mantém igualmente bem para a equacao de curvatura média prescrita do tipo

V1+|Vul?

Usando as técnicas de trucamento para o operador diferencial envolvido construimos

—div <L> + Az, y)V'(u) =0 em R

equacoes auxiliares da forma (EDP) para mostrar que tal equagdo também possui uma
rica variedade de solugoes do tipo transicao sempre que a distancia entre as raizes do
potencial simétrico V for pequena e V é semelhante a V() = (t* — o*)?. Nao menos
importante, forneceremos condi¢oes suficientes para a existéncia de solucoes heteroclinicas
béasicas para o seguinte modelo unidimensional

q , oy
_< 1+(q’)2> +a(t)V'(qg) =0 em R.

Além disso, resultados de unicidade também sdo explorados sob condicoes apropriadas

emacelV.

Palavras-chave: Solucoes do tipo transicao; Solugoes heteroclinicas; Solucées do tipo
sela; Equacoes quasilineares de Allen-Cahn; Equacao de curvatura média prescrita;

Espacos de Orlicz-Sobolev; Métodos de minimizacao.
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INTRODUCTION

The problem of existence and classification of bounded solutions of stationary Allen-

Cahn type equations
—Au+ A(z)V'(u) =0 in R" (1)

has been widely studied in the last years, providing a rich amount of differently shaped
families of solutions, such as periodic, heteroclinic, saddle and multibump solution. The
Allen-Cahn equation was introduced in 1979 by S. Allen and J. Cahn in [11] as a model
for phase transitions in binary alloys. The standard model of V is the classical double

well Ginzburg-Landau potential

¥

+/ \—;—

¥

™~

=
=]

-

S}

[V

Figure 1: The double well potential V (¢) = (t* — 1)

The function u is a phase parameter describing pointwise the state of the material and the
global minima of V' represents the pure phases of the system. Different values of u depict
mixed configurations and by transition solutions we mean entire solutions of (1) which are

asymptotic in different directions to the pure phases of the system. In the equation (1)
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the presence of the (positive) oscillatory factor A(z) models an inhomogeneous behavior
of the system.

When A is a positive constant function (for example, A(z) = 1), a long standing
problem is to characterize the set of the solutions u € C?(R") of (1) satisfying |u(z)| <1
and 0, u(x) > 0. This problem was pointed out by De Giorgi in [34], where he conjectured
that, when n < 8 and V(¢) = (1 — 1)?, the whole set of these solutions reduces, up to

translations, to the unique solution ¢, € C?(R) of the one dimensional problem

—q"(t)+V'(q#))=0 in R, ¢(0)=0 and lim q(t) = +1.

t—+oo

Figure 2: The graph of ¢,.

The conjecture has been firstly proved in the planar case by Ghoussoub and Gui in [57]
even for more general double well potential V. In the case n = 3 it has been proved by

Ambrosio and Cabré in [19] and, assuming
u(z) - +1 as z; — oo,

the same rigidity result has been obtained in dimension n < 8 by Savin in [88], paper to
which we refer also for an extensive bibliography on the argument. Del Pino, Kowalczyk
and Wei showed in [37,38] that the 1-D symmetry of these solutions is generally lost when
n > 9. We refer also to [21,22,40], where a weaker version of the De Giorgi conjecture,
known as Gibbons conjecture, has been obtained for all the dimensions n and in more
general settings. These results show that when A is a positive constant and u is a bounded

solution of (1) satisfying

u(z) — +1 as x; — +oo uniformly with respect to (xs,...,7,) € R"* (2)
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Figure 3: Graph of u in R?

then u(x) = g, (x1) for all x = (21, 29, ..., 7,) € R™

Solutions of (1)-(2) are said to be heteroclinic from —1 to 1. The study of existence
and qualitative properties of heteroclinic solutions and various generalizations has been
widely studied and received special attention in recent years, because this type of solution
appears in many mathematical models associated with problems that appear in Physics,
Biology, Mechanics and Chemistry. Generally the heteroclinic solutions appear as physical
processes involving variable transitions from an unstable equilibrium to a stable one,
frontal propagation in equations of reaction-diffusion and phase-transition. For a quite
comprehensive account, the interested reader may start by reading the papers [24,69] and
their references. For example, a simple description of heteroclinic solutions can be found

in the mathematical equation of the pendulum
q"(t) + bsin(q(t)) =0 in R,

where b > 0 depends on the acceleration due to gravity and the length of the rod. In this
case, the phase plane analysis shows that there is a heteroclinic solution ¢ from —x to ,
that is,

lim ¢(t) =—n, lim ¢(t)=n and lim ¢'(t) =0.

t——o0 t——4o00 t—+o0

Physically, this solution corresponds to motions that are asymptotic to the unstable
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vertical equilibrium. For a deeper discussion see |24, 70].
This kind of heteroclinic type transition solutions persist when A is not constant
in (1). The heteroclinic type problem was first studied by variational methods for more

general elliptic equations of the form
—Au = g(z,y,u) in RxQ (3)

by Rabinowitz in [79], when Q is a bounded regular domain on R™. Assuming that the
nonlinearity g to be even and periodic in the variable x, Rabinowitz showed the existence
of solutions for (3) satisfying Dirichlet or Neumann boundary condition on 02 and being
asymptotic as x — 400 to different minimal solutions u., periodic in the variable z.
This result was generalized by Alves in [13] for different conditions on g, including the
case in which ¢ is only asymptotically periodic in the variable z. A related variational
approach was used to study the heteroclinic type problem for equation (1) in the case
in which A is periodic in all variables in [5, 82, 83|, showing the existence of (minimal)
solutions u(z) that are periodic in the variable (x9,...x,) and such that u is asymptotic
to different minima of the potential V' as x; — *o00. Starting from the existence of this
“basic” heteroclinic solutions, these papers show how the presence of a truly oscillatory
factor A(x,y) gives generically the existence of complex classes of other heteroclinic type
transition solutions in contrast with the above described rigidity results characterizing
the autonomous case (see also [9,27,84]).

When referred to the semilinear equation
—¢"(t) +a()V'(q(t)) =0 in R, (4)
the problem of the existence of heteroclinic solutions is a classical topic in the theory of
ordinary differential equations. In recent years there has been a large number of works
that study the existence of heteroclinic solution for (4) by considering different classes of
functions a(t). For example:

Class 1: [24] a(t) is a positive constant.

Class 2: [24] a(t) is a continuous function such that

0< %nﬂga(t) and a(t+1) =a(t) forall teR.
€

Class 3: [24,54] a(t) is a continuous function such that there are ay,as > 0 verifying

a; < a(t) <ag, Vt € R and a(t) — ay as |t| — +oo,
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where a(t) < ag in some set of nonzero measure.
Class 4: [12,54] a(t) is asymptotically periodic at infinity, that is, there is a continuous

periodic function a, : R — R satisfying

la(t) —a,(t)] = 0 as |t| = +oo and 0 < ;}gﬂga(zﬁ) <a(t) <ay(t), Vt € R.

Class 5: [12| a € L*(R) and

0 < a(0) =infa(t) < aw = liminfa(t).
teR [t|—+o0

Class 6: [52,53] a € L>°(R) and there are [, L € (0, +00) such that
[ <a(t) < L almost everywhere and a(t) — L as |t| - +o0

where L/l is suitably bounded from above.

Class 7: [52] a(t) is even and there are [, L € (0, +00) such that

I <a(t) < L almost everywhere in R.

Class 8: [52,53] a € L>(RR, [0, +00) and there are [ > 0, S < T, such that

a(t) =1fort ¢ [S,T).

Class 9: [55] There is ¢y € R such that a(t) is increasing in (—o0, o] and a(t) is decreasing

in [ty, +00). Moreover,

lim a(t)=1>0 and lim [t|{(I —a(t)) =0.

[t|—=+o0 [t|=+o0

Class 10: [90] There are [,[ > 0 such that
1
a(t) =1 as [t| = +o0 and [ <a(t) < L=1 +4V\/Z—L// V'V (s)ds for all t € R,
—1

where

v = min {/1 JV (s)ds, /: \/mds} ,



Introduction 6

with e =min{s:s > —1, V'(s) =0} and e, = max{s:s <1 V'(s) =0}.

Another kind of transition solutions for (1) was introduced by Dang, Fife and Peletier
in [33]. In the planar case n = 2, when V is an even double well potential and A is a
positive constant, they showed by a sub-supersolution method that (1) has a unique
bounded solution u € CQ(RQ) with the same sign as x1x,, odd in both the variables x;
and xo and symmetric with respect to the diagonals x5 = +x,. Along any directions not
parallel to the coordinate axes the saddle solution u is asymptotic to the minima of the
potential V' representing a phase transition with cross interface. Note that, even if it is
related to minimal transition heteroclinic solutions, being asymptotic to ¢, as xo — 400,
it no longer has minimal character (see [63,89]). Many extensions for Allen-Cahn models
have been considered. In the planar case we refer to [3] for a variational study of saddle
type solutions with dihedral symmetries of order k (see also [61] for a global variational
approach to the saddle problem) and to [39, 59| for a general study regarding k-end
solutions. Further generalizations of the study of saddle-type solutions have been made
in higher dimensions. For example, in [6] and |7], Alessio and Montecchiari established
the existence of saddle-type solutions on R®. In [2], Alama, Bronsard and Gui studied
a vectorial version of saddle-type solution, where systems of autonomous Allen-Cahn
equations have been considered on the plane (see [60] and |8] for related studies on R?).
A generalization of the variational framework considered in [2] can be found in [10]. For
other interesting papers in higher dimension, we mention [28,29,77| for the equations case
and to [2] for the case of systems of autonomous Allen-Cahn equations.

The analogous for saddle type solutions for (1) in the planar case, when A € C'(R?)
is positive, even, periodic and symmetric with respect to the plane diagonal o =
has been introduced in [4] where a variational procedure was introduced to find as in
the autonomous case a solution u of (1) on R? which is odd with respect to both its
variables, symmetric with respect to the diagonal, strictly positive on the first quadrant
and is asymptotic to the minima of V' along any directions not parallel to the coordinate
axes. Moreover in [4] it is shown that, as y — +oo (uniformly with respect to z € R),
the solution u is asymptotic to the set of the x-odd minimal heteroclinic type solutions of

(1) which are periodic in the variable y.

Throughout this thesis, we tackled the problem of existence of heteroclinic and

saddle type solutions via variational methods for the analogous of Allen-Cahn model in
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the quasilinear setting of the form
~Agu+ A(x,y)V'(u) =0 in R? (5)

where Agu = div(¢(|Vu|)Vu) and ® : R — [0, +00) is an N-function of the type

I¢]
O(t) = d 6
(t) /0 s¢(s)ds (6)
for a ¢ € C*(]0, +0), [0, +00)) such that:
(¢1) ¢(t) > 0 and (¢(t)t) > 0 for any ¢t > 0.
(¢2) There are [,m € R with 1 <[ < m such that

1—13%971—1 for all ¢t > 0.

(¢3) There exist constants ¢1,co,m > 0 and s > 1 satisfying

™t < @)t < ext™ for € (0,n).

(¢4) ¢ is non-decreasing on (0, +00).

We would like to point out that in the study of quasilinear elliptic problems driven
by the ®-Laplacian operator, the conditions (¢;)-(¢2) are well-known and guarantee that
® and its complementary function ® are N-functions that check the so called Ay-condition
(see for instance Appendix A). Those conditions ensure that ® behaves in such a way that
the Orlicz-Sobolev space associated to @ is reflexive and separable.

In recent years, facing the need of a mathematical description of physical problems,
there has been a growing number of works involving the ®-Laplacian operator Ag and its

theory is by now rather developed. As a first example we may consider the case
o(t) =[t]’, teR, pe (1, +o0),

which is related to the celebrated p-Laplacian operator that often appears in physical
models, for example in Newtonian and non-Newtonian fluids (see [35,36] and references
therein). Motivated by concrete examples of equations arising from fluid mechanics and
plasticity theory, Seregin and Fuchs in [46,47] (see also [45]) were led to the minimization

of integrals where appears the logarithmic model

O(t) = [t[" (1 +[t]), teR, pell,+00),
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which is an N-function of the type (4). Other model of N-function of the form (4) that
often arises in a lot of fields of physics and related sciences, such as biophysics and chemical

reaction design, is
1 1
O(t)=—|tlP+—|t|?, teR, 1<p<qg<+oo.
p q

The differential operator associated with this N-function is known as the (p, ¢)-Laplacian

operator and the prototype for these models can be written in the form
Uy = —Aq; + f(x,u)

In this configuration, the function u generally describes a concentration, Ag corresponds
to the diffusion and f(x,u) is the reaction term that corresponds to source and loss
processes. For a quite comprehensive account, the interested reader might start by

referring to [20,41]. Finally, it is worth mentioning that the N-function given by
)= (1+t) -1, teR, v>1,

appears in the works [49, 50|, where the authors report that the studies of quasilinear
equations involving the associated operator Ag are motivated by nonlinear elasticity
models. For other examples of N-functions of the type (4) and more applications we
refer the reader to [45,48] and the bibliography therein.

This thesis is a collection of the published and submitted papers listed below:

(P1) Emistence of saddle-type solutions for a class of quasilinear problems in R?, Topol.
Methods Nonlinear Anal., 61(2), 2023, 825-868. (with Claudianor Alves and Piero

Montecchiari).

(P2) Existence of heteroclinic and saddle type solutions for a class of quasilinear problems
in whole R*, Commun. Contemp. Math., 2022. (with Claudianor Alves and Piero

Montecchiari).

(P3) Existence of heteroclinic solutions for the prescribed curvature equation, J.

Differential Equations, 362, 2023, 484-513. (with Claudianor Alves).

(P4) Heteroclinic solutions for some classes of prescribed mean curvature equations in

whole R?, preprint. (with Claudianor Alves).


https://doi.org/10.12775/TMNA.2022.039
https://www.worldscientific.com/doi/10.1142/S0219199722500614
https://www.worldscientific.com/doi/10.1142/S0219199722500614
https://doi.org/10.1016/j.jde.2023.03.027
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(P5) Saddle solutions for Allen-Cahn type equations involving the prescribed mean

curvature operator, in preparation.

We would like to emphasize that each paper is presented as a chapter and the
exposition of the chapters varies slightly from the presentations of the papers in order to
complement the studies performed there.

Another paper that complements this thesis is the following:

(P6) Uniqueness of heteroclinic solutions in a class of autonomous quasilinear ODE

problems, preprint. (with Claudianor Alves and Piero Montecchiari).

Next, we describe the organization of this thesis and we present a brief overview of
the topics studied in the chapters.

In Chapter 1, we present the joint paper with professors Claudianor Alves and Piero
Montecchiari [16]. The main goal of this chapter is to prove the existence of saddle-type

solutions for the following class of quasilinear equations
—Agu+V'(u) =0 in R? (7)
where the potential V satisfies the following conditions:
(Vi) V(t) >0forallte Rand V(t) =0 <t = —a,«a for a > 0.
(V3) V(—t) =V(t) for any t € R.
(V3) There are 4, € (0, ) and wy,wy > 0 such that

wi (|t —al) V() Swr (|t —a]) V€ (a— dpy+ 04).

(V4) There are wy,ws,ws,wys, T > 0 such that

—w3(wala — t]) (@ — )t < V'(t) < —wid(wa|a — t|) (v — )t VE € [0, + 7).

(Vs) There is 09 > 0 such that V' is increasing on (a — do, @).

(Vs) There are 7, e > 0 such that

O(V'(t)) < vP(la—t|), Ve (a—e¢a).
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It is worth mentioning that an important example of a potential V' that checks the

conditions (V;)-(Vs) is given by
V(t)=®(t* —a®]), teR,

where ® is an N-function of the form (6) verifying (¢1)-(¢2), which was inspired by the
classical double well Ginzburg-Landau potential V (t) = (#* — 1)2.

—a o
Figure 4: The potential V (t) = ®(|t* — a?).

Our main result involving saddle-type solutions is the following:

Theorem 0.1 Assume (¢1)-(¢ps) and (V1)-(Vs). Then, For each j > 2 there ezists
vj € Cllo’;’(RQ) for some v € (0,1) such that v; is a weak solution of (7) satisfying

(a) 0 <v;(p,0) <a forany b €[5 — 55, 5) and p >0,
() (0.5 +6) = —5(p, 5 — 0) Jor all (p,0) € [0, +00) x R,
(c) T(p,0+ %) = —05(p,0) for all (p,6) € [0,+00) X R,
(d) v;(p,0) = o as p = +oo for any 6 € [§ — 35, 3),
where 0;(p,0) = v;(pcos(f), psin(h)).

The item (d) of Theorem 0.1 is a characterization of the asymptotic behavior of vj,

which guarantees that for £ =0, ..., 25 — 1 there results

9;(p,0) = (—a)* as p— +oo whenever 6 € (g s g + (k + 1)3) .
J J
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Therefore, the saddle-type solution can be seen as a phase transition with cross interface.
In the proof of Theorem 0.1 it is crucial to prove the existence and uniqueness of

the minimal odd heteroclinic solution for

—(@(dNd) +V'(¢)=0 in R (8)

After that, we use the heteroclinic solutions as support to characterize the asymptotic
behavior of the saddle-type solution for (7). The main tool used is the variational method
on Orlicz-Sobolev spaces, more precisely, minimization technique on a set of admissible

function. The idea is looking for minima of the action functional

Fq) = / @(q)) + V(e)) dt

on the class
Ey ={q e W P(R): qis odd a.e. in R}.

loc

Denoting by Kg the set of minima of F' on Eg, we have the following result:

Theorem 0.2 Assume (¢1)-(¢3) and (V1 )-(Vs). Then, there exists a unique ¢ € K¢ such
that it is a weak solution of (8) being heteroclinic from —a to «, that is,

q(t) > —a as t— —oo and q(t) - o as t — +oo.

1y
loc

(a) q(t) = —q(—t) for any t € R,

(b) 0 <q(t) <a forallt>0,

Moreover, g € C,)7(R) for some v € (0,1) and satisfies the following properties:

(¢) q is increasing on R,
(d) ¢(t) =0 ast — +oo,
(e) ¢ is non-increasing on [0, 400),

(f) ¢ (t) >0 for any t € R.

We would like to point out that the Theorem 0.1 complements the study made in [3],
because in that paper the authors considered the Laplacian operator, while in our study
we considered a large class of equations involving quasilinear operators. However, it is
important to mention that some estimate found in [3] can not be used here, as for example
some maximum principles, C? regularity for the Laplacian operator as well as existence

and uniqueness of solution for second order ordinary differential equations. Here, it was
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necessary to develop new estimates by using for example a Harnack-type inequality, C1®
regularity by Lieberman [67] and a new uniqueness result for a class of ordinary differential
equations driven by a quasilinear operator.

Now, some result involving heteroclinic solutions and its generalizations will be
discussed briefly. For one dimensional problems, we would like to cite the papers
by Rabinowitz [80, 81] and Gavioli and Sanchez [56] and their references, where the
reader can find interesting results about the existence of heteroclinic solutions for related
problems. Further generalizations of the study of heteroclinic-type solutions have been
made in higher dimensions, see for example Rabinowitz [79], Alves [13|, Rabinowitz and
Stredulinsky [82]. Related to elliptic system we cite the paper by Byeon, Montecchiari
and Rabinowitz [27]. In the literature we also find some papers that study the existence
of heteroclinic solution for classes of quasilinear problems, see for example Feliz [71-73|
and for a vectorial version, we recommend the paper by Ruan [86]. Finally, for a recent
account about heteroclinic solutions involving the fractional Laplacian operator, we refer
the reader to [30, 31| where the authors showed the existence and uniqueness of the
following problem

(=2)q+¢ —q=0 in R, ¢0)=0, lim q(t)==x1, ¢ >0.

t—+o0

The existence of heteroclinic solutions to higher dimensional problems has been explored
by Alves, Ambrosio and Torres Ledesma [14].

In Chapter 2 we present the paper [17], which is a joint work with professors
Claudianor Alves and Piero Montecchiari. In this chapter, we study the existence of
related weak heteroclinic and saddle-type solutions of the non-autonomous version of the

equation (7), which is given by
—Agu+ A(z,y)V'(u) =0 in R (9)
where A : R? — R satisfies:
(A;) Ais a continuous function and A(z,y) > 0 for each (z,y) € R?,
(A2) A(z,y) = A(==,y) = A(z, —y) for all (z,y) € R?,
(A3) A(z,y) = A(z + 1,y) = A(z,y + 1) for any (z,y) € R?

(Ay) A(z,y) = A(y, ) for all (x,y) € R2.
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An interesting model for A is given by

A(x,y) = cos(2mz) cos(2my) + ¢ with ¢ > 1.

Figure 5: Graph of A(z,y) = cos(2wz) cos(2my) + 2.

In this chapter, we use variational methods related to the ones introduced in [4]
and [16] to establish the existence of (minimal) heteroclinic type solutions form —a to «

of (9), that is, weak solutions v € CL?(R?) which are 1-periodic in the variable y such

loc

that
v(z,y) = —a as x — —oo and v(z,y) — « as * — +oo uniformly in y € R.

Moreover, we borrow some ideas developed in [4] and [79] to look for minima of the action

functional
1
Ita) = [ [ @(9u)+ Alw.)V (@) dyde,
R Jo
on the class

Eg(a) = {u e WLPR % [0,1]) : 0 <wu(z,y) <aforz>0and u is odd in x} ,

where WL (R x [0, 1]) denotes the usual Orlicz-Sobolev space. Denoting by Kg(a) the set

of minima of I on Fg(«), we show that K¢ () is not empty and constituted by (minimal)
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heteroclinic type solutions of (9). The minimality properties of these heteroclinic type
solutions allows us, as a second step, to build up a variational framework inspired to the
one introduced in [4] to detect the existence of saddle type solution of (9), characterizing
their the asymptotic behavior. More precisely, we have the following results:

Theorem 0.3 Assume (¢1)-(¢3), V € CLHR,R), (V1)-(V3) and (A;)-(As). Then, there
exists v € CP(R2) for some B € (0,1) such that v is a weak solution of (9) that verifies

loc

the following:
(a) v(z,y) = —v(—z,y) for all (x,y) € R?,
(b) v(z,y) = v(z,y + 1) for any (z,y) € R?,
(¢c) 0 <wv(z,y) <« for each x >0 and y € R.

Moreover, v is a heteroclinic solution from —a to a.

Theorem 0.4 Assume (¢1)-(¢4), V € CH(R,R), (V1)-(Vy) and (A1)-(Ay4). Then, there
is v € CLP(R2) for some € (0,1) such that v is a weak solution of (9) that verifies the

loc

following:
(a) 0 <v(x,y) < a on the fist quadrant in R?
(b) v(z,y) = —v(—x,y) = —v(z, —y) for all (x,y) € R?,
(¢) v(z,y) = v(y,x) for any (v,y) € R?,
(d) There is ug € Ko(ar) such that ||v — Tjugl| Lo (mx]jj+1)) — 0 as j = +o0,

where Tiug(z,y) = uo(x,y — j) for all (z,y) € R2.

The item (d) of Theorem 0.4 characterizes the asymptotic behavior of v. It
guarantees that along directions parallel to the coordinate axes the saddle type solution is
asymptotic to the minimal heteroclinic set Kg(«). This implies that along any direction
not parallel to the coordinate axes v is asymptotic at infinity to £« and therefore the
saddle type solution can be seen as a phase transition solution with cross interface.

We would like to point out that Theorems 0.3 and 0.4 improve the results of Chapter
1 not only in the fact that the function A(z,y) is allowed to be not constant but also
because, unlike the Chapter 1, the assumptions (V5) and (V5) are not needed. Moreover,
we note that even though the variational approach is inspired by the one used in [4],
many tools used in the classical Laplacian context, such as for example some maximum

principles, C? regularity, existence and local uniqueness theorems, are no more available
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in the present framework. To show that (9) admits transition type solutions it was
necessary to develop new estimates based on the Harnack type inequalities found in [91]
and on results about Ch* regularity for quasilinear problems as obtained by Lieberman
in [67].

It is nowadays a well-known fact that the prescribed mean curvature operator

; (—V“ ) (10)
VI+[Vap
has been extensively studied in the recent years, due to the close connection with
capillarity theory [43]. After the pioneering works of Young [92], Laplace [66], and
Gauss [51] in the early 18th century about the mean curvature of a capillary surface,
much has already been produced in the literature and it is difficult and exhaustive to
measure here the vastness of physical applications involving the (10) operator, however
for the interested reader in this subject, we could cite here some problems that appear in
optimal transport [25] and in minimal surfaces [58]. Moreover, (10) also appears in some
problems involving reaction-diffusion processes which occur frequently in a wide variety
of physical and biological settings. For example, in [65], Kurganov and Rosenau observed
that when the saturation of the diffusion is incorporated into these processes, it may cause
a deep impact on the the morphology of the transitions connecting the equilibrium states,
as now not only do discontinuous equilibria become permissible, but traveling waves can
arise in their place. A specific class of such processes is modeled by the following equation
up = div <L> —aV'(u), (11)
Vi VT

where the reaction function V' is the classical double well Ginzburg-Landau potential and
a is a constant. The impact of saturated diffusion on reaction-diffusion processes was

investigated by them in the straight line and in the plane.

As indicated in the previous paragraph, [65] provided a significant physical
motivation for the study of equations of the form (11) having as main objective the
existence and classification of transition-type solutions, that is, entire solutions of (11)
which are asymptotic in different directions to the equilibrium states of the system. In this
sense, Bonheure, Obersnel and Omari in [23] investigated the existence of a heteroclinic
solution of the one-dimensional equation

- (q—> +a®)V'(q) =0 in R, (12)
(¢)?

1+
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looking for minima of an action functional on a convex subset of BVj,.(R) made of all
functions satisfying an asymptotic condition at infinity, where the authors considered as
usual V' a double-well potential with minima at ¢ = 1 with the function a asymptotic
to a positive periodic function, that is, a € L*(R) with 0 < ess %gﬂga(t) and there is
a* € L®(R) 7-periodic, for some 7 > 0, such that a(t) < a*(t) almost everywhere on R
satistying

esslim (a*(t) —a(t)) =0.

|| =400

In Chapter 3 we present the work [14], which is a joint work with professor
Claudianor Alves. This chapter is concerned with the existence and qualitative properties
of heteroclinic solutions of the prescribed curvature equation (12). The basic idea is to
truncate the mean curvature operator to build up a variational framework inspired to the
one introduced in [74] on Orlicz-Sobolev space W,5®(R), that is, to obtain an auxiliary

equation of the form

—(@(dNd) +at)V' (@ =0 in R, (13)
where ¢ : (0,+00) — (0,+00) is a C! function verifying (¢;)-(¢3), in order to establish
the existence of a heteroclinic solution for (12) in the case where the function a belongs
to the following class of functions

Class 11: a € L*(R) is an even non-negative function satisfying
0 < ag := inf a(t) for some M > 0.
t>M

Throughout this chapter, we say that a function ¢ is a heteroclinic solution from
—a to o of (12) ((13)) if ¢ € CLP(R) for some S € (0,1) and satisfies the equation (12)

loc

((13)) for all t € R, and Moreover,

lim ¢(t) = —a, lim ¢(t)=a and lim ¢'(¢t) =0.

t——00 t—-+oo t—=+oo
Our main result in this chapter is the following:
Theorem 0.5 Assume that a belongs to Class 11, V € C*(R,R), (V1)-(V5) and that

(Vz) (i) V"(xa) > 0.
(ii) There are & > 0 and C = C(&) > 0 such that sup |V'(t)] < C for all

lt|€[0,0]
a € (0,a).
Then, for each L > 0 there ezists ag > 0 such that for each o € (0, ) equation (12)

possesses a heteroclinic solution q, from —a to a satisfying:
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(a) qa(t) = —qa(—t) for all t € R,
(b) 0 < qu(t) < a forallt>D0,

(c) |d,(t)| < VL for any t € R.

The assumption (V7)-(i7) is a uniform condition on the potentials V' that depends

on a > 0 and a class of such potentials for which (V1)-(V2) and (V7) are all satisfied is
V()= (" —a?)? a>0,

which includes the classical double well Ginzburg-Landau potential when o« = 1. The
reader is invited to see that the theorem above is true for potentials of the Ginzburg-
Landau type, for example when « is small.

Our second main result is the following:

Theorem 0.6 Assume (¢1)-(¢o), V € CHR,R), (V1)-(V3) and that a belongs to Class

11. Then equation (13) has a heteroclinic solution from —a to « satisfying
(a) q(t) = —q(=1) for any t € R,
(b) 0<q(t) <a forallt>D0.

Moreover, taking into account the assumptions (¢3) and

(Vs) There are dy,dy > 0 and A > 0 such that

V(1) < diop(do|t — )|t — | for allt € [a — N\, + )],

then the inequalities in (b) are strict.

t?
Moreover, the classical case ®(t) = 3 corresponds to the equation (4), and in this

case the Theorem 0.6 can be written of the following way

Theorem 0.7 Assume V € C*(R,R), (V1)-(V2), (V5) — (i) and that a belongs to Class

11. Then equation (4) has a heteroclinic solution from —a to « in C*(R) such that
(a) q(t) = —q(—t) for any t € R,
(b) 0<q(t) <a forallt > 0.
Theorem 0.6 holds for all @ > 0 and complements the study done in Section 1.1

of Chapter 1, because a = 1 there. Furthermore, Theorem 0.7 also complements some

papers on the study of heteroclinic solutions, because here we are considering a new class
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of functions a that allows to be null in a symmetric interval compact in R, and Theorem
0.5 complements the study made in [23]|, because in that article the authors considered
the case i%f a(t) > 0 and applied variational methods in the space BVj,.(R), while here
we use variational methods in the Orlicz-Sobolev spaces by adapting for our case some
ideas found in [74], i%f a(t) = 0 and we prove some results involving the uniqueness of
heteroclinic solution for (12) when a(t) is constant.

In Chapter 4, we present another joint paper with Professor Claudianor [15]. The
main goal of this chapter is to use variational methods to show the existence of heteroclinic
solutions for prescribed mean curvature equation of the type

—div <L> + A(ex,y)V'(u) =0 in R? (14)

V14| Vul?

taking into account different geometric conditions on function A : R? — R with € > 0.
Throughout Chapter 4, we mean by heteroclinic solution a function w that is a weak

solution of (14) and has the following asymptotic property at infinity
u(z,y) — o as x — —oo and u(x,y) — [ as £ — 400 uniformly in y € R,
where o and [ are global minima of V' : R — R that satisfies the following assumptions:
(Vi) V e CY(R,R).
(Va) a < pBand V(a)=V(3)=0.

(V3) V(t) >0 for any t € R and V(¢) > 0 for all t € (o, B).

(Vi) There are A > 0 and C(\) > 0 such that sup [V'(t)] < C(\) when
te(a,B)
max{|ol, |6]} € (0,\)

We would like to point out that the condition (Vj) is uniform with respect to the
roots a and [ of potentials V' and a class of such potentials of the Ginzburg-Landau type
for which (V1)-(V}) are satisfied is

V(t) = (t—a)*(t— )" (15)

Moreover, when o = —f3, another class of potentials V' of the Sine-Gordon type can be
given by

V(t) = B+ B cos <%) | (16)
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Figure 6: The potentials V(t) = (t — «)?(t — 8)* and V (¢) = B + [ cos <%> respectively.

These kinds of potentials arise in various branches of Mathematical Physics, for example
in models of phase transitions in binary metallic alloys and propagation of dislocations
in crystals, respectively, where the prototype of these models can be represented by
stationary Allen-Cahn type equations (1). Generally the introduction of a factor A(x) can
be used to study inhomogeneous materials. For a deeper discussion of these applications,
we refer the interested reader to [11,44].

In what follows, associated with function A we assume the assumptions:

(A;) A is continuous and there is Ay > 0 such that A(z,y) > A, for all (x,y) € R2.

(Ay) A(z,y) = A(z, —y) for all (z,y) € R

(A3) A(z,y) = A(z,y + 1) for any (z,y) € R%

Now let us mention the classes of A that we will considered in this thesis.
Class A: A satisfies (A;)-(A3) and is 1-periodic on the variable z.
Class B: A satisfies (A;)-(As3) and there exists a continuous function A, : R> — R, which

is 1-periodic on z, satisfying A(z,y) < A,(z,y) for all (z,y) € R? and

|A(z,y) — Ay(z,y)] = 0 as |(z,y)| = +oo.

Class C: A satisfies (A;)-(A43) and

inf A(z,y) < sup A(0,y) < liminf A(z,y) = A < +o0.
R2 ye(0,1] |(z,y)|—+o0

Class D: A satisfies (A5)-(A3), is a continuous non-negative function, even in z,

A € L*(R?) and there exists K > 0 such that

inf  A(x,y) > 0.

lz|>K, y€[0,1]
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We would like to highlight that some of these conditions are well known in the
context of the Laplacian operator. For example, a condition like Class A was studied by
Rabinowitz [79] to show the existence of heteroclinic solution for a class of second order

partial differential equations in which he includes the equation of the form
—Au+ A(z,y)V'(u) =0 in Q, (17)

where the set 2 is a cylindrical domain in R" given by (2 = R x D with D being a bounded
open set in R"! such that D € C*. In the literature we also find interesting works that
study the equation (17) in the case that A(z,y) is periodic in all variables when 0 = R?,
see for example Rabinowitz and Stredulinsky [82] and Alessio, Gui and Montecchiari [4].
Related to the Classes B and C we cite a paper by Alves [13]|, where the author established
the existence of classical solutions of (17) on a cylindrical domain that are heteroclinic in
the variable z. Finally, the Class D was introduced in [14].

The main results of this chapter can be now stated in the following form.

Theorem 0.8 Assume (V1)-(Vy), € = 1 and that A belongs to Class A or B. Given
L > 0 there exists § > 0 such that if max{|al,|5|} € (0,0) then equation (14) possesses a
heteroclinic solution ue 5 from o to B in C)(R?), for some y € (0, 1), satisfying

loc

(a) unp is 1-periodic on y.
(b) a <uqp(x,y) < B for any (z,y) € R
(c) HVuaﬁHLoo(H@) < VL.
Moreover, if V € C*(R,R) then the inequalities in (b) are strict.

Theorem 0.9 Assume (Vi)-(V4) and that A belongs to Class C. There is ey > 0 such that
for each € € (0,€¢9) and L > 0 there exists 6 > 0 such that if max{|a|,|B|} € (0,9) then
equation (14) possesses a heteroclinic solution un g from o to B in CI7(R?), for some

loc
v € (0,1), verifying
(a) uap is 1-periodic on y.
(b) @ < uap(w,y) < B for any (z,y) € R,

(¢) [ Vttasll1m2) < VL.

Moreover, if V € C*(R,R) occurs then the inequalities in (b) are strict.

Demanding a little more of the potential V' we may relax the conditions on the
function A to ensure the existence of a heteroclinic solution for (14), as the following

result says.
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Theorem 0.10 Assume V € C?(R,R), (V3)-(V4) with « = —f3, € = 1 and that A belongs
to Class D. Moreover, assume (V) and

(Vs) V'(=8).V"(8) > 0.

Then, for each L > 0 there exists 6 > 0 such that if § € (0,0) then equation (14) possesses
a heteroclinic solution ug from —f to 3 in C’loc( 2), for some v € (0,1), verifying

(a) up(w,y) = —up(—z,y) for any (v,y) € R*.
(b) ug(x,y) = ug(w,y + 1) for all (x,y) € R%,
(¢) 0 <ug(z,y) < B forxz>D0.

(@) [|Vug|| w2y < VL.

The reader is invited to see that the above theorems are true for the Ginzburg-
Landau (15) and Sine-Gordon (16) potentials when roots o and  have a small distance
between them.

Motivated by the ideas of Chapter 3, in the proof of the theorems above, we truncate
the differential operator involved in (17) of such way may that the new operator can be
seen as a quasilinear operator in divergence form. For this reason, as a first step in the

present chapter, we study quasilinear equations of the form
—Agu+ A(ex,y)V'(u) =0 in R? (18)

where @ is an N-function of the form (6) with ¢ : (0, +0c) — [0, +00) being a C'! function

verifying the conditions (¢1)-(¢3). The solutions of (18) are found as minima of the action

= (/ / O(|Vul) + Alew, y)V(w))dxdy>

on the class of admissible functions

functional

Lo(a, )= {wEI/Vl})Cq)(R x (0,1)):mw —a (B)in L*((0,1) x (0,1))ask — —o0 (+oo)}.

Our results involving the quasilinear equation (18) are stated below:

Theorem 0.11 Assume (¢1)-(¢2), (V1)-(V3), € = 1 and that A belongs to Class A or B.
Then equation (18) has a heteroclinic solution from a to 3 in C7(R?) for some vy € (0,1)
such that

(a) u(z,y) =u(x,y + 1) for any (z,y) € R



Introduction 22

(b) a <wu(x,y) < B for all (z,y) € R
Moreover, taking into account the assumptions (¢3) and

(‘76) There are dy,do,ds,ds > 0 and X > 0 such that
V(1) < did(dalt — B])|t — B for all t € [ — X, B+ Al

and
V(1) < dsop(dy|t — )|t — | for allt € [a — X\, + )],

then the inequalities in (b) are strict.

Theorem 0.12 Assume (¢1)-(¢2), (V1)-(Vs) and that A belongs to Class C. Then, there
is a constant €9 > 0 such that for each € € (0,¢€y) equation (18) has a heteroclinic solution
from o to B in C7(R?) for some v € (0,1) such that

(a) u(z,y) = u(z,y +1) for any (v,y) € R,

(b) a <u(x,y) <p for all (x,y) € R%

Moreover, assuming (¢3) and (V) we have that the inequalities in (b) are strict.

Theorem 0.13 Assume (¢1)-(¢2), (V1)-(V3) and (V) with o = —3, € = 1 and that A

belongs to Class D. Also consider the following assumption

(V7)) There are i1 >0 and 6 € (0, 8) such that

ud (|t — Bl) < V(1), Ve (B—06,5+0).

Then equation (18) possesses a heteroclinic solution u from —pf to B in Cllo’;’(]RQ) for some
v € (0,1) such that

(a) w(z,y) = —u(—z,y) for any (z,y) € R,
(b) u(z,y) =u(z,y+1) for all (z,y) € R
(¢c) 0 <u(x,y) <p for any x >0 and y € R.
Moreover, if (¢3) and (Vi) occur then the inequalities in (c) are strict.

Here it is worth mentioning that an example of potential V' that satisfies the

conditions (V;)-(V#) is given by
V(t) = e(|(t = a)(t = B)I), (19)

where @ is an N-function of the type (6) verifying (¢1)-(¢2). Moreover, the classical case
2

t
O(t) = 3 corresponds to the Laplacian operator, and in this case, as we are considering

a new class of functions A, we can rewrite Theorem 0.13 as follows
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Theorem 0.14 Assume a = —f3, V € C*(R,R), (172)-(175), (‘75), (V2) and that A belongs
to Class D. Then equation (17) with @ = R? possesses a heteroclinic (classical) solution
u from —f to B such that

(a) u(z,y) = —u(—2,y) for any (v,y) € R*.
(b) u(z,y) =u(z,y+1) for all (z,y) € R,

(c) 0 <u(x,y) <p for anyx >0 and y € R.

We now point out some interactions of our results with other works already known
in the literature. For example, Theorems 0.8, 0.9 and 0.10 complement the study carried
out in [14] and [23], because in those articles the authors considered the one-dimensional
equation (12), while we treat (14) and investigated the existence of a heteroclinic solution
for (14) for other classes of functions A. Moreover, Theorems 0.11 and 0.12 complement
the results obtained in [13], because in that paper the author considered the Laplacian
operator while here we considered a large class of quasilinear operators.

Finally, in Chapter 5 we introduce the study of the paper |62], which combines the
arguments developed in previous chapters to study the existence and qualitative properties

of saddle solutions for some classes of mean curvature equations prescribed as follows

—div <L> + A(x,y)V'(u) =0 in R (20)

V14| Vul?

The main theorems of this chapter are listed below.

Theorem 0.15 Assume V € C*R,R), (Vi)-(Va), (V7), and (A1)-(As). Given L > 0
there exists § > 0 such that if a € (0,9) then the prescribed mean curvature equation (20)

possesses a weak solution ve p, in CLY(R?), for some v € (0,1), satisfying the following

properties:
(a) 0 < v, r(x,y) < a on the fist quadrant in R?,
(0) Var(x,y) = —var(—2,y) = —var(z,—y) for all (z,y) € R?,
(¢) va.r(w,y) = var(y, x) for any (z,y) € R?,
(d) vor(z,y) = a as v — +oo and y — £oo,
(¢) Vor(z,y) = —a as x — Foo and y — Fo0,

(f) IV VoLl Lo g2y < VL.
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When A(z,y) is a positive constant, we obtain an infinite number of geometrically
distinct saddle-type solutions to the equation (20). This fact is reported in the following

result.

Theorem 0.16 Assume V € C*(R,R), (V1)-(Va), (Vz), and that A(x,y) is a positive
constant. Then, given L > 0 there is § > 0 such that if a € (0,6) then for each j > 2 the

. . . . 1
prescribed mean curvature equation (20) possesses a weak solution v, 1 ; in C).7(R?), for

some vy € (0,1), satisfying
(a) 0 <a,;(p,0) <aforanyb €[5 —7,35) and p>0,
(D) Tars(p % +0) = —Turs(p T — 0) for all (p,0) € [0,+00) X R,
() Tats(p,0+ F) = —51.5(p,6) for all (p,0) € [0, +00) x R,

(d) Vari(p,0) = (—a)** as p — 400 whenever 0 € (%+k§,%+(k+1)§) for
k=0,...,2j—1,

(e) Vol o@e) < VL,

where Uy 1, j(p,0) = va,r;(pcos(d), psin(f)).

The solutions v, ; described in the theorem above are characterized by the fact
that, along different directions parallel to the end lines, they are uniformly asymptotic
to +a and such solutions may appropriately be termed "pizza solutions". Moreover,
to prove Theorems 0.15 and 0.16 it was necessary to extend the results of Chapters 1
and 2 on saddle solutions for a larger class of N-functions and the interested reader can
immediately consult Section 5.1.

In Appendix A, we write some results involving Orlicz and Orlicz-Sobolev spaces
for unfamiliar readers with the topic. Such results are crucial for a good understanding
of this work.

This thesis ends with Appendix B, where we detail some properties about a class of
double well potentials, which were frequently mentioned throughout the text.

To end this introduction, we would like to point out that other interesting results
of this thesis were not listed here, however, the interested reader will be able to find such

results throughout the chapters.
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O problema de existéncia e classificacao das solucoes limitadas das equagoes

estacionarias do tipo Allen-Cahn
—Au+ A(x)V'(u) =0 em R" (21)

tem sido amplamente estudado nos tltimos anos, fornecendo uma rica quantidade de
familias de solucoes com formatos diferentes, tais como solucao periddica, heteroclinica,
sela e multibump. A equacao de Allen-Cahn foi introduzida em 1979 por S. Allen e J.
Cahn em [11] como um modelo para transigdes de fase em ligas binarias. O modelo padrao

de V ¢ o classico potencial de poco duplo de Ginzburg-Landau

1
V(t) = Z(ﬁ —1)} teR.

v

+/\+

o
S}

._"
o

Figure 7: O potencial de poco duplo V (¢) = 1(¢* — 1)

A funcao v é um parametro de fase que descreve pontualmente o estado do material e
os minimos globais de V' representam as fases puras do sistema. Diferentes valores de u

retratam configuracoes mistas e por solucoes de transicao entendemos solucoes inteiras
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de (21) que sdo assintoticas em diferentes dire¢oes para as fases puras do sistema. Na
equagao (21) a presenga do fator oscilatorio (positivo) A(z) modela um comportamento
nao homogéneo do sistema.

Quando A é uma funcao constante positiva (por exemplo, A(z) = 1), um problema
de longa data é caracterizar o conjunto das solugoes u € C%(R"™) de (21) satisfazendo
lu(z)] <1 e 0;u(x) > 0. Este problema foi apontado por De Giorgi em [34], onde ele
conjecturou que, quando n < 8 e V(t) = (t* — 1)2, todo o conjunto dessas solugoes se

reduz, sob translagdes, a tinica solugao ¢, € C*(R) do problema unidimensional

")+ V'(qt)) =0 em R, ¢q(0)=0 e lim g(t)=+1.

t—to0

Y

Figure 8: O grafico de q;.

A conjectura foi primeiramente provada no caso planar por Ghoussoub e Gui em [57]
mesmo para um potencial de poco duplo mais geral V. No caso n = 3 foi provado por

Ambrosio e Cabré em [19] e, assumindo
u(z) - +1 quando x; — +o0,

o mesmo resultado de rigidez foi obtido na dimensao n < 8 por Savin em [88], artigo ao
qual nos referimos também para uma extensa bibliografia sobre o argumento. Del Pino,
Kowalczyk e Wei mostraram em [37,38| que a simetria 1-D dessas solugbes é geralmente
perdida quando n > 9. Nos referimos também a 21,22, 40|, onde uma versao mais fraca
da conjectura de De Giorgi, conhecida como conjectura de Gibbons, foi obtida para todas
as dimensoes n e em configuragoes mais gerais. Esses resultados mostram que quando A

¢ uma constante positiva e u ¢ uma solugio limitada de (21) satisfazendo

u(z) = +1 quando z; — oo uniformemente em relacio a (zo,...,z,) € R"! (22)
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entdao u(z) = g4 (1) para todo z = (x1, 9, ..., z,,) € R™

Z
_.._IDO
0y
50
i)
2§ oo
X ~

Figure 9: Grafico de u em R3?

Solu¢oes de (21)-(22) s@o ditas heteroclinicas de —1 a 1. O estudo da existéncia
e propriedades qualitativas das solugoes heteroclinicas e varias generaliza¢oes tem sido
amplamente estudado e recebido atencao especial nos ultimos anos, pois esse tipo de
solucao aparece em muitos modelos matematicos associados a problemas que aparecem
na Fisica, Biologia, Mecanica e Quimica. Geralmente as solugoes heteroclinicas aparecem
como processos fisicos envolvendo transicoes varidveis de um equilibrio instavel para um
estavel, propagacao frontal em equacoes de reacao-difusao e transicao de fase. Para um
relato bastante abrangente, o leitor interessado pode comegar lendo os artigos [24,69] e
suas referéncias. Por exemplo, uma descricao simples de solugoes heteroclinicas pode ser

encontrada na equacao matemética do péndulo
q"(t) + bsin(g(t)) =0 em R,

em que b > 0 depende da aceleracao da gravidade e do comprimento da barra. Neste
caso, a analise do plano de fase mostra que existe uma solucao heteroclinica ¢ de —m a ,
isto &,

lim ¢(t)=—-m, lim q(t)=7 e lim ¢(t)=0.

t——o00 t—4o00 t—=+o0
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Fisicamente, esta solugao corresponde a movimentos assintoticos ao equilibrio vertical
instavel. Para uma discussdo mais profunda veja [24,70].

Este tipo de solucoes de transicdo do tipo heteroclinica persiste quando A nao é
constante em (21). O problema do tipo heteroclinico foi estudado pela primeira vez por

métodos variacionais para equagoes elipticas mais gerais da forma
—Au = g(z,y,u) em R x (23)

por Rabinowitz em [79], quando €2 é um dominio regular limitado em R"™. Assumindo que
a nao-linearidade g seja par e periédica na variavel x, Rabinowitz mostrou a existéncia
de solugbes para (23) satisfazendo a condigao de contorno de Dirichlet ou Neumann em
0f) e sendo assintotica quando x — oo a diferentes solugbes minimas u., peridédicas na
variavel z. Este resultado foi generalizado por Alves em [13]| para diferentes condicoes
em ¢, inclusive para o caso em que g é apenas assintoticamente periodico na variavel
x. Uma abordagem variacional relacionada foi usada para estudar o problema do tipo
heteroclinico para a equagao (21) no caso em que A é periddico em todas varidveis
em [5, 82, 83|, mostrando a existéncia de solugbes (minimas) u(x) que sdo periddicas
na variavel (z,...x,) e tais que u ¢ assintética a diferentes minimos do potencial V'
quando r; — *+o0o. Partindo da existéncia dessas solugoes heteroclinicas “basicas”, esses
artigos mostram como a presenca de um fator verdadeiramente oscilatério A(z,y) da
genericamente a existéncia de classes complexas de outras solucoes de transicao do tipo
heteroclinica em contraste com as resultados de rigidez acima descritos caracterizando o
caso autéonomo (ver também [9,27,84]).

Quando referido & equacao semilinear
—q"(t) +at)V'(q(t)) =0 em R, (24)

o problema de existéncia de solucoes heteroclinicas é um toépico classico na teoria das
equacoes diferenciais ordinarias. Nos tultimos anos tem havido um grande ntimero de
trabalhos que estudam a existéncia de solugao heteroclinica para (24) considerando
diferentes classes de fungdes a(t). Por exemplo:

Classe 1: [24] a(t) é uma constante positiva.

Classe 2: [24] a(t) é uma fung¢ao continua tal que

0< 1itnﬂga(t) e a(t+ 1) =a(t) paratodo t € R.
S
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Classe 3: [24,54] a(t) é uma fungdo continua tal que existem a,as > 0 verificando
a; < a(t) <ag, Vt €R e a(t) — ay quando [t| — +oo0,

onde a(t) < ag em algum conjunto de medida diferente de zero.
Classe 4: [12,54] a(t) ¢ assintoticamente periodica no infinito, ou seja, existe uma fun¢ao

periddica continua a, : R — R satisfazendo

la(t) — a,(t)] = 0 quando [t| — 400 e 0< inﬂga(t) <a(t) <a,(t) VteR.
€

Classe 5: [12] a € L¥(R) e

0 < a(0) = inf a(t) < aee = liminf a(t).
<a(0) =nfa(t) <a ﬁfﬂfio“()

Classe 6: [52,53] a € L*(R) e existem [, L € (0,+00) tais que
[ < a(t) < L quase em todos os lugares e a(t) — L quando [t| — 400

onde L/l é adequadamente limitado por cima.

Classe 7: [52] a(t) é par e existem [, L € (0, +00) tais que

[ <a(t) < L quase em todos os lugares em R.

Classe 8: [52,53] a € L*(R, [0, 400) e existem [ > 0, S < T, tais que

a(t) =1 parat ¢ [S,T].

Classe 9: [55] Existe ¢y € R tal que a(t) é crescente em (—o0,to] e a(t) é decrescente em

[to, +00). Além disso,

lim a(t)=1>0 e lim |t[(l—a(t))=0.

[t|] =400 [t| =400

Classe 10: [90] Existem [, > 0 tais que

1
a(t) =1 quando [t| — 400 e [ <a(t) < L= l+4u\/l—£// V'V (s)ds para todo t € R,
—1
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com e_ =min{s:s>—1, V/(s) =0} e e, =max{s:s<1V'(s) =0}.

Outro tipo de solucao de transicao para (21) foi introduzido por Dang, Fife e Peletier
em [33]. No caso planar n = 2, quando V' é um potencial de po¢o duplo par e A é uma
constante positiva, eles mostraram por um método de sub-supersolugao que (21) tem
uma tnica solugdo limitada u € C%(R?) com o mesmo sinal de x5, impar em ambas as
variaveis x; e xo e simétrica em relacao as diagonais xy = +x;. Ao longo de quaisquer
direcoes nao paralelas aos eixos coordenados, a solucao sela u é assintotica aos minimos
do potencial V' representando uma transicao de fase com interface cruzada. Observe
que, mesmo que esteja relacionado a solucoes heteroclinicas de transicaio minimas, sendo
assintotico a ¢, quando x5 — 400, ndo possui mais carater minimal (ver [63,89]). Muitas
extensoes para modelos de Allen-Cahn foram consideradas. No caso planar, nos referimos
a [3] para um estudo variacional de solugoes do tipo sela com simetrias diedrais de ordem
k (veja também [61] para uma abordagem variacional global para o problema de sela) e
a [39,59] para um estudo geral sobre solugoes k-end. Outras generalizagoes do estudo
de solugoes do tipo sela foram feitas em dimensdes maiores. Por exemplo, em [6] e [7],
Alessio e Montecchiari estabeleceram a existéncia de solugoes do tipo sela em R3. Em [2],
Alama, Bronsard e GGui estudaram uma versao vetorial de solucao do tipo sela, onde
sistemas de equagoes autonomas de Allen-Cahn foram considerados no plano (ver [60]
e 8] para estudos relacionados em R?). Uma generalizacdo da estrutura variacional
considerada em [2] pode ser encontrada em [10]. Para outros artigos interessantes em
dimensao superior, mencionamos [28,29, 77| para o caso das equagoes e |2| para o caso de
sistemas de equagoes de Allen-Cahn auténomos.

O analogo para solugoes do tipo sela para (21) no caso planar, quando A € C(R?) é
positivo, par, periddico e simétrico em relacao ao plano diagonal xo = x; foi introduzido
em [4] onde um procedimento variacional foi introduzido para encontrar como no caso
autonomo uma solu¢ao u de (21) em R? que é fmpar com respeito a ambas as suas
varidveis, simétrica em relagao a diagonal, estritamente positivo no primeiro quadrante
e ¢ assintotica aos minimos de V' ao longo de quaisquer direcoes nao paralelas aos eixos
coordenados. Além disso em [4] mostra-se que, quando y — +oo (uniformemente em

relacao a € R), a solugdo u ¢é assintotica ao conjunto dos z-impares solugdes minimas
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do tipo heteroclinica de (21) que sao periodicas na variavel y.
Ao longo desta tese, abordamos o problema da existéncia de solugoes heteroclinicas
e do tipo sela através dos métodos variacionais para o analogo do modelo de Allen-Cahn

na configuracao quaselinear da forma
~Agu+ A(z,y)V'(u) =0 em R? (25)
em que Agpu = div(¢(|Vu|)Vu) e & : R — [0, +00) ¢ uma N-fungao do tipo
lt|
B(t) = / s6(s)ds (26)
0
para uma ¢ € C*([0,+00), [0, +00)) tal que:
(¢1) o(t) >0 e (4(t)t) > 0 para qualquer t > 0.

(¢2) Existem [,m € R com 1 <[ <m tais que

(o(t)t)
(1)

(¢3) Existem constantes ¢, ca,n > 0 e s > 1 satisfazendo

[-1<

<m —1 paratodo t> 0.

ct* < p(t)t < cot*™! para t € (0,n).

(¢4) ¢ € nao-decrescente em (0, 400).

Gostarfamos de salientar que no estudo de problemas elipticos quasilineares
conduzidos pelo operador ®-Laplaciano, as condi¢bes (¢p1)-(¢2) sdo bem conhecidas e
garantem que @ e sua funcio complementar ® sio N-funcoes que verificam a chamada
condigdo Ay (ver o Apéndice A por um momento). Essas condi¢des garantem que &
se comporte de tal forma que o espaco de Orlicz-Sobolev associado a ® seja reflexivo e
separavel.

Nos ultimos anos, diante da necessidade de uma descricao matematica de problemas
fisicos, houve um nimero crescente de trabalhos envolvendo o operador ®-Laplaciano Ag
e sua teoria ja estd bastante desenvolvida. Como primeiro exemplo podemos considerar
0 €aso

O(t) =t|P, teR, pe(l,+00),

que estd relacionado ao célebre operador p-Laplaciano que frequentemente aparece em

modelos fisicos, por exemplo, em fluidos newtonianos e nao-newtonianos (ver 35, 36] e
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referéncias neles contidas). Motivado por exemplos concretos de equagoes decorrentes da,
mecanica dos fluidos e da teoria de plasticidade, Seregin e Fuchs em [46,47] (ver também

[45]) foram levados & minimizacao de integrais em que aparece o modelo logaritmico
O(t) = [t In(1+t]), teR, pe [l +o0),

que ¢ uma N-funcao do tipo (24). Outro modelo de N-fun¢do na forma (24) que
frequentemente surge em muitos campos da fisica e ciéncias relacionadas, como bioffsica

e design de reacoes quimicas, é
1 1
O(t) =—tP +-|t|?, teR, 1<p<qg<+oo.
p q

O operador diferencial associado com esta N-fungdo é conhecido como o operador (p, q)-

Laplaciano e o protétipo destes modelos pode ser escrito na forma
Uy = _A<I> + f(.CE,U)

Nesta configuracao, a funcao u geralmente descreve uma concentragao, Ag corresponde a
difusdo e f(z,u) é o termo de reagao que corresponde aos processos fonte e perda. Para
um relato bastante abrangente, o leitor interessado pode comegar referindo-se a [20,41].

Finalmente, vale mencionar que a N-funcao dada por
)= 1+t —1, teR, v>1,

aparece nos trabalhos [49, 50], onde os autores relatam que os estudos de equacoOes
quasilineares envolvendo o operador associado Ag sao motivados por modelos de
elasticidade nao linear. Para outros exemplos de N-fungoes do tipo (24) e mais aplicacoes,
recomendamos ao leitor que consulte [45,48] e a bibliografia neles contida.

Esta tese é uma coletanea de artigos publicados e submetidos listados abaixo:

(P1) FEmistence of saddle-type solutions for a class of quasilinear problems in R? Topol.
Methods Nonlinear Anal., 61(2), 2023, 825-868. (com Claudianor Alves and Piero

Montecchiari).

(P2) Existence of heteroclinic and saddle type solutions for a class of quasilinear problems
in whole R?, Commun. Contemp. Math., 2022. (com Claudianor Alves and Piero

Montecchiari).


https://doi.org/10.12775/TMNA.2022.039
https://www.worldscientific.com/doi/10.1142/S0219199722500614
https://www.worldscientific.com/doi/10.1142/S0219199722500614
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(P3) Existence of heteroclinic solutions for the prescribed curvature equation, J.

Differential Equations, 362, 2023, 484-513. (com Claudianor Alves).

(P4) Heteroclinic solutions for some classes of prescribed mean curvature equations in

whole R?, preprint. (com Claudianor Alves).

(P5) Saddle solutions for Allen-Cahn type equations involving the prescribed mean

curvature operator, in preparation.

Gostariamos de enfatizar que cada artigo é apresentado como um capitulo e
a exposicao dos capitulos varia um pouco das apresentacoes dos artigos a fim de
complementar os estudos performados l4.

Outro artigo que complementa esta tese é o seguinte:

(P6) Uniqueness of heteroclinic solutions in a class of autonomous quasilinear ODE

problems, preprint. (com Claudianor Alves and Piero Montecchiari).

A seguir, descrevemos a organizacao desta tese e apresentamos um breve panorama
dos temas estudados nos capitulos.

No Capitulo 1, apresentamos o artigo conjunto com os professores Claudianor Alves
e Piero Montecchiari [16]. O principal objetivo deste capitulo é provar a existéncia de

solucoes do tipo sela para a seguinte classe de equacoes quasilineares
~Agu+V'(u) =0 em R? (27)
em que o potencial V satisfaz as seguintes condi¢oes:
(Vi) V(t) > 0 paratodot € Re V(t) =0< t = —a,« para a > 0.
(Vo) V(—t) = V(t) para qualquer ¢t € R.
(V3) Existem 6, € (0, ) e wy, wy > 0 tais que

w1 ®(jt —a|) S V(t) Sw@(|t —a|) Vt € (a— b, a+6da).

(V4) Existem wy,wy > 0 tais que

V(1) < —wip(wa|a —t]) | — ]t ¥t € [0,0].

(V5) Existe dp > 0 tal que V' é crescente em (a0 — d, ).


https://doi.org/10.1016/j.jde.2023.03.027
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(Vs) Existem 7, e > 0 tais que

O(V'(t)) <vP(la —t]), Vie (a—e¢a).

Vale a pena mencionar que um exemplo importante de um potencial V' que verifica

as condicoes (V7)-(V5) é dado por

V(t) = (|t* —a®)), teR,

—& 83

Figure 10: O potencial V (t) = ®(|t* — a?|).

em que ¢ ¢ uma N-func¢ao da forma (26) verificando (¢1)-(¢2), que foi inspirada no cléssico
potencial de pogo duplo de Ginzburg-Landau V (t) = (t* — 1)2.

Nosso principal resultado envolvendo solugoes do tipo sela é o seguinte:

Teorema 0.1 Assuma (¢1)-(¢s) e (Vi )-(Vs). Entio, para cada j > 2 existe v; € Cp7(R?)
para algum vy € (0,1) tal que v; € uma solugdo fraca de (27) satisfazendo

(a) 0 < 0;(p,0) < a para qualquer 0 € [5 — % Z)ep>0,

(b) 0;(p, 5 +0) = —=0;(p,5 —0) para todo (p,0) € [0,4+00) X R,
(¢) 0j(p,0 + %) = —0;(p,0) para todo (p,0) € [0, +00) X R,

(d) v;(p,0) = o quando p — 400 para todo 6 € [§ — 3%, 5),

em que 0;(p,0) = v;(pcos(d), psin(F)).
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O item (d) do Teorema 0.1 é uma caracterizacdo do comportamento assintotico de

vj, 0 que garante que para k = 0,...,25 — 1 haja

T

9i(p,0) = (—a)*™ quando p — 400 sempre que 6 € (2

mw T T
+k—, =+ (k+1 —.).
J 2 ( )J

Portanto, a solucao do tipo sela pode ser vista como uma transicao de fase com interface
cruzada.
Na prova do Teorema 0.1 é crucial provar a existéncia e unicidade da solucao

heteroclinica impar minima para

—(o(ld')d") +V'(q) =0 em R. (28)

Depois disso, usamos as solucoes heteroclinicas como suporte para caracterizar o
comportamento assintotico da solugdo tipo sela para (27). A principal ferramenta utilizada
é o método variacional em espacos de Orlicz-Sobolev, mais precisamente, técnica de
minimizacdo em um conjunto de funcdes admissiveis. A ideia é buscar minimos do

funcional acao
Fla) = [ @)+ Via) d
sobre a classe
Ee = {q € VV;?(]R) : ¢ é impar q.t.p em R} .
Denotando por K¢ o conjunto de minimos de F' em Fg, temos o seguinte resultado:

Teorema 0.2 Assuma (¢1)-(¢3) e (V1)-(Vs). Entao, existe um tnico q € K¢ tal que é

uma solucao fraca de (28) sendo heteroclinica de —« para «, isto é,
q(t) > —a quando t — —oo e ¢(t) = a quando t — +o0.
Além disso, q € C’llO’Z(R) para algum vy € (0,1) e satisfaz as sequintes propriedades:
(a) q(t) = —q(—t) para qualquer t € R,
(b) 0 < q(t) < a para todo t > 0,
(c) q é crescente em R,
(d) ¢'(t) = 0 quando t — +o0,

(e) ¢ € nao-crescente em [0, +00),

(f) d'(t) > 0 para qualquer t € R.
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Gostarfamos de ressaltar que o Teorema 0.1 complementa o estudo feito em |[3],
pois naquele artigo os autores consideraram o operador Laplaciano, enquanto em nosso
estudo consideramos uma grande classe de equacoes envolvendo operadores quaselineares.
No entanto, é importante mencionar que algumas estimativas encontradas em [3] nao
podem ser utilizadas aqui, como por exemplo alguns principios de méximo, regularidade
C? para o operador Laplaciano bem como existéncia e unicidade de solucdo para
equacoes diferenciais ordinarias de segunda ordem. Aqui, foi necessario desenvolver
novas estimativas usando, por exemplo, uma desigualdade do tipo Harnack, regularidade
C1 por Lieberman [67] e um novo resultado de unicidade para uma classe de equagdes
diferenciais ordinérias conduzidas por operador quasilinear.

Agora, alguns resultados envolvendo solugoes heteroclinicas e suas generalizacoes
serao discutidos brevemente. Para problemas unidimensionais, gostariamos de citar os
artigos de Rabinowitz [80, 81| e Gavioli e Sanchez [56] e suas referéncias, em que o
leitor pode encontrar resultados interessantes sobre a existéncia de solugoes heteroclinicas
para problemas relacionados. Outras generalizagoes do estudo de solugoes do tipo
heteroclinicas foram feitas em dimensodes superiores, ver por exemplo Rabinowitz [79],
Alves [13], Rabinowitz e Stredulinsky [82]. Relacionado a sistema eliptico citamos o
artigo de Byeon, Montecchiari e Rabinowitz |27]. Na literatura também encontramos
alguns artigos que estudam a existéncia de solugao heteroclinica para classes de problemas
quaselineares, veja por exemplo Feliz [71-73| e para uma versao vetorial, recomendamos
o artigo por Ruan [86]. Por fim, para um relato recente sobre solugdes heteroclinicas
envolvendo o operador Laplaciano fracionério, encaminhamos o leitor para [30,31] onde
os autores mostraram a existéncia e unicidade do seguinte problema

(=02.)°q+¢*—q=0 em R, ¢(0)=0, lim q(t)==1, ¢ >0.

t—+o0

A existéncia de solucoes heteroclinicas para problemas de dimensdes superiores foi
explorada por Alves, Ambrosio e Torres Ledesma [14].

No capitulo 2 apresentamos o artigo [17], que é um trabalho conjunto com os
professores Claudianor Alves e Piero Montecchiari. Neste capitulo, estudando a existéncia
de solucoes heteroclinicas e do tipo sela fracas relacionadas da versao nao autonoma da

equagao (27), que é dada por

/ _ 2
— /9 ) - )
Agu+ A(z,y)V'(u) =0 em R (29)
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em que A : R? — R satisfaz

(A;) A éuma funcio continua e A(x,y) > 0 para cada (r,y) € R?
(42) A(z,y) = A(—=,y) = A(z, —y) para todo (z,y) € R?,

(A3) A(z,y) = A(xz + 1,y) = A(z,y + 1) para qualquer (z,y) € R?
(Ay) A(z,y) = A(y,x) para todo (z,y) € R%

Um interessante modelo para A é dado por

A(z,y) = cos(2mx) cos(2my) + ¢ com ¢ > 1.

Figure 11: Gréfico de A(x,y) = cos(2mx) cos(2my) + 2.

Neste capitulo, usamos métodos variacionais relacionados aos introduzidos em [4
)
e [16] para estabelecer a existéncia de (minimal) solugoes do tipo heteroclinica de —a a «

de (29), ou seja, solugoes fracas v € C’ﬁf(lf@) que sao 1-periodicas na variavel y tais que

v(x,y)— —a quando x — —oo e v(z,y) — a quando & — +oo uniformemente em y € R.
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Além disso, tomamos emprestadas algumas ideias desenvolvidas em [4] e |[79] para procurar

minimos do funcional acao

1
Ita) = [ [ @(9u) + Alw,)V(w) dyde,
R Jo
sobre a classe
Es(a) = {u e WPR % [0,1]): 0 <wu(z,y) < aparaz>0euéimpar em m} :

em que WP(R x [0,1]) denota o espaco Orlicz-Sobolev usual. Denotando por Kg(a) o

loc

conjunto de minimos de I em Fg(«), mostramos que K¢(«) ndo é vazio e é constituido
por solu¢des (minimal) do tipo heteroclinica de (29). As propriedades de minimalidade
destas solugoes do tipo heteroclinica nos permitem, num segundo passo, construir um
quadro variacional inspirado no introduzido em [4] para detectar a existéncia de solugoes
do tipo sela de (29), caracterizando seu o comportamento assintotico. Mais precisamente,

temos os seguintes resultados:

Teorema 0.3 Assuma (¢1)-(¢3), V € CHR,R), (V1)-(V3) e (A1)-(A3). Entao, existe
v E CI’B(RQ) para algum € (0,1) tal que v é uma solugao fraca de (29) que verifica o

loc

sequinte:
(a) v(z,y) = —v(—z,y) para todo (x,y) € R?,
(b) v(z,y) =v(x,y+ 1) para qualquer (z,y) € R?,
(c) 0 <v(z,y) < a para cada x>0 ey € R.

Além disso, v € uma solucao heteroclinica de —a a a.

Teorema 0.4 Assuma (¢1)-(¢4), V € CHR,R), (V1)-(Vy) e (A1)-(As). Entao, existe

v e CLP(R?) para algum B € (0,1) tal que v é uma solugio fraca de (29) que verifica o

loc

sequinte:
(a) 0 <v(z,y) < a sobre o primeiro quadrante em R?,
(b) v(z,y) = —v(—x,y) = —v(z, —y) para todo (x,y) € R?,
(c) v(z,y) = v(y,r) para qualquer (z,y) € R?,

(d) Ewxiste ug € Ko(o) tal que ||v — Tjuol| oo rx[jj+1)) — 0 quando j — 400,
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em que Tjup(x,y) = ug(z,y — j) para qualquer (z,y) € R

O item (d) do Teorema 0.4 caracteriza o comportamento assintotico de v. Ele
garante que ao longo de direcoes paralelas aos eixos coordenados a solucao do tipo sela
seja assintotica ao conjunto heteroclinico minimal Kg(«). Isso implica que ao longo de
qualquer direcao nao paralela aos eixos coordenados v é assintético no infinito para +a
e, portanto, a solucao do tipo sela pode ser vista como uma solucao de transicao de fase
com interface cruzada.

Gostarfamos de pontuar que os Teoremas 0.3 e 0.4 melhoram os resultados do
Capitulo 1 nao apenas pelo fato de que a funcao A(x,y) pode nao ser constante, mas
também porque, ao contrario do Capitulo 1, as suposicoes (V5) e (V5) ndo sao necessarias.
Além disso, notamos que embora a abordagem variacional seja inspirada naquela usada
em [4], muitas ferramentas usadas no contexto do Laplaciano classico, como por exemplo
alguns principios maximos, regularidade C?, teoremas de existéncia e unicidade local, nao
estdo mais disponiveis na estrutura atual. Para mostrar que (29) admite solugdes do tipo
transicao foi necessério desenvolver novas estimativas baseadas nas desigualdades do tipo
Harnack encontradas em [91] e em resultados sobre regularidade C'* para problemas
quaselineares conforme obtido por Lieberman em [67].

Hoje em dia é um fato bem conhecido que o operador de curvatura média prescrita

v <L> (30)
V14 |Vul?

tem sido extensivamente estudado nos ultimos anos, devido a estreita ligacao com a
teoria da capilaridade [13]. Apos os trabalhos pioneiros de Young [92], Laplace [66] e
Gauss |51] no inicio do século 18 sobre a curvatura média de uma superficie capilar,
muito ja foi produzido na literatura e é dificil e exaustivo mensurar aqui a vastidao
de aplicagoes fisicas envolvendo o operador (30), porém para o leitor interessado neste
assunto, poderiamos citar aqui alguns problemas que aparecem em transporte 6timo [25]
e nas superficies minimas [58]. Além disso, (30) também aparece em alguns problemas
envolvendo processos de reacao-difusao que ocorrem frequentemente em uma ampla
variedade de configuracgoes fisicas e biologicas. Por exemplo, em [65], Kurganov e Rosenau
observaram que quando a saturacao da difusao é incorporada a esses processos, pode
causar um impacto profundo na morfologia das transicoes que conectam os estados de

equilibrio, como agora nao so equilibrios descontinuos tornam-se permissiveis, mas ondas
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viajantes podem surgir em seu lugar. Uma classe especifica de tais processos é modelada

. Vu /
uy = div <\/W) —aV'(u), (31)

em que a funcao de reacao V é o classico potencial de poc¢o duplo de Ginzburg-Landau e

pela seguinte equacao

a ¢ uma constante. O impacto da difusao saturada em processos de difusao de reacao foi
investigado por eles na reta e no plano.

Conforme indicado no pardgrafo anterior, [65] forneceu uma significativa motivacao
fisica para o estudo das equagoes da forma (31) tendo como principal objetivo a existéncia
e classificagoes das solugbes do tipo transicao, ou seja, solugoes inteiras de (31) que sao
assintoticos em diferentes direcoes aos estados de equilibrio do sistema. Nesse sentido,
Bonheure, Obersnel e Omari in [23] investigaram a existéncia de uma solugao heteroclinica

para a equacao unidimensional

- (ﬁ) +at)V'(¢) =0 em R, (32)

procurando minimos de um funcional agdo sobre um subconjunto convexo de BVj,.(R)
feito de todas as funcoes satisfazendo uma condicao assintotica no infinito, em que os
autores consideraram como usual V' um potencial de poco duplo com minimos em ¢t = +1
com a funcao a assintotica a uma funcao periodica positiva, ou seja, a € L*(R) com
0 < ess 7%gﬂga(t) e existe a* € L*(R) 7-periddico, para algum 7 > 0, tal que a(t) < a*(¢)
quase em todos os lugares em R satisfazendo

esslim (a*(t) — a(t)) = 0.

[t]| =400

No capitulo 3 apresentamos o trabalho [14], no qual é um artigo conjunto com o
professor Claudianor Alves. Este capitulo trata da existéncia e propriedades qualitativas
das solugoes heteroclinicas da equagio de curvatura prescrita (32). A ideia basica é truncar
o operador de curvatura média para construir uma estrutura variacional inspirado naquele
introduzido em [74]| no espaco Orlicz-Sobolev VV&f(R), isto é, para obter uma equacao

auxiliar da forma
—(8(dNg) +at)V'(@) =0 em R (33)

em que ¢ : (0, +00) — (0, +00) é uma fungiao C* que verifica (¢ )-(¢3), a fim de estabelecer

a existéncia de solu¢do heteroclinica para (32) no caso em que a fungdo a pertenca a
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seguinte classe de funcoes

Classe 11: a € L*>(R) é uma fung¢do par nao negativa que satisfaz
= inf a(t 1 M .
0 < ag Jnf a(t) para algum >0

Ao longo deste capitulo, dizemos que uma funcao g é uma solu¢ao heteroclinica de

—a a o para (32) ((33)) se ¢ € CLP(R) para algum S € (0,1) e satisfaz a equacio (32)

loc

((33)) para todo t € R, e Além disso,

lim ¢(t) = —a, lim ¢(t)=a e lim ¢(t)=0.

t——o0 t——+o0 t——++oo

Nosso principal resultado neste capitulo é o seguinte:

Teorema 0.5 Assuma que a pertence a Classe 11, V € C*(R,R), (V1)-(Vz) e que

(Vi) (i) V"(£a) > 0.

(it) Ezistem & >0 eC = C(&) > 0 tais gue sup |V'(t)] < C para todo o € (0, &).
[t|€[0,0]

Entao, para cada L > 0 existe ag > 0 tal que para cada o € (0, ap) a equagao (32) possui

uma solucao heteroclinica q, de —a a « satisfazendo:
(a) qo(t) = —qa(—t) para todo t € R,
(b) 0 < qa(t) < a para todo t > 0,

(¢) |q.(t)] < VL para qualquer t € R.

A suposigao (V7)-(ii) ¢ uma condi¢do uniforme nos potenciais V' que depende de
a > 0 e uma classe de tais potenciais do tipo Ginzburg-Landau para os quais (V7)-(V5) e

(V7) sdo todos satisfeitos é
V()= (t*—a?)? a>0,

que inclui o potencial duplo classico de Ginzburg-Landau quando a« = 1. O leitor esté
convidado a ver que o teorema acima ¢ verdadeiro para os potenciais do tipo Ginzburg-
Landau, por exemplo, quando « é pequeno.

Nosso segundo resultado principal é o seguinte:

Teorema 0.6 Assuma (¢1)-(¢2), V € CHR,R), (V1)-(V3) e que a pertence a Classe 11.

Entao a equagao (33) tem uma solugao heteroclinica de —a a « satisfazendo



Introducao 42

(a) q(t) = —q(—t) para qualquer t € R,
(b) 0 < q(t) < a para todo t > 0.
Além disso, levando em consideracao as suposicoes (¢3) e

(Vs) Ezistem dy,dy >0 e X >0

V(1) < diop(do|t — )|t — | para todo t € [a — N\, e + A,

entdo as desigualdades em (b) sao estritas.

t2
Além disso, o caso classico ®(t) = 3 corresponde & equagao (24), e neste caso o

Teorema (.6 pode ser escrito da seguinte maneira

Teorema 0.7 Assuma V € C*(R,R), (V1)-(Va), (V5) — (i) e que a pertence & Classe 11.

Entao a equagao (24) tem uma solugao heteroclinica de —a a o em C*(R) tal que
(a) q(t) = —q(—t) para qualquer t € R,
(b) 0 < q(t) < a para todo t > 0.

O Teorema 0.6 vale para todo a > 0 e complementa o estudo feito na Secao 1.1 do
Capitulo 1, porque a = 1 14. Além disso, o Teorema 0.7 também complementa alguns
artigos sobre o estudo de solugoes heteroclinicas, porque aqui estamos considerando uma
nova classe de funcoes a que permite ser nula em um intervalo simétrico compacto em
R, e o Teorema 0.6 complementa o estudo feito em [23], pois nesse artigo os autores
consideraram o caso i%f a(t) > 0 e aplicaram métodos variacionais no espa¢o BVj,.(R),
enquanto aqui usamos métodos variacionais nos espacos de Orlicz-Sobolev adaptando para
0 nosso caso algumas ideias encontradas em |74], i%f a(t) = 0 e provamos alguns resultados
envolvendo a unicidade de solugdo heteroclinica para (32) quando a(t) é constante.

No capitulo 4, apresentamos outro artigo conjunto com o professor Claudianor [15].
O principal objetivo deste capitulo é usar métodos variacionais para mostrar a existéncia

de solucoes heteroclinicas para a equacao de curvatura média prescrita do tipo

—div <L> + A(ex,y)V'(u) =0 em R? (34)

V1+|Vul?
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levando em consideracao diferentes condi¢des geométricas sobre a funcao A : R? — R com
e > 0. Ao longo do Capitulo 4, entendemos por solugao heteroclinica uma funcao u que

¢ solucao fraca de (34) e tem a seguinte propriedade assintotica no infinito
u(z,y) = a quando z — —oc0 e u(z,y) — f quando x — +oo uniformemente em y € R,

em que « e 3 sao minimos globais de V : R — R que satisfazem as seguintes suposicoes:
(V1) V € CY(R,R).
(Va) a < BeV(a)=V(3)=0.

(V3) V(t) > 0 para qualquer t € R e V(t) > 0 para todo t € («, 3).

(Vi) Existem XA > 0 e C(\) > 0 tais que sup [V'(t)] < C()\) quando
max{|al, [B[} € (0, 7).

Gostarfamos de salientar que a condi¢do (V) é uniforme em relagio as raizes a e 3

dos potenciais V' e uma classe de tais potenciais do tipo Ginzburg-Landau para os quais

(V1)-(Viy) sdo satisfeitos é

V(t)=(t—a)’(t - ) (35)
Além disso, quando o = — /3, outra classe de potenciais V' do tipo Sine-Gordon pode ser
dada por
tm
V(t) = B+ [ cos (E) : (36)

/\ |
+ t + + >

« B T B

¥

Figure 12: Os potenciais V (t) = (t —a)?(t—3)? e V(t) = B+ [ cos <%> respectivamente.

Esses tipos de potenciais surgem em varios campos da Fisica Matematica, por exemplo em

modelos de transicoes de fase em ligas metélicas binarias e propagacao de deslocamentos
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em cristais, respectivamente, em que o prototipo desses modelos pode ser representado
por equagoes estacionarias do tipo Allen-Cahn (21). Geralmente a introdugao de um fator
A(z) pode ser usada para estudar materiais ndo homogéneos. Para uma discussao mais
profunda dessas aplicagdes, nés encaminhamos o leitor interessado para [11,44].

A seguir, associados & funcao A assumimos as suposicoes:

(A;) A é continua e existe Ay > 0 tal que A(z,y) > Ap para todo (z,y) € R%

(A2) A(z,y) = A(z, —y) para todo (z,y) € R?,

(A3) A(z,y) = A(x,y + 1) para qualquer (z,y) € R2

Agora vamos citar as classes de A que iremos considerar nesta tese.
Classe A: A satisfaz (A;)-(As3) e é 1-periodica na variavel z.
Classe B: A satisfaz (A;)-(As) e existe uma fungio continua A, : R* — R, que é 1-

periddica em z, satisfazendo A(z,y) < A,(x,y) para todo (z,y) € R? e

| Az, y) — Ap(x,y)] = 0 quando |(z,y)[ = +oc.

Classe C: A satisfaz (A;)-(4;) e

inf A(z,y) < sup A(0,y) < liminf A(z,y) = As < +00.
K y€[0,1] |(z,y)|—+o00

Classe D: A satisfaz (A;)-(A3), € uma funcdo continua ndo negativa, par em z,

A € L*™(R?) e existe K > 0 tal que

inf A(z,y) > 0.

lz|>K, ye€l0,1]

Gostarfamos de destacar que algumas dessas condigoes sao bem conhecidas no
contexto do operador laplaciano. Por exemplo, uma condi¢ao como a Classe A foi estudada
por Rabinowitz [79] para mostrar a existéncia de solugdo heteroclinica para uma classe

de equagoes diferenciais parciais de segunda ordem na qual ele inclui a equacao da forma
—Au+ A(z,y)V'(u) =0 em €, (37)

em que o conjunto €2 é um dominio cilindrico em R™ dado por £ =R x D com D sendo

conjunto aberto limitado em R"! tal que D € C'. Na literatura também encontramos
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trabalhos interessantes que estudam a equagao (37) no caso em que A(z,y) é periddico
em todas as variaveis quando 2 = R?, veja por exemplo Rabinowitz and Stredulinsky [82]
e Alessio, Gui and Montecchiari [4]. Relacionado as Classes B e C citamos um artigo de
Alves [13], em que o autor estabeleceu a existéncia de solugoes classicas para (37) sobre
um dominio cilindrico que sao heteroclinicas na variavel . Finalmente, a Classe D foi
introduzida em [14]. Os principais resultados deste capitulo podem ser apresentados da

seguinte forma.

Teorema 0.8 Assuma (\71)-(‘74), e =1 e que A pertence a Classe A ou B. Dado L > 0

existe 6 > 0 tal que se max{|al,|5|} € (0,6) entdo a equagao (34) possui uma solugdo

Lo 17’7
heteroclinica uq g de o a 8 em C)),

(R?), para algum v € (0,1), satisfazendo
(a) uap € l-periodica em y.

(b) a <wuyp(z,y) < B para qualquer (z,y) € R

(¢) IVtapllegee) < VL.

Além disso, se V € C*(R,R) entdo as desigualdades em (b) sio estritas.

Teorema 0.9 Assuma (V1)-(V,) e que A pertence o Classe C. Eriste ¢g > 0 tal que para
cada € € (0,¢9) e L > 0 existe 6 > 0 tal que se max{|al|,|B|} € (0,0) entdo a equagdo

(34) possui uma solugao heteroclinica u,p de o a 5 em CZIO’Z(RQ), para algum v € (0,1),

verificando
(a) uap € 1-periodica em y.
(b) a < wugp(z,y) < B para qualquer (z,y) € R
(¢) |Vtags|eme) < VL.

Além disso, se V € C*(R,R) ocorre entio as desigualdades em (b) sio estritas.

Exigindo um pouco mais do potencial V' podemos relaxar as condigoes sobre a funcao
A para garantir a existéncia de uma solugao heteroclinica para (34), como diz o seguinte

resultado.

Teorema 0.10 Assuma V € C?(R,R), (Va)-(V4) com a = —f, e =1 e que A pertence

Classe D. Além disso, assuma (Va) e
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(Vs) V'(=8).V"(8) > 0.

FEntao, para cada L > 0 eziste § > 0 tal que se f € (0,0) entdo a equacao (34) possui

uma solug¢ao heteroclinica ug de —f a B em C’loc( %), para algum ~y € (0, 1), verificando
(a) ug(z,y) = —ug(—x,y) para qualquer (z,y) € R?,
(b) us(x,y) =ug(z,y + 1) para todo (z,y) € R2.
(¢) 0 <ug(x,y) < B para x > 0.

(@) |Vusller) < VI

O leitor é convidado a ver que os teoremas acima sao verdadeiros para os potenciais
de Ginzburg-Landau (35) e Sine-Gordon (36) quando as raizes « e § tém uma pequena
distancia entre elas.

Motivados pelas ideias do Capitulo 3, na prova dos teoremas acima, truncamos o
operador diferencial envolvido em (37) de tal maneira que o novo operador pode ser visto
como um operador quasilinear na forma de divergéncia. Por esta razao, como primeiro

passo no presente capitulo, estudamos equacoes quaselineares da forma
~Agu+ A(ex,y)V'(u) =0 em R? (38)

em que ¢ é uma N-func¢do da forma (26) com ¢ : (0,400) — (0, 400) sendo uma funcdo

C' verificando as condi¢oes (¢1)-(¢3). As solugoes de (38) sao encontradas como minimos

= (/ / O(|Vuw]) + Alex, y)V(w))dxdy)

sobre a classe de fun¢oes admissiveis

do funcional agao

loc

Ta(a,B)= {wevw ®(Rx(0,1)): 7w — a(f) em L2((0,1)x (0, 1)) quando k —>—oo(—|—oo)} .
Nossos resultados envolvendo a equagao quaselinear (38) sdo apresentados abaixo:

Teorema 0.11 Assuma (¢1)-(¢2), (V1)-(Vi), € = 1 e que A pertence & Classe A ou B.
Entdo a equacdo (38) tem uma solucdo heteroclinica de o a B em Cp)(R?) para algum

loc

v € (0,1) tal que

(a) u(z,y) = u(x,y + 1) para qualquer (x,y) € R2.
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(b) a <wu(x,y) < B para todo (z,y) € R2.
Além disso, levando em consideracdo as suposicoes (¢3) e

(Vs) Erzistem dy,dy,ds,dy >0 e A > 0 tal que

V/()] < di(dslt — Bt — Bl para todo t € [8— A, B+ A

\V'(t)| < dzop(dylt — a|)|t — | para todo t € [a — N\, a0 + A],
entdo as desigualdades em (b) sdo estritas.

Teorema 0.12 Assuma (¢1)-(¢2), (V1)-(V3) e que A pertence o Classe C. Entdo, existe
uma constante €g > 0 tal que para cada € € (0,€0) a equacao (38) tem uma solugdo

heteroclinica de o a B em C.7(R?) para algum v € (0,1) tal que
(a) u(x,y) = u(z,y + 1) para qualquer (z,y) € R
(b) a <u(x,y) < B para todo (z,y) € R

Além disso, assumindo (¢3) e (Vi) temos que as desigualdades em (b) sio estritas.

Teorema 0.13 Assuma (¢1)-(¢2), (V1)-(V3) e (V3) com oo = =B, e = 1 e que A pertence

a Classe D. Considere também a sequinte suposicao
(V7)) Ezistem 1> 0 e 0 € (0,5) tais que

ud (|t — Bl) < V(1), Ve (B—06,5+0).

Entao, a equagao (38) possui uma solug¢ao heteroclinica w de —( a B em C'llo’z(R2) para

alguma v € (0,1) tal que
(a) u(x,y) = —u(—=x,y) para qualquer (z,y) € R?.
(b) u(z,y) = u(z,y + 1) para todo (z,y) € R2.
(¢c) 0 <u(x,y) < B para qualquer z >0 ey € R.

Além disso, se (¢3) e (Vi) ocorrem entio as desigualdades em (c) sdo estritas.
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Aqui vale a pena mencionar que um exemplo de potencial V' que satisfaz as condi¢oes
(TA)-(77) ¢ dado por
V(t) = o(|(t — o)t = B)I), (39)

em que ¢ ¢ uma N-funcado do tipo (26) verificando (¢1)-(¢2). Além disso, o caso cléssico
t? : ,
O(t) = ) corresponde ao operador Laplaciano, e neste caso, como estamos considerando

uma nova classe de fungoes A, podemos reescrever o Teorema 0.13 da seguinte forma

Teorema 0.14 Assuma o = —f3, V € C*(R,R), (V3)-(Vs), (Vs), (Va) e que A pertence a
Classe D. Entio a equacdo (37) com Q = R? possui uma solugio heteroclinica (cldssica)

u de —f a (B tal que
(a) w(z,y) = —u(—x,y) para qualquer (z,y) € R?.
(b) u(z,y) = u(z,y + 1) para todo (z,y) € R2.
(¢c) 0 <u(x,y) < B para qualquer x >0 ey € R.

Apontamos agora algumas interacoes de nossos resultados com outros trabalhos ja
conhecidos na literatura. Por exemplo, os Teoremas 0.8, 0.9 e 0.10 complementam o
estudo realizado em [14] e [23|, porque nesses artigos os autores consideraram a equagao
unidimensional (12), enquanto tratamos de (14) e investigamos a existéncia de uma
solugdo heteroclinica de (14) para outras classes de fungoes A. Além disso, os Teoremas
0.11 e 0.12 complementam os resultados obtidos em [13], porque naquele artigo o autor
considerou o operador Laplaciano enquanto aqui consideramos uma grande classe de
operadores quaselineares.

Finalmente, no Capitulo 5 apresentamos o artigo [62]|, que combina os argumentos
desenvolvidos nos capitulos anteriores para estudar a existéncia e propriedades qualitativas
de solugoes de sela para algumas classes de equacoes de curvatura média prescritas como

segue

—div (L) + Az, y)V'(u) =0 em R (40)

V 1+ |Vul?

Os principais teoremas deste capitulo estao listados abaixo.

Teorema 0.15 Assuma V € C*(R,R), (V1)-(Va), (V%), e (A1)-(As). Dado L > 0 existe

d > 0 tal que se o € (0,6) entdo a equacdo de curvatura média prescrita (40) possui

1y

WI(R?), para algum v € (0,1), satisfazendo as sequintes

uma solugao fraca v, em C

propriedades:
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(a) 0 < var(z,y) < a no primeiro quadrante em R,

(b) Va.r(7,y) = —var(—2,y) = —var(z,—y) para todo (z,y) € R?,
(¢) Va.r(x,y) =v4r1(y,z) para qualquer (x,y) € R?,

(d) Var(z,y) — o quando x — o0 e y — o0,

(e) Vor(x,y) = —a quando © — Foo e y — £o0,

(f) IVVa,Ll oo 2y < VL.

Quando A(z,y) é uma constante positiva, obtemos um namero infinito de solugoes
do tipo sela geometricamente distintas para a equagao (40). Este fato é relatado no

seguinte resultado.

Teorema 0.16 Assuma V € C*(R,R), (V1)-(Va), (V%) e que A(z,y) é uma constante
positiva. Entao, dado L > 0 existe § > 0 tal que se a € (0,9) entdo para cada j > 2 a
equagdo de curvatura média prescrita (40) possui uma solugdo fraca v, ; em C’ZIO’V(RQ),

C

para algum v € (0,1), satisfazendo
(a) 0 < 0q,r;(p,0) < a para qualquer 0 € [5 — 35 Z)ep>0,
() ars ()5 +0) = —5ur5(p, 5 — 6) para todo (p,6) € [0, +50) X R,
(¢) ans(p 0+ F) = —15(p,0) para todo (p,6) € [0, +00) x R,

(d) Dor;i(p,0) = (—a)* quando p — +oo sempre que 6 € (% + k%, 5+ (k+ 1)§>

para k=10,...,25 — 1,
(¢) |Vvarjllz==s) < VL,
em que Un.r1,(p,0) = va,r;i(pcos(d), psin(8)).

As solugoes v,,1,; descritas no teorema acima sao caracterizadas pelo fato de que, ao
longo de diferentes direcoes paralelas as linhas finais, elas sdo uniformemente assintéticas
para +« e tais solucbes podem serem apropriadamente denominados "solucoes pizzas”.
Além disso, para provar os Teoremas 0.15 e 0.16 foi necessario estender os resultados dos
Capitulos 1 e 2 sobre solucoes de sela para uma classe maior de N-funcoes e o leitor

interessado pode consultar imediatamente a Secao 5.1.
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No Apéndice A, escrevemos alguns resultados envolvendo espacos de Orlicz e Orlicz-
Sobolev para leitores nao familiarizados com o assunto. Tais resultados sao cruciais para
uma boa compreensao deste trabalho.

Esta tese termina com o Apéndice B, em que detalhamos algumas propriedades
sobre uma classe de potenciais de poco duplo, que foram frequentemente mencionados ao
longo do texto.

Para finalizar esta introducao, gostariamos de salientar que outros resultados
interessantes desta tese nao foram listados aqui, porém, o leitor interessado poderé

encontrar tais resultados ao longo dos capitulos.



CHAPTER 1

SADDLE-TYPE SOLUTIONS FOR
AUTONOMOUS QUASILINEAR
EQUATIONS IN R?

In this chapter, we will show the existence of infinite saddle-type solutions for

autonomous quasilinear elliptic equations of the form
~Agu+V'(u) =0 in R? (1.1)

where Agu = div(¢(|Vu|)Vu), & : R — [0,+00) is an N-function of the form (6)
satisfying (¢1)-(¢4) and V : R — R is a double-well potential with minima at t = +a
satisfying V' € C?*(R) and (V;)-(Vs). An important prototype of V is the model
V(t) = ®(|t? — o?|). Tt is important to point out that a solution v of (1.1) is said to
be saddle-type when v is a weak solution of (1.1) in C\v%(R?) for some 3 € (0,1) and the

function o(p, #) = v(pcos(d), psin(f)) satisfies for a certain j € N the equalities below

b(p. 5 +6) = =0(p, 5 — 0) amd ¥(p, 6 + §> = ~(p,8). for all (p,0) € [0, +00) x R.

s

In other words, a saddle solution is antisymmetric with respect to the half-line 6 = 7

and % is an antiperiodic in the angle variable. Moreover, the characterization of the

asymptotic behavior of v is given by

o(p,0) - a as p— +oo forany 6 € [g_%’g>



1.1. Heteroclinic solution on R 52

To fulfill our objective in this chapter, we strongly resorted to a deep and detailed study

of the quasilinear ordinary differential equation of the type

—(¢(l¢Ng) +V'(@) =0 in R. (1.2)

We will see, in our argument, that this one-dimensional study applies an important rule

to find and characterize the asymptotic behavior of saddle-type solutions.

1.1 Heteroclinic solution on R

The purpose of this section is to use arguments from the calculus of variations to
find a solution to equation (1.2), as well as to investigate issues such as uniqueness of
the solution, qualitative properties, exponential estimates at infinity, and compactness

properties.

1.1.1 The Cauchy problem

To begin with, let us consider the differential equation (1.2) provided with the following

conditions
q(0) = g0 and ¢'(0) = ¢, (1.3)

where ¢ and ¢ are real numbers. The conditions in (1.3) are called initial conditions and
the problem

(@(ld' D' (1) = V'(a(t)) tER,

q(0) = qo, (CP)

q'(0) = g,
is said Cauchy problem. Here we would like to point out that when there is g € C’llo’g (R),
for some vy € (0, 1), satisfying equation (1.2) punctually and checking the initial conditions
(1.3) we simply say that ¢ is a solution to the Cauchy problem (CP). In general, in the
study of Cauchy problem, some questions arise, such as the existence of a solution ¢,
its domain of definition and uniqueness when the solution exists. The following is our

uniqueness result on the Cauchy problem (CP).
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Theorem 1.1 Assume that there exists a solution q for (C'P) such that there are positive

constants r and p satisfying:

(a) ¢'(t) > p for any t € (—r, 7).

(b) g € WH(R).
Then, q is unique in (—r,r).
Proof. According to item (b), let us fix L > 0 such that

I (t)]| < L for all teR.
Now, suppose that u is another solution of (C'P). Setting
w(t) = (¢ O (t) — (| ()N (1), tER,

a direct computation gives

where
() =V'(q@t) —V'(u®?), teR.
Consequently, t t
w(t):/O w’(s)ds:/o Y(s)ds for t>0
and
Iw(t)|§t£[g«ﬁlw(8)\, t>0. (1.4)

On the other hand, as V' € C*(R), from item (b),
()] = [V'(q(t)) = V'(u(t)| < Klq(t) —u(t)], VteR,
for some K > 0. Hence, using the equality ¢(0) = go = u(0),
()] < K/Ot 1g/(s) — o/ (s)[ds Vit > 0. (1.5)

Now, given t € (0,7), the item (a) ensures that u/(¢),¢'(t) > 0. Then, assuming that
¢(t) < /(1) and using (1),

u/(t)
o(u'(t))u'(t) — ¢(q'(t)q' (1) = / (6(s)s)'ds = Kilq'(t) — ' (2)],
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where

Thereby, by definition of w,
w(t)] = Kl (t) — ' (B)] for t e (0,7).

By (¢2)7 ] ]
(o(t)t)" = %qﬁ(t)t for any ¢ € (0, L),

Consequently, by item (a),
(¢(s)s) > ——a(d'()d'(t) > ——d(p)p Vs € [¢'(1), v/ (1)],

implying that K; > a where a = Z2¢(p)p for any t € (0,7), and so,

()~ ()] < hwl)], Vi€ (0,) (16)
Gathering (1.5) and (1.6) we get

w1 < 5 [ letslas, vee o

that combines with (1.4) to provide
K t
lw(t)] < Et/ lw(s)|ds, Vte (0,r).
0

Fixing A = £ and x(t) = @ for t € (0,r), we find

NOEY. / w(s)|ds = A / Jw(s)|ds + A / SIx(s)lds,

for any 0 < ¢ < t < r. Now, it follows from Gronwall’s inequality (see |78, Theorem

1.2.2]) that
ol < (4 [ luolds) et v o)
0
Taking e — 0 we find w(t) = 0 for each ¢ € (0,r), and so, ¢(¢'(t))q'(t) = ¢(v'(t))w'(¢),
but since ¢(t)t is increasing on (0,400) and ¢(0) = u(0) we conclude that ¢ = w in (0, 7).

The same argument works for ¢ € (—r,0), and the proof is completed. =
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1.1.2 Existence of minimal solution

Our goal in this section is to use a minimization technique to find a heteroclinic solution
from —a to « for quasilinear elliptic equation (1.2). In order to find odd solutions, let’s

consider the following class

Eg = {u e WLP(R) : u(t) = —u(—t) ae. in ]R} ,

loc

where I/Vli’f)(R) denotes the usual Orlicz-Sobolev space. Now, the functional' associated

F: W (R) = RU {400} with equation (1.2) is given by
F(u) = / L(u)dt, where L(u)=®(Ju'|) 4+ V(u).
R

First, we are going to show that the functional F' is bounded from below. Indeed, by the
definitions of ® and V, £(u) > 0 for all u € W,>*(R), and so,

loc

F(u) >0 for any ue Wo*(R),

loc

from where it follows that F'is bounded from below. Since the main idea of this section
is to show that F' has a minimum on FEg, the question now is whether there exists u € Eg
such that F(u) < 4o00. To see this, it is simple to note that the function ¢, : R — R

defined by
—a, if t< —a,

po(t) =19 t, if —a<t<a, (1.7)
a, if t>a,

belongs to Fg and satisfies F'(¢,) < +oo. Hence,

cp = inf F(q)

ueFly
is well defined.
With these preliminaries, let us now prove some estimates to show that the infimum

of F' on Fg is assumed.
Lemma 1.1 If u € Eg and t1,ty € R such that t; < ty, then

B(fu(tn) — ulta)) < 2= oo,

o — 1t Jy

where & was fived in Lemma A.2.

!The term functional is used to designate a real function whose field of definition is a subset of some

space of functions.
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Proof. First, from |26, Theorem 8.2],

|u(t) = u(ty)] =

to
/ o ()t
t1

O(|u(ty) —ulty)]) = @ (/j u’(t)dt) : (1.8)

and since ® is even we obtain that

Therefore, due to Jensen’s inequality |87, Theorem 3.3] we get

o ( /: u’(t)dt> < t;tl /: B((ty — 1)l (1)) dt. (1.9)

Thereby, combining estimates (1.8) and (1.9), one has

O(fu(tz) — u(tr)]) <

27— U

/ttQ ((ty — t1)u'(t))dt

that combines with Lemma A.2 to give

B(fu(tn) — ulta)) < 2= o),

o — 11 Jy
and the lemma follows. m

As a consequence, we obtain the following result.

Lemma 1.2 Let r > 0. If u € Eg satisfies V(u(t)) > r for any t € (t1,t2) C [0,400),
then there is p, > 0 independent of t1 and ty such that

— 1
[ et > i) — ate) + e = ) 2 ok (@atn) = u(a)),

where h(t) = min{t1, t}.
Proof. Let u € Ey satisfying V' (u(t)) > r > 0 for any ¢ € (¢1,¢2). Thanks to Lemma 1.1,

— 1
L(u t1) — u(t +r(te —t1).
[tz St — ate) + -1
On the other hand, we know that & (to — t;) = max{(ty — t;)’, (ta — t;)™}. Thus, if

&1(ta —t1) = (ta — t1)™, then

_1( S (ty — 1) m1>’"ml.

m

/t Lluyd> L [%( (lu(tz) — u(t)])

ty — 1) m

Consequently, employing Young’s inequality for the conjugate exponents m and —"; we

obtain

/ 2£(u)dt > " B (|ults) — ulty)]) .

t1



1.1. Heteroclinic solution on R 57

Now, if & (ts — t1) = (t2 — t1)!, a similar argument works to prove that
1
l .

/tQ L)t > r T o (fults) — ulty)])

1
Setting i, = min{r 7 ,r" = } and h(t) = min{t1, ¢}, we arrive at the inequality below
to
| et = poh @(u(e) - ),
t1
which is precisely the assertion of the lemma. m

To fulfill our purpose in this section, hereafter, given 6 > 0 we will fix a single real

o {1 (0 (2))). w10

where Fua(2) is given according to the Lemma 1.1 with r = w® (£). Moreover, from (V;)

number \; > 0 such that

and (V3) we claim that there are w,w > 0 satisfying
wd(|t —a|) < V(t) <wO(|t —al), Vte0,a+d], (1.11)

where 0, > 0 was given in (V3). Indeed, by (V}) and the fact that ®(¢) = 0 if, and only if

V(t)
O([t—al)

Hence, there are by, by > 0 such that

t = 0, it follows that the function is continuous and strictly positive in [0, a — d,].

bd(|t — o) < V(E) < bo®(|t —al) VEe[0,a—d,].

Now (1.11) follows by taking w = min{ay,w;} and W = max{ay, wy}, where w; and ws
were given in (V3).

With this in mind, we prove the following result.
Lemma 1.3 Ifu € Eg and 6 € (0,04] such that F'(u) < co + As, then ||u||pom) < a4 0.

Proof. Let u € Eg and assume for the sake of contradiction that there exists ¢ty € R such
that u(tg) > a+ 0. As u is odd, we can assume without loss of generality tq > 0. Thus,
since u(0) = 0 and u is continuous, there exist ¢t1,0,7 € R with 0 < t; < 0 < 7 < 1

satisfying
J J
u(ty) = a, u(o) =a+o, u(T) = a+ 4, and atg <u(t) <a+0oVte (o).

Consequently, from (1.11),
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According to Lemma 1.2, there is T3y > 0 such that

[ 2wt = pyagg p@(ule) ~u) = ngeyn (2(3)) 012

On the other hand, as u(t;) = «, the function given by

—a, if t< —ty,
at) =9 u(t), if —t <t <t,
a, if tZtl

belongs to Eg, and hence, co < F(@), or equivalently,
t1
cp < / L(u)dt. (1.13)
—t1

From (1.10)-(1.13),

t1 T

Cp + As > F(u) > / E(u)dt —l—/ E(u)dt > ce + As,
—t1 o
a contradiction. This concludes the proof. m
In other words, Lemma 1.3 states that when the energy of u with respect to F is
sufficiently close to the minimum energy cg, then the L*-norm of u is less than or equal

to a + 6. It follows from this fact that elements of Fg that have minimum energy in

relation to the functional ' have L°-norm less than or equal to a.
Corollary 1.1 Ifu € Eg such that F(u) = ce, then ||u||Le~®) < a.

Proof. Indeed, given any § € (0,d,], we have that F'(u) < ce + As, and so, thanks to
Lemma 1.3, |[u||pe@®) < a + 6. Therefore, taking the limit § — 0 we get ||u||L~@m) < a,
and the result follows. =

As an important consequence of Lemma 1.3, we also derive the following result that
characterizes the asymptotic behavior of functions u € Fg that have energy with respect

to F' close to the minimum energy.

Lemma 1.4 Let u € Eg and § € (0,0, such that F(u) < cp + A\s. Then,
lu(t)| = a as |t| — +oo.
Proof. First of all, we claim that

liminf &([ju(t)| — af) = 0.
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Indeed, if this limit does not hold, there are £y, r > 0 satisfying
O(||u(t)] — af) > r Vt > to,

which combined with Lemma 1.3, (V3) and (1.11) yields

from where it follows that
F(u) > wr(t —tg) forall t > t,

and taking the limit ¢ — +o0, it follows that F'(u) = +oo, which is impossible. Next we
are going to show that

lim sup ®(||u(t)| — af) = 0.

t—+00

Assume by contradiction that

lim sup @(||u(t)| — «f) > 0.

t—+00

From this, there is 7 > 0 such that

lim sup O(||u(t)| — af) > 2r. (1.14)

t—-+o0
In what follows, let us fix € > 0 satisfying 2!™™ > e. By continuity of the functions ®
and u, we can find a sequence of disjoint intervals (o;,7;) with 0 < 0y < 7; < 0441 < Tit1,

t € N, and 0; — 400 as © — +oo such that for each 4,
O(||u(oy)|—a]) = re, ®(||u(r)|—al) =r and re < O(||u(t)|—a|) < rVt € [o;, 1], (1.15)

and so, from (1.11) together with (1.15) yields V (u(t)) > wre for every t € [o;, ;] and for
all 2 € N. From this, by Lemma 1.2 there exists fi, > 0 such that

/ L(u)dt > pyh(D(|u(m) — uley)]), Vie N, (1.16)

On the other hand, the reader can easily verify the following elementary inequality through

item-(a) of Lemma A.8
d(|t — s|) > 21D (Jt]) — ®(|s]), Vt,s € R.
Now, combining the inequality above with (1.15), we get

®(Ju(r:) — uloi)]) > 27" (lJu(m)| — al) — @([[u(es)| — af) = 217" —€)r,
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from where it follows from (1.16) that

too ery +o00
HOEDY / Llw)dt 2 pyerh (277 = e)r) = 400,
i=1 77 i=1

which contradicts the fact that F'(u) < 400, and the proof is over. m
The following result better characterizes the behavior of functions on Eg that have

energy close to the minimum energy.
Corollary 1.2 Let u € Eg and 6 € (0,0,] such that F(u) < cp + As. Then,

tginoou(t) =a or t£+moou(t) = —a.

Proof. According to Lemma 1.4, |u(t)] — « as |[t| — 4o00. Then, if the corollary is
not true, there should be two sequences (¢,) and (s,) of positive real numbers such that

tn, S, — +00 as n — +oo satisfying the following property
u(t,) = a and wu(s,) = —a.

Thereby, there exists nyg € N such that u(s,) < 0 < u(t,) for all n > ng. By continuity
of u there is z, € (t,,s,) or z, € (s,,t,) with u(z,) = 0 for any n > ny and z, — +oo,
which is a contradiction. m

Because Lemma 1.3, we easily derive the following compactness result in LS. (R).

Lemma 1.5 Let (u,) C Eg and § € (0,0,] such that F(u,) < co + As for all n € N.

Then, there exists u € Fg such that, along a subsequence,

. 1,0 .
u, = uwin W, (R) and w, = w in L,

(R).

Moreover, F(u) < liminf F(u,,).

n—-+o0o

Proof. First, since F(u,) < cp + As for any n € N, then Lemma 1.3 ensures that
|tn || Loery < v+ 6 forall neN.

Thereby, for each R > 0,

R R
/ B(|uy|)dt < 2RB(a + 6) and / B(u )t < co + As ¥n € N.

R -R
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From this, it is easily seen that (u,) is bounded? in I/Vli)’f’(]R). Now, in view of ® € A,
Wh®(D) is reflexive Banach spaces whenever D is an open and bounded set in R, and
hence, a classical diagonal argument yields that there is u € VV&f(R) and a subsequence

of (uy), still denoted (u,), such that

u, — uin WE*(R) and u, — v in LZ.(R).

loc loc

Consequently, by the pointwise convergence we get u(t) = —u(—t) for all t € R,
and so, u € FEg. Finally, it is easy to check by weak lower semicontinuity that
F(u) < lggligof F(uy), and the lemma is proved. =

To continue our study in search of the existence of a heteroclinic solution to equation
(1.2), we would like to highlight the notion of a weak solution of equation (1.2). So, a
function ¢ € W,oP(R) is said to be a weak solution of (1.2) if it satisfies the following
relation

/R @GN + V(@) dt =0 for all § € XL(R), (1.17)

where
X)*(R) = {w e WHP(R) with w(t) = 0 for |t| > R for some R > 0} . (1.18)
Moreover, we will introduce the following class
Ko ={u € Fg : F(u) =ca},

which consists of the minimum points of F' that are odd. Next, our goal is to apply a
direct method of the Calculus of Variations to show that K¢ is not empty and that every

element of K¢ is a weak solution of (1.2).

Theorem 1.2 [t holds that Kg is not empty, and any q € Ko is a weak solution of (1.2)
such that ¢ € C7(R) for some v € (0,1). Moreover,

—(o(Id ()G @) + V' (a(t) = 0 for all € R (1.19)

Proof. The first step is to consider a minimizing sequence (u,) C Fg for F. So, since

F(u,) — cg, one has F(u,) < cg + € for all n sufficiently large and for some € > 0 small

2We say that a sequence is bounded in VV&’?(R) if it is bounded in W1®(D) for every open and
bounded set D in R.



1.1. Heteroclinic solution on R 62

enough. Consequently, invoking Lemma 1.5, there are a subsequence of (u,,), still denoted

by (u,), and ¢ € Fg such that

U, — ¢ in WE*(R) and u, — ¢ in LE(R),

loc loc

from where it follows that F(q) < ¢, and so, F'(q) = cp. We claim that ¢ is a weak
solution of (1.2). To see this, given ¢ € X,'*(R) we can write ¥ as being the sum of an

even function and an odd function, that is, ¥(t) = ¥,(t) + ¥e(t), where

1

Yelt) = SO0+ 0(0) amd o(t) = S(0(0) — (1)

Now by item-(b) of Lemma A.8, for each s > 0 we have that

(g + st']) — (lg" + stgl) = G(lg" + stgl) (g + s15) (5107)- (1.20)
On the other hand, since F(q) = ¢p and ¢ € X ®(R), a direct computation shows
that F(q + sv), F(q + sy,) < +oo, because for |t| sufficiently large we must have
si(t) = s,(t) = 0. Thereby, from (1.20),

Flg+st) — F(q+ st0) > 8 /R o1’ + st + 52 /R S(Id + sl il dt
(1.21)

+ /]R (Vg + ) —V(qg+ si,))dt.

As functions @(|q' + sv/|)q'!, and d(|¢’ + sty Wi, are odd,

/ o1’ + s gLt = / ol + svl )l =, (1.22)
R R

and thus, substituting (1.22) into (1.21), we get
Fq+ sv) — F(q+ st) > /R (Vg + s1) — V(g + stb0))dt. (1.23)
Since q + sy, € Eg we obtain that F'(q) = co < F(q + s1,), and therefore,
Fla+sv) = Fla) = [ (Vg s0) = Vig+ su)i
from where it follows that

[0+ Vg = i TOED 0

s—0t S

> lim / V(q+s¢)—V<q+swo)dt
s—0+ R S

. (V(q+ s) =Vig) _ Vig+sv) = V(q)) gt
s—0+ R S S

> / V/(q) (6 — t)dt = / Vi (q)edt,
(1.24)
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Now, as V'(q). is an odd function we derive that

/R G )T + V' (@b)dt > 0 Vo € X2¥(R),

which guarantees that ¢ is a weak solution of (1.2). Moreover, the condition (¢2) allows

us to use [67, Theorem 1.7] to find v € (0,1) such that ¢ € CL7(R). Finally, in order to

loc

prove (1.19), the fact that ¢ is a weak solution implies that
(o(|d ®)d () = V'(q(t)) almost everywhere ¢ € R. (1.25)

Indeed, considering ¢ € C§°(R), a calculation shows that

0 =A(¢(!q’(t)\)Q’(t)w’(t) +V(q(t)p(t)) dt = —/]R ((e(ld'ODd' ()" = V'(a(#))) (t)dt,

and so applying |26, Corollary 4.24| we get (1.25). Now, Lemma A.6 combined with (1.25)
yields ¢(|¢'|)q € VV&’S’(R) and therefore from (A.1) we conclude that ¢(|¢'|)¢’ € W, (R).
Next, by [26, Theorem 8.2] and the fact that V’(g) is continuous it is easy to see that the
equality (1.19) occurs for every ¢t € R. This finishes the proof. m

We would like to end this subsection by stating that the minimum energy of the
functional F' cannot be zero, that is, co > 0. Indeed, if c¢ = 0 then since the minimum

energy is achieved by the elements of Kg, for ¢ € K one has

/R (@(1¢']) + Vi) dt =0,

from where it follows that ¢ = a or ¢ = —a on R, which is a contradiction.

1.1.3 Qualitative properties

The purpose of this subsection is to approach, from the variational point of view, several
qualitative properties of minimal solutions of (1.2) to better understand the geometry of

these solutions. We start by showing the following result.
Lemma 1.6 If g € Kg, then
(a) q(t) >0 orq(t) <0 for allt > 0.

(b) —a < q(t) < « for any t € R.
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Proof. Let be ¢ € Kg. To show item (a), we first claim that ¢(¢) = 0 if, and only if
t = 0. In fact, assume by absurd that there is ¢y # 0 such that ¢(ty) = 0. So, without lost

of generality, we can assume that ¢y > 0. Consequently, setting

q(t+to), if ¢t>0,
—Q(—t), if t<0,

Q) =

we immediately obtain that ) € Fg and

“+oo to to
w2 Q= [L@a=2 [  twi-Fo- [ tad-c- [ o
R to

—to —to

leading to

/to L(q)dt = 0.

—to

By the properties on the potential V', we must have ¢ = o or ¢ = —« on (—tg, tp), which
is impossible, because q is odd. Therefore, this information combined with the regularity
of ¢ implies ¢ > 0 or ¢ < 0 on (0, +00), proving item (a). To finish the proof, by item (a)
we can assume that ¢(¢) > 0 for any ¢t > 0. Now, assume by contradiction that there is

to € (0,+00) such that q(ty) = a. Said that, let us consider r > ¢y and R > 0 satisfying

R > max {[|¢/l| 207, 1} »

where 17 > 0 was given in (¢3). Now, we consider (0, +00) = (0,400) defined by

gz~5() o(t), if 0<t<R,
t) = o

where s > 1 was also fixed in (¢3). Thanks to (¢3), a simple computation implies that

there are 71,7, > 0 dependent on the constants d, R, s, ¢; and ¢y such that
o)t < mt*™' and G(t)t2 > ~ot® for all ¢ > 0. (1.26)

Using the function o, let us also consider the scalar measurable function G : R* — R by

(|p|)p
Y2 '

G(t,u,p) =

From (1.26), it is easy to check that

G(t,u,p)| < Zip*™" and pG(t,u,p) > |p|* for all (t,u,p) € R®.
V2
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In what follows, we will also consider the scalar measurable function B : R® — R given
by
V(e —u)
V2 '
Combining (¢3) with (V7), a straightforward calculation ensures that for each M > 0

B(t,u,p) =

there is C'y; > 0 such that
|B(t,u,p)| < Cplul*t forall (t,u,p) € R x (=M, M) x R. (1.27)

To prove the above inequality, we are going to analyze by cases. Indeed, given M > 0
let € € (0, min{M,n,7}), where n and T were given in (¢3) and (V}) respectively. On the

other hand, from (V}) there are wy,wy > 0 such that

V' (#)] < @16(@a]a — t])]a — t[|t] for all ¢ € [0,a+ 7).

. € . .
So the first case is if |u| < T and in this case we have that « —u € [a — ¢, + €.

W2
Consequently,

V(e = )| < D1 p(@aful)]ullor — u| < (o + E)g—;cb((@ + Dul)(@2 + 1lul.

Now, since (@g + 1)|u| € (0,71) we obtain by (¢3) that

V(@ — w)] < (a+ €)Leg(@n + 1) [ul~. (1.28)
)
Now, for the last case, if |u| € [¢/(@w2 + 1), M] then by continuity it’s easy to see that
there exists C'= C'(M) > 0 such that

V'(a —u)| < Culul™" Y|u| € [e/(@y+ 1), M]. (1.29)

Finally, combining inequality (1.28) and (1.29) we get estimate (1.27). All this is necessary
to guarantee that the functions G and B fulfill the assumptions of the Harnack type
inequality found in |91, Theorem 1.1]. Having that in mind, setting w(t) = o — ¢(t) for

t € R, we infer that w is a weak solution of the quasilinear equation
G'(t,w,w") + B(t,w,w') =0 in [0,7],

where G’ is the derivative of G(t,w(t),w'(t)) at t. Employing the Harnack-type inequality
mentioned above, we deduce that w = 0 in [0, r], that is, ¢ = « in [0, 7], which contradicts
the fact that ¢(0) = 0. Therefore, 0 < ¢(t) < a for ¢ > 0. The proof is completed noting
that g is odd. =
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Since the functional F is even, that is, F(—u) = F(u) for any u € Eg, then if
g € Ko then —¢ € Kg. From now on, for the sake of simplicity, we denote by ¢t a

function g € K¢ satisfying

tlgknoo q<t> -
and by ¢~ if
Trivially, - = —q*.

Lemma 1.7 Let ¢ € Kg. Then, ¢ is increasing on R and ¢~ is decreasing on R.

Proof. We will first prove that ¢ is increasing on R. If not, then we can assume without
loss of generality that there are t1,ty € (0,+00) with t; < t5 and ¢*(t2) < ¢ (¢1). So,
by Intermediate Value Theorem there exists ty € (0,¢;] verifying ¢ (¢9) = ¢ (t2). Now,

setting the function

qr(t), if 0<t<t
QT(t) =1 qt(t+ta—ty), if to<t
—-QT (1), if t<o0,

one gets QT € Eg and
to +oo t2
co < F(QY) = 2/ L(g")dt + 2/ L(g"(t+1ty—to))dt = F(q") — 2/ L(q")dt
0 to to
implying that

to
/ L(g")dt =0,
t

1

and so by the assumptions on V' and ®, we can infer that ¢*(t) = « for all t € (11, t2),

which contradicts the Lemma 1.6. The lemma follows using the fact that ¢* is odd. =

Lemma 1.8 Let ¢ € Kg. Then, ¢*' is non-increasing on [0,4+00) and ¢~ is non-

decreasing on [0, +00).

Proof. It suffices to show that ¢t is non-increasing on [0,4+00). Now, let us first notice

that ¢ (¢) € [0, ) for any ¢ > 0, and so, (V4) provides

V'(g*(t)) <0 for each t € [0,+0c0).



1.1. Heteroclinic solution on R 67

By (1.19) we get the inequality

(6(la" D" (1)) <0 for al ¢ € [0, +00)

from which it follows that the function ¢ € [0, 4+00) = é(|¢™'(t)|)g*' () is non-increasing.
Invoking Lemma 1.7, ¢*'(t) > 0 in R, and therefore, t € [0,+00) ~ &(q* (¢))g™ ()
is non-increasing. To complete the proof, assume by contraction that ¢*’ is not non-
increasing on [0,400). Thereby, there are t1,t2 € [0,400) such that 0 < ¢; < ¢ and
0 < ¢*'(t1) < ¢*'(ty). Consequently,

¢ <q+/(t2)> q'(t2) < ¢ (q+,(t1)> q'(t).

On the other hand, by (¢1),
o (a"'(1) *'(h) < 0 (a7 (12)) 47" (12),
which is a contradiction. This ends the proof. m

Corollary 1.3 If ¢ € Ko, then the following inequality holds true g’ > 0 on R.

Proof. As consequence of Lemma 1.7, ¢*'(t) > 0 for all ¢ € R. Arguing by contraction,

assume that there exists ¢, > 0 such that ¢*'(ty) = 0. From Lemma 1.8,
gt (t) < q(to) =0 forall t >t

and hence, ¢*' = 0 on (ty, +00), that is, ¢* is constant on (t, +00). But ¢*(t) — a as
t — 400, and therefore, gt = «a on (g, +00), which contradicts Lemma 1.6. Now, the
results follows by using the fact that ¢’ is even. m

Corollary 1.4 If g € Ko, then | lim ¢'(t) = 0. In particular, ¢ € L>°(R).

t|—+oo

Proof. Since F(q) < 400,

A@wwmﬁ<+m,

and consequently,

lim inf ®(|¢'(¢)]) = 0.

[t| =400
Now, we claim that

liminf |¢'(t)| = 0.

[t| =400
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Indeed, if this is not the case, there exist € > 0 and ¢, > 0 such that |¢/(t)| > € for any

t > to. From (¢1), the function ® is increasing on (0, 4+00), then
D(|¢'(t)]) > P(e) for all ¢ > to,

which is impossible. Assuming without loss of generality that ¢ = ¢ and invoking Lemma

1.8, we have that ¢*' is non-increasing on [0, +00), then

lim ¢*'(t) = liminf ¢*'() = 0.

t——+o0 t——+o0

Since ¢* is even, we deduce that | ‘hm ¢'(t)=0. m
t|—+oo
The first consequence of Theorem 1.1 is a result of comparing among the elements

of K with the same asymptotic behavior at infinite.

Lemma 1.9 (Comparison Lemma) If ¢ ,q5 € Kg, then
q(t) =g (t) or g (t)<qf(t), Vt=0.

Proof. If ¢ # ¢, then there is ¢ty > 0 such that ¢/ (ty) # ¢ (t0), and so, we can assume
that ¢; (to) > q4 (to). In what follows, we define the functions

/

g (t), if g (t
e(t) =9 ¢ @t), if 2+
—p(—t), if t<0

>qy(t) and t >0,
(t) > ¢ (t) and t >0,

and
¢ (t), if qf

v(t)=q @' (1), i ¢

—(—t), if t<0

5 (t) and t >0,
+
1

(t) and ¢ >0,

\

that clearly belong to Fg. Consequently,

20 < Plo)+ Fw) = [ Lot + [ Lw)ar

_2/ (gt )dt+2/ L(q;)dt+2/ ﬁ(q;>dt+2/ L(gF)dt
{df>q3} {a5 >q7} {¢f>q3} {af >q}
/£Q1 dt+/£Q2 )+F(q2+)=26<1>,

from where it follows that F(¢) = F(¢) = ¢, and therefore, p,9 € Kg. Now, since

qi (to) > ¢ (to), by continuity there exists ¢ > 0 such that

¢ (t) > g5 (t), VL€ (—e+toto+e).
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We claim that
q (t) > g5 (t) for all t > t. (1.30)

Indeed, suppose by contradiction that there is t; > ¢, such that g5 (¢;) > ¢; (t;) and fix
r > 0 satisfying to + 7 > t;. Thus, setting @¢(t) = ¢(t + to) and q}(t) = g (t +to) it is
easily seen that ¢ and q} satisfy the Cauchy problem

(e @D (1) = V'(u(t), tER,
u(0) = g (to),
u'(0) = g (to)-

Thanks to Corollaries 1.1, 1.3 and 1.4, ¢ and q~1+ satisfy the items (a) and (b) of Theorem
1.1 on [0,7), and hence, ¢ = ¢ on (to,to + 7). In particular, ¢ (t;) = p(t1) = ¢ (t1),
which is impossible. Therefore, inequality (1.30) is valid. To complete the proof, suppose
by contradiction that there is ¢, € (0,y) such that ¢ (t2) < gy (t2). Similar to what was
previously developed, taking s > 0 such that t, € (¢, to — s), it can be shown that ¢ = ¢;
on (ty — s,tp). Then, in particular, ¢ (t2) = p(t2) = ¢ (t2), a contradiction, and the
lemma follows. =

We will end this subsection by presenting some results that will be crucial in the

development of this thesis.
Lemma 1.10 Let g € Eg and 6 € (0,0,] such that F(q) < ce + As. Then,
q—acWhH([0,+00)) or g+ ac WH([0, +00)).
Proof. By Corollary 1.2,
q(t) > o or ¢q(t) > —a as t — +o0.

In what follows, we will first analyze the case q(t) — « as t — +oo. Thus, there exists
to > 0 such that
q(t) € (a —d,a+0) for any t > t.

From (1.11),

[ @+ e ah i< | w(@<|q'<t>|>+lv<q<t>>) i

to to

< max{l,

1
w
1
< max{l,—} (Cq>—|—)\5) < +00.
w
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Therefore, as ¢ € W,2*(R) and ® € Ay, one has ¢ — a € WH®([0,400)). Proceeding

loc

in a similar way, the case ¢(t) — —«a as t — +oo yields ¢ + a € WH?([0, +00)), which
completes the proof. m

As an immediate consequence we have the following corollary.
Corollary 1.5 If q1,q» € Kg, then ¢ — q5 € WH2(R).
Finally, we have the following result.

Lemma 1.11 If g € Kg then

/R GUT N + V' (@) dt =0 for all o€ W(R). (1.31)

Proof. Let us first note that given p € WH®(R) there is a sequence (p,) C C5°(R) such
that ¢, — ¢ in WH®?(R) because ® € Ay. Now, since q € K¢ we get

/ (0(|d'd'¢), + V'(q)pn)dt =0 for all n € N.
R

On the other hand, according to Lemma A.6 and (Vj), it is easy to check that
o(|¢|)¢ € L*(R) and V'(¢q) € L®(R). The information above allows us to make a direct

application of Holder’s inequality to obtain equality (1.31), and the lemma follows. m

1.1.4 Uniqueness of the minimal solution

In this subsection, we will show that the set K has only two elements, namely
Ko ={q", ¢ }.

As a direct consequence, we will conclude that in Kg the problem

—(¢(l¢)¢) +V'(q) =0 in R,
lim ¢(t) =«

t—-+o0
has a unique solution.

Lemma 1.12 The set K¢ has exactly two elements.

Proof. We saw in Theorem 1.2 that there is ¢ € K¢ and consequently ¢+, ¢~ € Kg. We
will now show that K¢ has only these two elements. Indeed, considering any @) € Kg, we

intend to show that QT = ¢™ on R. So, by Lemma 1.9,

g (t) > QT(t) or ¢ (t) <Q*(t), Vt=>0.
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We can assume without loss of generality that
¢"(t) =2 Q"(t), Vt=0. (1.32)

Now fix § € (0, dp) sufficiently small such that we may take t; > 0 satisfying ¢*(¢1) = a—4,
where 0y was given in (V5). Also, we may fix 7 € R satisfying Q*(t, +7) = a —d. We
claim that 7 > 0. In fact, if 7 < 0, then as QT is increasing on R it follows by (1.32) that

a—0=Q"(t1+7)<Q"(t) <g"(t)) =a—4,
which is absurd. Next, setting
Qi) =Q"(t+7) for t €R,
one has Q1 (t;) = o — 0 = ¢q*(t1). Consequently, considering the functions

max {(g* — Q)(0),0}, if t> 1
O’ if t< t1

and
max {(QF —¢*)(1),0}, if ¢ >4

0, if t <t

we have from Lemma 1.5 that o1, 0o € WH®(R). Thus, by Lemma 1.11,
/R<¢(!q+'\)q+'<pi ~ 0(1Q Qe ) dt = /R (V'(QF) = V'(a")) prdt.
In this way, putting P, = {t € R: ¢ (t) > Q,(t)}, by (V5) one gets
Lo (o e —g0@r ey (¢ —@rYarso.

Using item (c) of Lemma A.8 in estimation (1.33) we obtain ¢*' = QF' on P, N (¢, +00).

On the other hand, a similar argument shows that

[ (o000 = 50" (@2 =) ar <0

where P, = {t e R: ¢*(t) < @.(t)}. Then, using Lemma A.8-(c) again, we conclude that
¢ = Q" on PN (t,+00). Since P, U P, = (t, +00) and QF(t;) = ¢*(t;) we infer that

q"(t) = QF(t) for any t € (t1,+00).
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Now, we define the following set
X ={y>0:¢"(t)=Qf(t) for any t >y} .

Clearly, X # () because t; € X. Setting yo = inf X, our next goal is to prove that yy = 0.
Indeed, if not, then there exists ¢ > 0 such that yo, — ¢ > 0, and so by Corollary 1.3,
qt'(t) > 0 for any t € [yo — €, 90 + €]. Since 7 >0, QF'(t) > 0 for all t € [yo — €, 50 + €,

and hence there is p > 0 verifying
¢"'(6),Q7(t) = p, Vit € lyo— €, y0+ .

According to Theorem 1.1, ¢* = Q7 in [yo — €, yo + €], and consequently yo —e € X, which
is impossible. Thereby, ¢*(t) = Q1 (t) for any ¢ € (0,4+00). To complete the proof, it is
sufficient to show that 7 = 0. Indeed, as ¢*(0) = 0, and Q" (¢) = 0 if and only if ¢t = 0,
we obtain 0 = ¢*(0) = Q1 (0) = Q™ (1), showing that 7 = 0, and the proof is complete.
n

Putting together all the information so far, we get the following result.

Theorem 1.3 Assume (¢1)-(¢3) and (V1)-(Vs). Then, there exists a unique q € K¢ such

that it is a weak solution of (1.2) being heteroclinic from —« to «, i.e

q(t) > —a as t— —oo and q(t) - o as t — +oo.

Ly
loc

Moreover, q € C,)](R) for some v € (0,1) and satisfies the following properties

(a) q(t) = —q(=t) for any t € R,
(b) 0 <q(t) <a forallt >0,

(¢) q is increasing on R,

(d) ¢'(t) — 0 ast — o0,

(e) ¢ is non-increasing on [0, +00),

(f) ¢ (t) >0 for any t € R.
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1.1.5 Compactness properties

The main objective of this subsection is to prove the below proposition that establishes

the strong convergence for minimizing sequences of F' on Fg.

Proposition 1.1 If (¢,) C Eg is such that F(q,) — ce, then there exists ¢ € K¢ such

that, along a subsequence,

an — qul,<I>(R) — 0

To prove the above proposition, we will consider the following subset of F¢ defined

by

Es(a) = {w e WEP(R) : wis odd a.e. in R and w — o € WH® ([0, —i—oo))} :

loc

Moreover, let us also consider the following real number

¢ = inf F(w).

weEg(a)

It is very important to point out that Ecp(oz) # (), because the function ¢, given
in (1.7) clearly belongs to Eg(a). Moreover, it is plain that if w € FEg(a), then
w+a € W ((—o0,0]), and that if wy, ws € Eg(a), then w; — wy, € WH®(R). Have this
in mind, we are able to define on Eg(a) the metric p : Eg(a) x Eg(a) — [0, +00) given
by

plwi, we) = |lwy — wallwre ).

A direct computation guarantees that (Eg(a), p) is a complete metric space.

The following result establishes an important relation between ce and Cg.
Lemma 1.13 [t holds that ¢ = co.

Proof. Clearly, cg < ép. We are going to show that ¢ < ce. For this, let (¢,) C Eg be

a sequence such that F(q,) — ce. So, given ¢ € (0,0,], there is ny € N such that
F(qn) <ce+ As for all n > ny.
From Lemma 1.10,

Gn — a € WH2([0,4+00)) or ¢, +a € WH*([0,+00)) Vn > ng.
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Now, as F(—q,) = F(g,), replacing ¢, by —¢, if necessary, we can assume that
G — a € WH([0,+00)) for any n > ng, and hence, (¢,) C E(a), from where it follows
that

6@ S Cop +)\5

Comnsequently, letting § — 0 we infer that ¢ < ce, and therefore co = ¢¢. ®

It is important to note that the argument contained in the proof of the previous
lemma guarantees that given a minimizing sequence (g¢,) for F' on Eg, that is F'(¢,) — co,
we may assume without loss of generality that (¢,) C Eg().

To continue our analysis, we say that a sequence (q,) is a (PS), sequence for F,

with d € R, if (¢,) C Eg(a) satisfies
Plg) >d and [F(g). =0 as n— +oo,

where

|F ()]l = sup { F'(w)e : ¥ € X3 (R) and [[¢llwrxy <1}

Lemma 1.14 If (¢,) C Eo and F(q,) — cae, then there exists a sequence (p,) C Fg(«)

such that (p,) is a (PS)., sequence for F' and

Co

gn — pullwrew <~ Vn €N,

S|

Proof. From the above discussion, we can assume that (¢,) C Eg(). As (FEg(a),p) is
a complete metric space, we can employ the Ekeland’s Variational Principle found in [93]

to find a sequence (p,) C Fg(a) satisfying:
(a) F(pn) < F(gy) for all n € N,
(b) p(pn,qn) < = for any n € N,
(¢) F(pn) — F(u) < X|lpn — ullwrow) for each u € Es(a) with u # p,.
Now, let ¢ € X"®(R) and write
Y =1, + e,
where 1), is odd and 1, is even. It is easily seen that p, + 1), € Fg() for any n € N and

t > 0. Thus, by item (c),
ﬂm+w%ﬁww7Fmﬁmw—ﬂm+w0+ﬂm+ww—ﬂm)

t N t t
> F(pn‘i‘tqu)) _F<pn+t¢o)

- t

1
- ﬁHonWW(R)-
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Arguing as in the proof of Theorem 1.2 we obtain that
, 1
F(pn)y > —EH%HWW(R) Vn e N. (1.34)

Claim: [[¢o]|wrem < [|[¥|lwrem).
Indeed, for any A > 0,

[0 (B0 [0 (00T,

Lo (MO gy Lo (EC0Y g [ (01

Taking A = ||[¢||zo(x),

R 19| o w) R 19|l e w)
which leads to ||77Z)0||L¢(R) S ||¢||L¢(R) Slmllarly, ||w0/||L¢(R) S ||¢/||L¢(R)' Thereby,

’WoHWM’(R) < |WHW1*“’(R)’

which proves the claim.

Hence, using the above claim in (1.34), one finds
Pl > — il ¥ € X (R)
Replacing v by —1,
Pl < - blwisg ¥ € X (R).
Thereby, || F'(p,)|l« — 0 as n — +o00. On the other hand, by (a) and Lemma 1.13,
cop = Cp < F(p,) < F(qn) = cao + 04(1),

showing that F'(p,) — ceo. Therefore, (p,) is a (PS5).

D

proved. m

sequence for F', and the lemma is

From now on, we will always consider (¢,) C Eg and (p,) C Eg() as in the last

lemma. So, (p,) is also bounded in W,"*(R). In fact, by Lemma 1.14, for each L > 0,

one has

1
IPnllwre =z, < NP0 — @ullwreq—r,y + llanllwre-r.0) < o + [lgnllwro(-1,2))-
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Now, since (g,) is bounded in W,2*(R), it follows that (p,) also is bounded in W\ ®(R).

loc loc

Consequently, for some subsequence, there exists g € VV;;?(R) satisfying

pn—q in W(R), (1.35)
Pn—q in L.(R), (1.36)
(R) (1.37)

Pn — q in Ll

and

Pn—q in Ly,

toc(R)- (1.38)
Lemma 1.15 There is a subsequence of (py), still denoted by itself, such that
P’ (t) = ¢'(t) almost everywhere in R.
Proof. Given L > 0, let us consider ¢ € C§°(R) satisfying
0<¢ <1, v»=1in [-L,L] and supp(¢) C [-L —1,L+1].

According to item (c) of the Lemma A.8,

0< / (@l = o1a)a) (0, = )

< [ @@ = o(ldDd) (pr - g)at (1.39)
L+1 L+1
< [ A, —d)dt = | $(06(d e b )t

Setting the linear functional f: W'®([-L —1,L + 1]) — R by
L+1

fv) = b (lq g v'dt,

—L-1

we have that it is continuous, because ¢(|¢|)¢’ € L*([~L—1, L +1]) via Lemma A.G, and
so, by Holder’s inequality
L+1

¢¢<|q’|>q'v'dt‘ < / 16(1¢ ||t

‘ L+1
—L—-1

—L—1
< 2||¢(|q/|)q/HLi’([_L_1,L+1])||U||W174’([—L—1,L+1})7

for any v € WH®([—~L—1, L+1]). Thus, (1.35) asserts that f(p,—¢q) — 0, or equivalently,

L+1
o(ld')d (p” — q')dt — 0. (1.40)

—L-1
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On the other hand, using again the Lemma A.6 and the boundedness of (p,) in W,2*(R),

loc

there is C' > 0 such that

L+1 L+1
[ bt <2 [ spia<c, vnen

Iy —L-1
implying that (¢(|p,,|)p,) is bounded in L®([—L — 1, L + 1]). So, by (1.36) and Hélder’s
inequality,

L+1
/ (9 — Q)OI dt — 0. (1.41)

L-1

Now, considering the sequence (¥p,), by (1.38), passing to a subsequence if necessary, we

can assume that
Ypp — g in WH([=L —1,L+1]) and ¢(t)p,(t) = ¥(t)q(t) ae. R.
Consequently,
V' (pn () (t)(pa(t) — q(t)) — 0 almost everywhere in [—-L — 1, L + 1]
and by (1.37) there exist h € L*([~L—1, L+1]) and M > 0 such that, along a subsequence,

V' (pn)to(pn — @) < M[p|(h+ |g]) € L'([-L — 1, L +1]).

Applying the Lebesgue’s dominated convergence theorem we obtain

/_ " V' (pn) (¥pr — Yq)dt — 0. (1.42)

L-1
As 1) has compact support, ¥(p, —q) € X&’(P(R) for any n € N. We would like point out
that

F'(pn)(¥pn — 1gq) — 0. (1.43)
In fact, just note that
[ (pn) (Vo — @) < [/ (p)][¥0pn — Yallwrem),

(¢p,) is bounded in W1®(R) and (p,) is a (PS)., sequence for F'. Recalling that

D

L+1 L+1
F () (pn — ) = / (1D )1 (Upm — ) dt + / V' (0a) (0pa — dq)dt,
—L—1 —L—-1
it follows from (1.42) and (1.43) that
L+1
/ o= va)dt 0. (1.44)
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Now, since
(VP —q) = p,, + P — q — q¥,

one gets

L+1 L+1 L+1
SR (s — )t = / (1)1 (U — bq)'dt — / (9 — S0P dt.

—L-1 L—1 —L—-1
(1.45)
From (1.41), (1.44) and (1.45),
L+1
V(| e (p, — ¢')dt — 0. (1.46)
—L-1

Finally, from (1.40), (1.46) and (1.39),

| @twilin— ol ), — e =0

This limit combined with the Lemma A.8-(¢) leads to, along a subsequence,
(@(lpp Dl — ¢(ld'd) (b, —d') = 0 ae. in [-L, L].
Applying a result found in Dal Maso and Murat [32], we infer that
p.(t) = ¢(t) ae. in [—L, L]

As L > 0 is arbitrary, there is a subsequence of (p,), still denoted by itself, such that
Pl (t) — ¢'(t) almost everywhere in R, finishing the proof of the lemma. =

Now, we are ready to prove Proposition 1.1.
Proof of Proposition 1.1.
According to Lemma 1.14 there exists a sequence (p,) C Eg(a) with F(p,) — co such
that

Vn €N, (1.47)

3|

||Qn - anWl"I)(R) <

and so, there is ¢ € W."®(R) satisfy (1.35)-(1.38). Now observe that

loc

1
lan — aller,op < - + lpn — dllzeq-r.ry VL > 0. (1.48)

From (1.36), ¢ is the punctual limit of (g,), and hence ¢ € Fg and F(q) = cs, that is,
q € Kg. We conclude from (1.35) and (1.38) that

/<I>(|q'|)dt§liminf/<1>(|p;1|)dt
R n

R

< timsup | @t hat = timsup (Fp) ~ [ Vin)at)
< Fla)— [ Ve = [ a(dha
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that is,
[ @t [ o) (1.49)
R R

By the convexity of @,

@(@;(tm . @(\q;t)r) e (M) >0, VieR

Thereby, the Lemma 1.15 together with Fatou’s Lemma and (1.49) leads to

A@WWﬁgmwﬁé(M§m+®%%—¢<%€ig>ﬁ

/)
S/‘P(|q’|)dt—limsup/®(w) dt,
R n R 2
/)
/q> (M) dt — 0.
R 2

As ® € A,, the last limit yields
1P, = d'llLo@ — 0

that is,

that combines with (1.47) to give

lgn — ¢l e @) — 0. (1.50)

On the other hand, from (1.49),

/R V(ga)dt = Flg,) / D(gh|)dt — F(q) - / B(|q'|)dt = / V(g)dt,

R

that is,
[ vt~ [ v (wL51)

Now, using the fact that F(g,) — ce combined with Lemma 1.3 it follows that given

d € (0,0,) there is ny € N such that
qnll ooy < 40 Vn > n4.
Thus, since ¢ € Ky and V € C'(R,R), there exists M > 0 such that
[V(gn()) = V(g(t))| < Mlgn(t) —q(t)] Yt eR.

Thereby, by (1.38), V(¢,) — V(q) uniformly in [—L, L] for any L > 0, and consequently,

/L V(gn)dt — /L V(q)dt. (1.52)
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Gathering (1.51) and (1.52),

“+00

+o0
/ Vig)dt— | V(gydt VL > 0.
L L

Hereafter, we assume without loss of generality that ¢ = ¢*. Since V(¢") € L}(R), given

e > 0 there exists L > L;, such that

+oo €
/ Vighdt < &.
I 2

Furthermore, for such values of L, there is ng € N such that

+o0
/ V(gn)dt < e ¥n > ny.
L

Consequently, employing (1.11), it is easily seen that

+o00 € 400 €
/ d(la — ¢T|)dt < — and / O(|la — gn|)dt < — Vn > ny.
L 2w L w

Finally, as ¢, — ¢+ in L®([-L, L)),

[ o= i =ou(r) +2 " (g — Dt (153)

L

and so, the Lemma A.8-(a) provides

2/;00 B(lgn — g*[)dt < 2" /;OO (®(Ign — a]) + B(lg" — al)) dt < ( Rk E)
(1.5

for each n > ngy. As € > 0 is arbitrary, it follows from (1.53) and (1.54),

/ (|gn — q*|)dt — 0.
R

Using the fact that ® € Ay, we arrive at

g0 — " |lze@) — O (1.55)

Now, the proposition follows from (1.50) and (1.55). =

1.1.6 Exponential estimates

In this subsection, we study exponential-type estimates for the heteroclinic solutions of
(1.2) in K¢, which will play an important role in finding a saddle-type solution for equation
(1.1). To fulfill our objective, given d € (0, ) let us define the following real number

+1 )
lg = ce ,  where wy= min V(s)> 0.
Wy Is|<a—d

Next, we list some useful technical lemmas in the development of this subsection.
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Lemma 1.16 Let q € Ey. If f:f L(q)dt < co +1 and |q(t)] < a—d for any t € (t1,12)

with t1 < to, then ly; > ta — 4.

Proof. Just note that

to to to
cp +1> / L(q)dt > / V(q)dt > min V(s) dt,
t1

t 4y IsI<1—d
from where it follows that ce + 1 > wy(ta — t1), and hence Iy >ty —t;. m

From now on, given ¢ € (0,0,] we fix d(d) € (0,6/2) such that
2(1+w)®(d(d)) < As, (1.56)
where A\; was given in (1.10). Moreover, we also denote Ls = ly(s).
Lemma 1.17 Let g € Eg, 0 € (0,0,] and L > L such that LLL L(q)dt < ce + As. Then,
there exists ty € (0, Ls) such that
L+
lg(t1)] > a—d(0) and co — A5 < / L(q)dt.

Proof. By (1.10),

Lg L
/ E(q)dt S / ,C(q)dt S cp + /\5 < Cp + 1.

Ls L

We claim that there is ¢, € (0, Ls) such that
lq(t)] = a = d(9).

If not, then |q(t)| < a — d(6) for all t € (0, Ls), and by Lemma 1.16, Ls > Ls, which
is absurd. Possibly considering the function —gq, it is not restrictive to assume that

q(ty) > a— d(6). Furthermore, we can assume that « > ¢(t;) > o — d(d) and set

(

q(t), if 0<t<t,
a(t) = q(ty) + (@ —q(ty )t —ty), if 4y <t <ty +1
«Q, it t>t +1
| —q(—1), if t<0.
Since
a—%ga—d(é) < q(t) <a forany te [ty ty+ 1],

then by (1.11),

V(1) <w®(la —q(t)]) <w(d(5)) Vi€ [ty iy +1].
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A direct estimate gives us that
tr+1
/ L(§)dt < (1+@)(d(5)).
i+
Hence, as § € Eg, the symmetry of ¢ and the choice of d(¢) in (1.56) lead to

t4

c@SF(d)Z/

_t+

t4+1
q@ﬁ+2/ £()dt
t4

ty ty

< / L(q)dt +2(1 +w)P(d(9)) < / L(q)dt + A,
—t4 —t4

and this is precisely the assertion of the lemma. m

The last lemma permits to derive the following result.
Lemma 1.18 Let g € Eg, 0 € (0,0,] and L > L such that f_LL L(q)dt < cp + 5. Then,
lg(t)] > a =4 for any t € [Ls, L].

Proof. Arguing by contradiction, assume that there exists € [Ls, L] such that
lg(z)| < a — . According to Lemma 1.17, there is ¢, € (0, Ls) such that

i+
lg(t )] > a—d(d) and ce — A5 < / L(q)dt.
Assuming without loss of generality that
4]
q(t+) 2 a—d(o) 2a—3.

So the continuity of ¢ ensures that there exist 0,7 € R such that 0 < ¢, <0 < 7 < x and

Q(U):Oé—g, q(T)Za—cSanda—cSSq(t)Soz—g Vt € (o, 7).

Hence, from (1.11), one has

wt () < wblla - g0) < Via(o) vt € (o7,

and therefore by Lemma 1.2 there exists Fua(3) > ( satisfying
WH\ 2

[ 2@ = gy @lar) ~ at0) = maiyp (2 (5) )

By definition of As in (1.10),
L t4 T )
Cot+As > / E(q)dt > / E(q)dt+2/ E(q)dt > co—As+2h (CD (5)) ,qu)<§) > co+As,
—L —t+ ag - 2
which is impossible, and the proof is over. m

As immediate consequence of the last lemma is the corollary below.
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Corollary 1.6 Let ¢ € Eg and 6 € (0,0,] such that F(q) < co + As. Then,
lg(t)] > a—0 for any t > Ls.

To continue our study, for each L > 0 let’s consider the following class of admissible

functions
Ep={ueW"*((-L,L)) : u(t) = —u(—t) forall t € (L, L)}
and the functional Fy, : Wh® (=L, L)) — RU {+o0} given by

Fi(u) = / LL L(u)dt.

By a direct computation, Fp is lower semicontinuous with respect to the weak

Wh®((—L, L)) topology and bounded from below. We define

cp = inf Fr(u).

uekT,

Since Fp(0) < 400, ¢, is well defined, and moreover, ¢;, < c¢g for all L > 0. From now

on, let us also consider

KL:{UGELZFL('LL) :CL}-

Now, proceeding analogously as in the proofs of Theorem 1.2, Lemma 1.3 and Corollary

1.1 we get the following lemmas.

Lemma 1.19 For every L > 0, one has K; # (. Moreover, if ¢ € Kj then
qe€ CY(—=L,L)) and is a weak solution of

—((l¢Ng) +V'(q) =0 in (—L,L)
¢(£L) =0.
Lemma 1.20 Let L >0, g € E, and § € (0,6,] such that Fr(q) < co + As. Then,
Nl Lo (=) < v+ 0.
In particular, if g € Ky, then ||q||pe(—1,1)) < o

Now we want to show an estimate of the exponential type involving the function

QGKL.



1.1. Heteroclinic solution on R 84

Lemma 1.21 For each L > L, there exists q € K1, such that
a—06q < q(t) forall te(Ls,, L]
Moreover, there are 01,605 > 0 such that
0<a—q(t) <be ™ forall telLs, Ll (1.57)

Proof. Note that if L > Ls, and q € K, then F(q) = ¢, < ¢¢ < co + As,. Then, by
Lemma 1.18,

lq(t)] > a — b, forall te[Ls,, L]

Assuming without loss of generality that ¢(t) > o — d, for any ¢ € [Ls,, L], we can define

the function
q(t), if te|Ls,, L]

q(2L —t), if te[L,2L — Ly,

and v(t) = a — q(t) for t € [Ls,,2L — Ls,]. From Lemma 1.20 and (V}),

V'(q) < —wi(a — 04)P(wav)(v) in [Ls,, L]

So, if ¢ € W&’@([L(;a,QL — Ls,]), ¥ > 0 and ¥(t) = (2L — t) for any t € [Ls,, L], then
an easy computation shows that
2L—Ls,, _5
/ (¢(|U'|)z/¢' + Mgb(w)wsz) dt < 0.
Ls, )
Now, to complete the estimation of the exponential type (1.57), let us consider the real

function
cosh(a(t — L))
“cosh(a(L — Ls,))’

for some constant a > 0. Now, for values of t € R such that |((¢)| > 0 it is easily seen

¢(t) = teR,

that
(@I N ®) = (I NS () + &' (I ODIC B ().
We note that the equality ¢”(t) = a*((t) for any ¢ € R together with (¢y) yields

(@(IC(ONS'(#))" < ma*(I¢" (NS ()

For the case that ('(t) = 0, an easy verification shows that

(@(IC'ONC (1) = ¢(0)¢"(t) < ma*p(0)¢(t) = ma?e(IC'(1)])C(2).
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In both cases,
(B(IC'NC (1) < ma”e(|¢'(1)])C(t) Yt € R.

Moreover, since |('(t)] < a((t) for any ¢t € R, fixing a < wy and using (¢4), we derive that

¢(I¢"(1)]) < ¢wa((t)). Therefore,
— (@I N 1) + mag(wsC(t))wal(t) 2 0, V€ R.

A direct computation gives

2L—Ls,,
/L GUCCY + mad(unClwnle) dt > 0.

S

On the other hand, by definition of v and ¢,
v(Ls,) < 0o = ((Ls,) and v(2L — Ls,) < 6o = C(2L — Ls,).

We may now take a > 0 sufficiently small such that

Aa) :=ma < M.
()

Have this in mind and considering 1, = (v — ()T, we have 1,(t) = ©¥.(2L — t) for each
t € [Ls,, L], and so,

L T (@D — SUCE) !+ A@) (Swv)waw — Gl )wnC)ib) di <.

Putting
P ={t € [Ls, 2L — Ls,) : v(t) > ¢(1)},

it follows by Lemma A.8-(c) that ¢, = 0 in P, that is,
v(t) < ((t) for any t € [Ls,,2L — Ls,].
Since
t
% < cosh(t) < e’ forall t>0,

we find

0<a—qlt) <20 Vie Ly, ],

and the lemma follows. =
Thanks to Lemma 1.21, the next lemma establishes a better characterization of the

behavior of the function L — c¢;.
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Lemma 1.22 The function L — cr, is monotone increasing with ¢, — ce as L — +0o0.

Moreover, there are 0 and 3 positive real numbers such that
0<ce—cp <Oe P VL>0.

Proof. To prove the monotonicity of L — ¢y, fix L; < Ly and let ¢ € Kp,. Of course,
q € Kr,, and so, ¢, < Fr,(q) < Fp,(q) = cp,. Let us prove now the exponential
estimate. By Lemma 1.21, for L > Ls_ there exists ¢ € K such that a — 0, < ¢(t) for
any t € [Ls,, L]. Setting

q(t), if 0<t<L,
) q(L)+(a—q(L)(t L), if L<t<L+1,
q =
a, if t>L+1,
\ —q(—1), if ¢t<0,
it is easy to see that ¢ € Eg, and then ce < F(§). Moreover, by symmetry,
L+1
R A
L
leading to
L+1
Cp — Cy, S 2/ E((j)dt
L
Now, since
a—08, <q(L) <q(t) <a forany te[L,L+1],
by (1.11),

V(q(t)) <wP(Jaa—q(L)|) forall te[L,L+1].
According to Lemma 1.21,
L+1 L+1 L+1
/ £(§)dt :/ B(ja —q(L)|)dt+/ V(§)dt < D(0re~E) + D (0 e—0L).
L L L

Taking L sufficiently large, the Lemma A.2 implies that

L+1

/ L(§)dt < max{1,w}P(0;)e "L,

L
from where it follows that

co — cp < 2max{l,w}d(0,)e "%E,

Therefore, it is possible to find real numbers 6, 3 > 0 satisfying precisely the assertion of
the lemma. m
Our next lemma establishes in some sense a compactness property concerning to

family of functionals F7,.
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Lemma 1.23 Let (L,) C R with L, — +oo and ¢, € Er, such that Fr, (q,) —cr, — 0

as n — +oo. Then, there exists ¢ € Ko verifying, along a subsequence,
Gn — QHWL@((fLan)) — 0 as n — +o0.

Proof. Let (4,) be a sequence with 9,, € (0,6, for all n € N and 6,, — 0 as n — +o0.

Since L, — +oo and Fp, (g,) — ¢z, — 0, we can assume without loss of generality that
L, > L(sn and FLn(qn) <cr, + )‘5717 Vn € N,

where A5, was given in (1.10). Thereby, by Lemma 1.18, |¢,(L,)| > o — 6,. Assuming,
up to reflection, that ¢,(L,) > a — §,, we set

;

n(t), if 0<t<L,
Gnlt) = Gn(Ln) + (0 — qu(L))(t — L), if L, <t<L,+1

@ i L +1<t
(1), it +<0.

\

Note that (¢,) C Eg and hence F(G,) > cg for any n € N. According to Lemma 1.20,
o — 5n S Qn<Ln) S a+ 57”
and so, by (1.11),
V(qn(t)) <w®(d,), Vte€[Ly, L,+1].

Therefore, we get the inequality
Ln+1
F(d) = Fy(qn) + 2 / L(G)dt < cp, + N, + 2B(5,) + 2TD(5,).

Since ¢, — ¢ and A5, — 0 as §,, — 0, we have F(g,) — co. Then, by Proposition 1.1,
there exists ¢ € K such that, along a subsequence, ||, — ¢|lw1.2®) — 0. In particular, as
(NS AQ,

gn — qul,cb((_Lan)) — 0 as n — +o0,

and the proof is over. m
By the previous lemma we obtain in particular that for each » > 0 there exist v, > 0

and M, > 0 such that for all L > M,

if u € By, satisfies ||u — ql|wre_r.0) > 7, Vg € Kg, then Fr(u) —cp > 1. (1.58)
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1.2 Saddle solutions on R2

In this section, we collect the results obtained earlier to find saddle-type solutions

for equation (1.1).

1.2.1 Construction of solution on a infinite triangular set

To formulate the minimization problem of this subsection, let us first fix j € N with 7 > 2

and a; = tan(%). Moreover, given y > 0, with abuse of notation, let us denote

L, := (—ajy,a;y), E,:=E,, c,:=cq, and Fy(q) = Iy, (q) for q€ B,

Ajy

That said, we define
I'={(z,y) eR*:2 €, and y >0}

\

Figure 1.1: Geometric illustration of I'.

and the class
E(a) = {w e W) : wis odd in z and 0 < w(z,y) < « for > O} :

Hereafter, without loss of generality, for each y > 0 fixed and w € E(a), w(-,y)

designates the real function in z € I, and so w(-,y) € E,. Finally, we may define
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the functional J : W,b*(I') — R U {+oc} by
400 _
J(w) :/ / L(w)dx — ¢, | dy,
0 I,
where

L(w) = ®(|Vw|) + V(w), we W:D).

loc

Invoking Lemma A.7,

J(w) >0 for any w € Ey(a),

from where it follows that J is bounded from below on E..(«).

Lemma 1.24 Setting u™ (x,y) = ¢ (x) for any (z,y) € I, we have that ut € Ey(a) and

J(ut) < 400, where ¢* was given in Theorem 1.3.

Proof. Trivially, u™ € E. (). Also, since u™ is independent of the variable y, this yields

that O,u*(z,y) = 0. Then,

+oo +oo +00
Jut) = /0 (Fy(q+) — cy) dy < /0 (co —¢y)dy < 9/0 e_ﬁydy < 400,

via by Lemma 1.22 and the proof is finished. =

According to the above lemma, the below number

doo := inf J(w)

WEFoo ()
is well defined.
In what follows, if (u,) C W,2(T) and u € W22 (T'), we write u,, — u in W,2(I")

to denote that u, — u in WH®(Q) for any € relatively compact in I'. Hence, we obtain

the following result.

Lemma 1.25 Let (u,) € WiP(D) and u € WP (T) be such that u, — u in Wi (T).
Then

J(u) < liminf J(u,).

n—-+o00

Proof. For any fixed R > 0, it is easy to check that

R R
/ /E(u)dxdygliminf/ /E(un)dxdy.
o Ji, n=+oo Jo  J1,
Consequently,

R R
/ </ L(u)dx — cy> dy < lim inf/ (/ L(uy)dz — cy> dy.
0 I, n—+oo Jq I,
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Then, if J(u) = 400 we also have liminf J(u,) = +oo. If otherwise J(u) < 400, then

n—-4o00

given any € > 0 there exists R > 0 such that

/+00 </ [Z(u)da: — cy> dy <e.
R I,
Therefore,
R B R B
J(u)—e < /o (/Iy L(u)dx — cy> dy < lrllr_rgigof/o (/L L(uy,)dx — cy> dy < lrllr_r)lig)f J(up),

Yy
and the lemma follows since € is arbitrary. m

For each interval (o,7) C Ry, let us fix Qr) = I, x (0,7) C I" and

Jiomy(u) = /g ' ( /1 L(u)dz — cy> dy.

Y

Thereby, for each u € E (o) we have u € Wh*(Q(,,,)). Making an argument similar to
the proof of Lemma 1.1 we get the inequality
&i(lr — o)
O(|u(z, 7) — u(z,0)|)dr < >+ O (|0 u|)dzdy. (1.59)
Q

Iy \T—U\

(o,7)

Given any bounded interval I C R and u € E.(«), there exists yo > 0 such that I C I,
and by Fubini’s Theorem, u(-,y) € WH®(I) almost everywhere in y € (yo, +00). As a

direct consequence of (1.59) we obtain the following lemma.

Lemma 1.26 Let I C R be a bounded interval and u € Eo(a) with J(u) < +oo. Then,
there is yo > 0 such that the function y € (yo, +00) — u(-,y) € L*(I) is uniformly

continuous a.e. in (Yo, +00).

Proof. Let yo > 0 be such that I C I,,. As J(u) < 400, Lemma A.7 together with
(1.59) shows that

[ @lute) — el < Sulsr =92 700 vy, € (g, +00).
I |y1 - y2|

From this, given € > 0 there is > 0 verifying

/CI>(|u(x,y1) —u(z,yo)|)dr < e for |y —yo| <O with y1,y2 € (yo, +00).
I

According to Lemma A.2,

go (luC ) —uCm)llzem) < /ICD(IU(CL‘,?A) —u(z,y2)|)d < e for |y —ys| <9,



1.2. Saddle solutions on R? 91

showing that
[y — gl <0 = Jlul, 1) —ul, y2) ey < &' (e),

and the lemma follows. m

The following result is a crucial estimate to finish our study in this chapter.

Lemma 1.27 Let r > 0 and u € E(a) such that F,(u(-,y)) — ¢, > 1 ae in

y € (0,7) C (0,+00). Then, there is p, > 0 independent of o and T satisfying

lo — 7|
Jor)(u) > alo—1)

> ol ( [ luter) - u(x,o>|>dx> ,

/T (|u(z, 7) — u(z, 0)|)dz + rlo — 7|

where h was given in Lemma 1.2.

Proof. First of all, note that by Lemma A.7 we can derive the following inequality

Jory(u) > /
Q

According to (1.59),

T

& (0, ul)dxdy + / (Fy(u(-)) — c) dy.

(o,7) o

lo — 7|
Jor)(u) > alo—1D

Arguing as in the proof of Lemma 1.2 we have the existence of a constant p, > 0

/[ B(|u(z, 7) — u(z, 0)|)dz + rlo — 7.

independent of o and 7 such that

Ja(a) 2 o ([ @llute7) = ).
15
which completes the proof. =

The result below allows us to characterize the asymptotic behavior of the functions

u € Ey(a) such that J(u) < 4o0.

Lemma 1.28 If u € E(a) and J(u) < +o0o, then there exists ¢ € Ko such that fizing

any bounded interval I C R, we have
lu(,y) —allzeqy = 0 as y — +oo.
Proof. Since J(u) < 400 and Fy(u(-,y)) — ¢, > 0 for almost every y > 0, we obtain that

lim inf (F,(u(-,y)) —¢,) = 0.

Yy—r—+0o0
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Thus, there exists an increasing sequence y,, — +oo such that Fy, (u(-,yn)) —¢,, — 0. By

Lemma 1.23, there exists ¢ € K4 verifying, along a subsequence,
lu(-, yn) = qllwre((—ynyny) —+ 0 as n — +o0.

Fixing any bounded interval I C R it follows that there is ng € N satisfying I C (=4, Yn)

for all n > ng, and so
Hu<>yn) - QHL‘P(I) — 0.

Possibly considering the function —u, it is not restrictive to assume that
(-, yn) — aF ey — 0.
To finish the proof, we must show that
lu(-,y) — ¢ lpey — 0 as y — +oo.
Indeed, arguing by contradiction, assume that there exists » > 0 such that
limsup [lu(-,y) — ¢ lwreq > 2
y—r+oo
Using the Lemma 1.26, there exists a sequence of intervals (o, 7,,), with
0<o0, <Tp <0opy1 < Tpit
and o, — +00 as n — 400 such that
(1) r < lu(,y) = q |l pey < 2r for all y € [0, 7],
(i) [Ju(-,on) =g 2@ =,
(iii) [Ju(-,70) = ¢ llpo) =2
Due to triangular inequality,
u(-, 7) — u(-,on) |l Loy =7, VneN. (1.60)
Now, we note that there exists ¢ > 0 such that

/ICD (Ju(-, 1) —u(-,00))dx > €, Vn eN. (1.61)
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In fact, we proceed by contradiction and suppose that there is a sequence (i,) C N
satisfying

/@(|u(-,7’in)—u(-,ain)|)dx—>0 as 1 — +oo.
I

As ® € A,, the above limit implies that

(s 7,) — U('aain)HL‘ba) — 0,

which contradicts (1.60). On the other hand, note that we can consider r small such that

Hq+HL<I’(1)

r < 5 s

and hence,
lu(,y) —a ey 2 la" —a ey — luCy) — a Nleewy = 200 Loy — 20 > Ml e,

that is,
lu(-,y) — q_||L<I>(1) > ||q+HL‘I’(I) for each y € (o, 7).

In short,
|u(-,y) = qllpey =7 forall ge Ko ={q",q"} and y € (0,,7,).
Consequently, by (1.58), there are v, > 0 and ny € N such that
Fr(u(-,y)) — cp > v, for any y € (0, 7,) and n > ny.
Invoking Lemma 1.27, there exists p, > 0 satisfying

Tonrn () > irh ( [@ttutm) —ut o)) dx) Wn > g

that combined with (1.61) provides

J(u) > Z Jonra) () > pir Z h(e),

n>ng n>ng

which is absurd, because J(u) < +oco. =
Lemma 1.29 There exists U € Ex(a) such that J(u) = dw and

a(-y) = q" in L

loc

(R) as y — +o0.
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Proof. Let (u,) C Ex(®) be a minimizing sequence for J. It is not difficult to see that
fixing any r > 0 and
L,=IN{(z,y) eR*: y<r},

then (u,) is a bounded sequence on W*(T',). Indeed, since ||u,| 1= < a for all n € N,

we have

/ O (|uy,|)dxdy < (a)|T,| < o0 Vn €N.

T

Moreover, there is M > 0 such that J(u,) < M for all n € N. Thereby, for each r > 0
fixed,
/ O(|Vuy,|)dzdy < J(uy,) +/ cydy < M +rcep < +00 Vn € N,

0

r

and our claim follows, because ® € A,. Furthermore, by a classical diagonal argument,

there exists @ € W, (I') and a subsequence of (u,,), still denoted (uy,), such that

loc

u, — 7 in W,b(T) and w,(z,y) = (z,y) a.e. in T

loc

By pointwise convergence, one has u(z,y) = —u(—=z,y) for almost every (x,y) € I and
0 < a(z,y) < « for almost every z > 0, and hence, © € E,. Furthermore, J(u) = d,
via Lemma 1.25. Finally, from Lemma 1.28 it is possible to conclude that u(-,y) — ¢* in

L<I>

loc

(R) as y — 400, and the lemma follows. =
Setting
Koo(a) ={w € E(a) : J(w) = dy},

we have by the previous lemma that K. («) # (). Repeating the arguments used in the

proof of Theorem 1.2, it is possible to prove the following result.

Lemma 1.30 If 7 € K. (), then for any ¢ € WLT(R?) with ¢ compact support in R?

loc

we have

//F (¢(|Va|)VuVy + V' (u)y) dydx = 0.

As a consequence of Lemma 1.30, 7 € K («) is weak solution of
—Agw+ V'(w)=0 in T.

Elliptic regularity theory implies that @ belongs to C’llo’f(l“) for some 5 € (0,1). We can

now proceed analogously to the proof of Lemma 1.6 to obtain that

0 <a(z,y) < aforall (z,y) € T.
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1.2.2 Existence of saddle-type solutions
This section is devoted to the proof of the following theorem.

Theorem 1.4 Assume (¢1)-(¢4) and (Vi )-(Vs). For each j > 2 there exists v; € C7(R?)

loc

for some v € (0,1) such that vj is a weak solution of (1.1) satisfying

(a) 0<0;(p,0) < a for any 0 € [5 — 5=, F) and p >0,

(8) (0.3 + ) = —55(p. 3 — ) for all (p.0) € [0, +00) X R,
(¢) 55(p,0+ =) = —55(p, ) for all (p,0) € [0, +00) X R,
(d) v;(p,0) = o as p = +o0 for any 6 € [§ — 37, 5),

where 0j(p, 0) = v;(pcos(f), psin(0)).

Proof. The existence of v; will be done via a recursive reflection of the functionw : I' =+ R

™

given by Lemma 1.29. First of all, setting 0; = 5 with j > 2, we consider the rotation

matrix

cos(;) sin(6;)
—sin(#;) cos(6;)
Thus, putting I'Y = T, we designate I'* = Tj(I') for i = 0,1,2,...,2j — 1, i.e., ' is the

sz

if;-rotated de I'. Consequently,

2j—1

R*= | JI', T,°(T") =T, and int(I") Nint(T7) =0 for i+ j.
i=0
Now, we define the function v; : R*> — R by

vz, y) = (1T (T (z,y)) V(x,y) €T

Note that v, is the reflection of v;|ri-1 with respect to the axis separating !
from I, for any ¢ = 1,2,3,...,2j — 1. From the properties of the reflection operator,
v; € W,b*(R?). Moreover, we note that if ¢ € WH®(R?) has compact support in R?,
then 1) o T} € W'®(R?) also has compact support in R?, because T} is a linear operator.

Consequently, by Lemma 1.30,

/ (S(V05) Vo, VoV () dyd

FZ

— (-1 / (O(IVE)VEY (¢ 0 TV) + V'(@) (b o T )dydz = 0.
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Figure 1.2: Geometric illustration of sets I'" for j = 2,3, 4, 5.

Thus, for any ¢ € W1*(R?) with compact support in R?

GOV, 704V (0
25—1

_ Z / 8(IV0;)) Vo, Vi + V' (0;)0)dyda = 0.

Hence, v; is a weak solution of equation (1.1) and by regularity arguments v € CL7 (R?)

for some v € (0,1). Moreover, setting

5,(p, 6) = vj(pcos(6), psin(6)),

since U(z,y) = —u(—z,y) for all (z,y) € I', a direct computation shows that v; checks

the conditions (a)-(c) of Theorem 1.4. To complete the proof, we are going to prove that

v; satisfies item (d). Assume by contradiction that there are 6y € [§ — 55, 5), 70 > 0 and
(

a sequence (p,) C (0,+00) with p, — +o0o such that

|Oé — ﬁ](pn790)| Z 27]0 Vn € N.
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Setting (zp,yn) = (pncos(bp), pnsin(fy)) we have that (x,,y,) € I, and therefore

0j(pn,00) = u(zy, y,). Furthermore,
o —TU(Tp,Yn) > 219 Vn € N. (1.62)

Now, fixing n > 0, by Mean Value Theorem, there exists (zo,vyo) € [(Zn, Yn), (z,y)] such
that

|Uj(x’y) - Uj(xnayn” < |VUj(ZL‘O,y0)|77, (w,y) € B??(‘rnayn)' (163)

On the other hand, as |[[vj||L~®2) < a we have that there is A; > 0 such that
[V'(vj(z,y))| < A; for all (z,y) € R% Fixed 77 > 0, by |67, Theorem 1.7], there exists
C > 0, that only depends on 7, such that

vjllet (B, @nye)) < C, Yn €N and ¥n € (0,7).
Thus, taking n such that Cn < no, (1.63) leads to

‘Uj(xnayn) - vj(x,y)| < Cn <o, V(x,y) € Bn(xnayn)'

Moreover, we note that there exists ny € N such that B, (z,,y,) C I for any n > ny.
Then,
[w(xn, yn) —a(z,y)| <no, Y(x,y) € By(zn,yn) and Vn > ny. (1.64)

Consequently, from (1.62) and (1.64),

la —a(z,y)| > no, V(z,y) € By(zn,y,) and Vn > ny. (1.65)

Claim 1.1 There exists n; > 0 such that

||ﬂ<7y) - q+||W1,<1>(Iy) Z m fO’f’ all Yy I~ U (yn — g):yn —+ g) .

n>ng
In fact, we proceed by contradiction and suppose that for some subsequence there is

a 2p € (Yn — 3, Yn + 3) satisfying (-, 2,) — ¢* lwre(,,) — 0. Thanks to Lemma A.5-(c),
(s 20) = 4" Mz .y = 0.

Consequently, there exists n; € N such that n; > ng and

u(z, z,) — ¢ (2)] < % Vz €1, and VYn>ny.
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In particular, for (z,z2,) € B,(x,,y,) we have that + — 400 because z, — 400, and
hence since ¢*(x) — o as © — 400 we derive that

o

[, 20) — al < [a(@,20) =" ()] + 14" (z) —al < 3

for (z, z,) € B,(xn,yn) with n > ny sufficiently large, which contradicts (1.65).
Claim 1.2 There are 1, > 0 and g > ngy such that

(-, y) — ¢ llwreq,) =n2 forall y e U (yn - g’?/n + g) .

n>mno
Indeed, by Lemma 1.29, it follows that fixing any bounded interval I C R we have
u(-,y) — ¢ in L®(I) as y — +oo. Then, taking y sufficiently large such I C I, and

I 5) — ¢* 1oy < lla* o we conclude that

12 y) =g lwrea,) 2 180 9)=a ey 2 lla"=a e =1 v) =g ey = 107 (12,

which is enough to prove the claim.
Finally, gathering Claims 1.1 and 1.2 with (1.58), there is p > 0 such that
F,(u(-,y)) —c, > p forall ye U <yn—ﬁ Y —|—ﬁ>.
y ) Y 9’ n 9

n>ngp
By Lemma 1.27,

J@) 2 Y7 Tt n (@ = Y g,

n>ng n>mno

which gives rise to the contradiction J(u) = +o00, and the proof is complete. m

Note that the characterization of the asymptotic behavior of the saddle-type solution
vj(x,y) between two contiguous nodal lines given in item (d) of Theorem 1.4 is of the
exponential type, that is, the function a + v; has an exponential decay at infinity.
Furthermore, this asymptotic behavior represents a multiple transition between the pure

phases +a and —a with cross interface.
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Figure 1.3: Geometric illustration of saddle type solutions v; for j = 2,3, 4.

1.3 Final remarks

In this last section we will make some additional comments in order to complement
the study carried out in the previous sections. First, introducing the inhomogeneous
factor a(t) bounded on R into equation (1.2) we can obtain a result similar to Theorem

1.1 and in this case we write the following

Theorem 1.5 Assume a € L™(R) and that there is a solution q € C.7(R), for some

loc

v € (0,1), for the following quasilinear Cauchy problem
(@' ()4 (1)) = a(t)V'(q(t)) tER,
Q(O) = qo,
7 (0) = q,
such that there are r,p > 0 satisfying
(a) ¢(t) > p for any t € (=1,7).
(b) g € Wh=(R).
Then, q is unique in (—r,r).
The above theorem can be refined when the graph of the derivative of ¢(t)t, t > 0,
is above the line y = ¢ for some ¢ > 0. For more details on this fact, see Section 3.4.

We saw throughout the chapter that the study of the uniqueness of the minimal

heteroclinic solution for the problem

—(0(dDg)+ V' (@) =0 in R, ¢(0)=0, lim q(t)=+a (1.66)

t—=oo
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was crucial for the construction of a saddle-type solution in R?. An interesting question is
whether the uniqueness of (1.66) persists over the set of arbitrary heteroclinic solutions.
The answer to this question is positive and was answered in the recent work [18] by Alves,
Isneri and Montecchiari. In that paper, the authors studied the existence, uniqueness
and various qualitative properties for (1.66) and showed that Theorem 1.5 applies an

important rule in the arguments. Moreover, when V' is the ®-double well potential
V(t) = o(|t* - o)

they provide a comparison, related to the parameters [ and m given in (¢5), between the
unique solution ¢ of (1.66) and dilations of the unique solution ¢, (t) = atanh(at) of

classical logistic problem

—q¢"+2¢° —20°¢=0 in R, ¢(0)=0, lim ¢(t)==a.

t—+oo
This result is refined when

t2 A 2|p
o(t) = 72 and V(1) = L=
p

providing an explicit solution depending on the hyperbolic tangent, that is,

at

p—1

q(t) = atanh ( - ) whenever p € (1, +00).

For further details on the analytical properties of problem (1.66) we refer the reader

to [18].

(t2 _ a2)2

Figure 1.4: The graph of ¢, (t) = atanh(at) and V() = with o = 2.



CHAPTER 2

SADDLE SOLUTIONS FOR
NON-AUTONOMOUS QUASILINEAR
EQUATIONS IN R?

In this chapter, we use variational methods to show the existence of a solution to

the non-autonomous quasilinear elliptic equation of the form
~Agu+ Az, y)V'(u) =0 in R? (2.1)

where A € C(R?,R) is positive, even, periodic and symmetric with respect to the plane
diagonal x9 = 1. Throughout the chapter, we will assume conditions (¢1)-(¢4) on ¢ and
(V1)-(Vy) on V. The class of equations listed above includes the case where A = 1 on R?,
which was covered in Chapter 1. However, the method presented here differs from the

one treated there. Our main result includes the case of the potential
V() = B(|2 —al), teR,

which was modeled on the classical double well Ginzburg-Landau potential.

2.1 Heteroclinic Solutions on R?

We start this section by studying the existence of heteroclinic solutions for equation

(2.1), then properties of the type of compactness and exponential estimates of these
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solutions.

2.1.1 Existence of minimal solution on the strip R x (0,1)

In this section, we will establish the existence of (minimal) heteroclinic type solutions

from —a to a for (2.1). To begin with, for
QO =R x [O, 1]

let us consider the class

loc

Ee(a) = {w e Wh®(Qy) : 0 <w(x,y) <aforz>0and wis odd in :1:} :
In the sequel, I : W,o*(Q) — RU {400} designates the functional given by

Iw) = [ @(u) + Ae, )V (w) dyda.
Qo
A direct computation shows that

U, — u in Wh*(Q) = I(u) < liminf I(uy,). (2.2)

loc n—-+o0o

Hereinafter, the expression u, — u in W,5®(Qy) means that

u, —u in WYP([L,R] x [0,1]) for every R,L €R with L < R.

Setting
L(w) = (|Vw|) + Az, y)V(w) for we W),

loc

it follows from the definitions of ®, V' and A that
L(w) >0, Ywe VV&f(QO),

and so, the functional I is bounded from below. Moreover, it is easy to check that the

function ¢, : g — R defined by

a, if z>a and y € [0,1],
Yalr,y) =9 =, if —a<z<a and yel01], (2.3)
—a, if < -« and y € 0,1]

belongs to Fg(a) with I(¢,) < +oo. Therefore,

cp(a) == inf I(w)

wEEg (a)
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is well defined.
To end this introductory part, from now on, for each = € R fixed and u € Eg(a),
we will identify u(z,-) as being a real function in y € [0, 1]. For each y € [0, 1] fixed, we

will also identify u(-,y) as being a real function in z € R. Employing Fubini’s Theorem,

u(z,-) € WH(0,1) ae. in z€R and u(-,y) € WLP(R) ae. in y€[0,1].

loc

Moreover, since the functions in Eg(a)) have L*-norm less than or equal to «, without
loss of generality, we can make a modification on function V', by assuming that it satisfies
the following:

V(t) =V(2a) for [t > 2a. (2.4)

Finally, hereafter, we will denote this new modification of V' by itself. Moreover, according
to (Al)—(A4),
0< r%iQnA(x,y) < Az, y) < I%%XA(Ly) < +o0.

So, in what follows,

A= min A(z,y) and A= max Az, y).
Now, we prove an important estimate that will be used often in this chapter.

Lemma 2.1 Let w € Eg(). If 21,29 € R with x1 < x4, then

! 51 |5L’1—f132|
o ) — wlzy,y)|) dy < ST P2 2| dzdy,
/0 (lw(eny) — wizs, y)]) dy / / (o) dady

|z1 — 29|

where & was given in Lemma A.2.

Proof. First of all note that from Lemma A.5, w € W,>/(Q), and hence, by [26, Theorem

8.2],
/ we(x,y)dx
71

0 (wlea) ~ wlen)) = ([ wleais). (25)

x1

lw(za,y) —w(z1,y)| =

As @ is even,

Invoking Jensen’s Inequality given in [87, Theorem 3.3],

T2 1 T2
) (/ ww(:t,y)dx> < —/ O((xe — ) wy(z,y))dz, (2.6)
X1 |'7:1 - I2| X1
and hence, by (2.5) and (2.6),

1<I>(|w(3327 y) —w(zny)])dy < —— ((z2 — 21)we (7, y)) dudy.
/0 |1 952’/ /
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According to Lemma A.2,

1 —_
/@(\w(xz,y>—w<x1,y>r>dy<51 (21 = 25]) // (ws (z, ) ddy,
0

21 — 9

and the lemma follows. =

As a consequence of the last lemma, we obtain the following result.
Corollary 2.1 If w € Eg(a) and I(w) < +o0, then
(a) The function x € R — w(x, ) € L®(0,1) is uniformly continuous a.e..
(b) The function v € R — |lw(z,-) — al[Leq) is continuous a.e..

Proof. Let be z1, x5 € R such that z; < 3. Since @ is an increasing function on (0, +00)

and |0,w| < |Vw|, then the Lemma 2.1 ensures that

[ @ty iy < 2= [ [ at9upasa,

\xl — T

and so,

1
| (wteaw) — wler ) dy < 1) max {for - aaf oy = 221
0

From this, given ¢ > 0, there is § > 0 such that

1
/ O (Jw(ze,y) —w(zy,y)|)dy < e for |r; —xo| <.
0
The last inequality combined with Lemma A.2 gives
o (JJw(we, ) — w(zy, )| o)) <€ for |z — x| <.

Therefore,
|21 — 22| <0 = [z, ) —wlz, )L < & (6),

finishing the proof of (a). The item (b) follows from (a), because we have the inequality

below

llw(zz, ) = allza) = lw(@r, ) = allpeey] < lwlze, ) —wl@n, )l

This completes the proof. m

Another important consequence of Lemma 2.1 is the following result.
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Lemma 2.2 If w € Eg(a) satisfies
|w(z,-) = allwrepy > 7 a.e inx e (r1,12) C [0,4+00),
for some r > 0, then there exists p, > 0 independent of x1 and xo satisfying

1 1
T2 |:L‘2 $1| / _m
L(w d dx' > - - @ wlx , — wlx , d _|_ 2 - m—=1|0ro9 — I
/QU1 \/0 ( ) Yy = 251 (\1’2 1131’) 0 (| ( 2 y) ( 1 y)|) Y ( 2 ) | 2 1

1
> ot [ @ fotan ) = wlonl) dy).
0
where h(t) = min {t%,t%}.

Proof. In what follows, we are going to work with the functional F : W1%(0,1) — R
defined by

!
Fo = [ (o000 +av ) an
0
We claim that for any sequence (v,) C W1%(0,1) with 0 < v,(y) < « for all y € (0,1)

and F'(v,) — 0 as n — 400, we must have
|vn — af|wreg1) — 0 as n — +oo.
Indeed, first we note that the limit F'(v,) — 0 gives
1 1
/ ®(Jv,|)dy — 0 and / V(vy)dy — 0, as n — +o0. (2.7)
0 0
Thus, since 0 < v,(y) < « for every y € (0,1), (1.11) ensures that
1 1 !
/ O (Jv, — a)dy < —/ V(v,)dy Vn € N.
0 w Jo

Consequently,

1
/ O (ju, —al)dy -0 as n — +oo.
0

The limits above together with (2.7) and the fact that ® € A, yield
|lvn — allwre@y — 0 as n — +oo,

which proves the claim. Thereby, if v € W1®(0,1), 0 < v < « in (0,1) and

|v — allwre) > 7, then there exists p, € (0,1/2) such that

F(v) > (2,)77,
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Now, if w € Fg(«a), we know that 0 < w(z,-) < o on (0,1) for almost every x > 0, and

s0, as |lw(z, ) — allwre@) > 7 a.e. in (z1,72), we must have
_m

F(w(z, ) > (2u,)™1 a.e. in z € (r1,12),

which leads to

/ /01 Llw)dyde = / /0 (@ (Tu + Az, )V (w)) dydo
/:2 /01<I>(|8 wl) dydx+/ / ( (|0,w]) + AV (w )) dydz
/1

1
2
> [ etowhdyst [ (e, ds
T 0
1
2

x1
T2 1
/ B (|0,w]) dyda + (2, )75 |y — 21).

T 0

>

>
Thanks to Lemma 2.1,

I I N T | —
[ [ et > = e — ol ) + ()l — o

| 1—:E2’ /1 m__q s
> — = | O (|lw(xe,y) —w(xy,y)|)dy + 27T " 1o — 24].
251(’1_1 — xQD o (’ ( 2 ) ( 1 )D 2 ‘ 2 1’

Recalling that & (Jzo — 21]) = max{]a:z — x| g — xllm}, we will consider the cases

&i (|22 = 21]) = |vo — 1™ and & (Jv2 — m1]) = |22 — @[ U & (|22 — 21]) = |22 — 2™,

1 ! m
/ / widyds 2 5ot [ @ (wlaa,y) ~ wlen ) dy + 275 o
2|1 — a5 0
1 m
1 ! " m—1 N
i | ([ @ utoa) —wlenidy) | Tt (e )
2m |[L'1 — aj2| ™ 0 2m
Using Young’s inequality for the conjugate exponents m and —"-, we find
1 1
m m—1
| [ e ([ @t - w<x1,y>|>dy) s — ||
|a:1 — xgl m 0
that is,

3=

/ /01 L(w)dyde > 1y (/01 B (Jw(za,y) — wlzs,y)) dy) . (2.8)

If & (Jog — 22|) = |v1 — 22|, a similar argument works to prove that
11

[ [« dydszil[m(/Olww(xz,y)—w(xl,ymdy)l

(2p1,) 7 [,
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Now, since [ < m and 0 < 2u, < 1, one has (QMT)LI < (2p,)™-1. Therefore,

[ [« dydp%[ﬁ(/:@(w(w)wm,y))dy)“

Employing again Young’s inequality, we derive

/ / dydl‘>ur(/01®(|w($27y)—w(xlw)\)dyf- (2.9)

From (2.8) and (

/ / Ll dyda:>m(/ <\w<x2,y>—w<x1,y>|>dy)7

where h(t) = min {t%, tom }, which is precisely the assertion of the lemma. m

)
(2 ) T [wp = |-

The next result characterizes the asymptotic behavior of functions w € Eg(a) with

I(w) < +00.
Lemma 2.3 Ifw € Eg(a) and I(w) < 400, then
|lw(z,-) —allpepy —+0 as v — +oo and |w(z,-) + alLegr) =0 as r— —oo.

Proof. To begin with, we claim that

lim inf/0 ® (|w(z,y) — al)dy = 0. (2.10)

T—r—+00

Indeed, if the limit does not hold, then there are » > 0 and x; > 0 satisfying

1
/ O (|lw(z,y) —al)dy >r, Vo> .
0

So, the properties of ® together with Lemma A.2 guarantee that

< (ol - o) [ @ (000,

xZ, ) — OCHWI’(I’(O,l

<& (o)~ aln) [ @ (oS0l g,

,) = allLr,

<& (Hw(% ) = O‘HWL‘?(O,l)) )
that is,

|w(z,-) = allwrep) > &) ==y for all 2 > ;.

The last inequality permits to apply Lemma 2.2 to get u,, > 0 satisfying

/ / w)dydz > (2p,)7

T(x— 21).
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Taking the limit of © — 400 we infer that /(w) = 400, which is absurd, and (2.10) is

proved. Now, as ® € Ay, the limit in (2.10) is equivalent to
liminf [[w(z, ) — a| 21y = 0. (2.11)
T—r+00

Next we are going to show that

limsup [|[w(z,-) — a2y = 0. (2.12)

T—r+00

To see why, assume by contradiction that

lim sup ||w(zx, ) — OCHL‘P(OJ) > 0.
T—+00

Then, there exists r > 0 such that

limsup ||w(z, ) — al[pe1 > 2. (2.13)

T—>+00

By Corollary 2.1, we can assume that the function z € R — |w(z,-) — afp2(q) is
continuous in R. So, according to (2.11) and (2.13), there is a sequence of disjoint intervals
(0;,7) with 0 < 0; < 73 < 0311 < Tiy1, © € N, and 0; — 400 as i — +oo such that for
each 1,

r < |w(x, ) —alpepy < 2r for x€ o]

and

Hw(ai, ) - 04||L<1’(0,1) =r and ||w(7'i, ) - 04HL<I>(0,1) = 2r.

Due to triangular inequality,
|w(7;,-) —w(oi, )| Loy = r VieN, (2.14)
from where it follows that there exists € > 0 such that
1
/ S (|w(r, ) —w(oy,-)])dy > €, VieN. (2.15)
0
In fact, arguing by contradiction, let us suppose that there is a sequence (i,,) C N satisfying
1
/ ® (|w(r,, ) —w(o;,,)))dy =0 as n — +oo.
0
Since ® € A,, the above limit implies that

||w(Tin7 ) - IU(O'in, ')HL@(O,I) —0 as n— “+00,
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which contradicts (2.14). Consequently, by Lemma 2.2 there exists p, > 0 such that

>§/ / dydas>2m (/Olcbﬂwm-)—w(ai,->|>dy)

that combined with (2.15) provides

w) = fir Z h(e)

which is absurd, because I(w) < +o0. Now, the lemma follows from (2.11) and (2.12). =

Our next result is a key point in our approach, because it establishes the existence
of heteroclinic solution for a class of problem defined on the strip €y = R x [0, 1], which
will be used to prove in the next subsection the existence of a heteroclinic solution from

—a to « for (2.1).

Theorem 2.1 There exists u € Eg(a) such that I(u) = co(a). Moreover, u is a weak

solution to the quasilinear elliptic problem

—Agu+ Az, y)V'(u) =0 in Qo

) (P)
a—:;(x,y) =0, on 0%.

Proof. Let (u,) C Eg(a) be a minimizing sequence for I. It is straightforward to check
that (u,) is bounded in W,"®(Qp). Then, by a classical diagonal argument, there are a

subsequence of (u,), still denoted by (u,), and u € W,5*(Qp) verifying

loc
U, —u in WEP(Q) and  w,(z,y) — u(z,y) ae. in Q.
By the pointwise convergence, it is plain that

u(z,y) = —u(—z,y) a.e.in Qo and 0 <u(z,y) <a for >0,

from where it follows that u € Fg (). Hence, from (2.2) we may conclude I(u) = co(a).

To complete the proof, it is sufficient to show that
[ @ 0vul) Vuve + Al )V (@) dyds 2 0 6 € X5 (@),
Qo
where

X0 Q) = {w e W"*(Qp) with w(z,y) =0 for || > L for some L >0}.  (2.16)
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Given ¢ € X (Qp), we can write

V(x,y) = Yo, y) + te(,y),

where

and @Do(x’ y) — w(m’ y> —2¢(—$, y).

Y(x,y) +P(—z,y)
2

Ve(z,y) =

Note that 1, is odd in z and . is even in x. From this, for £ > 0 we set

u(x,y) +to(z,y), if = >0and u(z,y)+ the(z,y) >0
e(@,y) =9 —u(z,y) — t(x,y), if z>0and u(z,y)+ tihe(z,y) <0
—p(—z,y) if x <0,

from where it follows that ¢ is odd in the variable x and ¢(z,y) > 0 for > 0. Moreover,
from (V3), I(p) = I(u+ t),). Next, putting

¢(r,y) = max {—a,min{a, p(z,y)}} for (z,y) € Q,
a direct computation shows that ¢ € Fg(«) with
Ve, y)| < IV (u+ths)(z, )], V(z,y) € Q.

Furthermore, from (V7)-(13),

V(2(x,y) <V ((u+to)(z,y)), V(z,y) € Q.
Therefore,
I(u+ty,) = I(p) = 1(p) = cala) = I(u). (2.17)

On the other hand, according to the Lemma A.8-(b),
O (|V(u+t)]) = (IV(u+tho)]) = ¢ (IV(u+ to)]) V(u+ tho) V(tee),

and so,

[ @Vt t0)) =819 + t0,)]))dady
o (2.18)
> [ o(IV(u+ t,)]) ((VuVipe + °Vi, Vi, ) dady.

Qo
Since I(u) = co() and ¥ € X®(Qp), we see that I(u + t1), I(u + ti),) < +00, because

for |z| sufficiently large we must have

u(z,y) + t(x,y) = u(z,y) and u(z,y) + t,(x,y) = u(z,y).
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Thus,
I(u+tY) = I(u+thy) = /QO (Q(|V(u+td)]) = O(|V(u+t,)])) dzdy
n /Q A ) (V0 19) = V-4 03) dody,
and by (2.18),

Tt 1) — I+ t6,) > t [ 6(1V(u+ t46,)) VuTtdady
Qo

+ 2 ) AV (u + 1)) Vo Vb dady (2.19)

+ / Alz,y) (V(u+t) — V(u+ tih,)) dedy.
Qo

It is easily seen that the functions ¢(|V(u + t1),)]|) VuVi, and o(|V(u + t1,)|) Vb, Vb,
are odd in the variable x, and so,

i PV (u+ t1h,) ) VuVipedrdy = g O(IV (u+ o)) V) Vipedzdy = 0. (2.20)
Substituting (2.20) into (2.19), we infer that

I(u+t) = I(u+tth,) = /Q A(z,y) (V(u+t) = V(u+ t,)) dedy
that combines with (2.17) to give
Tl t9) = 1(0) > | Alw,) (Vi 00) = Viat 1) dedy
0

and so,

t—0t t

u+tY) — Viu+ t,)

/Q (&(|Vu|) VuVey + A(z, y)V' (u))dzdy = lim I(u+ty) — I(u)

> lim A(x,y)v(

dxdy
t—0+ Qo t
> lim Al y) (V(u +t) = V()  V(u+t,) — V(u)) dedy
t—0+ o t t

- [ A )V ()~ vo)dady = / A )V )y

Since the function A(z,y)V’'(u)y. is odd in z, it follows that

/Q (V) VaVe + Az, y) V' (w)h) dudy > 0,

which completes the proof. m
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2.1.2 Existence of solutions on R2

We will show in this subsection how the study of the previous subsection helps us to find

a heteroclinic solution for (2.1). For this, let us consider
Ko(a) ={u € Eg(a) : [(u) = cop(a)} .

Invoking Theorem 2.1, Kg(a) # 0. In the sequel, for each u € Kg(«), we will show that

there is a function v € K¢(a) depending on u such that
v(x,0) =v(x,1) for any = € R.
To prove this, we define
Es,(a) ={w € Ey(a) : w(z,0) = w(z, 1) a.e. in z € R}
and
copla) = weg;,li,(a) I(w).

The next lemma establishes an important relation between cq(a) and ¢ ().

Lemma 2.4 It holds that ce (o) = co(a). Moreover, given u € Kg(a) there exists

v € Kg¢(a), depending on u, such that
v(x,0) =v(x,1) for all z €R.

Proof. Since Epp(a) C Eg(), co(e) < cop(a). Now we are going to prove that

cop(a) < cop(a). To see this, given w € Eg(a), we write

I(w) = Jl(w) + JQ(U)),

Ji(w) = /R /0 éc( )dydz and Jo(w / / w)dydz.

Let u € Kg(a). So, if Ji(u) < Jy(u), let us consider the function

where

u(z,y), if 0

VAN
IA

—_ wh—t

y
v(x,y) =
y

IN
IN

N

that belongs to Eg ,(a). From (Ay)-(As),

JQ(U) = Jl(v) = Jl(u),
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and hence,
I(v) = Ji(v) + Ja(v) = 2J1(u) < Ji(u) + Ja(u) = I(u),
showing that ¢ ,(a) < co(a). For that reason, cp (o) = co(a) and I(v) = cp(a) with

v(x,0) = v(x,1) for every z € R. On the other hand, if Jo(u) < J;(u), we consider

o(x,y) =
u(z,y), if y

IN
IN

—_ N

IN
IN

N =

By a similar argument, 0 € Eg ,(a) and J;(0) = J2(0) = J2(u), from where it follows that
cop() = co(a), proving the desired result. m

The Lemma 2.4 shows that the set
Ko ,(a) ={w e K¢(a) : w(z,0) =w(z,1) for all z € R}

is non empty. We would like point out that if w € Kg (), then it can extend periodicity
on R? with period 1. Hereafter, the elements of Kg ,(c) will be considered extended in

whole R2.

Now, we are ready to prove our main theorem of this section.

Theorem 2.2 Assume (¢1)-(¢3), V € CY(R,R), (Vi)-(V3) and (Ay)-(As). Then, there
exists v € Cp7 (R?) for some v € (0,1) such that v is a weak solution of (2.1) that verifies

loc

the following
(a) v(z,y) = —v(—x,y) for all (z,y) € R?,
(b) v(z,y) =v(z,y+1) for any (z,y) € R?,
(c) 0 <v(z,y) < a for each x >0 and y € R.

Moreover, v is a heteroclinic solution from —a to «, that is,
v(z,y) > —a as x — —o0 and v(z,y) > a as x — +oo uniformly in y € R.

Proof. Let v € K¢ (o). Then (a) and (b) are immediate. According to the proof of
Theorem 2.1,

| @V Vove + A V(o)) dyde =0 Vo € X3*(S)
Qo
where X;'®(€) was given in (2.16). In the sequel, we fix Q; = R x [1,2],

loc

E, = {w € Wl’@(Ql) cw(z,y) = —w(—z,y), r € R, and 0 < w(z,y) < a for x > O} ,
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the functional I' : W2 ®(€) — RU {+oc} given by

loc

I'w) = L(w)dydz,

Q1
and the real number

c' = inf I'(w).

weF,

1

It is easily seen that ce(a) = ¢! and

| @UVDTTE -+ Al )V (o)) dyde =0 v € X3 (c)
where
X0 () = {ue W"*(Q,) with u(z,y) =0 for |z| > L for some L >0}.
From this, a straightforward computation ensures that
[ UTHITETE 4 A )V @) dude =0 Vs € X3 (B x [0.2),
x[0,
where
Xo PR % [0,2]) = {ue WH*(R x [0,2]) with u(z,y) = 0 for |z| > L for some L >0} .
A similar argument works to prove that
[ Ve Tove + A )V 0)s) dyds o
Rx[i,k]
for all i,k € Z with i < k e for any ¥ € X;*(R x [i, k]) where
Xo®(R x [i,k]) = {ue WHP(R x [i, k]) with u(z,y) = 0 for |z| > L for some L >0} .
So, since k and ¢ are arbitrary, we get
[ @(ITehTove + AV (w)0) dyde =0,

for any ¢ € WH?(R?) with compact support in R%. By [67, Theorem 1.7] there exist
v € (0,1) and M > 0 such that v € C'L7(R?) with

loc
Iolleg ey < M.
Next, we will show now that v is a heteroclinic solution from —a to a. To do this, given

n € N, we set

va(z,y) =v(z+n,y) Y(z,y) € [0,1] x [0,1].
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Thereby, (v,,) is bounded in C*7([0,1] x [0, 1]), and so there exists vy € C*([0,1] x [0, 1])

and a subsequence (vy;) of (v,) such that
Un, = vo in C'([0,1] x [0,1]).
In particular, for x € [0, 1] fixed,
Un, (,-) = vo(x,-) as j — +oo uniformly in y € [0, 1].
On the other hand, according to Lemma 2.3,
Un,(%,") = o in L*(0,1) as j — +oc.
Passing to a subsequence if necessary,
Un, (z,y) — a for almost every y € [0,1],
and hence, vg = a on [0,1] x [0, 1]. Thus,
Un,(®,y) = a as j — 400 uniformly in y € [0, 1],
and consequently,
v(z,y) = a as x — +oo uniformly in y € [0, 1].
Since v is 1-periodic in the variable y and odd in the variable x,
v(z,y) > —a as ¢ — —oo and v(z,y) - a as x — +oo uniformly in y € R.
Finally, adapting the same arguments explored in Lemma 1.6 let us conclude that
0<wv(z,y) <a forall >0 and y € R,

and the proof is complete. m
If u € Kg(a), then we can extend u by periodicity on R? with period 2 in y satisfying
the equation (2.1). Indeed, defining the function

u(z,y), if (z,y) € Rx0,1],

'LL(:L‘,y) = )
u(z,2 —y), if (x,y) € Rx|[1,2],

we have that
_ N ou ou
u(z,0) = u(x,2) and a—n(x, 0)=0= a—n(x, 2).
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Now, we extend @ by periodicity to whole R? by setting u : R? — R by
G=a in Rx[0,2]

and

u(x,y) = u(z,y — 2k),
where y € R and k& € Z is the only integer such that 0 < y — 2k < 2. From now on,
without loss of generality, we can assume that u € Kg(«) is a periodic function with

period 2 in the variable y.

Arguing as in the proof of Theorem 2.2, we derive the following result.

Theorem 2.3 Assume (¢1)-(¢3), V € CH(R,R), (V1)-(V3) and (A;)-(A3). Ifu € Kg(a),
then u is a weak solution of (2.1) in C.7(R%R) for some v € (0,1) that verifies the

loc

following
(a) u(x,y) = —u(—xz,y) for all (z,y) € R?,
(b) u(z,y) =u(z,y +2) for each (x,y) € R?,
(¢) 0 <u(xz,y) <a for anyx >0 andy € R.

Moreover, u is a heteroclinic solution from —« to «, i.e.
u(z,y) > —a as x — —oo and u(z,y) - a as x — +oo uniformly in y € R.

Remark 2.1 If ®(t) = ¢7 the operator Ag is the Laplacian operator, and in this case,
using a local unique theorem for elliptic equations it is possible to prove that Theorems

2.2 and 2.3 are essentially the same, because every 2-periodic solution of
~Au+ A(z,y)V'(u) =0 in R?

is exactly 1-periodic solution, for more details see [}, Lemma 2.4] or [79, Proposition
2.18]. Here, since we are working with a large class of operator we were not able to prove

that these theorems are equal.

Remark 2.2 Here we would like to point out that Theorems 2.2 and 2.3 are valid for the
p-Laplacian operator with 1 < p < 400, because condition (¢4) and the fact that ¢ was

defined at t = 0 were not necessary.



2.1. Heteroclinic Solutions on R? 117

2.1.3 Compactness properties

In this section, for our purposes, we need to establish strong convergence for minimizing

sequences of I on Eg(«), as indicated below.

Proposition 2.1 Let (u,) C Eg(a) with I(u,) — co(a). Then, there exists uy € Ko()

such that, along a subsequence,
[ — uollwr.e ) — 0.
To better characterize the compactness properties of I, for each L € (0, +o0] we set
Qo= (—L,L)x|0,1]

and

To.p(w // w)dydr for w e WHP(Qq ).
Qo,L

Note that Qo400 = Qo, lo40o = I and that I is also well defined on Eg(a) being
weakly lower semicontinuous with respect to the Wh®(Q 1) topology. Moreover, given

u € Eg(a), we can identify u|q, , with u itself, and so if 0 < L; < Ly, one has
Iop,(u) < Iop,(u) <I(u) Yue€ Egp(a).
From now on, by Lemma A.5-(c), we can fix A > 0 satisfying
[wlzeo0.1) < Al|wllwrey Yw e WH*(0,1). (2.21)

Moreover, given § > 0, one defines

— 1
s =27+ A max V(s) and I cola) +

—L7 (2.22)
[s—a|<AS (2M5)m

where ps > 0 is given according to Lemma 2.2.

The next lemma is crucial to prove a compactness result involving the functional I.

Lemma 2.5 There exists g € (0,%) such that, for any 6 € (0,0p), if u € Fg(a),
Le (Is+1,+00] and Iy (u) < co(a) + As, then the following hold:

(a) There exists v, € (0,l5) verifying

|u(zg, ) — @||W17‘I>(0,1) <.
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(b) For x given in (a) we have
3
[ [ @)+ Aty asde < S
T4
(¢) For each x € (x4, L),
Ju(z, ) = allLe@) < da-

Proof. First note that A\s — 0 as § — 0. Thus, we can fix Jy € (0,0,/2) satisfying

%
As < min {1, g/ug (%) } Vo € (0,d), (2.23)

where §, > 0 was defined in (V3) and ps, is given by Lemma 2.2 in correspondence to
2

% Let u € Fg(a), L € (Is+1,400] and 6 € (0,8) with Ioz(u) < co(a) + As.

— Ya
T—Q.

Assuming that (a) is false, we deduce
|u(z, ) — allwregy >0 Vo e (0,l).
According to Lemma 2.2, there exists ps > 0 such that

ls

which is a contradiction. Therefore, there is x, € (0,ls) checking item (a). To prove (b),

let us consider

;

u(x,y), if 0<z<uy and y € [0,1],
] - fuleay), o <z<o,+1 and ye[0.1]
Wany) = a, if z,+1<x and y € [0,1],
—a(—x,y), if <0 and y € 0,1].

Thereby, @ € Eg(a) and co(c) < I(@) = Iy, +1(2). Moreover,
Oyu(z,y) = a —u(zry,y) and Jyu(x,y) = (v4 + 1 — x)0yu(xy,y) in (ry, x4 + 1) x [0, 1].

Using the fact that & is increscing on (0, +00) and Lemma A.8-(a), it is possible to show
that

o(|Val) < 2"0(Ja — u(zy, y)|) + 2" S([0yu(z, y)|) on (w4, 2y +1) x [0,1],

from where it follows that

[ [ gt <2 [T [ @0 = uter )+ o0t i

£B++1
/ / (x,y)V(a)dydzx.

(2.24)
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Now, applying Lemma A.2,

[ o= uterhay < & (lo = ulerMimon) <66 =8 (225)

A similar argument works to prove that

| @tosute iy < 8. (2.26)

Gathering (2.24) with (2.25) and (2.26), we obtain

z4+1 T4+1
/ / @)dydr < 2mH5 4+ A / / @) dydzx.

By item (a) and (2.21),
|@(z,-) — gy < A6 Vo€ (v, 2 +1),

and hence

LE++1 o
/ / L(@)dydr < 2™ + A‘ m?g;MV(s) = \s. (2.27)
0 S—o|S

Now, since

L o1
Io(@) =Ios, (u +2/ / w)dydr = In 1 (u +2/ / u)dydr— 2/ / L(u)dydz,
T4 0

and cq (o) < Iy r(u) follows from (2.27) that

/ / u)dydr < 3)\5,
T

which proves (b). Finally, if (¢) does not hold, we should find 6 € (x, L) satisfying
|u(@,-) — allLe@©,1) > da-
Recalling that by (a),

Oa

|u(ry, ) — CV||L‘I>(0,1) < o

the Corollary 2.1 together with Intermediate Value Theorem guarantees the existence of

o € (x4,0) such that
S Oa
[u(8,-) = u(o,-)|[L201) = D) and [lu(z,-) — allpeq) = o Va € (0,0).

Invoking Lemma 2.2,

/L / Clupdyde 2 jiegh ( / (Ju(0,y) — (o, y)l)dy) .
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On the other hand, from Lemma A.2,

[ #0u0.) = o)y > & (10, = ule Mzman) = 6 (5 )

Taking 0, > 0 small if necessary and by definition of function h we get the inequality

L 1 5
/ / L(u)dydz > psa (—a>
I+ 0 2 2

that combines with () to give

below

m
l

s.\T 3

which contradicts (2.23), and the lemma follows. m

From Lemma 2.5, we obtain in particular the following result.

Lemma 2.6 For all ¢ > 0 there are \. > 0 and I, > 0 such that if u € Eg(a) and
I(u) < co(@) + A, then u—a € WH® ((I.,+00) x (0,1)) and

[ [ @ —a)+ oqvuanis <

Proof. By definition of As, see (2.22), we know that \s — 0 as § — 0. Thereby, given

e > 0 we can choose &y € (0,,/2) satisfying

VPR

2 max{l, ﬁ}

where w was given in (1.11). Denoting A = N, le =I5 and L = +o0, it follows from

Vo € (0,4d),

Lemma 2.5 that
€

/:oo /01 (B(Vul) + A, y)V () dydz < 2 A < e, (2.28)

Aw

According to (1.11),

/ - / (@ — af) + 2 Vul)) dydr < / ” / o Vuldydz + / ” / 1 vty

+oo oyl 1 +oo o1
g/ / @(\Vu|)dydx+—/ /A(x,y)V(u)dydx
Ie 0 wA I 0

Smax{l,ﬁ}/lfoo /01 (@(|Vul) + Az, )V () dydz.

(2.29)
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From (2.28) and (2.29), u — v € W% (I, +00) x (0,1)) with

/ ) | (@ = b + 2(vu) dyar <

and this is precisely the assertion of the lemma. m

In order to continue our analysis, we will fix the following set

loc

Es(a) = {w € Wh*(Qp) : wis odd in z and w — o € WH([0, +00) x [0, 1])}

and the real number

éo(a) = inf I(w).

weEq(a)
It is very important to point out that Eg(a) # (), because the function ¢, given
in (2.3) belongs to Eg(). Moreover, it is easy to check that if w € Eg(a), then
w—+ a € WH((—00,0] x [0,1]), and that if wy, wy € Eg(a), then w; — wy € WH*(Qy).
Have this in mind, we are able to define on Eg(a) the metric p : Eg(a) x Eg(a) — [0, +00)
given by

plwi, wa) = [Jwy — wallw.eqq).-

A direct computation guarantees that (Eg(a), p) is a complete metric space.

The next lemma shows that the numbers c¢g(a) and ¢g () are equal.

Lemma 2.7 It holds that é¢o(a) = co(a). Moreover, if (u,) C Eo(a) and I(u,) — co(a),
then there exists ng € N such that u, € Eg(a) for any n > ng. Therefore, (uy) is a

minimizing sequence for I on Eg(a).

Proof. Let (u,) C Es(a) be a sequence with I(u,) — co(a). Thus, given € > 0 there is
ng € N verifying I(u,) < ce(a) + € for any n > ng. By Lemma 2.6, there exists [, > 0

such that u, —a € WH®((l., +00) x [0,1]) for all n > ng, and hence,
U, —a € WH*([0, +00) x [0,1])  Vn > ne.

From this, u, € Fg(a) and é(a) < I(u,) for each n > ng. Taking the limit of n — +o0,

we get ép(a) < co(a). Now, let us consider (v,) C Fg() with I(v,) — éo(a) and

a, if v,(z,y) >«
Un(@,y) = walw,y), if —a<u(ry) <a

—a, it v, (x,y) < —a.
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From the properties of ®, V' and v, I(v,) < I(v,) for every n € N. Setting
Un(z, ), if 7,>0and x>0

Un(z,y) = —Op(z,y), if T,<0andz >0
—Up(—x,y), if =<0,

it is easy to see that (0,) C Eg(«) and I(0,) = I(7,) for each n € N. Therefore,
co(a) < 1(0,) = I[(T,) < I(v,) = éo(a) + 0,(1).

Taking the limit of n — 400 we obtain ce(a) < ép(a), from where it follows that
cop(a) = ép(a). Finally, if (u,) C Fs(a) and I(u,) — co(a), then we already know that
there is ng € N such that u, € FEg(a) for n > ng, and as co(a) = éo(a), we deduce that
(u,) is a minimizing sequence for I on Eg(r). m

In the sequel, we say that a sequence (u,) is a (PS)q sequence for I, with d € R, if
(un) C Eg(a) such that

I(u,) = d and |[I'(u)]l« =0 as n — +oo,

where

7). = sup {7} o € X3 () and [¥llwrsan < 1}

Lemma 2.8 If (u,) C Eo() and I(u,) — co(a), then there is a sequence (w,) C Fgo()
such that (wy) is a (PS)cy(a) sequence for I and

1
Hun — wn||W1,<1>(QO) < ﬁ Vn € N.

Proof. Let (u,) C Fg() with I(u,) — co(a). As (Eg(a),p) is a complete metric space,
we can employ the Ekeland’s Variational Principle to find a sequence (w,) C Eo(a)

satisfying:
(a) I(w,) < I(uy,) for any n € N,

1
(b) p(wy,u,) < — for all n € N,
n

1 ~ .
n) - n wi n.
(c) I(wy) — I(w) < =||w, — w|lwreq,) for each w € Eg(a) with w # w
n

Now, given 1) € X&’Q(Qo) we can write ¢ = v, +1)., where 1), is odd in the variable z and

1, is ever in x. It is easily seen that w, +tt, € Fg(a) for all n € N and ¢ > 0. From (c),
Hw, +t) — I(w,) = I(w, + t) — I(w, + t,) + I(w, + t,) — I(w,)

1
> I(wn + tlp) — I(wn + two) - EHtwOHWL@(QO),
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or equivalently,

I(wy, + t) — I(wy,) S I(wy, + t) — I(w, + t1,)
t - t

1
= ol

Arguing as in the proof of Theorem 2.1,

1
I'(wn)tp 2 = |[vollwreay). (2.30)

Here we would like point out that the same arguments found in Lemma 1.14 work to show

that

%ol wre o)y < NYllwre @) (2.31)

From (2.30)-(2.31) and replacing ¢ by —, one gets

1
I (wn)¥] < ﬁkuwm(Qo)-

Thereby,

I (wp)|l« =0 as n — 4oo.

Finally, from Lemma 2.7 and (a),
cp(@) = Cp(a) < I(wn) < I(un) = ca(@) + on(1),

showing that I(w,) — ca(a). Therefore, (wy) is a (PS),() sequence for I, and the
lemma is proved. m
From now on, we consider (u,) C Eg(a) and (w,) C Eg(a) as in the last lemma.

So, (w,) is also bounded in W,>* (). Indeed, for each L > 0 the Lemma 2.8 ensures that

loc
1
lwnllwre o,y < llwn = wallwie ) + lunllwre,) < =+ lluallwie, ).

Since (u,) is bounded in W.2*(€y), it follows that (w,) also is bounded in Wb ().

loc loc

Then, for some subsequence, there is ug € VV&’S’(QO) verifying

w, —ug in WP (Qy), (2.32)
w, —ug in LY (Qo), (2.33)
w, = ug in L. (Q) (2.34)

and

wy(x,y) = ug(z,y) a.e. in Q. (2.35)
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Lemma 2.9 There exists a subsequence of (w,,), still denoted by itself, such that
Vw,(z,y) = Vug(x,y) a.e. in Q.
Proof. Given L > 0, let us consider ¢ € C§°(R?) satisfying
0<¢¥ <1, ¢¥v=1in Qo and supp(v)) C Qo ri1.
From Lemma A.8-(c),

0< /Q (o(|Vw,|)Vw, — o(|Vug|)Vug)(Vw, — Vug)dydx

[N

/Q GOVl Veor — (Vo) Veao) (Ve — V) dyda

A

/Q »o(|Vw,|)Vw, (Vw, — Vug)dydx — / (| Vug|)Vug(Vw, — Vug)dydz.

Qo,L+1

(2.36)

Setting the linear functional f: W'®(Qg141) — R given by
fo)= [ wo(IVun]) VueVedyd.
Qo,14+1

we have that it is continuous, because ¢(|Vug|)Vug € L®(Q141) via Lemma A.6, and

so, by Holder’s inequality

[ wolvul ey
Qo,r+1

< 2{|e(IVuol) Vuuoll 13 o,y I wro 00 1.40)

for all v € WH®(Qg 141). Therefore, (2.32) asserts that f(w, — ug) — 0, or equivalently,
/ V[V Vato (Vi — Vitg)dydar — 0. (2.37)
Qo,141

Using again the Lemma A.6 and the boundedness of (w,) in W,5*(€), there is C > 0

such that
/ O (p(|Vw,|) Vw,)dydr < C Vn €N,
Qo,L+1

implying that (¢(|Vw,|)Vw,) is bounded in L®*(Qor41). So, by (2.33) and Hélder’s
inequality,

/ (w0 — 1) (| V| ) Ve Vibdyda — 0. (2.38)
Qo,141
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Now, considering the sequence (Yw,) we have that (Yw,) C W1®(€y), because 1) has
compact support, and by (2.35), passing to a subsequence if necessary, we can assume
that

Yw, — YPug in W1’¢(QO7L+1) and  Yw, — Yuy a.e. .
Consequently,
Az, )V (wal2,9) (W (2, y)wn (2, y) — (@, y)uo(z, y)) — 0 ae. in Qo 1.

From (2.4) and (2.34), there exist h € L'(Qoz41) and 8 > 0 such that, along a

subsequence,
A, )V (1) (b, — duo)| < BANI(h + uol) € L' (o 141).

Applying the Lebesgue’s Dominated Convergence Theorem we obtain

/ Az, )V (wy,) (w, — Yug)dydz — 0. (2.39)

Q0,241
Finally, we would like point out that
I'(wy) (Yw, — Yug) — 0. (2.40)
In fact, just note that
|1 (wn) (pwn — Puo)| < |1 (wa) || [wn — duollwre o),

(Yw,) C X1*(Qy) is a bounded sequence in W1*() and (w,) is a (PS). sequence for
I. Recalling that

Nmmw%—wmz/‘ SV ) VeV (Y, — o) dyde

Qo,L+1

+ /Q Az, )V (wy,) (Ww, — Yug)dydz,
0,L+1
from where it follows by (2.39) and (2.40) that
/Q o(|Vw,|)Vw, V (Yw,, — Yug)dydz — 0. (2.41)
0,L+1
Since V(Yw,, — Yug) = YvVw, + w, Vi) — Y)Vuy — ugV1), we also have

/Q Vo ([T, )V (Vi — Vo )dyda — / (V) ViV (b, — thuug)dyda

Qo,r+1

— /Q (wy, — ug) (| Vwy,|) Vw, Vibdydz.

(2.42)



2.1. Heteroclinic Solutions on R? 126

From (2.38), (2.41) and (2.42),
/ »o(|Vwy,|)Vw, (Vw, — Vug)dydx — 0. (2.43)
Q0,41
Finally, from (2.37), (2.43) and (2.36),
| @0Vl Va, = 6(Vaal) V) (Vs = Vo) = 0.
0L

This limit combined with the Lemma A.8-(c) leads to, along a subsequence,

(O(|Vwy,|)Vw, — ¢(|Vug|)Vug, Vw, — Vug) — 0 a.e. in Qg .
Applying a result found in Dal Maso and Murat [32], we infer that

Vw,(z,y) = Vug(z,y) a.e. in Q.
As L > 0 is arbitrary, there exists a subsequence of (w,,), still denoted by itself, such that
Vw,(z,y) = Vug(x,y) for almost everywhere in €,

finishing the proof of the lemma. =
Finally, we are in a position to prove our best result of this subsection, namely
Proposition 2.1.
Proof of Proposition 2.1.
Let (u,) C FEo(a) with I(u,) — co(a). Invoking Lemma 2.8 there is a sequence

(wn) C Eg(a) with I(w,) — co(a) and
1
|tn — wn|lwreqy) < - Vn € N. (2.44)
Hence there exits uy € W,5*(Q) satisfying (2.32)-(2.35). Moreover,
1
||U,n — u0||L<I’(QO,L) < E + ||wn — u0||Lq)(QO,L)7 VL > 0. (245)
Thereby, by (2.33), ug is the punctual limit of (u,), up € E¢(a) and I(ug) = ce(a), that

is, up € Kg¢(a). Now, arguing as in the proof of Proposition 1.1, one finds
[Vw, — Vugl| e oy) — 0.

From (2.44),

1
[Vun — Vg || 2oy < —t [Vw, — Vug|| ey,
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implying that
HVun — VUOHL‘I’(QO) — 0. (246)

Finally, according to Lemma 2.6, given € > 0, there are [, > 0 and ng € N such that

+o00 1 € +o00 1 €
/ / O (|up — o] )dyde < — and / / O (|uy, — af)dydr < — Vn > ny.
.. Jo 2m . Jo 2m

So, it is easy to see by Lemma A.8-(c) that

+oo  pl +oo  rl
/ / D (|u, — uo|)dydr < 2m_1/ / (P(Juy — )+ P(|Jug — «|))dydz < e Vn > ny.
le 0 le 0
(2.47)
As @ € Ay, (2.45) together with (2.47) gives

[t — ol Le(0y) — 0 (2.48)

Now, the lemma follows from (2.46) and (2.48). =

2.1.4 Exponential estimates

In this subsection, we intend to obtain some exponential estimates at infinity, as well as

their consequences. To this end, given j € NU {0} let us define the sets

Figure 2.1: Geometric illustration of Tj.
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Associated with sets above, we consider
Ej={weW"(T;):0 <w(z,y) < aforz>0and wis odd in z},
and the functional ; : Wh*(T;) — R U {+o0} given by

Lw = [ Ll

By a direct computation, we see that I; is lower semicontinuous with respect to the weak

topology of W®(T}) and bounded from below. Moreover, since I;(0) < 400,

¢j = u}gé] I;(w)

is well defined. For each j € NU {0} let us also consider
Arguing as in the proof of Theorem 2.1, it is possible to prove the following result.

Lemma 2.10 For every j € NU{0}, K; # (0. Moreover, if u; € K;, then u; is a weak
solution in CYP(T}) for some B € (0,1) of

—Aguj + Az, y)V'(u;) =0 in Ty,
with 0 < uj(z,y) < a for x>0,
Oyui(z,j) =0 for |z|<j and Oyu;(x,j+1)=0 for |z|<j+1
As immediate consequence of the last lemma is the corollary below.
Corollary 2.2 For all j € NU{0} we have ¢; < ¢jp1 < co(a).

Proof. Invoking Lemma 2.10, for each 7 > 0 there exists u;;; € Kj1;. Now, considering
the function
wj(x,y) = ujpi(z,y +1) for (z,y) €Ty,
we see that u; € F; and
¢ < 1i(w;) < L (ujn) = ¢

Finally, from Theorem 2.2, there exists v : R? — R such that v € Eg(a) with I(v) = cg(a)

and v is 1-periodic in the variable y. So, v € E; for any j € NU {0} and

¢; < Ij(v) <I(v) =co(a) VjeNU{0},
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showing the desired result. m
If 7 > 1 and u; € K, then arguing as in the end of the previous subsection, u; have
an extension 2-periodic v; in (—7,j) x R, i.e., there exists v; : (—j,7) x R — R that is

2-periodic in the variable y such that
vy =u; in (=4, 7) x (j,j+1).

Moreover, v; is a weak solution in C’l”B((—j, 7) xR R), for some g € (0, 1), of the equation

loc
—Agvj + Az, y)V'(v;) =0 in (—j,7) x R.

An direct computation shows that

/_jj /jo L(uy)dydz = /_j] /Olﬁ(’vj)dyd:c- (2.49)

From now on, given u; € Kj, with j > 1, let’s fix v; as above. Then, we have the

following result.

Lemma 2.11 There exists L > 0 such that for j > L + %, if u; € K; we must have

1
luj(z,y) —a| <0 Y(z,y) €T} with x € <L,j — Zl) ,

where 6, > 0 was given in (V3).

Proof. Arguing by contradiction, assume that there is a sequence of indices

(4n) C (0, +00) with j,, — +oo such that for each j, there exists u;, € Kj, and points

. 1 o
(Z0,yn) € (Oa]n - Z) X (Jns jn + 1)

with x,, — +o00 satisfying

a— 64 > uj, (Tn, yn) > 0. (2.50)

Given 7 > 1, we fix the rectangles

11 . . ~ 1 .
Qj:<—]+§7]—§)x(]—1,j+2) and Qj:(_j+17j_1>x(j7j+1>‘

Now, taking 7y € (0, ) and (z,y) € Q;, it is clear that

Bﬁo(xay) C BQ?]o(xvy) C Qj'
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Figure 2.2: Sets ); and Qj.

Defining the operator

B(z,y) = Az, y)V'(v;(x,y)) for (z,y) € Q;,

there exists A; > 0 such that |B(z,y)| < A; for every (z,y) € ;. So, since v; is a weak
solution of the equation

Agw+ B(z,y) =0 in Q;

with ||v;||L~(q,) < a, it follows from [67, Theorem 1.7] that there is C' > 0 such that
ij”cl(Qj) <C VjeN, (2.51)

and so,
From this, taking n < no such that Cn < §,/2 and invoking the Mean Value Theorem,

we arrive at
Oa
v, (z,y) — v, (20, yn)] < Cn < ) V(z,y) € By(xn,y,) and Vn € N. (2.52)
Thereby, from (2.50) and (2.52),

Oa ~
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leading to

o
llov — g, (2, ) || Lo (G 1) > 5 Vo e (v, —n/2,x,).

As the constants of embedding W% (4, j, + 1) = L*(jn,jn + 1) are independent of
n € N, because such constants depend only on the length of the intervals (j,, j,+ 1), then

there exists 7 > 0 such that
v = wj, (@, Mwre (o oty 27 Vo € (20 — n/2,20).
Now, setting
U, (2,y) = wj, (2,y + jn), for (z,y) € (=jn,Jn) % (0,1),

we obtain

lo = 5, (Y lwroqony > 7 Ve € (2 — 0/2,,).

From Lemma 2.2, there exists p, > 0 satisfying
Tn 1
/ / Ly, )dyde > (2,)75 0 Vn € N, (2.53)
Tn—n/2 J0 2
On the other hand, for each n € N it is well known that
gn 1 gn pintl
(@) = [ [ etwydys = [ [T 2w )dvde < 10,) = ¢, < caa).
—Jn Y0 —Jn JJ

Using the fact that j, — 400, it follows from the Lemma 2.5 that there are z, > 0 and
no € N satisfying
Jn 1 3
/ / L(u;,)dydr < A5 Vn > ny.
z4 JO 2

Next, we take \s arbitrarily small of such way that

N3

Vn > nyg.

jn 1 m
[ [ et avde < 27
CE+ 0

Therefore, as z,, — 400, increasing ng if necessary, we find

Tn 1 Tn 1 i 1
/ /ﬁ(ﬁjn)dydxg/ /E(ajn)dydxg/ /E(ﬂjn)dydx<(21ur)m—1ﬂ’
zn—n/2J0 z. Jo 2y Jo 2

for any n > ng, which contradicts (2.53), and the proof is over. m

In what follows, our goal is to get an estimate from above of the exponential type

for cg(a) — cr. In order to do that, we fix the real function

cosh (a (m — #))

cosh (aj“T

((x) = 04 for = € R,
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where L > 0 was given in the Lemma 2.11 and for some constant a > 0 that will chose
later. A simple computation provides ¢”(z) = a*¢(x) for all x € R, which together with

(¢2) allow us to use the same idea found in Lemma 1.21 to show that

(B(I¢' ()N (x)) < mao(|¢'(2)])¢(x) Vo € R.

Since |¢'(z)| < a((x) for each x € R, taking a < wy and using (¢4), we get

¢(I¢'(2)]) < d(wal(x)) for every z €R,

and so,

— (@(I¢'(@))¢'(2))" + mag(wa( (2))wa((z) 2 0 Y € R.

Therefore, if we define w(z,y) = ((z) for each (z,y) € R?, then
—Agw + mag(wyw)wow >0 in RZ. (2.54)
Now, fixing u; € K satisfying Lemma 2.11 and setting the function
v(z,y) = a—vi(r,y), (v,9) € (=4J) xR,

it follows from Lemma 2.11 that 0 < vj(x,y) < a for any = € (0, j), and so, since v; is a

periodic function in the variable y and continuous, there exists b; > 0 verifying
1
0<b; <vj(z,y) <a Y(z,y) € [L,j - Z] x R.

According to (V}),

w1b~ 1

L p(war) (war)  in (L,j - Z) x R. (2.55)

Vi(v;) < —

W2

bjwl
W2

In what follows, we take a > 0 sufficiently small such that ma < A

Claim 2.1 Let jo € N and v € X1®(R x (—jo, jo)) with 1 > 0, where

then '
Jo
/ / (o(|VV|) VvV + mad(wav)wort)) dydz < 0.
rRJ—

Jo
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In fact, from (2.55) it may be concluded that
/ / o(|Vv|)VeVi+mao(wer)worth)dyda

i1

=/ / o(|Vu;|) Vo, Vi + mag(war)warth)dyda
L
i1

= / / V() + mag(war)war))dydx
L
=% rdo ) W1bj

< [ AV Al )% Yoty
. .

sé / Al y)V' (w6 — Al, y)V" (v5)8)dydz = 0,

proving the Claim 2.1.
On the other hand, the definitions of v and w together with Lemma 2.11 ensure

that

v(z,y) <w(x,y) on {L,j — %} x R. (2.56)

Lemma 2.12 It holds that v(z,y) < w(x,y) in (L,j —1/4) xR

Proof. Suppose by contradiction that the lemma is false. Then, we can find
(x1,11) € (L,j — 1/4) x R such that v(xy,y1) > w(zy,y1). Let jo € N such that
(x1,y1) € (L,j — 1/4) x (—Jo, jo). Now, from (2.56) the function ¢, : R X (—jo,j0) = R
given by

(v —w)T(z,y), if xze€(L,j—1/4)

0, if z¢(L,j—1/4)

is well defined. Moreover, ¥, € X ®(R x (—jo, j0)) and 1, is a non-negative continuous

w*(:c,y) =

function. Therefore, according to Claim 2.1 and (2.54),

Jo
/ / (o(|Vw|) VwV i, + mad(wew)wowh,) dydx > 0
R J =30
and
/ / (IVv|) VvV, + mag(war)warth,) dyde < 0,
which leads to

// o(|Vv)Vr — ¢(|[Vw|) V) V(v — w) + ka®(¢(v)v — p(w)w) (v — w)) dydz < 0,

where

P ={(z,y) € R x (—Jjo, o) : ¥(z,y) > w(x,y)}.
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From Lemma A.8-(c), v(z,y) < w(x,y) for all (x,y) € (L,j — 1/4) x (—Jo, Jo), which is
impossible. m

Now, we are ready to prove an exponential estimate from above to ce () — ¢;.

Lemma 2.13 There are 61,05 > 0 such that
0< C@(Oé) —Cj < 916792‘7 v,] eNU {O}
In particular, ¢; — co(a) as j — +oo.

Proof. First of all, we note that by Lemma 2.12,

|Uj(l’,y) - CV’ < 5a

cosh (a x—j_%—JrL
cfsh<<ajii> >) v(z.y) € (L’j_ 1) R

2

j—3+L
2

Choosing ;. = , we have that

v (24, y) —al <

which implies
_a(;_1_
[05(x4,y) — o] <20,e72V717 = p; and D(jvj(z1,y) —a) < B(p;) Yy €R. (2.57)

In the sequel, we fix j sufficiently large such that z, + p; < j and

(

vi(z,y), if 0<z<ux, and yeR
5 (2.9) vj(x+,y)+/%(x—:ng(a—vj(m,y)), if 2y <zx<z,+4+p;, and yeR
vi\T,Y) = !
! a, if zy+p<ua and yeR
—0i(—z,y), if <0 and yeR.

\
Hereafter, let us identify 7;|q, with the o, itself, and consequently o € Eg(a) and
co(a) < I(D). Now let us take a look at some important estimates for the end of the

proof.
Claim 2.2 (0,7 <1 in (z4,x4 + pj) X R.

Indeed, note that 0,0;(z,y) = pij (a —vj(xy,y)) in (x4, x4 + p;) x R. From (2.57),

. 1
|0:0;(, y)| < ;Ia — vz, )l <1, V(z,y) € (24,24 +p;j) X R.
j

Claim 2.3 [0,7,| < 2C in (x4, 24+ + p;) X R, where C' > 0 was given in (2.51).
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By definition of 9;, [0,0;(x,y)| < 2[0vj(x+,y)| in (x4, x4 + p;) X R. Now, the
definition of v; combined with (2.51) leads to

|0y0;(,y)| <2C V(z,y) € (24,24 + pj) X R.
Claim 2.4 A(z,y)V(9;) < Aw®(p;) in (4,24 + p;) x R.
From (1.11),
Az, y)V (92, y)) < Aw2(|3;(2,y) — al) Y(z,y) € (24,24 + pj) x R.

Now, the definition of ¥; together with (2.57) yields

Az, )V (0(,y)) < Awd(|v;(z4,y) — al) < AwP(p;) Y(z,y) € (x4, 24 + pj) X R,

proving the Claim 2.4.
According to Claims 2.2, 2.3 and 2.4,

T4+p; T++p;5
/ / L) dyd < / / B(10,5]) + 270 (10,5;]) + A(w, 1)V (5,)) dyda

< 2M®(1)p; + 2" ®(2C) p; + Awd(p;)p;.

Now, since p; — 0 as j — +o0, there is a constant M > 0, independent of j and v; such

T4+pj 1 5
/ / L(vj)dydz < Mp;,
$+ 0
and so, by (2.49),

T+pj T4+pj
co (v / / (0;)dydx < / / (vj)dydx + 2/ / 0;)dydx
$+*PJ —J

< / / L(uz)dydz + 2M p; < I;(u;) +2Mp; = ¢; + 2Mp;,
—iJj+

that

that is,
0 < cg(a) —¢; < 4MS eif(ri*L),

for j sufficiently large. Therefore, it is possible to find real numbers 6,6, > 0 satistying
precisely the assertion of the lemma. m

Next, we establish further compactness property concerning the functionals /;, .

Lemma 2.14 Let j, — +oo and u;, € E;, such that I; (u;,) — c;, — 0 as n — +o0.

Then, there ezists ug € Ke(a) verifying
luj, — 75,u0llwrem, )y — 0 as n — +o0,

where Tug(x,y) = uo(x,y — j) for all j € N.
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Proof. Setting

wjn(m,y) = an(m,y +]n)7 for (l’,y) € <_]m]n) X [07 1]7

it is easily seen that I, (w;,) < I; (u;,). Since ¢;, < co(a) for all n € N and
]jn (ujn) - Cjn + On(1)7
Ioj, (wj,) < co(a) +0n(1) Vn eN. (2.58)

We claim that for each n € N there exists x,, € (£, j,) satisfying
= ||lwy, (24, ) — allwrep) — 0 as n — +oo.
Indeed, if the claim is not true, then there is » > 0 such that, for some subsequence,

lwj, (@) = allwrey > 7 Vo€ (F,5) and Vo e N.

Invoking Lemma 2.2, there exists p, > 0 verifying
ot nj
o) 2 [ [ 2w )ude > )
in Jo
2

Taking j,, sufficiently large we have Iy ;, (w;,) > co(a) +0,(1), contrary to (2.58), and the
claim is proved. Without loss of generality, we can assume that «,, > 0 for any n € N,

and so we define the function w;, : Qy — R by

wjn(xuy)7 it 0 S x S Tyn

~ Wiy, (x-‘r,nv y) + i(l’ - x-‘r,n)(a - wjn<x+,n’ y))7 if Tyon S T S Tyon +ay,
a, it zi,4+a, <z
—;, (—2,y), it = <0.

\

Thus, w;, € E¢(a) and
$+,n+an 1
cole) < 1@3,) = Do g +2 [ [ L@y )dyde. (259
IE+7’,L 0
On the other hand, from (2.21),
10,05, | < Ain (240, 240+ ay) X (0,1) ¥n e N. (2.60)
Indeed, using (2.21), for each (z,y) € (T4 5, T4 + ) X (0,1) we have

. 1 1
0.5, (5,9)] = — o = w3, (21, 9)] £ — 1= 05, (2, ) i) S A Vm €N

n n
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Moreover, an easy computation shows that
1005, (2, 9)| < 20005, (@4 9)] V(@,y) € (T win+00) x (0,1). (261)

Now, since «,, — 0 we can take n sufficiently large such that a,, < 1, and for such values
of n, the convexity of ® ensures that

1 1 0 Wi T nyY
/ (I>(|0ywjn($+,my)|)dy:/0 (I)(||8ywjn(x+,n,-)||L<I>(o,1) |0y w;, (240, Y)] ))d?/
0

|0ywj, (240, ')HL‘P(OJ

1
a wn(x 177»7y>|
< Haywjn<$+,m')||m(0,1)/0 P (‘ NG : dy

|aywjn (T4, ')||L<I>(0,1

< ay,
that is,
1
/ D(|0yw), (740, y)|)dy < . (2.62)
0

A similar argument works to prove that
A(mv y)v(ﬁ]jn) < _EQ)(la - wjn(er,na y)‘) in (x+,n7 Tym + an) X (07 1)

and
1
|l w ey < a. (2.03)
0

Therefore, we conclude from (2.60)-(2.63) that
$+,n+an
/ / L(w;,)dydr — 0 as n — +oo. (2.64)
0

According to (2.58), (2.59) and (2.64), I(w;,) — ce(). By Proposition 2.1, there exists

ug € Ke(ar) such that, along a subsequence,
|@;, — uollwr.e0) — 0.
As w;, (x,y) = u;, (z,y + jn) for |x] < x4, and y € [0, 1], we deduce
|w, — TjnuoHWL@([_IJFW@U“”}X[jnd‘n_i_l}) — 0 as n — +oo. (2.65)
By definition of w;,,,

]n“l‘l m+,7z+an 1
I(w;,) / / L(uj,)dydx + 2/ / L(w;,)dydx
—ZT4.n Yin —Tton 0

that combines with (2.64) to provide

/_M /Ml Ndyda — cola). (2.66)
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Jn  Jnt1

Figure 2.3: Geometric illustration of R, ,.

Setting R-i—,n \ ([ Tyny Ty, n] [.]na jn , WE have
,]n+1
/ L(u;, )dydr = 1;, (u;,) / / L(uj,)dydzx.
R+ n —T+n Y In

Now, the estimate I;, (u;,) = ¢;, + on(1) together with (2.66) ensures that

// L(u;,)dydx — 0. (2.67)
Ry

On the other hand, from (1.11),

Jf @l #, —abyivar < [ (009004 A0V (,) ) dvis

1
< — i .
< max {1, m A} / . L(u;,)dydz

(2.68)

This combined with (2.67) leads to

s, — allwrer, ) — 0. (2.69)
Finally, by Lemma 2.6, we also have that ®(|Vug|), ®(Jug — a|) € L'(Q), and so,

// O(|V7;,u0])dyder — 0 and // O (|75, up — ])dydx — 0.
R+ n RJr n

As & € A,, these limits guarantee that

||Tjn’u,0 — aHWL‘I’(R.,_,n) — 0. (270)

Now the lemma follows from (2.65), (2.69) and (2.70). =
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2.2 Saddle solutions on R?

In this last section we will collect the results obtained previously to prove our main
result (see for a moment the Theorem 2.4). The proof is constructive and makes use of

variational arguments.

2.2.1 Construction of solution on a infinite triangular set

Let’s study the existence of a solution to the following equation
—Agw + A(z,y)V'(w) =0 in T, (2.71)

where T is the following triangular set on R?

P:UTj.

0
J=0

Figure 2.4: Geometric illustration of I'.
Setting

loc

E. = {wEWl’Q(F): 0 <w(z,y) <aforz>0and wis odd in x},

we infer that if w € E then w|r, € Ej for every j € NU{0}. Hereafter, let us identify w|z,
with w itself. With everything, we may define the functional J : WL*(I') — R U {+0c0}
by .
J(w) =" (I(w) = ¢;) .
=0

J
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Clearly, J is bounded from below on F.. Here, we would like point out that there
exists u € Ey, such that J(u) < +oco. Indeed, from Theorem 2.2, there exists a function

u, : R? = R such that u, € E,, with I(u,) = cg(a). Invoking Lemma 2.13,

Ii(u) — ¢; < I(u,) — ¢j = co(a) — ¢; < 01e7%7 Vi € NU{0}.

Thus,
J(w) =Y (L(w) —c) <01 e < foc.
j=0 Jj=0
Consequently,

doo := inf J(w)

’U)GEoo

is well defined.
In what follows, if (u,) C W,*(T') and u € W,o* ('), we write u, — u in W,5*(I)

to denote that u, — u in Wh®(Q) for any 2 relatively compact in I'. Here we would like

point out that the same arguments found in Lemma 1.25 work to show that

Uy, — uin W) = J(u) < liminf J(uy,).

n—-+0o00

From this, we are ready to show the following result.
Lemma 2.15 There exists u € Eo such that J(u) = du.

Proof. Let (w,) C E, be a minimizing sequence for J. Then there is M > 0 satisfying

J(wy,) < M for every n € N. Now, for each k € N we define
I'n=InN {y < ]{7}

Consequently,
// O(|Vw,|)dydr < // Llwy)dydr <Y Li(w,) < J(w) + Y ¢; < M+ (k+ 1)ca(a)
Ty I j—

that together with ||w,||zr) < a ensures that (w,) is bounded in WL(I). By a classical

diagonal argument, for some subsequence, there exists @ € W,-*(I') such that

w, =T in WorT) and w,(z,y) — u(x,y) ae. in L.

loc

Next, by pointwise convergence, u(z,y) = —u(—x,y) for almost every (z,y) € I' and
0 < a(z,y) < « for almost every (z,y) € I" with > 0, that is, u € E,. Moreover,

J(u) = dws, which completes the proof. m
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Setting
Ko ={we€ Ey,:Jw)=dy},

we have by the previous lemma that K, # (). Repeating the arguments used in the proof

of Theorem 2.1, it is possible to prove the following result.

Lemma 2.16 If u € K., then for any ¢ € WH*(R?) with compact support in R* we

have
[ @5 vave + A V@) dyde = o
r
As a consequence of Lemma 2.16, if u € K, then @ is weak solution of (2.71). Elliptic

regularity theory yields that  is a solution in C'?(T") for some 8 € (0,1). Furthermore,

loc

arguing as in the proof of Theorem 2.2 we also have that

0 <u(z,y) <a for (z,y)el with = >0.

2.2.2 Existence of saddle-type solution

Finally, in this subsection, we will show the existence of a saddle type solution for equation
(2.1). The saddle solution will be obtained by recursive reflections of @ on the faces of

the triangular set I'.

Theorem 2.4 Assume (¢1)-(¢4), V € CHR,R), (V1)-(Vy) and (A;)-(Ay4). Then, there
is v e CLP(R2) for some B € (0,1) such that v is a weak solution of (2.1) that verifies

loc

the following

(a) 0 <v(z,y) < a on the fist quadrant in R?,

(b) v(z,y) = —v(—z,y) = —v(z,—y) for all (z,y) € R?,

(¢) v(x,y) = v(y,x) for any (z,y) € R?,

(d) There is ug € Ko(ar) such that ||v — Tjuol| Lo (rx]jjt1)) — 0 as j — +o0,
where Tiug(z,y) = uo(x,y — j) for all (z,y) € R2.

Proof. The existence of saddle-type solution v will be done via a recursive reflection of
the function w : I' = R given by Lemma 2.15. First of all, let us consider the rotation

matrix
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that is,
T(x,y) = (y, —x) for any (z,y) € R”.
Setting T = T', we designate I'" = T%(T') for i = 0,1,2,3, i.e., I' is the iZ-rotated de T".

Consequently,

3
R*=|JI, T7(")=T and int(I')Nint(I7) =0 for i#j.
i=0

1T2

Figure 2.5: Geometric illustration of sets I'.

Finally, we define the function v : R? — R by

v(z,y) = (=) (T (z,y)) Y(z,y) el
Note that v|p is the reflection of v|ri—1 with respect to the axis separating I'""! from I,

for any ¢ = 1,2, 3. From the properties of the reflection operator, v € W'hlf(RQ). Now, we

note that if ¢ € WH®(R?) with compact support in R?, then v o 7% € W1?(R?) and has

compact support in R?, because T" is a linear operator. Moreover, from (Ay),

A(T'(z,y)) = A(z,y) VY(z,y) € R%.
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Thus, invoking Lemma 2.16,
[ GIT 0T+ Al )V ()0
- <_1)i/F (6(Va) VAV (W 0 T?) + Az, y)V'(@) (4 o T')) dydzz = 0.
Therefore, for any ¢ € WH?(R?) with compact support in R,

AJ“’WDWWM@, )V (0)))dyda
=3 [ GUVeDTOTY + Al )V (0)0) dyde = 0,

Furthermore, by regularity arguments, v is a weak solution of equation (2.1) in Cllo’cﬁ (R?)

for some 5 € (0,1). A direct computation shows that v checks the conditions (a)-(c) of
Theorem 2.4. To complete the proof, we are going to prove that v satisfies item (d). Since
J(v) = dos < 400, we must have I;(v) —c¢; — 0 as j — +00. By Lemma 2.14, there is

up € Kg(a) such that
lv = Tjuollwie(r,) — 0 as j — +oc. (2.72)

Now, we claim that

|v — Tjuol|Loo(r;) — 0 as j — +oo. (2.73)

In fact, assume by contradiction that there exits ¢y > 0 such that for each n € N there

are j, > n and (z,,y,) € T}, satisfying
|0(Zn, Yn) — T, uo(Tn, Yn)| > 3e€o.
From Mean Value Theorem, there is 6 > 0 sufficiently small such that
’Tjnuo(% y) - Tjnu0<xn7 yn)‘ S €0 V(x,y) € Bg(mn:yn) N Tj

and

[v(z,y) = v(@n,yn)| < €0 V(z,y) € Bo(an, yn) NI,
Consequently,

// O(jv — 75, u0])dydx > D(ey) |Bop(Tn, yn) N Tj,| > Bo Vn €N,
Tin

for some By > 0. As & € Ay, there is r > 0 such that

|lv — Tjnuon(Tjn) >r VneN,
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which contradicts (2.72). Thereby, from (2.73), given € > 0 there is jo > 0 such that
€ L
[o(@,y) = Tyuo(z,y)l < 5 V(z,y) € Tj and Vj > jo.

On the other hand, since ug(z,y) — « as © — +oo uniformly in y € [0, 1] we may take jy

sufficiently large satisfying
|Tiu0(x,y) — af < % V(z,y) € T; with = > joand j > 0.

Therefore,

lv(z,y) —a| <€ Vo >jo and y > jo.
A similar argument works to prove that
lv(z,y) +al <e Vo< —j and y > jo.

Gathering these estimates together with (2.73) we conclude the proof the theorem. m

The above proof suggests the following behavior of the solution v.
Corollary 2.3 Let v be given as in Theorem 2.4. Then, the following hold
(a) v(z,y) = a as © — +00 and y — +00,
(b) v(z,y) > —a as x — —o0 and y — +0o0,
(¢) v(z,y) = —a as © — 400 and y — —0o0,
(d) v(z,y) = a as  — —o0 and y — —o0.

In other words, v(z,y) is close to +a whenever (z,y) € R? is in one of the odd
quadrants far enough away from the coordinate axes. Likewise, if (z,y) is in one of the
even quadrants and far enough away from the coordinate axes, then v(z,y) is close to

— Q.

2.3 Final remarks

We would like to point out in this last section that although we have refined and
adapted the variational procedure introduced in Chapter 1, the problem of the existence
of a saddle solution for (2.1) in the case where ®(t) = |¢|P with p € (1,2) is still an open

question.



CHAPTER 3

HETEROCLINIC SOLUTION FOR THE
PRESCRIBED CURVATURE EQUATION
INR

In this chapter we use variational methods to establish the existence of heteroclinic
solution for the prescribed mean curvature equation of the form

— (q_’) +a(t)V'(q) =0 in R, (3.1)
(¢)?

1+

where V' is a double-well potential with minima at ¢ = +a and a € L*(R) is an even
non-negative function with 0 < ag := ti>n]\f4 a(t) for some M > 0. Moreover, in the case
where a is constant, for each initial conditions q(0) = r; and ¢/'(0) = 79, the uniqueness of
the minimal heteroclinic type solutions for (3.1) has been proved. Our main effort here is
to truncate the prescribed mean curvature operator and obtain an auxiliary quasilinear

equation of the type
—(¢(ldg) + a(t)V'(q) =0 in R.

Afterwards, we discuss the existence of a heteroclinic solution ¢ from —« to « of this
auxiliary equation using minimization arguments and the qualitative qualities of this
solution. Finally, we consider a control involving the root o and the graph of V' to ensure

that ||¢'|| is small, because this implies that ¢ is a heteroclinic solution for (3.1). At this
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point, some estimates due to Lieberman |[67| apply an important rule in our argument.

3.1 Existence of heteroclinic solutions for quasilinear
equations

In this section, we will study the existence of a heteroclinic solution for the

quasilinear equation of the form
—(¢(ld D) +at)V'(q) =0 in R (3.2)

by considering the conditions (¢;)-(¢3) on ¢, V € C*(R,R), (V4)-(V3) and (V3) on V.
This study will apply an important rule to find a heteroclinic solution for the prescribed

mean curvature equation (3.1).

3.1.1 Existence of minimal solution

We begin remembering that from (V;) and (V3) there exist w,w > 0 such that
wd(|t —a]) < V() <wd(|t —a|) Vte0,a+ b, (3.3)

For this, see for a moment (1.11). From now on, we will consider the class of admissible

functions

[a) = {q e WEP(R): lim ¢(t) = o, ¢ is odd and g(t) > 0 for ¢t > 0}

loc t—+o00

and the energy functional I : W,*(R) — R U {400} given by

o) = [ (@(g) +alOV () dt
R
According to the definitions of ®, a and V,

I(g) > 0 for every q € W,o*(R),

loc

from where it follows that [ is bounded from below. Moreover, the function ¢ : R — R

defined by
—a, if t < —q,

Yt)=qt, if —a<t<a,

a, if a<t,
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belongs to I'(«) with 1(¢)) < +00. Hence,

— inf [
c(a) At (9)

is well defined.

With these preliminaries we can state and prove our first lemma.

Lemma 3.1 Let ¢ € (0,«0) and ty,to € R, t; # ta, such that max{t;,to} < —M or
min{ty,te} > M. If q € Wl’q’(R) has the property that

loc

q(t1) = a — % and q(ts) = a —€ or q(t1) = —a + g and q(ts) = —a + €,

then we have

max{t1,t2}
[ @) + V(@) de =

min{¢,t2}
for some positive [ o, tndependent of t; and ts.
Proof. Assume t; < t5. By continuity of ¢, without loss of generality, we can change ¢,

and t, if necessary to get the inequalities below

a—e<qf)Sa—3 or —a—i—% <q(t) < —ate V€[t to].
Repeating the same arguments found in Lemma 1.1, one has
Gilta—ty) [™
®(lq(t) — att2))) < 2= Py
2=l Jy

where & was fixed in Lemma A.2. So,

€ tQ - tl t2

0 (5) < [ aggna
ettt =), (lg'()])

Since to < —M or t; > M,

€

/f (@(|¢|) + a(t)V(q)) dt > ® (5) &tg —t

—2 L 4 Beag(ty — 1),
" (tg—tl) 0(2 1)

where

—

0. = min V(s):a—egsga—% or —a+%§s§—a+e}>0.

1\IOW7 if gl(tg - tl) - (t2 - tl)ma

® (£) (ta — t1)
&(ta — 1)

+0.a0(ts — t)

21 =
m (tZ_tl)m m
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Invoking Young’s inequality for the conjugate exponents m and -,

o (%) % + 0eao(ts — t1) > (agh) "m @ <—>; -

Similarly, if 51 (tg - tl) = (tg — tl)l7

2 (%) % Fbag(ts — 1) > (a00) T ()

Setting
1 1
fe.qp = Min {(aoee)mml@ (%) " (aoee)l%‘b (%) : } >0,

we arrive at the inequality below

/ (@) + )V (@) dt > pren,

t1
which completes the proof. m

Applying Lemma 3.1, we can prove that the set

K(a) ={q e I'(a) : I(q) = c(a)}
is not empty. This fact is proved in the lemma below.

Lemma 3.2 [t holds that K(«) is not empty. Moreover, any q € K(«) is a weak solution
of (3.2) with g € CLP(R) for some 8 € (0,1) and

—(e(ld®)Nd'®) +a(O)V' (1)) =0 Vt € R, (3-4)

Proof. Let (¢,) C I'(«r) be a minimizing sequence for I. We can assume without loss of
generality that
0<gq,(t) <aforallt>0.

Indeed, by setting the sequence

min{q,(t),a}, if t>0
—u,(—t), it ¢ <0,

up(t) =

it is easy to check that (u,) C W5P(R), uy, is odd, 0 < u,(t) < a for t > 0 and
lun(t) — a| <|g.(t) —al, ¥Vt >0.
Hence, (u,) C I'(«), and also, a direct computation implies that

I(u,) < I(qn), Vn €N,
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from where it follows that (u,) is also a minimizing sequence for I on I'(a) with
0 < up(t) < a for any t > 0. Now, our next claim is that (g,) is bounded in W,>*(R).

In fact, since I(g,) — c¢(a) then there exists C' > 0 such that I(g,) < C for every n € N,

and so, for each L > 0,

L
/ B(|q.)dt < 2C, ¥n € N. (3.5)
~L
Moreover, the boundedness ||g,, || @) < « ensures that
L
/ (|gu|)dt < D(a)2L, ¥n € N. (3.6)
—L

Therefore, as ® € Ay, (3.5) and (3.6) guarantee that (g,) is bounded in W *(R). A
classical diagonal argument yields that there is ¢ € W, (R) and a subsequence of (g,,),

still denoted by (g¢,), such that

Gn — ¢ in Wl’@(R) and ¢, — ¢ in L. (R).

loc

By the pointwise convergence, ¢(t) = —q(—t) for every t € R and 0 < ¢(¢) < « for any
t > 0. Moreover, I(q) < c¢(a).

We claim that ¢(t) — « as t — +o00. To prove the claim, let us first prove that

liminf [¢(t) — o] = 0. (3.7)

t—+o0

Indeed, if this limit does not hold, there are ¢y, r > 0 satisfying
r<|q(t) —a|, Vt>t.
So, since @ is increasing on (0,400) and ¢(t) € [0, a] for all t > 0, from (3.3),

wd(r) < wd(g(t) — af) < V(a(t)), Ve > to.

Thereby, fixing ¢, > max{M, ¢y} one has
t
I9)2 [ aVa(O)it > wd()aft —t) Vet
[

and so, taking the limit ¢t — 400 we get [(q) = +oo, which is impossible. Next we are
going to show that
limsup |q(t) — o] = 0. (3.8)

t—+o00

Assume by contradiction that limsup |¢(t) —«a| > 0. Thereby, there exists r > 0 such that

t——+o0

limsup |q(t) — o > 2r.

t——+o0



3.1. Existence of heteroclinic solutions for quasilinear equations 150

In what follows, let us fix € > 0 satisfying ¢ < min{r,a}. By continuity, we can find a
sequence of disjoint intervals (o;,7;) with 0 < 0; < 7; < 0311 < Tiz1, © € N, and 0; — +00

as i — 400 such that for each 1,

€
lq(o;) —al = B and |q(7;) — o] =¢,

that is,

q(oi) = o = % and ¢(7) = a — €,

because |¢(t)| < « for any t € R. Now, since g; — +00 as i — +00, there is iy € N such

that o; > M for each i > ig. So, according to Lemma 3.1,

—+00
[(Q) > Zﬂe,ao = +o00,

i=io
which contradicts the fact that I(q) < +oo. Therefore, from (3.7) and (3.8), it follows
that tLiinoo q(t) = «, and hence g € I'(«v) which implies I(q) = ¢(«), showing that the set
K (a) is non-empty.
It remains to show that ¢ is a weak solution of (3.2). To this end, given ¢ € C3°(R),
we can write (1) = 1,(t) + . (t), where

U(t) + (1)
2

o(t) — b(-t)

and ¢, (f) = -

Pe(t) =
Now, for s > 0 let us consider the function

q(t) + s¥o(t), if t>0and q(t) + sth(t) > 0,
No(t) = 4 —q(t) = stb,(t), if >0 and q(t) + sy (t) <0,
—1o(—1) if t<0.

A direct computation gives that 1, € I'(«a). From (V5),
I(q + sto) = 1(no) = c(a) = 1(q). (3.9)

On the other hand, according to Lemma A.8-(b),

(¢ + s¢'|) — @(|g" + svpl) > o(|d" + s¥,)(q + sv,) (sbr),
which leads to

T+ s0) — I(g + st0) > s /}R o(lq’ + st it + 5° /R oI + sl il dt
(3.10)

+ /Ra(t) (V(g+ sv) — V(g + stb,)) dt.
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Since functions ¢(|¢" + s¥|)q'W, and ¢(|¢" + sil|)ly), are odd, one has

/ o(Id + sll)q' Lt = / ol + suh)uiyldt = o. (3.11)
R R

Substituting (3.11) into (3.10), one gets

I+ s1) — I(q + stbo) / a(t)(V(q + $) — V(g + st6,))dt.
This fact combined with (3.9) yields
(g +su) - 1(q) > / a()(V(q+ s1) — V(g + s,))dt.

from where it follows that
Vig+s¢) = Vg +svo) ,,

/R G(ldNd Y + )V (@)dt > tim [ a(t)

s—=0t Jp S
> i [ o) (V(q + szi) ~Vig) Vig+ S¢;) - V(Q)> "

> [aV(@w vt = [ atV @it =0,

because aV’(q)v. is odd since a and V are even. Therefore, as ¢ is arbitrary,

/R GZDGY + a®V (@) dt =0 Vo € C2(R).

Finally, in order to prove (3.4), we must prove that any weak solution ¢ of (3.2)
satisfies

(o(l¢')q")" = a(t)V'(q) almost everywhere in R. (3.12)

Using the fact that the right side of (3.12) is a continuous function, the Lemma A.6
together with (3.12) implies that &(|¢/|)q € VV&;?(R), and consequently from (A.1),
o(d'])q € VVI})C1 (R). Now, by [26, Theorem 8.2] the equality (3.4) occurs for every ¢t € R,
and by [67, Theorem 1.7] there exists 3 € (0,1) such that ¢ € CL°(R). This finishes the

proof. m

3.1.2 Qualitative properties

In this subsection we are interested in showing some qualitative properties for the minimal
heteroclinic solution of (3.2).

The proof of Lemma 3.2 ensures that there exists ¢ € K(«) with [|¢]|ec < a.
However, thanks to conditions (¢3) and (Vg), we are able to show in the next lemma

that 0 < ¢(t) < « for any ¢ > 0.
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Lemma 3.3 If ¢ € K(a) with 0 < q(t) < « for all t > 0, then 0 < q(t) < a for any

t > 0. In particular, |q(t)] < a for every t € R.

Proof. Let be ¢ € K(a) with 0 < ¢(t) < o for any ¢ > 0. Now, we first claim that
q(t) < a for all t > 0. Indeed, assume for the sake of contradiction that there is to > 0

such that ¢(tg) = a. Thus, let us consider the numbers r >ty and R > 0 satisfying

R > max {||¢'l| 1= (0.1, 7} »

where 7 > 0 was given in (¢3). Next, we define the function ¢ : (0,400) — (0, +00) by

d}() o(t), if 0<t<R,
t) = o
%, if R<t,

where s > 1 was also fixed in (¢3). From (¢3), a simple computation implies that there

exist v1,72 > 0 dependent on the constants 7, R, s, ¢; and ¢y such that
o)t < mt*™t and G(t)t? > yot® for all t > 0. (3.13)

Now, let us consider the function G : R?* — R defined by

é(pl)p
Yoo

G(t,u,p) =
From (3.13),

|G (t,u,p)| < %Ip\s‘1 and pG(t,u,p) > |p|* for all (t,u,p) € R’
2

We will also consider the function B : R® — R given by

a(t)V'(a — u)

B(t,u,p) = -

Combining (¢3) with (V) and repeating the argument used in Lemma 1.6 we get that for
each M > 0 there is C'j; > 0 such that

|B(t,u,p)| < COplul*™' forall (t,u,p) € R x (=M, M) x R.

Having that in mind, setting w(t) = o — ¢(t) for t € R, we infer that w is a weak solution

of the quasilinear elliptic equation

G'(t,w,w") + B(t,w,w') =0 in [0,7],
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where G’ is the derivative of G(t,w(t),w'(t)) at t. Employing the Harnack-type inequality
found in |91, Theorem 1.1| we get that w(t) = 0 for all ¢ € [0, 7], that is, ¢(t) = « for any
t € [0,r], which contradicts the fact that ¢(0) = 0. The same argument works to prove
that ¢(t) > 0 for any t > 0, and so, the proof is completed noting that ¢ is odd. =

It is important to note that the condition a € L*(R) is crucial to ensure that
|t|lir£100 ¢'(t) = 0 whenever ¢ € K(a). To see this, let us first recall that V'(+a) = 0, then

from (17),
lim V'(¢(t)) = 0. (3.14)

[t| =400

Lemma 3.4 If g € K(«), then ¢'(t) = 0 as [t| — +o0.

Proof. The fact that ¢ € K(«) implies that

A@mﬁmﬁ<+m,

and consequently,

liminf ®(|¢'(¢)]) = 0.

[t| =400

Since @ is increasing on (0, +00),

liminf |¢'(¢)] = 0.

[t| =400
Now, our aim is to prove that

limsup|¢'(¢)| = 0.

[t| =400
If this limit does not hold, then there exist » > 0 and a sequence (t,) C R with ¢, — +o0
satisfying
|d' (t,)| > r, VYn e€N. (3.15)

In what follows, we fix d € R such that

2"c(a) < ® (@) d. (3.16)

So, by continuity, given t € [t,,t, + d] there exists s,, € [t,,t, + d] in such a way that
16(1¢' () q' (t) — &(Iq' (tn) ) (tn)] < d [((1¢ (sn)))q (5n))'| = da(s0)V" (q(50))] -

As a € L>®(R), the limit (3.14) guarantees that

6(1d' (®)Dd'(t) = &(1d' (tn) ) (tn)] — 0 as n — +oo.
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Therefore, there exists ng € N, which is uniform for all t € [t,,, t,, + d], satisfying

66 ONa' ) — 6/ 1)) 1)l < 220 > g
Thereby, by (¢1) and (3.15),
o) — (g OB < 27 wn > g,

that is,
o(r)r
2

Thanks to Lemmas A.2 and A.6,

< (g ))Id'(t)| fort e [t,,t, +d] and n > n.

b (%) < @(o(d (DI (1)) < 272(|g/ (1)) for all £ € [t 1, +d] and n > np.

Finally, for n > ny,

b (qj(;"”“) d<om /t:"+d<1><|q'<t>|>dt < 27¢(a),

which contradicts (3.16), and this finishes the proof. m
To end this section, from the above considerations, it is easy to see that the following

theorem follows directly from Lemmas 3.2, 3.3 and 3.4.

Theorem 3.1 Assume (¢1)-(¢o), V € CYR,R), (V1)-(V3) and that a belongs to Class
11. Then equation (3.2) has a heteroclinic solution from —a to « satisfying

(a) q(t) = —q(—t) for any t € R,

(b) 0 <q(t) <a forallt>0.

Moreover, taking into account the assumptions (¢3) and (V3) then the inequalities in (b)

are stricl.
t2
In the particular case ®(t) = 5 we can write the following result.

Theorem 3.2 Assume V € C*(R,R), (V1)-(Va), (V5)-(i) and that a belongs to Class 11.
Then equation

—¢"t)+at)V'(qt))=0 in R (3.17)
has a heteroclinic solution from —a to a in C?*(R) such that
() q(t) = —q(=t) for any t € R,

(b) 0 <q(t) <a forallt>D0.
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3.2 Heteroclinic solution of the prescribed curvature
equation

In this section, as a first step towards finding heteroclinic solutions of (3.1), we
will make a truncation on the prescribed mean curvature operator to obtain an auxiliary
ordinary differential equation. More precisely, for each L > 0, we consider the following

quasilinear equation
— (o (1¢) &) +al®)V'(g) =0 in R, (AP),

where ¢y, : [0, +00) — [0, 4+00) is the function defined by

1
, if tel0,L],
Ve 1 0, L
er(t) =93 wp(t—L—12+y,, if te[L,L+1]
YL, if te[L+1,+00),
with
v1+L 4L vV1+ L
T = VoY nd YL = QLA IVITE (4L + 3)zL.
4(1+ L)* 4(1+ L)*
F 3
1 '\
0 1 2 3 g

Figure 3.1: Graph of function ¢y with L = 1.

We would like to highlight that the methods and techniques used in the previous

section do not apply directly to the function ¢(t) = \/ﬁﬁ since it does not satisfy condition
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(¢2), because in this case we have

(e(t)t)
()

Therefore, the best idea here is to consider truncations of the differential operator involved

—0 as t — +oo.

in (3.1) to obtain equations (AP)., which coincides with the mean curvature operator on

functions ¢ such that ||¢|| L@ < VL.

3.2.1 The truncated prescribed mean curvature operator

In this subsection, we will prove some auxiliary results about the function ¢ that will

be very useful throughout this chapter.

Lemma 3.5 For each L > 0, the function py satisfies the following properties
(a) ¢ is CL.
(b) yr, < @r(t) <1 for each t > 0.
(c) yrt < Ap(t) <t for anyt >0, where Ar(t) = fg er(s)ds for all t > 0.
(d) The function t — Ar(t?) is convex.
(e) (or (2)t) > 2z for all t > 0.

Proof. The items (a), (b) and (c¢) follow by straightforward computation. Now, in order
to show (d), we can use a comparison argument like in |42, Lemma 2.2|. Next, we give

the proof for the sake of completeness. Firstly, we note that

1
- if telo,1],
2 /(1 +1)°
/ _
Pr) =9 20t —L—1), if te[L,L+1],
0, if tel[lL+1,400).

Moreover, putting by, (t) = @ (t) + 2t (t) we get
1

'
- 7 it telo,L],
Vitt Jaxip 0.4
L) =\ wp(t—L— 12 +yp +4dagt(t—L—1), if te[L,L+1],
v, if te[L+1,+00).

From this,

(AL(t?))" = 2b,(£*) for t >0, (3.18)
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Now, a direct computation shows that by is strictly decreasing in [0, L], and so,

br(t) > br(L) = 4z, for all t € [0, L]. Our next claim is that
br(t) > 2xy, for any t € [L, L + 1].
In fact, considering the real function
frt)=a,(t —L—1)* +y, +4zptt — L —1)

it follows that f; has a unique minimum at t;, = 3(L5+1). Thereby, if L > %, then by is

strictly increasing in [L, L + 1], and hence, by (t) > b (L) = 4z, for any ¢t € [L, L + 1].

In the case L < %,

t € [L,L+1]. A direct calculus shows that

we have that t;, € [L, L + 1], and consequently, by, (t) > by (t1) for all

4 24 4

that is,
xr

- (—4L*+ 120 +11) > %xL,

br(tn) =

which is our claim. Therefore, since by (t) =y, > 2x, for each t > L + 1, one gets
bL(t> Z 2.13L for all ¢ Z 0, (319)

and the item (d) follows from (3.18) and (3.19). Finally, to complete item (e), just note
that from (3.18),
(AL(tQ))” > 2z, for all t > 0,

N | —

(e (2) 1) =

which completes the proof. m
Our next step is to associate equation (AP); with an N-function of the form (6).

To this end, for each L > 0, we set the functions
1
O, (t) = §AL(t2) and ¢ (t) = ¢ (t*) forall t€R,

which satisfies the equality below
lt]

O (t) = i or(s)sds.

Thanks to Lemma 3.5, it is easy to check that &, is an N-function. Moreover, from

Lemma 3.5 we also deduce the following result that will be used later on.
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Lemma 3.6 For each L > 0, if Q C RY is a domain, then L*(Q) = L*(Q)). Moreover,
the norm of L*(Q) is equivalent to the norm of L*(£2).

Proof. To see that, given v € L*(2), by Lemma 3.5-(c),

1
/@L(\u])dxg -/ fuf2dz.
Q 2 Q

This shows that L*(Q2) C L?L(2). Conversely, if u € L*2(Q) then there is A > 0 such

that
/Q (’)\‘)dx<+oo
|ul
<
2)\2/|u|d9€ /®L<>\ dx < 400,

which implies v € L?*(), and so, L*(Q) = L?(Q).

From Lemma 3.5-(c),

Now we are going to prove that the norm of L*(Q) is equivalent to the norm of

L*(Q). For u € L*(Q) with u # 0,
dr < / b L der <1,
Q ||U||L‘I’L(Q)

5

2 J
YL ul2s e < a2 3.20
T llullzz) < lullze, o) (3.20)

2
|ul

HUHL‘I’L(Q)

from where it follows that

On the other hand, for each ¢ > 0 small enough,

2
1</®L<L>d:p§1/ L dz,
Q HuHL‘I’L(Q) — € 2 Jo HuHL‘I’L(Q) — €
which leads to
(el 10y — €)° < llulle
and so, as € is small,
T (321)

Now, the lemma follows from (3.20) and (3.21). m

As a direct consequence of Lemma 3.6, for each L > 0 the space L*%(Q) is reflexive,
which ensures that the N-functions ®; and &, satisfy A,-condition, where ®; is the
complementary function associated with ®;. Moreover, ¢;, satisfies conditions (¢1)-(¢3).

Indeed, it is clear that by Lemma 3.5-(e) ¢, checks (¢;) and by Lemma 3.5-(b) checks
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(¢3) with s = 2. Now, with direct computations one can get that there are real numbers

mp,lr, > 1 with I, < mj such that

(2L ()t)'

lp—1<—*><my—1 forany t >0,

or(t)

showing that ¢, verifies (¢o). This is evident in the following lemma.

Lemma 3.7 It turns out that ¢, satisfies (¢1)-(¢3). Moreover, the best constants in (¢2)

are
L+6-—L2 .
Ip = 1+infw _ ) i L=l and my, = 1+ sup (er()t) _
>0 ¢ (t) _Zﬁfu if L>1 >0 ¢r(t)

Proof. Let us initially note that
t

~ T if tel0,vVL],
OL) =9 dw (2 —L-1)t, if te[VI,vI+I),
0, if te[VL+1,+00)
and
(e ()t) . o)t
= 1+ e for all t € R. (3.22)
It is easy to see that
@) | forall e (VI 11, 400). (3.23)
o(t)
Moreover, when ¢ € [0, VL],
gyt _
or(t) 1+t

from which it follows that this function is decreasing, and thereby;,

L (Gt

TS 6,0 <1 forall tel0,VL) (3.24)

Now, for t € [V/L, /L + 1], we see that

S0 AR - L2
oL(t) (2= L—12+4L+3 (3.25)

We are going to study the behavior of the function f(t) = 4(t> — L—1)t> on [V/L, VL + 1].
For this, let us note that

f’(t)—th(t— #) <t+ %)
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Let us now analyze the infimum and supremum of the function (3.25) on [V/L, /L + 1] in
cases.
Case 1: When L < 1, the critical point % of f is a minimum point in [v/L, L + 1],

and so,

—(L+1)2:f< %) gf(t)gf(x/LJrl) —0 Vte [VL,VL+1].

Gathering (3.22) and (3.25),

1+ = L_£L1; 22“ — < (QZ)LL(Z;)/ <1 forall te[VL,VL+1],
and from
AL4+3<(*—L—12+4L+3<4L+4 forany te [VL,VL+1], (3.26)
we arrive at
2L4_ij2 < (ZLL(EX)/ <1 forall te[VL,VL+1]. (3.27)

Case 2: When L > 1, the function f is increasing on [v/L,v/L + 1] and in this case
4L = f (\/Z) <f)<f <\/L+ 1) =0 Vte [VL,VI+1],
and hence, from (3.22), (3.25) and (3.26),

3 (or(t)t)
AL+ 4 < o) <1 forall te|VL VvL+1]. (3.28)

Finally, the lemma statement follows with a simple verification of what was described to

obtain estimates (3.23), (3.24), (3.27) and (3.28). m

3.2.2 Existence of solution

We exhibit in this subsection the proof of the main theorem of this chapter involving the
curvature equation and a function of the form a(t)V’, where V' is a double-well potential

and a is asymptotically away from zero at infinity. To this end, we will consider the class

t——+o0

(o) = {q e WLPH(R) : lim ¢(t) = a, qis odd and 0 < ¢(t) for t > O}
and the action functional

Iu(g) = / @(Ig]) + a(t)V(q)) dt.
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Our main goal is to look for minima of I, on I';(a). More precisely, we show that the set

Kp(a)={qeTl(a): IL(q) = cL(a)}

is not empty, where

cr(a) = inf Ip(q).

qEFL (a)

First of all, we would like to emphasize that the potential V' € C?(R, R) satisfies conditions
(V1)-(Va) and (V7). From item (i) of (V%) it is possible to find 71,72,7v3 € (0, +00) and
p € (0, %) such that
V()] < wslt —al, VEe (a—p,a+p) (3.29)
and
Nt —af> <V(t) < wlt—al?, ¥Vt € (a—p,a+p). (3.30)
Then, by Lemma 3.5-(c) and (3.30),

2
29 (|t —al) < V(E) < f@mt—m Vi€ (a—p,a+p)
L

and by Lemma 3.5-(b) and (3.29),
V'(1)] < ;—?’mua — i) —t| ¥Vt € (@ = p,a + p).
L

Therefore, the assumption (V7)-(7) implies that V' also satisfies the conditions (V3) and
(V3), which allows us to use the arguments contained in Section 3.1. Thus, for each fixed
L > 0 we can now proceed analogously to the proof Lemmas 3.2, 3.3 and 3.4 to find

do € Kr(a) such that g, is odd, 0 < ¢,(t) < « for any ¢t > 0,

lim ¢u(t) = —a, lim ¢,(t) =« and lim ¢/ (t) =0.

t——00 t—+4o00 [t| =40

Having done the study for the modified problem (AP), we will now work to find a
solution to the equation of mean curvature (3.1). The next lemma is crucial to guarantee
that if ¢, € Kr(a), then g, is a heteroclinic solution from —a to « of (3.1) whenever
a > 0 is small enough. The reader will see that the condition (V7)-(ii) is crucial in our

approach.
Lemma 3.8 For each L > 0, there exists oy > 0 such that for a € (0, p) we have that
”qa||01[—1+r,1+7«] < \/Z,

for allr € R and ¢, € Kr(a).
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Proof. Assume, by contradiction, that the lemma is not true. Then there exist (r,) C R

and (a,) C (0,+00) with a,, — 0 as n — 400 and
19 ot 4rnatr) = VI, Vn €N (3.31)
For each n € N, let us consider the function
Gn(t) = G, (t +1,) for teR,
which is a weak solution of the equation
— (e (141) ¢) + alt + ) V'(g) = 0.

So, setting
B, (t) = —a(t + r,)V'(Ga(t)) for t € R,

by (V7)-(ii) there exists C' > 0 independent of n such that
|Bn(t)| < Clla|| @) forall t€R and neN,

because |qa, (t)] < a, for all n € N and «,, — 0. The elliptic regularity theory found
in [67, Theorem 1.7| implies that g, is in Co™(R) for some fy € (0,1) with

loc

H(jnHCltf’O(R) <R, VneN,

for some positive constant R independent of n. Invoking ArzelA -Ascoli Theorem, there

exists ¢ € C'([—1,1]) and a subsequence of (g,), still denoted by (G,), such that
Gn —q in CY[-1,1]).
But since ||¢a, |0 = 0 as n — 400, we must have ¢ = 0, and so,
l@allcr-iyy < VL ¥ n > ng,
for some ny € N, that is,
G llc (15 10r)) < VL ¥ n>ny,

which contradicts (3.31), and the proof is completed. m
Finally, we are ready to prove the best result of this chapter, which is an immediate

consequence of Lemma 3.8.
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Theorem 3.3 Assume that a belongs to Class 11, V € C*([R,R), (V1)-(Vz) and (V7).
Then, for each L > 0 there exists ag > 0 such that for each o € (0, ) equation (3.1)

possesses a heteroclinic solution q, from —a to a satisfying:
(a) Go(t) = —qa(—t) for allt € R,
(b) 0 < qu(t) <a forallt>0,
(c) |q.(t)] < VL for any t € R.

Proof. From Lemma 3.8, for each L > 0, there exists ap = (L) > 0 such that for
a € (0,aq) we have that |¢,(t)] < VL for all t € R and ¢, € K(a), and the proof is

completed. m

Figure 3.2: Geometric illustration of the heteroclinic solution g,

3.3 Some remarks on the autonomous case

To conclude this chapter, we will deal with a special case where a(t) belongs to Class
1 listed in the introduction, that is, a(t) = b for all ¢ € R where b > 0. In this case, we can
establish more information about the heteroclinic solutions of problem (3.1), such as the
uniqueness of minimal solution. An important point that we would like to point out is
that for the constant case, the same argument as in Lemma 1.7 guarantees the following

result.

Lemma 3.9 When a belongs to Class 1, any function q, € Kp(«) is increasing on R.
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3.3.1 The Cauchy problem

In what follows, we will consider a(t) = b > 0 for all ¢ € R and the Cauchy problem

<¢> = bV'(q(t)), tER,

1+ q'(t)?
q(O) =T, (CP)
q’(O) =T,

\

where 71,75 € R. In order to study problem (CP), for each L > 0 we will consider the

following Cauchy problem

(pr (I @) d (1)) = bV'(q(t)), tER,
q(0) =71, (CP)L

q'(0) = ry.
A simple adaptation of Theorem 1.1 allows us to prove the proposition below.

However, for the reader’s convenience we write some words of the proof.

Proposition 3.1 For each L > 0, assume that there exists a solution q € CI’B(R), for

loc

some [ € (0,1), for the Cauchy problem (CP)y, such that there exists r > 0 satisfying
(a) ¢'(t) >0 for any t € (—r,7),
(b) q € L=(R).
Then, q is unique in (—r,r).
Proof. Suppose that ¢; and ¢, are two solutions of (C'P), in CL?(R) and set the functions
w(t) = erlla’(®)a' () — erlle’ e’ (1), teR
and
U(t) =V (@(t) —bV'(g2(1), tER.
A direct computation gives

w'(t) =v(t) and w(0) =0,

which yields

w(t) = /Ot w'(s)ds = /Otw(s)ds for teR.
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Consequently,
lw(t)| < tmax [¢(s)], ¢t>0. (3.32)

s€[0,t]
Now, combining the fact that V € C*(R,R) together with item (b), there is a constant

K > 0 such that
[W(@)] = [V (a1 (t)) — bV (q2(1))| < Kblaa(t) — q2(t)| VE € R,
Hence, using the equality ¢;(0) = ¢2(0) = 71,

()] < K / 01'(s) — @' ()|ds, ¥t >0, (3.33)

On the other hand, given ¢t € (0,r), the item (a) ensures that ¢»'(¢),¢’(t) > 0. Thus,
assuming without loss of generality that ¢,'(t) < ¢'(t), the item (e) of Lemma 3.5

guarantees that

a2’ (1)
or(la' ()1 (t) =o' O))a'(t) = / (or(s?)s) ds > 221(q2'(t) — ' (1)). (3.34)

q’(t)

Thereby, by definition of w and (3.34),

(1) — @' ()] < irww vt € (0,7). (3.35)

Gathering (3.33) and (3.35), we get
K t
Wit < 5 [ s Ve 0.)
2.rL 0
that combines with (3.32) to provide

lw(t)| < %t/o lw(s)|ds ¥t e (0,r).

Fixing A = % and x(t) = # for t € (0,r), we arrive at

()] < A / jw(s)|ds = A / Juw(s)|ds + A / SIx(s)]ds,

for any 0 < € <t < r. Now, from Gronwall’s inequality found in [78, Theorem 1.2.2],

o) < (4 [ futolds ) et vee o)

Taking ¢ — 0 we find w(t) = 0 for each ¢ € (0,7), and so,

prlla’ (O1)a(t) = olla'())a' ().
Now, since ¢ (%)t is increasing on (0, +00) (see for instant the item (e) of the Lemma
3.5) and ¢1(0) = ¢2(0) we conclude that ¢; = g2 in (0,7). The same argument works for
t € (—r,0), and the proof is completed. m

As a byproduct of the last proposition we have the following result.
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Theorem 3.4 Assume that there exists a solution q € Cl”B(R), for some B € (0,1), for

loc

the Cauchy problem (C'P) such that there is r > 0 satisfying
(a) ¢'(t) >0 for any t € (—r, 1),
(b) q € Wh=(R).

Then, q is unique in (—r,r).

Proof. Let us assume that ¢; and g, are solutions of (C'P) in C.(R) verifying the items
(a) and (b). From (b), there exists L > 0 such that

14,1, 1g5(t)| < VL for all t € R,

from where it follows that ¢; and ¢y are solutions of Cauchy problem (CP)y. Therefore,

invoking Proposition 3.1, ¢; = g2 in (—r,7), and the proof is complete. =

3.3.2 Uniqueness of the minimal solution

Our objective in this subsection is to establish the uniqueness (up to translations) of the
heteroclinic solution ¢ from —a to « of equation (3.1) when a(t) is a positive constant on

R. For this, we prove the following comparing result involving elements of K («).
Lemma 3.10 (Comparison Lemma) For each L > 0, if q1,q2 € Kp(«), then
@) <q(t) or q(t) <gft) VE>0.

Proof. If ¢ = ¢ then there is nothing to do. Now, if ¢g; # g2, then there exists ty > 0 such
that q1(to) # ¢2(to), and so, we can assume without loss of generality that ¢;(t9) > ga(to)-

By continuity, there exists € > 0 such that
@1 (t) > qa(t), YVt € (—e+to,to+€). (3.36)

In what follows, we define the functions

n(t) _ min{Ch (t)a QQ(t)}7 lf t > 0 and C(t) _ max{ql (t)’ q2<t)}7 1f t> 0
—77(—75)7 if t<0 —C(—t), if <0,

that belong to ' (), and so, a direct computation gives (,n € K («). Consequently, ¢
and 7 are solutions in C7(R), for some 3 € (0,1), of the modified problem (AP);. Now,

we claim that

q1(t) > qo(t) for all t > t.
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Indeed, suppose by contradiction that there is t; > ¢, such that ¢2(¢;) > ¢i(¢1) and fix

r > 0 satisfying tq + r > t;. So, it is easily seen that the functions

C(t) =C(t+ty) and ¢ (t) = qu(t +to)

satisfy the items (a)-(b) of Proposition 3.1 and are solutions for the Cauchy problem
(CP)r, on [0,r) with r; = §;(0) and ro = ¢;(0), because from (3.36) we infer that ( = ¢,

on (ty — €,to + €). Invoking Proposition 3.1, ¢ =g, on [0,7). In particular,

q(t) = C(t), Yt e (to,to+r),

and hence ¢;(t1) = ((t1) = ¢2(t1), which is impossible. Therefore, ¢;(t) > ¢2(t) for any
t > to. To complete the proof, suppose by contradiction that there is t5 € (0,ty) such
that ¢1(t2) < ga2(t2). Similarly, taking s € R such that ty > ¢y + s, it can be shown that
¢ = q on (ty+ s,tg). Then, in particular, ¢;(t2) = ((t2) = ¢2(t2), a contradiction, and
the lemma follows. m

From now on, given ¢, € K;(«) and 7 € R, we will denote
@ (t) = qu(t + 1) for t € R.
So, ¢, € Kp(«a) for every 7 € R. Having this in mind, we have the following result.

Lemma 3.11 For each L > 0, the set Kp(a) admits a unique element, modulo time

translation.

Proof. Firstly, let us consider ¢;, g, € Kp(«). So, by the comparison lemma,
@1(t) < g2(t) or ga(t) < qi(t), Vt=>0.
Without loss of generality we may assume that
() < qot), Vt>0. (3.37)
Our aim now is to prove that
q2(t) = ¢] (t) for all t € R,

for some 7 € R. To see this, let us note that from (V4)-(i) there is A € (0, «) such that
V"(t) > 0 for each t € (o« — A\, a4+ ), and so,

V' is increasing on (o — A\, a0 + \). (3.38)
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Now, since ¢, is a heteroclinic solution from —a to «, then we can take ¢; > 0 such that
¢2(t1) = a — A. Hence, as ¢; is increasing on R (see Lemma 3.9), there is 7 > 0 such that

q1(t1 +7) = a — A\. Therefore, ¢2(t1) = ¢](t1) and

(1), q2(t) € (a = A\ a+ ) Vt>t. (3.39)
Setting the functions
(@7 —q)" (@), ft>t (2 —q)"(t), ft=>t
hit)={ and  y(t) = !
0, if t<ty 0, if t<ty,

a simple computation yields that 1,1, € H'(R) and

/R (oL (a7 P, — ol P)ar ) di = b / V() = V/(a)) .

R

In this way, putting
Pr={teR:q{(t) > q(t)},

from (3.38) and (3.39) we get

/ (el el = erlla:))a) (6" — ¢') dt < 0.
le(tl,-‘roo)
From Lemma A.8-(c),

0 < (¢r(|s]®)s — @r(|r|*)r) (s — ) for all s,r € R with s # r.
This fact implies ¢]" = ¢’ on Py N (t1, +00). Similarly,

/ (er(6)?) a2’ — erla]')a]) (a2" — qf') dt <0,
Pgﬁ(t1,+oo)

where

Po={teR:q(t) < g},

and so ¢]' = ¢’ on Py N (t1,+00). Since Py U Py = (t1,+00) and ¢2(t1) = ¢](t1) we infer
that
@2(t) = ¢i(t) for any t € [t;,+00).

Finally, the Proposition 3.1 ensures that ¢ = ¢] on (0, 2t;), which finishes the proof. =
With the above results we may now establish a result about the existence, uniqueness

and qualitative properties of solutions for the problem (3.1) in the constant case.
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Theorem 3.5 Assume V € C*(R,R), (V1)-(V2), (Vz) and that a belongs to Class 1. For
each L > 0 there exists ag > 0 such that for o € (0, ap) equation (3.1) possesses a unique

heteroclinic solution q, from —a to a in K (o) NCLP(R), for some € (0,1), satisfying

loc

(a) qo is odd,
(b) 0 < qu(t) <a forallt>0,
(¢) qu is increasing on R,

(d) 144(8)] < VE for any t € R.

Proof. From Theorem 3.3, given L > 0 there is oy > 0 such that for each o € (0, )
there exists ¢, € K1(o) N CLP(R), for some € (0,1). Moreover, g, verifies the items
(a)-(d). In order to show the uniqueness let ¢ € K (). So, by Lemma 3.11 there is 7 € R
such that ¢ = ¢7. Since ¢ is odd, 0 = ¢(0) = ¢, (7), from where it follows that 7 = 0, and

the proof is complete. m

3.4 Final remarks

In this subsection, we present some additional observations and comments on the
results discussed in this chapter. We would like to start by pointing out that in the
study carried out in Section 3.1, it was not necessary for ¢(0) to be well defined, which
leads to the conclusion that the classic case ¢(t) = tP~2 with p € (1,2) fits that scenario.
Moreover, we would also like to emphasize that the condition (V3) was not necessary to
prove the existence of heteroclinic solution for (3.2), however it together with (¢3) are
used to obtain more information about the behavior of the heteroclinic solution.

Reexamining what was done in Proposition 3.1, we can see that Theorem 1.5, which
involves a quasilinear Cauchy problem, can be refined when ¢ satisfies the following

condition
(¢1) ¢ > 0 on (0,+00) and there exists ¢ > 0 such that (¢(t)t) > ¢ for all ¢ > 0.

Specifically, we have the following result:
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Theorem 3.6 Assume a € L*(R), (él) and that there is a solution q € CM(R), for

loc

some vy € (0,1), for the following quasilinear Cauchy problem

(@(ld' ()4 (t))" = a(t)V'(q(t)) tER,
q(0) = qo,
¢(0) = q,
such that there exists r > 0 satisfying
(a) ¢(t) > 0 for any t € (—r,7),
(b) g € L=(R).
Then, q is unique in (—r,r).

As a direct consequence of the above result, Theorem 3.4, which involves a Cauchy
problem for the prescribed mean curvature operator, can be replaced by introducing the

factor a(t), as follows:

Theorem 3.7 Assume a € L™(R) that there is a solution ¢ € C.7(R), for some

loc

v € (0,1), for the Cauchy problem

(%) —aOV(qt), tER

14+4¢
(cP)

q(0) = qo,

q'(0) = ¢,

\

such that there is r > 0 satisfying
(a) ¢'(t) >0 for anyt € (—r,1),
(b) q € Wh=(R).

Then, q is unique in (—r,r).

Finally, we would like to point out that in Subsection 3.3 we show that the

heteroclinic problem

m q(t) = +a, (3.40)

li
t—*+oo

_ <q—/> + bV’(q) =0 in R, q(O) =0,
(¢')

1+

has a unique minimal heteroclinic solution whenever the global minimum « of V' satisfies

a € (0,ap) for some ap > 0. An interesting question is whether uniqueness holds for



3.4. Final remarks 171

heteroclinic solutions that are not necessarily minimal. This problem was answered
positively by Alves, Isneri and Montecchiari in [18|, where the authors proved that under
certain conditions in potential V', there exists o > 0 such that for each o € (0, ap) the
problem (3.40) has a unique twice differentiable solution ¢ in CL7(R) for some € (0, 1)

satisfying the following exponential decay estimates
0<a—qt)<be® and 0<d(t)<pBie™ forallt>0

and

0<a+q(t) < and 0<q(t)<pse’™ forallt <0,

for some real numbers 6;, 8; > 0. Moreover, when V (¢) = (2 — a?) then ¢ satisfies

K

20t
atanh (cm/%t) < ¢(t) < atanh (a\/_ ) for t >0,

where  is a positive constant that depends on [|¢'|| Lo (r)-



CHAPTER 4

HETEROCLINIC SOLUTIONS FOR
PRESCRIBED MEAN CURVATURE
EQUATIONS IN RR?

The purpose of this chapter consists in using variational methods to establish the
existence of heteroclinic solutions for some classes of prescribed mean curvature equations

of the type
i \%7} / . 2
—div | — | + Alex,y)V'(u) =0 in R?, (4.1)

V14 |Vul?

where € > 0 and V is a double-well potential with minima at ¢ = o and t = 8 with a < .
Here, we consider some class of functions A(x,y) that are oscillatory in the variable y and
satisfy different geometric conditions such as periodicity in all variables or asymptotically
periodic at infinity, for more details, see classes A, B, C' and D listed in the introduction.

The idea here is to reduce the study of (4.1) to a equation of the form
~Agu+ A(ex,y)V'(u) =0 in R? (4.2)

and for that, it was necessary to truncate the following function involved in the prescribed

mean curvature operator
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and develop new estimates. In this chapter we also intend to analyze the qualitative
properties of heteroclinic solutions, as well as the regularity of these solutions. A part of

our arguments was inspired by papers due to Rabinowitz [79] and Alves [13].

4.1 Existence of heteroclinic solution for quasilinear
equations

The goal of this section is to establish the existence of a solution for (4.2) that is
heteroclinic in both x taking into account the case where A assumes different geometric
conditions. The proof of the existence of solution is given by a minimization argument. To
formulate the minimization problem of this section, let us first consider the infinite strip
Q =R x(0,1) of R? and for each j € Z we define the functional a; : W,5* () — RU{+o00}
by

o) = [[ Ly, we W),
Q;

where ; = (4,7 + 1) x (0,1) and
L(w) = ®(|Vw|) + Alex,y)V (w).

Under this notation, we also define the energy functional I : W.2*(Q) — R U {+o0} by

loc

I(w) =) a;(w), we Wil (Q).

JEZ

Tn what follows, for each k € Z and w € W,>*(Q) we consider function 7w given by

mrw(x,y) =w(r + k,y) forall (z,y) €.

Clearly, Tow = w on €. Hereafter, let us identify 7,w|q, with 7w itself. Now, for the
purposes of this section, we will designates by I'¢(c, 5) the class of admissible functions

given by

Lo(a, )= {w eW.P(Q):mw — ain L) as k— —oc and 7w — Bin L Q) as k — —1—00}.
(4.3)

We would like to point out that 7w goes to o in L®(£)) as k goes to —oo if, and only if,

// O(|w — af)dzdy — 0 as k — —oc.
Q
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Here the fact that ® satisfies As-condition applies an important rule in the proof of the

last limit. Analogously, 7w goes to 3 in L®(€y) as k goes to +oo if, and only if,

// P(jw — B|)dxdy — 0 as k — +o0.
Qk

On the other hand, it is easy to check that the class I'g (v, 5) is not empty, because the
function ¢, g : 2 = R defined by

B, if B<uz and y € (0,1),
ap(T,y) =1 x, if a<xr<pB and ye€(0,1), (4.4)
a, if z<a and y e (0,1)

belongs to I'g(c, §). By the properties of &, A and V,
a;(w) >0 for all j € Z and w € I'g (v, B),

and hence, [ is bounded from below on I'g (v, ). Furthermore, it is easy to see that the
function given in (4.4) has finite energy, that is, /(. 3) < 400, and so,

coa, f) = wdi;l(fa 5 I{w)

is well defined. Here it is worth mentioning that we will see throughout this section that

critical points of the functional I on the class I'¢(«, 5) are heteroclinic solution from « to

S for the equation (4.2).

4.1.1 The case periodic

In this subsection, we intend to investigate the existence of a heteroclinic solution from
a to f for (4.2) with e = 1 by assuming that A belongs to Class A and, unless indicated,
the potential V satisfies the assumptions (V;)-(V3). With the preliminaries contained at
the beginning of this section we may state and prove our first result that will be useful in

the next lemma.

Lemma 4.1 If w € U's(a, B), then for all k € Z we have that ow € T'g(a, B) and
I(rw) = I(w).

Proof. Initially, it is easy to see that T,w € I'g(cv, B) for any k € Z and w € T'g(cv, 5). On

the other hand, for each j € Z, a simple change variable combined with the periodicity of
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A in the variable 2 leads to

i (Tew) // (IVryw|) + Az, y)V (mw)) dedy
// (IVw(x + k,y)|) + Alx + k,y)V(w(x + k,y))) dedy

- //Q | ((|Vw|) + Az, y)V (w)) dedy = ajr(w),

from where it follows that

I(mw) Za] TRW) Z ajrp(w) = Zaj(w) = I(w),

JEL JET JEZ
and the proof is completed. m
Now we employ the Lemma 4.1 to prove that the energy functional I reaches the

minimum energy in some function of I'(cv, 3).
Proposition 4.1 There exists u € 'y (e, B) such that I(u) = co(a, f) and
a <u(z,y) < B almost everywhere in .

Proof. Let (u,) be a minimizing sequence for I on I's(c, ), that is, I(u,) — ce(a, ) as

n — 4o00. Thus, there is a constant M > 0 verifying
I(u,) < M for all n € N. (4.5)
We claim that we may assume without loss of generality that the sequence u,, satisfies
a < uy(z,y) < pforall (z,y) € Q2 and n € N.
Indeed, just consider
tn(r,y) = max{a, min{u,(z,y), 3}, (2,y) € Q,
instead of u,,. Moreover, we can also assume that for each n € N,

// O (|uy,, — af)dzdy > § and // O (|Juy, — af)dzdy < § for k <0, (4.6)
Qo Qkfl

for some § > 0 such that

§< (B - a). (4.7)

Indeed, note first that for each n € N fixed,

Trtt, — 3 in L(€) as k — +oo,
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and so, since o #  and & € A, there are § > 0 and a subsequence of (7uy,)r>0, still

denoted (7xu,), such that

// O(|ru, — a|)dzdy > 9, Vk > 0.
Qo

Note that, without loss of generality, we may assume that § satisfies (4.7). On the other

hand, using again the fact that ® € Ay, 7u, goes to ain L*(Qy) as k goes to —oo implies

// (|meun — af)dzdy — 0 as k — —oo0,
Qo

and so, there exists an integer k,, < 0 such that

// O(|mpun — af)drdy < 6, Yk < k,.
Qo

From this, it is possible to find the bigger integer k, € Z such that

// O (|u, — af)dzdy < § for all k <k, and / O (|uy, — af)dxdy > 9,
Qi1 ke,

that is,

// O (|73, un — al)dzdy < § for all j <0 and // (I7k, un — a|)dzdy > 4.
Q

j—1
Now, we can apply Lemma 4.1 to consider 74w, in the place of u,,.

Now, since o < w,, < [ in €, it is straightforward to check that (u,) is bounded
in WLP(Q). Thereby, in view of Lemma A.4, W'®(K) is reflexive Banach spaces

loc

whenever K is relatively compact in €2, and so, by a classical diagonal argument, there

are a subsequence of (uy,), still denoted by (uy), and u € W,5*(Q) satistying

U, = u in WEP(Q) as n — 400, (4.8)
U, —u in Lp.(Q) as n — +oo (4.9)
and
un(z,y) = u(z,y) a.e. in Qasn— +oo. (4.10)
As a consequence of (4.10),
a < u(z,y) < [ almost everywhere in €. (4.11)

Moreover, from (4.5), we have the inequality below

J
/ / L(uy)dxdy < M Vn,j €N,
DJ—j
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which combines with weak lower semicontinuity of I to give

J
/ / L(u)dzdy < M, Vj€N.
DJ-j

Therefore, since j € N is arbitrary, we conclude that I(u) < M. With the aid of the
previous preliminaries, our goal is to ensure that u belongs to I's(«, ). Towards that
end, we will show that

T — o in () as k — —oo0. (4.12)

To show (4.12), let us consider the sequence (Tyu)r<o with k& € Z. Due to Lemma 4.1
and the estimate (4.11), it is simple to prove that (74u)r<o is bounded in W1%(Qy).

Consequently, for some subsequence, there exists u* € W1®() such that

e — vt in WH(Qg) as k — —oo, (4.13)
meu — ut in L() as k — —o0 (4.14)

and
a < u*(z,y) <[ almost everywhere on €. (4.15)

Now, since I(u) < M, the definition of I ensures that
ag(u) — 0 as |k| — +o0.
This together with the periodicity of A yields that
ao(Tru) — 0 as k| — +oo. (4.16)

Now, the fact that ap is weakly lower semicontinuous on W1%®(Qq) and ag > 0
together (4.13) and (4.16) guarantee that ag(u*) = 0. Thereby, (4.15) together with
the assumptions on functions A and V ensures that u* = «a or u* = f a.e. in 5. On the

other hand, it follows from (4.6) and (4.9) that

// ®(Ju — af)dzdy > § and // O(|rpu — af)dzxdy < 6 for k < 0.
Qo Qo

Consequently, taking the limit as k — —oo in the inequality above and employing (4.14),

// O(|u* — af)dzdy < 4.
Qo

we arrive at
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From (4.7), one has v* = a a.e. in )y, showing that the limit (4.12) is valid. Now we
claim that

T — B in L?(Q) as k — +o0. (4.17)

Indeed, considering the sequence (7,u)r~o with k € N, there exist u** € W1®(Qy) and a

subsequence of (7,u), still denoted (7u), such that

T — u** in Wh?(Qg) as k — 400, (4.18)
T — u* in L®(Qp) as k — +oo, (4.19)
T — u** in L'(Qp) as k — 400 (4.20)
and
mru(z,y) — u(x,y) a.e in Qy as k — +o0. (4.21)

Arguing as above, we will get that u** = a or «** = § a.e in €y. The claim (4.17) follows
if we prove that «** = ( a.e in )y, and to do that, we will split the proof into two steps.
So, seeking for a contradiction we assume that v** = « a.e. in ).

Step 1: There are ¢y > 0 and n; € N such that
“1(up) + ao(uy) / / O(|Vu,|) + Az, y)V(u,)) dedy > €9, Vn>ny.  (4.22)

Indeed, if this does not hold, then there is a subsequence (u,,) of (u,) such that

1 1
| [ @9 + AV ) dsdy - o.
0 —1
Consequently, there is v € W®((—1,1) x (0,1)) such that
u,, ~v in WH((=1,1) x (0,1)), u,, —v in L®((—1,1) x (0,1))

and

v=a or v=F ae in (—1,1)x(0,1). (4.23)

Making a simple analysis of the estimates contained in (4.6), we infer that (4.23) is
impossible, which ends this step.

To proceed to the next step, let us fix € € (0,¢/2) and nyg > ny such that

I(uy) < coe, B) + = Vn > ny, (4.24)

(\V]
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where €y and n; were given in Step 1.

Step 2: There are k € N and n > ng large enough satisfying

(4.25)

l\DI(‘M

ao (x(Thu, — a) + a) <

In order to show estimate (4.25), we will separately analyze the terms of the
functional ag that will be divided into four parts as follows:

Part 1: There exists ky € N such that for each k > kg there is n(k) > ng verifying

// Az, y)V (Tpuy)dxdy < € Vn > n(k), (4.26)
o 24 - 4m
// Az, )V (z(mpu, — @) + ) dedy < ;1 Vn > n(k) (4.27)
Qo
and
// O(|meu, — af)dxdy <  _ Vn> n(k). (4.28)
- 12 4m

In fact, let us initially note that, since V' € C' and mu(z,y) € [, ] for any
(z,y) € Q, the Mean Value Theorem together with (V5) gives us

V(mpu), V(z(mpu — @) + ) < Rlmou — o Y(x,y) € Qo,
for some R > 0. Consequently,

// Az, y)V(x(meu — o) + a)dedy < Rsup A(z, y)/ |Thu — aldzdy
Q() Q0

Qo

and

// A(z,y)V (mpu)dzdy < Rsup A(:)s,y)/ |7k — a|dzdy.
Qo QO

Qo
Now, as we are assuming that u** = a a.e in €y, it follows from (4.20) that there is ky € N

such that

// (x,y)V(z(mpu — ) + a)dxdy < g Vk > ko (4.29)
Qo

and

// (x,y)V (rpu)dedy < VEk > ko, (4.30)
o 5

where m was given in (¢3). Furthermore, from (4. 19) increasing kq if necessary, one gets

// O (|mu — af)dzdy < ‘ Vk > k. (4.31)
o 24 §m

On the other hand, for each £ € N fixed, Lebesgue Dominated Convergence Theorem
yields

‘//Q Az, y) (V(z(mun, — ) + a) = V(z(mpu — @) + «)) dedy| — 0 as n — 400
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and

//Q Az, y) (V(mpuy,) — V(mpu)) dedy| — 0 as n — +oo.

Moreover, as ® € A, for each k£ € N we can use the limit (4.9) to find

// O (|mpuy, — Thul)dxdy — 0 as n — +oo.
Qo

With everything, for every k > kq there exists n(k) > ng satisfying

//Q Az, y)V (2(mpu, —a) +a)dzdy < //Q A(x,y)V(x(Tku—a)+a)d:vdy+§ Vn > n(k),
’ i (4.32)

€
> .
o Vn > n(k), (4.33)

/ Az, y)V (Tpuy)dzdy < / Az, y)V (rpu)dzdy +
QQ Q0

and
€

o n— dxdy <
// (e — mydady < 5

Finally, analyzing all the estimates, a direct computation of (4.29)-(4.30) and (4.32)-(4.33)

Vn > n(k). (4.34)

load to (4.26) and (4.27). To see the inequality (4.28), note that from Lemma A.8-(a)
one gets

O (| ey, — af) < 2™ (P(|mpun — mu|) + (|7 — af)) .

Now, (4.28) follows from (4.31) and (4.34), finishing the first part.
Part 2: There are k > kg and n > n(k) such that

€
12 - 4m

ao (Thtn) < (4.35)

If the estimate above does not occur, for each k > kg there is j(k) > n(k) satisfying

ap (TkUj) > Vj > j(k’)

€
12 - 4m
Then, by definition of a,

€

//QO O(|V(rpuy)|)dedy > o //QO Az, y)V (mpuy)dedy, Y5 > j(k),

which combines with (4.26) to give

€
; > ) > 9 .
//QO O(|V(ruy)|)dxdy > YRS Vi > j(k)

Now let be p € N such that

(p+1) > M,

€
24 . 4m
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where M was given in (4.5). Fixing ¢ € N such that ¢ > max{j(k) : ko < k < ko + p} we

have
ko+p ko+p ko-i-P ¢

](uz) > Z at(ui) = Z ao Ttuz > (//Q |V 7'7LuZ dxdy) (p+ 1) Y > M,
t=ko t=ko t=ko 0

which contradicts (4.5), showing (4.35).

Part 3: For k and n as in Part 2, one has

@10, (rewn)dady, [ [ ©(9,(run)drdy < ——. (4.36)
Qo Q 12-4

Indeed, just notice that the inequality at (4.35) together with the facts that ® is

increasing on [0, 4+00) and
‘aﬁt(Tkuﬂ)’7 ‘ay(Tkun)‘ < |V(Tkun)’a

leads to estimate (4.36).

Part 4: For k and n as in Part 2, one has

//Q O(|V(x(thun, — ) + a)|)dedy < ;; (4.37)
0
To show the estimate (4.37), we first observe that
O ((Tuy — @) + @) = TRy — o + 0L (Try)
and
Oy (z(Tpun — ) + ) = 20, (Tiuy) -

Therefore, from Lemma A.8-(a),
O(|V (2 (Thun — @) + @)]) < 4™ (D(|02(Tiun)[) + P(|Ttn — ) + P[0y (Trun)])) on o,

and the Part 4 follows from Parts 1 and 3.

Finally, the estimate (4.25) contained in Step 2 is immediately verified from (4.27)
and (4.37). We are now ready to use Steps 1 and 2 to complete the proof of Claim (4.17).
To this end, fix £ and n as in Step 2 and define the following function

a, it <k and y € (0,1),
Un(r,y) = (un(z,y) —a)(z —k)+a, if k<z<k+1 and ye(0,1),
un(2,9), if z>k+1 and y € (0,1).
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So, it is clear that U, € I's(a, #) and

a(Uy,) = ao(z(mhu, — ) + ).

Hence,
+oo
co(a, B) < I(Uy) = ar(U,) + Z aj(un) < ap(Uy,) + I(u,) — ag(u,) — a1 (uy),
j=k+1
that is,

co(a, B) < ap(x(meun, — ) + ) + I(uy) — ap(un) — a—1(uy).

Invoking estimates (4.22), (4.24) and (4.25), one gets

+ co (o 5)‘1';—60:54'0@(@,5)—60<Cq>(04a5)_%0,

l\DImz

C@(Oé, B)

which is absurd. Therefore, (4.17) occurs and u € T'g(a, ). To conclude the proof, it
remains to show that I(u) = ce(a, 5). For this purpose, given € > 0 there exists ng € N
such that ;

> ap(u,) < cole, B) + € ¥n > ng and Vj € N.

—J

Letting n — +o00 and after j — 400, we find
I(u) < cola, B) + €.

Since € is arbitrary, we derive that I(u) = ce(, §), and the proof is completed. m
In order to find a periodic solution u(x,y) in the variable y for the equation (4.2),

we will consider the following class

Ko(a,8) ={u e l's(a, B):1(u) = co(a, B),u(z,0) =u(z,1) in R,a <u < [ ae. on Q}.
Next, we are going to show that Ke¢(c, ) is not empty.

Lemma 4.2 It holds that Kg(o, 8) # 0.

Proof. Initially, for each w € I's(a, B) we set

// w)dxdy and Ir(w // w)dxdy.
Rx(0,%) Rx(%,1

2 2

Now, choosing u € I's(av, #) as in Proposition 4.1, we can write

I(u) = I(u) + Ir(u) = co(a, B). (4.38)
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Suppose for a moment that I;(u) < Ir(u) holds. Then considering the function

IN
>—\ l\’)l»—t

u(z,y), if zeR and 0<
u(x,1 —y), if z€R and

v(r,y) =

IN

>y
<y

D=

it is clear that v € I'g(a, §) and thanks to the assumptions (Ay)-(As) a straightforward
computation gives

L(v) = 1(v) = L (u). (4.39)

According to (4.38) and (4.39),

ca(a, B) < I(v) = L1(v) + I2(v) < I(u) = co(a, B),

from where it follows that I(v) = ce(e, 8) with v(z,0) = v(z,1) for every € R and
v(x,y) € [a, B] a.e. in 2. On the other hand, if Io(u) < I;(u) occurs then in this case we

define the function

u(z,1—y), if z€R and 0<

IA
H N

o(r,y) =

IN

>y
u(z,y), if xreR and <y

N

Consequently, using the same ideas discussed just above, we obtain that v € T'g(c, )
with [,(0) = I,(0) = Ix(u), from where it follows that 1(0) = ce(a, 5), 0(x,0) = 0(z, 1)
for any x € R and a < v < § a.e in (2, which completes the proof. m

We would like to emphasize here that the functions of Kg(«a, ) can be extended
periodically in the variable yy on R? with period 1. For this reason, it will be convenient

to assume that the elements of Kg(«, 3) are extended to the whole real plane.

Lemma 4.3 Ifu € Kg(a, 8), then u is a weak solution of (4.2) with e = 1. Moreover, u

is a heteroclinic solution from « to B which belongs to C.7(R?) for some v € (0,1).

loc

Proof. Initially, let be u € Kg(a, ) and ¢ € C§°(R?). An direct computation shows
that

//Q ((|Vu)) VuVp + Az, y)V'(u)) dedy = 0. (4.40)

Indeed, taking v = u + t1) we obtain for x large enough, let us say, |z| > R for some

R > 0, that

// L(v)dzdy = // L(u)dzxdy, Vp > R.
O\ ((=p,p)x(0,1)) A\ ((=p,p)x(0,1))
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Thus,
or, = . Iu+ty)—I(u)
@(U) = 15% ;
L DV (u+ 1)) — B(Vul) + Al )V + 1) = V)
— / /<—p,p>x(o,1>< t )d w

from which it follows that
ol
oY

and therefore, by the arbitrariness of p,

(u) = //(—p,p)x(o,1) ((|Vu))VuVp + Az, y)V'(u)) dedy,

g—i(u) -/ /Q (G(IVu) VuTy + Az, y)V' (u)v) dedy.

ol
As v € T'g(a, B), I(u) < I(v), and so, a standard argument ensures that —(u) = 0,

P
which implies (4.40). The equality (4.40) allows us to use the same arguments found in

the proof Theorem 2.2 to prove that

[ @V Vave + AtV dedy = 0 Vo € CR(R),

from where it follows that u is a weak solution for (4.2) with e = 1. The assumption (¢2)
permits to apply a well known regularity result developed by Lieberman [67, Theorem
1.7] to conclude that u € C7(R?) for some v € (0,1). Moreover, similar to the proof of

Theorem 2.2, we also have that u is a heteroclinic solution from « to 3, that is,
u(z,y) - o as r — —oo and u(x,y) — S as © — +oo, uniformly in y € R,

and the lemma follows. m
Now, we will show our last lemma in this subsection, which ends the study of the

equation (4.2) in the case where A is periodic in all variables.
Lemma 4.4 Assume (¢3) and (Vg). Then, if u € Ke(a, §) we have that
a < u(z,y) < B for all (z,y) € R*.

Proof. Let u € Kg(a, 3) and observe that o < u < 8 on R2. In what follows, we will
show that u(z,y) < 8 for any (z,y) € R?. Indeed, assume for the sake of contradiction

that there exists (xg,%9) € R? such that u(xg,y0) = B. Therefore, by the geometry of u,
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we can consider a compact set O contained in R? such that there exists (x1,7;) € O with
w(xy,11) < 8. Having that in mind, setting the function ¢ : (0, +00) — (0, 400) by
. o(t), if te(0,R],
gb(t) = (b(R)tS_Q
Rsf2

where R > max{||Vul|/z=~(),n} and the constants s and 7 were given in (¢3), a direct

, if t e (R,4+0),

computation implies that there are positive real numbers v; and 5, which dependent on

n, s, R, c; and ¢y, such that
o)t < yt*t and @(t)t2 > yot® for all t > 0.

Using the function ¢, let us define the vector measurable function G : R? x R x R2 — R2

by

G(Z7 t? p) = )
which satisfies

Gz, t,p)| < LpP™" and pG(z,t,p) > |pf* forall (z,t,p) € R? x R x B2,
Y2

Furthermore, we will also consider the scalar measurable function B : R? x R x R? - R

given by
ARV 1)
V2 '
Now, combining (¢3) with (V), it is possible to ensure that for each M > 0 there exists

B(z,t,p) =

Cy > 0 satisfying
|B(z,t,p)] < Cuylt|*™" forall (z,t,p) € R* x (—=M, M) x R%

All these information are necessary to guarantee that G and B fulfill the structure
required in the Harnack type inequality found in Trudinger |91, Theorem 1.1]. So, setting

v(z) = B —u(z) for z € R?, we infer that v is a weak solution of the quasilinear equation
div G(z,v,Vv) 4+ B(z,v,Vv) =0 in O.

Employing [91, Theorem 1.1], we deduce that v = 0 on O, that is, u = § on O, which
contradicts the fact that (zq1,y;) € O with u(xy,y;) < 8. Likewise, we can apply a similar
argument to show that u(x,y) > a for any (z,y) € R?, and hence the proof is completed.
[

Finally, the following theorem is an immediate consequence of Proposition 4.1 and

Lemmas 4.3 and 4.4.
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Theorem 4.1 Assume (¢1)-(¢2), (Vi)-(Vs), € = 1 and that A belongs to Class A. Then
equation (4.2) has a heteroclinic solution from o to 8 in C;7Y(R?) for some y € (0,1) such

loc

that

(a) u(z,y) =u(x,y + 1) for any (x,y) € R
(b) a <wu(x,y) < B for all (z,y) € R

Moreover, taking into account the assumptions (¢3) and (Vy) then the inequalities in (b)

are strict.

4.1.2 The case asymptotic at infinity to a periodic function

In this subsection we will study the existence of a heteroclinic solution for (4.2) with
e = 1 and A belongs to Class B, that is, A is asymptotic at infinity to a periodic function
A,. Moreover, unless otherwise indicated, we will consider here the conditions (¢1)-(¢2)
on ¢ and (V;)-(V3) on V. The fact that we are assuming that the function A is only
assumed to be asymptotically periodic with respect to z brings a lot of difficulties and
some arguments explored in the periodic case do not work anymore.

In this section, let us consider the functional I, : W,1*(Q) — R U {+oc} by

loc
w) = Zap,j(w)a w e M/léf)(Q)7
JEL
where

// (Vul) + Ay(e, )V (w)) dedy.

Moreover, we use ¢, ¢(a, ) to denote the real number given by

(e, B) = weliggfa 5 Iy(w).

From Subsection 4.1.1, we know that there is wy € I's (v, §) such that I,(wo) = ¢pe(e, 8),

and so,
C@(Oé,ﬂ) < I(wo) < Ip(w()) = Cpﬁi’(avﬁ)- (4'41)

The inequality (4.41) establishes an important relation between cqg(a, 5) and ¢, ¢(c, 8),
which will be useful to achieve the objective of this subsection. With these information,

we are ready to prove the main result of this subsection.
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Proposition 4.2 There is u € I'g(a, 5) such that I(u) = co(c, B) satisfying
a < u(z,y) < B almost everywhere in Q.

Proof. First of all, note that there exists a minimizing sequence (u,) C I's(c, 3) for I
satisfying
a<u,(zr,y) <p VneNand (z,y) € Q.

Moreover, there are u € W,5*(Q) and a subsequence of (uy,), still denoted by (u,), such

that
u, —u in WLEQ), (4.42)
u, —u in LP.(Q) (4.43)
and
un(z,y) = u(z,y) a.e. in Q. (4.44)
From (4.42)-(4.44),
I(u) < co(a, B) (4.45)

and

a<u(r,y) <pPae in Q.

Now our goal is to show that u € I's(«, 5). To achieve this goal, similar to the proof of
Proposition 4.1, we have that (74u)r~0 is a bounded sequence in W1H®(Qq). Thereby, for

some subsequence of (7yu), still denoted by itself, there is u* € W1®(€) such that
e — vt in WH*(Qy) as k — 4o0,

e — ut in LP(Q) as k — +oo

and

mvu(z,y) — u*(z,y) a.e on Qy as k — +oo.

We claim that v* = a or u* = [ a.e. in €. Indeed, since I(u) < cg(a, ), we infer that

ar(u) goes to 0 as k goes to +o00, and so, by change of variable,
// (O(|Vreu|) + A(z + k,y)V (mu)) dedy — 0 as k — +o0.
Qo
Consequently, by (A4;),

// (O(|VTeul) + AoV (w)) dedy — 0 as k — 400,
Qo
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from where it follows that

[]| v+ Ay sy =0

By the assumptions on ® and V, we derive that ©* = a or u* = [ a.e. in €)y. Next, we
claim that

u* = [ a.e in €. (4.46)

To establish the claim above, let us assume by contradiction that v* = a a.e. in .
So, as a consequence, we will prove that given § € (0, (8 — «)) there are (uy,,) C (u,),

(k;) € N and i, € N such that
1, < k; for all © € N, k; = 400 and n; — +00 as i — 400, (4.47)

// B(|75up, —a)dady < § and // (|70t —ar|)dzdy > 5 V] € [in, ki—1]NN. (4.48)
Q() QO

Indeed, since 7,u goes to o in L®(Qp) as k goes to +oo, given § € (0, (8 — «)), there is
i = 1.(0) € N satisfying

) .
//QO O(|mpu — of)dzdy < DTSR VEk > i,. (4.49)

In particular,

J
//Q O(|7,u — of)dedy < ST (4.50)
0
Gathering (4.43) and (4.50) with the fact that ® € A, (see for a moment the Lemma
A.8-(a)), we find n; € N satisfying

// O (|7, upn, — af)dzdy < 4.
Qo

Thereby, since u,, € I's(a, ), we may fix k; > i, + 1 as the first natural number such

that

// B(|7sun, — af)dady < 5 and // (|71, — a|)dzdy > 6, Vj € [in, k1 — 1] AN.
Qo Qo

On the other hand, according to (4.49),

)
// O(|7,u — of)dzdy, // O(|7, 1 1u — of)dedy < TS
QO QQ

Hence, in the same manner we can see that there is no, € N such that ny, > n; and

/ / B (|71t — a)dady, / / (|7 +1ttm, — af)dady < 5.
Qo Q0
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Using the fact that u,, € I's(c, ), we can find ky > i, + 2 as the first natural number

satisfying

// O(|7jupn, — a|)dzdy < § and // O (| Ty tiny, — a|)dxdy > 6, Vj € [is, ko — 1] NN.
Q(J QO

Repeating the above argument, there are sequences (u,,) C (u,) and (k;) C N such that
k; > i, + 4 satisfying (4.47) and (4.48). So, for some subsequence, there is w € W,5*(Q)

loc

such that
Ty Un, — w in WEP(Q) as i — +oo, (4.51)
Thlln, — w in Ly (Q) as i — +oo, (4.52)
Tk, Un, (T,y) = w(z,y) a.e. in Q as i — 400 (4.53)
and
a<w(z,y) <[ ae. in . (4.54)

Now, setting the functional
// (IVv]) + Az + ki, y)V(v) dedy, ve Wil (Q), i €N, j € Z,
a simple change of variables gives us
G’;(Tkiuni) = jtk; (Un,),

and so,

Y () =Y aj(un,) = I(uy,) VieN. (4.55)

jez jez
From (4.55), one has

apo(mpw) — 0 as |k| = +o0. (4.56)

To see this, it suffices to show that I,(w) < ce(a, 5). Indeed, combining the fact that

Az + ki, y) goes to Ay(x,y) as i goes to +o0o with (4.53), one gets
Az + ki, y) V(T un, (2, y)) — Ap(z, y)V (w(z,y)) ae. in Q.

Therefore, the Fatou’s Lemma and (4.51) provide

J J

E ap.;(w) < lim+inf a’ (Th,tn,) Vj €N
1—r+00

—J —J
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As j is arbitrary, (4.55) guarantees that

I,(w) <liminf I(u,,) = co(a, B), (4.57)

1——+00

and (4.56) is proved. Thereby, passing to a subsequence if necessary, a direct computation
shows that

Tw — a or B in L*(Qp) as k — —oo

and

mw — a or Bin L*(Qp) as k — +o0.

Our goal now is to ensure that w € I's(a, B).
Claim 1: 7w — « in L*(Q) as k — —oo0.

Indeed, note first that for each j € N, there is ig = ig(j) € N such that
kz—lzkl—jZZ* for all iZio,

where i, € N was given in (4.47). According to (4.48),

// (|Th;—jtun;, — @|)dxdy < 6 Vj €N,
Qo

that is,
// O (|73, un; — af)dxdy < § Vj e N.
Q-j

Invoking (4.52), we can increase ¢ if necessary to obtain

// O(|m_jw — a)dzdy < 6 Vj € N.
Qo

Our claim is proved by noting that § € (0, ®(5 — «)).
Claim 2: 7w — 3 in L*(Qy) as k — +oc.

Assume by contradiction that 7w — « in L*()) as k — +o00. Let us break down
the proof of Claim 2 into two steps.

Step 1: There are ¢y > 0 and iy € N such that

kit
/ / (|Vun,|) + V(uy,)) dedy > Z, Vi > i, (4.58)

where A = min{1, A,}.

Indeed, if this does not occur, then there is a subsequence (Tkij U, ) of (Tk, U, ) such

/ / ‘VTk Unz
-1

that

) + V(Tkijuni)> dedy — 0 as j — +oo.
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Recalling that (u,) is bounded in WL (), then going to a subsequence if necessary, there

exists v € WH?((=1,1) x (0,1)) such that
Th, Ung, — 0 i WHP((=1,1) x (0,1)) and 7, u,, — v in LP((=1,1) x (0,1)).  (4.59)

From the assumptions on ® and V', we have v = « or v =  a.e. in (—1,1) x (0,1). On

the other hand, from (4.48),

// O (|7, un, — a|)dxdy < 6 and // O (|1, un, — af)dzdy > 6 Vi e N. (4.60)
Q,1 QO

Finally, taking the limit of k; — 400 in (4.60) and using the limit (4.59) we find a
contradiction, finishing the proof of Step 1.

In what follows, fixing € € (0, ¢y/2) and increasing i, if necessary, we obtain

I(un,) < cala, B) + i, Vi > o, (4.61)

Step 2: There exist 7 € N and 7 > i( large enough satisfying

Qp,j ((Tkiu”i - Oé)(I - j) + Oé) < -. (462)

[NRe

The proof of Step 2 follows as in the proof of Proposition 4.1, and so, it will be

omitted. In the sequel, let us consider 5 € N and ¢ > 7y as in Step 2. Setting the function

a, if <y and y € (0,1),
Uii(:9) = ¢ (thtin,(2,9) —a)(@ —j) +a, if j<z<j+1 and ye(0,1),
Tk, Un, (T, 1), it z>j+1 and y € (0,1),

it is simple to check that U;; € I's(a, 5) and

+00 +oo
cpa(, B) < L(Us) = api(Usa) + D api(Titin,) = api(Us) + Y ape(un,). (4.63)
t=j+1 t=j+1+k;

We claim that increasing i if necessary, one gets

400 400
€

o aplun) <Y at(uni)+1. (4.64)

t=j+1+k; t=j+1+k;

Indeed, since the function A belongs to Class B, we infer that there is R > 0 such that

o€

A
Ap(xay) - A({E,y) < E \V/|l’| > R and Vy S (071)7
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where C' > 0 is a constant such that I(u,) < C for all n € N. Consequently,

+oo 1 A +o0 c
/ / (Ap(x7 y) - A(l'a y)) V(Um)dl‘dy =~ / Um dl’d < -
R 0 4C 4

and therefore, increasing ¢ if necessary the last inequality is sufficient to justify (4.64). In

view of (4.63) and (4.64), one has

+00
€
cpo(a, ) < ayp;(Uji) + Z ay(un,) + 7 (4.65)
t=j+1+k;

On the other hand, according to Step 1,

+oo ki+1

Sl e 3 o) A [ [ @0T0 Vi) dedy < 1)
t=j+14k; t=j+14k;

which together with (4.65) yields that

€
cpa(a, B) < ap;(Uja) + I(un,) — €0 + 1

This together with (4.61) leads to

€
00(048) < apu(Us) + ol ) + & - o

Recalling that € € (0,€9/2) and using (4.62), we arrive at

Cp’q;.(Oé,/B) S C@(Oé,ﬁ) +e€— € < Cq;.(Oé,/B) )

contradicting (4.41). This proves the Claim 2.
Finally, by virtue of Claims 1 and 2, we infer that w € I's(cv, 5). Furthermore, from
(4.57) we also have

tpo(a, B) < Ip(w) < co(a, B),
obtaining a new contradiction, and the our claim (4.46) is proved. As a byproduct,
mu— B in L*(y) as k — +oo. (4.66)
A similar argument works to prove that
e — o in LP() as k — —oo0. (4.67)

Combining (4.66) and (4.67) with (4.45) we get precisely the assertion of the proposition.
|

Considering here Kg(o, 5) as described in Subsection 4.1.1, the same argument
explored in that subsection guarantees that Ke(a, #) is a non-empty set and allows us to

write the following result.
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Theorem 4.2 Assume (¢1)-(¢2), (V1)-(Vs), € = 1 and that A belongs to Class B. Then
equation (4.2) has a heteroclinic solution from o to 8 in C;7(R?) for some y € (0,1) such

loc

that

(a) u(z,y) =u(x,y + 1) for any (x,y) € R
(b) a <wu(x,y) < B for all (z,y) € R

Moreover, taking into account the assumptions (¢3) and (Vy) then the inequalities in (b)

are strict.

4.1.3 The case of Rabinowitz’s condition

The main objective of this subsection is to establish a heteroclinic solution through
the variational method for equation (4.2) in the case where the function A belongs to
Class C, in which it was listed in the introduction. In [17]|, Alves called this class of
Rabinowitz’s condition, because an assumption like that has been introduced by
Rabinowitz [83, Theorem 4.33] to build up a variational framework to study the

existence of solution for a partial differential equation of the type
2 _ . N
—e“Au+ A(z)u = f(u) in R,

where € > 0, f : R — R is a continuous function with subcritical growth and A : RV — R

is a continuous function satisfying

0 < inf A(z) < liminf A(z).

zeRN || —+o0

Now we will mainly focus on some preliminary results that are crucial in our approach.

As a beginning, let us denote by I, I, : W,o*(Q) — RU {400} the following functionals

loc

:Zam(v and Iy Zaooj

JEZL JEL
where
ac;(v // (IVv]) + A(ex,y)V (v)) dzdy
and

oo s (v // (IV0]) + AV (v)) dady.
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Moreover, we indicate by c. (e, 3) and co o (a, 5) the real numbers

ceola,8) = inf I (v) and cwe(e,B) = inf I.(v).

velg (a,B) v€lg(a,B)

Here we would like to emphasize that throughout this subsection the potential V'
satisfies the conditions (V;)-(V3). The next lemma establishes an important relation
between the real numbers c. (o, ) and co o(a, §), which will play an essential in our

approach.
Lemma 4.5 According to the notation above,

limsup cco(@, B) < coa(a, B).
e—0F

Proof. The proof is similar to that discussed in the proof of [17, Lemma 4.1] and its
proof is omitted. m

We are now ready to prove the following result.

Proposition 4.3 There exists €g > 0 such that for each € € (0, ¢€y) there is u. € T'g(av, )

satisfying I.(u.) = ceo(a, f) and a < u(z,y) < B almost everywhere (x,y) € .

Proof. The idea here is to use a variant of the proof of Proposition 4.2 to establish the

proposition. First of all, thanks to Lemma 4.5 we may fix ¢y > 0 small enough verifying

Ceal(a, B) < coala,B) Ve e (0,¢). (4.68)

Now, arguing as in Subsection 4.1.1, for each € € (0, €g) there exist a minimizing sequence

(un) C Ta(a, B) for I, and u, € W,5*(Q) such that

loc

a<u,(z,y) <P V(r,y) €Q and Vn €N,

u, — ue in WEP(Q),

loc
Uy, — Ue 1N LEC(Q),
un (2, y) = ue(z,y) a.ein €,

a<u(r,y) <[ aein

and

I (ue) < ceala, B). (4.69)
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By a similar argument to the one used in the proof of Proposition 4.2, there are

u' € WH?(Qp) and a subsequence of (7u.), still denoted by itself, such that
Tette — uf in WhH?(Qy) as k — 4o,

Ttte — ul in LP(Qy) as k — +oo

and

True(z,y) = ul(x,y) aein Qg as k — +oo,

where uf = o or v} = [ a.e. in {)y. As in the proofs of Propositions 4.1 and 4.2, we
want to show that u. € I's(a, 5). Toward that end, we show that u* = § a.e. in Q.
The argument is similar to that developed in Proposition 4.2, but we present the proof in
detail for the reader’s convenience. Indeed, arguing by contradiction, assume that v} = o
a.e. in o. Thus, given 6 € (0,P(5 — «)) there exist i, € N, a sequence (k;) C N and
a subsequence (uy,) of (u,) such that i, < k; for all i € N, k; - +o0 and n; — +o0 as

1 — +oo and

// O (|7jupn, — af)dzdy < § and // O (|7, up, — af)dxdy > 5 Vj € [ix, ki — 1] NN.
Qo QO

Consequently, considering the sequence (7y,un,), for some subsequence, there exists

we € W2 (Q) satisfying

ThyUn, — We in WhP(Q) as i — +oo,

Tholln, — we in Lip () as i — 400

and

a < w(zr,y) < B ae. in .
Setting the functional
// (IVo]) + A(ex + eki, y)V (v)) dady, v e WEP(Q), i € Nand j € Z,

it is easy to check that

Za;j(Tkiuni) = Zae,j<uni) - Ie(um) Vi € N.

= JEZ

This fact together with the limit below

liminf A(ex + €k;,y) = Ao

i——+00
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implies that
L)o(we) S Ce,<1><a7 6)7 (470)

and so, a ;j(w.) goes to 0 as j goes to *oo. So, by passing to a subsequence if necessary,
it is easy to see that

mw, — o or B in L*(Qy) as k — +oo.

The same ideas explored in the proof of Claim 1 of Proposition 4.2 ensures that
mwe — o in L*(Qp) as k — —oo.
Next, we are going to prove that
mwe — 3 in L?(Q) as k — +oo. (4.71)

Assume for contradiction that (4.71) is not true. Arguing as in the proof of Proposition
1.2, it follows that there are ¢y > 0, 7 € N and ¢+ € N large enough such that for some
fixed € € (0,&y/2) one has

ki+1 1 g()
/ ((IVun:|) + V(un,)) dody > =, (4.72)
ki—1 Jo A
L(up,) < ceala, B) + i (4.73)
and
oe (Tayttn, = @)z = j) + ) < 5. (4.74)
Using the function U,; € I's(c, B) given by
a, if <y and y € (0,1),
Uiile,y) = § (hun,(z,y) —a)(@ = j) +a, if j<z<j+1 and ye(0,1),
Tk Un, (T, Y), if z>j541 and y € (0,1),
we derive that
+oo
Coo (0, 8) < Ioo(Us) = oo j(Uji) + D ooy (tin,)- (4.75)
t=j+1+k;

Now, since the function A belongs to Class C, increasing ¢ if necessary, an easy
computation shows that

—+o00 —+o00

Z oot (Un,) < Z Qe (Up,) +

t=j+14k; t=j+14k;

(4.76)

=1 ™
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Thus, from (4.72)-(4.76),

€
Coo,@(OéaB) S aoo,j<Uj,i) + [e(um) — € + Z_l S C€7¢,(Oé,6> Y

contrary to (4.68). Therefore, w, € I's(cv, B) and (4.70) leads to

Cooa (@, B) < Ioo(we) < cea(a, B),

which again contradicts (4.68). Consequently, we conclude from the study carried out
here that 7yu. — 3 in L*(Qy) as k — +oo. By a similar argument, we can conclude
that u. € 'g(a, B) for € € (0, ¢). Moreover, by (4.69), we must have I.(w.) = c.o(a, 5),
finishing the proof. m

Finally, we can now prove our main result of this subsection.

Theorem 4.3 Assume (¢1)-(¢2), (V1)-(Vs) and that A belongs to Class C. Then there is
a constant €y > 0 such that for each € € (0,€y) equation (4.2) has a heteroclinic solution

from a to B in CLY(R?) for some vy € (0,1) such that

loc
(a) u(z,y) =u(x,y + 1) for any (x,y) € R
(b) a <wu(x,y) < B for all (z,y) € R

Moreover, assuming (¢3) and (V) we have that the inequalities in (b) are strict.

Proof. Initially, we will consider the following set

K.o(a,p)={uels(a,f): I(u)=cco(a, ), u(z,0)=u(z,1) in R,a <u< f a.e. on Y,
(4.77)
which consists of minimum points of I, on I's(a, ) that are seen as functions defined
on R? being 1-periodic on the variable 3. Next, from Proposition 4.3 we can proceed
analogously to the proof of Lemma 4.2 for show that K ¢(a, ) is non empty whenever
€ € (0,€0). Finally, we point out that the Theorem 4.3 follows following the same steps
of Subsection 4.1.1 and the details are left to the reader. =

4.1.4 The case asymptotically away from zero at infinity

We exhibit in this subsection a heteroclinic solution for (4.2) when A is asymptotically

away from zero at infinity, that is, in the case where A belongs to Class D. Specifically,
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let’s assume that A satisfies (A;)-(As3) and that A is a continuous non-negative function,
even in r, A € L>(R?) and there exists K > 0 such that

inf  A(xz,y) > 0.

lz|>K, y€[0,1]

To build a framework for this heteroclinic problem and avoid some bothersome
technicalities, we will always assume here that the potential V' satisfies the conditions
(V1)-(V3), (V) and (V7). Furthermore, we will consider assumptions (¢1)-(¢2) on ¢ and

that ¢ = 1. Next we consider the following class of admissible functions
Ie(B)={v els(—p,0):v(z,y) =—v(—z,y) a.e. in Q and 0 <v(z,y) < S for a.e z > 0}

and the real number

co(f) = Uelr%f(m I(v),

where I's(—f, ) is given as in (4.3). Now it is important to point out that '} (/)
is not empty, because the function ¢_gsz defined as in (4.4) belongs to I'4(5) with
I(p_p3) < +oo. Having said that, we will now explore the conditions (V5) and (V5)

to show that the following class
K3(8) = {v € T5(8) : I(v) = c4(8) and v(x,0) = v(z,1) in R} (4.78)

is not empty. Hereafter, we will assume that the functions of Kg(5) are periodically
extended in R? on the variable y. Therefore, K3(3) is constituted by (minimal)

heteroclinic type solutions of (4.2) with e = 1 that are 1-periodic in y and odd in z.
Lemma 4.6 It holds that K$(5) # 0.

Proof. By some standard computations, one easily verifies that there exists a minimizing

sequence (u,) C I'4(8) for I such that
0 <uy(z,y) <p VYneN and z > 0.

Besides that, there exist u € W,*(Q) and a subsequence of (u,), still denoted by (u,,),

satisfying
u, —u in WhP(Q), (4.79)

loc

U, = u in LY () (4.80)
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and

un(z,y) = u(z,y) a.e. on . (4.81)

We conclude from (4.81) that u(z,y) = —u(—=x,y) almost everywhere (z,y) €  and
0 < u(z,y) < B for almost every x > 0, and finally by (4.79)-(4.80) it is easy to check
that

I(u) < c3(B)- (4.82)

Now we claim that v € T'$(5). To establish our claim, we assume for the sake of
contradiction that 7,u not goes to 3 as k goes to +oo in L*(£)). Thereby, since ® € A,

there are € > 0 and a subsequence (k;) of natural numbers with k; — +oo such that
//Q B (Jreu— B|) dady > ¢ Vi€ N. (4.83)
0
On the other hand, (V;)-(V3) and (V%) yield
po(|t = pl) < V(t) vt elo,pl,

for some i > 0. Consequently,

(OESY ( / / A(x,y>v<u>dxdy> > i

1€N

( I A (- 5|>dxdy> |

>“Z(//Q (z + k;, y)® (|Tkiu—5|)dxdy),

€N
Now, fixing 79 € N such that |z + k;| > K for any = € [0,1] and i > ig, the fact that A

>WOZ(//Q (|7pu — B)) da:dy)

1>10

belongs to Class D leads to

where

= inf A(x,y) > 0.
= i oy V)

Hence, by (4.83),
I(u) > aoﬁzﬁ = +00,

i>i0

contrary to (4.82). For this reason,

e — B in L®(Qg) as k — 400,
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and therefore, since u is odd in x we conclude that v € I'}(3). This fact combined with
(4.82) produces that I(u) = ¢3(3). Now assumptions (Ay)-(As) allow us to proceed as in
the proof of Lemma 4.2 to find a function v € I'y () dependent on w such that v € Kg(3),
and the proof is over. m

We now finish this subsection by proving the following theorem as follows.

Theorem 4.4 Assume (¢1)-(¢2), (V1)-(V3), (V2) and (Va) with « = —3, € = 1 and that
A belongs to Class D. Then equation (4.2) possesses a heteroclinic solution u from —f to
B in O (R?) for some v € (0,1) such that

(a) u(z,y) = —u(—z,y) for any (z,y) € R

(b) u(z,y) = u(z,y +1) for all (z,y) € R?.

(¢) 0 <u(x,y) <p for any x >0 and y € R.

Moreover, if (¢3) and (V) occur then the inequalities in (c) are strict.

Proof. Our proof follows the method developed in Chapter 2 and we will do it in detail
for the reader’s convenience. To begin with, thanks to Lemma 4.6 we can take u € Kg(f).

Here we will first show that

//Q (¢ (IVu|) VuVep + Az, y)V'(u)y) dedy > 0 for all ¢ € C5°(R?), (4.84)

which will guarantee that

// (¢ (|Vu|) VuVep + Az, y)V' (u)y) dedy = 0 for all ¢ € C3°(R?),
Qo

implying that u is a weak solution of (4.2). In what follows, for each ¢ € C§°(R?) we will
use the fact that

U(x,y) = Yoz, y) + the(,y),
where

7#(5(], y) + d)(_l‘a y)
2

and %(Cb’,y) _ @/J(ZL’,?J) —21/1(—x,y).

Ye(T,y) =

In addition to these functions, let us consider for ¢ > 0 the function

¢i(z,y) = max {—F, min{f5, p¢(z,y)}}, (z,y) €Q,
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where

w(x,y) + to(z,y), if x>0 and u(x,y) + t.(x,y) >0,
oi(r,y) = —u(x,y) — tho(z,y), if = >0and u(x,y) + t(x,y) <0,
—oi(—z,y), if z<0.
Now, a direct computation shows that ¢, € I'4(5). Then (V) together with @, yields
that

I(u+t,) = I(r) = 1(pr) = cg(B) = I(u). (4.85)

On the other hand, by Lemma A.8-(b),

M)~ I+ ) 2ty [ / GV (u -+ t4,)) VuV i dudy

tQZ// O(|V (u+ t3),)]) Vb, Vb dady

JEZ

’ ‘ZZ //Q Az, y) (V(u+ 1) — V(u+ta,)) dedy.

(4.86)
Since the functions ¢(|V(u + t1),)|)VuVih. and ¢(|V(u + t1,)|) V), Vb are odd in the

variable x, then it is easily seen that

2 // AV i+ WD VuTYedody =3 I OVt )V, idrdy =0

(4.87)
and so, from (4.85)-(4.87),
I(u+ty) — >Z// Alz,y) (V(u+t) — V(u+ tih,)) dedy.
JEL
Consequently, as A(z,y)V’(u). is odd in the variable x, one gets
J 015 vuv6 + A v sy =ty T
) V(u+ty) —Viu+ty,)
z tl—1>rgl+ Z // t ddy
> (2, 9)V'(u) (Y — ) dxdy = (x,y)V' (u)bedrdy = 0,
JZE;// > ],
(4.88)

showing that the inequality (4.84) occurs for every ¢ € C5°(R?). Finally, slightly varying
the same ideas discussed in the Subsection 4.1.1, we can conclude the proof of Theorem

44, m
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4.2 Heteroclinic solution of the prescribed curvature
equation

Throughout this section, we adapt for our problem the approach explored in Chapter
3 to find solutions that are periodic in the variable y and heteroclinic in z from a to
to the prescribed mean curvature equation (4.1). Since the ideas are so close to those of

Chapter 3, the presentation will be brief.

4.2.1 Auxiliary results

In the following, we consider for each L > 0 the quasilinear equation
—Ag,u+ Aex,y)V'(u) =0 in R? (E)L

where @7, : R — [0, +00) is an N-function of the form

It

2u(t) = | or(s)sds,

where ¢r(t) = ¢r(t?) and @y is defined by

1
: it tel0,L],
VI+t 0,
er(t) =9 z,(t—L—12%+y,, if te[L,L+1]
YL, if te[L+1,+00),

with

X =

V1+ L
m and Y = (4L + 3)1’L

We point out that the main purpose of this section is to use the arguments of Sect.
4.1 to investigate the existence of a heteroclinic solution u, s from « to g for (E), that
satisfies

Vg, oo @2y < \/E, (4.89)

because this inequality implies that u, g is a heteroclinic solution from « to § for (4.1).
Here, we will prove that the inequality (4.89) holds when max{|a],|5|} is small enough.
In order to do that, a control involving the roots o and 8 of V' is necessary, and at this
point the condition (V;) applies an important rule in our argument.

The next result is about functions ¢; and ®;, which makes it clear that ®, is an

N-function.
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Lemma 4.7 For each L > 0, the functions ¢, and ®, have the following properties:
(a) ¢ is CL.
(b) yr, < op(t) <1 forallt>0.
YL 2 1 2
(c) 71& <Pp(t) < §t for any t € R.
(d) ®p, is a convex function.

(e) (6r(t)t) >0 for all t > 0.

Proof. The argument follow the same lines as the proof of Lemma 3.5. m

We would like to point out that our focus now is on examining if the N-function ¢,
is in the settings of Sect. 4.1, that is, if ¢, satisfies conditions (¢1)-(¢3). Indeed, it is clear
that by Lemma 4.7-(e) ¢ checks (¢1), and by Lemma 4.7-(b), it checks (¢3) with ¢ = 2.
Moreover, with direct computations one can get that there are real numbers my,l;, > 1

such that [;, < m; and

(pr(t)t)
o)

from which it follows that ¢, verifies (¢2). For more details see Lemma 3.7. As a

r—1< myp— 1 for any ¢t >0,

direct consequence the N-functions ®; and <i>L satisfy As-condition, where i)L is the
complementary function associated with ®, which ensures that the space L®* is reflexive
(see for instance Appendix A). Actually, the study made in Lemma 3.6 shows that the

space L®L is exactly L? space and the norm of L*®” is equivalent to the norm of L2.

4.2.2 Existence of heteroclinic solution

Assuming for a moment that function A belongs to Class A or B, ¢ = 1, and that
the potential V satisfies (V;)-(V4), the same arguments from Subsections 4.1.1 and 4.1.2
guarantee that there exist a periodic function u, g : R* — R on the variable y such that

Ua g € Ko, (a, ), where
Ks,(a,p)={weTls, (a, )| [(w)=ce,(c, B), w(x,0)=w(x,1) in R,a <w< [ a.e. on N}.

Moreover, w45 is a weak solution of equation (E); with ¢ = 1 in CL7(R?) for some

v € (0,1) that is heteroclinic in = from « to f. The next lemma is crucial to guarantee

the existence of a heteroclinic solution for (4.1).
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Lemma 4.8 Given L > 0 there exists § > 0 such that for each pair («, 8) of real numbers

with o < B and max{|al,|5|} € (0,0) we have that
luaslloriey < VL

for all z € R? and un 5 € Ks, (o, ), where By(z) denotes the ball in R* of center z and

radius 1.

Proof. If the lemma does not hold, there are (r,,s,) C R? and (o, 3,) C R? such that

max{|ay|, |Ba|} goes to 0 as n goes to +o0o0 and for some u,,, 5, € Ko, (ay, 5,) one has

CL(B1(rn,sn)) = VL, ¥neN. (4.90)

| ’ uan ,Bn.

Now, we note that for each n € N the function w, defined by
T (2, Y) = Uay 5, (T + Ty y + 8) for (z,y) € R?
is a weak solution of the quasilinear equation
~Ag,u+ B,(x,y) =0 in R?,

where

Bu(z,y) = A(z 4+ 1,y + $0) V' (tUa, g, (7, 9)).

Furthermore, it is easy to see that (V) ensures the existence of a positive number M > 0,

which is independent of n, such that
1B (2,y)| < M||A|po@e) V(z,y) € R* and Vn € N.

Therefore, the elliptic regularity theory found in |67, Theorem 1.7] implies that

i, € CL1(R?), for some vy € (0,1), and that there is a positive constant R

loc

independent of n verifying
||ﬂn||CltZO(R2) S R VneN.

The above estimate allows us to use Arzela-Ascoli Theorem to find v € C1(B;(0)) and a

subsequence of (u,), still denoted by (@), such that

i, —u in C'(B(0)).
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Now since ||uq,, g, |[z=®2) = 0 as max{|ay,|, ||} — 0, we obtain that v = 0 on B;(0),
and so,

||an\|01(31(0)) <vVL V¥n > Mo,

for some ng € N. Therefore,
||“oznﬁn||cl(31(rn,sn)) <VL ¥n > ny,

which contradicts (4.90), and the proof is completed. m
We are finally ready to prove one of our best results from this chapter involving

prescribed mean curvature equation (4.1).

Theorem 4.5 Assume (V1)-(V4), € = 1 and that A belongs to Class A or B. Given L > 0
there exists 0 > 0 such that if max{|al,|B|} € (0,0) then equation (4.1) possesses a

heteroclinic solution u, g from a to 5 in Cllo’Z(R2), for some v € (0,1), satisfying
(a) Uap is 1-periodic on y.
(b) a <uyp(z,y) < B for any (z,y) € R2.
(¢) |Vtags|eme) < VL.

Moreover, if V € C*(R,R) then the inequalities in (b) are strict.

Proof. To begin with, we claim that given L > 0 there exists 6 > 0 such that if
max{|a|, |5} € (0,0) we have

| Vtta gl L2y < VL for all u, s € Ka, (a, 8). (4.91)

Indeed, for each (x,y) € R? we can choose z € R? verifying (z,y) € Bi(z). Thanks to
Lemma 4.8, there is § = 6(L) > 0 such that for each pair («, 8) of real numbers with
a < and max{|«a/|,|B|} € (0,9) one has

[tta 8]l (3 2y < VL

whenever u, 5 € Ko, (o, ). Now, from the arbitrariness of (x,y) it is easy to see that
our claim is established. Therefore, the estimate (4.91) ensures u, s is a heteroclinic
solution of (4.1). To complete the proof, the fact that V' € C*(R,R) combined with the
assumptions (V3)-(V3) yields that there are X, dy,dy > 0 such that

V()| < di|t —af, Vtela—\a+
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and

V()] < doft = Bl, VEE[B—AB+AL
Thus, by Lemma 4.7-(b),
/ dl
V(D) < y—m(lt —al)[t—al, Vte[a—Aa+)
L
and
d
VO < eu(lt =Bl Bl Ve € [8—A B+,
Consequently, V' satisfies (‘76) with ¢, and so, proceeding as in the proof of Lemma 4.4,
we see that u, g verifies

a < ugp(z,y) < B for all (z,y) € R?,

which is the desired conclusion. m

Now, let us assume that A belongs to Class C and that V satisfies (V7)-(V}).
Counsidering the set K .o, (o, ) as in (4.77), then we can argue similarly to the proof
of Theorem 4.3 to obtain that K. ¢, (o, 8) # () whenever € > 0 is small. With everything,

proceeding analogously as in the proof of Lemma 4.8 we get the following result.

Lemma 4.9 There exists ¢ > 0 such that for € € (0,¢y) and L > 0 there is 6 > 0 such
that for each pair (o, 8) of real numbers with o < B and max{|al,|5|} € (0,9) we have
for all z € R? and uc o5 € Keo, (o, 3) that

lcaslicrsey < VI
We now present the following result.

Theorem 4.6 Assume (Vi)-(V3) and that A belongs to Class C. There is ey > 0 such that
for each € € (0,€¢9) and L > 0 there exists 6 > 0 such that if max{|a|,|5|} € (0,9) then

equation (4.1) possesses a heteroclinic solution u.p from o to B in Cllo’Z(RQ), for some

v € (0,1), verifying
(a) unp is 1-periodic on y.
(b) & < uap(z,y) < B for any (z,y) € RZ.

(C) ”vua’BHLOC(RQ) S \/E
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Moreover, if V € C*(R,R) occurs then the inequalities in (b) are strict.

Proof. The proof can be done via a comparison argument like that of the proof Theorem
4.5 and we omit it here. Details are left to the reader. m

For the final exhibition of these ideas, we will see below that requiring more of V'
we can relax the conditions on A to guarantee the existence of a heteroclinic solution for
(4.1). Let’s assume that the function A belongs to Class D, « = —f, ¢ = 1 and that
V € C?*(R,R) and satisfies conditions (V3)-(V3) and (V). We want to point out that
condition (‘75) implies that the potential V satisfies (V7) with ®,. In fact, note that by
(Vs) there are p > 0 and 6 € (0, g) such that

plt = pI* < V(t), Vt € (B-0,5+0), (4.92)
from which it follows by Lemma 4.7-(c) and (4.92),
2p@.(|t = BI) S V(t), Vt € (B—0,6+0).

Consequently, the argument of Subsection 4.1.4 shows that for each L > 0 the set Kg ()
is not empty, where Kg () is given as in (4.78). We would like to remind here that
each element of K3(3) can be seen as a function on R? being periodic in the variable y.
Moreover, if ug € Kg (53), then ug is a weak solution for (£), with ¢ = 1 in C7(R?) for

some v € (0,1), odd and heteroclinic from —f to § in x satisfying
0 <wug(z,y) < B forall (z,y) € Ry xR

Now, the following result is a similar version of Lemma 4.8 and is proved in an essentially
identical fashion, which will play an analogous role to that developed in Theorem 4.5 in

the present setting.

Lemma 4.10 Given L > 0 there is 6 > 0 such that for each € (0,5) we have that
lugllormey < VI
for all z € R? and ug € K§ (5).

Finally, to conclude this subsection, we prove the following theorem using the

framework discussed above.
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Theorem 4.7 Assume V € C*(R,R), (\72)-(175), (Va), o« = —=p, e = 1 and that A belongs
to Class D. Then for each L > 0 there exists § > 0 such that if 5 € (0,9) then equation
(4.1) possesses a heteroclinic solution ug from —B to B in C)(R?), for some v € (0,1),

loc

verifying
(a) us(z,y) = —ug(—=,y) for any (z,y) € R?.
(b) ug(z,y) = ug(z,y +1) for all (z,y) € R
(¢) 0 < us(z,y) < B for x> 0.

(@) | Vusllzoees) < VI

Proof. The proof is established using Lemma 4.10 and arguing as in the proof of Theorem

4.5. Detailed verification is left to the reader. m

4.3 Final remarks

In this final section, we highlight some observations that complement the study of
the previous sections. First, we would like to point out that in the study of Section 4.1 the
conditions (¢;) and (¢3) on ¢ are enough to show the existence of heteroclinic solution
from o to § for (4.1), while assumption (¢3) together with (V;) are used to get more
information about the behavior of the heteroclinic solution, because it permits to apply
a Harnack type inequality found in Trudinger [91]. Secondly, Theorems 4.1, 4.2, 4.3 and
4.4 hold for all pair of real numbers (o, 8) with o < 8 and cover the cases ®(t) = |t for

p € (1,2). Moreover, in Theorems 4.1-4.3 we can consider a variety of potentials as the

prototypes
V(t) = (t—a)’(t - B)?
and
t
V(t) =+ [cos (%)
when o = —f3, while in Theorem 4.4 the potential V' must have a strong interaction with

the N-function ®, see for example
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Applying the same argument as in Chapter 2, we can find a heteroclinic solution
v : R? — R from « to 8 being 2-periodic in y and satisfying o < u < 3 on R? for the
quasilinear equation (4.2). Moreover, interchanging the roles of « and (3 in Section 4.1 we
obtain a variational framework to show that there exists a solution v : R*? — R for (4.2)
that is 1 or 2-periodic in the variable y, a < v < 3 on R? and heteroclinic from 3 to a in

x, that is,
v(r,y) > [ as © — —oo and v(x,y) - o as = — +oo uniformly in y € R.

Likewise, switching x and y produces solutions that are heteroclinic from « to 8 or from
[ to « in the variable y and 1 or 2-periodic in x. We can also find solutions in the same
settings for the prescribed mean curvature equation (4.1) when max{|«/|, ||} is small.

A more general consideration of the ideas presented here would be to contemplate
higher order problems. The reader is invited to see that the study in this chapter can
be applied to elliptic problems on a cylindrical domain in RY, with N > 2, of the form
Q) =R x D, where D is a bounded open set in R¥~! such that 0D € C". Specifically,
adapting Classes A, B, C and D to the case of functions A defined in 2 we can write the

following results

Theorem 4.8 Assume (¢1)-(¢2), (V1)-(Vs), € = 1 and that A belongs to Class A or B

excluding assumptions (Ay) and (As). Then the quasilinear elliptic problem

—Agu+ Alex,y)V'(u) =0 in Q

ou (£1)
a—n(x,y) =0 on 09

has a heteroclinic solution from o to 3 in C7(Q) for some y € (0,1) such that

loc

a<u(z,y) < B forall (z,y) €.

Moreover, taking into account the assumptions (¢s3) and (Vg) then the above inequalities

are strict.

Theorem 4.9 Assume (¢1)-(¢2), (Vi)-(Vs) and that A belongs to Class C excluding
assumptions (Ay) and (As). Then there is a constant ey > 0 such that for each e € (0, ¢)
problem (Py) has a heteroclinic solution from a to 3 in C;7(Q) for some v € (0,1) such
that

a<u(z,y) < B forall (z,y) €.

Moreover, assuming (¢s) and (V) we have that the above inequalities are strict.
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Theorem 4.10 Assume (¢1)-(¢2), (171)—(\73), (‘77), (Va), a = =B, € = 1 and that A
belongs to Class D excluding assumptions (Ay) and (As). Then problem (Py) possesses a
heteroclinic solution u from —B to B in C)(Q) for some v € (0,1) such that

loc
(a) u(z,y) = —u(—z,y) for any (z,y) € Q.
(b) 0 <wu(x,y) <pB forany x>0 andy € D.

Moreover, if (¢3) and (Vs) occur then the inequalities in (b) are strict.

Now let us list some results where the existence of a heteroclinic solution for a

prescribed mean curvature equation is addressed in €.

Theorem 4.11 Assume (V1)-(Vy), € = 1 and that A belongs to Class A or B excluding
assumptions (Ay) and (As). Given L > 0 there exists § > 0 such that if max{|al, ||} €
(0,6) then problem

Vu
—div | ——= | + A(ex,y)V'(u) =0 in Q
( 1+|wz) ()Y (w)

ou (72)
e — 0
an(x,y) 0 on 0O

possesses a heteroclinic solution u from « to B in C’llog’(Q) for some v € (0,1) satisfying

(a) a <u(z,y) < B for any (v,y) € Q.
() IVullz=() < VL.

Moreover, if V € C*(R,R) then the inequalilies in (b) are strict.

Theorem 4.12 Assume (V)-(Vy) and that A belongs to Class C excluding assumptions
(Ay) and (As). There is €g > 0 such that for each € € (0,€y) and L > 0 there exists § > 0
such that if max{|al,|5|} € (0,6) then problem (P,) possesses a heteroclinic solution u
from a to B in C;Y(Q) for some v € (0,1) verifying

(¢) a <ulz,y) < B for any (z,y) € QL.

(6) [Vl ooy < VL.

Moreover, if V € C*(R,R) occurs then the inequalities in (b) are strict.
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Theorem 4.13 Assume V € C*(R,R), (V3)-(Vs), (Va), a = —f, € = 1 and that A
belongs to Class D excluding assumptions (Ay) and (As). Then for each L > 0 there
exists 6 > 0 such that if B € (0,0) then problem (P,) possesses a heteroclinic solution u
from =B to B in CLY(Q) for some y € (0,1) verifying

(a) u(z,y) = —u(—z,y) for any (z,y) € Q.
(b) 0 <u(x,y) < p for x> 0.

(¢) IVullz=e < VI.



CHAPTER 5

SADDLE SOLUTIONS FOR PRESCRIBED
MEAN CURVATURE EQUATIONS IN R?

In this last chapter of this thesis, we will combine some of the arguments introduced

in the previous chapters to show that the prescribed mean curvature equation given by

—div (L> + A(x,y)V'(u) =0 in R? (5.1)

V 1+ |Vul|?

has a saddle solution whenever the distance between the roots of the double well symmetric
potential V' is small. Throughout the chapter, the oscillatory factor A(z,y) satisfies

precisely the following assumptions:

(A;) Ais a continuous function and A(z,y) > 0 for each (z,y) € R?,
(Ay) A(z,y) = A(—z,y) = A(z, —y) for all (z,y) € R?,

(A3) A(z,y) = A(z + 1,y) = A(z,y + 1) for any (z,y) € R?

(As) A(z,y) = A(y, ) for all (z,y) € R?,

while V' is a double well potential with absolute minima at ¢ = -« satisfying conditions
(V1), (Va) and (V7), which were introduced in the Introduction. An important prototype

of this scenario is the following Ginzburg-Landau type potential

V(t) = (t* — a?)%
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Another prototype is the following Sine-Gordon type potential given by

V() = a + acos (t—”> |

«

In the particular case, when A(x,y) is a positive constant, we get an infinite number of
geometrically distinct saddle-type solutions for (5.1). All these solutions are characterized
by the fact that, along different directions parallel to the end lines, they are uniformly

asymptotic to +a.

5.1 Existence of saddle solutions for quasilinear
equations

We will show in this subsection that the main results about saddle-type solutions
in Chapters 1 and 2 are extended to a larger class of N-functions than the class that was
presented there. We will start with a brief review of what has been done here in this
thesis for saddle solutions. To recapitulate, for example, in Chapter 2, conditions (¢1),
(¢2) and (¢3) guarantee the existence of a heteroclinic solution u from —a to a being

1-periodic in the variable y and odd in x for the following quasilinear elliptic equation
—Agu+ A(r,y)V'(u) =0 in R (5.2)

while condition (¢4) came into play to employ only the exponential decay estimates for

u £ a. Specifically, (¢4) was assumed to obtain the inequality

¢(|¢'(2)]) < ¢(wa((x)) forall z € R, (5.3)

which involves the real function ¢ : R — R given by

- ey

2

where wo, L and j are chosen properly and the constant a is small enough. Inequality (5.3)
allowed us to use direct calculations to get the desired exponential-type estimates. To
check the details, see Lemmas 2.11, 2.12 and 2.13. This study of the asymptotic behavior
at infinity of heteroclinic solutions plays a fundamental role in the search of saddle-type

solutions for (5.2) in the approach adopted in Chapters 1 and 2.
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Our goal now is to replace (¢4) with another condition on ¢ that includes a larger
number of examples for ¢, including the monotonically non-decreasing functions. Precisely

we assume the following assumption:

(gz~54) There exist k1, ko > 0 such that the inequality

o(IC'()]) < Kig(r2((t)) forall teR
occurs whenever a > 0 is small enough in (5.4).

The reader is invited to verify that the exponential decay estimates involving the
heteroclinic solutions in Chapters 1 and 2 still occur replacing (¢4) by (¢4). Now, we
would like to point out that we have already seen that functions ¢ satisfying (¢4) also
verify (¢4). However, the reverse is not true, as there are functions satisfying (¢,) but
not fulfill (¢,), which makes (¢,) more general than (¢4). An explicit example is given in
the next section.

Under our current assumptions on ¢, we provide below a result that generalizes

Theorem 2.4.

Theorem 5.1 Assume (¢1)-(¢3), (64), V € CHR,R), (V1 )-(Vi) and (A,)-(As). Then,
there is v € C.7(R?) for some v € (0,1) such that v is a weak solution of (5.2) that

loc

verifies the following:

(a) 0 <v(x,y) < a on the fist quadrant in R?

(b) v(z,y) = —v(—x,y) = —v(x, —y) for all (x,y) € R?,
(¢) v(z,y) = v(y,x) for any (v,y) € R?,

(d) v(z,y) - a as © — too and y — +o0,

(e) v(z,y) = —a as x — Foo and y — +o0.

The items (d) and (e) of the theorem above tells us that along directions parallel to
the axes, v is uniformly asymptotic to stationary solutions +«. Moreover, when A(z,y)
is a positive constant, we can demand more conditions on the geometry of the graph of
potential V' to obtain the existence of infinitely many geometrically distinct saddle-type
solutions of equation (5.2). Finally, motivated by Theorem 5.1, we can follow the steps

of Chapter 1 to obtain the following result.
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Figure 5.1: Geometric illustration of the saddle solution with asymptotic behavior.

Theorem 5.2 Assume (¢1)-(¢3), (d4), (Vi)-(Ve) and that A(x,y) is a positive constant.
Then, For each j > 2 there exists v; € CL) (R?) for some v € (0,1) such that v; is a weak

loc

solution of (5.2) satisfying
(a) 0<0;(p,0) < a for any 0 € [5 — 55, F) and p >0,
() (0.5 +6) = —5(p, 5 — 0) Jor all (p,0) € [0, +00) x R,
() 55(p, 0+ %) = —5(p,0) for all (p,6) € [0, +00) X R,

(d) 9(p,0) — (—a)**! as p — +oo whenever 0 € (§+k§,§+(/€+1)§) for
k=0,...,2j—1,

where 0j(p, 0) = v;(pcos(f), psin(0)).

In other words, the saddle-type solution ¥; is antisymmetric with respect to the half-
line 0 = 7, 2]—.”—peri0dic in the angle variable and has L*-norm less than or equal to a with
the asymptotic behavior at infinity described in item (d). In true, the conditions on V' in
the theorem above can be refined, that is, conditions (V5) and (V5) can be omitted. To see
this, combine many of the arguments from Chapter 2 and apply the idea of partitioning
R? into 2j, with j > 2, disjoint triangular sets when constructing saddle solutions in
Chapter 1, specifically in Theorem 1.4. Hence, we may write the following result which

improves Theorem 5.2 and the verification details are left to the reader.
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Theorem 5.3 Assume (¢1)-(¢3), (04), (Vi)-(Vi) and that A(z,y) is a positive constant.
Then, For each j > 2 there exists v; € C,.) (R?) for some v € (0,1) such that v; is a weak

loc

solution of (5.2) satisfying

(a) 0 <0;(p,0) < a forany 0 € [5 — 5=, F) and p >0,

(b) 6j</0> % + 9) = _ﬁj(p> % B 9) Jor all (/07 0) € [07 +OO) X R,

(c) 55(p, 0+ %) = —55(p,0) for all (p,6) € [0,+00) x R,

(d) v;(p,0) — (—a)* as p — +oo whenever 0 € (%+k§,%+(k+1)§) for
k=0,...2—1,

where 0j(p, ) = v;(pcos(f), psin(0)).

5.2 Saddle solution of the prescribed mean curvature
equation

Our main objective in this subsection is to prove the existence of a saddle solution to
the prescribed mean curvature equation (5.1) whenever the global minima of the potential
V are close enough. To this aim we first study an auxiliary problem of the form (5.2)
proving the existence of a saddle solution in this scenario. The idea here is similar to
those presented in Chapters 3 and 4, so the exposition will be brief. For our purposes, for

each L > 0 we will truncate the prescribed mean curvature operator as follows

1
: it tel0,L],
VI+t 0, L
er(t) =9 z,(t—L—12+y,, if te[L,L+1]
vrL, it te[l+1,+00),

where the numbers x; and y;, are expressed by

V1+L

m and Yr = (4L+3)$L

X =
As a consequence, for each L > 0 we get the following quasilinear equation
~Ag,u+ A(z,y)V'(u) =0 in R? (5.5)

where ®;, : R — [0, +00) is an N-function of the form

It

Pp(t) = ; ¢r(s)sds with ¢p(t) = L (t%).
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Due to the study carried out in the previous chapters, it is well known that for each
L > 0 the function ¢;, checks conditions (¢;)-(¢3). However, a direct check shows that ¢,
is non-increasing on (0, +00) and therefore ¢, does not satisfy (¢4). But, each ¢ satisfies

(¢4), as the following lemma says.

Lemma 5.1 For each L > 0, the function ¢y, satisfies (@).

Proof. Indeed, according to Lemma 4.7-(b) we have that
yr < ¢p(t) <1 forall t>0.

In particular,

yr < 6u(ICOD), é0(C(1) <1 forall t€R,

and therefore,

(¢ (1)]) < yiLgf)L(g(t)) for all ¢ € R.

Finally, since there is no restriction for the constant @ > 0 in (5.4), the lemma follows. =

Remark 5.1 By the argument of the previous lemma, we can conclude that any function

¢ : [0,+00) — [0, +00) satisfying

1 < ot) <ey forall t>0

for some constants c1,co > 0 satisfies condition (¢4).

To find saddle solutions for (5.1), let’s analyze the existence of these solutions for
the auxiliary problem (5.5). To begin with, we will assume that the potential V' satisfies
(V1)-(V3) and (V7). Consequently, V' also satisfies the conditions (V3) with & and (V})
with ¢p. Indeed, by (V7) — (i) there are p1, ps, dy, ds,ds > 0 such that

V(1) < di|t — | forall t € [a— p1,a+ pi]

and

dolt — o> < V(t) < ds|t — al® forall ¢t € (a— pa,a+ ps),

from which it follows by Lemma 4.7 that

d
V'(t)] §y—i¢L(\t—a|)|t—a| for all t € [a — py, o+ pi]
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and

2d
2d,® ([t —a]) < V() < =, (|t — ) forall t € (a—ps o+ ps)
YL

Therefore, we may use Theorem 5.1 to obtain for each L > 0 a saddle solution

Vaz, : R? = R to equation (5.5), that is, a weak solution v, € Civ7 (R?) of (5.5) such that

loc

it has the same sign as zy, odd in both the variables z and y, symmetric with respect to
the diagonals y = +2 and presenting the asymptotic behavior described in items (d) and
(e) of Theorem 5.1. We are now going to use this information together with condition

(V7) — (4i) to prove an estimate involving the functions v, .

Lemma 5.2 Given L > 0 there is 6 > 0 such that for each a € (0,0) we have that
[va,Lllcr (B (2)) < VL (5.6)

for any open ball By(z) in R? of radius 1.

Proof. To prove this lemma, we will argue by contradiction. So, suppose that there are

sequences (z,) C R? and (a,,) C (0, 400) such that a,, — 0 as n — +o00 and
Ve, Lll 1By (20)) 2 VL forall neN. (5.7)

For our purposes, we will study the regularity of some specific solutions to the following
elliptic equation

~Ag,u+ B,(r,y) =0 in R? (5.8)

where the scalar measurable function B, : R? — R is given by
Bu(z,y) = A(z + 201,y + 202)V' (Va,, £(2,y))
with 2, = (2,1, 2n2), which by (V7) — (ii) B, satisfies the following estimate
|Bn(2,y)| < M||A||po@e) V(z,y) € R® and Vn € N,

for some positive number M > 0 independent of n. A weak solution to (5.8) of particular

interest is
Un(ilf,y) = /U()zn,L(aj + Zn,17 ) + Zn,2> fOI‘ (.CU, y) € ]RQ'
Now, applying elliptic regularity estimates on u,, developed by Lieberman in |67, Theorem

1.7] one has u,, € CL°(R?), for some o € (0,1), and

loc

ltnll 20 g2y < B forall n €N,
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for some positive constant R independent of n. Consequently, from the above estimate, via
Arzela-Ascoli’s theorem, we conclude that there exists u € C*(B;(0)) and a subsequence

of (u,), still denoted by (u,), such that
u, —u in C'(B(0)). (5.9)
Since ||va,,L | oo r2) goes to 0 as oy, — 0,
l|tn|| oom2y = 0 as n — 400,

and thus from the convergence (5.9) we naturally get that w = 0 on B;(0). Therefore,

there is ng € N such that
|tn | (B, (0)) < V'L for all n > ny,
which results from the definition of u,, that
Ve, llc1(B1 () < VL for all n > n,

which contradicts (5.7). The proof of the lemma is complete. ®
The estimate (5.6) will be used in a crucial way in the theorem bellow for studying
the existence of saddle solutions for prescribed mean curvature equation (5.1) whenever

the roots £a of V' are close to enough.

Theorem 5.4 Assume V € C*(R,R), (Vi)-(Va), (Vz), and (A;)-(Ay). Given L > 0
there exists 6 > 0 such that if a € (0,0) then the prescribed mean curvature equation (5.1)

possesses a weak solution v, 1 in C'ZIO’Z(RQ), for some v € (0,1), satisfying the following

properties:
(a) 0 < vy p(z,y) < a on the fist quadrant in R?,
(b) var(x,y) = —va,L(~2,y) = —va,L(x, —y) for all (x,y) € R?,
(¢) Var(%,y) = Var(y, ) for any (z,y) € R?,
(d) var(z,y) = o as x — Foo and y — £o0,
(e) var(z,y) = —a as v — Foo and y — too,

(f) Vol < VL.
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Proof. We claim that for each L > 0 there exists § > 0 such that if « € (0, ) one has
V0, 1| oo 2y < VL. (5.10)

In fact, given any (z,y) € R? we can choose a point z € R? such that (z,y) € B;(z). By
virtue of Lemma 5.2, there exists § > 0, which depends on L, such that for each « € (0, )
one gets

|Va,zllcr By (2)) < VL.

In particular,

IV VoLl oo (81 () < VL

Therefore, the claim (5.10) is valid from the arbitrariness of (z,y) € R? and thus, the
estimate (5.10) guarantees that v, 1, is a saddle solution to the equation (5.1) satisfying
items (a) to (f), thanks to the study developed in the auxiliary problem (5.5). m

In the case where A(z,y) is a positive constant, we can also obtain the existence of
infinitely many saddle-type solutions for the prescribed mean curvature equation (5.1),
where such solutions may be named as "pizza solutions" due to the geometry of their
graphs. Following the strategy developed to prove Theorem 5.4, we can show the following

multiplicity result of saddle-type solutions to (5.1).

Theorem 5.5 Assume V € C*R,R), (V1)-(Vz), (Vz), and that A(z,y) is a positive
constant. Then, given L > 0 there is § > 0 such that if a € (0,0) then for each j > 2 the

. . . . 1
prescribed mean curvature equation (5.1) possesses a weak solution v, 1, ; in C);](R?), for

some v € (0,1), satisfying
(a) 0 <0a,;(p,0) <aforanyb €[5 —7,35) and p>0,
() s s(p 5 +0) = (0, 5 — 0) for all (p,0) € [0, +00) X R,
() Gns(0.0+ T) = —Tars(0,0) for all (p,6) € [0, +00) X R,

(d) Tar;(p,0) = (—a)* as p — +oo whenever 6 € (%—1— §,§+(k+1)§> for
k=0,...,2j—1

’

(e) |VVa,rll ey < VL,

where Vg, 1, (P, 0) = Va,1,;(pcos(d), psin(§)).
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5.3 Final remarks

As far as we know, Theorems 5.4 and 5.5 are the first results in the literature
on saddle-type solutions for some stationary Allen-Cahn-type equations involving the
prescribed mean curvature operator in the whole plane. Transition-type solutions to
equations involving the prescribed mean curvature operator is an extremely fascinating
field of mathematics and there are still many open questions one can work on. For
example, a possible extension to Theorems 5.4 and 5.5 would be to study the existence
of a saddle solution for (5.1) without requiring that the distance between the absolute
minima +a of V' be small. We believe that a natural approach to solve such a problem
would be to look for minima of an action functional on a convex subset of the space of
functions of bounded variation BVj,.(R).

We would like to end this last section by stating that, although we improved on
the results of Chapters 1 and 2 in Section 5.1 on saddle solutions to quasilinear elliptic
equations of the form

—Agu+ A(xr,y)V'(u) =0 in R? (5.11)

by imposing condition (¢,) instead of (¢4) on ¢, the case ¢(t) = t*~2 with p € (1,2) still
remains an open problem, since ¢ does not satisfy (gz~54) because in this case we have by

direct calculation that
J
— 400 as |t —

for any positive constant xo. Therefore, the problem of obtaining exponential decay
type estimates to find saddle solutions in the case where (5.11) involves the p-Laplacian

operator with 1 < p < 2 is potentially difficult and interesting.



APPENDIX A

ORLICZ AND ORLICZ-SOBOLEV SPACES

In this appendix we will highlight some basic properties about the Orlicz and Orlicz-
Sobolev spaces that will be useful throughout the text. We would like to emphasize here
that we will give the minimum on the topic to better contextualize the reader about some
points of the text, because it is not our intention to make an exposition in all the details.
For a quite comprehensive account of this topic, the interested reader might start by

referring to [1,64,85] and the bibliography therein.

A.1 A brief overview on Orlicz spaces

In our brief review of Orlicz and Orlicz-Sobolev spaces, we will begin by presenting

the following definition:

Definition A.1 A function ® : R — [0,4+00) is said to be an N-function if it satisfies

the following properties
(a) ® is continuous, convex and even,

(b) ®(t) =0 if and only if t =0,

(c) lim@:() and lim %:%—oo

t—0 t t—+oo T
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Moreover, we say that an N-function ® verifies the Ay-condition (O € Ay for short), if

there are constants K > 0 and ty > 0 such that
O(2t) < KO(t) for all t > ty. (Asg)

Before proceeding with this theory, we would like to list below some examples of

N-functions that satisfy (Ay) with ¢ = 0:

tp
RO O T L P
p

e Jele
(2) <I>2(t):?+7for1<p<q<+oo.

(3) @3(t) = (14 t*)Y — 1 with v > 1.

(4) O4(t) = fg s177(sinh ™! 5)ds with 0 < v < 1 and 3 > 0.

(5) ©5(t) = [t|PIn(1 + |¢|), where p € (1, +00).

(6) ®o(t) = (V1+1t2—1)7 for v > 1.
(7) @7(t) = (1 + [¢]) In(1 + [£]) — [¢].
In addition, we also list below two N-functions that do not satisfy the As-condition:
t2
e —1
(8) ®s(t) = ——

(9) Py(t) = el — |t| — 1.

It is reasonable that, through the examples above, the reader may hastily conclude
that an N-function that satisfies (A) behaves in a powerlike way at infinity and at the
origin, in other words, ® does not increase more rapidly than exponential functions. In
true, if ® satisfies (Ay) then there are a,b > 0 such that ®(¢) < alt|® for all ¢ > to. This
fact can be found in [64].

To continue this brief review of Orlicz spaces, from now on, unless otherwise
indicated, we will always assume that O is an open set of RY, with N > 1, and that ® is

an N-function. In these configurations, we will present the definition of Orlicz Spaces.
Definition A.2 The following class functions
L*(0) = {u c L, (0) ] / o (|—§\L|> dx < 400 for some A > O}
o

1s called Orlicz space associated to ® over O. When there is no confusion of notation,

it 1s simply called Orlicz space.
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The vector space L?(0) was introduced and explored by W. Orlicz |75] in the year
1932, where he also introduced the additional condition on ® the so-called As-condition
in (Az). In 1936, Orlicz investigated L®(O) in the absence of the Ay-condition in [76].

We can introduce several norms on L®, but one of special interest is the Minkowski

lulle o) = inf {A >0 / P ('LA”) dz < 1} . ueL*(0),
o

which was introduced by W. A. J. Luxemburg in his thesis [68] in 1955 and is therefore

functional

called Luxemburg norm associated to ® over O. The reader can verify that L*(O)
endowed with the Luxemburg norm associated to ® over O carries the structure of a
Banach space.

The spaces L® have very rich topological structure and are a very elegant
generalization of ordinary Lebesgue’s spaces.

tp
Example A.1 If ®(t) = |— with p € (1,400), then
p

L*(0) = 1"(0) and |lullps) =p *ullLo),
where || - || Lr(o) denotes the usual norm of LP(O).

The spaces L*(0O) are more general than LP(Q) spaces and may have peculiar
properties that do not occur in Lebesgue’s spaces. However, in some cases there are

relationships between them, such as continuous embedding
L*(0) — LY(0), (A1)

whenever Lebesgue measure on RY of O is finite (in short, |O| < +00). In other words,
this embedding is equivalent to the simple containment L*(Q) C L*(O) in which some
topological properties are preserved such as notions of convergences.

Normally, the investigation of Orlicz spaces is divided into two classes: in the
presence of ® € A, and in the absence of ® € A,. Without the As-condition, the
study of L?(O) becomes more delicate and Orlicz was the first to investigate this case
in his famous work [76]. We would like to emphasize that here we will limit ourselves to
addressing only the case where the Ay-condition is assumed, but for the reader interested
in the absence of this assumption we recommend starting with [1, 76]. Let us now see

some properties about Orlicz spaces when ® € A is assumed, for example,

1%0) = {ue 14(0): [ allulir < oo},
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u, = u in L*(0) & /®(|un—u|)da:—>0
@

/ o (¢> do =1,
o HUHL<I>(0)

while in the absence of ® € A, these facts are generally not valid. This slightly shows

and

that L*(O) with the Ay-condition has its topological structure modified.

We will now present a very relevant concept in the theory of Orlicz spaces.

Definition A.3 Given an N-function ®, the function defined by

O(s) = I?;%X{St — o)} for s>0
15 called complementary function of &.

It is convenient to extend the definition domain of the function ® for R by putting
the even condition. It turns out that ® is also an N-function and that the functions ®
and @ are complementary each other. Now, to illustrate this phenomenon in particular

cases, a classic example follows below.

tIP
Example A.2 Ifp € (1,400) and ®(t) = u, then
p

o _ [t

1 1
d(t) where — + — = 1.

q’ poq
In this case, q is known as the conjugate exponent of p.

An important property that relates ® and ® is a Young type inequality which states
that
st < B(t) + d(s) Vs, t>0.

It can be used to prove the following Hélder type inequality
/ luvldz < 2|[ullpe o) ||v]l o) forall ue L*(0) and v e Lé((’)).
o

We will see in the next result that the As-condition applies an important rule in the

development of Orlicz spaces.
Lemma A.1 The space L*(O) is reflezive if, and only if, &, ® € A,.

Proof. See for instance [85, Ch. IV, Theorem 10|. =
The structure of Orlicz spaces also allows us to naturally generalize the ideas of

Sobolev spaces W1P(Q), as we will see in the next lines.
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Definition A.4 Let be ® an N-function. The vector space

ou

0:1:1'

Wh®(0) = {ueLq’(O)] =u,, € L*(0), i = 1,...,N}

1s called Orlicz-Sobolev space associated with ® over O or simply Orlicz-Sobolev

space whenever there is no confusion of notation.

The Orlicz-Sobolev space W1*(0) equipped with the norm
[ullwreo) = IVullLe©) + llullLe@), w € W (0),

where Vu = (uy,, ..., Uz, ), is a Banach space. Moreover, under the Ay-condition, W% (0O)

is a reflexive space.

A.2 Auxiliary results

In this section, we present and develop some preliminary results that will be
frequently applied throughout this thesis. To begin with, the reader can verify by means
of direct calculations that the N-functions cited at the beginning of this appendix have
the form y

O(t) = (s)sds, teR. (A.2)

0

To better understand this class of N-functions, we list in the next lines some results about

N-functions of type (A.2) that verify the hypotheses (¢1) and (¢2).
Lemma A.2 Let ® be an N-function of the form (A.2) satisfying (¢1)-(¢p2). Setting
&(t) = min{t', t"} and & () = max{t',t™} for t >0,

then ® satisfies
o(t)®(s) < B(st) < & (1)P(s) Vs, t>0
and

& (lullzoo) < /O (u)dr < & (Julloe) Vue LE(O).

Proof. We will first show that condition (¢2) produces

I < <m forall t>0. (A.3)
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Indeed, by (¢2) we can write
16() < (S(H)1) + 6(t) < mo(t) for all >0,
from which it follows that
()t < (p(t)t?)" < mo(t)t for all t > 0.

Consequently, integrating the last inequality we obtain the estimate (A.3). Finally, from
(A.3) the proof becomes similar to that given in [49, Lemma 2.1]. The details are left to

the reader. m

Lemma A.3 Let ® be an N-function of the form (A.2) satisfying (¢1)-(¢2). Then, @
and © satisfy the Ay-condition.

Proof. See Lemma 2.7 in [419] for the proof. m

Lemma A.4 If® is an N-function of the form (A.2) satisfying (¢1)-(p2), then the spaces
L*(O) and WH*(O) are reflexive.

Proof. The proof follows directly from Lemmas A.1, A.2 and A.3. =

Next, we will discuss some continuous immersions.

Lemma A.5 Let ® be an N-function of the form (A.2) satisfying (¢1)-(¢2). If O is a

bounded domain in RY, then
(a) L*(O) — LYO).
(b) WhH*(0) — WhH(0).
(c) If I is an open interval in R, then WH®(I) — L>(I).

Proof. Considering w € L?(O) with w # 0, we may write

l l l
t/_g;_wz/ ‘_ﬁ;_m+/ I
o | llw]lreo {w/lull e o<1} HIwlze©) {w/lulleo>1} W2 o)
which produces
l w l
/ dr < ]O\Jr/ ‘— dz. (A.4)
o ||w||L4’(O) {w/||w||Lq,<O)>1} ||w||L‘I>(0)



A.2. Auxiliary results 228

Now, thanks to Lemma A.2, we deduce

e ﬁ/@@ (IIwIIMT(O)) dr < ﬁ, (A.5)

from which it follows by (A.4) and (A.5) that

IN

J [
{w/llwll Lo o) >1} ||w||L<b(0)

1
lwllio) < Aollwlle), where Ag = |O]+ ——

o(1)’
showing (a). Finally, it is easy to see that item (b) follows from (a) and (c) follows from
(b) via the embedding W!(I) — L>(I) (see for instance |26, Corollary 9.14.]). m
To finish this section, we will address some elementary inequalities that aim to fulfill

the objective of this thesis.

Lemma A.6 Let ® be an N-function of the form (A.2) satisfying (¢1)-(¢2). Then,
d(p(t)t) < B(2t) for all t > 0.

Proof. See for instance [49, Lemma A.2|. m

Lemma A.7 Let ® be an N-function of the form (A.2) satisfying (¢4). Then, if a,b € R

we have that
([al) + @([p]) < ©(|(a,b)]), where |(a,b)] = Va*+ b2

Proof. To begin with, we define the function ¢ : [0, +00) + R by ¢(t) = ®(1/t). Thereby,
¢ € C*Y(]0,+0),R) and
1
£ = 300V, Vi 0

Now, fixing s > 0 and considering the application f,(t) : [0,400) — R given by
fs(t) = ot +s) — () — o(s),
it is clear that f; € C*(]0, +00),R) and
, 1 1
fo(t) = §¢(Vt +s) = §¢(\/%)-

Condition (¢4) easily implies that fI(t) > 0 for any ¢t > 0. Consequently, f, is
non-decreasing in [0,+00). As f5(0) = 0, we must have fs(¢) > 0 for all ¢ > 0, that
is,

d(Vt+s) — ®(Vit) — d(Vs5) >0, Vs, t>0.
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Finally, given a,b € R and taking s = a? and t = b? we derive
(V0?4 a2) > B(VB2) + d(Va?),

as asserted. m

Lemma A.8 Let ® be an N-function of the type (A.3) satisfying (¢1)-(¢2). Then the

following inequalities hold
(a) ®(Ja+b]) < 2™ (D(|a]) + (|0])) for all a,b € R.

(b) o(|z))z - (w — 2) < ®(|w|) — ®(|2]) for all w,z € RN with 2 # 0 where “” denotes

the usual inner product in RY.
(¢c) (o(|s])s — o(|r])r) (s =) > 0 for all s,r € R with s # r.

Proof. The proof proceeds through a strong exploration of the convexity of ® and the

details are left to the reader. m

A.3 Models for ¢

In this last section we will highlight some models for ® in which conditions (¢1)-(¢4)

are all verified. We will start with the classic model
o(t) = -, (A.6)
which is related to the celebrated p-Laplacian operator.

Proposition A.1 The N-function given in (A.6) satisfies conditions (¢1)-(¢3) for all
p € (1,400). Moreover, (¢4) is satisfied when p > 2.

Proof. First, notice that in this case ¢(t) = t*~2. Clearly, ¢ satisfies (¢;). Furthermore,

by a direct computation we see that

=p—1 forall t>0,

from which follows (¢2) with [ = m = p. Finally, (¢3) is satisfied with s = p and
c1 = ¢y = 1, since

p(t)t =t*~! forall t >0,
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and the result follows. m
The next model for ® that we will study is the following
LA
O(t) = — + —, AT
(t) i (A7)

which is directly associated with the famous (p, ¢)-Laplacian operator.

Proposition A.2 The N-function given in (A.7) satisfies (¢1)-(¢3) for all p,q € (1,+00)
with ¢ > p. Moreover, (¢4) is satisfied when p > 2.

Proof. Note first that ¢(t) = tP72 4+ 1972 for t > 0. Immediately (¢;) is satisfied. Now,
by a direct calculation we have

(p(t)t)  (p—1)tP 24 (g — 1)o7 2

o0 = a2 for all £ >0,

from which it follows that

<qg—1 forall t>0.

Therefore, ¢ satisfies (¢3) by defining [ = p and m = ¢q. To show that ¢ verifies condition
(¢3) it suffices to note that

th < p(t)t <2t for all t € 0,1],

and choose n =1, s = ¢, ¢; = 1 and ¢y = 2. It is clear that when p € [2, +00) the function
¢ is non-decreasing on (0, +00), and the proof is complete. m

We are going to consider the following N-function
d(t) = (t*+1)7 =1 for > 1. (A.8)
Proposition A.3 The N-function given in (A.8) satisfies (¢1)-(¢4) for all v > 1.

Proof. We observe that ¢(t) = 2v(t? + 1)”~'. Obviously, ¢ satisfies (¢1). Moreover, an

easy computation shows that

(e(t)t)’
¢(t)

and so (¢2) occurs for [ = 2 and m = 2v. Now, to show that ¢ satisfies (¢3) choose n > 0

1< <2y—1 forany t >0,

and observe that there exists C;, > 0 such that

1< +1)7t<C, Vtelon].
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Consequently,
29t < (1)t < 29Cyt, Vi € [0,n),
and therefore take s = 2, ¢; = 2y and ¢, = 2¢C,. Finally, since ¢/(t) > 0 for every ¢ > 0

it follows that (¢4) is satisfied, and the proof is complete. =

Let us also consider the logarithmic model described below
O(t) = [t/PIn(1+|t|) for pe (1,+00). (A.9)

Proposition A.4 The N-function ® given in (A.9) satisfies (¢p1)-(¢p3) for all
p € (1,400). Condition (¢4) is checked by © whenever p > 2.

Proof. The N-function ® checks (¢1) because
p—1

for ¢t > 0.
1+t

o(t) = ptP 2 In(1 +t) +

Moreover, it is verified by direct calculations that

G0 _

p—1< <p, Vt>O0,

— o)

from which condition (¢9) follows. Detailed verification is left to the reader. On the other

hand, to show that ¢ satisfies assumption (¢3) we write

In(1+1¢) 1
Ot =1tP
(1) (p ; +1+t>,
and since
In(1 In(1 1
M—>13Lst—>03md0<n(;_t),l_i_t§1f01"allt>0

we conclude that for & > 0 there exists ¢s > 0 such that

In(1+1¢) 1
< <p+1, Vte(0.0).
G <p—p i <Pt € (0,0)

Therefore,

cst? < p(t)t < (p+ )P, Vt € (0,0).

Finally, it is easy to see that for p > 2 we have ¢/(t) > 0 for all ¢ > 0, which ends the
proof. m

Finally, let us consider the following model
t
O(t) = / s'77(sinh ™! 5)7ds, (A.10)
0

where 0 <y < 1and 3 > 0.
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Proposition A.5 The N-function ® given in (A.10) satisfies (¢1)-(p3) for all v € [0,1)
and € (0,400). Moreover, if v =0 then ® satisfies (¢4) for each 5 > 0.

Proof. Let us first note that

so1—1 B
qs(t):w for t > 0.

A strong computation guarantees that ¢ verifies (¢1) and (¢y) with

(6(0)t)’
=00

The details are left to the reader. To show that ¢ satisfies (¢3) we first observe that

<1l—~v+p, Vt>D0.

sinh™'(£) = In (t Ve 1) . (A.11)
Now, since t + V12 +1 < 2t + 1 < e* for t € (0,+00), one has
In (t VT 1) <2t forall t> 0. (A.12)
Considering the function
%
[
t+Vtr+1

a direct calculation shows that f(0) = 1 and f'(¢) < 0 for all ¢t € (0,1), and hence, f is

decreasing on (0,1). Consequently,
e <t+VE24+1, Vte(0,1),

and so,

<In (t +VET 1) . Ve (0,1). (A.13)

DN |+

Therefore, combining estimates (A.11), (A.12) and (A.13), one gets
27017 < (sinh'(£))” < 2°¢°, Vit e (0,1),

that is,
2P < (1)t < 2P it € (0, 1).

Finally, when v = 0 it is easy to see that ¢'(¢) > 0 for all ¢ € (0,+00), and thus (¢4) is
checked. This concludes the proof. m



APPENDIX B

A NEW CLASS OF DOUBLE-WELL
POTENTIALS

A class of functions that has been extensively explored in many fields of physics is
the class of double-well potentials. Some models of potentials well-known in the literature

are the Ginzburg-Landau potential given by
Lo 2
V(t) = (7 = 1),
4
and the Sine-Gordon potential that has the following configuration
V(t) =1+ cos(tm).

In this last appendix, let us consider a new class of double-well potentials and explore

some of their properties.

B.1 Symmetric double-well potentials

Let’s assume that ® is an N-function satisfying conditions (¢;) and (¢2). Then, for
each a > 0 we define the ®-double-well potential by

V(t) = o(|t2 — a?)). (B.1)

We therefore have the following result.
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Proposition B.1 The potential given in (B.1) satisfies (V1)-(V).

Proof. Let V be the potential considered in (B.1). From the properties of ® it easily
follows that V' satisfies (V;). Condition (V5) is trivially satisfied. To show that V' also
verifies (V3), let us first note that for § € (0, «) one has

alt —a| <2 —a? < 3alt —al, Vte[0,a+d]. (B.2)
So, since ® is increasing on (0, +00),
Plalt —al) <V (t) < ®Balt —af), Vte[0,a+4].
Thanks to Lemma A.2, one gets
o(a)®(|t —al) < V(1) < &Ba)®(|t —af), Vte[0,a+ 4]
On the other hand, we note that
V(1) = =2tp(|t* — a?])(a® — 7).

Consequently, combining the fact that ¢(¢)t is increasing on (0, +00) with inequality (B.2),

we get
—6atd (3ot — af) (o — t) < V() < —2até(alt — af)(a — t) for all t € [0, 0]
and
—2ate (alt — al) (o — ) < V'(t) < —6atd(3alt — af)(a — t) for all ¢ € [o, o + J].

The last two inequalities guarantee that the potential V' fulfills (V). To see that V' verifies
(V5) note that
V() = 4t f'(a® — t*) — 2f(a® — t*) for t € (0,q)

where f(t) = ¢(t)t. As ® satisfies (¢o), one has f/'(a?® —t?) > (I — 1)¢(a® — t?), and so
V() =4 (0 — %) — 2f(a® — 1) > 2¢(a® — 1*) (It* — o?).

Thus, for each t € (a/V/1, ) one gets V" (t) > 0, and hence, V" is increasing on (a/v/1, ).

Finally, as d is even, we obtain that

¢ (V'(t) = @ (2te(|t* - o?|)(a® — 7))
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and so,

O (V'(t)) < @ (2a0(|t* — ®|)[t* — a?]), VYt € [0,al.

Now, by Lemma A.3 we have that ® satisfy the As-condition, and hence, there is ¢; > 0
such that
O (V'(t) < a1 (¢(|t* — o®))[t* — a?|), Vt € [0,a].

Thereby, from Lemma A.6,
O (V'(t) < ar® ([* —a?), Vte0,al
Using again the fact that ® € A, we can find ¢, > 0 satisfying

(V1) <ed(t—al), Vteloal

which guarantees that V' satisfies (V5), and the proposition follows. =

B.2 Nonsymmetric double-well potentials

To finish this appendix, let’s highlight an important class of nonsymmetric double-

well potentials that is given by

V(t) = (|t — )t = B)I), (B.3)

where 5 # « and @ is an N-function satisfying (¢;) and (¢3). The same argument from

the proof of Proposition B.1 works to show the following result.

Proposition B.2 The potential given in (B.3) satisfies conditions (V1)-(V3) and (Vs).
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