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Resumo
Sistemas de recomendação (RSs) tornaram-se comuns no dia a dia de boa parte da pop-

ulação, auxiliando usuários na descoberta de itens relevantes em diversos domínios. No

entanto, a crescente complexidade dos RSs levanta preocupações sobre sua transparência e

interpretabilidade, especialmente em aplicações de alto impacto. Esta dissertação investiga o

potencial dos Grandes Modelos de Linguagem (LLMs) para gerar explicações automatizadas

e centradas no ser humano para RSs e avalia sua fidelidade em refletir o raciocínio interno

dos modelos. Avaliamos recomendações personalizadas de filmes e explicações geradas

pelo GPT-3.5 Turbo por meio de um estudo com usuários, medindo eficácia, personaliza-

ção e poder de persuasão. Um estudo complementar, abrangendo recomendações de filmes,

músicas e livros geradas por quatro LLMs (a saber, GPT-4o, Llama3, Gemma2 e Mixtral

8x7B), avaliou a fidelidade dessas explicações usando uma avaliação axiomática baseada

no Acordo de Importância de Características. Nossos resultados revelaram que, embora as

recomendações geradas pelos LLMs tenham melhorado a satisfação do usuário em com-

paração com seleções aleatórias, as explicações frequentemente não atendiam aos critérios

de fidelidade. Surpreendentemente, explicações baseadas em preferências do usuário não

foram consistentemente percebidas como mais personalizadas, eficazes ou persuasivas do

que explicações genéricas. As principais contribuições incluíram uma avaliação centrada

no usuário da qualidade das explicações, um método axiomático para avaliar a fidelidade,

percepções sobre preferências dos usuários e tipos de explicações, além de uma análise da

interação entre os objetivos das explicações. Desafios notáveis identificados incluem as ca-

pacidades limitadas de personalização dos LLMs, a variabilidade nos resultados devido ao

comportamento não determinístico e a natureza inerentemente de caixa-preta desses mode-

los. Este trabalho destaca as promessas e limitações dos LLMs em RSs Explicáveis e fornece

uma base para futuras pesquisas que busquem melhorar o alinhamento entre a percepção do

usuário e a fidelidade das explicações.
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Abstract
Recommender systems (RSs) have become ubiquitous, assisting users in discovering rele-

vant items across various domains. However, the increasing complexity of RSs raises con-

cerns about their transparency and interpretability, particularly in high-stakes applications.

This thesis investigates the potential of Large Language Models (LLMs) to generate au-

tomated, human-centered explanations for RSs and assesses their faithfulness in reflecting

the models’ internal reasoning. We evaluated personalized movie recommendations and

explanations generated by GPT-3.5 Turbo through a user study, measuring effectiveness,

personalization, and persuasiveness. A follow-up study across movie, song, and book rec-

ommendations generated by four LLMs (namely, GPT-4o, Llama3, Gemma2, and Mixtral

8x7B) assessed the faithfulness of these explanations using an axiomatic evaluation based

on the Feature Importance Agreement. Our findings revealed that while LLM-generated rec-

ommendations improved user satisfaction compared to random selections, the explanations

often failed to meet faithfulness criteria. Surprisingly, explanations based on user preferences

were not consistently perceived as more personalized, effective, or persuasive than generic

explanations. Key contributions included a user-centric evaluation of explanation quality,

an axiomatic method for assessing faithfulness, insights into user preferences and explana-

tion types, and an analysis of the interplay between explanation goals. Notable challenges

identified include LLMs’ limited personalization capabilities, variability in outputs due to

non-deterministic behavior, and the inherent black-box nature of these models. This work

highlights the promise and limitations of LLMs in Explainable RSs and provides a founda-

tion for future research to enhance the alignment between user perception and explanation

faithfulness.

ii



Agradecimentos
A conclusão desta dissertação foi um esforço coletivo e não teria sido possível sem o apoio e

a colaboração de muitas pessoas. Primeiramente, agradeço aos meus pais, Zélia e Vanderlei,

pelo constante apoio em todas as etapas da minha vida. Sua dedicação e confiança foram

essenciais para que eu pudesse alcançar mais este objetivo.

Agradeço ao meu orientador, Prof. Leandro Marinho, pela orientação, incentivo e paciên-

cia durante todo o desenvolvimento desta dissertação. Estendo também minha gratidão aos

professores Alain Said (University of Gothenburg) e Martijn Willemsen (TU Eindhoven &

JADS) pela colaboração no artigo Leveraging ChatGPT for Automated Human-centered Ex-

planations in Recommender Systems, fundamental para o desenvolvimento deste trabalho, e

ao Prof. Andrey Brito pela ajuda no custeio da viagem para a apresentação do respectivo

artigo.

Agradeço ainda a meu namorado, Cézar, pelo carinho, compreensão e apoio ao longo

desta caminhada. Sua presença e incentivo constante foram fundamentais nos momentos

desafiadores e tornaram essa jornada muito mais leve e significativa. Sou imensamente grato

por ter você ao meu lado. E a meus amigos, agradeço pelas palavras de incentivo e pelos

momentos de descontração que me ajudaram a manter o equilíbrio ao longo desta jornada.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001 e da Bolsa

09/2021 da Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ).

iii



Contents

Glossary vi

List of Figures vii

List of Tables viii

1 Introduction 1

2 Theoretical Background 6

2.1 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Large Language Models as Recommender Systems . . . . . . . . . . . . . 7

2.3 Explainable Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Mixed Effect Linear Models in Within-User Experiments . . . . . . . . . . 13

3 Related Work 16

3.1 Explanations and Users’ Perceptions . . . . . . . . . . . . . . . . . . . . . 16

3.2 Faithfulness for LLM-generated explanations . . . . . . . . . . . . . . . . 19

4 Leveraging ChatGPT for Automated Human-centered Explanations in Recom-

mender Systems 21

4.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Collecting user preferences . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Generating recommendations and explanations . . . . . . . . . . . 23

4.1.3 Collecting user perceptions . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



CONTENTS v

4.2.1 Recommendation Satisfaction . . . . . . . . . . . . . . . . . . . . 26

4.2.2 User-based vs. Generic Explanations . . . . . . . . . . . . . . . . 26

4.2.3 Movie Familiarity Analysis . . . . . . . . . . . . . . . . . . . . . 27

4.2.4 Path Modeling of Explanation Types and Goals . . . . . . . . . . . 29

4.2.5 Disrecommendation Analysis . . . . . . . . . . . . . . . . . . . . 30

4.2.6 The Anatomy of Explanations and its Influence on the User’s Per-

ception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.7 Popularity Bias in GPT-generated Recommendations . . . . . . . . 41

4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Faithfulness in Black-Box LLM-based Recommender Systems’ Explanations 44

5.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 The datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.3 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.4 Recommendation tasks . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Recall & Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 Weighted Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusions 60

References 63

A Prompts 70

A.1 Prompts for Explanations’ Arguments Classification . . . . . . . . . . . . . 70

A.2 Prompts for Faithfulness Experiment . . . . . . . . . . . . . . . . . . . . . 75

A.3 Prompts for Ranking Items based on the Explanation . . . . . . . . . . . . 81



Glossary

CoT chain-of-though reasoning

ICL In-Context Learning

LLM Largue Language Model

LLM-Rec LLM-based Recommender System

NLP Natural Language Processing

RQ research question

RS Recommender System

SHAP SHapley Additive exPlanations

XAI Explainable Artificial Intelligence

vi



List of Figures

1.1 Example of interactions with ChatGPT for movie recommendation. . . . . 3

4.1 Overview of user preferences elicitation. . . . . . . . . . . . . . . . . . . . 22

4.2 Prompts used for generating recommendations and explanation from the

OpenAI GPT3.5-Turbo model . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Overview of the evaluation step. . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Questionnaire results for the (four) recommendations based on estimated

means from the random intercept multilevel regressions. . . . . . . . . . . 27

4.5 Results regarding how movie familiarity affects explanations’ effectiveness,

personalization, and persuasiveness. . . . . . . . . . . . . . . . . . . . . . 28

4.6 Path model showing how persuasiveness and personalization of the expla-

nations are affected by the conditions and how they subsequently predict

satisfaction and effectiveness. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Questionnaire results for the two disrecommendations, based on estimated

means from the random intercept multilevel regressions. . . . . . . . . . . 31

4.8 Distribution of the types of arguments grouped by the type of explanation . 36

4.9 User-based vs. Generic Explanations for three recommendations obtained

from real users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Frequency of the top-10 trigrams of types of arguments found in the expla-

nations grouped by the type of explanation. . . . . . . . . . . . . . . . . . 39

4.11 Comparison of Markov Chains for User-Specific and Generic Explanations. 40

5.1 Distribution of the Weighted Coverage at Top-3 for the four models and three

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



List of Tables

4.1 Types of arguments present in the explanations . . . . . . . . . . . . . . . 32

5.1 Recommendations tasks, their input, and prompts. . . . . . . . . . . . . . . 51

5.2 Average Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Example of Mixtral 8x7B’s Movie Recommendation . . . . . . . . . . . . 55

5.4 Example of Llama3 70B’s Book Recommendation . . . . . . . . . . . . . 57

viii



Chapter 1

Introduction

Recommender Systems (RSs) have become an integral part of our daily lives. Their presence

can be observed in various domains, such as e-commerce and media streaming, where they

aim to help users find relevant items, i.e., items aligned with their preferences. However,

to obtain more accurate results, these models are becoming increasingly complex, raising

concerns about their transparency and interpretability (or explainability).

A transparent and interpretable RS should provide information about how and why a

recommendation was made for a particular user. These properties are fundamental when

applying these models to high-risk scenarios, such as finance, law, and healthcare, where

wrong decisions can substantially harm people’s or enterprises’ rights and interests. Sig-

nificant efforts have been made to develop explainable RSs aligned with these properties

[53]. Advances in this area would help users make well-informed decisions and organiza-

tions comply with data protection and ethical regulations, such as the LGPD in Brazil1 and

the European Union Artificial Intelligence Act2.

Among the possibilities for generating explainable RSs, one approach is to use human-

centered explanations, i.e., explanations in natural language that approximate how people

explain things to each other. Several works that explored this topic observed a positive im-

pact on user perception when the explanation is more human-like. However, for many years,

this kind of approach has relied mainly on humans to generate the recommendations and

explanations, making this type of explanation cost-ineffective in terms of time and money

1https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/

L13709compilado.htm
2https://artificialintelligenceact.eu/

1



2

and not scalable for large bases of users and items [3, 7, 22]. Thus, there is a strong need

for novel scalable techniques to generate human-centered explanations, such as Largue Lan-

guage Models (LLMs).

LLMs have empowered services like ChatGPT to provide human-like conversational ex-

periences up to the point where an untrained individual cannot distinguish between model

and human [10]. These models have also demonstrated impressive capabilities by success-

fully performing tasks such as sentiment analysis, question answering, and even recommen-

dations, using only a few examples (few-shot) or even none at all (zero-shot) as input, without

requiring any additional training [5].

Research on RSs powered by LLMs has demonstrated that LLMs like ChatGPT can make

recommendations and provide explanations using only a few historical data from the user

[21, 24, 49, 55]. Including some information about user historical preferences in a prompt

to these models allows them to generate personalized recommendations accompanied by

personalized explanations, which is possible due to the knowledge acquired by these models

from training on large-scale web corpora.

Figure 1.1 depicts two examples of interactions with ChatGPT (with GPT-4o3), in the first

(left) the user asks for a movie recommendation without giving much information. In con-

trast, in the second (right), the user includes information about their favorite movies. We can

see that in both cases, the model was able to provide a recommendation along with a human-

like explanation, which in the first case highlighted details about the plot and the widespread

impression of the movie and in the second included a comparison with each favorite movie in

the user’s input. Despite these remarkable capabilities, at the start of this research, few works

had dived into understanding the users’ perception of these LLM-generated explanations,

i.e., how users experience generic versus personalized recommendations and explanations.

In particular, no work had been done for the recommendation task.

Therefore, our research evaluated users’ perceptions of self-generated explanations pro-

vided by LLM-based Recommender System (LLM-Rec). We conducted a user study in

which participants received movie recommendations and explanations generated by Ope-

nAI’s GPT-3.5 Turbo4, the most advanced model available at the time, and rated the expla-

3https://platform.openai.com/docs/models/#gpt-4o
4https://platform.openai.com/docs/models/#gpt-3-5-turbo
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Figure 1.1: Example of interactions with ChatGPT for movie recommendation. The

left chat depicts a generic recommendation/explanation (https://chatgpt.com/

share/678eacdc-5968-800f-945d-1debfb0d9b02) and the right chat de-

picts a personalized recommendation/explanation (https://chatgpt.com/share/

678eae60-f928-800f-991a-df613cd57fee).
a

nations on three dimensions: effectiveness, personalization, and persuasiveness (see RQ1 to

RQ4 below). The movie domain was chosen because it is a popular area for recommendation

tasks and an accessible domain where users are likely to have good prior knowledge.

Additionally, motivated by the highly persuasive tone observed in the explanations and

the evident differences in the argumentation of generic and personalized explanations, we

broke the explanations into sentences and used GPT-4o to classify them into types of argu-

ments, aiming to understand how user-specific explanations compare to generic explanations

regarding the types of argumentation they employ (see RQ5 below).

Finally, we investigated whether the self-generated explanations reflected the model’s

actual rationale, i.e., were faithful or merely provided plausible justifications for the recom-

mendations (see RQ6 below). This topic is critical in the scenario of LLMs, as these models

are susceptible to hallucinations and could, by providing plausible justifications, lead to mis-

informed decisions by the user, ultimately undermining the user’s trust and the system’s
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accountability. We performed an axiomatic evaluation based on the Feature Agreement Ax-

iom, which posits that if the explanation is faithful, an important feature for a prediction

or recommendation should be represented in the explanation with proportional importance.

Since this experiment did not require an online evaluation, we expanded the scope to three

domains—movies, songs, and books—and four models—GPT4o, Gemma 2 9B, Llama 3

70B, and Mixtral 8x7B.

In summary, we formulated six research questions (RQs) to guide these experiments,

which are enumerated below:

RQ1: How do users value personalized ChatGPT-generated recommendations com-

pared to random recommendations?

RQ2: How do users perceive user-based versus generic ChatGPT-generated explana-

tions in relation to recommendation methods and explanation goals such as ef-

fectiveness, personalization, and persuasiveness?

RQ3: Do user-based versus generic explanations work differently for familiar or unfa-

miliar movies?

RQ4: How do explanation goals such as personalization, persuasiveness, and effective-

ness relate?

RQ5: How do user-specific explanations compare to generic explanations regarding the

types of argumentation they employ?

RQ6: Are the explanations provided by LLM-based Recommender Systems faithful?

Our results for RQ1 to RQ3 indicate that users prefer ChatGPT’s personalized recom-

mendations over random selections of popular movies. Surprisingly, even when ChatGPT

bases its explanations on users’ movie preferences, they are not perceived as more personal-

ized than generic ones unless the recommendations are random. This insight also extends to

the perceived effectiveness and persuasiveness of the explanations.

In RQ4, we further investigated the interconnectedness of personalization, persuasive-

ness, satisfaction, and explanation effectiveness. Our findings showed that explanation ef-

fectiveness is highly influenced by users’ satisfaction, perceptions of persuasiveness, and
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personalization, with persuasiveness having the most significant impact. Moreover, for RQ5,

we characterize the explanations by their argument types, considering 14 types included in

the Periodic Table of Arguments [44] and find significant structural differences between

generic and user-specific explanations.

Regarding the explanations’ faithfulness and RQ6, the results revealed that LLMs do not

always produce faithful explanations for recommendations, given that the explanations often

failed to pass the axiomatic test. We found notable differences across models, domains, and

recommendation types. GPT-4o outperformed other models in the evaluated metrics, espe-

cially in the movie domain. Positive recommendations generally yielded higher faithfulness

scores, likely due to models’ inherent bias toward avoiding negative content. Moreover, the

movie domains led to better metrics, indicating that the LLMs’ faithfulness depends on the

domain. More studies are still necessary to understand the causes of these findings.

The remaining chapters of this thesis are organized as follows: Chapter 2 presents back-

ground about LLMs, Recommender Systems, and Explainable Artificial Intelligence (XAI),

with a special focus on Faithfulness. Chapter 3 discuss the related literature. Chapter 4 and

5, respectively, detail the experiment design, results, and limitations regarding the RQ1-RQ5

and RQ6. Lastly, Chapter 6 summarizes our findings and contributions.



Chapter 2

Theoretical Background

2.1 Large Language Models

The history of language models can be divided into several milestones, which took these

models from traditional statistical methods to complex neural architectures. The early

models represented words as numerical vectors, capturing semantic relationships using ap-

proaches such as Word2Vec [28] and GloVe [30]. However, these methods faced difficulties

capturing long-range dependencies and contextual nuances within the text. The introduction

of neural networks in the area brought considerable improvements and helped to deal with

these limitations using Recurrent Neural Networks (RNNs), especially Long Short-Term

Memory (LSTM) [15] networks, which enabled sequential processing of the data, thus al-

lowing the models to retrieve the surrounding context of words in the text. However, RNNs

struggled in performance due to their intrinsic lack of parallelization (requiring sequential

processing) and the vanishing gradient problem. A key breakthrough in the field was the

development of attention mechanisms [2], which allowed the models to focus on specific

parts of the input, improving significantly the contextual understanding of the models. This

mechanism led to the introduction of the Transformer architecture [41], which was based en-

tirely on them. This architecture enabled massive parallelization by dropping the sequential

dependency introduced by the RNNs and was able to capture complex relations within the

text, forming the basis for most modern LLMs.

Building on the Transformer architecture, several prominent LLMs have emerged. Mix-

tral, developed by Mistral AI, uses Mixture-of-Experts (MoE) architecture, which mixes

several small language models to enable high performance with fewer computational re-

6



2.2 Large Language Models as Recommender Systems 7

sources. From Google, the Gemma series [37, 38] is a family of open-source models built

with the technology used in Google’s closed-source model Gemini and has demonstrated

good performance in several benchmarks for language understanding, reasoning, and safety.

Created by Meta AI, the Llama family of models [12] is open-source and was used to build

several others models due to its performance which is comparable to the OpenAI’s closed-

source state-of-art models. Finally, the GPT series of closed-source models from OpenAI

[18], such as GPT-3 and GPT-4, have demonstrated impressive capabilities in text gener-

ation, translation, and question answering, being the current state-of-art family of models.

Although sharing the transformer architecture, these models differ in scale, training method-

ologies, and specific application focus.

Although the training of these models focuses on predicting the next word of a sequence,

LLMs demonstrated capabilities not explicitly programmed during training [5], such as clas-

sification of sentences, code generation, and recommendation of items of interest. They

could do this with zero or a few examples within the input prompt (In-Context Learning

(ICL)). They also exhibited the ability to perform chain-of-though reasoning (CoT) [47],

which helped the models to produce more accurate solutions for complex problems by break-

ing them into smaller steps. These emergent capabilities highlight significant advances in

language modeling, creating new opportunities and challenges for research in the field.

2.2 Large Language Models as Recommender Systems

Taking advantage of the emerging capabilities mentioned above, several research works have

begun to evaluate their suitability for making recommendations. As this new research field

started to flourish, paradigms about WHERE and HOW to use LLMs began to appear. The

WHERE to use paradigm concerns which part of the recommendation pipeline will take

advantage of the capabilities of these models. In contrast, the HOW to use intuitively reflects

how these models are used.

Regarding the WHERE part, Lin et al. [20] identified works using these models over the

entire recommendation pipeline. In the feature engineering step, for example, these models

can be used to summarize user preferences from a profile or consumption history or as feature

encoders by providing embeddings (numerical vectors) for textual inputs, which can be used
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for training traditional recommendation models. Another possible application is in scoring

and ranking, i.e., these models can help generate the recommendations by receiving a set of

recommendation options and user preferences. In turn, Wu et al. [50] categorized the usage

in three categories: (1) LLM embeddings + RS, in which the role of the LLM is extracting

embeddings from the raw input for being used by a traditional RS; (2) LLM tokens + RS,

where the LLM is used to provide a summarization of the raw input as input for a traditional

RS; and (3) LLM as RS where the model is used to provide the recommendations by receiving

the input via prompting.

For the HOW to use paradigm, Zhao et al. [57] considered three approaches: (1) pre-

training, where a new model is developed by learning the recommendation task; (2) fine-

tuning, which involves taking a trained model and expanding its current knowledge to include

the recommendation task; (3) prompting, where the recommendation is taught in runtime via

ICL or CoT. Lin et al. [20] divided the approaches considering two aspects: whether or not

to tune the model and whether the model is used to support a traditional RS or as RS itself.

The interaction of LLMs and recommender systems also brought new perspectives for

personalizing the recommendations due to their enhanced language understanding and rea-

soning capabilities, as explored by Chen et al. [9]. In their work, they analyzed the different

ways LLMs have been used for personalization and highlighted their usage as knowledge ba-

sis, content interpreters, explainers, recommenders, and conversational agents, for example.

However, the use of LLM for recommendation also comes with several limitations and

new problems to solve regarding: efficiency (e.g., reducing training and inference time), ef-

fectiveness (e.g., mitigating hallucinations, dealing with long user consumption items, and

user/item representations) and ethics (e.g., biases, fairness, safety, explainability, and pri-

vacy) [20, 50, 57]. Considering the scope of this work, the next section will dive deeper into

the ethics considerations, especially those regarding explainability.

2.3 Explainable Artificial Intelligence

In recent years, AI has become ubiquitous, with millions of people interacting with some

form of AI every day. These solutions have been applied to high-risk sectors such as health,

security, transportation, and banking. To provide better results and more refined solutions,
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these models have grown in complexity and have become opaque even to their developers.

This ubiquity, the difficulty in understanding the reasoning behind model predictions, and

the need to comply with legal regulations promoted the emergence of an area of research

called Explainable Artificial Intelligence (XAI) [1].

The XAI field aims to make AI models more comprehensible for humans by providing

explanations for AI’s decisions and predictions (accountability/responsibility) in a fair/non-

discriminatory and transparent (e.g., detailing the model’s reasoning) way [42]. Considering

the scope of recommendations, an Explainable Recommender System aims to answer why a

particular recommendation was made. Adadi and Berrada [1] summarized the motivations

for XAI into four reasons that capture the essence of the need for XAIs models: (1) to justify,

explain why a specific decision was made; (2) to control, explainable systems are easier to

debug and fix; (3) to improve, explainable systems are more straightforward to improve

because the developer can understand what needs improving; (4) to discover, models can

discover new strategies to solve a problem, which may be yet not known by its users, if this

model can explain its process, new knowledge is generated.

To address the need for explainability, researchers are delving into generating more trans-

parent models and creating explanatory methods for models that cannot be interpreted nat-

urally. The explanatory methods can be categorized considering some properties, such as:

scope, explanations can be local when the objective is to explain a specific prediction or

global when explaining the whole model behavior; time, whether the explanations are gen-

erated during (built-in) or after (post-hoc) the prediction; model accessibility, which parts

of the model are accessible when generating the explanation; and others [25]. These meth-

ods can also be model agnostic when they work independently of the model architecture or

dependent when they work only for specific models.

Considering the field of Natural Language Processing (NLP) and RS, which are the

scopes of this work, most of the explanatory methods are based on techniques such as feature

attribution, which tries to assign a relevance score for each feature in the input; examples,

which tries to explain the prediction by providing similar (or dissimilar) predictions; analysis

of internal structures, which aims to explain based on internal aspects of the models, such

as neuron activations and attention weights; and self-explanation, especially in the case of

LLM, where the models itself explains its decision [25, 56]. The evaluation of these methods
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can be done both by user studies, online, and offline evaluations, the latter being the easiest

to carry out but less generalizable.

Lyu, Apidianaki, and Callison-Burch [25] summarized some principles that are desired

for a model’s prediction explanation: faithfulness, the explanation must reflect the inner

reasoning of the model; plausibility, the explanation must be understandable by its target

audience; input/model sensitiveness, changes in the input/model that affect (or not) the out-

put should affect (or not) the explanation; completeness, the explanations must cover all the

aspects that were relevant to a prediction; and minimality, the explanations should use the

minimal set of aspects that explain the prediction. Although all these principles are im-

portant, given the scope of this research, we will explore the faithfulness principle in more

detail.

An explanation for a prediction is faithful if it reflects the inner reasoning of the model

for making that prediction [17]. These explanations are important because they can reveal

causal relations between input and output, giving the user more transparency and information

before accepting the prediction. Furthermore, unfaithful but still plausible explanations can

be extremely dangerous depending on the domain, as they can convince the user to make a

decision without knowing the risks [25].

Considering the scope of the LLMs and their ability to provide self-explanations, there

is still no sufficiency test that can assure the faithfulness of these explanations, although

several necessary tests have been proposed [29]. We can group the existing methods for

evaluating the faithfulness of language model explanations into the following categories:

axiomatic evaluation, applies necessary tests based on axioms; predictive power evaluation,

assess whether the explanation for a given case can be used to predict accurately unseen

cases; robustness evaluation, assess if similar outputs with similar inputs lead to similar

explanations; perturbation-based evaluation, induces changes in the input and observe if the

output also changes and if this change is reflected in the explanation; white-box evaluation,

uses transparent models or transparent tasks; and human-based evaluation, uses humans to

evaluate the explanations (this type of methods instead measures for plausibility since it

assess if the model explanation matches human intuition) [25].

In this work, we used an axiomatic evaluation due to its simplicity, lack of reliance on

ground truth, and applicability to black-box models. In contrast, robustness evaluation and
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perturbation-based evaluation would introduce additional challenges: the former requires

identifying similar inputs with similar outputs, which may not always exist, while the latter

relies on generating items with similar or dissimilar properties for perturbation. Similarly,

predictive power evaluation would involve complex prompt engineering, including incorpo-

rating explanations into a prompt and determining which explanations to include.

2.4 Shapley Values

In game theory, a coalitional game is a cooperative game in which players form groups,

or coalitions, to enhance their results in the game. Formally, a coalitional game G can be

defined by the tuple (N, v), where N is a set of n players, and v : 2N → R is a characteristic

function, with v(∅) = 0, that returns the payoff obtained when a coalition S ⊆ N plays

the game G. Given a coalition game G, the Shapley Values are the unique way to fairly

distribute the total payoff of a coalitional game while satisfying the following properties:

• Efficiency: The sum of the reward of all players equals the total payoff.

• Symmetry: Players with the same contributions receive the same reward.

• Null player: Players with no contributions receive no reward.

• Linearity: If two coalitional games are combined, a player’s reward equals the sum of

its reward in each game.

The Shapley Value of a player in a coalitional game, ϕi(N, v), represents their marginal

contribution to the total payoff, indicating the proportion of the game’s reward attributable to

that player’s participation [34]. It is computed by averaging the player marginal contribution

for each coalition using the following equation:

ϕi(N, v) =
1

n

 ∑
S⊆N\{i}

1

C
|S|
n−1

[v(S ∪ {i})− v(S)]

 , (2.1)

where n = |N | is the number of players in N .

For each coalition S of a given size |S|, the term v(S ∪ {i}) − v(S) represents the

marginal contribution of player i to the coalition S. Then, it is averaged by the total number
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of coalitions of size |S|, given by C
|S|
n−1. Lastly, there are n possible coalition sizes, i.e.,

|S| = 0, 1, . . . , n − 1, where |S| = 0 corresponds to S = ∅. So, to account for i’s average

marginal contribution across all coalition sizes, its Shapley value is averaged by n.

The ice cream example To illustrate the application of Shapley Values, we will explore a

simple problem. Consider three kids: Ana, who has $6; Bruno, who has $4; and Charles,

who has $3. They want to buy ice cream, but none can afford it individually. The available ice

cream sizes and their costs are 500g for $7, 750g for $9, and 1000g for $11. The kids decide

to pool their money together and then divide the amount of ice cream they can purchase

among themselves. The Shapley Values represent a fair way to distribute the ice cream with

respect to the properties mentioned above. Considering v(S) as a function that indicates the

amount of ice cream that the coalition S can purchase, to compute the Shapley Value for

Ana, we analyze the coalitions excluding her (S = ∅, {B}, {C}, {B,C}):

1. For |S| = 0, we have 1
C0

2
[v({A})− v(∅)] = 0;

2. For |S| = 1, we have 1
C1

2
[v({A,B}) − v({B}) + v({A,C}) − v({C})] = 1

3
(750 +

750) = 750;

3. For |S| = 2, we have 1
C2

2
[v({A,B,C})− v({B,C})] = 1000− 500 = 500.

Thus, ϕA(N, v) = 1
3
(0 + 750 + 500) = 1250

3
. By applying a similar process, we find

ϕB(N, v) = 875
3

and ϕC(N, v) = 875
3

. By these results, we can see that although having

different amounts of money Bruno and Charles contributed the same (symmetry).

Application in Machine Learning Explainability The SHapley Additive exPlanations

(SHAP) [23] method applies Shapley Values to explain the output of machine learning mod-

els in terms of their input features. By considering a coalitional game where the players are

the features and the characteristic function is the model itself, Shapley values are computed

by simulating scenarios in which specific feature values are considered present while others

are treated as absent.

The method provides local explanations (i.e., at prediction level) in terms of feature im-

portance with the guarantees that the prediction is fully explained (efficiency), features with
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similar importance receiving similar scores (symmetry) and features without importance re-

ceiving zero as a score (null player). However, given that computing Shapley Values has

exponential cost, to be able to compute for a large number of features, the method uses only

a sample of coalitions in the computation, which does not guarantee faithful Shapley Val-

ues. In this work, we also applied Shapley Values to compute input feature importance, as

detailed in Section 5.1.

2.5 Mixed Effect Linear Models in Within-User Experi-

ments

Mixed Effect Linear Models (MELMs) are statistical tools commonly used to analyze data

that exhibit hierarchical or nested structures. They are particularly suitable for within-user

experiments, in which individual users provide multiple responses across different condi-

tions, leading to repeated measures data that require proper handling to account for both

within-user and between-user variability [4, 6, 26].

MELMs incorporate two types of effects:

• Fixed Effects: Represent variables of interest consistent across the population, such

as the experimental condition (e.g., the type of items being evaluated). These effects

are used to estimate overall trends or differences that are generalizable.

• Random Effects: Account for variations specific to individual participants or other

grouping factors. For within-user designs, a random intercept is typically included

to model the baseline differences between users, and random slopes may be added to

capture variability in how users respond to specific conditions.

The general form of a mixed effect model for within-user experiments is:

yij = β0 + β1Xij + ui + ϵij,

where:

• yij is the response for user i on item j.
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• β0 and β1 are fixed effect coefficients.

• Xij represents predictors (e.g., the conditions being tested).

• ui represents the random effect for user i.

• ϵij is the residual error term.

Teaching strategies example Consider that a school wants to investigate the impact of

two new teaching strategies on students’ performance: gamification and LLM-based tutor-

ing. Each student completed multiple assessments under the four possible combinations of

these strategies (none, gamification with and without LLM-based tutoring, and LLM-based

tutoring only). To understand the effect of these strategies individually and interactively on

students’ performance, we can fit a Mixed Effect Linear Model:

yij = β0 + β1Gij + β2Tij + β3(Gij · Tij) + ui + ϵij,

where:

• β0 is the baseline score for assessments using traditional methods (G =

0, T = 0).

• β1 is the fixed effect of gamification (G = 1) on performance.

• β2 is the fixed effect of LLM-based tutoring (T = 1) on performance.

• β3 is the fixed effect of the interaction between gamification and LLM-based

tutoring (G = 1, T = 1).

• ui is the random intercept for student i.

• ϵij is the residual error term.

Consider that after fitting the model, we obtained β0 = 65, β1 = 10, β2 = 5 and β3 = 3

with significant effects. This allows us to conclude the following:

1. The average score under the traditional teaching was 65.
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2. Individually gamification and the use of LLM-based tutoring contributed to increase

the score in, respectively, 10 and 5 points.

3. Combining the gamification with LLM-based tutoring led to an increase of 3 points in

the score, beyond the sum of their individual effects.

In our work, these models were used to evaluate the effect of different setups of recom-

mendation conditions on users’ perceptions of the recommended items and their explana-

tions.



Chapter 3

Related Work

3.1 Explanations and Users’ Perceptions

As detailed in Section 2.3, Explainable RSs have become an important research topic, with

various methods proposed to generate explanations. These include leveraging the similar-

ity of the recommended item with previously consumed items, assessing the item features’

importance with respect to the user, and aggregating other users’ reviews. Additionally, sev-

eral presentation formats, such as textual, visual, and social explanations have been explored

[53].

Chang, Harper, and Terveen [7] demonstrated the benefits of personalized natural lan-

guage explanations over personalized tag-based explanations. They generated personalized

natural language explanations by tasking crowd workers to create them by summarizing

movie reviews related to the recommended item. Their solution was integrated within Movie-

Lens, and it was perceived as more efficient and effective than the traditional tag-based ex-

planations of the platform.

In a similar study, Lu et al. [22] highlighted the preference for human-generated expla-

nations over machine-generated ones, such as those based on similarity to other users and

consumed items, popularity, and content. These machine-generated explanations were pre-

sented in a textual format using template sentences. However, these solutions lack scalabil-

ity, as using them for a large platform would require significant labor, leading to prohibitive

costs.

The emergence of LLMs offers a promising solution to this scalability challenge. Mod-

16
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els such as OpenAI’s GPT-41, Meta’s Llama2, and Google’s Gemma3 have demonstrated

remarkable capabilities in diverse tasks, including recommendation, as explored in Section

2.1 and Section 2.2. Several works have shown that these models can generate accurate and

relevant recommendations, either independently or in combination with other methods, such

as Knowledge Graphs [14, 16, 24, 35, 46].

Gao et al. [13] introduced Chat-REC, a conversational recommender system framework

powered by ChatGPT. This system leverages users’ profiles and consumption history to pro-

duce recommendations and explanations through natural language interaction with a user.

Compared with traditional recommendation approaches, the results demonstrate ChatGPT’s

better performance in precision, recall, and nDCG metrics. However, no evaluation was

performed regarding the quality of the explanations.

The evaluation of explanation quality has become increasingly important in recent years,

mainly motivated by its impact on user trust in the system and for legal reasons, as explored

in Section 2.3. Tintarev and Masthoff [39] introduced seven goals for an explanation: ef-

fectiveness, efficiency, persuasiveness, satisfaction, scrutiny, transparency, and trust. These

goals have guided the dimensions of explanation quality evaluation in several works [3, 7].

In a study employing crowd workers to produce and evaluate personalized explanations

for recommendations, Balog and Radlinski [3] found that these seven goals were often highly

correlated, even when workers were instructed to produce explanations aimed at a specific

goal. These goal-specific explanations were perceived as equally good compared to non-

tailored ones, suggesting that either the crowd works lacked the ability to produce goal-

specific explanations or that users could not distinguish between them.

Zhou and Joachims [58] presented one of the pioneering studies approaching the effect of

personalized recommendations and explanations generated by the underlying LLM. In a sur-

vey with 120 participants, they compared the effectiveness of LLM-generated text reviews

with human-generated ones. They found no significant differences in user perception, ex-

cept for movies previously seen by the participants, in which LLM-generated reviews were

favored.

In light of the aforementioned literature, RQ1 (satisfaction with personalized vs. random

1https://openai.com/index/gpt-4/
2https://www.llama.com/
3https://ai.google.dev/gemma



3.1 Explanations and Users’ Perceptions 18

recommendations) is settled on the works of Harrison, Dereventsov, and Bibin [14], Huang

et al. [16], and Gao et al. [13], which demonstrate the great potential of GPT models in gen-

erating accurate and relevant recommendations based on user information. We aim to assess

whether the users experience personalization, a gap left by these works. This question vali-

dates whether the GPT models can provide a discernibly personalized experience compared

to random recommendations.

For RQ2 (perception of user-based vs. generic explanations), we were inspired by the

findings of Balog and Radlinski [3], who showed that personalized explanations were per-

ceived as equally pleasing to non-personalized ones. This perception goes against common

sense and highlights the importance of understating how users perceive user-based versus

generic explanations concerning different explanation goals.

On the other hand, RQ3 (explanations for familiar vs. unfamiliar movies) examines

whether familiarity with the recommendation affects user perception of the explanations, in

line with the results of Zhou and Joachims [58], who observed differing experiences regard-

ing familiar and unfamiliar movies.

In RQ4 (relationship between explanation goals), we aim to explore the interactions be-

tween different explanation goals. This question arises from the results of Balog and Radlin-

ski [3], in which the goals were highly correlated. However, in its study, these relations were

not investigated in depth, so in our study, we examine the extent to which the effectiveness

of the explanation and satisfaction with the recommendation relies on personalization and

persuasiveness.

Lastly, RQ5 (argumentation in user-based vs. generic explanations) expands upon the

research by Balog and Radlinski [3] and adds to RQ2 by examining the tone of discourse

in ChatGPT’s explanatory outcomes. It investigates how differences in the model’s under-

standing of users’ preferences affect the types of arguments it employs.

In summary, these research questions, RQ1 to RQ5, were designed to build upon one

another, providing a sequential understanding of the users’ perceptions of LLM-Recs in pro-

ducing personalized explanations for recommendations.
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3.2 Faithfulness for LLM-generated explanations

Jacovi and Goldberg [17] state that faithful explanations accurately represent the model’s

reasoning behind its predictions. Although LLMs can generate self-explanations for their

tasks (including recommendations), they remain black boxes and produce plausible but un-

faithful explanations [40, 52]. In recent years, significant efforts have been made to explain

the rationale behind these generative models. The remainder of this section details research

works that inspired the experiment design for answering RQ6.

In their work, Zhao et al. [56] reviewed the literature on explainability for LLMs and

introduced a taxonomy of techniques, classifying them into two main paradigms: fine-

tuning-based and prompt-based. The fine-tuning paradigm focuses on understanding how

fine-tuning processes contribute to the model’s improved performance on new tasks. In con-

trast, the prompt paradigm seeks to explain how the model leverages its pre-trained knowl-

edge to respond to prompts across a wide range of tasks. Within the prompting paradigm,

input and label perturbation emerged as the most common methods for explainability. These

techniques involve modifying the model’s input and examining the resulting changes in out-

put. The paper also emphasizes the importance of generating faithful explanations and calls

for further research into innovative techniques that accurately capture the model’s reasoning

processes.

Parcalabescu and Frank [29] evaluated various tests proposed in the literature to measure

faithfulness across eleven versions of open-sourced LLMs (Llama2, Mistral, Falcon, GPT2)

on five tasks. They noted that most current faithfulness tests primarily assess self-consistency

rather than faithfulness. Self-consistency refers to a model’s ability to produce consistent

outputs and explanations when inputs are varied. However, because the internal mechanisms

of LLMs for prediction and explanation may differ, self-consistency alone does not ensure

faithfulness. They also introduced a novel self-consistency test called CC-SHAP, which uses

the output probabilities to compute Shapley values to quantify input tokens’ influence on

prediction and explanation and then compare them.

Their test assumes that faithful explanations should exhibit a similar distribution of in-

put tokens’ Shapley Values for both the output and the explanation, i.e. the important in-

put tokens must be the same for the output and explanation generation. Unlike other tests,
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CC-SHAP provides a continuous measurement of faithfulness rather than a binary one and

improves explainability by offering a distribution of token-level importance. As detailed in

Section 5.1, we also compare the importance of the input for both output and explanation

using Shapley Values for obtaining the input items’ importance in relation to the output.

However, CC-SHAP was not applicable since it requires access to the output probabilities,

which are unavailable for closed-sourced models, like OpenAI’s GPT models.

Matton, Ness, and Kiciman [27] introduced the concept of causal concept faithfulness,

considering that when explaining, the LLMs refer to high-level concepts implicitly present

in the input rather than specific words or tokens. Their approach involves five steps: (1)

extracting a complete set of semantic concepts in the input using GPT-4, (2) generating per-

turbed questions to identify causal effects through counterfactual reasoning, (3) estimating

the actual causal effects of concepts using a logistic regression model, (4) identifying the

subset of concepts implicated in the model’s explanations, and (5) computing faithfulness

metrics, such as false reference rate and omission severity, based on discrepancies between

the actual causal set and the concepts used in the explanations.

They proposed three metrics: False References Rate, which measures the fraction of con-

cepts mentioned in the explanation that does not have a causal effect; Omission Rate, which

measures the fraction of concepts with a causal effect that is not mentioned in the explana-

tions; and Omission Severity Rate, which quantifies the impact of the omitted concepts using

a utility function. We draw inspiration from these metrics to compute Recall and Precision,

as detailed in Section 5.1.

In summary, we agree with the literature on the innate challenges of assessing the faith-

fulness of LLM-generated explanations. Consequently, we adopted an axiomatic evaluation

as a practical approach, treating it as a necessary but not sufficient condition for faithfulness.

While this is not an ideal measure, it remains valuable by aligning with the self-consistency

perspective outlined by Parcalabescu and Frank [29].



Chapter 4

Leveraging ChatGPT for Automated

Human-centered Explanations in

Recommender Systems

This chapter details the experiment to answer research questions RQ1 to RQ5. This exper-

iment involved a user study with 94 participants recruited using Prolific1, a crowd-sourced

platform often used for research with online experiments. The study occurred across three

batches between June 8-15, 2023. First, each participant was required to inform their movie

preferences by providing the names of three liked and three disliked movies. Next, we pre-

sented the participant with four movie recommendations and two movie disrecommendations

accompanied with an LLM-generated natural language explanation of why the user should

(or not) watch the movie. Finally, we collected the users’ perceptions of recommendations

and explanations using a five-question questionnaire and analyzed them using multilevel

mixed linear regression. These steps are detailed in Section 4.1, followed by the presentation

of the results in Section 4.2 and a discussion of the experiment limitations in Section 4.3.1.

1https://www.prolific.com

21
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4.1 Experiment Design

4.1.1 Collecting user preferences

In order to collect user preferences and their evaluation of the recommendations and expla-

nations, we developed a web application. This application comprises a frontend in React2

and a backend with a REST API in Python3.

On entering the website, the users were asked to insert three liked and three disliked

movies, as shown in Figure 4.1. They could search and then choose a movie using a search

bar powered by OMDb API4. Due to the GPT-3.5 knowledge cutoff being September 2021,

only movies released before 2021 were shown as results in the search.

Figure 4.1: Overview of user preferences elicitation. The user was asked three movies they

liked (Name three of your favorite movies.) and three movies they disliked (Name three

movies that you really disliked (or hated).). Here, the user answers the question about the

liked movies and searches for pirates in the search bar of the disliked movies.

2https://react.dev/
3https://www.python.org/
4https://www.omdbapi.com
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Once the users had finished filling out the required information, their preferences were

sent to the backend to obtain the recommendations and their respective explanations. The

details of how this step was performed are presented in the following section.

4.1.2 Generating recommendations and explanations

Using the information provided on the user preferences, we were able to generate four rec-

ommendations and two disrecommendations, all accompanied by an explanation. A disrec-

ommendation can be interpreted as a negative recommendation, i.e., a movie the user should

avoid since it may not relate to their preferences. These negative recommendations might be

equally valuable to users, as avoiding a potentially poor movie experience can be as benefi-

cial as finding a good one. By showing positive and negative recommendations, we provide

a wider range of feedback opportunities, allowing us to compare if user perception varies

according to the intention of the recommended item [54].

To obtain the (dis)recommendations, we used two different Recommender Systems. In

total, each user received four recommendations and two disrecommendations. Two of the

recommendation and the two disrecommendations were generated by the LLM-Rec, which

was built using the GPT-3.5 Turbo5, an OpenAI model. By the time of the experiment, this

was the best model publicly available from OpenAI6. Since this model is closed-sourced, we

accessed it through Python using OpenAI’s API for Chat7.

The random recommender provided the remaining two recommendations by randomly

selecting from a collection of popular films listed on IMDb8. Randomly recommending

movies helps control for user familiarity by increasing the chances of recommending an un-

familiar movie. Recommending only movies users already know could bias their perceptions

due to prior knowledge or experiences. By introducing unfamiliar movies through random

recommendations, the research can better isolate the effect of the explanation itself on user

decisions, regardless of prior familiarity with the movies.

The GPT-3.5 Turbo model is a generative natural language model, so to use it as an LLM-

5https://platform.openai.com/docs/models#gpt-3-5-turbo
6We used a specific snapshot of the model (gpt-3.5-turbo-0613) during the experiments, which is no longer

available.
7https://platform.openai.com/docs/api-reference/chat
8https://www.imdb.com/chart/moviemeter/



4.1 Experiment Design 24

Rec, we needed to create natural language prompts that could serve as input for the model.

We adopted a zero-shot approach, providing the model solely with the task and input without

any examples illustrating how to execute the task. Figure 4.2 depicts each prompt we used.

Figure 4.2: Prompts used for generating recommendations and explanation from the OpenAI

GPT3.5-Turbo model

We created a base prompt to keep the user preferences (upper left). This prompt included

the answers for two questions, respectively, Name three of your favorite movies and Name

three movies that you really disliked or hated. The answers to these questions were collected

as detailed in Section 4.1.1. This prompt was concatenated in each prompt that required

personalization. Next, we had a prompt requiring the model to provide four movie recom-

mendations according to the user preference (upper right). Two of these recommendations

are must-watch movies, while the other two are movies the user should avoid.

Lastly, we wrote two prompts to obtain the explanations for the recommendations. The

first (lower left) asked the model to provide a personalized explanation and included informa-

tion about the user preferences. The second one (lower right) asks for a generic explanation,

not having access to any user information. In both cases, a not was added when dealing with

a disrecommendation.

The prompts were crafted according to the best practices for In-Context Learning (ICL)9.

To enhance usability, we integrated additional instructions regarding the expected answer for-

mat within each prompt. Moreover, we set the temperature parameter to its minimum value

of 0 to promote reproducibility. This adjustment aimed to heighten the model’s predictability

9https://huggingface.co/docs/transformers/main/tasks/prompting
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and coherence.

4.1.3 Collecting user perceptions

After receiving the response from the backend, we presented the user with the movies and

explanations (one at a time). We asked them to answer a questionnaire with one yes-or-

no and four Likert-scale questions, as depicted in Figure 4.3. The Likert-scale questions

were affirmations, which the user should answer with one of the following options: Strongly

disagree, Disagree, Neutral, Agree, Strongly agree.

(a) Evaluation page presented to the user

(b) Questionnaire

Figure 4.3: Overview of the evaluation step.

The questionnaire included two questions about the recommendation and three about the

explanation. The first question, namely "Do you know this movie?", aimed to obtain informa-

tion about the user’s familiarity with the recommendation (aligned with RQ3). Meanwhile,

the second question ("I enjoy this recommendation") was aligned with the RQ1 and allowed

us to compare how much the user liked the recommendations provided by the LLM and the

Random Recommender.

The last three questions aimed to cover the aspects of the explanation we intended to

measure for RQ2, respectively, effectiveness ("This explanation helps me to determine how

well I will like this movie"), personalization ("This explanation resonates well with the as-
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pects of movies that I like"), and persuasiveness ("This explanation is convincing"). These

answers also allowed us to perform the correlation analysis for RQ4.

To analyze the answers, we employed multilevel mixed linear regression [33] with a

random intercept model, accounting for the repeated nature of participant responses. Section

4.2 presents the experiment results.

4.2 Results & Discussion

4.2.1 Recommendation Satisfaction

Regarding RQ1, we analyzed the satisfaction experienced by the participants with a rec-

ommended movie considering two factors: the perception of personalization of the recom-

mendations and their familiarity with the film. Both models yielded a significant amount

of unfamiliar movies. According to the answers, 25% of the LLM-Rec’s recommendations

and 49% of the random recommendations were unknown to the users. Our results indicated

that participants enjoyed random recommendations less than those personalized by GPT-3.5

(β = −0.53, p < 0.001). Moreover, the participants also rated unfamiliar recommenda-

tions less enjoyable than familiar ones (β = −0.78, p < 0.001). These effects are depicted

in Figure 4.4a. No interaction effect was found between familiarity and recommendation

method, which suggests that LLM-Rec recommendations are often preferred over random

(yet popular) ones, regardless of the movie’s familiarity.

4.2.2 User-based vs. Generic Explanations

For RQ2, we compared personalized and generic explanations for three explanation goals:

effectiveness, personalization, and persuasiveness. Our results indicated that explanations

provided by the GPT-based recommender were identified as more effective than those gen-

erated for random recommendations (β = 0.37, p < 0.001). However, we did not find

any significant differences in the effectiveness of user-based versus generic explanations

(β = −0.10, p = 0.37), as shown in Figure 4.4b.

In order to determine the perception of personalization, the participants were asked if the

explanations aligned with their movie preferences. Surprisingly, the user-based explanations,
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(d) Question: This explanation is convincing.

Figure 4.4: Questionnaire results for the (four) recommendations based on estimated means

from the random intercept multilevel regressions. Responses were given on a 5-point,

disagree-agree scale, for which 3 means neutral. Error bars are one standard error of the

mean.

which mainly referenced participants’ preferences, were not perceived as significantly more

personalized than generic ones, except for random recommendations, which typically score

lower on personalization (β = −0.80, p < 0.001). This result is illustrated in Figure 4.4c

and supported by a significant interaction between recommendation’s and explanation’s type

in our model (β = 0.49, p < 0.01).

Regarding persuasiveness, we found that the explanations are less convincing for ran-

dom recommendations (β = −0.47, p < 0.001), with no significant difference between

user-based and generic explanations. For the LLM-Rec recommendations, personalized ex-

planations appeared slightly less persuasive than generic ones, as shown in Figure 4.4d.

However, this difference was not statistically significant (β = −0.27, p = 0.14).

4.2.3 Movie Familiarity Analysis

For RQ3 (cf. Figure 4.5), we investigated whether perceptions of effectiveness, personaliza-

tion, and persuasiveness of explanations differed between familiar and unfamiliar movies.
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(c) Question: This explanation is convincing.

Figure 4.5: Results regarding how movie familiarity affects explanations’ effectiveness, per-

sonalization, and persuasiveness.

Regarding effectiveness, explanations for unfamiliar movies were generally rated as less

effective (β = −0.41, p < 0.01), primarily for generic explanations, as shown in Figure 4.5a.

User-based explanations, however, maintained consistent effectiveness in both conditions,

particularly benefiting unfamiliar movies, which is reflected in the positive interaction be-

tween explanation type and familiarity (β = 0.35, p < 0.05).

For personalization, there was a main effect of familiarity, with explanations for unfa-

miliar movies feeling less personalized overall (β = −0.53, p < 0.001), as illustrated in

Figure 4.5b. Although user-based explanations appeared less influenced by familiarity, the

interaction was not significant (β = 0.274, p = 0.17).

Concerning persuasiveness, explanations for unknown movies were perceived as less

convincing overall (β = −0.58, p < 0.05). However, we noticed a significant main effect of

explanation type (β = −.28, p < .05), interacting with familiarity (β = .50, p < .05). As

shown in Figure 4.5c, user-based explanations were somewhat less persuasive for familiar

movies but more persuasive for unfamiliar ones.

These findings suggest that user-based explanations outperform generic ones, particu-

larly for unfamiliar movies. When users lack prior knowledge about a movie, user-based
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explanations that connect the movie to their preferences are more impactful than when they

are already familiar with it.

4.2.4 Path Modeling of Explanation Types and Goals

In RQ4, we explored the relation between the different users’ perceptions and experiences

concerning personalization, persuasiveness, and effectiveness. We fitted a path model and

used it to predict to what extent the explanation effectiveness is influenced by the reported

levels of personalization, persuasiveness, and satisfaction with the movie and its explanation.

Following the user-centric framework of Knijnenburg et al. [19], we see personalization and

persuasiveness as perceptions (Subjective System Aspects: SSA), whereas satisfaction and

effectiveness are experience-type constructs (EXP). Our conditions are the objective system

aspects (OSAs) that affect SSAs and EXPs.

Figure 4.6: Path model showing how persuasiveness and personalization of the explanations

are affected by the conditions and how they subsequently predict satisfaction and effective-

ness. OSA=Objective System Aspect, SSA=Subjective System Aspect, EXP=Experience.

The thickness of the line represents the strength of the coefficient. Standard errors in brack-

ets, significance: * p<.05, **, p<.01, ***, p<.001

Aligned with the results of Balog and Radlinski [3], we identified a correlation between

persuasiveness, personalization, satisfaction, and effectiveness, which we explore in depth
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in our path model. We found that effectiveness is predicted by satisfaction, persuasiveness,

and personalization, with persuasiveness being the strongest predictor. Satisfaction itself

increases with familiar movies and LLM-Rec recommendations (as previously demonstrated

in the RQ1 analysis) but is also directly influenced by persuasiveness and personalization.

Befitting our RQ2 analysis, personalization was shown to be influenced by the type of

explanation, type of recommendation, their interaction, and by the movie familiarity, with

the last having a less significant effect (refer to Figure 4.4b that shows the same patterns), as

well as directly by the level of persuasiveness10. Also, similar to the previous analysis for

RQ2 and RQ3, we found that persuasiveness is affected by the explanation type and movie

familiarity (and their interaction) as well as by the type of recommendation.

Therefore, the path model confirms the effects discussed in the previous sections while

providing insights into their relationships. An effective explanation is personalized, persua-

sive, and ideal for a satisfactory movie. Persuasiveness is influenced by explanation type,

recommendation type, and movie familiarity, while personalization depends on explanation

type, recommendation type, and persuasiveness. These findings clarify the conditions under

which an explanation becomes effective and how to achieve this.

4.2.5 Disrecommendation Analysis

Our analysis also covered the two disrecommendations. Those were always generated by the

LLM-Rec since a random recommendation provides no guarantees that we are recommend-

ing movies the user may not like. So, here, we do not consider the effect of the recommen-

dation type but only the effects of explanation type and familiarity.

We found that generic explanations seemed more effective than personalized ones (β =

−.32, p < .05), with no significative interaction with familiarity, as can be seen in Fig-

ure 4.7a. We could not find a significant effect for personalization for either of the two

dimensions. For persuasiveness, we found that user-specific explanations are, to some ex-

tent, less convincing (β = −.36, p < 0.05). In general, explanations for disrecommendations

seemed to not benefit from personalized explanations. However, further analysis is required

to identify whether this effect has not originated from ChatGPT’s reluctance to disrecom-

10It could be argued that persuasiveness increases with personalization; however, modeling this relationship

resulted in a reduced fit.
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Figure 4.7: Questionnaire results for the two disrecommendations, based on estimated means

from the random intercept multilevel regressions. Responses were given on a 5-point,

disagree-agree scale, for which 3 means neutral. Error bars are one standard error of the

mean.

mend, given OpenAI’s efforts to avoid harmful and biased discussions 11.

4.2.6 The Anatomy of Explanations and its Influence on the User’s Per-

ception

Our research indicates that generic explanations can be seen as effective, persuasive, and

personalized as those tailored to individual users, as noted by Balog and Radlinski [3]. How-

ever, individuals favor user-specific explanations, especially when faced with unfamiliar or

random recommendations. To understand the underlying reasons for these observations,

we analyzed the explanations into fundamental narrative components—specifically, the ar-

guments. Using GPT-4o12, we classified sentences in the explanations according to their

argument types, intending to uncover patterns that could clarify user preferences.

We selected GPT-4o for this task because there was no suitable labeled dataset available

for training a traditional supervised model. The prompt we used in our method is described in

Prompt A.1.1. Sentences were categorized as either non-argumentative or as one of 14 differ-

ent types of arguments derived from the Periodic Table of Arguments (PTA). The PTA serves

as an extensive framework that systematically categorizes types of argumentation based on

principles of classical dialectic (philosophical reasoning) and rhetoric (persuasive communi-

11https://openai.com/policies/usage-policies
12https://platform.openai.com/docs/models#gpt-4o
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cation). It offers a structured approach to analyze argument schemes, fallacies, and methods

of persuasion by grouping them into specific quadrants [44, 45].

This structure makes the PTA particularly appropriate for our research, allowing for a

detailed breakdown of explanatory constructs into fundamental narrative components. Ta-

ble 4.1 provides a ranked list of the identified argument types, organized by their frequency

of occurrence. For each type, it also presents definitions and an example sentence from the

dataset that demonstrates its application.

Table 4.1: Types of arguments present in the explanations

Type of Argument Definition Frequency (%) Example

From Evaluation Argues based on

personal experi-

ences of good/bad

or effective/ineffec-

tive.

44.39 I would not recommend

watching Transformers: Age

of Extinction because it

received negative reviews

from both critics and

audiences.

No Argument 22.93 Divergent is set in a dystopian

society where people are

divided into factions based on

their personality traits.

From Similarity Infers a fact based

on its similarity to

another fact.

9.46 The movie has a similar tone

to Saw, which was listed as

one of the person’s favorite

movies.

From Comparison Evaluates a situa-

tion, object, or idea

by comparing it to

another.

8.00 Additionally, the movie has

been criticized for its weak

plot and character

development, which may not

be satisfying for someone

who enjoyed movies like

Bridesmaids.
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Table 4.1: Types of arguments present in the explanations (continued)

Type of Argument Definition Frequency (%) Example

From Criterion Makes an argument

considering specific

criteria.

6.13 Additionally, the dislike for

action movies like Need for

Speed and superhero movies

like Captain Marvel and

Avengers: Endgame suggests

that the person may prefer

movies that are more

grounded in reality and have

a more serious tone.

Pragmatic Evaluates ac-

tions, events, or

rules based on

their favorable

or unfavorable

consequences.

2.42 Save yourself the time and

watch something else instead.

Ad Populum Asserts something

is true or correct be-

cause many people

think so.

1.94 The movie has been praised

for its intricate plot, beautiful

cinematography, and strong

performances by the cast.

From Opposites Concludes some-

thing by presenting

the persuasiveness

of its opposite.

1.65 While Sing is not a dystopian

film like Sucker Punch, it

does have a message of

perseverance and following

your dreams, which may

resonate with someone who

enjoys that theme.
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Table 4.1: Types of arguments present in the explanations (continued)

Type of Argument Definition Frequency (%) Example

From Authority Relies on the opin-

ion of an authority

figure as evidence.

0.95 The movie has received

critical acclaim for its

performances, direction, and

cinematography, and has won

several awards, including six

Oscars.

From Sign Asserts that the

presence or ab-

sence of one thing

indicates the pres-

ence or absence of

another.

0.66 Finally, the person’s love for

Bohemian Rhapsody may

indicate a preference for

movies with a strong musical

element, but Cats’ unique

style of music may not be to

their liking.

From Analogy Argues that because

two things are sim-

ilar, what is true of

one is also true of

the other.

0.59 Although it may not seem

like it has much in common

with the movies you listed,

there are a few reasons why

you might enjoy it.

From Commitment States a claim

supported by some-

thing the addressee

has previously said.

0.40 If you’re a fan of the Star

Wars franchise, then you

definitely shouldn’t miss The

Empire Strikes Back.

From Effect Draws from conse-

quences to infer the

cause.

0.26 Therefore, it is unlikely that

someone with these movie

preferences would enjoy The

Emoji Movie.
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Table 4.1: Types of arguments present in the explanations (continued)

Type of Argument Definition Frequency (%) Example

From Disjuncts Concludes some-

thing happened

because an alterna-

tive did not.

0.18 Since the person did not like

the first movie, it is unlikely

that they will enjoy the

sequel.

From Equality Based on the prin-

ciple of equality,

asserting that sim-

ilar circumstances

should lead to

similar treatment.

0.04 The film’s themes of loyalty,

betrayal, and the corrupting

influence of power are as

relevant today as they were

when the movie was first

released in 1972.

The Argument from Evaluation was the most common type, comprising 44.39% of the

sentences. This argument is structured as a is X because a is Y, where the premise presents

a statement of value and the conclusion suggests a statement of policy (i.e., an action). For

example, as shown in Table Table 4.1, the premise is Transformers: Age of Extinction

received negative reviews from both critics and audiences, while the conclusion is I would

not recommend watching Transformers: Age of Extinction, which fits this categorization.

The second most common classification is No Argument, covering 22.93%, indicating

that nearly a quarter of the sentences do not present an argument but only a fact about the

movie. Additionally, arguments from similarity (9.46%) and comparison (8%) also had a sig-

nificant frequency, primarily due to the user-based explanations, as depicted in Figure 4.8.

Both arguments are of the form: a is X, because b is X, distinguished by the types of state-

ments in the premise and conclusion.

For the similarity argument, the premise and conclusion are statements of fact. Mean-

while, both are policy statements for the comparison argument. In other words, arguments

from similarity tries to infer a fact based on its similarity to another fact, and the argument

from comparison evaluates a situation, object, or idea by comparing it with another.

Figure 4.8 depicts the distribution of the classifications considering the two types of ex-
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Figure 4.8: Distribution of the types of arguments grouped by the type of explanation. Clas-

sifications codes: NA (No Argument), An (Argument from Analogy), Au (Argument from

Authority), Comm (Argument from Commitment), Comp (Argument from Comparison), Cr

(Argument from Criterion), Di (Argument from Disjuncts), Ef (Argument from Effect), Eq

(Argument from Equality), Ev (Argument from Evaluation), Op (Argument from Opposites),

Sg (Argument from Sign), Sim (Argument from Similarity), Po (Argumentum ad Populum),

Pra (Pragmatic Argument).

planations. Arguments from evaluation are the most common in both kinds of explanations.

However, their prevalence differs. For Generic Explanations, they represent over half of the

argumentative sentences. On the other hand, in User-based Explanations, the distribution is

more evenly split among arguments from evaluation, comparison, and similarity. This vari-

ation is anticipated, as the preferences outlined in the prompt for User-based Explanations

encourage the use of comparative arguments. We did not find any notable differences in the

distributions concerning other factors, such as the recommender, the type of recommendation

(positive or negative), and the placement of the sentence within the explanation.

Figure 4.9 shows examples of user-specific versus generic explanations produced by the

GPT3.5-Turbo model for three different types of recommendations (GPT-generated recom-

mendation, GPT-generated disrecommendation, and random recommendation). In line with

the arguments’ classification, we identified four categories utilized by the model to create the

explanations.
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Figure 4.9: User-based vs. Generic Explanations for three recommendations obtained from

real users.
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Arguments from Evaluation predominantly constitute nearly every statement in the expla-

nations. The examples also indicate the use of Argumentum ad populum in two personalized

explanations, where the appeal references the popular notion that movies are widely rec-

ognized as some of the greatest films of all time and have high ratings on sites such as

IMDb. Arguments from comparison are also present twice in the first example, with the

initial comparison emphasizing the positive preferences shared by the user and the specific

recommendation. In contrast, the second focuses on the contrasts between the recommenda-

tion and the user’s negative preferences. Lastly, the example showcases an Argument from

Criterion in a generic explanation, highlighting that the movie may not be appropriate for

the user if there are particular concerns regarding its plot (the criteria).

We also found that both user-based and generic explanations exhibit a persuasive tone,

primarily through the frequent use of second-person language. In Figure 4.9, we emphasized

the pronoun you in bold to highlight its common usage. The frequent appearance of this

phrasing could stem from the prompt used for generating the explanation, which encourages

the model to address the audience directly, or from the model’s training to engage in this

communication style when interacting with people. This finding might clarify why we did

not find notable differences in the persuasiveness between the two explanation types (refer

to Section 4.2.2).

We also examined the co-occurrence patterns of arguments within the explanations. Ini-

tially, we focused on analyzing the frequency of argument trigrams. We chose to analyze

trigrams as three sentences were the median size of the explanations. Our findings indicated

that in generic explanations, combinations of sentences without arguments and those utiliz-

ing Arguments from Evaluation appear in more than 70% of instances, which aligns with

the high occurrence of these sentence types, as shown in Figure 4.8. In contrast, user-based

explanations displayed a more uniform distribution, with the most common combination

occurring in less than 5% of cases. Looking at the top-10 argument chains for user-based

explanations, they consist of a mix of sentences lacking arguments or employing Arguments

from Similarity, Arguments from Comparison, Arguments from Evaluation, and Arguments

from Opposites. Figure 4.10 illustrates the Top-10 most frequent trigrams for both explana-

tion types.

The analysis of trigrams indicates that generic explanations can be persuasive due to a
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Figure 4.10: Frequency of the top-10 trigrams of types of arguments found in the explana-

tions grouped by the type of explanation. Classifications codes: na (No Argument), comp

(Argument from Comparison), ev (Argument from Evaluation), op (Argument from Oppo-

sites), sim (Argument from Similarity), po (Argumentum ad Populum).

blend of universally understandable, consistent, and evident argument formats. They cre-

ate a refined and coherent presentation that resonates with a broad audience by highlighting

straightforward patterns, such as the regular use of evaluative statements. This simplicity en-

sures that the content is accessible while maintaining a level of sophistication that enhances

its persuasive and relatable qualities. Additionally, the frequent use of second-person lan-

guage provides a sense of personalization, even without direct customization. These aspects

may account for the perception that generic explanations are just as effective, persuasive,

and personalized as those explicitly tailored to users, especially in situations where universal

appeal and clarity are adequate to fulfill user expectations.

Finally, we investigated the transition between arguments in each type of explanation

(generic and user-based). Using a first-order Markov Chain, we created transition probabil-

ity graphs, shown in Figure 4.11. To enhance readability, we filtered the edges for transitions

with a strength of 0.15 or greater. Our findings highlight notable differences in how ar-

guments are organized within the two explanation types. In user-specific explanations, the

transitions are varied and do not favor any single pattern, suggesting a more complex struc-

ture that is tailored to the individual context of each user. This intricate organization supports
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more nuanced reasoning, making these explanations particularly engaging, especially when

presenting novel or unexpected recommendations.
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Figure 4.11: Comparison of Markov Chains for User-Specific and Generic Explanations.

Transition edges were filtered to transitions equal or higher than 0.15 to improve readability.

The nodes SOE and EOE were included to indicate, respectively, the start and end of the

explanations.

In comparison, generic explanations follow more straightforward, linear transitions, fre-

quently alternating between evaluative arguments and factual statements (No Argument -

NA). Similarly to what we found in the trigram analysis, this consistent structure makes it

easily accessible to a broad audience. Furthermore, universal appeals—like practical argu-

ments and those referencing popularity—boost their relatability and perceived effectiveness,

even without personalization elements.

In general, user-specific explanations are more engaging due to their dynamic nature,

making them particularly effective when dealing with unfamiliar or random recommenda-

tions. On the other hand, generic explanations stand out for their simplicity and consistency,

making them relatable and bridging the perceived effectiveness gap between the two types.

These differences clarify RQ5 and explain why users may find both types of explanations ef-

fective, with their preferences varying based on the context and the type of recommendations

provided.
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4.2.7 Popularity Bias in GPT-generated Recommendations

Although evaluating the quality of the GPT model’s recommendations was not our primary

focus, we observed a notable influence of popularity bias. This bias affects movies with

exceptionally high or low IMDb ratings, leading to their over-representation in recommen-

dations and disrecommendations.

We found evidence supporting this observation. A positive, though weak to moderate,

correlation exists between the frequency of recommendations and IMDb ratings in GPT-

generated recommendations (Spearman’s ρ = 0.467, p < 3 × 10−5; Kendall’s τ = 0.383,

p < 3×10−5). In contrast, a weak negative correlation was observed for disrecommendations

(Spearman’s ρ = −0.268, p < 0.05; Kendall’s τ = −0.205, p < 0.05). No significant

correlation was detected for random recommendations.

These findings suggest that the recommendations generated by the GPT model may be

influenced by popularity bias, but further analysis is needed to explore this bias’s implications

on the recommendations’ overall performance.

4.3 Overview

In this chapter, we investigated the capabilities of LLMs in effectively generating automated

human-centered explanations for Recommender Systems by analyzing the perception of

users concerning the satisfaction with the recommendation and the effectiveness, person-

alization, and persuasiveness of the provided explanation. We analyzed this in three dimen-

sions: familiarity, personalization, and intention of the recommendation (positive or negative

recommendation). This analysis contributed by expanding the related literature based on

LLM-Recs that only focused on evaluating the accuracy of recommendations through offline

experiments such as Gao et al. [13] and Harrison, Dereventsov, and Bibin [14].

Thus, we can summarize our findings in the following:

1. Personalized recommendations from ChatGPT yielded higher user satisfaction

than random (but popular) recommendations;

2. Personalized explanations were not perceived as significantly more personalized

than generic explanations unless the recommendations were randomly generated,
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even with them referring to the users’ preferences explicitly;

3. User-based explanations were observed as, in some measure, more effective, per-

sonalized, and persuasive for unfamiliar movies, perhaps because prior knowl-

edge about movies had less influence on decision-making, leaving more room for

explanations to influence users’ choices;

4. Regarding disrecommendations, explanations did not benefit from user-based ex-

planations.

5. Our path modeling analysis revealed the interdependence between the different

recommendation goals, with the explanation effectiveness being strongly pre-

dicted by users’ satisfaction, persuasiveness, and personalization perceptions,

with persuasiveness exerting the most significant influence.

6. Our analysis showed evidence of a popularity bias in the recommendations made

by the GPT model, although a broader study is still necessary to verify this.

7. We shed light on interesting differences in how the model constructed the generic

and user-based explanations in terms of argumentation, revealing that the sim-

plicity of the argumentation in the generic explanations helped to bridge the gap

in perceived effectiveness, even in scenarios where explicit personalization was

expected to dominate.

The experiment and results discussed in this chapter were published in a paper entitled

Leveraging ChatGPT for Automated Human-centered Explanations in Recommender Sys-

tems [36] presented at the 29th International Conference on Intelligent User Interfaces (IUI

2024) held in Greenville, SC, USA in March 2024. An extended version of this paper was

submitted to ACM Transactions on Interactive Intelligent Systems (ACM TiiS) in a special

issue for "IUI 2024 highlights" and is under review.

4.3.1 Limitations

While this analysis demonstrated significant effects of GPT-generated explanations, it has

some limitations. Firstly, we used only one LLM, specifically the GPT 3.5 Turbo, which was
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motivated by its ease of use provided by its API, which required minimal hardware compared

to other LLMs that, by the time, were not available through APIs, such as Meta’s Llama and

Google’s Gemma. This narrowed focus limits the generalization of our findings.

Other limitations stem from the nature of LLMs and are expected and inherent to this

type of technology. When interacting with these models, the formulation of the prompt

can significantly affect the outcome. To minimize the impact of variations in output due to

differences in prompt formulation, we created a standardized set of prompts (see Figure 4.2)

for our study.

Another limitation of our analysis is the arguably limited room for personalization, which

was restricted to six preferences (three liked and three disliked movies). While for a tradi-

tional recommendation model, a modest number of preferences suffice to generate reason-

able recommendations [31], we have no insight into the finer details of how our ChatGPT-

based recommender creates recommendations. However, it should be noted that this exper-

iment focused on comparing personalized (user-based) and generic explanations. With that

in mind, even a relatively modest level of personalization should suffice.

In line with the limited insight into the delicate workings of ChatGPT’s recommendation

process, another limitation arises from the distinction between explanation and justification.

In this context, an explanation can be understood as revealing the algorithmic reason behind

a recommendation, while a justification refers to motivating why an item is recommended

[11]. Considering the recommendation model used in our study, the explanations generated

by our system are rather justifications, i.e., human interpretable snippets informing the study

participants why a particular item was recommended, than explanations. However, in the

context of this analysis, the semantic differences between the terms explanation and justifi-

cation should not affect the outcomes. We further explore whether the explanations provided

by LLM-Recs are faithful (i.e., indeed describe the model internal reasoning) in our RQ2

and Chapter 5.

Lastly, regarding the classification of arguments, we cannot guarantee that GPT-4o is

a good classifier due to the lack of a labeled dataset containing all the classes that could be

used for evaluation. However, it is well known for good classification performance in several

domains. A future study could use the Argument Type Identification Procedure (ATIP) [43]

to increase accuracy and confidence through a step-by-step procedure.



Chapter 5

Faithfulness in Black-Box LLM-based

Recommender Systems’ Explanations

In this chapter, we outline the experiment performed to evaluate the faithfulness of explana-

tions generated by LLM-based Explainable Recommender Systems (LLM-RS), aligned with

our RQ6 and to address the limitations presented in our previous experiment. For this analy-

sis, we investigated the explanations provided by four LLM-Rec in three different domains,

considering recommendations and disrecommendations. The first section details the experi-

mental design (metrics, models, and datasets). The second section presents and discusses the

results. Finally, the last section contains an overview of the results and their contributions

and limitations.

5.1 Experiment Design

5.1.1 Mathematical Formulation

Formally, let U be a set of users and I a set of items. A recommender system R can be

interpreted as a function that, given a user u ∈ U , outputs a set of recommended items

Ru ⊆ I . For this experiment, the role of the recommender system was performed by an

LLM, denoted as L. The LLM received, via prompt, a set of information or preferences

(Iu) about a given user (u ∈ U ) and was tasked with recommending items that the user may

or may not be interested in. A recommendation is considered positive if it is intended to

44
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generate interest in the user, and negative1 otherwise. As this experiment did not require

an online evaluation, we expanded the scope to include three domains—movies, songs, and

books—and four models: GPT4o, Gemma 2 9B, Llama 3 70B, and Mixtral 8x7B. The set

of items consisted of all items within these domains that the LLMs learned during the pre-

training.

For each recommendation, the LLM also provided a self-generated explanation of why

that recommendation was made. To evaluate the faithfulness of these self-explanations, we

adopted an axiomatic approach by adapting the Feature Importance Agreement [48], which

states that if the predicted label of a classification and its rationale are associated, then the

input tokens that are important for the label prediction should also be important for the

rationale generation. In our context, we rephrase this as the following: If a user preference

is important for the recommended item, then it should be present in the explanation with

equal importance. The remainder of this section discusses how to obtain the input items2

importance, concerning both recommendation and explanation and which metrics we used

to compare them.

5.1.1.1 Obtaining user’s preferences importance for the recommendation

Since we treated the LLMs as opaque models, the only elements we can manipulate are the

inputs of the model, and the only elements we can observe are its outputs, which required our

method to be model-agnostic. In the interpretable machine learning literature, two model-

agnostic methods stand out for input feature scoring: LIME [32] and SHAP [23].

LIME works by fitting an explainable surrogate model to perturbations of the input and

the corresponding predictions from the black-box model, then locally explaining the input

based on the surrogate model’s interpretation. On the other hand, SHAP applies the concept

of Shapley Values from game theory to determine the contribution of each input feature to a

given prediction. For this study, we developed our solution based on Shapley Values due to

their desirable properties (detailed in Section 2.4) and the difficulty in fitting an explainable

surrogate model for recommendations, which does not allow us to use LIME. However,

differently from SHAP and CC-SHAP [29], we will not use an approximation of Shapley

1In this work, we also used the term disrecommendation to indicate negative recommendations.
2In the remainder of this chapter, we will use user preference and input item as equivalent terminologies.
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Values but instead calculate it considering all the possible coalitions, i.e., subsets of features,

which guarantees their values to be faithful.

Computing Shapley Values In our recommendation context, the set of players N is equiv-

alent to the input set passed to the recommender. Therefore, the coalitions are subsets of the

input set. Considering RL
u as the recommendations made by the recommender L for user

u and the input set of items Iu, for each r ∈ RL
u , we define Gr as the coalitional game

Gr(Iu, fr), where:

fr(S) : 2
Iu → {0, 1} =

1 r ∈ L(S)

0 otherwise

Thus, to determine the importance of an item (i ∈ Iu) with respect to the recommendation

r for user u, we compute its Shapley Value for game Gr(Iu, fr) by adapting Equation (2.1):

φr
i =

1

n

 ∑
S⊆Iu\{i}

1

C
|S|
n−1

[fr(S ∪ {i})− fr(S)]

 (5.1)

5.1.1.2 Obtaining user’s preferences importance for the explanation

Since our explanations are textual, we computed two textual-based importance scores: Cita-

tion and LLM-ranking.

Citation This metric is based on the premise that if an item is cited in the explanation,

then it is important. Thus, let Er represent the natural language explanation provided for

recommendation r, for each input item i ∈ Iu, we compute the Citation of i with respect to

Er as

c(i, Er) =

1 i ∈ Er

0 otherwise

For example, consider that a user u has interacted with a set of input items Iu =

{item1, item2, item3}, and the system recommends r = item4. The system provides the fol-

lowing natural language explanation for the recommendation: We recommend item4 because

it is similar to item1 and item3, which you have previously engaged with. To compute the

Citation metric, we check if each input item i ∈ Iu is explicitly mentioned in the explanation
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Er. For item1, since it is mentioned in Er, c(item1, Er) = 1. Similarly, item3 is also men-

tioned, so c(item3, Er) = 1. However, item2 is not mentioned, resulting in c(item2, Er) = 0.

Therefore, the Citation values for the input items are c(item1, Er) = 1, c(item2, Er) = 0,

and c(item3, Er) = 1.

LLM-ranking Based on the idea that an item may be mentioned implicitly, which would

not be covered by the previous metric, we prompted GPT-4o with the following task: given a

set of previously consumed items by a user, and the explanation for a recommended item, rank

these items according to the importance given to them by the explanation (Appendix A.3).

Thus, for Er, we obtain REr , which is the ranking for each i ∈ Iu.

5.1.1.3 Faithfulness evaluation

To evaluate the faithfulness of the models’ explanations, we compared the item importance

obtained for the recommendation with the one obtained from the explanation. In this section,

we define the metrics we used for that.

Recall & Precision Let Φ+
r be the set of items with the Shapley Values larger than 0.1 for

recommendation r and Cr be the set of items cited in Er, we define:

Recall =
|Cr ∩ Φ+

r |
|Φ+

r |
and Precision =

|Cr ∩ Φ+
r |

|Cr|
The Recall can be interpreted as the percentage of important items for the recommenda-

tion cited in the explanation. Meanwhile, the Precision can be interpreted as the proportion of

cited items important for the recommendation. For example, consider a scenario where a rec-

ommendation r was made and the explanation Er cited a set of items Cr = {item1, item3}.

Additionally, Φ+
r = {item1, item2, item3}, which includes items with Shapley Values larger

than 0.1. To compute Recall and Precision, we first determine the intersection of Cr and Φ+
r ,

which is Cr ∩ Φ+
r = {item1, item3}. Then, the Recall is calculated as |Cr∩Φ+

r |
|Φ+

r | = 2
3
, and the

Precision is |Cr∩Φ+
r |

|Cr| = 2
2
= 1.

Weighted Coverage Let Rk
Er

be the top-k ranked item from the LLM-ranking for recom-

mendation r, we define:
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WCovr@K =
K∑

n=1

1

n
ϕr
Rn

Er

This can be interpreted as the amount of importance covered by the top-K items ranked

according to the recommendation’s explanation. The importance is weighted by position so

that if the item with a higher Shapley Value appears in a low-ranking position, its contribution

to the metric is attenuated.

Given the scenario where a recommendation r was made, and the LLM-ranking produced

the top-3 ranked items Rk
Er

= [item1, item3, item2]. The Shapley Values for these items with

respect to r are ϕr
item1

= 0.4, ϕr
item3

= 0.3, and ϕr
item2

= 0.2. To compute the Weighted

Coverage for K = 3, we use the formula:

WCovr@3 =
3∑

n=1

1

n
ϕr
Rn

Er
=

1

1
ϕr

item1
+

1

2
ϕr

item3
+

1

3
ϕr

item2

Substituting the values:

WCovr@3 = (1)(0.4) +

(
1

2

)
(0.3) +

(
1

3

)
(0.2) = 0.4 + 0.15 + 0.0667 = 0.6167

Thus, the Weighted Coverage WCovr@3 is 0.6167, reflecting the importance covered

by the top-3 ranked items, where higher-ranked items and those with greater Shapley Values

contribute more to the metric.

5.1.2 The datasets

We selected three distinct domains — movies, music, and books. These domains are re-

curring in the recommendation systems literature and will enhance the robustness of our

results and evaluate the models’ faithfulness across diverse contexts. For each domain, we

chose a dataset. In the following, we provide a detailed description of each dataset and the

corresponding preprocessing steps.

IUI 2024 Movie Preferences This is the dataset from the experiment described in Chapter

4 [36] and contains the movie preferences of 94 users obtained through the survey. Each

user’s preferences consist of three liked and three disliked movies.
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Spotify Million Playlist Dataset The Spotify Million Playlist Dataset (SMPD) [8] was

released in 2018 as part of the ACM Recommender Systems Challenge 2018 and is now

available on Kaggle3. It contains data on one million playlists sampled from Spotify4, in-

cluding playlist names, the number of tracks, the number of distinct albums and artists, and

the tracks themselves. For our experiment, we randomly sampled 100 playlists from the

dataset, extracting the title of each playlist and the title and artist of its first five tracks.

Playlists with fewer than five tracks were excluded prior to sampling.

Book Recommendation Dataset The Book Recommendation Dataset is available on

Kaggle5 and was obtained from the Book-Crossing community6. It contains data from over

270,000 users, with more than one million ratings for approximately 270,000 books. The

ratings range from 0 to 10, where 0 indicates a book the user did not evaluate, and the other

values represent the user’s rating for the book. We excluded books with a zero rating for this

experiment since they represent implicit feedback and do not indicate a user’s disinterest.

We randomly selected 100 users from the dataset and randomly sampled three liked and

disliked books for each. A book was considered liked by a user if it had a rating above the

median rating of the user; otherwise, it was considered disliked.

For both the SMPD and Book Recommendation datasets, we selected 100 samples to

maintain consistency with the number of users in the IUI 2024 Movie Preferences dataset

and because conducting the experiment with a larger sample size would involve significant

time and financial costs.

5.1.3 The models

For this experiment, we followed the paradigm LLMs as Recommender Systems. In this

paradigm, a pre-trained LLM generates recommendations by processing user demographic

and/or consumption data [51]. To ensure diversity and enable comparisons between closed

and open-source models, we selected four of the most popular LLMs available: the closed-

3https://www.kaggle.com/datasets/himanshuwagh/spotify-million
4https://www.spotify.com
5https://www.kaggle.com/datasets/arashnic/book-recommendation-dataset
6https://www.bookcrossing.com
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source OpenAI GPT-4o7 and the three open-sourced models, Gemma 2 9B8, Meta Llama 3

70B9 and Mixtral 8x7B10. The OpenAI’s GPT-4o is an improvement on the GPT-3.5 Turbo

used in the experiment of Chapter 4.

All four models were accessed via APIs using Python libraries: openai-python11 for the

GPT-4o and groq-python12 for the others. Since these models are accessed through APIs,

they were treated as opaque in this study. Although the open-source models are available for

download and local deployment, we accessed them through APIs to avoid the high infras-

tructure costs associated with local runs.

5.1.4 Recommendation tasks

Each model was assessed on three recommendation tasks, corresponding to the three

datasets, with unique prompts for each task. Each task had two prompts: one for obtaining

the recommendations and the other to obtain the explanation of a given recommendation.

We chose to use two prompts to reduce the costs since the recommendation prompt was

also used to get the recommendations for each coalition of inputs for which we did not need

the explanations13. The same prompts were used uniformly across all models for a given

task. Each model was asked to recommend items for each user of each dataset. For each

recommendation, an explanation was also requested. We describe the tasks in Table 5.1.

5.2 Results & Discussion

5.2.1 Recall & Precision

Table 5.2 summarizes the performance of the four models — GPT-4o, Gemma2 9B, Llama3

70B, and Mixtral 8x7B — on the three datasets (Book, Our, and SMPD) using average

7https://openai.com/index/hello-gpt-4o/
8https://huggingface.co/google/gemma-2-9b-it
9https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

10https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
11https://github.com/openai/openai-python
12https://github.com/groq/groq-python
13Considering that in the experiment of the previous chapter, we did not see any difference between prompt

for the recommendation and explanation together and separated, this could be done without harming the exper-

iment validity.
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Table 5.1: Recommendations tasks, their input, and prompts.

Task name Task description Inputs Prompts

Movie recommendation The model is asked

to recommend two

movies the user

may like and two

they may dislike,

along with an

explanation

Three liked and

three disliked

movies

Prompts A.2.1

and A.2.2

Playlist completion The model is asked

to recommend two

songs the user

may include and

two they may not

include in their

playlist, along with

an explanation

The title of the

playlist and the

first five tracks

(name and artist)

Prompts A.2.3

and A.2.4

Book recommendation The model is asked

to recommend two

books the user may

like and two they

may dislike, along

with an explana-

tion

Three liked and

three disliked

books

Prompts A.2.5

and A.2.6

precision (AP), average recall (AR), and the F1-score, computed over the AP and AR, for

both positive and negative recommendations.

The results reveal differences across all three study dimensions: type of recommenda-

tion (positive or negative), domain, and models. Considering the type of recommendation,

negative recommendations consistently showed the lowest average performance across all
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metrics, models, and domains. Similarly to what we found about disrecommendation in our

previous analysis (Chapter 4), this may be due to the reluctance of these models to produce

negative discourse, which, in turn, may lead to the disliked movies not being cited in the

explanations.

As for the varying performance across datasets, it suggests that some domains are

more susceptible to unfaithful explanations. The Book dataset performed worst among the

datasets, with low F1-scores across all models. In contrast, the IUI24 dataset achieved the

highest scores, indicating that the model has better domain knowledge. The SMPD dataset

demonstrated intermediate performance, with models attaining moderate F1-scores. A plau-

sible reason for this may be that the amount of inherent knowledge (data) of the models about

certain domains may differ. However, a specific experiment would be necessary to confirm

this.

Regarding the differences between the models, we can see that GPT-4o demonstrates su-

perior F1-scores for both positive and negative recommendations across all datasets. Mixtral

8x7B, while slightly behind GPT-4o, consistently ranks second. Llama3 70B and Gemma2

9B sometimes show competitive performance, but their overall scores remain lower than

those of GPT-4o and Mixtral 8x7B. These results suggest that some models perform better

in terms of faithfulness than others.

Additionally, we also observed higher values of AP across all the domains and models

in comparison with AR, thus suggesting that the explanations cite important items with a

certain frequency, although they do not cover all the important items.

One drawback about this metric is that it does not consider the importance rank of the

items. Thus, a model can achieve good results without, for example, citing the most im-

portant item. Also, this metric ignores implicit citations of the input items since it is based

on textual occurrence (see Table 5.3). Thus, it leads to the need for a more contextualized

metric such as Weighted Coverage.

5.2.2 Weighted Coverage

As detailed previously, the Weighted Coverage is computed considering the rank obtained

by GPT-4o from the explanation and the computed Shapley Values of the input items. Figure

5.1 illustrates the distribution of Weighted Coverage at Top-3 (WCov@3) for both positive
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Table 5.2: Average Precision and Recall

Positive Recs. Negative Recs.

Model Dataset AR AP F1 AR AP F1

GPT-4o Book 0.192 0.275 0.226 0.380 0.569 0.456

IUI24 0.769 0.721 0.744 0.661 0.698 0.679

SMPD 0.660 0.662 0.661 0.571 0.664 0.614

Gemma2 9B Book 0.132 0.238 0.170 0.282 0.455 0.349

IUI24 0.692 0.663 0.677 0.434 0.475 0.453

SMPD 0.393 0.577 0.468 0.147 0.313 0.200

Llama3 70B Book 0.198 0.284 0.233 0.298 0.507 0.376

IUI24 0.702 0.721 0.712 0.487 0.724 0.582

SMPD 0.639 0.625 0.632 0.287 0.507 0.366

Mixtral 8x7B Book 0.277 0.494 0.355 0.309 0.682 0.426

IUI24 0.672 0.613 0.641 0.559 0.653 0.602

SMPD 0.559 0.804 0.659 0.431 0.774 0.554

Note:

AR = Average Recall

AP = Average Precision

F1 = F1-score of Average Recall and Precision
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(TRUE) and negative (FALSE) recommendations across the four models — Gemma2 9B,

GPT-4o, Llama3 70B, and Mixtral 8x7B — and the three datasets: Book, IU24, and SMPD.

The red dashed line represents a reference value (0.5) established based on observations

made during the analysis of the data. Items’ explanations with a score lower than 0.5 were

observed to be highly unfaithful. Meanwhile, the explanations with a score above seemed

more faithful.

Due to the novelty of the method applied, especially in the recommendation scenario,

we could not find a comparable method to use as our comparison baseline. Other model-

agnostic faithfulness tests, such as input perturbation via counterfactual and adversarial ex-

amples, are not easy to apply since obtaining a counterfactual for a movie, for example, is

not straightforward and would require a helper model trained on task-specific data. In turn,

input reconstruction methods would be easy for the model to answer since the input items

are usually cited in the explanation.

Llama3 70B Mixtral 8x7B

Gemma2 9B GPT−4o

Book IUI24 SMPD Book IUI24 SMPD
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Figure 5.1: Distribution of the Weighted Coverage at Top-3 for the four models and three

datasets

Across all models and datasets, there is a notable distinction between the distributions

for positive and negative recommendations, with the positive generally achieving higher

WCov@3 values, except in the case of the Book dataset, where the opposite occurs, which

indicates that the models are more effective in producing faithful explanations for positive

recommendations. Again, this may be due to the models’ reluctance to produce negative
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comments on some topics, which may lead them to not using the negative preferences when

explaining a negative recommendation.

The IUI24 dataset yields the highest median WCov@3 values across most models. Con-

versely, the Book dataset shows lower WCov@3 values for recommendations and disrec-

ommendation, with all the models having at least 75% of the explanations below the ref-

erence value. The SMPD dataset shows moderate performance, with broader variability in

WCov@3 values across all models. This aligns with the results for Precision and Recall and

indicates the relation between the model’s knowledge of a specific domain and its capabilities

to provide faithful explanations.

Table 5.3: Example of Mixtral 8x7B’s Movie Recommendation

Model Positive Rec. Recall Precision WCov@3

Mixtral 8x7B Yes 0.75 0.6 -0.181

Explanation The Godfather is a classic crime film known for its strong characters and

intricate plot, which you may enjoy based on your preference for action-

packed movies like Terminator 2: Judgment Day and Charlie’s Angels.

It is not a horror movie, which aligns with your dislike of Scary Movie,

Scream, and Friday the 13th.

GPT Ranking Liked Name Shapley Value

1 Yes Terminator 2: Judgment Day -0.250

2 Yes Charlie’s Angels -0.150

3 No Scary Movie 0.433

4 No Scream 0.383

5 No Friday the 13th 0.133

6 Yes Thelma & Louise 0.450

Regarding model-specific observations, GPT-4o consistently exhibits higher median

WCov@3 values for positive recommendations across all datasets, particularly in the IU24

dataset, surpassing other models. Llama3 70B and Gemma2 9B perform similarly in all the

datasets; both are slightly better than Mixtral 8x7B, which displays lower medians overall.
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This contrasts with the previous metrics, where Mixtral 8x7B was the second best, which

indicates that although relevant items are used in the explanations, their relevance in the

explanations may not align with the input-item relevance.

Table 5.3 shows an example of Mixtral 8x7B’s movie recommendation with good scores

in the Recall and Precision but with a negative score for the WCov@3. The explanation

uses the liked movies to justify the recommendation, which is expected since it is a positive

recommendation. However, looking at the Shapley Values, the explanation cites two liked

movies with negative scores, indicating that they did not contribute to the recommendation.

Moreover, it leaves out the positive movie with the highest score, indicating an unfaithful ex-

planation. In contrast, Table 5.4 shows a book disrecommendation example from the Llama

model, in which both the perceive importance extract from the explanation and the Shapley

Values align. The explanation starts by highlighting the differences of the disrecommended

book with the books the user liked, which include the one with the highest Shapley Value.

5.3 Overview

In this chapter, our goal was to address RQ6, which intended to verify if the explanations

given by LLM-based Explainable Recommender Systems are faithful. In order to do this

and taking into account that we were using these models as black boxes, we opted for an ax-

iomatic test. Considering the Feature Importance Agreement [48], we investigated whether

the importance of the input items for the recommendation and its explanation were aligned.

We used Shapley Values to compute the input items’ importance for the recommenda-

tion and considered two ways of obtaining the input importance regarding the explanation:

citation and LLM-based ranking.

The results highlighted differences between models, domains, and the type of recommen-

dation (positive or negative). Regarding the models, GPT-4o consistently achieved better

metrics across all domains. Domains’ differences were perceived in the four models, with

the movie domain leading to the better metrics and the book domain to the worst, which,

as discussed, may be due to the knowledge of the models. Explanations for positive recom-

mendations also showed higher scores overall, which may be caused by the models’ intrinsic

instructions to avoid damaging or harmful speeches.
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Table 5.4: Example of Llama3 70B’s Book Recommendation

Model Positive Rec. Recall Precision WCov@3

Llama3 70B No 1 0.25 0.772

Explanation Based on the user’s reading preferences, it is likely that they will not en-

joy ’The Devil Wears Prada’ by Lauren Weisberger. The user has shown

a strong interest in non-fiction books that focus on science, technology,

and engineering, as seen in their liked books ’The CASE FOR MARS’,

’Modern Operating Systems’, and ’Applied Cryptography’. In contrast,

’The Devil Wears Prada’ is a work of fiction that focuses on fashion and

relationships, which is a significant departure from the user’s preferred

genres. Additionally, the user has disliked books that are more focused on

personal stories and relationships, such as ’What Not to Wear’ and ’Raj: A

Novel’, which further suggests that they may not enjoy ’The Devil Wears

Prada’.

GPT Ranking Liked Name Shapley Value

1 Yes The CASE FOR MARS - by Robert Zubrin 0.717

2 Yes Modern Operating Systems - by Andrew S.

Tanenbaum

0.100

3 Yes Applied Cryptography: Protocols, Algo-

rithms, and Source Code in C, Second Edition

- by Bruce Schneier

0.017

4 No What Not to Wear - by Susannah Constantine 0.100

5 No Raj: A Novel - by Gita Mehta 0.050

6 No Man Who Mistook His Wife for a Hat - by

Oliver Sacks

0.017
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Overall, the results indicated that LLMs do not consistently generate faithful explanations

for recommendations, as the explanations did not satisfy the axiomatic test in all the cases,

which answers RQ6. These findings indicate that LLM-generated explanations should be

carefully considered since they present a persuasive tone and very plausible reasoning but

may mask the actual reasoning.

5.3.1 Limitations

Similarly to the previous analysis, one of this study’s limitations comes from the nature of

the non-deterministic nature of the LLMs. Different prompt formulations could significantly

affect the results. To mitigate the impacts of this characteristic, we consistently used the

same prompt for a given task across all models. Also, we set the models’ temperature to zero

to obtain more stable responses.

Another limitation comes from the limited number of input items, which may not provide

the model with sufficient information for accurately personalized recommendations. How-

ever, given the scope of this analysis, even a relatively modest level of personalization should

be enough for the model to generate recommendations and explanations.

Using LLMs as black boxes also brings some limitations, as it limits our access to the

models at their input and output, which limits our space to produce metrics and evaluation

methods with more insight into the inner processing steps of the models, like their embed-

dings and output token probabilities. However, we chose to deal with them as black boxes to

produce a model-agnostic technique since one of the current most powerful models (GPT-4o)

is a closed-source model.

As stated previously, there’s no sufficient test for attesting the faithfulness of natural lan-

guage explanations, so we could not fully answer our research question. However, we were

able to provide some necessary conditions for a faithful explanation in the recommendation

scenario through the Weighted Coverage metric, with an explanation needing to achieve at

least 0.5 in the WCov@3 to not be considered unfaithful. We also provided insights regard-

ing the capabilities of four popular models in different domains and types of recommenda-

tions.

Lastly, Citation and LLM-based Ranking were used to compute the importance of the

input items with respect to the textual explanations. However, these metrics do have their
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limitations. Since the Citation metric was computed using text matching,minor spelling vari-

ations of items mentioned in the explanation could have resulted in lower scores. Regarding

the Ranking, the specific criteria used by the LLM remain unclear, making it difficult to

guarantee the accuracy of the results.



Chapter 6

Conclusions

This thesis set out to explore the capabilities of Large Language Models (LLMs) in gener-

ating automated, human-centered explanations for recommender systems, as well as their

faithfulness in reflecting the internal reasoning of these models. To address this, we elabo-

rated six research questions (RQ1 to RQ6) aiming to shed light on the practical utility, user

perception, and limitations of LLM-based Explainable Recommender Systems.

Our findings demonstrate that LLMs, specifically the GPT-3.5 Turbo, can generate rec-

ommendations that enhance user satisfaction compared to random (but popular) recommen-

dations. Furthermore, user-based explanations were perceived as somewhat more effective,

personalized, and persuasive for unfamiliar movies. Through a path modeling analysis, we

detailed the interdependence between the different goals of an explanation - satisfaction,

persuasiveness, and personalization - and how these goals can strongly predict the effective-

ness of the explanations. We also observed evidence of popularity bias in the recommended

items, with high and low IMDb ratings favored for positive and negative recommendations,

respectively. These findings were compiled in a paper entitled Leveraging ChatGPT for Au-

tomated Human-centered Explanations in Recommender Systems [36] presented at the 29th

International Conference on Intelligent User Interfaces (IUI 2024).

Additionally, we analyzed the types of arguments presented in the explanations. We no-

ticed that most of the arguments were Arguments from Evaluation, which justified watching

the movies by a statement of value about the movie. Our analysis examined how the model

generated both generic and user-specific explanations through argumentation. It demon-

strated that the straightforwardness of the argumentation in the generic explanations helped

narrow the gap in perceived effectiveness, even in contexts where explicit personalization
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was anticipated to prevail. These findings were included in an extended version of the pa-

per and submitted to ACM Transactions on Interactive Intelligent Systems (ACM TiiS) in a

special issue for "IUI 2024 highlights", which is under review.

Regarding the faithfulness of explanations, we adopted an axiomatic approach using the

Feature Importance Agreement and found partial alignment between the importance of the

input items for recommendations and explanations by comparing Shapley Values for recom-

mendation input importance against citation- and LLM-based rankings for explanations. Key

insights include: (1) The results indicated that LLMs do not consistently generate faithful ex-

planations for recommendations, as the explanations frequently did not meet the criteria of

the test; (2) GPT-4o emerged as the model with less unfaithful explanations, to the extent

of our test, across all the investigated domains, particularly excelling in positive recommen-

dation scenarios; (3) Variability in performance was observed across models, domains, and

recommendation types.

Contributions This thesis contributes to the growing body of work on LLM-based rec-

ommender systems by providing: (1) A user-centric evaluation framework of explanation

quality, expanding beyond offline accuracy metrics; (2) A new dataset regarding LLM-based

recommendations and users perceptions; (3) An axiomatic method for assessing explana-

tion faithfulness, adaptable across models and domains; (4) Insights into user preferences,

explanation types, and the interplay between different goals of recommendation systems;

(5) Details regarding the types of arguments that form the explanations in the scenarios of

generic and user-based explanations.

Reproducibility The code and analysis needed to reproduce the experiments de-

tailed in this work are available on GitHub at https://github.com/issilva5/

llm-recommendations-survey for the experiments of Chapter 4 and at https:

//github.com/issilva5/llm-explanations-faithfulness for Chapter 5.

Limitations Several limitations emerged throughout the study and were detailed in the

chapters when relevant. The main limitations were the output variability due to non-

deterministic behavior, restricted personalization stemming from a limited input scope, and

the black-box nature of models, which limited the scope of some evaluations. Whenever
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possible, we attempted to mitigate these limitations. For example, we employed strategies

such as controlling the temperature of the LLMs to increase their determinism.

Ethics Statement This work examines how to evaluate faithfulness of self-explanations

produced by LLM-based Recommender Systems. Consequently, any errors in our approach

might result in unfounded confidence or doubt regarding LLMs. While increased skepticism

is unlikely to lead to ethical problems, unwarranted confidence can pose significant risks.

Thus, the takeaway from this work is that LLM-Recs should not be presumed to offer faithful

explanations.

Future Work Building on the findings and limitations, future work should explore: (1)

Broader evaluations using multiple LLMs to generalize findings; (2) Enhanced person-

alization techniques with larger input scopes and diverse datasets; (3) Development of

standardized metrics for faithfulness in natural language explanations; (4) Deeper explo-

ration of the distinction between explanation and justification in LLM-based Recommender

Systems.

In conclusion, while LLMs show promise in generating human-centered explanations for

recommender systems, challenges remain in aligning user perception with objective faithful-

ness. This work provides a foundational step toward bridging this gap, with implications for

designing and evaluating future Explainable LLM-based Recommender Systems.
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Appendix A

Prompts

A.1 Prompts for Explanations’ Arguments Classification

Here, we present the prompt we used for obtaining the classification of the types of argu-

ments present in the explanations sentences for the experiment of Chapter 4. We present it in

text in this document, but the code that generates it is present in the experiment codebase1.

PROMPT A.1.1: Explanations’ Arguments Classification

Task: You will act as a Classifier. Your task is to identify

the type of argument present in each input sentence based on

the predefined classes below. Follow the instructions

carefully and output your results in the specified format.

CLASSES:

1. No Argument

Code: NA

Description: Sentences that do not present an argument.

Example: "Anna is eating ice cream."

2. Argument from Analogy

Code: An

1https://github.com/issilva5/llm-recommendations-survey
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Description: Argues that because two things are similar,

what is true of one is also true of the other.

Example: "Cycling on the grass is prohibited, because

walking on the grass is prohibited."

3. Argument from Authority

Code: Au

Description: Relies on the opinion of an authority figure

as evidence.

Example: "We only use 10\% of our brain, because Einstein

said so."

4. Argument from Commitment

Code: Comm

Description: States a claim supported by something the

addressee has previously said.

Example: "You said it yourself, we’re the best in the

world."

5. Argument from Comparison

Code: Comp

Description: Evaluates a situation, object, or idea by

comparing it to another.

Example: "The president in wartime should not be swapped,

because horses when crossing streams should not be swapped."

6. Argument from Criterion

Code: Cr

Description: Makes an argument considering specific

criteria.

Example: "Haarlem is a better city to visit than Amsterdam
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because Haarlem has fewer tourists."

7. Argument from Disjuncts

Code: Di

Description: Concludes something happened because an

alternative did not.

Example: "He must have gone to the pub, because the

interview is canceled."

8. Argument from Effect

Code: Ef

Description: Draws from consequences to infer the cause.

Example: "In the centre of Amsterdam, parking rates must

have gone up, because there are more empty spaces on the

streets."

9. Argument from Equality

Code: Eq

Description: Based on the principle of equality, asserting

that similar circumstances should lead to similar treatment.

Example: "Dutch royals should pay taxes, because every

other citizen pays taxes."

10. Argument from Evaluation

Code: Ev

Description: Argues based on personal experiences of good

/bad or effective/ineffective.

Example: "You should do paragliding because it is a great

experience."

11. Argument from Opposites
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Code: Op

Description: Concludes something by presenting the

persuasiveness of its opposite.

Example: "Since false statements are persuasive, you

should believe the opposite too."

12. Argument from Sign

Code: Sg

Description: Asserts that the presence or absence of one

thing indicates the presence or absence of another.

Example: "She likes Patricia because she is looking at

her all the time."

13. Argument from Similarity

Code: Sim

Description: Infers a fact based on its similarity to

another fact.

Example: "Establishing gun control in present-day U.S.

will lead to genocide, because establishing gun control in

historical Germany led to genocide."

14. Argumentum ad Populum

Code: Po

Description: Asserts something is true or correct because

many people think so.

Example: "Many people said I’m the best writer in the

world, so I’m."

15. Pragmatic Argument

Code: Pra

Description: Evaluates actions, events, or rules based on
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their favorable or unfavorable consequences.

Example: "Sleeping in the dark should be done by children

, because sleeping in the dark prevents them from ruining

their eyesight."

INPUT FORMAT

You will receive one or more sentences as input. Each

sentence represents a potential argument.

INPUT:

1. <sentence 1>

2. <sentence 2>

3. <sentence 3>

OUTPUT FORMAT

Your output should be a JSON object with the following

structure:

{

"classification": [

"Code_for_sentence_1",

"Code_for_sentence_2",

...

]

}



A.2 Prompts for Faithfulness Experiment 75

A.2 Prompts for Faithfulness Experiment

Here, we present the prompts used to obtain the recommendations and explanations in the

Faithfulness Experiment of Chapter 5. We present it in text in this document, but the code

that generates it is present in the experiment codebase2.

PROMPT A.2.1: Movies - Recommendation

You are a movie recommendation assistant. Your task is to

recommend movies to a user based based on the provided

information about the user preferences. The user wants two

movie recommendations that their will like (aka. positive)

and two movie recommendations that they will not (aka.

negative).

----------

Input:

- Liked movies: <liked_movie_1>; <liked_movie_2>; <

liked_movie_3>

- Disliked movies: <disliked_movie_1>; <disliked_movie_2>; <

disliked_movie_3>

----------

Output:

- The output must be a JSON object.

- Include no additional text besides the JSON

- The JSON object must have the following format:

{

"recommendations": [

{

"title": "movie title",

"positive": true

},

2https://github.com/issilva5/llm-explanations-faithfulness
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{

"title": "movie title",

"positive": true

},

{

"title": "movie title",

"positive": false

},

{

"title": "movie title",

"positive": false

}

]

}

PROMPT A.2.2: Movies - Explanation

You are a movie recommendation assistant. Your task is to,

based on the information provided about the user’s

preferences, explain why they received a certain

recommendation. The recommendation can either be positive (a

movie they should watch) or negative (a movie they should

avoid).

----------

Input:

- Liked movies: <liked_movie_1>; <liked_movie_2>; <

liked_movie_3>

- Disliked movies: <disliked_movie_1>; <disliked_movie_2>; <

disliked_movie_3>

Recommendation: <recommendation>
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Recommendation type: <positive|negative>

----------

Output:

- The output must be a JSON object.

- Include no additional text besides the JSON

- The JSON object must have the following format:

{

"explanation": "explanation"

}

PROMPT A.2.3: Songs - Recommendation

You are a music playlist recommendation assistant. Your task

is to recommend songs to be added to a user’s playlist based

on the provided information about the playlist. The user

wants two songs that fit the playlist (aka. positive) and two

songs that do not (aka. negative).

----------

Input:

- Playlist’s title: <playlist_title>

- Playlist’s current songs:

1. <song_1> by <artist>

2. <song_2> by <artist>

3. <song_3> by <artist>

----------

Output:

- The output must be a JSON object.

- Include no additional text besides the JSON

- The JSON object must have the following format:

{

"recommendations": [
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{

"title": "Song title",

"artist": "Artist",

"positive": true

},

{

"title": "Song title",

"artist": "Artist",

"positive": true

},

{

"title": "Song title",

"artist": "Artist",

"positive": false

},

{

"title": "Song title",

"artist": "Artist",

"positive": false

}

]

}

PROMPT A.2.4: Songs - Explanation

You are a music playlist recommendation assistant. Your task

is to, based on the provided information about the playlist,

explain why they received a certain recommendation. The

recommendation can either be positive (a song they may add to

the playslit) or negative (a song they should avoid).

----------
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Input:

- Playlist’s title: <playlist_title>

- Playlist’s current songs:

1. <song_1> by <artist>

2. <song_2> by <artist>

3. <song_3> by <artist>

Recommended Song: <recommendation_title> - by <

recommendation_artist>

Recommendation type: <positive|negative>

----------

Output:

- The output must be a JSON object.

- Include no additional text besides the JSON

- The JSON object must have the following format:

{

"explanation": "explanation"

}

PROMPT A.2.5: Books - Recommendation

You are a book recommendation assistant. Your task is to

recommend books to a user based based on the provided

information about the user reading preferences. The user

wants two book recommendations that their will like (aka.

positive) and two book recommendations that they will not (

aka. negative).

----------

Input:

- Liked books: <liked_book_1> by <author>; <liked_book_2> by

<author>; <liked_book_3> by <author>
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- Disliked books: <disliked_book_1> by <author>; <

disliked_book_2> by <author>; <disliked_book_3> by <author>

----------

Output:

- The output must be a JSON object.

- Include no additional text besides the JSON

- The JSON object must have the following format:

{

"recommendations": [

{

"title": "Book title",

"author": "Author",

"positive": true

},

{

"title": "Book title",

"author": "Author",

"positive": true

},

{

"title": "Book title",

"author": "Author",

"positive": false

},

{

"title": "Book title",

"author": "Author",

"positive": false

}

]

}
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PROMPT A.2.6: Books - Explanation

You are a book recommendation assistant. Your task is to,

based on the provided information about the user reading

preferences, explain why they received a certain

recommendation. The recommendation can either be positive (a

book they should read) or negative (a book they should avoid)

.

----------

Input:

- Liked books: <liked_book_1> by <author>; <liked_book_2> by

<author>; <liked_book_3> by <author>

- Disliked books: <disliked_book_1> by <author>; <

disliked_book_2> by <author>; <disliked_book_3> by <author>

Recommendation: <recommendation_title> - by <

recommendation_author>

Recommendation type: <positive|negative>

----------

Output:

- The output must be a JSON object.

- Include no additional text besides the JSON

- The JSON object must have the following format:

{

"explanation": "explanation"

}

A.3 Prompts for Ranking Items based on the Explanation

Here, we present the prompts to obtain the rankings of the input items based on their impor-

tance to the recommendation as perceived in the explanation. We present it in text in this
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document, but the code that generates it is present in the experiment codebase3.

PROMPT A.3.1: Prompt for Ranking Items in the Explanation for Movies

The movie <recomendation> was recommended to [not] be watched

by a certain user.

The recommended system provided the following explanation: <

explanation>.

Your task is to given the recommendation and its explanation,

provide a ranking of the input features based on their

importance to the recommendation.

----------

Input features:

- Liked movies: <liked_movie_1>; <liked_movie_2>; <

liked_movie_3>

- Disliked movies: <disliked_movie_1>; <disliked_movie_2>; <

disliked_movie_3>

----------

Output:

- The output must be a JSON object.

- The JSON must have one key, "ranking", which is a list of

the input features in order of importance.

- Each movie is an input feature. All features must be

included in the ranking.

- Consider the following feature names: ["liked_movie_1", "

liked_movie_2", "liked_movie_3", "disliked_movie_1", "

disliked_movie_2", "disliked_movie_3"]

- Include no additional text besides the JSON.

3https://github.com/issilva5/llm-explanations-faithfulness
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- The JSON object must have the following format:

{

"ranking": [

{"name": "feature_name_1", "value": "feature_1}",

{"name": "feature_name_2", "value": "feature_2}",

{"name": "feature_name_3", "value": "feature_3}",

...

]

}

PROMPT A.3.2: Prompt for Ranking Items in the Explanation for Songs

The song <recomendation> was recommended to [not] be added to

a user playlist.

The recommended system provided the following explanation: <

explanation>.

Your task is to given the recommendation and its explanation,

provide a ranking of the input features based on their

importance to the recommendation.

----------

Input features:

- Playlist’s title: <playlist_title>

- Playlist’s current songs:

1. <song_1> by <artist>

2. <song_2> by <artist>

3. <song_3> by <artist>

----------

Output:

- The output must be a JSON object.
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- The JSON must have one key, "ranking", which is a list of

the input features in order of importance.

- The playlist’s title and each song are input features. All

features must be included in the ranking.

- Consider the following feature names: ["playlist_name", "

song_1", "song_2", "song_3", "song_4", "song_5"]

- Include no additional text besides the JSON.

- The JSON object must have the following format:

{

"ranking": [

{"name": "feature_name_1", "value": "feature_1}",

{"name": "feature_name_2", "value": "feature_2}",

{"name": "feature_name_3", "value": "feature_3}",

...

]

}

PROMPT A.3.3: Prompt for Ranking Items in the Explanation for Books

The book <recomendation> was recommended to [not] be read by

a certain user.

The recommended system provided the following explanation: <

explanation>.

Your task is to given the recommendation and its explanation,

provide a ranking of the input features based on their

importance to the recommendation.

----------

Input features:

- Liked books: <liked_book_1>; <liked_book_2>; <liked_book_3>
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- Disliked books: <disliked_book_1>; <disliked_book_2>; <

disliked_book_3>

----------

Output:

- The output must be a JSON object.

- The JSON must have one key, "ranking", which is a list of

the input features in order of importance.

- Each book is an input feature. All features must be

included in the ranking.

- Consider the following feature names: ["liked_book_1", "

liked_book_2", "liked_book_3", "disliked_book_1", "

disliked_book_2", "disliked_book_3"]

- Include no additional text besides the JSON.

- The JSON object must have the following format:

{

"ranking": [

{"name": "feature_name_1", "value": "feature_1}",

{"name": "feature_name_2", "value": "feature_2}",

{"name": "feature_name_3", "value": "feature_3}",

...

]

}


