
Universidade Federal da Paraíba

Universidade Federal de Campina Grande

Programa Associado de Pós-Graduação em Matemática

Doutorado em Matemática

Quasilinear Problems on
Non-Reflexive Orlicz-Sobolev Spaces

by

Lucas da Silva

Campina Grande - PB

August/2024



Quasilinear Problems on
Non-Reflexive Orlicz-Sobolev Spaces

by

Lucas da Silva †

Advised by

Prof. Dr. Marco Aurélio Soares Souto

Thesis presented to the Associate Graduate Program in

Mathematics UFPB/UFCG as partial fulőllment of the

requirements for the degree of Doctor of Mathematics.

Campina Grande - PB

August/2024

†This work was supported by funding from FAPESQ and CAPES

ii



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
S586q 

 
Silva, Lucas da. 

 Quasilinear problems on non-reflexive Orlicz-Sobolev spaces / Lucas 
da Silva. – Campina Grande, 2024. 

160 f.  

 
       Tese (Doutorado em Matemática) – Universidade Federal de Campina 
Grande, Centro de Ciências e Tecnologia, 2024. 

 "Orientação: Prof. Dr. Marco Aurélio Soares Souto". 
Referências. 

 1. N-Funções. 2. Espaço de Orlicz-Sobolev. 3. Métodos Variacionais. 
4. Funcionais Localmente Lipschitz. 5. Condição ∆2. 6. Equações de 
Schrödinger. I. Souto, Marco Aurélio Soares. II. Título. 

 
 
                                                                                                       CDU 51(043)  

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECÁRIA MEIRE EMANUELA DA SILVA MELO CRB-15/568 





ABSTRACT

The goal of this paper is to study the existence of solutions for some classes of el-

liptic PDEs involving the Φ-Laplacian operator, ∆Φ. Firstly, in order to generalize the

results obtained in the paper [10], we present the study of two quasilinear Schrödinger

equations with potential vanishing at inőnity and the N -function Φ̃(Complementary

of function Φ) may not satisfy the ∆2-condition. Here we present new compact em-

beddings in R
N that are commonly known as Hardy-Type inequalities. These inequal-

ities, associated with a Mountain Pass Theorem without the Palais-Smale condition

for Gateaux-diferentiable energy functionals (Ghoussoub-Preiss Mountain Pass The-

orem), yield solutions for the classes of problems initially studied. It is worth noting

that in one of the classes, we assume that the nonlinearity of the problem is a non-local

type with a Stein-Weiss convolution term. The regularity of the solutions was obtained

using the regularity results due to Lieberman [24].

In a second part of this thesis, we study the existence of solutions for two

classes of quasilinear systems driven by the operators ∆Φ1 (Φ1-Laplacian) and ∆Φ2

(Φ2-Laplacian) where the N -functions Φ1 and Φ2 or Φ̃1 and Φ̃2 may not satisfy the ∆2-

condition. In the őrst class, we relax the ∆2-condition of the functions Φi(i = 1, 2) and

present a deőnition for the well-known Ambrosetti-Rabinowitz condition for nonlineari-

ty. In this class we base the results on a Rabinowitz saddle point theorem without

the Palais-Smale condition for diferentiable Fréchet functionals combining with pro-

perties of the weak topology∗. In the second class, we relax the ∆2-conditions of the

N -functions Φ̃i(i = 1, 2) and assume that the nonlinearity has supercritical growth.

Here, we use a link theorem without the Palais-Smale condition for locally Lipschitz

functionals and combine it with a concentration-compactness lemma for non-reŕexive

Orlicz-Sobolev space to guarantee the existence of solutions for this class.

Keywords: N -functions, Orlicz-Sobolev space, Variational methods, locally Lip-

schitz functionals, ∆2-condition, Schrödinger equation.
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RESUMO

O objetivo dessa tese é estudar a existência de solução de algumas classes de

EDPs elípticas envolvendo o operador Φ-Laplaciano, ∆Φ. Num primeiro momento,

com o intuito de generalizar os resultados obtidos no paper [10], apresentamos o estudo

de duas equações quasilineares Schrödinger com potenciais que podem se anular no

inőnito e a N -função Φ̃(Complementar da função Φ) pode não satisfazer a condição ∆2.

Aqui, apresentamos novas imersões compactas no R
N que comumente são conhecidas

como desigualdades do Tipo Hardy, essas desigualdades, associadas a um Teorema do

Passo da Montanha sem a condição de Palais-Smale para funcionais energia Gateaux-

diferentiable (Teorema do Passo da Montanha de Ghoussoub-Preiss) produzem uma

solução para as classes de problemas inicialmente estudadas. Vale ressaltar que em uma

das classes assumimos que a não linearidade do problema é tipo não local com termo

de convolução de Stein-Weiss. A regularidade das soluções foram obtidas utilizando-se

dos resultados de regularidade devido a Lieberman [24].

Num segundo momento dessa tese, passamos a estudar a existência de soluções

para duas classes de sistemas quasilineares dirigidos pelos operadores ∆Φ1 (Φ1-Laplacian)

e ∆Φ2 (Φ2-Laplacian) onde as N -funções Φ1 e Φ2 ou Φ̃1 e Φ̃2 podem não satisfazer a

condição ∆2. Na primeira classe, relaxamos a ∆2-condition das funções Φi(i = 1, 2)

e apresentamos uma deőnição para a conhecida condição de Ambrosetti-Rabinowitz

para a não linearidade. Nessa classe baseamos os resultados em um teorema do ponto

de sela de Rabinowitz sem a condição de Palais-Smale para funcionais Fréchet dife-

renciáveis combinando com propriedades da topologia fraca∗. Na segunda classe, rela-

xamos as condições ∆2 das N -funções Φ̃i(i = 1, 2) e assumiremos que a não-linearidade

tem crescimento super-crítico. Aqui, usamos um teorema de link sem a condição de

Palais-Smale para funcionais localmente de Lipschitz e combinamos com um lema de

concentração-compacidade para espaço de Orlicz-Sobolev não reŕexivo para garantir a

existência de soluções para essa classe.

Palavras-chave: N -funções, espaço de Orlicz-Sobolev, métodos variacionais,

funcionais localmente Lipschitz, condição ∆2, equações de Schrödinger.
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Chapter 1

Introduction

In the study of partial diferential equations, we encounter problems such as

(1.1) −∆pu = f(x, u) in Ω

where f(x, ·) is a continuous function in R for each x ∈ Ω (where Ω ⊂ R
N is a domain)

and p > 1. The above operator frequently appears in physical models, for example in

Newtonian and non-Newtonian ŕuids (see [42, 43] and references therein). There are

several techniques to address problem (1.1), one of which is the well-known variational

method. This method associates the problem with a functional, commonly called the

energy functional in the literature, which in this case would be a functional I : X → R

given by

(1.2) I(u) =
1

p

∫

RN

|∇u|pdx−

∫

Ω

F (x, u)dx

where F (t) =
∫ t

0
f(s)ds and X is a Banach space. Under suitable conditions on the

function f : Ω × R → R the functional (1.2) belongs to the class C1(X,R). Conse-

quently, the equation (1.1) can be approached by őnding critical points of the functional

I, i.e., functions u ∈ X such that I ′(u) = 0, where I ′ is the Fréchet derivative of the

functional I. Some topological properties of the energy space X, such as separabi-

lity and reŕexivity, are also crucial when studying the critical points of the energy

functional. The works of Schwartz [36], Palais and Smale [68], Ambrosetti and Rabi-

nowitz [2], and Benci and Rabinowitz [71] are clear examples of how to obtain critical



points for a functional belongs to the class C1 and highlight the importance of reŕexi-

vity in obtaining critical points for the functional I.

In order to generalize the study of equations of the type (1.1), several authors

have recently been working on quasilinear equations of the form

(1.3) −∆Φu = f(x, u) in Ω

where f(x, ·) is a continuous function on R for each x ∈ Ω (where Ω ⊂ R
N is a domain)

and ∆Φu = div(ϕ(|∇u|)∇u) in which ϕ : (0,∞) → (0,∞) is a function C1 so that the

function Φ : R → [0,∞) of the type

Φ(t) =

∫ |t|

0

sϕ(s)ds, t ∈ R,

is an N -function (See Deőnition 2.1). The operator described above is associated

with many applications in physics, such as nonlinear elasticity, plasticity, generalized

Newtonian ŕuids, non-Newtonian ŕuids, and plasma physics. The reader can őnd more

details about this subject in [66], [47], [57], and their references. Similarly to what was

described for equation (1.1), associated with the problem (1.3) we have the energy

functional I : W 1,Φ(Ω) → R given by

(1.4) I(u) =

∫

RN

Φ(|∇u|)dx−

∫

Ω

F (x, u)dx,

where F (t) =
∫ t

0
f(s)ds. It is easily seen in the literature that this functional belongs to

C1 when the so-called ∆2-condition (See deőnition 2.4) is assumed on Φ and Φ̃ (Com-

plementary function of Φ). Furthermore, this ensures that the Orlicz-Sobolev space

W 1,Φ(Ω) and D1,Φ(Ω) are reŕexive Banach spaces (See for instance Chapter 2). The

papers Bonanno, Bisci and Radulescu [20, 21], Cerny [67], Clément, Garcia-Huidobro

and Manásevich [63], Donaldson [69], Fuchs and Li [45], Fuchs and Osmolovski [47],

Fukagai, Ito and Narukawa [59], Gossez [34], Le and Schmitt [72], Mihailescu and Rad-

ulescu [50, 51], Mihailescu and Repovs [52], Mihailescu, Radulescu and Repovs [53],

Mustonen and Tienari [74], Alves e.t.al [9], Orlicz [75] and their references, are clear

examples of works where the so-called ∆2-condition is assumed on Φ and Φ̃ (Com-

plementary function of Φ), which ensures that the Orlicz-Sobolev space W 1,Φ(Ω) and

D1,Φ(Ω) are reŕexive Banach spaces.

In recent years, problem (1.3) without the ∆2-condition on the function Φ̃ have

been studied. This type of problem presents many diiculties when applying variational

2



methods. For example, it is observed in the literature that the energy functional

associated with the problem might not belong to C1, so classical minimax type results

cannot be used here. To overcome this diiculty, some recent articles suggest the use

of the minimax theory developed by Szulkin [7]. Notable examples include [11]. In

that paper, Alves and Carvalho study a class of problems







−∆Φu+ V (x)ϕ(u)u = f(u), in R
N

u ∈ W 1,Φ(RN) with N ≥ 2

when V is ZN -periodic and f is a continuous function satisfying some technical condi-

tions. The ∆2-condition of N -function Φ̃ has not been required.

Another work in which the ∆2-condition of N -function Φ̃ can be relaxed is [16].

Silva, Carvalho, Silva and Gonçalves study a class of problem







−∆Φu = g(x, u), in Ω

u = 0, on ∂Ω

where Ω ⊂ R
N , N ≥ 2, is a bounded domain with smooth boundary.

It is worth mentioning that in the works above we cannot rely on standard analysis

because the Orlicz-Sobolev spaces associated with the mentioned problems might not

be reŕexive. This is a challenge to apply when applying variational methods. To

overcome these obstacles, we consider the weak∗ topology to recover some compactness

required in variational methods. Based on these new challenges, we dedicate the őrst

part of this thesis to studying two problems where the ∆2-condition of the N -function

Φ̃ is removed.

Speciőcally, in Chapter 3 we present a joint paper with Professor Marco Souto

[37]. The main goal of this chapter is to prove the existence of solutions of the following

class of quasilinear equations:

(P1)







−∆Φu+ V (x)ϕ(|u|)u = K(x)f(u), in R
N

u ∈ D1,Φ(RN), u ≥ 0, in R
N

for N ≥ 2 and assuming that V,K : RN → R and f : R → R are continuous functions

with V , K being nonnegative functions and f having a quasicritical growth. The

motivation for studying equation (P1) initially arises from the problem proposed by

3



Ambrosetti, Felli and Malchiodi [4]. In that paper, the authors studied the problem

(1.5)







−∆u+ V (x)u = K(x)up, in R
N

u ∈ D1,Φ(RN), u ≥ 0, in R
N

for N ≥ 2 e 2 < p < N+2
N−2

. Furthermore, they assumed that V , K satisfying the

following assumptions:

V, K : RN → R are smooth functions and there exist τ, ξ, τ1, τ2, τ3 > 0 such that

a1
1 + |x|τ

≤ V (x) ≤ τ2 and 0 < K(x) ≤
τ3

1 + |x|ξ
, ∀x ∈ R

N (V K)

and τ , ξ verifying

N + 2

N − 2
−

4ξ

τ(N − 2)
< p, if 0 < ξ < τ or 1 < p, when ξ ≥ τ.

The condition (V K) is interesting, because in Opic and Kufner [?] was showed

that it can be used to prove that the space E given by

E =

{

u ∈ D1,2(RN) :

∫

RN

V (x)u2dx < +∞

}

endowed with the norm

∥u∥E=

∫

RN

(

|∇u|2 + V (x)u2
)

dx

is compactly embedded into the weighted Lebesgue space

Lp+1
K =

{

u : R → R : u is measurable and
∫

RN

K(x)|u|p+1dx <∞

}

.

In [3], Ambrosetti and Wang have considered also the condition (V K), however

the inequality on V is assumed only outside of a ball centered at origin.

Inspired by [4] and [3], Alves and Marco Souto in [10] generalized the problem

(1.5) for a general class of nonlinearity. Moreover, the authors assumed that the func-

tions V,K : RN → R are continuous and satisfy:

(K ′
0) V > 0, K ∈ L∞(RN) and K is positive almost everywhere.

(I) If {An} ⊂ R
N is a sequence of Borelian sets such that sup

n
|An| < +∞, then

lim
r→+∞

∫

An∩Bc
r(0)

K(x)dx = 0, uniformly in n ∈ N. (K ′
1)

4



(II) One of the below conditions occurs:

K

V
∈ L∞(RN) (K ′

2)

or there is p ∈ (2, 2∗) such that

K(x)

[V (x)]
2∗−p
2∗−2

→ 0 as |x| → +∞. (K ′
3)

These conditions generalize the condition (V K). Related to the function f , the authors

assumed the following conditions:

(f 1) lim
t→0

f(t)

t
= 0 if (K ′

2) holds or lim sup
t→0+

|f(t)|

tp−1
<∞ if (K ′

3) holds ,

(f 2) f has a quasicritical growth, that is

lim sup
t→+∞

f(t)

t2∗−1
= 0

(f 3) s1−mf(s) is an increasing function in (0,+∞) and F (t) =
∫ t

0
f(s)ds is is su-

perquadratic at inőnity, that is,

lim
|t|→+∞

F (t)

|t|2
= +∞.

Motivated by the above references, more precisely by papers [10], [11] and [16],

we begin to study the problem (P1) where the ∆2-condition of the N -function Φ̃ is

removed. In this sense, we suppose that Φ : R → [0,∞) is an N -function of the type

Φ(t) =

∫ |t|

0

sϕ(s)ds, t ∈ R(1.6)

for a function ϕ ∈ C1((0,∞), (0,∞)) satisfying

(ϕ1) t 7→ tϕ(t) is increasing for t > 0.

(ϕ2) lim
t→0+

tϕ(t) = 0 and lim
t→+∞

tϕ(t) = +∞.

(ϕ3) 1 ≤ ℓ = inf
t>0

ϕ(t)t2

Φ(t)
≤ sup

t>0

ϕ(t)t2

Φ(t)
= m < N, m < ℓ∗ =

ℓN

N − ℓ
, m ̸= 1,

(ϕ4) t 7→
ϕ(t)

tm−2
is nonincreasing on (0,∞).

5



In Example 2.2.4, we show that the function

Φα(t) = |t| ln(|t|α + 1) for 0 < α <
N

N − 1
− 1(1.7)

is an N -function satisfying conditions (ϕ1)− (ϕ4) and 1 = ℓ = inf
t>0

ϕα(t)t
2

Φα(t)
and m < ℓ∗

where

ϕα(t) =
ln(tα + 1)

t
+ α

tα−1

tα + 1
, for t > 0.

As can be seen in Lemma 2.19, the N -function (1.7) is an example of where function

Φ̃α (Complementary function of Φα) does not satisfy the ∆2-condition. Therefore, by

Lemma 2.26, the Orlicz-Sobolev space associated with N -function (1.7) may not be

reŕexive, consequently, the (P1) may be associated with a non-reŕexive Orlicz-Sobolev

space. In order to generalize the results in the paper [10] to a class of N -functions of

type (1.7) that satisfy conditions (ϕ1)− (ϕ4), Silva and Marco Souto in [37] introduced

the following assumptions regarding the potential V and the coeicient K:

(K0) V > 0, K ∈ L∞(RN) and K is positive almost everywhere.

(I) If {An} ⊂ R
N is a sequence of Borelian sets such that sup

n
|An| < +∞, then

lim
r→+∞

∫

An∩Bc
r(0)

K(x)dx = 0, uniformly in n ∈ N. (K1)

(II) One of the below conditions occurs:

K

V
∈ L∞(RN) (K2)

or there are a1, a2 ∈ (m, ℓ∗) and a N -function A(t) =
∫ |t|

0

sa(s)ds verifying the follow-

ing properties:

a1 ≤
a(t)t2

A(t)
≤ a2(1.8)

and
K(x)

H(x)
→ 0 as |x| → +∞ (K3)

with H : RN 7→ R given by H(x) = min
s>0

{

V (x)
Φ(s)

A(s)
+

Φ∗(s)

A(s)

}

where Φ∗ is the conju-

gate function of Φ (see the deőnition of Φ∗ in Chapter 2 of tesis).

This hypotheses above leads us to deőne that (V,K) ∈ K1 if conditions (K0),

(K1), and (K2) are satisőed. Conversely, when conditions (K0), (K1), and (K3) are

6



met, we denote (V,K) ∈ K2. In the appendix B, you can see examples of functions V

and K belonging to the classes K1 and K2, respectively.

To study the main results of this chapter, we will divide the study of problem

(P1) into two conditions: (V,K) ∈ K1 and (V,K) ∈ K2.

In the case (V,K) ∈ K1. In our őrst main result, by means of some conditions

imposed on Φ and f , we will show that the problem (P1) has a C1,α
loc (R

N) positive ground

state solution. More speciőcally, we assume that Φ satisőes conditions (ϕ1)− (ϕ4) and

Φ ∈ Cm, i.e, there is a constant C > 0 satisfying

(Cm) Φ(t) ≥ C|t|m, for all t ∈ R.

Furthermore, f : R → R satisőes the following conditions

(f1) lim
t→0

f(t)

tϕ(t)
= 0 and lim sup

t→∞

f(t)

tϕ∗(t)
= 0,

where ϕ∗(t)t is such that the Sobolev conjugate function Φ∗ of Φ is its primitive, that

is, Φ∗(t) =

∫ |t|

0

ϕ∗(s)sds.

(f2) s
1−mf(s) is an increasing function in (0,+∞).

(f3) F (t) =
∫ t

0
f(s)ds is m-superlinear at inőnity, that is,

lim
|t|→+∞

F (t)

|t|m
= +∞.

Under these conditions, our őrst main result can be stated as follows.

Theorem 1.1 Assume that (V,K) ∈ K1 and Φ ∈ Cm. Suppose that (ϕ1) − (ϕ4) and

(f1) − (f3) hold. Then problem (P1) possesses a nonnegative solutions that are locally

bounded.

To study the regularity of the solutions provided by Theorem 1.1, we add the

following assumptions:

(ϕ5) There are 0 < δ < 1, C1, C2 > 0 and 1 < β ≤ ℓ∗ such that

C1t
β−1 ≤ tϕ(t) ≤ C2t

β−1 for t ∈ [0, δ].

(ϕ6) There are constants δ0 > 0 and δ1 > 0 such that

δ0 ≤
(ϕ(t)t)′

ϕ(t)
≤ δ1 for t > 0.

We are in position to state the following regularity result:
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Theorem 1.2 Suppose that Φ satisfies (ϕ5)−(ϕ6). Under the assumptions of Theorem

1.1, the problem (P ) possesses a C1,α
loc (R

N) positive ground state solution.

For the next main result, we consider the problem (P1) without condition Cm. The

removal of this condition on the N -function Φ, forced us to present a more restricted

growth condition that (f1). This constraint under the nonlinearity f will be necessary

to show that the nonnegative solutions of (P1), are positive. In this way, we will

consider B : R → [0,∞) being a N -function given by B(t) =
∫ |t|

0
b(s)sds, where

b : (0,∞) → (0,∞) is a function satisfying the following conditions:

(B1) t 7→ tb(t) is increasing for t > 0,

(B2) lim
t→0+

tb(t) = 0 and lim
t→+∞

tb(t) = +∞,

(B3) There exist b1 ∈ [m, ℓ∗] such that

b1 = inf
t>0

b(t)t2

B(t)
and ℓ∗ ≥ sup

t>0

b(t)t2

B(t)
, ∀t > 0.

For this case, we assume that f : R → R satisőes the conditions (f2) and (f3). More-

over, we will consider the following growth condition

(f4) lim
t→0

f(t)

tϕ(t)
= 0 and lim sup

t→∞

|f(t)|

tb(t)
= 0.

Our second main result can be written in the following form.

Theorem 1.3 Assume that (V,K) ∈ K1. Suppose that (ϕ1)− (ϕ4), (f2), (f3) and (f4)

hold. Then problem (P1) possesses a nonnegative solutions that are locally bounded. If

Φ also satisfies (ϕ5) and (ϕ6), the solutions for the problem (P1) are C1,α
loc (R

N) positive

ground state solution.

To study this second class of problem where (V,K) ∈ K2, we assume that

f : R → R satisőes (f2) and (f3). Moreover, we will consider the following condition

(f5) lim sup
t→0

|f(t)|

ta(t)
<∞ and lim

t→∞

f(t)

tϕ∗(t)
= 0.

Our őrst main result of this section can be stated as follows.

Theorem 1.4 Assume that (V,K) ∈ K2 and Φ ∈ Cm. Suppose that (ϕ1) − (ϕ4),

(f2), (f3) and (f5) hold. Then problem (P1) possesses a nonnegative solutions that are

locally bounded. If Φ also satisfies (ϕ5) and (ϕ6), the solutions for the problem (P1) are

C1,α
loc (R

N) positive ground state solution.
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In a second moment, as in Theorem 1.3, we relax the condition Φ ∈ Cm and

present a more restricted growth condition that (f5). More precisely, f : R → R

satisőes

(f6) lim sup
t→0

|f(t)|

ta(t)
<∞ and lim

t→∞

f(t)

tb(t)
= 0.

Furthermore, we will assume that f satisőes (f2) and (f3).

Our second main result of this subsection can be written in the following form.

Theorem 1.5 Assume that (V,K) ∈ K2. Suppose that (ϕ1)− (ϕ4), (f2), (f3) and (f6)

hold. Then problem (P1) possesses a nonnegative solutions that are locally bounded. If

Φ also satisfies (ϕ5) and (ϕ6), the solutions for the problem (P1) are C1,α
loc (R

N) positive

ground state solution.

It can be observed that Theorems 1.2 and 1.4 generalizes and strengthens the

Theorem 1.1 presented by Alves and Marco Souto in [10].
Now, continuing the study of the existence of positive solutions for a class of

quasilinear Schrödinger equations with a potential vanishing at inőnity in non-reŕexive
Orlicz-Sobolev spaces, in Chapter 4, we present a joint paper with Professor Marco
Souto [38]. We aim to extend the ideas presented in Chapter 3 by modifying the
structure of the right-hand side of equation (P1) with an Stein-Weiss convolution term.
More speciőcally, we propose to study equations of the type:

(P2)











−∆Φu+ V (x)ϕ(|u|)u =
1

|x|α

(∫

RN

K(y)F (u(y))

|x− y|λ|y|α
dy

)

K(x)f(u(x)), x ∈ R
N

u ∈ D1,Φ(RN )

where α ≥ 0, N ≥ 2, λ > 0, V,K ∈ C(RN , [0,∞)) are nonnegative functions that

may vanish to inőnity, the function f ∈ C(R,R) is quasicritical and F (t) =
∫ t

0
f(s)ds.

To address the above problem, we suppose that ϕ : (0,∞) → (0,∞) is a C1 function

satisfying the conditions (ϕ1) − (ϕ4) deőned above, furthermore we will assume that

0 ≤ α < λ and λ+ 2α ∈ (0, N) ∩ (0, 2N − 2N
m
).

When α = 0, due to the presence of the Choquard type nonlinearity, the problem

(P2) is known as a Choquard equation. In that case, to show the existence of solution

using variational methods, a tool of the main tool to deal with such type of equations

is Hardy-Littlewood-Sobolev inequality [18]. Several works use this approach, we can

mention [17,25,65]

It is clear that there is a physical interpretation for Choquard type of equations,

we refer to [73] and survey of such type of equations.
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Recently, in [13], Alves, Rădulescu and Tavares studied the equation (P2) with

V = K = 1 and α = 0 using diferent assumptions on the N -function Φ. In this work,

the authors aimed to show that the variational methods could be applied to establish

the existence of solutions assuming that the N -function Φ satisőes the conditions (ϕ1)−

(ϕ3) with ℓ > 1. One of the main diiculties was to prove that the energy functional

associated with equation (P2) is diferentiable. However, good conditions involving the

function f made it possible to show the diferentiability of the energy functional and

consequently allowed to guarantee the existence of a solution through the mountain

pass theorem. It is also worth mentioning that in the same work, Alves, Rădulescu

and Tavares extended the result to the case where K = 1 and V is one of the following

potentials: periodic function, asymptotic periodic function, coercive or Bartsch-Wang-

like potential.

Before we present the őrst results of this chapter, we will write a fundamental tool

for studying problems with anisotropic Stein-Weiss convolution term that is the Stein-

Weiss inequality [19], that is the extension of the Hardy-Littlewood-Sobolev inequality.

Proposition 1.1 [Stein-Weiss inequality] Set t, r > 1, λ ∈ (0, N) σ + β ≥ 0 and

σ+ β+λ ≤ N . If 1/t+1/r+(λ+ σ+ β)/N = 2 and 1− 1/t−λ/N < α/N < 1− 1/t.

Then there exists a constant C0 = C(t, r, σ, β,N, λ) such that
∣

∣

∣

∣

∫

RN

∫

RN

g1(x)g2(y)

|x|σ|x− y|λ|y|β
dxdy

∣

∣

∣

∣

≤ C0∥g1∥Lr(RN )∥g2∥Lt(RN ).(1.9)

for all g1 ∈ Lr(RN) and g2 ∈ Lt(RN), where C0 is independent of g1, g2. For σ = β = 0,

it is reduced to the Hartree type (also called the Choquard type) nonlinearity, which is

driven by the classical Hardy-Littlewood-Sobolev inequality (See [18]).

Inspired by [10] and [37], to proceed with the study outlined in this chapter,

it will be necessary to present new assumptions regarding the potential V and the

coeicient K, so that the study carried out in the previous chapter can serve as a guide

to determine the existence of a solution for the equation (P2). In this sense, we consider

the constant θ =
2N

2N − 2α− λ
> 0 and we will assume that V and K satisfy:

(Q0) V > 0, Q ∈ L∞(RN) and K is positive almost everywhere.

(I) If {An} ⊂ R
N is a sequence of Borelian sets such that sup

n
|An| < +∞, then

lim
r→+∞

∫

An∩Bc
r(0)

K(x)θdx = 0, uniformly in n ∈ N. (Q1)

10



(II) One of the below conditions occurs:

Kθ

V
∈ L∞(RN) (Q2)

or there are b1, b2 ∈ (m, ℓ∗) and an N -function B(t) =
∫ |t|

0
b(τ)τdτ verifying the follo-

wing properties:

(B1) t 7−→ tb(t) is increasing for t > 0.

(B2) lim
t→0+

tb(t) = 0 and lim
t→+∞

tb(t) = +∞.

(B3) b1 ≤
b(t)t2

B(t)
≤ b2, for all t > 0

(B4) The function B(|t|1/θ) is convex in R

and
K(x)θ

H(x)
−→ 0 as |x| → +∞ (Q3)

where H(x) = min
τ>0

{

V (x)
Φ(τ)

B(τ)
+

Φ∗(τ)

B(τ)

}

and Φ∗ is the conjugate function of Φ (see

Section 2).

This hypotheses above leads us to deőne that (V,K) ∈ Q1 if conditions (Q0),

(Q1), and (Q2) are satisőed. Conversely, when conditions (Q0), (Q1), and (Q3) are

met, we denote (V,K) ∈ Q2. In the appendix B, you can see examples of functions V

and K belonging to the classes Q1 and Q2, respectively.

To study the main results of this chapter, we will divide the study of problem

(P2) into two conditions: (V,K) ∈ Q1 and (V,K) ∈ Q2.

Note that the constant θ =
2N

2N − 2α− λ
satisőes

1−
1

θ
−
λ

N
<

θ

N
< 1−

1

θ
and

2

θ
−
λ+ 2α

N
= 2.

These inequalities will be fundamental for us to apply the Proposition 1.1.

Inspired by the Chapter 3 and by papers [37] and [11], we need to assume certain

conditions on f .
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We will consider A : R → [0,+∞) and Z : R → [0,+∞) N -functions given

by A(w) =
∫ |w|

0
ta(t)dt and Z(w) =

∫ |w|

0
tz(t)dt where a : (0,+∞) → (0,+∞) and

z : (0,+∞) → (0,+∞) are functions satisfying the following conditions:

(A1) t 7→ ta(t) is increasing for t > 0 and t 7→ tz(t) is increasing for t > 0.

(A2) lim
t→0+

ta(t) = 0, lim
t→+∞

ta(t) = +∞ and lim
t→0+

tz(t) = 0, lim
t→+∞

tz(t) = +∞.

(A3) There exist a1, a2, z1, z2 ∈ [m, ℓ∗] with a1 ≤ a2 ≤ z1 ≤ z2 such that

(1.10) a1 ≤
a(t)t2

A(t)
≤ a2, ∀t > 0.

and

(1.11) z1 = inf
t>0

z(t)t2

Z(t)
and z2 ≥ sup

t>0

z(t)t2

Z(t)
.

(A4) The functions A(|t|1/θ) and Z(|t|1/θ) are convex in R.

We assume that f : R → R is continuous and satisőes the following conditions:

(f ′
1) lim sup

t→0

f(t)
(

a(|t|)|t|2−θ
)1/θ

= 0 and lim
t→+∞

f(t)
(

z(|t|)|t|2−θ
)1/θ

= 0

(f ′
2) t1−m/2f(t) is nondecreasing on (0,+∞)

(f ′
3) f(t) ≥ 0 for t ≥ 0 and f(t) = 0 for t ≤ 0

(f ′
4) lim

|t|→∞

F (t)

|t|
m
2

= +∞.

Assuming the conditions above, our őrst main result can be stated as follows.

Theorem 1.6 Assume that Φ satisfies (ϕ1)− (ϕ4), 0 ≤ α < λ and λ+ 2α ∈ (0, N) ∩

(0, 2N − 2N
m
). Suppose that (V,K) ∈ Q1, (A1) − (A4) and (f1), (f2), (f3), (f4) hold.

Then, problem (P2) possesses a nonnegative ground state solution. If 2α+λ < 2ℓ, then

the nonnegative solutions are locally bounded.

To study the regularity of the solutions provided by Theorem 1.6, we add the

assumptions (ϕ5) and (ϕ6).

We are in position to state the following regularity result:
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Theorem 1.7 Supoose that Φ satisfies (ϕ5)−(ϕ6). Under the assumptions of Theorem

1.6, if K ∈ L1(RN), α = 0 and λ < 2ℓ, then the problem (P2) possesses a C1,γ
loc (R

N)

positive ground state solution.

To study this second class of problem where (V,K) ∈ Q2, we assume that

f : R → R satisőes (f2), (f3) and (f4). Furthermore, for this case, we replace the

condition (f1) with the following condition:

(f5) lim sup
t→0

f(t)
(

1
θ
b(|t|)|t|2−θ

)1/θ
<∞ and lim

t→+∞

f(t)
(

1
θ
ϕ∗(|t|)|t|2−θ

)1/θ
= 0.

where ϕ∗(t)t is such that the Sobolev conjugate function Φ∗ of Φ is its primitive, that

is, Φ∗(t) =

∫ |t|

0

ϕ∗(s)sds.

Our őrst main result of this subsection can be stated as follows. Under these

conditions, the next result of the existence of a nonnegative solution has the following

statement:

Theorem 1.8 Assume that Φ satisfies (ϕ1)− (ϕ4), 0 ≤ α < λ and λ+ 2α ∈ (0, N) ∩

(0, 2N − 2N
m
). Suppose that (V,K) ∈ Q2, (B1)− (B4) and (f2), (f3), (f4), (f5) hold. If

Φ∗(|t|
1/θ) is convex in R, then the problem (P2) possesses a nonnegative ground state

solution.

In a second part of this thesis, we study the existence of solutions for two classes

of quasilinear systems of the type:

(S)























−∆Φ1u = Fu(x, u, v) + λRu(x, u, v) in Ω

−∆Φ2v = −Fv(x, u, v)− λRv(x, u, v) in Ω

u = v = 0 on ∂Ω

where ∆Φi
u = div(ϕi(|∇u|)∇u), i = 1, 2. This type of system has been explored using

variational methods techniques by several authors. For example, in [23], Ding and

Figueiredo consider the noncooperative system (S) with ϕ1(t) = 1, ϕ2(t) = 1, λ = 1

allowing that the function F (x, u, v) can assume a supercritical and subcritical growth

on v and u respectively. They established the existence of inőnitely many solutions to

(S) provided the nonlinear terms F and R are even in (u, v). Already in [41], Clapp,

Ding and Hernández showed that multiple existence of solutions to the noncooperative

system (S) with some supercritical growth can be established without the symmetry

assumption. Motivated by some results found in [41] and [23], Alves and Monari in [12]
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studied the existence of nontrivial solutions for (S) when ϕ1(t) = |t|p−2, ϕ2(t) = |t|q−2

(p, q > 1) with p and q are diferent from 2, λ = 1 and F (x, u, v) has a supercritical

growth on variable v and has a critical growth at inőnity on variable u of the type |u|p
∗

with p∗ = pN/(N − p), the critical exponent of the embedding W 1,p
0 (Ω) →֒ Lp∗(Ω).

The main diiculty in this case is the lack of compactness of the functional energy

associated to system. To overcome this diiculty, they carefully estimate and prove

through the concentration-compactness principle due to Lions [65] the existence of a

Palais-Smale sequence that has a strongly convergent subsequence.

In a brief bibliographical research, we can mention some contributions devoted

to the study of system where Φ1 and Φ2 are less trivial functions, as can be seen in

[33,40]. We would like to highlight the paper [40], Wang et al. considered the following

quasilinear elliptic system in Orlicz-Sobolev spaces:

(1.12)























−∆Φ1u = Ru(x, u, v) in Ω

−∆Φ2v = Rv(x, u, v) in Ω

u = v = 0 on ∂Ω

where Ω is a bounded domain in RN(N ≥ 2) with smooth boundary ∂Ω. In that

paper when R satisőes some appropriate conditions including (Φ1,Φ2)-superlinear and

subcritical growth conditions at inőnity as well as symmetric condition, by using the

mountain pass theorem and the symmetric mountain pass theorem, they obtained

that system (1.12) has a nontrivial weak solution and inőnitely many weak solutions,

respectively. Some of the results obtained extend and improve those corresponding

results in Carvalho et al [49]. In [33], Huentutripay-Manásevich studied an eigenvalue

problem to the following system:






















−∆Φ1u = λRu(x, u, v) in Ω

−∆Φ2v = λRv(x, u, v) in Ω

u = v = 0 on ∂Ω

where the functions (Φi)∗, i = 1, 2, exists (See Lemma 2.15). Furthermore, the function

R has the form

R(x, s1, s2) = A1(x, s1) + b(x)Γ1(s1)Γ2(s2) + A2(x, s2),
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with b ∈ L∞(Ω) and the functions Γ1, Γ2 are given by

Γi(t) =

∫ t

0

γi(s)sds

and γi an odd increasing homeomorphism from R onto R, i = 1, 2. Additionally, Ai,

i = 1, 2 are given by

Ai(x, t) =

∫ t

0

ai(x, s)ds

where a1, a2 : Ω×R → R are Caratheodory functions that satisfy the following growth

conditions:

|ai(x, t)| ≤ αi(x) + C̃iP̃
−1
i Pi(Cit)

for a.e. x ∈ Ω and for all t ∈ R. Here, for i = 1, 2, Ci, C̃i are positive constants, Pi is an

N -function with Pi ≺≺ (Φi)∗ (See Deőnition 2.6) and αi ∈ LP̃i
(Ω), with αi(x) ≥ 0, for

a.e. x ∈ Ω. It is obvious that in [33], the Orlicz-Sobolev spaces need not be reŕexive.

In a brief bibliographical research, one can őnd several other works involving the

system (S) where the functions Φ1 and Φ2 satisfy the ∆2-condition and works in which

this condition is relaxed are rare. Given this, in Chapter 5, we present the work [39],

which is a joint collaboration with Professor Marco Souto. In these chapter we will

show the existence of solutions for the system (S) where Ω is a bounded domain in

R
N(N ≥ 2) with smooth boundary ∂Ω and F,R : Ω×R

2 → R are continuous function

verifying some conditions which will be mentioned later. Initially, we will assume that

the functions ϕi(i = 1, 2) ∈ C1(0,+∞) are two functions which satisfy:

(ϕ′
i,1) t 7→ tϕi(t) are stricly increasing and t 7→ t2ϕi(t) is convex in (0,∞);

(ϕ′
i,2) tϕi(t) → 0 as t→ 0 and tϕi(t) → +∞ as t→ +∞;

(ϕ′
i,3) 1 < ℓi ≤

t2ϕi(t)

Φi(t)
, where Φi(t) =

∫ |t|

0

sϕi(s)ds, t ∈ R;

(ϕ′
i,4) lim inf

t→+∞

Φi(t)

tqi
> 0, for some qi > N ;

(ϕ′
i,5)

∣

∣

∣

∣

1−
Φ1(t)

t2ϕ1(t)

(

1 +
tϕ′

1(t)

ϕ1(t)

)∣

∣

∣

∣

≤ 1, ∀t > 0.
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Let d twice the diameter of Ω, then we will assume that there exists δ ≥ 0 such

that

(ϕ′
i,6)

t2

d2
≤ Φ1(t/d), ∀|t| ≥ δ

Regarding the above conditions, in order to őnd a solution to the systems (S),

we will assume that we consider F = 0, λ = 1 and that the function R satisfying the

following conditions:

(R′
1) R ∈ C1(Ω× R

2) and Rv(x, u, 0) ̸= 0 for all (x, u) ∈ Ω× R

(R′
2) R(x, u, 0) ≤

1

2
Φ1(u/d) +

1

2d2
|u|2, for all (x, u) ∈ Ω× R

(R′
3) R(x, 0, v) ≥ −

1

2
Φ2(v/d)−Mv, for all (x, v) ∈ Ω×R, for some constant M > 0.

(R′
4) There are ν > 0, µ > 1 and 0 < β < 1 such that

(i)
1

µ
h(u)Ru(x, u, v)u+

1

ν
Rv(x, u, v)v −R(x, u, v) ≥ 0, ∀(x, u, v) ∈ Ω× R

2

and

(ii) βR(x, u, v)−
1

µ
h(u)Ru(x, u, v)u ≥ 0, ∀(x, u, v) ∈ Ω× R

2

where h(u) =
Φ1(u)

u2ϕ1(u)
.

We note that R(u, v) = Φ1(u)
σΦ2(v)

θ + v+ satisőes (R′
1)− (R′

4) for add θ, σ > 1,

where v+(x) := max{0, v(x)}. Furthermore, the functions Φ1(t) = (et
2
− 1)/2 and

Φ2(t) = |t|p/p (or Φ2(t) = (et
2
− 1)/2) with p > N satisfying (ϕ′

i,1) − (ϕ′
i,6). These

functions are examples of N -functions whose the complementary functions Φ1 and Φ2

do not satisfy the ∆2-condition, consequently W
1,Φα1
0 (Ω)×W

1,Φα2
0 (Ω) is nonreŕexive.

Before we state the main result of this chapter, let us recall that
(u, v) ∈ W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) is a weak solution of (S) if
∫

Ω
ϕ1(|∇u|)∇u∇φ1dx−

∫

Ω
ϕ2(|∇u|)∇u∇φ2dx =

∫

Ω
Ru(x, u, v)φ1dx+

∫

Ω
Rv(x, u, v)φ2dx,

for all (φ1, φ2) ∈ W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω).

The main result of this chapter is the following.
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Theorem 1.9 Assume that (ϕ′
i,1)− (ϕ′

i,6) and (R′
1)− (R′

4) hold. If F = 0 and λ = 1,

then, the system (S) possesses a nontrivial solution.

In proving this theorem, some diiculties arise when relaxing the ∆2-condition

of the functions Φ1 and Φ2. The őrst of them arises from the fact that the energy

functional J : W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) → R associated with the system (S) given by

J(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

R(x, u, v)dx.

no belongs to C1(W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω),R). Have this in mind, we have decide to work in

the space W 1
0E

Φi(Ω), because it is topologically more rich than W 1,Φi

0 (Ω), for example,

it is possible to prove that the energy functional J is C1(W 1
0E

Φ1(Ω)×W 1
0E

Φ2(Ω),R).

Even knowing that the result contained in Proposition 3.7 in [8] presents inconsistency

when dropping the ∆2-condition, we add a žAmbrosetti-Rabinowitzž condition under

the function R and we reőne part of the technique presented by Alves et al., so that,

together with the saddle-point theorem of Rabinowitz without Palais-Smale condition,

we can prove the existence of a Palais-Smale bounded sequence. Finally, due to the

possible lack of reŕexivity of the spaces W 1,Φi

0 (Ω)(i = 1, 2), we will utilize properties

of the weak∗ topology of these spaces to guarantee the existence of nontrivial solutions

for the system (S), thereby proving Theorem 1.9.

Continuing the study of systems in non-reŕexive Orlicz-Sobolev spaces, in Cha-

pter 5, we investigate the existence of solutions for the system (S) where λ > 0 is a

parameter, Ω is a bounded domain in R
N(N ≥ 2) with smooth boundary ∂Ω, and

ϕi(i = 1, 2) : (0,∞) → (0,∞) are two functions which satisfy:

(ϕ1,i) ϕi ∈ C1(0,+∞) and t 7→ tϕi(t) are stricly increasing;

(ϕ2,i) tϕi(t) → 0 as t→ 0 and tϕi(t) → +∞ as t→ +∞;

(ϕ3,i) 1 ≤ ℓi = inf
t>0

t2ϕi(t)

Φi(t)
≤ sup

t>0

t2ϕi(t)

Φi(t)
= mi < N, where Φi(t) =

∫ |t|

0
sϕi(s)ds and

ℓi < mi < ℓ∗i .

With regard to the function F , we will assume that F (x, u, v) = Φ1∗(u) + G(v)

where Φ1∗ denotes the Sobolev conjugate function of Φ1 and that G is a function

satisfying the following conditions:
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(G1) There are C > 0, G ∈ C1(R,R), a1, a2 ∈ (1,∞) and a N -function

A(t) =
∫ |t|

0
sa(s)ds satisfying

(i) m2 < a1 ≤
a(t)t2

A(t)
≤ a2, ∀t > 0

and

(ii) |g(s)| ≤ a1Ca(|s|)|s|, for all s ∈ R

where g(s) = G′(s). If a2 ≥ ℓ∗2, we add that

(iii) (g(t)− g(s))(t− s) ≥ Ca(|t− s|)|t− s|2, for all t, s ∈ R.

(G2) There exists ν ∈ (0, ℓ1) such that

0 ≤ νG(s) ≤ sg(s), for all s ∈ R.

Furthermore, we will assume that the function R satisőes the following conditions:

(R1) R ∈ C1(Ω × R
2), Ru(x, 0, 0) = 0, Rv(x, 0, 0) = 0, R(x, u, v) ≥ 0 and

Ru(x, u, v)u ≥ 0, for all (x, u, v) ∈ Ω× R
2.

(R2) There are N -functions B(t) =
∫ |t|

0
sb(s)ds, P (t) =

∫ |t|

0
sp(s)ds, Q(t) =

∫ |t|

0
sq(s)ds

and Z(t) =
∫ |t|

0
sz(s)ds satisfying

(i) m1 < p1 ≤
p(t)t2

P (t)
≤ p2 < ℓ∗1

(ii) m1 < b1 ≤
b(t)t2

B(t)
≤ b2 < ℓ∗1

(iii) m2 < q1 ≤
q(t)t2

Q(t)
≤ q2 < ℓ∗2

(iv) m2 < z1 ≤
z(t)t2

Z(t)
≤ z2 < ℓ∗2,

with max{b2, q2} < min{ℓ∗1, ℓ
∗
2} such that

(1.13) |Ru(x, u, v)| ≤ C(p(|u|)u+ q(|v|)v) and |Rv(x, u, v)| ≤ C(b(|u|)u+ z(|v|)v),

for all (x, u, v) ∈ Ω× R
2 and for some constant C > 0.
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(R3) There exists µ ∈ (m1, ℓ
∗
1) such that

1

µ
Ru(x, u, v) +

1

ν
Rv(x, u, v)−R(x, u, v) ≥ 0, for all x ∈ Ω and (u, v) ∈ R

2,

where ν is given by condition (G2).

(R4) There exists s ∈ (m1,max{p2, b2}], a nonempty open subset Ω0 ⊂ Ω and a constant

ω > 0 such that

R(x, u, v) ≥ ω|u|s for all x ∈ Ω0 and (u, v) ∈ R
2.

Let us there are examples of functions that satisfy the conditions listed above.

Consider α1, α2 ∈ (0, N
N−1

− 1) such that α1 ≤ α2. We would like to point out that

Φ1(t) = |t| ln(|t|α1 + 1) and Φ2(t) = |t| ln(|t|α2 + 1) satisfying (ϕ1,i) − (ϕ3,i) with ℓ1 =

ℓ2 = 1 and m1 = 1 + α1, m2 = 1 + α2 respectively. These functions are examples

of N -functions whose the complementary functions Φ̃1 and Φ̃2 do not satisfy the ∆2-

condition, consequently W
1,Φα1
0 (Ω)×W

1,Φα2
0 (Ω) is nonreŕexive.

Before stating the main result of this chapter, we would like to remember that
(u, v) ∈ W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) is a weak solution of (S) if
∫

Ω
ϕ1(|∇u|)∇u∇w1dx−

∫

Ω
ϕ2(|∇v|)∇v∇w2dx =

∫

Ω
Hu(x, u, v)w1dx+

∫

Ω
Hv(x, u, v)w2dx,

for all (w1, w2) ∈ W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) where H(x, u, v) = F (x, u, v) + λR(x, u, v).

The main result of this chapter is the following.

Theorem 1.10 If (ϕ1,i)− (ϕ3,i), (i = 1, 2), (G1)− (G2), (R1)− (R4) hold, then there

exists λ0 > 0 such that (S) possesses a nontrivial solution for all λ > λ0.

This theorem was inspired by the results presented in [12]. However, the őrst

diiculty in studying this case arises from the lack of diferentiability of the energy

functional Jλ : W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) → R associated with the system (S) given by

Jλ(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

F (x, u, v)dx− λ

∫

Ω

R(x, u, v)dx.

To get around this diiculty we will use the critical point theory for locally lipschitz

fuctionals, here, in particular we apply a version of the linking theorem without Palais-

Smale condition for locally lipschitz fuctionals (The version that will be applied in

Chapter 5 we took care to enunciate in Appendix A). A second diiculty of studying

this case is the lack of compactness of the energy functional Jλ. To overcome this
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diiculty, we adapted some arguments presented in the works of Alves and Soares

in [12] and from Fukagai et al, in [58]. Here, we carefully estimate and prove through

the second concentration-compactness lemma of P. L. Lions for nonreŕexive Orlicz-

Sobolev space that there exists a constant λ0 > 0 such that the sistem has a nontrivial

solution for any λ > λ0.

In Appendix A, we present some minimax results involving critical point theory

for locally Lipschitz functionals. These results are utilized in Chapter 5.

This thesis concludes with Appendix B, where we provide detailed examples of

functions that satisfy the conditions (V,K) ∈ K1, (V,K) ∈ K2, (V,Q) ∈ Q1 and

(V,Q) ∈ Q1.
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Chapter 2

Orlicz and Orlicz-Sobolev spaces: A

review

In this chapter, we will make a brief study of the main properties involving Orlicz

and Orlicz-Sobolev spaces. It is important to emphasize that the information present

in this chapter constitutes only the minimum language necessary for the study present

in this thesis. We suggest to interested readers the references [1,54,55,58,59] for a more

complete study on the subject. In Portuguese, we suggest the thesis [32].

2.1 N -function

In this section we recall some properties of N -function.

Definition 2.1 We will say that Φ : R → [0,+∞) is a N -function if

(i) Φ is convex and continuous;

(ii) Φ(t) = 0 ⇔ t = 0;

(iii) Φ is even;

(iv) lim
t→0

Φ(t)

t
= 0 and lim

t→+∞

Φ(t)

t
= +∞.

Example 2.1.1 Below, we list some classic examples of N -functions.

(i) Φ1(t) =
1
p
|t|p, where p ∈ (1,∞) and t ∈ R;

(ii) Φ2(t) =
1
p
|t|p + 1

q
|t|q, where p, q ∈ (1,∞) and t ∈ R;



(iii) Φ3(t) = (1 + t)α − 1, where α > 1 and t ∈ R;

(iv) Φ4(t) = |t|p ln(1 + t), where p ∈ (1,∞) and t ∈ R;

(v) Φ5(t) = et
2
− 1 for t ∈ R;

(vi) Φ6(t) = e|t| − |t| − 1 for t ∈ R.

In the following, we list a result that characterizes the N -functions.

Lemma 2.1 Let Φ : R → [0,+∞) be a function. Then Φ is a N -function if and only

if

Φ(t) =

∫ |t|

0

φ(s)ds, t ∈ R(2.1)

where φ : [0,+∞) 7→ [0,+∞) is a function satisfying

(i) φ is right-continuous and non-decreasing in (0,∞);

(ii) φ(t) = 0 if and only if t = 0;

(iii) lim
t→+∞

φ(t) = ∞;

(iv) φ(t) > 0, for t > 0.

For each N -function, we can deőne a special class of functions called comple-

mentary functions.

Definition 2.2 (Complementary Function of Φ) Let Φ be a N -function. The com-

plementary function of Φ, denoted by Φ̃, is the function given by

Φ̃(t) = sup
s≥0

{st− Φ(s)}, for t ≥ 0.

Example 2.1.2 The N -function Φ1(t) = 1
p
|t|p with p ∈ (1,∞) and t ∈ R, has as a

complementary function

Φ̃1(t) =
1

q
|t|q, t ∈ R

where 1
p
+ 1

q
= 1.

It is clear in the example 2.1.2 that the deőnition of complementary function

generalizes the concept of conjugate function to Lebesgue spaces. The above deőnitions

allow us to do the following lemma:

Lemma 2.2 If Φ is a N -function, then Φ̃ is also a N -function.
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Next, we list some properties involving N -functions.

Lemma 2.3 The N -function Φ satisfies:

1. Φ(αt) ≤ αΦ(t), α ∈ [0, 1] and t ≥ 0;

2. Φ(βt) ≥ βΦ(t), β > 1 and t ≥ 0;

3. (Young’s inequality) Given s, t ∈ R, then

st ≤ Φ(s) + Φ̃(t),

equality holds if, and only if, s = φ̃(t) or t = φ(s), where φ and φ̃ satisfy

Φ(s) =

∫ s

0

φ(r)dr and Φ̃(t) =

∫ t

0

φ̃(r)dr;

4. If Φ is of the form (2.1) with φ continuous and increasing, then

Φ̃(t) =

∫ |t|

0

φ−1(s)ds;

4. Φ̃(φ(t)) ≤ Φ(2t), for ≥ 0.

5. Φ̃(Φ(t)
t
) ≤ Φ(t), for t > 0.

2.2 Orlicz Space

In this section, we aim to present Orlicz spaces. For more details, we suggest the

reader the references cited at the beginning of this chapter.

To continue this brief review of Orlicz spaces, from now on, unless otherwise

indicated, we will always assume that Ω is an open set of RN , with N ≥ 1, and that

Φ is an N -function. In these conőgurations, we will present the deőnition of Orlicz

Spaces.

In what follows, őxed an open set Ω ⊂ R
N .

Definition 2.3 Let Φ be a N -function. We define the Orlicz space associated with

Φ as

LΦ(Ω) =

{

u ∈ L1
loc(Ω) :

∫

Ω

Φ

(

|u|

λ

)

dx < +∞ for some λ > 0

}

.

The convexity of the N -function Φ guarantees that LΦ(Ω) is a vector space.

Furthermore, the space LΦ(Ω) is a Banach space equipped with the Luxemburg norm

given by

∥u∥Φ = inf

{

λ > 0 :

∫

Ω

Φ

(

|u|

λ

)

dx ≤ 1

}

.
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Example 2.2.1 Considere a N -function Φ1(t) = 1
p
|t|p with p ∈ (1,∞) and t ∈ R.

Then,

LΦ(Ω) =

{

u ∈ L1
loc(Ω) :

∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

p

dx < +∞ for some λ > 0

}

= Lp(Ω).

As a consequence of this equality, we can conclude that Orlicz spaces are generalizations

of Lebesgue spaces.

Throughout this thesis, the separability and reŕexivity of Orlicz’s spaces are

sometimes questioned. The next deőnition plays a key role in these properties.

Definition 2.4 Let Φ be a N -function. We say that a N -function Φ verifies the ∆2-

condition (Φ ∈ (∆2)), if there are constants K > 0, t0 ≥ 0 such that

Φ(2t) ≤ KΦ(t), ∀t ≥ t0.

Remark 2.1 |Ω| = ∞, Φ ∈ ∆2 with t0 = 0.

Example 2.2.2 The N -functions Φ1, Φ2 and Φ4 given in example 2.1.1 are examples

of N -functions that check the ∆2-condition. Already the N -function Φ3 defined in

example 2.1.1 also satisfies the ∆2-condition whenever α ∈
(

1, N
N−2

)

. The N -functions

Φ5 and Φ6 are examples of N -functions that do not satisfy the ∆2-condition.

Lemma 2.4 Let Φ be a N -function given by

Φ(t) =

∫ |t|

0

φ(s)ds.

Then Φ ∈ (∆2) if and only if there are α > 0 and t0 > 0 such that

tφ(t)

Φ(t)
≤ α, t ≥ t0.

Lemma 2.5 (Young’s Integral Inequality) Given u ∈ LΦ(Ω) and v ∈ LΦ̃(Ω), then

uv ∈ L1(Ω) and

∫

Ω

uvdx ≤

∫

Ω

Φ(u)dx+

∫

Ω

Φ̃(v)dx.

Lemma 2.6 (Young’s inequality) Given u ∈ LΦ(Ω) and v ∈ LΦ̃(Ω), then
∫

Ω

uvdx ≤ ∥u∥Φ+∥v∥Φ̃.

Definition 2.5 Let Φ be a N -function. If |Ω| <∞, the space EΦ(Ω) denotes the clos-

ing of L∞(Ω) in LΦ(Ω) with respect to the norm ∥·∥Φ. When |Ω| = ∞, the space

EΦ(Ω) denotes the closure of B0(Ω) in LΦ(Ω) with respect to norm ∥·∥Φ, where

B0(Ω) = {u ∈ L∞(Ω) : supp(u) ⊂⊂ Ω}.
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Remark 2.2 EΦ(Ω) = LΦ(Ω) if and only if Φ satisfies the ∆2-condition.

Lemma 2.7 Let Φ be a N -function. Then:

1. EΦ(Ω) is separable;

2. EΦ(Ω) = C∞
0 (Ω)

∥·∥Φ
;

3. LΦ̃(Ω) =
(

EΦ(Ω)
)′

and LΦ(Ω) =
(

EΦ̃(Ω)
)′
;

4. L∞(Ω) · EΦ(Ω) = EΦ(Ω)

5. LΦ(Ω) is separable if and only if Φ satisfies the ∆2-condition;

6. LΦ(Ω) is reflexive if and only if Φ and Φ̃ satisfy the ∆2-condition ;

7. (Riesz Representation Theorem) Let F ∈
(

EΦ(Ω)
)′
, then there is a unique

v ∈ LΦ̃(Ω) such that

F (u) =

∫

Ω

uvdx, u ∈ EΦ(Ω).

Lemma 2.8 If Φ is N -function and (
∫

Ω
Φ(|un|)dx) is a bounded sequence, then (un)

is a bounded sequence in LΦ(Ω). When Φ ∈ (∆2), the equivalence is valid.

Lemma 2.9 Let Φ satisfying the ∆2-condition. Then, un → u in LΦ(Ω) if and only if
∫

Ω
Φ(|un − u|)dx→ 0.

The following result will be useful in applications involving Lebesgue’s Theorem

in the context of Orlicz Spaces.

Lemma 2.10 Let Φ a N -function and (un) a sequence in EΦ(Ω) with un → u in

EΦ(Ω). Then, there is H ∈ EΦ(Ω) and a subsequence (unj
) such that

(i) |unj
(x)| ≤ H(x) a.e. in Ω;

(ii) unj
(x) → u(x) a.e. in Ω and all j ∈ N.

The next results is a classic Brezis-Lieb lemma for reŕexive Orlicz spaces.

Lemma 2.11 Let Φ be a N -function such that Φ, Φ̃ ∈ (∆2) and (un) ⊂ LΦ(Ω) is

bounded. Suppose that un → u a.e. in Ω. Then u ∈ LΦ(Ω) and un ⇀ u.

The following lemma is an immediate consequence of the Banach-Alaoglu-Bourbaki

theorem [27], and is crucial when the space LΦ(Ω) can be nonreŕexive.
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Lemma 2.12 Assume that Φ is a N -function . If (un) ⊂ LΦ(Ω) is a bounded se-

quence, then there exists a subsequence of (un), which we will still denote by (un), and

u ∈ LΦ(Ω) such that

un
∗
⇀ u in LΦ(Ω)

or equivalently,

∫

RN

unvdx→

∫

RN

uvdx, ∀v ∈ EΦ̃(Ω).

Next, we present the őrst embedding result.

Lemma 2.13 Let Φ be a N -function. Suppose |Ω| <∞, then

LΦ(Ω) →֒
cont

L1(Ω)

For the next embedding result, we will make the following deőnition:

Definition 2.6 Let Φ1 and Φ2 N -functions. We say that Φ2 grows strictly slower

than Φ1, if for any k > 0

lim
t→∞

Φ1(t)

Φ2(kt)
= 0.

In this case, we use the notation Φ2 ≺≺ Φ1.

Lemma 2.14 Let Φ1 and Φ2 N -functions such that Φ2 ≺≺ Φ1. Suppose that |Ω| <∞,

then

LΦ1(Ω) →֒
cont

LΦ2(Ω).

Now, we will deőne another class important set of N -functions called critical

growth functions.

Lemma 2.15 Let Φ the N -function satisfying

∫ 1

0

Φ−1(s)

s1+
1
N

ds <∞ and

∫ ∞

1

Φ−1(s)

s1+
1
N

ds = ∞.(2.2)

Then, the function Φ−1
∗ : [0,∞) → [0,∞) given by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s1+
1
N

ds,

is bijective and its inverse Φ∗, extended in R so that Φ∗ is an even function, is a

N -function.
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The N -function Φ∗ is called critical growth function. The motivation for this

denomination is seen in the example below.

Example 2.2.3 The N -function Φ1(t) =
1
p
|t|p, with p ∈ [1, N), has the critical growth

function

Φ∗(t) =
1

p∗
|t|p

∗

, t ∈ R,

where p∗ = N−p
pN

.

Now, we list results that play a crucial role in this work. To do this, let us consider

ϕ : (0,∞) → (0,∞) a continuous function satisfying:

(ϕ1) t 7→ tϕ(t) is stricly increasing.

(ϕ2) tϕ(t) → 0 as t→ 0 and tϕ(t) → +∞ as t→ +∞

(ϕ3) 1 ≤ ℓ = inf
t>0

t2ϕ(t)

Φ(t)
≤ sup

t>0

t2ϕ(t)

Φ(t)
= m < N, where Φ(t) =

∫ |t|

0

sϕ(s)ds.

Extend the function t 7→ ϕ(s) to R as an odd function and deőne the function Φ

by

Φ(t) =

∫ |t|

0

sϕ(s)ds, t ∈ R.(2.3)

It is clear that Φ is a N -function. In fact, deőne

φ(t) =







tϕ(t), t > 0

0 , t = 0
.

It is clear that φ(t) > 0 for t > 0, and by (ϕ2) we conclude that φ is continuous

in [0,∞) and lim
t→∞

φ(t) = ∞. Furthermore, from the condition (ϕ1) it follows that

φ is non-decreasing in (0,∞). Therefore, by Lemma 2.1, we conclude that Φ is a

N -function.

Remark 2.3 By the hypothesis (ϕ3), it follows that Φ ∈ (∆2). This implication is a

consequence of Lemma 2.4.

The next three lemmas involve the N -function Φ deőned in (2.3), its conjugate

function Φ̃ and critical growth function Φ∗.
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Lemma 2.16 Consider Φ a N -function of the form (2.3) and satisfying (ϕ1), (ϕ2)

and (ϕ3). Define

ξ0(t) = min{tℓ, tm} and ξ1(t) = max{tℓ, tm}, ∀t ≥ 0.

Then,

ξ0(t)Φ(ρ) ≤ Φ(ρt) ≤ ξ1(t)Φ(ρ), ∀ρ, t ≥ 0

and

ξ0(∥u∥Φ) ≤

∫

Ω

Φ(u)dx ≤ ξ1(∥u∥Φ), ∀u ∈ LΦ(Ω).

Lemma 2.17 Consider Φ a N -function of the form (2.3) and satisfying (ϕ1), (ϕ2)

and (ϕ3) with ℓ > 1. Define

ξ2(t) = min{t
ℓ

ℓ−1 , t
m

m−1} and ξ3(t) = max{t
ℓ

ℓ−1 , t
m

m−1}, ∀t ≥ 0.

Then,

m

m− 1
≤
tΦ̃′(t)

Φ̃(t)
≤

ℓ

ℓ− 1
(2.4)

ξ2(t)Φ̃(ρ) ≤ Φ̃(ρt) ≤ ξ3(t)Φ̃(ρ), ∀ρ, t ≥ 0

and

ξ2(∥u∥Φ̃) ≤

∫

Ω

Φ̃(u)dx ≤ ξ3(∥u∥ P̃ hi), ∀u ∈ LΦ̃(Ω).

Remark 2.4 The inequality (2.4) guarantees that Φ̃ ∈ (∆2), just apply Lemma 2.4.

Therefore, LΦ(Ω) is reflexive.

Lemma 2.18 If Φ is an N -function of the form (2.3) satisfying (ϕ1), (ϕ2) and (ϕ3)

with ℓ = 1 , then

Φ̃(ρt) ≤ t
m

m−1 Φ̃(ρ), for all ρ > 0 and 0 ≤ t < 1.

Lemma 2.19 If Φ is an N -function of the form (2.3) satisfying (ϕ1), (ϕ2) and (ϕ3)

with ℓ = 1, then Φ̃ does not verify the ∆2-condition.

Proof. Suppose by contradiction that Φ̃ ∈ (∆2), then there is β ≥ 1 such that
Φ̃′(t)t

Φ(t)
≤ β, for all t > 0. We know that ˜̃Φ = Φ and ˜̃Φ(t) = sup{st− Φ̃(t) : s ∈ R}. An

easy computation shows that

Φ̃(Φ′(s)) = Φ′(s)s− Φ(s), ∀s ≥ 0.(2.5)
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Deriving this expression with respect to s, we get

Φ̃′(Φ′(s))Φ′′(s) = Φ′′(s)s.

As Φ′′(s) > 0, we have

Φ̃′(Φ′(s)) = s, ∀s > 0.(2.6)

Since
Φ̃′(t)t

Φ̃(t)
≤ β, for all t ≥ 0, making t = Φ′(s), we are left with

Φ̃′(Φ′(s))Φ′(s)

Φ̃(Φ′(s))
≤ β, ∀s > 0,(2.7)

in other words, by (2.6) and (2.7), it follows

sΦ′(s) ≤ βΦ̃(Φ′(s)), ∀s > 0.(2.8)

According to (2.5) and (2.8)

sΦ′(s) ≤ β(Φ′(s)s− Φ(s))

and therefore

β

β − 1
≤

Φ′(s)s

Φ(s)
, ∀s > 0.

Since (ϕ3) occurs when ℓ = 1, we can conclude that β
β−1

= 1, that is, β = β − 1. An

contradiction. Therefore, Φ̃ /∈ (∆2).

Example 2.2.4 It can be observed that the N -functions Φ1, Φ2, Φ3 and Φ4 satisfy the

condition (ϕ3) for ℓ > 1. Although it might appear that there is no valid example of an

N -function satisfying conditions (ϕ1)− (ϕ4) with ℓ = 1, we introduce the function

Φα(t) = |t| ln(|t|α + 1) for 0 < α <
N

N − 1
− 1(2.9)

as an example of an N -function that satisfies (ϕ1)− (ϕ4) for the case ℓ = 1.

In fact, consider ϕα : (0,+∞) → (0,+∞) a continuous function deőned by

ϕα(t) =
ln(tα + 1)

t
+ α

tα−1

tα + 1
, for t > 0.

It is easy to check that

Φα(t) =

∫ |t|

0

sϕα(s)ds = |t| ln(|t|α + 1), ∀t ∈ R.
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Now, we will prove that Φα is an N -function. Firstly, notice that

tϕα(t) = ln(tα + 1) + α
tα

tα + 1
,

so

lim
t→0+

tϕα(t) = lim
t→0+

(ln(tα + 1) + α
tα

tα + 1
) = 0

and

lim
t→+∞

tϕα(t) = lim
t→+∞

(ln(tα + 1) + α
tα

tα + 1
) ≥ lim

t→+∞
(ln(tα + 1)) = +∞.

It remains to show that the function t 7→ tϕα(t) is increasing, for all t > 0. Indeed,

(tϕα(t))
′ = α

tα−1

tα + 1
+ α2 t

α−1(tα + 1)

(tα + 1)2
+ α2 tαtα−1

(tα + 1)2

= α
tα−1

tα + 1
(1 + α− α

tα

tα + 1
), ∀t > 0.

Since
tα

tα + 1
< 1, for all t > 0, we conclude that (tϕα(t))

′ > 0, for all t > 0. Having

done this study, it follows from Lemma 2.1 that Φα is a N -function.

Now, see that
(

t2ϕα(t)

Φα(t)

)′

=
α2tα−1(tα + 1) ln(tα + 1)− α2tα(tα−1 ln(tα + 1) + tα−1)

[(tα + 1) ln(tα + 1)]2

=
α2tα−1

[(tα + 1) ln(tα + 1)]2
[(tα + 1) ln(tα + 1)− tα ln(tα + 1)− tα]

=
α2tα−1

[(tα + 1) ln(tα + 1)]2
[ln(tα + 1)− tα].

Since ln(tα + 1) − tα < 0 for all t > 0, it follows that

(

t2ϕα(t)

Φα(t)

)′

< 0, for all t > 0.

Thus the function t 7→
t2ϕα(t)

Φα(t)
is decreasing in (0,+∞). Clearly

t2ϕα(t)

Φα(t)
≥ 1, for all

t > 0, since

t2ϕα(t)

Φα(t)
=
t ln(tα + 1)

t ln(tα + 1)
+ α

tα+1

t(tα + 1) ln(tα + 1)
= 1 +

αtα

(tα + 1) ln(tα + 1)
.(2.10)

Let us now see that if there is ℓ ≥ 1 such that
t2ϕα(t)

Φα(t)
≥ ℓ, then ℓ = 1. In efect,

suppose that ℓ > 1. By L’Hôpital’s rule, we have

lim
t→+∞

αtα

(tα + 1) ln(tα + 1)
= lim

t→+∞

α2tα−1

αtα−1 ln(tα + 1) + αtα−1
= lim

t→+∞

α

ln(tα + 1) + 1
= 0.

(2.11)
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Therefore, by (2.10) and (2.11)

1 = lim
t→+∞

t2ϕα(t)

Φα(t)
≥ ℓ.

Which is absurd. So, we conclude that ℓ = 1.

Still by (2.10) and L’Hôpital’s rule, we have

lim
t→0+

t2ϕα(t)

Φα(t)
= 1 + lim

t→0+

αtα

(tα + 1) ln(tα + 1)

= 1 + lim
t→0+

α2tα−1

αtα−1 ln(tα + 1) + αtα−1

= 1 + lim
t→0+

α

ln(tα + 1) + 1

= 1 + α.

Therefore,

1 = ℓ ≤
t2ϕα(t)

Φα(t)
≤ 1 + α, ∀t > 0.

At this point, just choose α > 0, small enough, so that 1 + α < l∗. And so, we will

have the desired example.

Remark 2.5 The Lemma 2.15 guarantees that Φ∗ is a N -function. Hence, by Lemma

2.1, it follows that

Φ∗(t) =

∫ |t|

0

sϕ∗(s)ds,

where ϕ∗ : [0,∞) → [0,∞) satisfies

1. ϕ∗(0) = 0, sϕ∗(s) > 0 for s > 0, lim
s→∞

sϕ∗(s) = ∞;

2. ϕ∗ is continuous and non-decreasing.

Lemma 2.20 Consider Φ a N -function of the form (2.3) and satisfying (ϕ1), (ϕ2)

and (ϕ3). Define

ξ4(t) = min{tℓ
∗

, tm
∗

} and ξ5(t) = max{tℓ
∗

, tm
∗

}, t ≥ 0.

Then,

(2.12) ℓ∗ ≤
Φ′

∗(t)t
2

Φ∗(t)
≤ m∗, ∀t > 0;

(2.13) ξ2(t)Φ∗(ρ) ≤ Φ∗(ρt) ≤ ξ3(t)Φ∗(ρ), ∀ρ, t > 0

and

ξ2(∥u∥Φ∗
) ≤

∫

Ω

Φ∗(u)dx ≤ ξ3(∥u∥Φ∗
), ∀u ∈ LΦ∗(Ω).
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Remark 2.6 The inequality (2.12) guarantees that Φ and Φ̃ satisfy the ∆2-condition.

Therefore, LΦ∗(Ω) is separable and reflexive.

2.3 Orlicz-Sobolev Space

In this section, we study Orlicz-Sobolev spaces. We present some basic properties

as well as embeddings of Orlicz-Sobolev spaces into Orlicz spaces.

Definition 2.7 For a N -function Φ, we define the Orlicz-Sobolev space W 1,Φ(Ω)

as

W 1,Φ(Ω) =

{

u ∈ LΦ(Ω) :
∂u

∂xi
∈ LΦ(Ω), i = 1, ..., N

}

.

Definition 2.8 For a N -function Φ, we define the Orlicz-Sobolev space W 1EΦ(Ω)

as

W 1EΦ(Ω) =

{

u ∈ EΦ(Ω) :
∂u

∂xi
∈ EΦ(Ω), i = 1, ..., N

}

.

The spaces W 1,Φ(Ω) and W 1EΦ(Ω) are Banach spaces equipped with the norm

∥u∥1,Φ = ∥∇u∥Φ + ∥u∥Φ.(2.14)

Remark 2.7 (i) W 1EΦ(Ω) ⊆
(

EΦ(Ω)
)N+1

, in addition, W 1EΦ(Ω) is closed in the

topology of the norm of
(

EΦ(Ω)
)N+1

;

(ii) W 1,Φ(Ω) ⊆
(

LΦ(Ω)
)N+1

, in addition, W 1,Φ(Ω) is closed in the norm topology of
(

LΦ(Ω)
)N+1

;

(iii) W 1,Φ(Ω) is closed in the weak∗ topology of
(

LΦ(Ω)
)N+1

;

(iv) W 1EΦ(Ω) is separable.

(v) For each F ∈
(

W 1EΦ(Ω
)

)′ there are v0, v1, · · · , vN ∈ LΦ̃(Ω) such that

F (u) =

∫

Ω

uv0dx+
N
∑

i=1

∫

Ω

∂u

∂xi
vidx, u ∈ W 1EΦ(Ω

)

;

(vi) W 1EΦ(Ω) = C∞(Ω) ∩W 1EΦ(Ω)
∥·∥1,Φ

;

(vii) If Ω has the segment property1, then W 1EΦ(Ω) = C∞(Ω)
∥·∥1,Φ

.

Theorem 2.1 Let Φ be a N -function satisfying the ∆2-condition. Then:

1Segment property, we understand the domains Ω has the segment property if for every x ∈ ∂Ω

there exists an open set Ux, and a nonzero vector yx, such that x ∈ Ux, and if z ∈ Ω ∩ Ux, then

z + tyx ∈ Ω, for 0 < t < 1.
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(i) W 1,Φ(Ω) = W 1EΦ(Ω);

(ii) W 1,Φ(Ω) is separable;

(iii) W 1,Φ(Ω) is reflexive if and only if Φ̃.

The main embedding result involving this function class can be found in [70,

Theorem 3.2].

Theorem 2.2 Let Ω ⊂ R
N open and admissible2. If Φ is a N -function verifying (2.2),

then

W 1,Φ(Ω) →֒
cont

LΦ∗(Ω).

Furthermore, if |Ω| <∞ and Ψ is a N -function such that Ψ ≺≺ Φ∗, then

W 1,Φ(Ω) →֒
comp

LΨ(Ω).

Theorem 2.3 Let Ω ⊂ R
N be open and admissible. If Φ is a N -function which does

not check (2.2), then we have

W 1,Φ(Ω) →֒
cont

C(Ω) = C(Ω) ∩ L∞(Ω).

The following result is a version of the Lemma 2.12 for the space W 1,Φ(Ω).

Lemma 2.21 Assume that Φ is an N-function. If (un) ⊂ W 1,Φ(Ω) is a bounded se-

quence, then there exists a subsequence of (un), which we will still denote by (un), and

u ∈ W 1,Φ(Ω) such that

un
∗

−−⇀ u in LΦ(Ω) and
∂un
∂xi

∗
−−⇀

∂u

∂xi
in LΦ(Ω)(2.15)

or equivalently,

∫

Ω

unvdx −→

∫

Ω

uvdx, ∀v ∈ EΦ̃∗(Ω)

and
∫

Ω

∂un
∂xi

wdx −→

∫

Ω

∂u

∂xi
wdx, ∀w ∈ EΦ̃(Ω).

From now on, we denote the limit (2.15) by un
∗
⇀ u in W 1,Φ(Ω). As an immediate

consequence of the last lemma, we have the following corollary.

2By admissible, we understand the domains in which embedding occur W 1,1(Ω) →֒ L
N

N−1 (Ω)
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Corollary 2.1 If (un) ⊂ W 1,Φ(Ω) is a bounded sequence with un → u in LΦ
loc(Ω), then

u ∈ W 1,Φ(Ω).

Lemma 2.22 Suppose (un) ⊂ W 1,Φ(Ω) is a bounded sequence in W 1,Φ(Ω), then there

is u ∈ W 1,Φ(Ω) such that un
∗

−−⇀ u in W 1,Φ(Ω) and

∫

Ω

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

Ω

Φ(|∇un|)dx.

Proof. Since un
∗
⇀ u in W 1,Φ(Ω), thus

∫

Ω

∂un
∂xi

φdx→

∫

Ω

∂u

∂xi
φdx, ∀φ ∈ L∞(Ω),

i.e.

∂un
∂xi

∗
⇀

∂u

∂xi
in L1(Ω),

because (L1(Ω))∗ = L∞(Ω). Thus we can apply [30, Theorem 2.1] to get
∫

Ω

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

Ω

Φ(|∇un|)dx,

which completes the proof.

2.4 The spaces W 1
0E

Φ(Ω) and W 1,Φ
0 (Ω)

In this section, we shell consider Φ a N -function and Ω ⊂ R
N an open set. We

deőne the Banach space W 1
0E

Φ(Ω) as being the closure of C∞
0 (Ω) in W 1,Φ(Ω) with

respect to the norm (2.14). The Banach space W 1,Φ
0 (Ω) is deőned as the weak∗ closure

of C∞
0 (Ω) in W 1,Φ(Ω).

Lemma 2.23 (i) W 1
0E

Φ(Ω) is separable;

(ii) W 1,Φ
0 (Ω) is the Kernel of the dash operator.

(iii) (Poincaré-type inequality [See [35]]) If d = 2diam(Ω) <∞, then
∫

Ω

Φ(|u|/d)dx ≤

∫

Ω

Φ(|∇u|)dx, ∀u ∈ W 1,Φ
0 (Ω)

Lemma 2.24 Let Φ a N -function satisfying the ∆2-condition. Then:

(i) W 1,Φ
0 (Ω) = W 1

0E
Φ(Ω);

(ii) W 1,Φ
0 (Ω) is separable;
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(iii) W 1,Φ
0 (Ω) is reflexive if and only if Φ̃.

Theorem 2.4 Let Ω ⊂ R
N open limited and admissible. If Φ is a N -function verifying

(2.2), then

W 1,Φ
0 (Ω) →֒

comp
LΦ(Ω).

2.5 The space D1,Φ(RN)

Considering Φ a N -function verifying the ∆2-condition, the space D1,Φ(RN) is

deőned to be the complement of the space C∞
0 (RN) with respect to the standard

|u|D1,Φ(RN ) = ∥u∥Φ∗
+∥∇u∥Φ.(2.16)

It is immediate to verify that

D1,Φ(RN) →֒
cont

LΦ∗(RN).

Lemma 2.25 There exists SN > 0, such that

∥u∥Φ∗
≤ SN∥∇u∥Φ, u ∈ D1,Φ(RN).(2.17)

By lemma above, it follows that the norm |u|D1,Φ(RN ) is equivalent to the norm

∥∇u∥Φ. For this reason, in this thesis we will assume the norm ofD1,Φ(RN) as being the

norm ∥∇u∥Φ. Being LΦ(RN) and LΦ∗(RN) Banach spaces, we conclude that D1,Φ(RN)

is Banach.

Remark 2.8 Let Ω ⊂ R
N open bounded. Then, D1,Φ(Ω) = W 1,Φ

0 (Ω).

Lemma 2.26 (i) D1,Φ(RN) ⊆ LΦ∗(RN) × (LΦ(RN))N , furthermore, D1,Φ(RN) is

closed in the topology of the norm of LΦ∗(RN)× (LΦ(RN))N ;

(ii) D1,Φ(RN) is separable;

(iii) D1,Φ(RN) is reflexive if and only if Φ, Φ̃, Φ∗, Φ̃∗ ∈ (∆2).

The following result is a version of the Lemma 2.12 for the space D1,Φ(RN).

Lemma 2.27 Assume that Φ is a N-function verificando the ∆2-condition. If (un) ⊂

D1,Φ(RN) is a bounded sequence, then there exists a subsequence of (un), which we will

still denote by (un), and u ∈ D1,Φ(RN) such that

un
∗
⇀ u in LΦ∗(RN) and

∂un
∂xi

∗
⇀

∂u

∂xi
in LΦ(RN)(2.18)
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or equivalently,
∫

RN

unvdx→

∫

RN

uvdx, ∀v ∈ EΦ̃∗(RN)

and
∫

RN

∂un
∂xi

wdx→

∫

RN

∂u

∂xi
wdx, ∀w ∈ EΦ̃(RN).

From now on, we denote the limit (2.18) by un
∗
⇀ u inD1,Φ(RN). As an immediate

consequence of the last lemma, we have the following corollary.

Corollary 2.2 If (un) ⊂ D1,Φ(RN) is a bounded sequence with un → u in LΦ
loc(R

N),

then u ∈ D1,Φ(RN).

Lemma 2.28 Suppose (un) ⊂ D1,Φ(RN) is a bounded sequence in D1,Φ(RN), then

there is u ∈ E such that un
∗

−−⇀ u in D1,Φ(RN) and

∫

RN

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

RN

Φ(|∇un|)dx.

Proof. Consider φ ∈ L∞(RN) arbitrary. For every R > 1, deőne the function

ωR(t) =







1 , if x ∈ BR(0)

0 , if x ∈ Bc
R(0)

.

It is clear that ωR ∈ EΦ̃(RN), because ωR ∈ L∞(RN) and supp(ωR) ⊂⊂ R
N . As a

consequence, we have φωR ∈ EΦ̃(RN). We know that LΦ(RN) →֒
cont

L1
loc(R

N), such as

un, u ∈ D1,Φ(RN), then

∂un
∂xi

,
∂u

∂xi
∈ L1

loc(R
N), ∀i = 1, 2, · · · , N

and hence

∂un
∂xi

ωR,
∂u

∂xi
ωR ∈ L1

loc(R
N), ∀i = 1, 2, · · · , N.

By Lemma 2.27, un
∗
⇀ u in D1,Φ(RN), thus

∫

RN

(

∂un
∂xi

ωR

)

φdx =

∫

RN

∂un
∂xi

(ωRφ)dx→

∫

RN

∂u

∂xi
(ωRφ)dx =

∫

RN

(

∂u

∂xi
ωR

)

φdx.

By the arbitrariness of φ in L∞(RN),

∂un
∂xi

ωR
∗
⇀

∂u

∂xi
ωR, in L1(RN)
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because (L1(RN))∗ = L∞(RN). Therefore, applying [30, Theorem 2.1], we can conclude

that

∫

BR(0)

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

RN

Φ(|∇un|ωR)dx ≤ lim inf
n→∞

∫

RN

Φ(|∇un|)dx.

Passing the limit at R → +∞, we get

∫

RN

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

RN

Φ(|∇un|)dx,

which completes the proof.
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Chapter 3

Existence of positive solution for a

class of quasilinear Schrödinger

equations with potential vanishing at

infinity on nonreflexive Orlicz-Sobolev

spaces

Our main goal in this chapter is to prove the sequence of Theorem 1.1, 1.2, 1.3, 1.4

and 1.5 that correspond to the existence of positive solutions to the problem quasilinear

of type

(P1)







−∆Φu+ V (x)ϕ(|u|)u = K(x)f(u), in R
N

u ∈ D1,Φ(RN), u ≥ 0, in R
N

where N ≥ 2, V,K : R
N → R and f : R → R are continuous functions with V ,

K being nonnegative functions and f having a quasicritical growth and Φ̃ ̸∈ (∆2).

In this sense, we divide this chapter into 3 sections, where in Section 3.1 we present

preliminary results involving the energy functional associated with the problem (P1),

where the conditions (ϕ1) − (ϕ4) (mentioned in the introduction) are satisőed. In the

following Sections 3.2 and 3.3 we study the cases in which (V,K) ∈ K1 or (V,K) ∈ K2.



3.1 Preliminary results

Since the potential V may vanish at inőnity, we cannot study equation (P1) on

the Sobolev space D1,Φ(RN) by variational methods. As in [10], we work in the space

E =

{

u ∈ D1,Φ(RN) :

∫

RN

V (x)Φ(|u|)dx < +∞

}

(3.1)

with norm

∥u∥E= ∥u∥D1,Φ(RN )+∥u∥V,Φ,

where

∥u∥V,Φ= inf

{

α > 0 :

∫

RN

V (x)Φ (|u|/α) dx ≤ 1

}

is the norm of Banach Space

LΦ
V (R

N) =

{

u : RN → R measurable :

∫

RN

V (x)Φ(|u|)dx < +∞

}

.

It is immediate that E is continuously embedded in the spaces D1,Φ(RN) and LΦ
V (R

N).

Now let us list some properties involving the space E.

Lemma 3.1 (E, ∥·∥E) is a Banach space.

Proof. Let (un) ⊂ E be a Cauchy sequence. So (un) is a Cauchy sequence in

(D1,Φ(RN), ∥·∥), that is, there is u ∈ D1,Φ(RN) satisfying

un → u in D1,Φ(RN).(3.2)

As the embedding D1,Φ(RN) →֒ LΦ∗(RN) is continuous, then un → u in LΦ∗(RN), thus,

there is a subsequence (unj
) ⊂ (un), verifying

unj
(x) → u(x) in R

N .(3.3)

Since (un) is a Cauchy sequence in E and the embedding E →֒ LΦ
V (R

N) is continuous,

then (un) is a Cauchy sequence in LΦ
V (R

N). Thus, given ε > 0, there is n0 ∈ N such

that

∥un − um∥V,Φ< ε, ∀n,m ≥ n0.

39



Particularly,

∥un − unj
∥V,Φ< ε, ∀n, j ≥ n0.

Thus,

∫

RN

V (x)Φ

(

|un(x)− unj
(x)|

ε

)

dx ≤ 1, ∀n, j ≥ n0.(3.4)

From Fatou’s Lemma and by (3.3)-(3.4),

∫

RN

V (x)Φ

(

|un(x)− u(x)|

ε

)

dx ≤ 1, ∀n ≥ n0.

Therefore,

∥un − u∥V,Φ< ε, ∀n ≥ n0,

from where it follows that

un → u in LΦ
V (R

N).(3.5)

Gathering (3.2) and (3.5) we get

un → u in E.

To őnish the proof, let us show that u ∈ E. As un → u in LΦ
V (R

N), then (∥unj
∥V,Φ) is

bounded, that is, there is K > 0 so that ∥unj
∥V,Φ≤ K, for all j ∈ N. So,

∫

RN

V (x)Φ
(

|unj
(x)|

)

dx ≤
∥unj

∥V,Φ
K

∫

RN

V (x)Φ

(

K
|unj

(x)|

∥unj
∥V,Φ

)

dx

≤ CK

∥unj
∥V,Φ
K

∫

RN

V (x)Φ

(

|unj
(x)|

∥unj
∥V,Φ

)

dx

≤ CK ,

for every j ∈ N, where CK > 0 is a constant that depends only on K. By Fatou’s

Lemma, we obtain

∫

RN

V (x)Φ (|u(x)|) dx ≤ CK ,

proving that u ∈ E. Thus we conclude that E is a Banach space.

Lemma 3.2 E = C∞
0 (RN)

∥·∥E
and E is compactly embedded in LΦ

loc(R
N).
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Proof. It follows the same ideas as Theorem 8.21, which can be found in [1]. For that

reason, we will omit its proof.

Lemma 3.3 Suppose (un) ⊂ E is a bounded sequence, then there is u ∈ E such that

un
∗
⇀ u in D1,Φ(RN), un(x) → u(x) a.e. in R

N

and
∫

Ω

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

Ω

Φ(|∇un|)dx,

Proof. Since (un) is a bounded sequence in E, then (un) is a bounded sequence in

D1,Φ(RN) and by the Lemma 2.28, there is u ∈ D1,Φ(RN) such that un
∗
⇀ u inD1,Φ(RN)

and

∫

Ω

Φ(|∇u|)dx ≤ lim inf
n→∞

∫

Ω

Φ(|∇un|)dx.

Let us show that u ∈ E, because by Lemma 3.2 and Corollary 2.2, we can conclude

that less than one subsequence

un(x) → u(x) a.e. in R
N .

By Fatou’s Lemma

∫

RN

V (x)Φ(|u(x)|)dx ≤ lim inf
n→∞

∫

RN

V (x)Φ(|un(x)|)dx.

Since (un) is bounded in E, then (un) is bounded in LΦ
V (R

N). As Φ ∈ (∆2), there is

C > 0 such that

∫

RN

V (x)Φ(|un(x)|)dx ≤ C, ∀n ∈ N

Therefore,

∫

RN

V (x)Φ(|u(x)|)dx < +∞,

showing that u ∈ E, and the proof is complete.

Now, we consider the functional Q : E → R which is given by

Q(u) =

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx.(3.6)
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It is well known in the literature that Q ∈ C1(E,R) when Φ and Φ̃ satisfy the condition

(∆2) and this occurs when the condition (ϕ3) is satisőed with ℓ > 1 and m <∞. When

ℓ = 1, we know that Φ̃ /∈ (∆2) and therefore cannot guarantee the diferentiability of

functional Q. However, we will show that the functional Q is continuous and Gateaux-

diferentiable with derivative Q′ : E → E∗ deőned by

Q′(u)v =

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx, ∀u, v ∈ E

is continuous from the norm topology of E to the weak∗-topology of E∗.

The lemma below illustrates the computation of the Gateaux derivative of the

functional Q, and this result can be found in [11, Lemma 4.1].

Lemma 3.4 The functional Q is Gateaux differentiable, that is, Q′(u)v exists for all

u, v ∈ E with

Q′(u)v =

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx.

Proof. For each v ∈ E and t ∈ [−1, 1] \ {0},

Φ(|∇u+ t∇v|)− Φ(|∇v|) = tϕ(|∇u+ st∇v|)(∇u+ st∇v)∇v,

for some s ∈ (0, 1). Consequently,
∣

∣

∣

∣

Φ(|∇u+ t∇v|)− Φ(|∇v|)

t

∣

∣

∣

∣

≤ ϕ(|∇u+ st∇v|)|∇u+ st∇v||∇v|.(3.7)

Since Φ satisőes the ∆2-condition, by Young’s inequality, there is C > 0 such that

ϕ(|∇u+ st∇v|)|∇u+ st∇v||∇v| ≤ C
(

Φ(|∇u|) + Φ(|∇v|)
)

∈ L1(RN).(3.8)

A similar argument works to show that

V (x)ϕ(|u+ stv|)|u+ stv||v| ≤ C
(

V (x)Φ(|u|) + V (x)Φ(|v|)
)

∈ L1(RN).(3.9)

Now, by using Lebesgue dominated convergence theorem, we derive that

lim
t→0

Q(u+ tv)−Q(u)

t
=

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx,

for all u, v ∈ E.
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Lemma 3.5 Let Φ an N -function of the form (1.6) satisfying (ϕ1), (ϕ2) and (ϕ3). If

un → u in LΦ
V (R

N), then there exists H1 ∈ LΦ
V (R

N) and a subsequence (unj
) such that

i) |unj
(x)| ≤ H1(x) for every x ∈ R

N and every j ∈ N

ii) unj
(x) → u(x) a.e. in R

N and every j ∈ N.

Proof. Since that

∥V (x)Φ(2|un − u|)∥1 =

∫

Ω

V (x)Φ

(

2∥un − u∥V,Φ
|un − u|

∥un − u∥V,Φ

)

dx

≤ 2∥un − u∥V,Φ

∫

Ω

V (x)Φ

(

|un − u|

∥un − u∥V,Φ

)

dx

= 2∥un − u∥V,Φ,

where 2∥un − u∥V,Φ≤ 1. Thus,

∥V (x)Φ(2|un − u|)∥1→ 0 as n→ ∞.

Therefore, there is H ∈ L1(RN) and a subsequence (unj
) such that

i) V (x)Φ(2|unj
(x)− u(x)|) ≤ H(x), for all x ∈ R

N and all j ∈ N

ii) unj
(x) → u(x), a.e. in R

N .

From item ii), we have

|unj
(x)| ≤ |u(x)|+

1

2
Φ−1

(

H(x)

V (x)

)

.

Clearly H1 ∈ LΦ
V (R

N) where

H1(x) = |u(x)|+
1

2
Φ−1

(

H(x)

V (x)

)

,

and the lemma follows.

As an immediate consequence of the Lemma 3.5, we have the following result.

Lemma 3.6 The functional Q : E → R is continuous in the norm topology.

Lemma 3.7 The Gateaux derivative Q′ : E → E∗ is continuous from the norm topol-

ogy of E to the weak∗ topology of E∗.

Proof. By the Proposition 3.2 of [27] is suicient prove that, any sequence (un) ⊂ E

such that un → u in E, implies

⟨Q′(un), v⟩ → ⟨Q′(u), v⟩, ∀v ∈ E.
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Consider (un) ⊂ E such that un → u in E, then

|∇un| → |∇u| in LΦ(RN) and un → u in LΦ
V (R

N).

By Lemma 3.5, there are H1 ∈ LΦ
V (R

N), H2 ∈ LΦ
V (R

N) and a subsequence (unj
) ⊂ (un)

such that

i) |unj
(x)| ≤ H1(x) and |∇unj

(x)| ≤ H2(x) for x ∈ R
N and j ∈ N

ii) unj
(x) → u(x) and |∇unj

(x)| → |∇u(x)| a.e. in R
N and j ∈ N.

Set v ∈ E arbitrary. By the continuity of the function ϕ, it follows that

ϕ(|∇unj
(x)|)∇unj

(x)∇v(x) → ϕ(|∇u(x)|)∇u(x)∇v(x), a.e. in R
N .

Also, by (ϕ1) the function ϕ(t)t is increasing for every t > 0, thus

ϕ(|∇unj
(x)|)|∇unj

(x)||∇v(x)| ≤ ϕ(|H(x)|)|H(x)|∇v(x)|.

Hence by Lebesgue dominated convergence theorem

∫

RN

ϕ(|∇unj
|)∇unj

∇vdx→

∫

RN

ϕ(|∇u|)∇u∇vdx,

with this, we ensure that

∫

RN

ϕ(|∇un|)∇un∇vdx→

∫

RN

ϕ(|∇u|)∇u∇vdx.

Similarly, we have

∫

RN

ϕ(|un|)unvdx→

∫

RN

ϕ(|u|)uvdx.

Therefore,

⟨Q′(un), v⟩ → ⟨Q′(u), v⟩.

By the arbitrariness of v ∈ E, we conclude the results.

With these preliminary results established, we can now present the main outcomes

that will be developed throughout this chapter. To achieve this, we will divide the study

of problem (P1) into two conditions: (V,K) ∈ K1 and (V,K) ∈ K2.
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3.2 Existence of a solution in the case (V,K) ∈ K1

Initially, we list some results that will be true if the conditions (f1) or (f4)

(mentioned in the introduction) is hold. Note that the condition (f4) implies that

lim
t→+∞

f(t)

ϕ∗(t)t
= 0. Then, by the conditions (f1) or (f4), given ε > 0 there exists δ0 > 0,

δ1 > 0 and Cε > 0 such that

K(x)|f(t)| ≤ εC1

(

V (x)tϕ(t) + tϕ∗(t)
)

+ CεK(x)tϕ∗(t)χ[δ0,δ1](t),(3.10)

for every t ≥ 0 and x ∈ R
N , where C1 = max

{

∥K∥∞,
∥

∥

K
V

∥

∥

∞

}

. This inequality yields

that the functional F : E → R given by

(3.11) F(u) =

∫

RN

K(x)F (u)dx

is well deőned and belongs to C1(E,R) with derivative

F ′(u)v =

∫

RN

K(x)f(u)vdx, ∀u, v ∈ E.

From the results presented in the previous section, we can conclude that the energy

functional J : E → R associated with the problem (P1), which is given by

J(u) =

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx−

∫

RN

K(x)F (u)dx

is a continuous and Gateaux-diferentiable functional such that J ′ : E → E∗ given by

J ′(u)v =

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx−

∫

RN

K(x)f(u)vdx

is continuous from the norm topology of E to the weak∗-topology of E∗. (By Corollary

A.1, we have J is locally Lipschitz functional)

Once that we intend to őnd nonnegative solutions for the problem (P1), we will

assume that

f(s) = 0, ∀s ∈ (−∞, 0].(3.12)

Since J is locally Lipschitz functional (See Deőnition in Appendix A) and Q,

given in (3.6), is convex, then this allows us to present a deőnition of a critical point

for J . In this sense, we will say that u ∈ E is a critical point for the functional J if

Q(v)−Q(u) ≥

∫

RN

K(x)f(u)(v − u)dx, ∀v ∈ E.(3.13)

Our next lemma establishes that a critical point u in the sense (3.13) is a weak

solution for (P1).
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Proposition 3.1 If u ∈ E is a critical point of J in E, then u is a weak solution to

(P1).

Proof. See [11, Lemma 4.1].

Now, let us check that J also satisőes the mountain pass geometry.

Lemma 3.8 There are ρ, η > 0 such that J(u) ≥ η if ∥u∥E= ρ.

Proof. Consider 0 < ε < 1
2C1

with C1 =
∥

∥

K
V

∥

∥

∞
. By (3.10), there is Cε > 0, such that

K(x)|F (t)| ≤
1

2
V (x)Φ(t) + CεΦ∗(t), ∀t ≥ 0 and x ∈ R

N .(3.14)

Thus,

J(u) ≥

∫

RN

Φ(|∇u|)dx+
1

2

∫

RN

V (x)Φ(|u|)dx− Cε

∫

RN

Φ∗(|u|)dx

≥ C2

(

ξ0(∥∇u∥Φ) + ξ0(∥u∥V,Φ)
)

− C2ξ3(∥u∥Φ∗
),

for some C2 > 0, where ξ0(t) = min{tℓ, tm} and ξ3(t) = max{tℓ
∗

, tm
∗

}. Choose ρ > 0

such that

∥u∥E= ∥u∥D1,Φ(RN )+∥u∥V,Φ= ρ < 1.

As E is continuously embedded in LΦ∗(RN), we get ∥u∥Φ∗≤ 1. Furthermore,

J(u) ≥ C2

(

∥∇u∥mΦ+∥u∥mV,Φ
)

− C2∥u∥
ℓ∗

Φ∗
.

Using classical inequality

(x+ y)α ≤ 2α−1(xα + yα), x, y ≥ 0 with α > 1,

we concluded that

J(u) ≥ C3∥u∥
m
E−C3∥u∥

ℓ∗

E ,

for some positive constant C3. Since 0 < m < ℓ∗, there is η > 0 such that

J(u) ≥ η for all ∥u∥E= ρ.

This őnishes the proof.

Lemma 3.9 There is e ∈ E with ∥e∥E> ρ and J(e) < 0.
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Proof. Consider ψ ∈ C∞
0 (RN) \ {0} and C1 ∈ R such that

C1 > ξ1(∥ψ∥D1,Φ(RN )) + ξ1(∥ψ∥V,Φ).(3.15)

By (f3), there exists C2 > 0 satisfying

F (t) ≥ C1|t|
m − C2, ∀t ∈ R.

Thus

K(x)F (t) ≥ C1K(x)|t|m − C2K(x), ∀t ∈ R and x ∈ R
N .

That said, considering t > 0, we have

J(tψ) ≤

∫

RN

Φ(t|∇ψ|)dx+

∫

RN

V (x)Φ(t|ψ|)dx− C1t
m

∫

RN

K(x)|ψ|mdx+ C3|supp(ψ)|,

before that, it follows from the 2.16 that

J(tψ) ≤ξ1(t)
(

ξ1(∥ψ∥D1,Φ(RN )) + ξ1(∥ψ∥V,Φ)
)

− C1t
m

∫

RN

K(x)|ψ|mdx+ C3|supp(ψ)|,

therefore, for t > 1,

J(tψ) ≤tm
(

ξ1(∥ψ∥D1,Φ(RN )) + ξ1(∥ψ∥V,Φ)
)

− C1t
m

∫

RN

K(x)|ψ|mdx+ C3|supp(ψ)|.

(3.16)

By (3.15) and (3.16), we can conclude that

J(tψ) → −∞ as t→ +∞.

The last limit guarantees the existence of t > 0 large enough that the result is veriőed

with e = tψ.

In what follows, let us denote by c > 0 the mountain pass level associated with

J , that is,

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}.
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Associated with c, we have a Cerami sequence (un) ⊂ E, that is,

J(un) → c and (1 + ∥un∥)∥J
′(un)∥∗→ 0.(3.17)

The above sequence is obtained from the Corollary A.1 in Appendix A.

To show that the sequences obtained in (3.17) is bounded, let us prove a Hardy

Type Inequality.

Proposition 3.2 (Hardy Type Inequality) Suppose that (V,K) ∈ K1, then E is com-

pactly embedded in LZ
K(R

N), where Z(t) =
∫ |t|

0
sz(s)ds is a N -function satisfying

(3.18) 0 < z1 ≤
t2z(t)

Z(t)
≤ z2, ∀t ≥ 0,

where m < z1 ≤ z2 < ℓ∗.

Remark 3.1 The inequality (3.18) implies the following inequalities

ξ0,Z(t)Z(ρ) ≤ Z(ρt) ≤ ξ1,Z(t)Z(ρ), ∀ρ, t ≥ 0

when

ξ0,Z(t) = min{tz1 , tz2} and ξ1,Z(t) = max{tz1 , tz2}, ∀t ≥ 0.

Besides by Lemma 2.16 and Lemma 2.20, we have

lim
t→0

Z(|t|)

Φ(|t|)
= 0 and lim

t→∞

Z(|t|)

Φ∗(|t|)
= 0.

Proof of Proposition 3.2: We will assume that (K2) is true. In this case, by Remark

3.1, given ε > 0, there are 0 < s0 < s1 and C > 0, such that

K(x)Z(|s|) ≤ εC(V (x)Φ(|s|) + Φ∗(|s|)) + CK(x)χ[s0,s1](|s|)Φ∗(|s|),(3.19)

for all s ∈ R and x ∈ R
N . Thus, for r > 0 large enough,

∫

Br(0)c
K(x)Z(|u|)dx ≤ εCQ(u) + CΦ∗(s1)

∫

Au∩Br(0)c
K(x)dx, ∀u ∈ E,(3.20)

where Q : E → R is the function deőned in (3.6) and

Au = {x ∈ R
N : s0 ≤ |u(x)| ≤ s1}.

Consider (vn) a bounded sequence in E. To see that the operator i : E → LB
K(R

N)

is compact just prove that (vn) has a convergent subsequence on LB
K(R

N). By Lemma

3.3, there is v ∈ E such that

vn
∗
⇀ v in D1,Φ(RN), vn(x) → v(x) a.e. in R

N
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or equivalently

wn
∗
⇀ 0 in D1,Φ(RN), wn(x) → 0 a.e. in R

N ,

where wn = vn − v. By the boundedness of (vn) in E and by the fact that Φ and Φ∗

satisfy the ∆2-condition, there is M1 > 0 such that

∫

RN

V (x)Φ(|wn|)dx ≤M1 and
∫

RN

Φ∗(|wn|)dx ≤M1, ∀n ∈ N,

implying that (Q(wn)) is bounded.

On the other hand, deőning

An = {x ∈ R
N : s0 ≤ |wn(x)| ≤ s1}

the last inequality implies that

Φ∗(s0)|An| ≤

∫

An

Φ∗(|wn|)dx ≤M1, ∀n ∈ N.

With this, we can guarantee that sup
n∈N

|An| < +∞. Therefore, by (K1),

∫

An∩Br(0)c
K(x)dx <

ε

Φ∗(s1)
, ∀n ∈ N.(3.21)

From (3.20) and (3.21),

∫

Br(0)c
K(x)Z(|wn|)dx ≤ εCM1 + Φ∗(s1)

∫

An∩Br(0)c
K(x)dx ≤ ε(CM1 + 1), ∀n ∈ N,

and hence,

lim sup
n→∞

∫

Br(0)c
K(x)Z(|wn|)dx ≤ ε(CM1 + 1).(3.22)

Consider the functions P1 : R → R and P2 : R → R given by P1(t) = Z(|t|) and

P2(t) = Φ∗(|t|). Of course, P1 and P2 are continuous in addition

lim
|t|→+∞

P1(t)

P2(t)
= 0.

Finally, it follows from the boundedness of (vn) in E and from the fact that Φ∗ satisfy

the ∆2-condition the existence of a constant C1 > 0, so that

∫

RN

P2(wn)dx ≤

∫

RN

Φ∗(|wn|)dx < C1, ∀n ∈ N.
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Therefore, by compactness Lemma of Strauss [26, Theorem A.I, p. 338], we have

lim
n→∞

∫

Br(0)

P1(wn)dx = 0.

Thus,

lim sup
n→∞

∫

Br(0)

K(x)Z(|wn|)dx = 0.(3.23)

According to (3.22) and (3.23), we get

lim sup
n→∞

∫

RN

K(x)Z(|wn|)dx ≤ ε(CM1 + 1).

By the arbitrariness of ε > 0, it follows that

lim sup
n→∞

∫

RN

K(x)Z(|wn|)dx = 0.

As Z veriőes the ∆2-condition, we have that

wn → 0 in LZ
K(R

N),

in other words

vn → v in LZ
K(R

N).

Showing the result for the case (K2).

Next lemma is an important step to prove that the Cerami sequence obtained in

(3.17) is bounded.

Lemma 3.10 Let (vn) be a bounded sequence in E such that vn
∗
⇀ v in D1,Φ(RN).

Suppose that f satisfies (f1) or (f4), then

lim
n→∞

∫

RN

K(x)F (vn)dx =

∫

RN

K(x)F (v)dx,(3.24)

lim
n→∞

∫

RN

K(x)f(vn)vndx =

∫

RN

K(x)f(v)vdx(3.25)

and

lim
n→∞

∫

RN

K(x)f(vn)ψdx =

∫

RN

K(x)f(v)ψdx, ∀ψ ∈ C∞
0 (RN).(3.26)
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Proof. As in (3.10), given ε > 0, there exists δ0 > 0, δ1 > 0 and Cε > 0 such that

K(x)f(t) ≤ εC1

(

V (x)tϕ(t) + tϕ∗(t)
)

+ CεK(x)tb(t), ∀t ≥ 0 and x ∈ R
N(3.27)

where C1 = max{∥K∥∞,
∥

∥

K
V

∥

∥

∞
}. Hence,

K(x)F (t) ≤ εC1(V (x)Φ(t) + Φ∗(t)) + CεB(t), ∀t ≥ 0 and x ∈ R
N .(3.28)

From Proposition 3.2,
∫

RN

K(x)B(vn)dx→

∫

RN

K(x)B(v)dx(3.29)

then there is r0 > 0, so that
∫

Bc
r0

(0)

K(x)B(vn)dx <
ε

Cε

, ∀n ∈ N.(3.30)

Moreover, as (vn) is bounded in E, there is a constant M1 > 0 satisfying
∫

RN

V (x)Φ(|vn|)dx ≤M1 and
∫

RN

Φ∗(|vn|)dx ≤M1, ∀n ∈ N.

Combining the last inequalities with (3.28) and (3.30),
∣

∣

∣

∣

∣

∫

Bc
r0

(0)

K(x)F (vn)dx

∣

∣

∣

∣

∣

≤ ε(C1M1 + 1), ∀n ∈ N.

Therefore

lim sup
n→+∞

∫

Bc
r0

(0)

K(x)F (vn)dx ≤ ε(C1M1 + 1).(3.31)

On the other hand, using (f2) and the compactness Lemma of Strauss [26, The-

orem A.I, p. 338], it follows that

lim
n→+∞

∫

Br0 (0)

K(x)F (vn)dx =

∫

Br0 (0)

K(x)F (v)dx.(3.32)

In light of this, we can conclude that

lim
n→+∞

∫

RN

K(x)F (vn)dx =

∫

Rn

K(x)F (v)dx.

To show (3.25), consider r0 > 0 given in (3.30). By (3.27),
∫

Bc
r0

(0)

K(x)f(vn)vndx ≤εC1

(

m

∫

Bc
r0

(0)

V (x)Φ(|vn|)dx+m∗

∫

Bc
r0

(0)

Φ∗(|vn|)dx

)

+ Cεz2

∫

Bc
r0

(0)

K(x)Z(vn)dx

≤ε((m∗ +m)C1M + z2),
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for all n ∈ N. Therefore

lim sup
n→+∞

∫

Bc
r0

(0)

K(x)f(un)undx ≤ ε((m∗ +m)C1M + z2).(3.33)

On the other hand, using (f1) or (f4) and the compactness Lemma of Strauss [26,

Theorem A.I, p. 338], we can conclude that

lim
n→+∞

∫

Br0 (0)

K(x)f(un)undx = 0.(3.34)

Thus, the limit (3.24) is obtained from (3.33) and (3.34). Related the limit (3.26), it

follows directly from the condition (f1) or (f4) together with a version of the compact-

ness lemma of Strauss for non-autonomous problem. (This version is an immediate

consequence of [26, Theorem A.I, p. 338] where K(x)dx is used as the new measure)

Now, we can prove that the Cerami sequence (un) obtained is bounded.

Lemma 3.11 Let (un) be the Cerami sequence given in (3.17). There is a constant

M > 0 such that J(tun) ≤M for every t ∈ [0, 1] and n ∈ N.

Proof. Let tn ∈ [0, 1] be such that J(tnun) = max
t∈[0,1]

J(tun). If tn = 0 and tn = 1, we

are done. Thereby, we can assume tn ∈ (0, 1), and so, J ′(tnun)un = 0. From this,

mJ(tnun) =mJ(tnun)− J ′(tnun)(tnun)

=

∫

RN

(

mΦ(|∇(tnun)|)− ϕ(|∇(tnun)|)|∇(tnun)|
2
)

dx

+

∫

RN

V (x)
(

mΦ(|tnun|)− ϕ(|tnun|)|tnun|
2
)

dx+

∫

RN

K(x)H(tnun)dx,

where H(s) = sf(s) −mF (s). By (f2) the a function H(s) is increasing for all s > 0

and decreasing for s < 0, and by (ϕ4) the function s 7→ mΦ(s) − ϕ(s)s2 is increasing

for s > 0. Thus,

mJ(tun) ≤ mJ(tnun) ≤ mJ(un)− J ′(un)un = mJ(un)− on(1), ∀t ∈ [0, 1].

Since (J(un)) is bounded, there is M > 0 such that

J(tun) ≤M, ∀t ∈ [0, 1] and n ∈ N.
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Proposition 3.3 The Cerami sequence (un) given in (3.17) is bounded.

Proof. Suppose for contradiction that, up to a subsequence, ∥un∥E→ ∞. This way,

we need to study the following situations:

i) ∥∇un∥Φ→ +∞ and (∥un∥V,Φ) is bounded,

ii) ∥un∥V,Φ→ ∞ and (∥∇un∥Φ) is bounded,

and

iii) ∥∇un∥Φ→ +∞ and ∥un∥V,Φ→ +∞.

In the case iii), consider wn =
un

∥un∥E
. Since ∥wn∥E= 1, by Lemma 3.3, there

exists w ∈ E such that wn
∗
⇀ w in D1,Φ(RN). Now, let us show that w = 0. Before

that, as J(un) → c, we have J(un) ≥ 0, for every n large enough. Thus, there is n0 ∈ N

such that
∫

RN

Φ(|∇un|)dx+

∫

RN

V (x)Φ(|un|)dx ≥

∫

RN

K(x)F (un)dx, ∀n ≥ n0.(3.35)

As ∥∇un∥Φ≥ 1 and ∥un∥V,Φ≥ 1 for every n ≥ n1, we have
∫

RN

Φ(|∇un|)dx ≤ ∥∇un∥
m
Φ and

∫

RN

V (x)Φ(|un|)dx ≤ ∥un∥
m
V,Φ, ∀n ≥ n1.

So, by (3.35),

∥∇un∥
m
Φ+∥un∥

m
V,Φ≥

∫

RN

K(x)F (un)dx, ∀n ≥ max{n0, n1}.

Therefore, there is a constant C > 0 such that

C(∥∇un∥Φ+∥un∥V,Φ)
m ≥

∫

RN

K(x)F (un)dx, ∀n ≥ max{n0, n1},

or equivalently,

C(∥un∥E)
m ≥

∫

RN

K(x)F (un)dx, ∀n ≥ max{n0, n1}.

Thus,

C ≥

∫

RN

K(x)
F (un)

∥un∥mE
dx ≥

∫

RN

K(x)
F (un)

|un|m
|wn|

mdx.

The condition (f3) implies that for every τ > 0, there is ξ > 0 suiciently large such

that

F (s)

|s|m
≥ τ, ∀|s| ≥ ξ.
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So

1 + C ≥

∫

Ω∩{|un|≥ξ}

K(x)
F (un)

|un|m
|wn|

mdx ≥ τ

∫

Ω∩{|un|≥ξ}

K(x)|wn|
mdx,

where Ω = {x ∈ R
N : w(x) ̸= 0}. By Fatou’s Lemma,

1 + C ≥ τ

∫

Ω

K(x)|w(x)|mdx, ∀ τ > 0.

Therefore,

∫

Ω

K(x)|w(x)|mdx = 0.

As K(x) > 0 for almost everywhere in R
N , we have w = 0.

Note that for every M > 1, there is n0 ∈ N such that
M

∥∇un∥Φ
∈ [0, 1] for all

n ≥ n0. Given this, we get

J(tnun) ≥J(
M

∥∇un∥Φ
un) = J(

M

∥∇un∥Φ
|un|) = J(Mwn)

≥

∫

RN

Φ(M |∇wn|)dx+

∫

RN

V (x)Φ(M |wn|)dx−

∫

RN

K(x)F (Mwn)dx

≥MQ(un)−

∫

RN

K(x)F (Mwn)dx,

where Q : E → R is the function deőned in (3.6). By deőnition of the sequence (wn),

we have ∥∇wn∥Φ≤ 1 and ∥wn∥V,Φ≤ 1, for all n ∈ N. Then,

∫

RN

Φ(|∇wn|)dx ≥ ∥∇wn∥
m
Φ , and

∫

RN

V (x)Φ(|wn|)dx ≥ ∥wn∥
m
V,Φ, ∀ n ∈ N.

So there is C > 0 such that

Q(wn) ≥ ∥∇wn∥
m
Φ+∥wn∥

m
V,Φ≥ C(∥∇wn∥Φ+∥wn∥V,Φ)

m, ∀ n ∈ N.

Thus

J(tnun) ≥MC(∥wn∥E)
m −

∫

RN

K(x)F (Mwn)dx

=MC −

∫

RN

K(x)F (Mwn)dx.

By Lemma 3.10,

lim
n→∞

∫

RN

K(x)F (Mwn)dx = 0,
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therefore,

lim inf
n→∞

J(tnun) ≥M, ∀M ≥ 1.

which contradicts the Lemma 3.11, once that (J(tnun)) is bounded from above. There-

fore (un) is bounded in E.

The cases i) and ii) are analogous to the case iii).

Since that the Cerami sequence (un) given in (3.17) is bounded in E, by Lemma

3.3, we can assume that for some subsequence, there is u ∈ E such that

un
∗
⇀ u in D1,Φ(RN) and un(x) → u(x) a.e. RN(3.36)

and

lim inf
n→∞

∫

RN

Φ(|∇un|)dx ≥

∫

RN

Φ(|∇u|)dx.(3.37)

Fix v ∈ C∞
0 (RN). By boundedness of Cerami sequence (un), we have

J ′(un)(v − un) = on(1), hence, since Φ is a convex function, it is possible to show

that

Q(v)−Q(un) ≥

∫

RN

K(x)f(un)(v − un)dx+ on(1),(3.38)

where Q : E → R is the function deőned in (3.6). By (3.36), it follows from Fatou’s

Lemma that

lim inf
n→∞

∫

RN

V (x)Φ(|un|)dx ≥

∫

RN

V (x)Φ(|u|)dx.(3.39)

Combining (3.37) and (3.39), we conclude that

lim inf
n→∞

Q(un) ≥ Q(u).(3.40)

From (3.38) and (3.40) together with the Lemma 3.10, we get

Q(v)−Q(u) ≥

∫

RN

K(x)f(u)(v − u)dx, ∀ v ∈ C∞
0 (RN).

As E = C∞
0 (RN)

∥·∥E
and Φ ∈ (∆2), we conclude that

Q(v)−Q(u) ≥

∫

RN

K(x)f(u)(v − u)dx, ∀ v ∈ E.(3.41)
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In other words, u is a critical point of the J functional. Its follows from Proposition

3.1, we can conclude that u is a weak solution for (P1). Now, we substitute v = u+ :=

max{0, u(x)} in (3.41) and use (3.12) to get

−

∫

RN

Φ(|∇u−|)dx−

∫

RN

V (x)Φ(u−)dx ≥

∫

RN

K(x)f(u)u−dx = 0,

which leads to
∫

RN

Φ(|∇u−|)dx = 0 and
∫

RN

V (x)Φ(u−)dx = 0

whence it is readily inferred that u− = 0, therefore, u is a weak nonnegative solution.

Note that u is nontrivial. Consider a sequence (φk) ⊂ C∞
0 (RN) such that φk → u

in D1,Φ(RN). Since that the Cerami sequence (un) given in (3.17) is bounded in E and

Φ is convex, we can show that

Q(φk)−Q(un) ≥

∫

RN

K(x)f(un)(φk − un)dx+ on(1)∥φk∥−on(1).(3.42)

Since (∥φk∥)k∈N is a bounded sequence, it follows from (3.42) and from Lemma 3.10

that

Q(φk) ≥ lim sup
n→∞

Q(un) +

∫

RN

K(x)f(u)(φk − u)dx.

Now, note that being Φ ∈ (∆2) and φk → u in E, we conclude from the inequality

above that

Q(u) ≥ lim sup
n→∞

Q(un).(3.43)

From (3.40) and (3.43),

lim
n→∞

Q(un) = Q(u).(3.44)

By Lemma 3.10, we have

lim
n→∞

∫

RN

K(x)F (un)dx =

∫

RN

K(x)F (u)dx,(3.45)

Therefore, by (3.17), (3.44) and (3.45), we conclude

0 < c = lim
n→∞

J(un) =

∫

RN

Φ(|∇u|)dx−

∫

RN

K(x)F (u)dx = J(u),

that is, u ̸= 0.
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3.2.1 Boundedness of nonnegative solutions of (P1) for the class

(V,K) ∈ K1

To study the boundedness of nonnegative solutions to the problem (P1) in the

case (V,K) ∈ K1, we deőne the N -function Υ : R 7→ R given by

(3.46) Υ(t) =







Φ∗(t) if Φ ∈ Cm

B(t) if Φ ̸∈ Cm

.

It is clear that Υ ∈ C1(R) and

Υ′(t) =







tϕ∗(t) if Φ ∈ Cm

tb(t) if Φ ̸∈ Cm

.

Remark 3.2 The function Υ defined in (3.46) satisfies

ξ0,Υ(t)Υ(ρ) ≥ Υ(tρ) ≥ ξ1,Υ(t)Υ(ρ), ∀t, ρ > 0,(3.47)

where

ξ0,Υ(t) =

{

min{tm
∗

, tℓ
∗

} if Φ ∈ Cm

min{tb1
∗

, tb2
∗

} if Φ ̸∈ Cm
and ξ1,Υ(t) =

{

max{tm
∗

, tℓ
∗

} if Φ ∈ Cm

max{tb1
∗

, tb2
∗

} if Φ ̸∈ Cm
.

To prove the following result in the cases where Φ ∈ Cm or Φ /∈ Cm we will deőne

the real number γ given by

γ =







m if Φ ∈ Cm

ℓ if Φ ̸∈ Cm

.

Note that if Φ ∈ Cm, then according to Theorems 1.1 and 1.2 the nonlinearity f satisőes

the condition (f1). Now in the case where Φ /∈ Cm the nonlinearity f satisőes (f4), in

both cases, given η > 0, there exists Cη > 0 such that

K(x)f(t) ≤ ηC1V (x)tϕ(t) + CηΥ
′(t), ∀t ≥ 0 and x ∈ R

N ,(3.48)

where C1 = ∥K∥∞. Thus, we can begin by presenting a technical result that will be

fundamental to guarantee the boundedness of the nonnegative solutions of the problem

(P1). We would like to mention that the technique presented in the following lemma

can be found in [5].
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Lemma 3.12 Let u ∈ E be a nonnegative solution of (P1), x0 ∈ R
N and R0 > 0.

Then

∫

Ak,t

|∇u|γdx ≤ C

(

∫

Ak,s

∣

∣

∣

∣

u− k

s− t

∣

∣

∣

∣

γ∗

dx+ (kγ
∗

+ 1)|Ak,s|

)

where 0 < t < s < R0, k > 1, Ak,ρ = {x ∈ Bρ(x0) : u(x) > k} and C > 0 is a constant

that does not depend on k.

Proof. Let u ∈ E be a weak solution nonnegative of (P1) and x0 ∈ R
N . Moreover, őx

0 < t < s < R0 and ζ ∈ C∞
0 (RN) verifying

0 ≤ ζ ≤ 1, supp(ζ) ⊂ Bs(x0), ζ ≡ 1 on Bt(x0) and |∇ζ| ≤
2

s− t
.

For k > 1, set φ = ζm(u− k)+ and

J =

∫

Ak,s

Φ(|∇u|)ζmdx.

Using φ as a test function and ℓΦ(t) ≤ ϕ(t)t2, we őnd

ℓJ ≤ m

∫

Ak,s

ζm−1(u− k)+ϕ(|∇u|)|∇u||∇ζ|dx−

∫

Ak,s

V (x)ϕ(u)uζm(u− k)+dx

+

∫

Ak,s

K(x)f(u)ζm(u− k)+dx.

Considering η = 1
C1

in the inequality (3.48), there exists a constant C2 > 0 such that

ℓJ ≤ m

∫

Ak,s

ζm−1(u− k)+ϕ(|∇u|)|∇u||∇ζ|dx+ C2

∫

Ak,s

Υ′(u)ζm(u− k)+dx.(3.49)

For each τ ∈ (0, 1), the Young’s inequality gives

ϕ(|∇u|)|∇u||∇ζ|ζm−1(u− k)+ ≤ Φ̃(ϕ(|∇u|)|∇u|ζm−1τ) + C3Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

.(3.50)

It follows from Lemma 2.18,

Φ̃(ϕ(|∇u|)|∇u|ζm−1τ) ≤ C4(τζ
m−1)

m
m−1Φ(|∇u|).(3.51)

From (3.49), (3.50) and (3.51),

ℓJ ≤mC4τ
m

m−1

∫

Ak,s

Φ(|∇u|)ζm +mC3

∫

Ak,s

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx

+ C2

∫

Ak,s

Υ′(u)ζm(u− k)+dx.
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Choosing τ ∈ (0, 1) such that 0 < mC4τ
m

m−1 < ℓ, we derive

J ≤ C5

∫

Ak,s

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+ C5

∫

Ak,s

Υ′(u)ζm(u− k)+dx.(3.52)

By Young’s inequality,

Υ′(u)ζm(u− k)+ ≤ C6Υ

(

∣

∣

∣

u− k

s− t

∣

∣

∣

)

+ C6Υ(k).(3.53)

Therefore, a combination of (3.52) and (3.53), yields

J ≤ C7

∫

Ak,s

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+ C7

∫

Ak,s

Υ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+ C7

∫

Ak,s

Υ(k)dx.(3.54)

Now, using that ℓ ≤ m < m∗ ≤ γ∗ and applying the Lemma 2.16 and the Remark 3.2

for functions Φ and Υ, respectivamente, we get

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

≤ Φ(1)
(∣

∣

∣

u− k

s− t

∣

∣

∣

γ∗

+ 1
)

, Υ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

≤ Υ(1)
(∣

∣

∣

u− k

s− t

∣

∣

∣

γ∗

+ 1
)

and

Υ(k) ≤ (kγ
∗

+ 1).

From (3.54) and the inequality above,

J ≤ C8

(

∫

Ak,s

∣

∣

∣

u− k

s− t

∣

∣

∣

γ∗

dx+ (kγ
∗

+ 1)|Ak,s|

)

.

By deőnition of J and the function ζ we can conclude that

∫

Ak,t

Φ(|∇u|)dx ≤ C8

(

∫

Ak,s

∣

∣

∣

u− k

s− t

∣

∣

∣

γ∗

dx+ (kγ
∗

+ 1)|Ak,s|

)

.

By Lemma 2.16, we have

∫

Ak,t

|∇u|γdx ≥

∫

Ak,t

Φ(|∇u|)dx.

Thus

∫

Ak,t

|∇u|γdx ≤ C8

(

∫

Ak,s

∣

∣

∣

u− k

s− t

∣

∣

∣

γ∗

dx+ (kγ
∗

+ 1)|Ak,s|

)

.

Lemma 3.13 Let u ∈ E be a nonnegative solution of (P1). Then, u ∈ L∞
loc(R

N).
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Proof. To begin with, consider Λ a compact subset on R
N . Fix R1 ∈ (0, 1) and x0 ∈ Λ.

Given M > 1, deőne the sequences

σn =
R1

2
+

R1

2n+1
, σn =

σn + σn+1

2
and Kn =

M

2

(

1−
1

2n+1

)

, ∀n = 0, 1, 2, 3, · · · .

For every n ∈ N, we consider

Jn =

∫

AKn,σn

(

(u−Kn)
+
)γ∗

dx and ξn = ξ

(

2n+1

R1

(

|x− x0| −
R1

2

)

)

, x ∈ R
N ,

with ξ ∈ C1(R) satisfying

0 ≤ ξ ≤ 1, ξ(t) = 1 if t ≤
1

2
, ξ(t) = 0 if t ≥

3

4
and |ξ′| < C.

By deőnition of ξn,

ξn = 1 in Bσn+1(x0) and ξn = 0 outside Bσn
(x0),

consequently

Jn+1 ≤

∫

BR1
(x0)

(

(u−Kn+1)
+ξn
)γ∗

dx.

Note that,

|∇((u−Kn+1)
+ξn)|

γ ≤ 2γ
(

|∇u|γξγn +
2γ(n+1)

Rγ
1

(

(u−Kn+1)
+
)γ
χBR1

(x0)

)

,

Since W 1,Φ(Bσn
(x0)) →֒ W 1,γ(Bσn

(x0)) and ((u − Kn+1)
+)ξn ∈ W 1,γ(RN), then

((u−Kn+1)
+)ξn ∈ W 1,γ(RN). Therefore,

Jn+1 ≤ C(N, γ,R1)

(

∫

AKn+1,σn

|∇u|γdx+ 2γn
∫

AKn+1,σn

((u−Kn+1)
+)γdx

)
γ∗

γ

.

Applying the Lemma 3.12 to the previous inequality and then by the fact that

|σn − σn| =
R1

2n+3
and tγ ≤ tγ

∗

+ 1 for every t ≥ 0, we obtain

Jn+1 ≤ C(N, γ,R1)
(

2γn
∫

AKn+1,σn

((u−Kn+1)
+)γ

∗

dx+ (Kγ∗

+ 2γn + 1)|AKn+1,σn |
)

γ∗

γ

On the other hand, such as Kn+1 −Kn =
M

2n+3

∣

∣AKn+1,σn

∣

∣ ≤
2γ

∗(n+3)

Kγ∗
Jn,(3.55)
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which yields
∫

AKn+1,σn

(

(u−Kn+1)
+
)γ∗

dx ≤

∫

AKn,σn

(

(u−Kn)
+
)γ∗

dx+
∣

∣Kn+1 −Kn

∣

∣

γ∗∣

∣AKn+1,σn

∣

∣

≤ 2Jn,

consequently, there exists a constant C = C(N, γ,R1) > 0 such that

Jn+1 ≤ CDnJ1+ω
n , n = 0, 1, 2, · · · ,

where D = 2(γ+γ∗) γ
∗

γ and ω = γ∗

γ
− 1.

Note that

J0 =

∫

AK0,σ0

(

(u−K0)
+
)γ∗

dx ≤

∫

BR1
(x0)

(

(u−K0)
+
)γ∗

dx.(3.56)

Then, by the Lebesgue’s Theorem, lim
K→∞

J0 = 0, from where it follows that

J0 ≤ C− 1
ωD− 1

ω2 , for all M ≥M∗

for some M∗ ≥ 1 that depends on x0. Fix M = M∗. Thus, by [62, Lemma 4.7], we

deduce that

Jn → 0 as n→ ∞.

On the other hand,

lim
n→∞

Jn = lim
n→∞

∫

AKn,σn

(

(u−K0)
+
)γ∗

dx =

∫

AM∗

2 ,
R1
2

(

(u−
M∗

2
)+
)γ∗

dx,

hence,
∫

AM∗

2 ,
R1
2

(

(u−
M∗

2
)+
)γ∗

dx = 0,

leading to

u(x) ≤
M∗

2
, a.e. in BR1

2
(x0).

Since x0 is arbitrary and Λ is a compact subset, the last inequality ensures that

u(x) ≤
Π

2
a.e. in Λ

for some constant Π > 0. By the arbitrariness of Λ, we conclude that u ∈ L∞
loc(R

N).

The above results ensure that Theorem 1.1 and the őrst part of Theorem 1.3 are

valid.
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3.2.2 Regularity of nonnegative Solutions of (P1) for class

(V,K) ∈ K1

At this point, in order to study the regularity of solutions to the problem (P1) we

now require that the N -fuction Φ satisőes the (ϕ6). The following results are anchored

in the regularity theory due to Lieberman [24, Theorem 1.7]. Here, we highlight that

the hypothesis (ϕ6) restricts the problem (P1) to the case in which Φ̃ ∈ (∆2), causing

us to stray for a moment from the objective of our thesis (which is to study problems

in which Φ̃ /∈ (∆2)).

Lemma 3.14 Under the hypotheses of Theorem 1.2 (or Theorem 1.3) if u ∈ E ∈

L∞
loc(R

N) be a nonnegative solution of (P1). Then u ∈ C1,α
loc (R

N).

Proof. It is enough to apply the regularity theorem due to Lieberman [24, Theorem

1.7]. And this is possible due to the condition (ϕ6).

Corollary 3.1 Let u ∈ E be a nonnegative solution of (P1). Then, u is positive

solution.

Proof. If Ω ⊂ R
N is a bounded domain, the Lemma 3.14 implies that u ∈ C1(Ω).

Using this fact, in the sequel, we őx M1 > max
{

∥∇u∥L∞(Ω), 1
}

and

φ(t) =















ϕ(t) , for 0 < t ≤M1

ϕ(M1)

Mβ−2
1

tβ−2 , for t ≥M1

,

where β is given in the hypothesis (ϕ5). Still by the condition (ϕ5), there are α1, α2 > 0

satisfying

φ(|y|)|y|2 = ϕ(|y|)|y|2 ≥ α1|y|
β and |φ(|y|)y| ≤ α2|y|

β−1, ∀y ∈ R
N .(3.57)

Now, consider the vector measurable functions G1 : Ω × R × R
N → R

N given by

G1(x, t, p) =
1
α1
φ(|p|)p. From (3.57),

|G1(x, t, p)| ≤
α2

α1

|p|β−1 and |p|β−1 ≤ pG1(x, t, p),(3.58)
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for all (x, t, p) ∈ Ω × R × R
N . We next will consider the scalar measurable function

G2 : Ω × R × R
N → R given by G2(x, t, p) =

1
α1

(

V (x)ϕ(|t|)t −K(x)f(t)
)

. Remember

that from the inequality (3.10), there will be a constant C1 > 0 satisfying

K(x)|f(t)| ≤ C1V (x)ϕ(|t|)|t|+ C1ϕ∗(|t|)|t|, ∀t ∈ R
N and x ∈ R

N .(3.59)

Fix M ∈ (0,∞). Through the condition (ϕ5) and by a simple computation yields

there exists C2 = C2(M) > 0 verifying

|G2(x, t, p)| ≤ C2|t|
β−1, for every (x, t, p) ∈ Ω× (−M,M)× R

N .

By the arbitrariness ofM , we can conclude that functionsG1 andG2 fulőll the structure

required by Trudinger [61]. Also, as u is a weak solution of (P1), we infer that u is a

quasilinear problem solution

−div G1(x, u,∇u(x)) +G2(x, u,∇u(x)) = 0 in Ω.

By [61, Theorem 1.1], we deduce that u > 0 in Ω. As Ω arbitrary, we conclude that

u > 0 in R
N .

3.3 Existence of solution in the case (V,K) ∈ K2

To study this second class of problem where (V,K) ∈ K2, we will see some results

that will be fundamental throughout this section.

Remark 3.3 The inequality (1.8) implies the following inequalities

ξ0,A(t)A(ρ) ≤ A(ρt) ≤ ξ1,A(t)A(ρ), ∀ρ, t ≥ 0

when

ξ0,A(t) = min{ta1 , ta2} and ξ1,A(t) = max{ta1 , ta2}, ∀t ≥ 0.

Besides by Lemma 2.16 and Lemma 2.20, we have

lim
t→0

A(t)

Φ(t)
= 0 and lim

|t|→∞

A(t)

Φ∗(t)
= 0.

Proposition 3.4 (Hardy Type Inequality) If (V,K) ∈ K2, then E is compactly embed-

ded in LA
K(R

N) where A is given in (K3).
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Proof. As E is continuously embedded in LΦ∗(RN), there exists C1 > 0 such that

∥u∥Φ∗
≤ C1∥u∥E, ∀u ∈ E.(3.60)

By (K3) given ε > 0 there is r > 0 large enough such that

K(x)A(t) ≤ ε(V (x)Φ(|t|) + Φ∗(|t|)), ∀t > 0 and |x| ≥ r.(3.61)

On the other hand, by the Remark 3.3, there is a constant C2 > 0 such that

A(t) ≤ C2Φ(t) + C2Φ∗(t), ∀t > 0.

Hence, for each x ∈ Br(0),

K(x)A(t) ≤ C2

∥

∥

∥

∥

K

V

∥

∥

∥

∥

L∞(Br(0))

V (x)Φ(t) + C2∥K∥∞Φ∗(t), ∀t > 0.(3.62)

Combining (3.61) and (3.62),

K(x)A(t) ≤C3V (x)Φ(t) + C3Φ∗(t), ∀t > 0 and x ∈ R
N ,(3.63)

with C3 = max{1, C2∥K∥∞, C2

∥

∥

K
V

∥

∥

L∞(Br(0))
}. By the inequalities (3.60) and (3.63),

we get
∫

RN

K(x)A

(

|u|

C3∥u∥E+C1∥u∥E

)

dx ≤ C4,

where C4 is a positive constant that does not depend on u. So we can conclude that

E ⊂ LA
K(R

N).

Now, consider (vn) a bounded sequence in E. To see that the operator

i : E → LA
K(R

N) is compact just prove that (vn) has a convergent subsequence on

LA
K(R

N). Since (vn) is bounded in E, we have that (vn) is bounded in D1,Φ(RN), so

there is u ∈ E such that vn
∗
⇀ v in D1,Φ(RN), or equivalently wn

∗
⇀ 0 in D1,Φ(RN),

where wn = vn − v. By the limitation of (vn) in E and Φ,Φ∗ ∈ (∆2), there is M1 > 0

such that
∫

RN

V (x)Φ(|wn|)dx ≤M1 and
∫

RN

Φ∗(|wn|)dx ≤M1, ∀n ∈ N.(3.64)

Thus, by (3.61) and (3.64), we obtain
∫

Br(0)c
K(x)A(|wn|)dx ≤ εM1, ∀n ∈ N.(3.65)
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Again, we use the Corollary 2.2 and the fact that E is compactly embedded in LΦ
loc(R

N)

to ensure the existence of a subsequence of (vn), still denoted by itself, such that

vn → v in LΦ(Br(0)).

Thus, there is a subsequence of (vn), still denoted by itself, that such

vn(x) → v(x) a.e. in Br(0),

that is,

wn(x) → 0 a.e. in Br(0).

Consider the functions P1 : R → R and P2 : R → R given by

P1(t) = A(t) and P2(t) = Φ∗(t).

Clearly P1 and P2 are continuous, moreover

lim
|t|→+∞

P1(t)

P2(t)
= 0.

Finally, it follows from the boundedness of (vn) in E that there is C1 > 0, such that

∫

RN

P2(wn)dx ≤

∫

RN

Φ∗(wn)dx < C1, ∀n ∈ N.

Then, by compactness Lemma of Strauss [26, Theorem A.I, p. 338],

∫

Br(0)

P1(wn)dx→ 0.

Therefore,

lim
n→∞

∫

Br(0)

K(x)A(|wn|)dx = 0.(3.66)

By (3.65) e (3.66), we have

lim sup
n→∞

∫

RN

K(x)A(|wn|)dx ≤ ε(CM1 + 1).

By the arbitrariness of ε > 0, it follows that

lim
n→∞

∫

RN

K(x)A(|wn|)dx = 0.
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Since A ∈ (∆2), we can conclude that

vn → v in LA
K(R

N),

which completes the proof.

Note that the condition (f6) implies that lim
t→+∞

f(t)

ϕ∗(t)t
= 0. Then, by the condi-

tions (f5) or (f6), given ε > 0 there exists δ0 > 0, δ1 > 0 and Cε > 0 such that

K(x)|f(t)| ≤ εK(x)a(t)t+ ε∥K∥∞ϕ∗(t)t+ CεK(x)ϕ∗(t)tχ[δ0,δ1](t),(3.67)

for all t ≥ 0 and x ∈ R
N . This inequality together with the Proposition 3.4 yields that

the functional F : E → R, given by

(3.68) F(u) =

∫

RN

K(x)F (u)dx

is well deőned and belongs to C1(E,R) with derivative

F ′(u)v =

∫

RN

K(x)f(u)vdx, ∀u, v ∈ E.

Therefore, we can conclude that the energy functional J : E → R associated to problem

(P1), which is given by

J(u) =

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx−

∫

RN

K(x)F (u)dx

is a continuous and Gateaux-diferentiable functional such that J ′ : E → E∗ given by

J ′(u)v =

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx−

∫

RN

K(x)f(u)vdx

is continuous from the norm topology of E to the weak∗-topology of E∗. From (3.67)

and (f3), it follows that J satisőes the geometry of the mountain pass. Hence, there is

a Cerami sequence (un) ⊂ E, such that,

J(un) → c and (1 + ∥un∥)∥J
′(un)∥∗→ 0(3.69)

where c is the mountain pass level given by

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

with

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and J(γ(1)) ≤ 0}.
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As in the previous section, the above sequence is obtained from the Corollary A.1 in

Appendix A.

In order to show that the Cerami sequence obtained in (3.69) is bounded, we

present the following result.

Lemma 3.15 Let (vn) be a bounded sequence in E such that vn
∗
⇀ v in D1,Φ(RN).

Suppose that f satisfies (f5) or (f6), then

lim
n→∞

∫

RN

K(x)F (vn)dx =

∫

RN

K(x)F (v)dx,(3.70)

lim
n→∞

∫

RN

K(x)f(vn)vndx =

∫

RN

K(x)f(v)vdx(3.71)

and

lim
n→∞

∫

RN

K(x)f(vn)ψdx =

∫

RN

K(x)f(v)ψdx, ∀ψ ∈ C∞
0 (RN).(3.72)

Proof. As in (3.67), given ε > 0, there exists δ0 > 0, δ1 > 0 C1 > 0 and Cε > 0 such

that

K(x)|f(t)| ≤ C1K(x)a(t)t+ ε∥K∥∞ϕ∗(t)t+ CεK(x)ϕ∗(t)tχ[δ0,δ1](t),(3.73)

for all t ≥ 0 and x ∈ R
N . By the condition (K3), there is r0 > 0 suiciently large

satisfying

K(x)A(t) ≤ ε (V (x)Φ(t) + Φ∗(t)) , ∀t > 0 and |x| ≥ r0.

From the above inequalities, we have

K(x)F (t) ≤ εC1V (x)Φ(t) + εC2Φ∗(t) + CεK(x)Φ∗(δ1)χ[δ0,δ1](t),(3.74)

for all t > 0 and |x| ≥ r0. Repeating the same arguments used in the proof of

Proposition 2.1, it follows that

lim sup
n→+∞

∫

Bc
r0

(0)

K(x)F (vn)dx ≤ εC3,(3.75)

for some constant C3 > 0 that does not depend on n and ε. On the other hand, the

compactness lemma of Strauss [26, Theorem A.I, p. 338], guarantees that

lim
n→+∞

∫

Br0 (0)

K(x)F (vn)dx =

∫

Br0 (0)

K(x)F (v)dx.(3.76)
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In light of this, we can conclude that

lim
n→+∞

∫

RN

K(x)F (vn)dx =

∫

Rn

K(x)F (v)dx.

In the same way, we can get the limit (3.71). Related the limit (3.72), it follows directly

from the condition (f5) or (f6) together with a version of the compactness lemma

of Strauss for non-autonomous problem.(This version is an immediate consequence

of [26, Theorem A.I, p. 338] where K(x)dx is used as the new measure)

Repeating the same arguments used in the proof of Lemma 3.11 and of Propo-

sition 3.3, it follows that the Cerami sequence (un) given in (3.69) is bounded, up to

some subsequence, we can assume that there is u ∈ E such that

un
∗
⇀ u in D1,Φ(RN) and un(x) → u(x) a.e. R

N .(3.77)

As in the previous section, we can conclude that u ∈ E is a nonnegative solution for

the problem (P1). By repeating the arguments presented in Subsections 3.2.1 and 3.2.2

we can guarantee the boundedness and regularity of the nonnegative solutions of (P1)

for the case (V,K) ∈ K2, thereby proving the Theorems 1.4 and 1.5.
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Chapter 4

A Generalized Choquard equation

with weighted Stein-Weiss potential

on a nonreflexive Orlicz-Sobolev

Spaces

Continuing the study of the existence of positive solutions for a class of quasilinear

Schrodinger equations with a potential vanishing at inőnity on nonreŕexive Orlicz-

Sobolev spaces, in this chapter, we study the problem with an Stein-Weiss convolution

term of the type:

(P2)











−∆Φu+ V (x)ϕ(|u|)u =
1

|x|α

(∫

RN

K(y)F (u(y))

|x− y|λ|y|α
dy

)

K(x)f(u(x)), x ∈ R
N

u ∈ D1,Φ(RN )

where α ≥ 0, N ≥ 2, λ > 0, V,K ∈ C(RN , [0,∞)) are nonnegative functions that may

vanish to inőnity, F (t) =
∫ t

0
f(s)ds where the function f ∈ C(R,R) is quasicritical

and Φ̃ ̸∈ (∆2). Our main goal in this chapter is to study to prove the sequence of

Theorems 1.6, 1.7 and 1.8. As in the Chapter 3, we assume that ϕ : (0,∞) → (0,∞)

is a C1 function satisfying the conditions (ϕ1) − (ϕ4)(mentioned in the introduction),

furthermore, we will assume that 0 ≤ α < λ, λ + 2α ∈ (0, N) ∩ (0, 2N − 2N
m
) and



consider the constant θ =
2N

2N − 2α− λ
> 0 and observe that

1−
1

θ
−
λ

N
<

θ

N
< 1−

1

θ
and

2

θ
−
λ+ 2α

N
= 2.(4.1)

4.1 Existence of a solution in the case (V,K) ∈ Q1

Initially, we will assume the case (V,K) ∈ Q1 (mentioned in the introduction)

and see some technical results that are fundamental to guarantee the existence of a

non-trivial solution.

Remark 4.1 The inequality (1.10) and (1.11) implies the following inequalities

ξ0,A(t)A(ρ) ≤ A(ρt) ≤ ξ1,A(t)A(ρ), ∀ρ, t ≥ 0

ξ0,Z(t)Z(ρ) ≤ Z(ρt) ≤ ξ1,Z(t)Z(ρ), ∀ρ, t ≥ 0

when

ξ0,A(t) = min{ta1 , ta2} and ξ1,A(t) = max{ta1 , ta2}, ∀t ≥ 0.

ξ0,Z(t) = min{tz1 , tz2} and ξ1,Z(t) = max{tz1 , tz2}, ∀t ≥ 0.

Besides by Lemma 2.16 and Lemma 2.20, we have

lim sup
t→0

A(t)

Φ(t)
≤ 1 and lim sup

|t|→∞

A(t)

Φ∗(t)
≤ 1

lim sup
t→0

Z(t)

Φ(t)
≤ 1 and lim sup

|t|→∞

Z(t)

Φ∗(t)
≤ 1.

Lemma 4.1 Consider W ∈ L∞(RN) positive almost everywhere and Ψ : R → R an

N -function of the form

Ψ(t) =

∫ |t|

0

sψ(s)ds,

where ψ : (0,∞) → (0,∞) is a C1 function satisfying:

(ψ1) t 7−→ tϕ(t) is increasing for t > 0;

(ψ2) lim
t→0+

tϕ(t) = 0 and lim
t→+∞

tϕ(t) = +∞;
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(ψ3) There exist τ1, τ2 ∈ [1, N) such that τ1 ≤
ψ(t)t2

Ψ(t)
≤ τ2 for each t > 0.

Then the N -function Ψ satisfies

ξ0,Ψ(t)Ψ(ρ) ≤ Ψ(ρt) ≤ ξ1,Ψ(t)Ψ(ρ), ∀ρ, t ≥ 0(4.2)

and

ξ0,Ψ(∥u∥LΨ
W (RN )) ≤

∫

Ω

W (x)Ψ(u)dx ≤ ξ1,Ψ(∥u∥LΨ
W (RN )), ∀u ∈ LΨ

W (RN)(4.3)

where

ξ0,Ψ(t) = min{tτ1 , tτ2} and ξ1,Ψ(t) = max{tτ1 , tτ2}, ∀t ≥ 0

and

LΨ
W (RN) =

{

u ∈ L1
loc(R

N) :

∫

RN

W (x)Ψ (|u|) dx < +∞

}

,

is the Banach space endowed with the Luxemburg norm given by

∥u∥LΨ
W (RN ) = inf

{

λ > 0 :

∫

RN

W (x)Ψ

(

|u|

λ

)

dx ≤ 1

}

.

Proof. The inequality (4.2) is a consequence of Lemma 2.16. Now, Multiplying W (x)

on both sides of the inequality (4.2) and considering t = ∥u∥LΨ
W (RN ) and ρ =

|u|

∥u∥LΨ
W (RN )

,

we obtain

ξ4(∥u∥LΨ
W (RN )) ≤

∫

Ω

W (x)Ψ(u)dx ≤ ξ5(∥u∥LΨ
W (RN )), ∀u ∈ LΨ

W (RN).

Showing the inequality (4.3).

Consider E the energy space deőned as in (3.1). The following immersion follows

directly from the above limits and its proof will be omitted.

Proposition 4.1 (Hardy-type inequality) If (V,K) ∈ Q1, then the space E is conti-

nuous embedded in LA
Kθ(R

N) and LZ
Kθ(R

N).

To state the result below, we will deőne the functions H : R → [0,∞) and

P : R → [0,∞) given by H(t) = A(|t|1/θ) and P (t) = Z(|t|1/θ). Through the assump-

tions imposed under A and Z it is possible to show that H and P are N -functions,

in addition, the functions h : (0,∞) → (0,∞) deőned by h(t)t =
1

θ
a(t1/θ)t(2/θ)−1 and

p(t)t =
1

θ
z(t1/θ)t(2/θ)−1 are increasing and satisfy

H(w) =

∫ |w|

0

th(t)dt, and P (w) =

∫ |w|

0

tp(t)dt.(4.4)
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Lemma 4.2 Suppose that (V,K) ∈ Q1 and (f ′
1) holds. For each u ∈ E, there is a

constant C1 > 0 that does not depend on u, such that
∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣
≤ C1

[

(max{∥u∥a1

E , ∥u∥
a2

E })
2
θ + (max{∥u∥z1E , ∥u∥

z2
E })

2
θ

]

.

Furthermore, for u ∈ E, there is a constant C2 > 0, which does not depend on u, such

that
∣

∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣

∣

≤ C2Cu∥v∥E, ∀v ∈ E,(4.5)

where

Cu := (max{∥u∥a1

E , ∥u∥
a2

E }+max{∥u∥z1E , ∥u∥
z2
E })

1
θ
(

∥a(|u|)|u|2−θ∥
LH̃

Kθ
(RN )

+∥z(|u|)|u|2−θ∥
LP̃

Kθ
(RN )

)
1
θ

and H̃ and P̃ are the complementary functions of H and P , respectively.

Proof. By (f ′
1), there is a constant C > 0 such that

|f(t)|θ ≤ C(a(t)t2−θ + z(t)t2−θ), ∀t ∈ R.(4.6)

For each t ≥ 0, we have

|F (t)| ≤

∫ t

0

|f(τ)|dτ ≤

[∫ t

0

|f(τ)|θdτ

]
1
θ
[∫ t

0

dτ

]
θ−1
θ

≤ t
θ−1
θ

[∫ t

0

|f(τ)|θdτ

]
1
θ

.

Thus,

|F (t)|θ ≤ tθ−1C

(∫ t

0

(

a(τ)τ 2−θ + z(τ)τ 2−θ
)

dτ

)

≤ Ctθ
(

a(t)t2−θ + z(t)t2−θ
)

(τa(τ) and τz(τ) are increasing in (0,∞))

≤ C
(

A(|t|) + Z(|t|)
)

, ∀t ≥ 0.

(4.7)

Similarly,

|F (t)|θ ≤ C
(

A(|t|) + Z(|t|)
)

, ∀t ≤ 0

Therefore,

|F (t)|θ ≤ C
(

A(|t|) + Z(|t|)
)

, ∀t ∈ R

that is,
∫

RN

K(x)θ|F (u)|θdx ≤ C

∫

RN

K(x)θA(|u|)dx+ C

∫

RN

K(x)θZ(|u|)dx <∞,(4.8)
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for all u ∈ E. By the Proposition 1.1 (Stein-Weiss inequality), it follows that

∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣
≤ C

∣

∣

∣

∣

∫

RN

K(x)θ|F (u)|θdx

∣

∣

∣

∣

2
θ

≤C

(∫

RN

K(x)θA(|u|)dx+

∫

RN

K(x)θZ(|u|)dx

) 2
θ

≤C

[

(∫

RN

K(x)θA(|u|)dx

) 2
θ

+

(∫

RN

K(x)θZ(|u|)dx

) 2
θ

]

,

for every u ∈ E and C > 0 is a positive constant that does not depend on u. It follows

from Lemma 4.1 that
∫

RN

K(x)θA(|u|)dx ≤ max{∥u∥a1
LA

Kθ
(RN )

, ∥u∥a2
LA

Kθ
(RN )

}.

and
∫

RN

K(x)θZ(|u|)dx ≤ max{∥u∥z1
LA

Kθ
(RN )

, ∥u∥z2
LA

Kθ
(RN )

}.

Since E is continuously embedded in LA
Kθ(R

N) and LZ
Kθ(R

N), we can conclude that the

previous inequalities sums up to
∫

RN

K(x)θA(|u|)dx ≤ Cmax{∥u∥a1E , ∥u∥
a2
E },(4.9)

and
∫

RN

K(x)θZ(|u|)dx ≤ Cmax{∥u∥z1E , ∥u∥
z2
E },(4.10)

for some constant C > 0. Thus,
∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣ ≤ C
[

(max{∥u∥a1

E , ∥u∥
a2

E })
2
θ + (max{∥u∥z1E , ∥u∥

z2
E })

2
θ

]

,

for every u ∈ E and C > 0 is a positive constant that does not depend on u.

Now, consider u, v ∈ E, from (4.6) we have

τuv =

∫

RN

K(x)θ|f(u)|θ|v|θdx ≤C

∫

RN

K(x)θa(|u|)|u|2−θ|v|θdx

+ C

∫

RN

K(x)θz(|u|)|u|2−θ|v|θdx.

Consider the functions H : R → [0,∞) and P : R → [0,∞) deőned in (4.4), it follows

from hypotheses (B3) and (A3) that H and P satisfy the ∆2-condition. Knowing this,

we can obtain
∫

RN

K(x)θH̃(a(|u|)|u|2−θ)dx =

∫

RN

K(x)θH̃(θ|u|θh(|u|θ))dx

≤ C1

∫

RN

K(x)θH(|u|θ)dx = C1

∫

RN

K(x)θA(|u|)dx
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and
∫

RN

K(x)θP̃ (z(|u|)|u|2−θ)dx =

∫

RN

K(x)θP̃ (θ|u|θp(|u|θ))dx

≤ C1

∫

RN

K(x)θP (|u|θ)dx = C1

∫

RN

K(x)θZ(|u|)dx.

By (4.9) and (4.10), we have that
∫

RN

K(x)θH̃(a(|u|)|u|2−θ)dx ≤ C2 max{∥u∥a1E , ∥u∥
a2
E },

and
∫

RN

K(x)θP̃ (z(|u|)|u|2−θ)dx ≤ C2 max{∥u∥a1E , ∥u∥
a2
E }.

Moreover, we have
∫

RN

K(x)θH

(

|v|θ

|v|θ
LA

Qθ
(RN )

)

dx =

∫

RN

K(x)θA

(

|v|

|v|LA

Qθ
(RN )

)

dx = 1

and
∫

RN

K(x)θP

(

|v|θ

|v|LZ
Kθ(RN)

θ

)

dx =

∫

RN

K(x)θZ

(

|v|

|v|LZ

Kθ
(RN )

)

dx = 1.

With this, we conclude that a(|u|)|u|2−θ ∈ LH̃
Kθ(R

N), z(|u|)|u|2−θ ∈ LP̃
Kθ(R

N),

|v|θ ∈ LH
Kθ(R

N) and |v|θ ∈ LP
Kθ(R

N). Furthermore,

∥|v|θ∥LH

Kθ
(RN )= ∥v∥θLA

Kθ
(RN )≤ C3∥v∥

θ
E

and

∥|v|θ∥LP

Kθ
(RN )= ∥v∥θLZ

Kθ
(RN )≤ C3∥v∥

θ
E,

where Ci > 0, i = 1, 2, are positives constants that does not depend on v. By Propo-

sition 4.1, it follows that

τuv ≤C4∥a(|u|)|u|
2−θ∥

LH̃

Kθ
(RN )

∥|v|θ∥LH

Kθ
(RN )+C4∥Z(|u|)|u|

2−θ∥
LP̃

Kθ
(RN )

∥|v|θ∥LP

Kθ
(RN )

≤C5(∥a(|u|)|u|
2−θ∥

LH̃

Kθ
(RN )

∥v∥θE+∥z(|u|)|u|2−θ∥
LP̃

Kθ
(RN )

∥v∥θE),
(4.11)

where Ci > 0, i = 3, 4, are positives constants that does not depend on u and v. From

(4.11), (4.8) together with the Proposition 1.1 (Stein-Weiss inequality), it follows that

∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣
≤ C

∣

∣

∣

∣

∫

RN

K(x)θ|F (u)|θdx

∣

∣

∣

∣

1
θ
∣

∣

∣

∣

∫

RN

K(x)θ|f(u)|θ|v|θdx

∣

∣

∣

∣

1
θ

≤ C6 (max{∥u∥a1

E , ∥u∥
a2

E }+max{∥u∥z1E , ∥u∥
z2
E })

1
θ
(

∥a(|u|)|u|2−θ∥
LH̃

Kθ
(RN )

+∥z(|u|)|u|2−θ∥
LP̃

Kθ
(RN )

)
1
θ ∥v∥E .
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Lemma 4.3 Assume that (V,K) ∈ Q1 and (f ′
1) holds. Let (un) be a bounded sequence

in E, and consider u ∈ E such that un
∗

−−⇀ u in E. We will show the following limits

lim
n→∞

∫

RN

K(x)θ|F (un)− F (u)|θdx = 0,(4.12)

lim
n→∞

∫

RN

K(x)θ|f(un)un − f(u)u|θdx = 0(4.13)

and

lim
n→∞

∫

RN

K(x)θ|f(un)φ− f(u)φ|θdx = 0.(4.14)

Proof. By remark 4.1, lim sup
t→0

a(t)t2−θ

ϕ(t)t2−θ
≤ 1 and lim sup

t→∞

z(t)t2−θ

ϕ∗(t)t2−θ
≤ 1, then from (f ′

1),

given ε > 0 there exist δ0 > 0, δ1 > 0 and Cε > 0 such that

|f(t)|θ ≤ ε
(

ϕ(t)t2−θ + ϕ∗(t)t
2−θ
)

+ Cεϕ∗(t)t
2−θχ[δ0,δ1](t).(4.15)

In the same way as (4.7),

|F (t)|θ ≤ ε
(a2
θ
Φ(t) +

m∗

θ
Φ∗(t)

)

+
Cεm

∗

θ
Φ∗(t)χ[δ0,δ1](t)(4.16)

From (4.16), Proposition 4.1 and the Sobolev inequality, it follows that the sequence

(K(·)F (un)) is bounded in Lθ(RN). It is clear that K(x)F (un(x)) → K(x)F (u(x)) a.e.

in R
N in the sense of subsequence. Then, by the Brézis-Lieb Lemma [56, Lemma 1.32]

we obtain

∫

RN

K(x)θ|F (un)− F (u)|θdx =

∫

RN

K(x)θ|F (un)|
θdx−

∫

RN

K(x)θ|F (u)|θdx+ on(1).

(4.17)

In view of this fact, to verify (4.12), we only need to prove that the right side of (4.17)

is a quantity on(1). Note that Fn = {x ∈ R
N : |vn(x)| ≥ δ0} is such that

Φ∗(δ0)|Fn| ≤

∫

Fn

Φ∗(|vn(x)|)dx ≤

∫

RN

Φ∗(|vn(x)|)dx ≤ C1,

for some constant C1 > 0 that does not depend on n. Thus, sup
n∈N

|Fn| < +∞. From

(Q1), we have

lim
r→+∞

∫

Fn∩Bc
r(0)

K(x)θdx = 0, uniformly in n ∈ N,

75



thus, there is r0 > 0, so that
∫

Fn∩Bc
r0

(0)

K(x)θdx <
ε

Φ∗(δ1)Cε

, ∀n ∈ N.

Moreover, as (vn) is bounded in E, there is a constant M1 > 0 satisfying
∫

RN

V (x)Φ(|un|)dx ≤M1 and
∫

RN

Φ∗(|un|)dx ≤M1, ∀n ∈ N.

By (4.16), it follows that

∫

Bc
r0

(0)

K(x)θ|F (un)|
θdx ≤εC1

(

∫

Bc
r0

(0)

V (x)Φ(|un|)dx+

∫

Bc
r0

(0)

Φ∗(|un|)dx

)

+ CεΦ∗(δ1)

∫

Fn∩Bc
r0

(0)

K(x)θdx

≤ε(C1M1 + 1),

for all n ∈ N where C1 > 0 does not depend of ε > 0. Therefore

lim sup
n→+∞

∫

Bc
r0

(0)

K(x)θ|F (un)|
θdx ≤ ε(C1M1 + 1).(4.18)

On the other hand, using the compactness Lemma of Strauss [26, Theorem A.I,

p. 338], it follows that

lim
n→+∞

∫

Br0 (0)

K(x)θ|F (un)|
θdx =

∫

Br0 (0)

K(x)θ|F (u)|θdx.(4.19)

In light of this, we can conclude that

lim
n→+∞

∫

RN

K(x)θ|F (un)|
θdx =

∫

Rn

K(x)θ|F (u)|θdx.

Through this limit together with (4.17), we will get (4.12). Similarly, the limit (4.13)

is shown. Related the limit (4.14), it follows directly from the condition (f ′
1) together

with a version of the compactness Lemma of Strauss for non-autonomous problem.(This

version is an immediate consequence of [26, Theorem A.I, p. 338] where K(x)dx is used

as the new measure)

The following result is an immediate consequence of Stein-Weiss inequality and

Lemma 4.3.

Lemma 4.4 Assume that (V,K) ∈ Q1 and (f ′
1) holds. Let (un) be a sequence bounded

in E and u ∈ E such that un
∗

−−⇀ u in D1,Φ(RN). Then

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))F (un(y))

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy,(4.20)
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lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))un(y)

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))u(y)

|x|α|x− y|λ|y|α
dxdy

(4.21)

and

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))φ(y)

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))φ(y)

|x|α|x− y|λ|y|α
dxdy

(4.22)

for all φ ∈ C∞
0 (RN).

By the inequality (4.6), together with all the results presented above, it is veriőed

that the function

Ψ(u) =

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy, u ∈ E

is well deőned, is continuously diferentiable and the Gateaux derivative Ψ′ : E → E∗

is given by

Ψ′(u)v =

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy, ∀u, v ∈ E.

This fact is proved similarly to Lemma 3.2, found in [13].

From the results presented in Section 3.1, we can conclude that the energy

function associated with (P2) given by

J(u) =

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx−
1

2

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy,

for u ∈ E is a continuous and Gateaux-diferentiable functional such that J ′ : E → E∗

given by

J ′(u)v =

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx

−

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy

is continuous from the norm topology of E to the weak∗-topology of E∗.

As in (3.1) that u ∈ E is a critical point for the functional J if

Q(v)−Q(u) ≥

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))(v(y)− u(y))

|x|α|x− y|λ|y|α
dxdy, ∀v ∈ E

(4.23)
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where the functional Q : E 7→ R is deőned by

Q(u) =

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx.

As with Proposition 3.1, a critical point u in the sense (4.23) is a weak solution for

(P2), that is,

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx−

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy = 0,

(4.24)

for each v ∈ E.

Lemma 4.5 Suppose that (V,K) ∈ Q1 and (f ′
1) hold. Then there are ρ, η > 0 such

that J(u) ≥ η for all u ∈ E ∩ ∂Bρ(0).

Proof. By Lemma 4.2, there exists a positive constant C > 0 satisfying
∣

∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x− y|λ
dxdy

∣

∣

∣

∣

≤ C (max{∥u∥a1

E , ∥u∥
a2

E })
2
θ + (max{∥u∥z1E , ∥u∥

z2
E })

2
θ ,

for all u ∈ E. Hence, by deőning the functional J together with Proposition 4.1, we

get

J(u) ≥ξ0(∥∇u∥Φ) + ξ0(∥u∥V,Φ)− C (max{∥u∥a1E , ∥u∥
a2
E })

2
θ − C (max{∥u∥z1E , ∥u∥

z2
E })

2
θ

≥∥∇u∥mΦ+∥u∥mV,Φ−C
(

∥u∥E
)

2a1
θ − C

(

∥u∥E
)

2z1
θ ,

for u ∈ E with ∥u∥E≤ 1 where ξ0(t) = min
t>0

{tℓ, tm}. By the classical inequality

(x+ y)σ ≤ 2σ−1(xσ + yσ), x, y > 0, and σ > 1,

we get for u ∈ E with ∥u∥E≤ 1 that

J(u) ≥ C
(

∥∇u∥Φ+∥u∥V,Φ
)m

− C
(

∥u∥
2a1
θ

E +∥u∥
2z1
θ

E

)

≥ C∥u∥mE−C
(

∥u∥
2a1
θ

E +∥u∥
2z1
θ

E

)

,

for some constant C > 0. As
2

θ
> 1, then m <

2a1
θ

and m <
2z1
θ

. Hence, setting

ρ = ∥u∥ small enough,

J(u) ≥ C∥u∥mE−C
(

∥u∥
2a1
θ

E +∥u∥
2z1
θ

E

)

:= η > 0.

Which completes the proof.

By a standard argument, the following lemma follows from the condition (f ′
4).
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Lemma 4.6 There is e ∈ E with ∥u∥E> ρ and J(e) < 0.

The previous lemmas establish the mountain pass geometry for the functinal J in

both cases. In what follows, let us denote by c > 0 the mountain pass level associated

with J , that is,

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}.

Associated with c, we have a Cerami sequence (un) ⊂ E, that is,

J(un) −→ c and (1 + ∥un∥)∥J
′(un)∥∗−→ 0.(4.25)

The above sequence is obtained from the Corollary A.1 in Appendix A.

Now, we are able to prove that the Cerami sequence given in (4.25) is bounded

in E.

Lemma 4.7 Let (un) the Cerami sequence given in (4.25). There is a constant M > 0

such that J(tun) ≤M for every t ∈ [0, 1] and n ∈ N.

Proof. Let tn ∈ [0, 1] be such that J(tnun) = max
t∈[0,1]

J(tun). If tn = 0 and tn = 1, we

are done. Thereby, we can assume tn ∈ (0, 1), and so J ′(tnun)un = 0. From this,

mJ(tnun) =mJ(tnun)− J ′(tnun)(tnun)

=

∫

RN

(

mΦ(|∇(tnun)|)− ϕ(|∇(tnun)|)|∇(tnun)|
2
)

dx

+

∫

RN

V (x)
(

mΦ(|tnun|)− ϕ(|tnun|)|tnun|
2
)

dx

+

∫

RN

∫

RN

K(x)K(y)
[

F (tnun(x))f(tnun(y))tnun(y)−
m

2
F (tnun(x))F (tnun(y))

]

|x|α|x− y|λ|y|α
dxdy.

The conditions (f ′
2) and (f ′

3) guarantee that the functions f(t)t−
m

2
F (t) and F (t) are

nondecreasing for t > 0. The condition (ϕ4) ensures that the function mΦ(t) − ϕ(t)t2

is increasing for t > 0. Thus,

mJ(tnun) ≤ mJ(un)− J ′(un)un = mJ(un)− on(1).
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Since (J(un)) is bounded, there is M > 0 such that

J(tun) ≤M, ∀t ∈ [0, 1] and n ∈ N.

Proposition 4.2 The Cerami sequence (un) given in (4.25) is bounded.

Proof. Suppose by contradiction that ∥un∥E→ ∞, then we have the following cases:

i) ∥∇un∥Φ→ +∞ and (∥un∥V,Φ) is bounded

ii) ∥un∥V,Φ→ ∞ and (∥∇un∥Φ) is bounded

iii) ∥∇un∥Φ→ +∞ and ∥un∥V,Φ→ +∞.

In the case iii), consider

wn =
un

∥un∥E
, ∀n ∈ N.

Since ∥wn∥E= 1, by Lemma 3.3, there exists w ∈ E such that wn
∗

−⇀ w in D1,Φ(RN).

There are two possible cases: w = 0 or w ̸= 0.

Case: w = 0

Note that for every constant σ > 1 there is n0 ∈ N such that
σ

∥un∥E
∈ [0, 1], for

n ≥ n0. Given this, we get

J(tnun) ≥J(
σ

∥∇un∥Φ
un)

=J(σwn)

=

∫

RN

Φ(σ|∇wn|)dx+

∫

RN

V (x)Φ(σ|wn|)dx−
1

2

∫

RN

∫

RN

K(x)K(y)F (σwn(x))F (σwn(y))

|x|α|x− y|λ|y|α
dxdy

≥σQ(wn)−
1

2

∫

RN

∫

RN

K(x)K(y)F (σwn(x))F (σwn(y))

|x|α|x− y|λ|y|α
dxdy

By deőnition of the sequence (wn), we have ∥∇wn∥Φ≤ 1 and ∥wn∥V,Φ≤ 1, for all n ∈ N.

Then,

∫

RN

Φ(|∇wn|)dx ≥ ∥∇wn∥
m
Φ and

∫

RN

V (x)Φ(|wn|)dx ≥ ∥wn∥
m
V,Φ.

So there is C > 0 such that

Q(wn) ≥ ∥∇wn∥
m
Φ+∥wn∥

m
V,Φ≥ C(∥∇wn∥Φ+∥wn∥V,Φ)

m, ∀ n ∈ N.
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Thus

J(tnun) ≥σC(∥wn∥E)
m −

1

2

∫

RN

∫

RN

K(x)K(y)F (σwn(x))F (σwn(y))

|x|α|x− y|λ|y|α
dxdy

=σC −
1

2

∫

RN

∫

RN

K(x)K(y)F (σwn(x))F (σwn(y))

|x|α|x− y|λ|y|α
dxdy

If w = 0, it follows from (4.20) that

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (σwn(x))F (σwn(y))

|x|α|x− y|λ|y|α
dxdy = 0,

therefore,

lim inf
n→∞

J(tnun) ≥ Cσ, ∀ σ ≥ 1.

which constitutes a contradiction with Lemma 4.7, once that (J(tnun)) is bounded

from above.

Case: w ̸= 0

Recalling that

|un| = |wn|∥un∥E and
un(x)

∥un∥E
= wn(x) → w(x), a.e. in R

N

we will get that

|wn(x)| → |w(x)|, a.e. in R
N .

Furthermore, from the fact that ∥un∥E→ +∞, we can conclude that

|un(x)| = |wn(x)|∥un∥E→ +∞, as n→ ∞ for x ∈ {y ∈ R
N : w(y) ̸= 0}.

By (4.25),

0 = lim sup
n→∞

c

∥un∥mE
= lim sup

n→∞

J(un)

∥un∥mE
.(4.26)

As ∥un∥Φ≥ 1 and ∥un∥V,Φ≥ 1 for every n ≥ n0,

∫

RN

Φ(|∇un|)dx ≤ ∥∇un∥
m
Φ and

∫

RN

V (x)Φ(|un|)dx ≤ ∥un∥
m
V,Φ, ∀n ≥ n0.(4.27)

81



Thus, it follows from (f ′
4), (4.26), (4.27) and Fatou’s Lemma that

0 = lim sup
n→∞

J(un)

∥un∥mE

≤ lim sup
n→∞

[

1

∥un∥mE

∫

RN

Φ(|∇un|)dx+
1

∥un∥mE

∫

RN

V (x)Φ(|un|)dx

]

− lim inf
n→∞

[

1

2

∫

RN

∫

RN

K(x)K(y)

|x|α|x− y|λ|y|α
F (un(x))F (un(y))

∥un∥mE
dxdy

]

≤2−
1

2
lim inf
n→∞

[∫

RN

∫

RN

K(x)K(y)

|x|α|x− y|λ|y|α
F (un(x))

|un(x)|
m
2

|wn(x)|
F (un(y))

|un(y)|
m
2

|wn(y)|dxdy

]

=−∞

which is a contradiction. This shows that (un) is bounded in E.

The cases i) and ii) are analogous to the case iii).

Since that the Cerami sequence (un) given in (4.25) is bounded in E, by Lemma

3.3, we can assume that for some subsequence, there is u ∈ E such that

un
∗

−⇀ u in D1,Φ(RN) and un(x) −→ u(x) a.e. R
N .(4.28)

and

lim inf
n→∞

∫

RN

Φ(|∇un|)dx ≥

∫

RN

Φ(|∇u|)dx.(4.29)

Fix v ∈ C∞
0 (RN). By boundedness of Cerami sequence (un), we have

J ′(un)(v − un) = on(1), hence, since Φ is a convex function, it is possible to show

that

Q(v)−Q(un) ≥

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))(v(y)− un(y))

|x|α|x− y|λ|y|α
dxdy + on(1).

(4.30)

By (4.28), it follows from Fatou’s Lemma that

lim inf
n→∞

∫

RN

V (x)Φ(|un|)dx ≥

∫

RN

V (x)Φ(|u|)dx.(4.31)

Combining (4.29) and (4.31), we conclude that

lim inf
n→∞

Q(un) ≥ Q(u).(4.32)
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From (4.30) and (4.32) together with the limits (4.20) and (4.22), we get

Q(v)−Q(u) ≥

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))(v(y)− u(y))

|x|α|x− y|λ|y|α
dxdy.

As E = C∞
0 (RN)

∥·∥E
and Φ ∈ (∆2), we conclude that

Q(v)−Q(u) ≥

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))(v(y)− u(y))

|x|α|x− y|λ|y|α
dxdy, ∀ v ∈ E.

(4.33)

In other words, u is a critical point of the J functional. By (4.24), we can conclude

that u is a weak solution for (P2). Now, we substitute v = u+ := max{0, u(x)} in

(4.33) and we get

−

∫

RN

Φ(|∇u−|)dx−

∫

RN

V (x)Φ(u−)dx ≥

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))(u−(y))

|x|α|x− y|λ|y|α
dxdy = 0,

which leads to
∫

RN

Φ(|∇u−|)dx = 0 and
∫

RN

V (x)Φ(u−)dx = 0

whence it is readily inferred that u− = 0, therefore, u is a weak nonnegative solution.

Note that u is nontrivial. In the sense, consider a sequence (φk) ⊂ C∞
0 (RN)

such that φk → u in D1,Φ(RN). Since (un) is bounded, we get J ′(un)(φk − un) =

on(1)∥φk∥−on(1). As Φ is convex, we can show that

I(φk)− I(un)− on(1) ≥

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))(φk(y)− un(y))

|x|α|x− y|λ|y|α
dxdy.(4.34)

Since (∥φk∥)k∈N is a bounded sequence, it follows from (4.34) and from limits (4.21)

and (4.22) that

Q(φk)− lim sup
n→∞

Q(un) ≥ lim sup
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))(φk(y)− un(y))

|x|α|x− y|λ|y|α
dxdy,

for every k ∈ N. Notice that Φ ∈ (∆2) and φk → u in E, we conclude from the

inequality above that

Q(u) ≥ lim sup
n→∞

Q(un).(4.35)

From (4.32) and (4.35),

Q(u) = lim
n→∞

Q(un).(4.36)

By (4.20), we have

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))F (un(y))

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (un(x))F (un(y))

|x|α|x− y|λ|y|α
dxdy,

(4.37)
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Therefore

0 < c = lim
n→∞

J(un)

=

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx−

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy

=J(u),

that is, u ̸= 0.

Now, we prove that the solution obtained is a ground state solution. Let us recall

the deőnition of a ground state solution:

Definition 4.1 A weak solution u ∈ E of (P2) is called a ground state solution if it

has the least energy, i.e., we say, the solution u is ground state solution of (P2) if

J(u) = b = inf
u∈S

J(u)(4.38)

where S is the set of all critical points of the functional J .

In order to prove the result below, we will use the following continuity result:

Lemma 4.8 The function u 7→ J ′(u) · u is continuous from E to R.

The above lemma is immediate whenever J ∈ C1(E,R).

Lemma 4.9 Assume that (V,K) ∈ Q1 and f satisfies (f ′
1)−(f ′

4). For each v ∈ E\{0}

the function ψv(s) = J(sv) has the following properties:

(ψ1) there is a bounded closed interval [av, bv] (which can be degenerate) such that

0 < av and J ′(sv) · v > 0, for all s < av

(ψ2) 0 < max
s>0

J(sv) = J(τv), for all τ ∈ [av, bv], J(sv) > 0 in s ∈ (0, av)

(ψ3) J(τv) < max
s>0

J(sv), for all τ /∈ [av, bv]

(ψ4) There are sv > bv and δv > 0 such that J ′(su) · u < 0 and J(su) < 0, for all

s ≥ sv and u ∈ Bδv(v).

Proof. Fixed v ̸= 0, the function h(t) = J(tv) has derivative h′(t) = J ′(tv) · v. As in

the Lemma 4.5, there will be r > 0 such that J ′(v) · v > 0, for all 0 < ∥v∥ ≤ R. Hence,

J(sv) =

∫ s

0

J ′(tv) · vdt > 0, for 0 < s <
r

∥v∥
.(4.39)
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From (f ′
4), there exists sv > 0 such that

J(sv) < 0, for all s > sv(4.40)

thus, max
s>0

J(sv) = J(τv) > 0 for some τ ∈ (0, sv). By deőnition of the J functional,

we have

J ′(τv)v

τm−1
=

∫

RN

ϕ(|∇tv|)|∇v|2

tm−2
dx+

∫

RN

V (x)
ϕ(|tv|)|v|2

tm−2
dx

−

∫

RN

∫

RN

K(x)K(y)F (tv(x))f(tv(y))v(y)

t
m
2 |x|α|x− y|λ|y|αt

m
2
−1

dxdy.

Using the hypothesis (ϕ4), we can conclude that the function

t 7→

∫

RN

ϕ(|∇tv|)|∇v|2

tm−2
dx+

∫

RN

V (x)
ϕ(|tv|)|v|2

tm−2
dx

is nonincreasing, since the hypothesis (f ′
2) guarantees that the function

t 7→

∫

RN

∫

RN

K(x)K(y)F (tv(x))f(tv(y))v(y)

t
m
2 |x|α|x− y|λ|y|αt

m
2
−1

dxdy

is nondecreasing. Therefore, by (4.39) and (4.40) there will be an interval [av, bv] such

that h′(τ) > 0 in t < av, h′(τ) < 0 in τ > bv and h′(τ) = 0 in the interval [av, bv].

The conclusion (ψ1), (ψ2) and (ψ3) is immediate. The property (ψ4) follows from the

previous items together with (4.40) and with the continuity of J and v 7→ J ′(v)v.

In the proof of the lemma below, we have adapted the ideas presented by Willem,

which can be found in Theorem 4.2 in [56].

Proposition 4.3 If u ∈ E is a nontrivial solution for (P2) such that J(u) = c, where

c is the level given in (4.25). Then c = infu∈S J(u) where S is the set of all critical

points of the functional J .

Proof. By condition (f ′
4), we can őx without losing generality e ∈ E such that J(e) < 0

and J ′(e) · e < 0. Consider the following sets:

Γ = {γ : [0, 1] → E : γ(0) = 0, γ(1) = e}, Γ0 = {γ : [0, 1] → E : γ(0) = 0, J(γ(1)) < 0}

and

N = {v ∈ E \ {0} : J ′(v) · v = 0}, S = {v ∈ E \ {0} : J ′(v) = 0}.
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We will compare the following numbers:

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), c0 = inf
γ∈Γo

max
t∈[0,1]

J(γ(t)), d = inf
v ̸=0

max
s>0

J(sv),

and

a = inf
v∈N

J(v), b = inf
v∈S

J(v).

Let us see some immediate inequalities:

(i) It is obvious that c0 ≤ c and a ≤ b;

(ii) Let us see c0 ≤ d. Note that if v ̸= 0, then the path γ(t) = tsvv is such that

γ(0) = 0 and J(γ(1)) = J(svv) < 0. Therefore, γ ∈ Γ0 and

c0 ≤ max
t∈[0,1]

J(γ(t)) = max
t>0

J(sv),

that is, c0 is a lower bound for the deőnition of d. The airmation is justiőed.

(iii) Let us show that a ≤ c. In fact, őx γ ∈ Γ. Just check that J ′(γ(1)) ·γ(1) = J ′(e) ·

e < 0 < J ′(γ(t)) ·γ(t) for t > 0 small enough. Having the Lemma 4.8 true, we can

use the Intermediate Value Theorem to guarantee the existence of t1 ∈ (0, 1) such

that J ′(γ(t1))·γ(t1) = 0, so γ(t1) ∈ N . Thus a ≤ J(γ(t1)) ≤ max
t∈[0,1]

J(γ(t)) < c+ε,

and therefore the inequality a ≤ c is shown.

(iv) Now c ≤ c0. Let γ ∈ Γ. The idea is to deőne a function γ̃ ∈ Γ such that

max
t∈[0,1]

J(γ(t)) = max
t∈[0,1]

J(γ̃(t)).

For this, deőne γ̃ : [0, 1] → E as follows:

γ̃(t) = γ(2t), for t ∈ [0,
1

2
].

It remains to deőne the function γ̃ to values t ∈

[

1

2
, 1

]

. Remember that J(e) < 0

and J(γ̃(1
2
)) = J(γ(1)) < 0. Being γ(1) = v1, consider any point u of the

segment [e, v1]. We cover this compact segment with a őnite number of balls

Bδu(u) obtained through the property (ψ4), that is, [e, v1] ⊂ Bδu1
(u1)∪Bδu2

(u2)∪

· · · ∪ Bδun (un). Consider λ = max{su1 , su2 , · · · , su2}, numbers given by (4.40)

and (ψ4). Set the γ̃ :

[

1

2
, 1

]

→ E the polygonal line segment from v1 going
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to λv1, then connecting λv1 to λe and őnally, connecting λe to the point e.

It is easily shown that γ̃ ∈ Γ, J(γ̃(t)) < 0 for all t ∈

[

1

2
, 1

]

and therefore,

max
t∈[0,1]

J(γ(t)) = max
t∈[0,1]

J(γ̃(t)). Showing that c0 ≥ c.

(v) Let us see that d ≤ a. Fix v ∈ N so that J(v) < a+ε. In the proof of the Lemma

4.9 the function deőned by ψv(t) = J(tv) satisőes ψ′
v(t) = 0 only if t ∈ [av, bv].

Consider v ∈ N and note that ψ′
v(1) = J ′(v).v = 0, this implies that 1 ∈ [av, bv].

Knowing that the function ψv reaches a maximum in the interval [av, bv], we will

obtain ψv(t) ≤ ψv(1) for all t > 0, because ψv is constant in [av, bv]. In light of

this,

d ≤ max
s>0

J(sv) ≤ J(v) < a+ ε.

If ε is arbitrary, we have d ≤ a.

Finally, consider u ∈ S satisfying J(u) = c. By the inequalities above we can

conclude that a = b = c = co = d.

4.1.1 Boundedness of nonnegative solutions of (P2) for the class

(V,K) ∈ Q1

Assuming the assumptions of Theorem 1.6, the above argument guarantees the

existence of a nonnegative ground state solution for problem (P2), thus showing the

őrst part of Theorem 1.6. Now, to show to study the boundedness of nonnegative

solutions of the problem (P2) we will make heavy use of hypothesis 2α + λ < 2ℓ.

Now, we begin by presenting a technical result, which is an adaptation of a result

that can be found in [5].

Lemma 4.10 Let u ∈ E be a nonnegative solution of (P2), x0 ∈ R
N and R0 > 0.

Then

∫

Ak,t

|∇u|ℓdx ≤ C

(

∫

Ak,s

∣

∣

∣

∣

u− k

s− t

∣

∣

∣

∣

ℓ∗

dx+ (kℓ
∗

+ 1)|Ak,s|

)

+ C

(

∫

Ak,s

∣

∣

∣

∣

u− k

s− t

∣

∣

∣

∣

ℓ∗

dx+ (kℓ
∗

+ 1)|Ak,s|

)
1
θ

where 0 < t < s < R0, k > 1, Ak,ρ = {x ∈ Bρ(x0) : u(x) > k} and C > 0 is a constant

that does not depend on k.
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Proof: Let u ∈ E be a weak solution nonnegative of (P2) and x0 ∈ R
N . Moreover, őx

0 < t < s < R0 and ζ ∈ C∞
0 (RN) verifying

0 ≤ ζ ≤ 1, supp(ζ) ⊂ Bs(x0), ζ ≡ 1 on Bt(x0) and |∇ζ| ≤
2

s− t
.

For k > 1, set φ = ζm(u− k)+ and

J =

∫

Ak,s

Φ(|∇u|)ζmdx,

Using φ as a test function and ℓΦ(t) ≤ ϕ(t)t2, we őnd

ℓJ ≤m

∫

Ak,s

ζm−1(u− k)+ϕ(|∇u|)|∇u||∇ζ|dx−

∫

Ak,s

V (x)ϕ(u)uζm(u− k)+dx

+

∫

Ak,s

∫

RN

K(x)K(y)F (u(x))f(u(y))ζm(y)(u(y)− k)+

|x|α|x− y|λ|y|α
dxdy

≤

∫

Ak,s

ζm−1(u− k)+ϕ(|∇u|)|∇u||∇ζ|dx

+ C1(θ, λ,N)

∣

∣

∣

∣

∫

RN

K(x)θ|F (u)|θdx

∣

∣

∣

∣

1
θ
∣

∣

∣

∣

∫

RN

K(x)θ|f(u)|θ|ζm(u− k)+|θdx

∣

∣

∣

∣

1
θ

By (f ′
1), given η > 0, there exists Cε > 0 such that

K(x)θf(t)θ ≤
ε

θ
K(x)θa(t)t2−θ + CεK(x)θz(t)t2−θ, ∀t ≥ 0 and x ∈ R

N .

Thus,

ℓJ ≤m

∫

Ak,s

ζm−1(u− k)+ϕ(|∇u|)|∇u||∇ζ|dx

+ C2

[

∫

Ak,s

Qθ(x)a(|u|)u2−θ(ζm(u− k)+)θdx+

∫

Ak,s

Qθ(x)z(|u|)u2−θ(ζm(u− k)+)θdx

]
1
θ

(4.41)

where C2 = C1(θ, λ,N)
(∫

RN Q(x)
θ|F (u)|θdx

) 1
θ . For each τ ∈ (0, 1), the Young’s

inequalities gives

ϕ(|∇u|)|∇u||∇ζ|ζm−1(u− k)+ ≤ Φ̃(ϕ(|∇u|)|∇u|ζm−1τ) + C3Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

.(4.42)

It follows from Lemma 2.18,

Φ̃(ϕ(|∇u|)|∇u|ζm−1τ) ≤ C4(τζ
m−1)

m
m−1Φ(|∇u|).(4.43)

From (4.41), (4.42) and (4.43),

ℓJ ≤mC4τ
m

m−1

∫

Ak,s

Φ(|∇u|)ζm +mC3

∫

Ak,s

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx

+ C2

[

∫

Ak,s

Kθ(x)a(|u|)u2−θ(ζm(u− k)+)θdx+

∫

Ak,s

Kθ(x)z(|u|)u2−θ(ζm(u− k)+)θdx

]
1
θ
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Choosing τ ∈ (0, 1) such that 0 < mC4τ
m

m−1 < ℓ, we derive

J ≤ C5

∫

Ak,s

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+ C2

[

∫

Ak,s

Kθ(x)a(|u|)u2−θ(ζm(u− k)+)sdx

+

∫

Ak,s

Kθ(x)z(|u|)u2−θ(ζm(u− k)+)θdx

] 1
θ

(4.44)

By Young’s inequalities,

z(u)u2−θ(ζm(u− k)+)θ ≤ C6Z

(

∣

∣

∣

u− k

s− t

∣

∣

∣

)

+ C6Z(k).(4.45)

and

a(u)u2−θ(ζm(u− k)+)θ ≤ C6A

(

∣

∣

∣

u− k

s− t

∣

∣

∣

)

+ C6A(k).(4.46)

Therefore, a combination of (4.44) and (4.45), yields

J ≤ C7

∫

Ak,s

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+C7

[

∫

Ak,s

A
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+

∫

Ak,s

A(k)dx

+

∫

Ak,s

Z
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

dx+

∫

Ak,s

Z(k)dx

] 1
θ

.

(4.47)

Now, using that ℓ ≤ m < a2 < ℓ∗ and applying the Lemmas 2.16, 2.20 and the Remark

4.1 for functions Φ, A and Φ∗, respectively, we get

Φ
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

≤ Φ(1)
(∣

∣

∣

u− k

s− t

∣

∣

∣

ℓ∗

+ 1
)

,

A
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

≤ A(1)
(∣

∣

∣

u− k

s− t

∣

∣

∣

ℓ∗

+ 1
)

and A(k) ≤ (kℓ
∗

+ 1).

and

Z
(∣

∣

∣

u− k

s− t

∣

∣

∣

)

≤ Z(1)
(∣

∣

∣

u− k

s− t

∣

∣

∣

ℓ∗

+ 1
)

and Z(k) ≤ (kℓ
∗

+ 1).

From (4.47) and the inequality above,

J ≤ C8

(

∫

Ak,s

∣

∣

∣

u− k

s− t

∣

∣

∣

ℓ∗

dx+ (kℓ
∗

+ 1)|Ak,s|

)

+ C8

(

∫

Ak,s

∣

∣

∣

u− k

s− t

∣

∣

∣

ℓ∗

dx+ (kℓ
∗

+ 1)|Ak,s|

)
1
θ

.

Lemma 4.11 Let u ∈ E be a nonnegative solution of (P2). Then, u ∈ L∞
loc(R

N).
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Proof: To begin with, consider U a compact subset on R
N . Fix R1 ∈ (0, 1), x0 ∈ U

and deőne the sequences

σn =
R1

2
+

R1

2n+1
and σn =

σn + σn+1

2
for n = 0, 1, 2, · · · .

Note that

σn ↓
R1

2
and σn+1 < σn < σn < R1.

Since E is continuously embedded in W 1,ℓ
loc (R

N), it follows from Lebesgue domi-

nated convergence theorem,

lim
M→∞

∫

BR1
(x0)

(

(u− P )+
)ℓ∗
dx = 0,(4.48)

hence, there is P ∗ ≥ 1 which depends on x0 and R1, such that
∫

BR1
(x0)

(

(u− P )+
)ℓ∗
dx ≤ 1, for P ≥ P ∗.(4.49)

Now, consider M > 4P ∗ and for every n ∈ N deőne

Kn =
M

2

(

1−
1

2n+1

)

and Jn =

∫

AKn,σn

(

(u−Kn)
+
)ℓ∗
dx, for n = 0, 1, 2, · · · .

and

ξn = ξ

(

2n+1

R1

(

|x− x0| −
R1

2

)

)

, x ∈ R
N and n = 0, 1, 2, · · · ,

where ξ ∈ C1(R) satisőes

0 ≤ ξ ≤ 1, ξ(t) = 1 for t ≤
1

2
and ξ(t) = 0 for t ≥

3

4
.

From deőnition of ξn,

ξn = 1 in Bσn+1(x0) and ξn = 0 outside Bσn
(x0),

consequently

Jn+1 ≤

∫

BR1
(x0)

(

(u−Kn+1)
+ξn
)ℓ∗
dx

≤ C1

(

∫

AKn+1,σn

|∇((u−K+1)
+ξn)|

ℓdx

) ℓ∗

ℓ

≤ C2

(

∫

AKn+1,σn

|∇u|ℓdx+ 2ℓn
∫

AKn+1
,σn

((u−Kn+1)
+)ℓdx

) ℓ∗

ℓ

,

(4.50)
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for some constant C2 = C(N, ℓ,R1) > 0. Applying the Lemma 4.10 to the previous

inequality, we get

J
ℓ
ℓ∗

n+1 ≤C3

(

∫

AKn+1,σn

∣

∣

∣

u−Knk+1

σn − σn

∣

∣

∣

ℓ∗

dx+ (Kℓ∗

n+1 + 1)|AKn+1,σn
|+ 2ℓn

∫

AKn+1,σn

((u−Kn+1)
+)ℓdx

)

+ C3

(

∫

AKn+1,σn

∣

∣

∣

u−Kn+1

σn − σn

∣

∣

∣

ℓ∗

dx+ (Kℓ∗

n+1 + 1)|AKn+1,σn
|
)

1
θ

,

(4.51)

where C3 > 0 is a constant that depends only on N , ℓ and R1. Being |σn−σn| =
R1

2n+3
,

we conclude that

J
ℓ
ℓ∗

n+1 ≤ C4(N, ℓ,R1)
(

2ℓn
∫

AKn+1,σn

((u−Kn+1)
+)ℓ

∗

dx+ (M ℓ∗ + 1)|AKn+1,σn
|

+ 2ℓn
∫

AKn+1,σn

((u−Kn+1)
+)ℓdx

)

+C4(N, ℓ,R1)
(

2ℓn
∫

AKn+1,σn

((u−Kn+1)
+)ℓ

∗

dx+ (M ℓ∗ + 1)|AKn+1,σn
|
)

1
θ

.

(4.52)

Combined the inequality above with tℓ ≤ tℓ
∗

+ 1, for t ≥ 0 and using that σn < σn,

we get that

J
ℓ
ℓ∗

n+1 ≤ C4(N, ℓ,R1)
(

2ℓn
∫

AKn+1,σnk

((u−Kn+1)
+)ℓ

∗

dx+ (M ℓ∗ + 2ℓn + 1)|AKn+1,σn
|
)

+C4(N, ℓ,R1)
(

2ℓn
∫

AKn+1,σn

((u−Kn+1)
+)ℓ

∗

dx+ (M ℓ∗ + 2ℓn + 1)|AKn+1,σn
|
)

1
θ

.

(4.53)

On the other hand, since Kn+1 −Kn =
M

2n+3
,

(

M

2n+3

)ℓ∗
∣

∣AKn+1,σn

∣

∣ = (Kn+1 −Kn)
ℓ∗
∣

∣AKn+1,σn

∣

∣

≤

∫

AKn+1,σn

(Kn+1 −Kn)
ℓ∗dx

≤

∫

AKn+1,σn

Φ∗((u−Kn)
+)χAKn+1,σn

(x) ≤ Jn,

(4.54)

which yields
∣

∣AKn+1,σn

∣

∣ ≤
1

(

M

2n+3

)ℓ∗
Jn.

(4.55)

Thus,
∫

AKn+1,σn

(

(u−Kn+1)
+
)ℓ∗
dx ≤

∫

AKn+1,σn

(

(u−Kn)
+
)ℓ∗
dx+

∫

AKn+1,σn

(

Kn+1 −Kn

)ℓ∗
dx

≤

∫

AKn,σn

(

(u−Kn)
+
)ℓ∗
dx+

∣

∣Kn+1 −Kn

∣

∣

ℓ∗∣
∣AKn+1,σn

∣

∣

≤ 2Jn
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and consequently

J
ℓ
ℓ∗

n+1 ≤C5(N, ℓ,R1)
(

2ℓn+1 + 2n(ℓ+ℓ∗) + (2ℓn + 1)2n(ℓ+ℓ∗)
)

Jn

+ C5(N, ℓ,R1)
(

2ℓn+1 + 2n(ℓ+ℓ∗) + (2ℓn + 1)2n(ℓ+ℓ∗)
) 1

θ

J
1
θ
n

(4.56)

Due to the fact that M > 4M∗, we conclude from the inequality (4.49) that

Jn ≤

∫

BR1
(x0)

(

(u−M∗)+
)ℓ∗
dx ≤ 1, for n = 0, 1, 2, · · · ,

hence,

Jn+1 ≤ CDnJ1+ω
n ,(4.57)

where C = 2C5(N, ℓ,R1), D = 22(ℓ+ℓ∗) ℓ
∗

ℓ and ω = ℓ∗

θℓ
− 1.

We claim that

J0 ≤ C− 1
ωD− 1

ω2 , for M ≥M∗.

Indeed, note that,

J0 =

∫

AK0,σ0

(

(u−K0)
+
)ℓ∗
dx ≤

∫

BR1
(x0)

(

(u−K0)
+
)ℓ∗
dx(4.58)

Since E is continuously embedded in W 1,ℓ
loc (R

N), it follows from Lebesgue dominated

convergence theorem,

lim
M→∞

∫

BR1
(x0)

(

(u−K0)
+
)ℓ∗
dx = 0.

Therefore, there exists M ≥ 5P ∗ that depends on x0, such that
∫

BR1
(x0)

(

(u−K0)
+
)ℓ∗
dx ≤ C− 1

ωD− 1
ω2 , for M ≥M∗.(4.59)

From (4.58) and (4.59),

J0 ≤ C− 1
ωD− 1

ω2 , for M ≥M∗.(4.60)

Fix M =M∗, by [Lemma 4.7, 62], we deduce that

Jn → 0 as n→ ∞.

On the other hand,

lim
n→∞

Jn = lim
n→∞

∫

AKn,σn

(

(u−Kn)
+
)ℓ∗
dx =

∫

AM∗

2 ,
R1
2

(

(u−
M∗

2
)+
)ℓ∗
dx

92



Hence,

∫

AM∗

2 ,
R1
2

(

(u−
M∗

2
)+
)ℓ∗
dx = 0,

leading to

u(x) ≤
M∗

2
a.e. in BR1

2
(x0).

Since x0 is arbitrary and U is a compact subset, the last inequality ensures that

u(x) ≤
Λ

2
a.e. in Λ(4.61)

for some constant Λ > 0. By the arbitrariness of U , we conclude that u ∈ L∞
loc(R

N).

These Lemmas guarantae that the Theorem 1.6 is valid.

4.1.2 Regularity of nonnegative Solutions of (P2) for the class

(V,K) ∈ Q1

Let us consider the hypotheses of Theorem 1.7. By the argument presented in

this chapter, we can infer from Theorem 1.6 that there exists possesses a nonnegative

ground state solution, locally bounded u ∈ E, to problem (P2). Therefore, to conclude

the proof of Theorem 1.7, it suices to examine the regularity of this solution. It will

be crucial here to assume that α = 0. The regularity will be divided into the following

lemmas:

Lemma 4.12 u ∈ C1,γ
loc (R

N), for some γ ∈ (0, 1).

Proof. By (f ′
1) together with the Remark 4.1, there exists C1 > 0 such that

|F (t)|θ ≤ C1Φ∗(|t|), ∀t ≥ 1
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Hence, by Hölder inequality

∫

[u≥1]

K(y)F (u(y))

|x− y|λ
dy ≤

(

∫

[u≥1]

K(y)
θ

θ−1

|x− y|
λ(θ−1)

θ

dy

)
θ−1
θ
(

∫

[u≥1]

F (u(y))θdy

)
1
θ

≤C1

(

∫

RN

K(y)
θ

θ−1

|x− y|
λ(θ−1)

θ

dy

)
θ−1
θ (∫

RN

Φ∗(u)dy

)
1
θ

≤C1

(∫

RN

Φ∗(u)dy

)
1
θ

(

∫

|x−y|<1

K(y)
θ

θ−1

|x− y|
λ(θ−1)

θ

dy +

∫

|x−y|≥1

K(y)
θ

θ−1

|x− y|
λ(θ−1)

θ

dy

)
θ−1
θ

≤C1

(∫

RN

Φ∗(u)dy

)
1
θ

(

∥K∥θ∞

∫

|x−y|<1

1

|x− y|
λ(θ−1)

θ

dy +

∫

|x−y|≥1

K(y)
θ

θ−1 dy

)
θ−1
θ

≤C1

(∫

RN

Φ∗(u)dy

)
1
θ
(

∥K∥θ∞

∫ 1

0

rN−1−
λ(θ−1)

θ dy + ∥K∥
θ−1
θ

L
θ−1
θ (RN )

)

θ−1
θ

On the other hand,

∫

[u≤1]

K(y)F (u(y))

|x− y|λ
dy ≤∥F∥L∞([0,1])

∫

RN

K(y)

|x− y|λ
dy

≤∥F∥L∞([0,1])

(∫

|x−y|<1

K(y)

|x− y|λ
dy +

∫

|x−y|≥1

K(y)

|x− y|λ
dy

)

≤∥F∥L∞([0,1])

(

∥K∥∞

∫ 1

0

rN−1−λdy + ∥K∥L1(RN )

)

,

that is,

∫

RN

K(y)F (u(y))

|x− y|λ
dy ≤ C2,

where

C2 =
{

C1

(∫

RN

Φ∗(u)dy

) 1
θ
(

∥K∥θ∞

∫ 1

0

rN−1−λ(θ−1)
θ dy + ∥K∥

θ−1
θ

L
θ−1
θ (RN )

)

θ−1
θ

;

∥F∥L∞([0,1])

(

∥K∥∞

∫ 1

0

rN−1−λdy + ∥K∥L1(RN )

)

}

,

showing that

∫

RN

K(y)F (u(y))

|x− y|λ
dy ∈ L∞(RN).(4.62)

Let Ω ⊂ R
N be an open set and M > 0 the constant satisfying (4.61). Deőne the

scalar measurable function Z : Ω× R× R
N −→ R given by

Z(x, t, p) = V (x)φ(|t|)t−

(∫

RN

K(y)F (u(y))

|x− y|λ
dy

)

K(x)f̃(t)
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with

φ(t) =











ϕ(t) , for 0 < t ≤M/2

ϕ(M/2) , for t ≥M/2

and f̃(t) =











f(t) , for 0 < t ≤M/2

f(M/2) , for t ≥M/2

,

where M > 0 is the constant satisfying (4.61). By (4.62), there exists a constant C3

such that

|Z(x, t, p)| ≤ C3, ∀x ∈ Ω, p ∈ R
N and t ∈ [0,M/2].

This fact together with the hypothesis (ϕ6) allows us to apply the theorem of regularity

due to Lieberman [24, Theorem 1.7]. Thus showing the result

Corollary 4.1 Let u ∈ E be a nonnegative solution of (P2). Then, u is positive

solution.

Proof: If Ω ⊂ R
N is a bounded domain, the Lemma 4.12 implies that u ∈ C1(Ω).

Using this fact, in the sequel, we őx M1 > max
{

∥∇u∥L∞(Ω), 1
}

and

φ(t) =















ϕ(t) , for 0 < t ≤M1

ϕ(M1)

Mβ−2
1

tβ−2 , for t ≥M1

,

where β is given in the hypothesis (ϕ5). Still by condition (ϕ5), there are α1, α2 > 0

satisfying

φ(|y|)|y|2 = ϕ(|y|)|y|2 ≥ α1|y|
β and |φ(|y|)y| ≤ α2|y|

β−1, ∀y ∈ R
N .(4.63)

Now, consider the vector measurable functions G : Ω × R × R
N −→ R

N given by

G(x, t, p) = 1
α1
φ(|p|)p. From (4.63) ,

|G(x, t, p)| ≤
α2

α1

|p|β−1 and pG(x, t, p) ≥ |p|β−1,(4.64)

for all (x, t, p) ∈ Ω × R × R
N . We next will consider the scalar measurable function

L : Ω× R× R
N −→ R given by

L(x, t, p) =
1

α1

(

V (x)ϕ(|t|)t−

(∫

RN

K(y)F (u(y))

|x− y|λ
dy

)

K(x)f(t)
)

.
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By (f ′
1), there will be a constant C1 > 0 satisfying

K(x)|f(t)| ≤ C1K(x)a(|t|)|t|+ C1ϕ∗(|t|)|t|, ∀t ∈ R
N and x ∈ R

N .(4.65)

Fix M ∈ (0,∞). Through the condition (ϕ5) and by a simple computation yields

there exists C2 = C2(M) > 0 verifying

|L(x, t, p)| ≤ C2|t|
β−1, for every (x, t, p) ∈ Ω× (−M,M)× R

N .

By the arbitrariness of M , we can conclude that functions G and L fulőll the structure

required by Trudinger [61]. Also, as u is a weak solution of (P2), we infer that u is a

quasilinear problem solution

−div G(x, u,∇u(x)) + L(x, u,∇u(x)) = 0 in Ω.

By [61, Theorem 1.1], we deduce that u > 0 in Ω. By the arbitrariness of Ω , we

conclude that u > 0 in R
N .

4.2 Existence of a solution in the case (V,K) ∈ Q2

To study this second class of problem where (V,K) ∈ Q2, we assume that

f : R → R satisőes (f ′
2), (f ′

3) and (f ′
4). Furthermore, for this case, we replace the

condition (f ′
1) with the following condition:

(f ′
5) lim sup

t→0

f(t)
(

1
θ
b(|t|)|t|2−θ

)1/θ
<∞ and lim

t→+∞

f(t)
(

1
θ
ϕ∗(|t|)|t|2−θ

)1/θ
= 0

where ϕ∗(t)t is such that the Sobolev conjugate function Φ∗ of Φ is its primitive, that

is, Φ∗(t) =

∫ |t|

0

ϕ∗(s)sds.

Our őrst main result of this subsection can be stated as follows. Under these

conditions, the next result of the existence of a nonnegative solution has the following

statement:

Theorem 4.1 Assume that Φ satisfies (ϕ1)− (ϕ4), 0 ≤ α < λ and λ+ 2α ∈ (0, N) ∩

(0, 2N − 2N
m
). Suppose that (V,K) ∈ Q2, (B1)− (B4) and (f ′

2), (f
′
3), (f

′
4), (f

′
5) hold. If

Φ∗(|t|
1/θ) is convex in R, then the problem (P2) possesses a nonnegative ground state

solution.
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Remark 4.2 The inequality (B3) implies the following inequalities

ξ0,B(t)B(ρ) ≤ B(ρt) ≤ ξ1,B(t)B(ρ), ∀ρ, t ≥ 0

when

ξ0,B(t) = min{tb1 , tb2} and ξ1,B(t) = max{tb1 , tb2}, ∀t ≥ 0.

Besides by Lemma 2.16 and Lemma 2.20, we have

lim sup
t→0

B(t)

Φ(t)
= 0 and lim sup

|t|→∞

B(t)

Φ∗(t)
= 0

Proposition 4.4 (Hardy-type inequality) If (V,K) ∈ Q2, then the space E is con-

tinuous embedded in LB
Kθ(R

N).

Proof. Now, let us assume that (V,K) ∈ Q2. As E is continuously embedded in

LΦ∗(RN), there exists C1 > 0 such that

∥u∥Φ∗
≤ C1∥u∥E, ∀u ∈ E.(4.66)

Given condition (Q3), for any 0 < ε < 1, there exists a positive real number r such

that
K(x)θ

H(x)
< ε, ∀|x| ≥ r,

where H(x) is deőned as H(x) = min
τ>0

{

V (x)
Φ(τ)

B(τ)
+

Φ∗(τ)

B(τ)

}

. Consequently, we deduce

that

K(x)θB(t) ≤ V (x)Φ(t) + Φ∗(t), ∀t > 0 and |x| ≥ r.(4.67)

On the other hand, by the Remark 4.1, there is a constant C2 > 0 such that

B(t) ≤ C2Φ(t) + C2Φ∗(t), ∀t > 0.

Hence, for each x ∈ Br(0),

K(x)θB(t) ≤ C2

∥

∥

∥

∥

Kθ

V

∥

∥

∥

∥

L∞(Br(0))

V (x)Φ(t) + C2∥K
θ∥∞Φ∗(t), ∀t > 0.(4.68)

Combining (4.67) and (4.68),

K(x)θB(t) ≤C3V (x)Φ(t) + C3Φ∗(t), ∀t > 0 and x ∈ R
N ,(4.69)
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with C3 = max{1, C2∥K
θ∥∞, C2

∥

∥

∥

Kθ

V

∥

∥

∥

L∞(Br(0))
}. Applying the inequality (4.66), we

obtain
∫

RN

Q(x)B

(

|u|

C3∥u∥E+C1∥u∥E

)

dx ≤ C3

∫

RN

V (x)Φ

(

|u|

∥u∥V,Φ

)

dx+ C3

∫

RN

Φ∗

(

|u|

∥u∥Φ∗

)

dx ≤ C4

where C4 is a positive constant that does not depend on u. So we can conclude that

E ⊂ LB
Kθ(R

N). Furthermore, there is a constant C5 > 0 that does not depend on u, so

∥u∥LB

Kθ
(RN )≤ C5∥u∥E. Concluding that E is continuous embedded in LB

Kθ(R
N).

Note that the condition (f ′
5) implies that there exists δ0 > 0, δ1 > 0 and Cε > 0

such that

|f(t)|θ ≤ Cb(t)t2−θ +
ε

θ
ϕ∗(t)t

2−θ + Cεϕ∗(t)t
2−θχ[δ0,δ1](t), ∀t > 0(4.70)

where C > 0 is a constant that does not depend of ε > 0. Assuming that Φ∗(|t|
1/θ) is

convex in R, we can repeat the same arguments used in the proof of Lemma 4.2, we

can state the following results.

Here we will deőne the functions H1 : R → [0,∞) and P1 : R → [0,∞) given

by H1(t) = A(|t|1/θ) and P1(t) = Φ∗(|t|
1/θ). Through the assumptions imposed un-

der B and Φ∗ it is possible to show that H1 and P1 are N -functions, in addition,

the functions h1, p1 : (0,∞) → (0,∞) deőned by h1(t)t =
1

θ
b(t1/θ)t(2/θ)−1 and

p1(t)t =
1

θ
ϕ∗(t

1/θ)t(2/θ)−1 are increasing and satisfy

H1(w) =

∫ |w|

0

th1(t)dt, and P1(w) =

∫ |w|

0

tp1(t)dt.(4.71)

Lemma 4.13 Suppose that (V,K) ∈ Q2 and (f ′
5) holds. For each u ∈ E, there is a

constant C1 > 0 that does not depend on u, such that

∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣ ≤ C1

[

(

max{∥u∥b1E , ∥u∥
b2
E }
)

2
θ

+
(

max{∥u∥ℓ
∗

E , ∥u∥
m∗

E }
)

2
θ

]

.

Furthermore, for u ∈ E, there is a constant C2 > 0, which does not depend on u, such

that
∣

∣

∣

∣

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy

∣

∣

∣

∣

≤ C2Cu∥v∥E, ∀v ∈ E,(4.72)

where

Cu :=
(

max{∥u∥b1E , ∥u∥
b2
E }+max{∥u∥ℓ

∗

E , ∥u∥
m∗

E }
)

1
θ (

∥b(|u|)|u|2−θ∥
L

H̃1

Kθ
(RN )

+∥ϕ∗z(|u|)|u|
2−θ∥

L
P̃1

Kθ
(RN )

)
1
θ

and H̃1 and P̃1 are the complementary functions of H1 and P1, respectively.
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Lemma 4.14 Suppose that (V,K) ∈ Q2 and (f ′
5) holds. Let (un) be a bounded sequence

in E, and consider u ∈ E such that un
∗

−−⇀ u in E. We will show the following limits

lim
n→∞

∫

RN

K(x)θ|F (un)− F (u)|θdx = 0,(4.73)

lim
n→∞

∫

RN

K(x)θ|f(un)un − f(u)u|θdx = 0(4.74)

and

lim
n→∞

∫

RN

K(x)θ|f(un)φ− f(u)φ|θdx = 0.(4.75)

Proof. Due to similarity, it suices to verify (4.73). By (4.70), for any ε > 0 there

exists δ0 > 0, δ1 > 0 and Cε > 0 such that

|F (t)|θ ≤ ε
(b2
θ
B(t) +

m∗

θ
Φ∗(t)

)

+
Cεm

∗

θ
Φ∗(t)χ[δ0,δ1](t).(4.76)

By the condition (Q3), there is r0 > 0 suiciently large satisfying

K(x)B(t) ≤ ε (V (x)Φ(t) + Φ∗(t)) , ∀t > 0 and |x| ≥ r0.

From the above inequalities, we have

K(x)F (t) ≤ εC1V (x)Φ(t) + εC2Φ∗(t) + CεQ(x)Φ∗(δ1)χ[δ0,δ1](t),

for all t > 0 and |x| ≥ r0. From (4.76), Proposition 4.4 and the Sobolev inequal-

ity, it follows that the sequence (K(·)F (un)) is bounded in Lθ(RN). It is clear that

K(x)F (un(x)) → K(x)F (u(x)) a.e. in R
N in the sense of subsequence. Then, by the

Brézis-Lieb Lemma [56, Lemma 1.32] we obtain

∫

RN

K(x)θ|F (un)− F (u)|θdx =

∫

RN

K(x)θ|F (un)|
θdx−

∫

RN

K(x)θ|F (u)|θdx+ on(1)

(4.77)

In view of this fact, to verify (4.73), we only need to prove that the right side of (4.77)

is on(1). Repeating the same arguments used in the proof of Lemma 4.3, it follows that

lim sup
n→+∞

∫

Bc
r0

(0)

K(x)θ|F (un)|
θdx ≤ ε(C1M1 + 1).(4.78)
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On the other hand, using (f ′
5) and the compactness Lemma of Strauss [26, Theorem

A.I, p. 338], it is guaranteed that

lim
n→+∞

∫

Br0 (0)

K(x)θ|F (un)|
θdx =

∫

Br0 (0)

K(x)θ|F (u)|θdx.(4.79)

In light of this, we can conclude that

lim
n→+∞

∫

RN

K(x)θ|F (un)|
θdx =

∫

Rn

K(x)θ|F (u)|θdx.

Through this limit together with (4.77), we will get (4.73). Similarly, we show the limit

(4.74). Related the limit (4.75), it follows directly from the condition (f ′
5) together with

a version of the compactness lemma of Strauss for non-autonomous problem.

Corollary 4.2 Assume that (V,Q) ∈ Q2 and (f ′
5) holds. Let (un) be a sequence

bounded in E and u ∈ E such that un
∗

−−⇀ u in D1,Φ(RN). Then

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))F (un(y))

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy,(4.80)

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))un(y)

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))u(y)

|x|α|x− y|λ|y|α
dxdy

(4.81)

and

lim
n→∞

∫

RN

∫

RN

K(x)K(y)F (un(x))f(un(y))φ(y)

|x|α|x− y|λ|y|α
dxdy =

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))φ(y)

|x|α|x− y|λ|y|α
dxdy

(4.82)

for all φ ∈ C∞
0 (RN).

By the inequalities (4.70) and Proposition 4.4, together with all the results pre-

sented above, it is veriőed that the function

Ψ(u) =

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy, u ∈ E

is well deőned, is continuously diferentiable and the Gateaux derivative Ψ′ : E → E∗

is given by

Ψ′(u)v =

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy, ∀u, v ∈ E.
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From the results presented in Section 3.1, we can conclude that the energy func-

tion J : E → R associated with (P2) given by

J(u) =

∫

RN

Φ(|∇u|)dx+

∫

RN

V (x)Φ(|u|)dx−
1

2

∫

RN

∫

RN

K(x)K(y)F (u(x))F (u(y))

|x|α|x− y|λ|y|α
dxdy,

is continuous and Gateaux-diferentiable and the Gateaux derivative J ′ : E → E∗

given by

J ′(u)v =

∫

RN

ϕ(|∇u|)∇u∇vdx+

∫

RN

V (x)ϕ(|u|)uvdx−

∫

RN

∫

RN

K(x)K(y)F (u(x))f(u(y))v(y)

|x|α|x− y|λ|y|α
dxdy

is continuous from the norm topology of E to the weak∗-topology of E∗.

Now, by using Lemmas 4.5 and 4.6, the functinal J verify the mountain pass

geometry. In what follows, let us denote by c > 0 the mountain pass level associated

with J , that is,

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}.

Associated with c, we have a Cerami sequence (un) ⊂ E, that is,

J(un) → c and (1 + ∥un∥)∥J
′(un)∥∗→ 0.(4.83)

The above sequence is obtained from the Corollary A.1 in Appendix A..

Repeating the same arguments used in the proof of Lemma 4.7 and of Proposition

4.2, it follows that the Cerami sequence (un) given in (4.83) is bounded, up to some

subsequence, we can assume that there is u ∈ E such that

un
∗
⇀ u in D1,Φ(RN) and un(x) → u(x) a.e. R

N .

As in the previous section, we can conclude that u is a nonnegative ground state

solution for the problem (P2).
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Chapter 5

Quasilinear systems on nonreflexive

Orlicz-Sobolev spaces

In this chapter, we study the existence of solutions for the class of quasilinear

systems in Orlicz-Sobolev spaces of the type:

(S)























−∆Φ1u = Fu(x, u, v) + λRu(x, u, v) in Ω

−∆Φ2v = −Fv(x, u, v)− λRv(x, u, v) in Ω

u = v = 0 on ∂Ω

where Ω is a bounded domain in R
N(N ≥ 2) with smooth boundary ∂Ω, λ > 0 and

∆Φi
u = div(ϕi(|∇u|)∇u), i = 1, 2. Furthermore, we assume that Φi : R 7→ [0,∞) are

N -functions of the type

Φi(t) =

∫ |t|

0

sϕi(s)ds, t ∈ R(5.1)

with ϕi ∈ C1(0,∞) and Φi ∈ (∆2) or Φ̃i ∈ (∆2).



5.1 The N -functions Φ1 and Φ2 may not verify the

∆2-condition.

In this section, we study the quasilinear system (S) assuming that λ = 1 and

F = 0 in Ω, i.e., we study the quasilinear system of the type:

(S1)























−∆Φ1u = Ru(x, u, v) in Ω

−∆Φ2v = −Rv(x, u, v) in Ω

u = v = 0 on ∂Ω

where Ω is a bounded domain in R
N(N ≥ 2) with smooth boundary ∂Ω. To show

the veracity of Theorem 1.9, we will assume that ϕi(i = 1, 2) ∈ C1(0,+∞) are two

functions which satisfy:

(ϕi,1) t 7→ tϕi(t) are stricly increasing and t 7→ t2ϕi(t) is convex in (0,∞);

(ϕi,2) tϕi(t) → 0 as t→ 0 and tϕi(t) → +∞ as t→ +∞;

(ϕi,3) 1 < ℓi ≤
t2ϕi(t)

Φi(t)
, where Φi(t) =

∫ |t|

0

sϕi(s)ds, t ∈ R;

(ϕi,4) lim inf
t→+∞

Φi(t)

tqi
> 0, for some qi > N ;

(ϕi,5)

∣

∣

∣

∣

1−
Φ1(t)

t2ϕ1(t)

(

1 +
tϕ′

1(t)

ϕ1(t)

)∣

∣

∣

∣

≤ 1, ∀t > 0.

The hypothesis (ϕi,5) őrst appears in the paper [8] and here it will be fundamental

to prove that sequences (PS) are bounded (See for example the Lemma 5.3). The

assumption (ϕi,4) implies that the embedding

W 1,Φi

0 (Ω) →֒ W 1,qi(Ω)

for some qi > N is continuous. Hence,

W 1,Φi

0 (Ω) →֒ C0,αi(Ω)
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is continuous for some αi ∈ (0, 1) and

W 1,Φi

0 (Ω) →֒ C(Ω)(5.2)

is compact. In what follows, we denote by Λi > 0 the best constant that satisőes

(5.3) ∥u∥C(Ω)≤ Λi∥u∥i, ∀u ∈ W 1,Φi

0 (Ω),

where ∥·∥i= ∥∇ · ∥LΦi (Ω).

Let d twice the diameter of Ω, then we will assume that there exists δ ≥ 0 such

that

(ϕi,6)
t2

d2
≤ Φ1(t/d), ∀|t| ≥ δ

Regarding the function R, let us assume that:

(R′
1) R ∈ C1(Ω× R

2) and Rv(x, u, 0) ̸= 0 for all (x, u) ∈ Ω× R;

(R′
2) R(x, u, 0) ≤

1

2
Φ1(u/d) +

1

2d2
|u|2, for all (x, u) ∈ Ω× R;

(R′
3) R(x, 0, v) ≥ −

1

2
Φ2(v/d)−Mv, for all (x, v) ∈ Ω×R, for some constant M > 0;

(R′
4) There are ν > 0, µ > 1 and 0 < β < 1 such that

(i)
1

µ
h(u)Ru(x, u, v)u+

1

ν
Rv(x, u, v)v −R(x, u, v) ≥ 0, ∀(x, u, v) ∈ Ω× R

2

and

(ii) βR(x, u, v)−
1

µ
h(u)Ru(x, u, v)u ≥ 0, ∀(x, u, v) ∈ Ω× R

2

where h(u) =
Φ1(u)

u2ϕ1(u)
.

Under the assumptions (ϕi,1) − (ϕi,6) it is well known in the literature that the

N -functions Φ1 and Φ2 might not satisfy the ∆2-condition, and as a consequence,

W 1,Φ1

0 (Ω) and W 1,Φ2

0 (Ω) might not be reŕexive anymore (See Lemma 2.24). Another

important fact we can highlight is that under these conditions, it is well known that

there are u ∈ W 1,Φ1

0 (Ω) and v ∈ W 1,Φ2

0 (Ω) such that
∫

Ω

Φ1(|∇u|)dx = ∞ and
∫

Ω

Φ2(|∇v|)dx = ∞.
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In order to avoid this problem, we will work with the space W 1
0E

Φ1(Ω) ×W 1
0E

Φ2(Ω),

because in this space the functional Q : W 1
0E

Φ1(Ω)×W 1
0E

Φ2(Ω) −→ R given by

Q(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx

belongs to C1(W 1
0E

Φ1(Ω) ×W 1
0E

Φ2(Ω),R) (See Lemma 3.4 in [48]). However, inde-

pendent of ∆2-condition, the compact embedding W 1,Φi

0 (Ω) →֒ C(Ω) guarantees that

the functional H : W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) −→ R given by

H(u, v) =

∫

Ω

R(x, u, v)dx

belongs to C1(W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω),R). In particular, H|W 1
0E

Φ1 (Ω)×W 1
0E

Φ2 (Ω) is also of

class C1. That is, the energy functional J : W 1
0E

Φ1(Ω)×W 1
0E

Φ2(Ω) −→ R associated

to the system (S1) given by

J(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

R(x, u, v)dx

belongs to C1(W 1
0E

Φ1(Ω)×W 1
0E

Φ2(Ω),R).

In order to apply the Saddle-point theorem, in the next one we őx some no-

tations. Since W 1
0E

Φ2(Ω) is separable (See Lemma 2.7), there exists a sequence

(en) ⊂ W 1
0E

Φ2(Ω) such that

W 1
0E

Φ2(Ω) = span{en : n ∈ N}.(5.4)

Hereafter, for each n ∈ N we denote by Vn, Xn and X ′
n the following spaces

Vn = span{ej : j = 1, · · · , n}, Xn = W 1
0E

Φ1(Ω)× Vn and X ′
n = W 1,Φ1

0 (Ω)× Vn.

The restriction of J to Xn will be denoted by Jn. From the regularity of J , it follows

that Jn belongs to C1(Xn,R) with

J ′
n(u, v)(w1, w2) =

∫

Ω

ϕ1(|∇u|)∇u∇w1dx−

∫

Ω

ϕ2(|∇v|)∇v∇w2dx

−

∫

Ω

Ru(x, u, v)w1dx−

∫

Ω

Rv(x, u, v)w2dx,

for all (w1, w2) ∈ Xn.

In the following, we prove that Jn satisőes the hypotheses of Saddle-point theorem

for Gateaux-diferentiable functionals (See Theorem A.3).
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Lemma 5.1 Under the space Z = W 1
0E

Φ1(Ω)×{0} the functional Jn is bounded from

below.

Proof. By the condition (R′
2),

Jn(u, 0) ≥

∫

Ω

Φ1(|∇u|)dx−
1

2

∫

Ω

Φ1(|u|/d)dx−
1

2d2

∫

Ω

|u|2dx.(5.5)

Hence, using the Poincaré inequality (See Lemma (2.23)) together with the hypothesis

(ϕi,6) on the inequality (5.5), we obtain

Jn(u, 0) ≥−
1

2d2

∫

[|u|≤δ]

|u|2 ≥ −
δ2

2d2
|Ω|, ∀u ∈ W 1

0E
Φ1(Ω).

This őnishes the proof.

Lemma 5.2 If ∥v∥2→ ∞, then J(0, v) → −∞.

Proof. Let v ∈ W 1
0E

Φ2(Ω) with ∥v∥2≥ 1. The assumption (R′
3) together with the

Poincaré inequality (See Lemma (2.23)) implies that

J(0, v) ≤ −
1

2

∫

Ω

Φ2(|∇v|)dx+M

∫

Ω

|v|dx.(5.6)

From (ϕi,3),
d

ds
ln(Φ2(rs)) =

ψ2(rs)r
2s

Φ2(rs)
≥
ℓ2
s
, ∀s, r > 0

thus,
∫ t

1

d

ds
ln(Φ2(rs))ds ≥ ℓ2

∫ t

1

1

s
ds, ∀t ≥ 1.

Therefore,

ln
Φ2(rt)

Φ2(r)
≥ ln(tℓ2), ∀t ≥ 1.

Because of the monotonicity of the logarithmic function,

Φ2(rt)

Φ2(r)
≥ tℓ2 , ∀t ≥ 1.

And as a consequence of this inequality, we have
∫

Ω

Φ2(|∇v|)dx ≥ ∥v∥ℓ22 for ∥v∥2≥ 1.(5.7)

By combining the inequalities (5.6) and (5.7), we conclude that

J(0, v) ≤ −∥v∥ℓ22 +M |Ω|Λ2∥v∥2.

Since 1 < ℓ2, the result follows.
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Corollary 5.1 If ∥v∥2→ ∞, then Jn(0, v) → −∞.

Corollary 5.2 There is M > 0 such that inf
Z
Jn > max

∂Mn

Jn := bn where

Mn = BM(0) ∩ Yn.

Proof. By the above Corollary Jn(0, v) → −∞ as ∥v∥2→ +∞ in Y , then, őx M > 1

such that Jn(0, v) < inf
Z
Jn for ∥v∥2= M and v ∈ Yn. Since dimYn < ∞, we can

conclude inf
Z
Jn > max

Nn

Jn.

Then, by results above, we can apply the Saddle-point theorem (See Theorem

A.3) to functional Jn using the sets

Yn = {0} × Vn, Z = W 1
0E

Φ1(Ω)× {0}, and Mn = BM(0) ∩ Yn,

where M > 0 is obtained from Corollary 5.2. Thus, there exists a sequence

(uk, vk) ⊂ Xn with

Jn(uk, vk) −→ cn and J ′
n(uk, vk) −→ 0 as k → +∞.(5.8)

where

cn = inf
γ∈Γ

max
u∈Mn

Jn(γ(u)),(5.9)

with

Γ = {γ ∈ C(Mn, Xn) : γ|Nn
= Id}.

Lemma 5.3 The sequence (uk, vk) satisfying (5.8) is bounded in Xn.

Proof. Deőne the function

η(t) =











Φ1(t)

tϕ1(t)
if t > 0

0 if t = 0

and consider the sequence

gk(x) = η(uk(x)), x ∈ Ω.

A direct computation leads to

∇gk =

[

1−
Φ1(uk)

u2kϕ1(uk)

(

1 +
ukϕ

′
1(uk)

ϕ1(uk)

)

]

∇uk.

107



Furthermore, considering the hypothesis (ϕ1,5) and using the Lemma 2.7(item 4) we

can conclude that gk ∈ W 1
0E

Φ1(Ω) and ∥gk∥1≤ ∥uk∥1 for each k ∈ N. Being (uk, vk) a

sequence (PS)cn , then by (R′
4)(i) and (ϕi,3),

cn + 1 + ok(1)∥(uk, vk)∥≥ Jn(uk, vk)− J ′
n(uk, vk)

( 1

µ
gk,

1

ν
vk
)

=

∫

Ω

Φ(|∇uk|)dx−
1

µ

∫

Ω

ϕ(|∇uk|)|∇uk|
2S(uk)dx−

∫

Ω

Ψ(|∇vk|)dx+
1

ν

∫

Ω

ψ(|∇vk|)|∇vk|
2dx

+
1

µ

∫

Ω

Ru(x, uk,vk)ukh(uk)dx+
1

ν

∫

Ω

Rv(x, uk, vk)vkdx−

∫

Ω

R(x, uk, vk)dx

≥

∫

Ω

Φ1(|∇uk|)dx−
1

µ

∫

Ω

ϕ1(|∇uk|)|∇uk|
2S(uk)dx+

(

ℓ2
ν

− 1

)∫

Ω

Φ2(|∇vk|)dx,

(5.10)

where h(t) = Φ1(t)
t2ϕ1(t)

and S(t) = 1 − Φ1(t)
t2ϕ1(t)

(

1 +
tϕ′

1(t)

ϕ1(t)

)

.(The functions S and h were

introduced by Alves et al in [8]) On the other hand, it follows from (R′
4)(ii) that

cn + 1 + ok(1)∥gk∥1≥ −βJn(uk, vk) + J ′
n(uk, vk)

( 1

µ
gk, 0

)

=− β

∫

Ω

Φ1(|∇uk|)dx+
1

µ

∫

Ω

ϕ1(|∇uk|)|∇uk|
2S(uk)dx+ β

∫

Ω

Φ2(|∇vk|)dx

−
1

µ

∫

Ω

Ru(x, uk, vk)ukh(uk)dx+ β

∫

Ω

R(x, uk, vk)dx,

≥− β

∫

Ω

Φ1(|∇uk|)dx+
1

µ

∫

Ω

ϕ1(|∇uk|)|∇uk|
2S(uk)dx,

i.e,

−
1

µ

∫

Ω

ϕ1(|∇uk|)|∇uk|
2S(uk)dx ≥ −cn − 1− ok(1)∥uk∥1−β

∫

Ω

Φ1(|∇uk|)dx.(5.11)

From (5.10) and (5.11),

2(cn + 1) + ok(1)∥(uk, vk)∥≥ (1− β)

∫

Ω

Φ1(|∇uk|)dx+

(

ℓ2
ν
− 1

)∫

Ω

Φ2(|∇vk|)dx.

(5.12)

Suppose for contradiction that, up to a subsequence, ∥(uk, vk)∥→ +∞ as k → +∞. In

this way, we need to study the following situations:

(i) ∥uk∥1→ +∞ and ∥vk∥2→ ∞

(ii) ∥uk∥1→ +∞ and ∥vk∥2 is bounded

(iii) ∥vk∥2→ ∞ and ∥uk∥1 is bounded

In the őrst case, there is k0 ∈ N such that

∫

Ω

Φ1(|∇uk|)dx ≥ ∥uk∥1 and
∫

Ω

Φ2(|∇vk|)dx ≥ ∥vk∥2, ∀k ≥ k0.
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Hence, the inequality (5.12) is reduced to

2c2n + ok(1)∥(uk, vk)∥
2≥ (1− β)2 ∥uk∥

2
1+

(

ℓ2
ν
− 1

)2

∥vk∥
2
2, ∀k ≥ k0.

Which is absurd.

In case (ii), there is k0 ∈ N such that
∫

Ω

Φ1(|∇uk|)dx ≥ ∥uk∥1, ∀k ≥ k0.

Thus, the inequality (5.12) is reduced to

2c2n + C1 + ok(1)∥uk∥1≥ (1− β)2 ∥uk∥
2
1, ∀k ≥ k0.

which is absurd. The last case is similar to the case (ii). The above analysis shows

that (uk, vk) is now a bounded sequence in Xn.

From Lemmas 5.3 and 2.21, we may assume that there exists a subsequence of

(uk, vk), still denoted by itself, and (wn, yn) ∈ X ′
n such that

uk
∗

−⇀ wn weakly in W 1,Φ1

0 (Ω) and vk
∗

−⇀ yn weakly in Vn, as k → ∞.(5.13)

Here, we highlight that the pair (wn, yn) may not belong to the space Xn, because

whenever Φ1 does not satisfy the ∆2-condition the space Xn is not a weak∗ closed

subspace of X ′
n.

The results below will be used to ensure that the sequence (wn, yn) is bounded in

W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω), moreover, we will do some results that will be fundamental.

Lemma 5.4 The sequence (uk, vk) obtained in (5.8) satisfies

∫

Ω

ϕ1(|∇uk|)∇uk∇φdx =

∫

Ω

Ru(x, uk, vk)φdx+ ok(1), ∀k ∈ N and φ ∈ W 1,Φ1

0 (Ω).

Proof. From (5.8),

J ′
n(uk, vk)(φ, 0) = ok(1)∥φ∥1, ∀φ ∈ W 1

0E
Φ1(Ω).(5.14)

By deőnition, the space W 1,Φ1

0 (Ω) is the weak∗ closure of C∞
0 (Ω) in W 1,Φ1(Ω), thus,

given φ ∈ W 1,Φ1

0 (Ω) there will be a sequence (φm) in C∞
0 (Ω) such that

φm
∗

−⇀ φ in W 1,Φ1

0 (Ω).(5.15)
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It is clear that (∥φm∥1) is bounded in R, so by (5.14),

ok(1) =

∫

Ω

ϕ1(|∇uk|)∇uk∇φmdx−

∫

Ω

Ru(x, uk, vk)φmdx, ∀k ∈ N

Using the fact that ϕ1(|∇uk|)
∂uk

∂xi
∈ EΦ̃1(Ω) along with the limit (5.15), we will get

lim
m→∞

∫

Ω

ϕ1(|∇uk|)∇uk∇φmdx =

∫

Ω

ϕ1(|∇uk|)∇uk∇φdx.

Therefore, since the spacesW 1,Φ1

0 (Ω), W 1,Φ2

0 (Ω) are embedded in C(Ω), we can conclude

that

ok(1) =

∫

Ω

ϕ1(|∇uk|)∇uk∇φdx−

∫

Ω

Ru(x, uk, vk)φdx, ∀k ∈ N.

Before proceeding with the results, we need to make the following deőnitions:

• We will denote by D(JΦi
) ⊂ W 1,Φi

0 (Ω), the following set:

D(JΦi
) =

{

u ∈ W 1,Φi

0 (Ω) :

∫

Ω

Φi(|∇u|)dx < +∞

}

• We will denote by dom(ϕi(t)t) ⊂ W 1,Φ
0 (Ω), the following set:

dom(ϕi(t)t) =

{

u ∈ W 1,Φi

0 (Ω) :

∫

Ω

Φ̃i

(

ϕi(|∇u|)|∇u|
)

dx < +∞

}

Lemma 5.5 Let be (wn) the sequence obtained in (5.13). Then (wn) ⊂ D(JΦ1) ∩

dom(ϕ1(t)t), furthermore,

cn = lim
k→∞

Jn(uk, vk) = Jn(wn, yn)

and
∫

Ω

Φ1(|∇φ1|)dx−

∫

Ω

Φ1(|∇wn|)dx−

∫

Ω

ϕ2(|∇yn|)∇yn∇(φ2 − yn)dx

≥

∫

Ω

Ru(x, wn, yn)(φ1 − wn)dx+

∫

Ω

Rv(x, wn, yn)(φ2 − yn)dx,

(5.16)

for all (φ1, φ2) ∈ W 1,Φ1

0 (Ω)× Vn.

Proof. Using the fact that J ′
n(uk, vk) → 0 as k → ∞ together with Lemma 5.4, we

can conclude that

∫

Ω

ϕ1(|∇uk|)∇uk∇φ1dx−

∫

Ω

ϕ2(|∇vk|)∇vk∇φ2dx =

∫

Ω

Ru(x, uk, vk)φ1dx

+

∫

Ω

Rv(x, uk, vk)φ2dx+ ok(1),

(5.17)

110



for each (φ1, φ2) ∈ W 1,Φ1

0 (Ω)× Vn and k ∈ N. Since Φ1 is convex, we have
∫

Ω

Φ1(|∇η1|)dx−

∫

Ω

Φ1(|∇uk|)dx ≥

∫

Ω

ϕ1(|∇uk|)∇uk∇(η1 − uk)dx,

for all η1 ∈ W 1,Φ1

0 (Ω). Hence, considering φ1 = η1−uk in (5.17) and using the inequality

above, we get

∫

Ω

Φ1(|∇η1|)dx−

∫

Ω

Φ1(|∇uk|)dx−

∫

Ω

ϕ2(|∇vk|)∇vk∇φ2dx

≥

∫

Ω

Ru(x, uk, vk)(η1 − uk)dx+

∫

Ω

Rv(x, uk, vk)φ2dx+ ok(1),

(5.18)

for every (η1, φ2) ∈ W 1,Φ1

0 (Ω)× Vn and k ∈ N. Since uk
∗

−⇀ wn in W 1,Φ1

0 (Ω), it follows

from Lemma 2.22 that
∫

Ω

Φ1(|∇wn|)dx ≤ lim
k→∞

∫

Ω

Φ1(|∇uk|)dx,(5.19)

Remember that dimVn = n, so vk → yn in Vn. Hence,

∫

Ω

Φ1(|∇η1|)dx−

∫

Ω

Φ1(|∇wn|)dx−

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2dx

≥

∫

Ω

Ru(x, wn, yn)(η1 − wn)dx+

∫

Ω

Rv(x, wn, yn)φ2dx,

(5.20)

for each (η1, φ2) ∈ W 1,Φ1

0 (Ω)× Vn. Justifying the inequality (5.16).

Considering (η1, φ2) = (wn, 0) in the inequality (5.18), we get
∫

Ω

Φ1(|∇wn|)dx−

∫

Ω

Φ1(|∇uk|)dx ≥

∫

Ω

Ru(x, uk, vk)(wn − uk)dx+ ok(1).

Thus,
∫

Ω

Φ1(|∇wn|)dx ≥ lim
k→∞

∫

Ω

Φ1(|∇uk|)dx.(5.21)

Combining (5.19) and (5.21),

lim
k→∞

∫

Ω

Φ1(|∇uk|)dx =

∫

Ω

Φ1(|∇wn|)dx.

Therefore, we can conclude that

cn = lim
k→∞

Jn(uk, vk) = Jn(wn, yn).

111



Finally, we will show that wn ∈ dom(ϕ1(t)t). By the inequality (5.18),
∫

Ω

Φ1(|∇uk −
1

k
∇uk|)dx−

∫

Ω

Φ1(|∇uk|)dx ≥ −
1

k

∫

Ω

Ru(x, uk, vk)ukdx+ ok(1),

i.e,
∫

Ω

(

Φ1(|∇uk −
1
k
∇uk|)− Φ1(|∇uk|)

)

− 1
k

dx ≤

∫

Ω

Ru(x, uk, vk)ukdx+ ok(1).

As (uk) and (vk) are bounded in W 1,Φ1

0 (Ω) and W 1,Φ2

0 (Ω), respectively, there will be

M > 0 such that
∫

Ω

Φ1(|∇uk −
1

k
∇uk|)dx−

∫

Ω

Φ1(|∇uk|)dx ≤M, ∀k ∈ N.

Since Φ1 is in C1 class, there exists θk(x) ∈ [0, 1] such that

Φ1(|∇uk −
1
k
∇uk|)− Φ1(|∇uk|)

− 1
k

= ϕ1(|
(

1−
θk
k
(x)
)

∇uk|)
(

1−
θk(x)

k

)

|∇uk|
2.

Recalling that 0 < 1− θk(x)
k

≤ 1, we know that 1− θk(x)
k

≥
(

1− θk(x)
k

)2
which leads to

∫

Ω

ϕ1(|
(

1−
θk
k
(x)
)

∇uk|)
(

1−
θk(x)

k

)2
|∇uk|

2dx ≤M, ∀k ∈ N.

As ∇uk
∗

−⇀ ∇wn in
(

LΦ1(Ω)
)N−1

, we also have
(

1− θk(x)
k

)

∇uk
∗

−⇀ ∇wn in
(

LΦ1(Ω)
)N−1

as k → ∞. Then, by using the fact that ϕ1(t)t
2 is convex, we can apply [30, Theorem

2.1, Chapter 8] to get

lim inf
k→∞

∫

Ω

ϕ1(|
(

1−
θk
k
(x)
)

∇uk|)
(

1−
θk(x)

k

)2
|∇uk|

2 ≥

∫

Ω

ϕ1(|∇wn|)|wn|
2dx

and so,
∫

Ω

ϕ1(|∇wn|)|wn|
2dx ≤M.

By Lemma 2.3(item 3) ,

ϕ1(t)t
2 = Φ1(t) + Φ̃1(ϕ1(t)t), ∀t ∈ R

thus

ϕ1(|∇wn|)|∇wn|
2 = Φ1(|∇wn|) + Φ̃1(ϕ1(|∇wn|)|∇wn|)

which leads to
∫

Ω

ϕ1(|∇wn|)|∇wn|
2dx =

∫

Ω

Φ1(|∇wn|)dx+

∫

Ω

Φ̃1(ϕ1(|∇wn|)|∇wn|
2)dx.
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Since
∫

Ω
ϕ1(|∇wn|)|∇wn|

2dx is őnite, so from the above identity we see that
∫

Ω
Φ1(|∇wn|)dx and

∫

Ω
Φ̃1(ϕ1(|∇wn|)|∇wn|

2)dx are also őnite, showing that

wn ∈ D(JΦ1) ∩ dom(ϕ1(t)t). This őnishes the proof.

Lemma 5.6 For each (φ1, φ2) ∈ W 1,Φ1

0 (Ω)× Vn, the following equality holds
∫

Ω

ϕ1(|∇wn|)∇wn∇φ1dx−

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2dx =

∫

Ω

Ru(x, wn, yn)φ1dx

+

∫

Ω

Ru(x, wn, yn)φ2dx.

Proof. Given ε ∈ (0, 1/2) and φ1 ∈ C∞
0 (Ω), we set the function

vε =
1

1− ε
2

((1− ε)wn + εφ1).

Consider φ2 ∈ Vn and apply (vε, εφ2 + yn) on the inequality (5.16), hence
∫

Ω

Φ1(|∇vε|)dx−

∫

Ω

Φ1(|∇wn|)dx− ε

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2dx

≥

∫

Ω

Ru(x, wn, yn)(vε − wn)dx+ ε

∫

Ω

Rv(x, wn, yn)φ2dx,

and so,
∫

Ω
Φ1(|∇vε|)dx−

∫

Ω
Φ1(|∇wn|)dx

ε
−

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2dx

≥

∫

Ω

Ru(x, wn, yn)
(vε − wn

ε

)

dx+

∫

Ω

Rv(x, wn, yn)φ2dx.

Note that

εφ1

1− ε
2

= 2

(

1−
1− ε

1− ε
2

)

φ1.

Hence, by the convexity of Φ1,

Φ1

( 1

1− ε
2

(

(1− ε)∇wn + ε∇φ1

)

)

≤
1− ε

1− ε
2

Φ1(|∇wn|) +
(

1−
1− ε

1− ε
2

)

Φ1(2|∇φ1|).

Thus, by Lebesgue dominated convergence theorem, we get
∫

Ω

ϕ1(|∇wn|)∇wn(∇wn−
∇wn

2
)dx−

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2dx

≥

∫

Ω

Ru(x, wn, yn)
(

φ1 −
wn

2

)

dx+

∫

Ω

Rv(x, wn, yn)φ2dx.

(5.22)

Therefore
∫

Ω

ϕ1(|∇wn|)∇wn∇φ1 −

∫

Ω

Ru(x, wn, yn)φ1dx ≥ A, ∀φ1 ∈ C∞
0 (Ω),(5.23)
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where

A =
1

2

∫

Ω

ϕ1(|∇wn|)|∇wn|
2dx−

1

2

∫

Ω

Ru(x, wn, yn)wndx.

As C∞
0 (Ω) is a vector space, the last inequality gives

∫

Ω

ϕ1(|∇wn|)∇wn∇φ1 −

∫

Ω

Ru(x, wn, yn)φ1dx = 0, ∀φ1 ∈ C∞
0 (Ω).(5.24)

We know that W 1,Φ1

0 (Ω) is the weak∗ closure of C∞
0 (Ω) in W 1,Φ1(Ω), then using the

fact that ϕ1(|∇wn|)|∇wn| ∈ LΦ̃1(Ω) we can conclude that
∫

Ω

ϕ1(|∇wn|)∇wn∇φ1dx−

∫

Ω

Ru(x, wn, yn)φ1dx = 0, ∀φ1 ∈ W 1,Φ1

0 (Ω).(5.25)

Still by (5.22), we have

−

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2 ≥

∫

Ω

Rv(x, wn, yn)φ2dx, ∀φ2 ∈ Vn.

Since Vn is a vector space, the above inequality gives
∫

Ω

ϕ2(|∇yn|)∇yn∇φ2 = −

∫

Ω

Rv(x, wn, yn)φ2dx, ∀φ2 ∈ Vn.(5.26)

From (5.25) and (5.26),
∫

Ω

ϕ2(|∇wn|)∇wn∇φ1dx−

∫

Ω

ϕ2(|∇yn|)∇yn∇φ2 =

∫

Ω

Ru(x, wn, yn)φ1dx

+

∫

Ω

Rv(x, wn, yn)φ2dx,

for any (φ1, φ2) ∈ W 1,Φ2

0 (Ω)× Vn.

Lemma 5.7 The sequence (wn, yn) is bounded in X.

Proof. Consider the sequence

gn(x) = η(wn(x)), x ∈ Ω.

where η is given in Lemma 5.3. A direct computation leads to

∇gn =

[

1−
Φ1(wn)

w2
nϕ1(wn)

(

1 +
wnϕ

′
1(wn)

ϕ1(wn)

)

]

∇wn.

The last identity together with (ϕi,5) implies that

|∇gn| ≤ |∇wn|, ∀n ∈ N(5.27)
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On the other hand, (ϕi,3) also gives

|gn(x)| ≤
1

ℓ1
|∇wn(x)|, ∀x ∈ Ω.(5.28)

From (5.27) and (5.28), gn ∈ D(JΦ1) with

∥gn∥1≤ ∥wn∥1, ∀n ∈ N.

By the Lemmas 5.5 and 5.6,

cn =

∫

Ω

Φ1(|∇wn|)dx−
1

µ

∫

Ω

ϕ1(|∇wn|)|∇wn|
2S(wn)dx−

∫

Ω

Φ2(|∇yn|)dx

+
1

ν

∫

Ω

ϕ2(|∇yn|)|∇yn|
2dx+

1

µ

∫

Ω

Ru(x, wn, vk)wnh(wn)dx

+
1

ν

∫

Ω

Rv(x, wn, yn)yndx−

∫

Ω

R(x, wn, yn)dx,

where h(t) = Φ1(t)
t2ϕ1(t)

and S(t) = 1− Φ(t)
t2ϕ1(t)

[

1 +
tϕ′

1(t)

ϕ1(t)

]

. By (R′
4)(i) together with (ϕi,3),

cn ≥

∫

Ω

Φ1(|∇wn|)dx−
1

µ

∫

Ω

ϕ1(|∇wn|)|∇wn|
2S(wn)dx+

(

ℓ2
ν
− 1

)∫

Ω

Φ2(|∇yn|)dx.

(5.29)

On the other hand, the Lemmas 5.5 and 5.6 together with (R′
4)(ii) imply that

−βcn =− β

∫

Ω

Φ1(|∇wn|)dx+
1

µ

∫

Ω

ϕ1(|∇wn|)|∇wn|
2S(wn)dx+ β

∫

Ω

Φ2(|∇yn|)dx

−
1

µ

∫

Ω

Ru(x, wn, yn)wnh(wn)dx+ β

∫

Ω

R(x, wn, yn)dx,

≥− β

∫

Ω

Φ1(|∇wn|)dx+
1

µ

∫

Ω

ϕ1(|∇wn|)|∇wn|
2S(wn)dx,

i.e,

−
1

µ

∫

Ω

ϕ1(|∇wn|)|∇wn|
2S(wn)dx ≥ αcn − α

∫

Ω

Φ1(|∇wn|)dx.(5.30)

From (5.29) and (5.30),

(1− β)cn ≥ (1− β)

∫

Ω
Φ1(|∇wn|)dx+

(

ℓ2
ν

− 1

)∫

Ω
Φ2(|∇yn|)dx.

As a consequence of Lemma 5.2, we have that (cn) is bounded. Therefore the sequences
( ∫

Ω
Φ1(|∇wn|)dx

)

and
( ∫

Ω
Φ2(|∇yn|)dx

)

are bounded and consequently (wn, yn) is

bounded at W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω).
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Since (wn, yn) is bounded, it follows from Lemmas 2.21 and 2.22 that

(wn, yn)
∗

−⇀ (u, v) in W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω) as n→ ∞,(5.31)

∫

Ω

Φ1(|∇u|)dx ≤ lim inf
n→∞

∫

Ω

Φ1(|∇wn|)dx(5.32)

and

∫

Ω

Φ2(|∇v|)dx ≤ lim inf
n→∞

∫

Ω

Φ2(|∇yn|)dx.(5.33)

These limits will be fundamental to the argument used below.

Proof of Theorem 1.9 Fixing k, n ∈ N with n ≥ k, we have X ′
k ⊂ X ′

n. Thus, for

(φ1, φ2) ∈ X ′
k, it follows from Lemma 5.6 that

∫

Ω
ϕ1(|∇wn|)∇wn∇φ1dx−

∫

Ω
ϕ2(|∇yn|)∇yn∇φ2dx =

∫

Ω
Ru(x,wn, yn)φ1dx

+

∫

Ω
Rv(x,wn, yn)φ2dx,

(5.34)

for all n ≥ k. By the above equality together with the convexity of Φ1, we will obtain

∫

Ω

Φ1(|∇φ1|)dx−

∫

Ω

Φ1(|∇wn|)dx ≥

∫

Ω

Ru(x, wn, yn)(φ1 − wn)dx,(5.35)

for each φ1 ∈ W 1,Φ1

0 (Ω). From this inequality, we can conclude that

∫

Ω

Φ1(|∇wn −
1

n
∇wn|)dx−

∫

Ω

Φ1(|∇wn|)dx ≥ −
1

n

∫

Ω

Ru(x, wn, yn)wndx,

i.e,

∫

Ω

(

Φ1(|∇wn −
1
n
∇wn|)− Φ1(|∇wn|)

)

− 1
n

dx ≤

∫

Ω

Ru(x, wn, yn)wndx.

As (wn) and (yn) are bounded in W 1,Φ1

0 (Ω) and W 1,Φ2

0 (Ω), respectively, there will be

M > 0 such that

∫

Ω

Φ1(|∇wn −
1
n
∇wn|)− Φ1(|∇wn|)

− 1
n

dx ≤M, ∀n ∈ N.

Since Φ1 is in C1 class, there exists θn(x) ∈ [0, 1] such that

Φ1(|∇wn −
1
n
∇wn|)− Φ1(|∇wn|)

− 1
n

= ϕ1(|
(

1−
θn(x)

n

)

∇wn|)
(

1−
θn(x)

n

)

|∇wn|
2.
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Recalling that 0 < 1− θn(x)
n

≤ 1, we know that 1− θn(x)
n

≥
(

1− θn(x)
n

)2
which leads to

∫

Ω

ϕ1(|
(

1−
θn(x)

n

)

∇wn|)
(

1−
θn(x)

n

)2
|∇wn|

2dx ≤M, ∀n ∈ N.

As ∇wn
∗

−⇀ ∇u in
(

LΦ1(Ω)
)N−1

, we also have
(

1− θn(x)
n

)

∇wn
∗

−⇀ ∇u in
(

LΦ1(Ω)
)N−1

as n→ ∞. Then, by using the fact that ϕ1(t)t
2 is convex, we can apply [30, Theorem

2.1, Chapter 8] to get

lim inf
n→∞

∫

Ω

ϕ1(|
(

1−
θn(x)

n

)

∇wn|)
(

1−
θn(x)

n

)2
|∇wn|

2 ≥

∫

Ω

ϕ1(|∇u|)|∇u|
2dx

and so,
∫

Ω

ϕ1(|∇wn|)|wn|
2dx ≤M.

By Lemma 2.3(item 3),

ϕ1(t)t
2 = Φ1(t) + Φ̃1(ϕ1(t)t), ∀t ∈ R

thus

ϕ1(|∇wn|)|∇wn|
2 = Φ1(|∇wn|) + Φ̃1(ϕ1(|∇wn|)|∇wn|)

which leads to
∫

Ω

ϕ1(|∇wn|)|∇wn|
2dx =

∫

Ω

Φ1(|∇wn|)dx+

∫

Ω

Φ̃1(ϕ1(|∇wn|)|∇wn|
2)dx.

Since
∫

Ω
ϕ1(|∇u|)|∇u|

2dx is őnite, we see that
∫

Ω
Φ1(|∇u|)dx and

∫

Ω
Φ̃1(ϕ1(|∇u|)|∇u|

2)dx

are also őnite, showing that u ∈ D(JΦ1) and u ∈ dom(ϕ1(t)t). Furthermore, it follows

from (5.32) and (5.35) that

∫

Ω

Φ1(|∇φ1|)dx−

∫

Ω

Φ1(|∇u|)dx ≥

∫

Ω

Ru(x, u, v)(φ1 − u)dx, ∀φ1 ∈ W 1,Φ1

0 (Ω).

(5.36)

On the other hand, it follows from the equality (5.34) that

∫

Ω

Φ2(|∇φ2|)dx−

∫

Ω

Φ2(|∇yn|)dx ≥ −

∫

Ω

Rv(x, wn, yn)(φ2 − yn)dx, ∀φ2 ∈ Vk.

(5.37)

From this inequality, we can conclude that
∫

Ω

Φ2(|∇yn −
1

n
∇wn|)dx−

∫

Ω

Φ2(|∇yn|)dx ≥
1

n

∫

Ω

Rv(x, wn, yn)yndx,

117



i.e,
∫

Ω

Φ2(|∇yn −
1
n
∇yn|)− Φ2(|∇yn|)

− 1
n

dx ≤ −

∫

Ω

Rv(x, wn, yn)yndx.

As (wn) and (yn) are bounded in W 1,Φ1

0 (Ω) and W 1,Φ2

0 (Ω), respectively, there will be

M > 0 such that
∫

Ω

Φ2(|∇yn −
1
n
∇yn|)− Φ2(|∇yn|)

− 1
n

dx ≤M, ∀n ∈ N.

Since Φ2 is in C1 class, there exists θn(x) ∈ [0, 1] such that

Φ2(|∇yn −
1
n
∇yn|)− Φ2(|∇yn|)

− 1
n

= ϕ2(|
(

1−
θn(x)

n

)

∇yn|)
(

1−
θn(x)

n

)

|∇yn|
2.

Recalling that 0 < 1− θn(x)
n

≤ 1, we know that 1− θn(x)
n

≥
(

1− θn(x)
n

)2
which leads to

∫

Ω

ϕ2(|
(

1−
θn(x)

n

)

∇yn|)
(

1−
θn(x)

n

)2
|∇yn|

2dx ≤M, ∀n ∈ N.

As ∇yn
∗

−⇀ ∇v in
(

LΦ2(Ω)
)N−1

, we also have
(

1− θn(x)
n

)

∇yn
∗

−⇀ ∇v in
(

LΦ2(Ω)
)N−1

as n→ ∞. Then, by using the fact that ϕ2(t)t
2 is convex, we can apply [30, Theorem

2.1, Chapter 8] to get

lim inf
n→∞

∫

Ω

ϕ2(|
(

1−
θn(x)

n

)

∇yn|)
(

1−
θn(x)

n

)2
|∇yn|

2 ≥

∫

Ω

ϕ2(|∇v|)|∇v|
2dx

and so,
∫

Ω

ϕ2(|∇v|)|∇v|
2dx ≤M.

By Lemma 2.3(item 3),

ϕ2(t)t
2 = Φ2(t) + Φ̃2(ϕ2(t)t), ∀t ∈ R

thus
∫

Ω

ϕ2(|∇v|)|∇v|
2dx =

∫

Ω

Φ2(|∇v|)dx+

∫

Ω

Φ̃2(ϕ2(|∇v|)|∇v|
2)dx.

Since
∫

Ω
ϕ2(|∇v|)|∇v|

2dx is őnite, we see that
∫

Ω
Φ2(|∇v|)dx and

∫

Ω
Φ̃2(ϕ2(|∇u|)|∇v|

2)dx

are also őnite, showing that v ∈ D(JΦ2) and v ∈ dom(ϕ2(t)t).

Now, for φ ∈ W 1
0E

Φ2(Ω), there exists χm ∈ Vm such that

lim
m→∞

χm = φ in W 1
0E

Φ2(Ω).(5.38)
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From (5.34),

−

∫

Ω

ϕ2(|∇yn|)∇yn∇(χm − yn)dx =

∫

Ω

Rv(x, wn, yn)(χm − yn)dx, ∀n ≥ m.

The convexity of Φ2 implies that

∫

Ω

Φ2(|∇χm|)dx−

∫

Ω

Φ2(|∇yn|)dx ≥ −

∫

Ω

Rv(x, wn, yn)(χm − yn)dx, ∀n ≥ m.

(5.39)

Thus, by the limit (5.33) we have
∫

Ω

Φ2(|∇χm|)dx−

∫

Ω

Φ2(|∇v|)dx ≥ −

∫

Ω

Rv(x, u, v)(χm − v)dx.(5.40)

Now we use (5.38) in the above inequality to get
∫

Ω

Φ2(|∇φ|)dx−

∫

Ω

Φ2(|∇v|)dx ≥ −

∫

Ω

Rv(x, u, v)(φ− v)dx.(5.41)

Repeating the arguments used in Lemma 5.6, the inequalities (5.36) and (5.41) imply
∫

Ω

ϕ1(|∇u|)∇u∇φ1dx =

∫

Ω

Ru(x, u, v)φ1dx, ∀φ2 ∈ W 1,Φ1

0 (Ω),

∫

Ω

ϕ2(|∇v|)∇v∇φ2dx = −

∫

Ω

Rv(x, u, v)φ2dx, ∀φ2 ∈ W 1
0E

Φ2(Ω).

Finally, the fact that ϕ2(|∇v|)|∇v| ∈ LΦ̃2(Ω) together with the density weak∗ of C∞
0 (Ω)

in W 1,Φ2

0 (Ω) given
∫

Ω
ϕ1(|∇u|)∇u∇φ1dx−

∫

Ω
ϕ2(|∇v|)∇v∇φ2dx =

∫

Ω
Ru(x, u, v)φ1dx+

∫

Ω
Rv(x, u, v)φ2dx,

for every (φ1, φ2) ∈ W 1,Φ1

0 (Ω)×W 1,Φ2

0 (Ω). To conclude, the hypothesis (R′
1) guarantees

that (u, v) is a nontrivial solution for (S1), and the proof of Theorem 1.9 is complete.

5.2 The N -functions Φ̃1 and Φ̃2 may not verify the

∆2-condition.

Continuing the study of systems (S) in non-reŕexive Orlicz-Sobolev spaces, in

this section, we study the existence of solutions for the following class of quasilinear

systems of the type:

(S2)























−∆Φ1u = Fu(x, u, v) + λRu(x, u, v) in Ω

−∆Φ2v = −Fv(x, u, v)− λRv(x, u, v) in Ω

u = v = 0 on ∂Ω
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where Ω is a bounded domain in R
N(N ≥ 2) with smooth boundary ∂Ω and λ > 0.

Our main goal in this section is to prove of Theorem 1.10. For this, we assume that

ϕi(i = 1, 2) : (0,∞) → (0,∞) are two functions which satisfy:

(ϕ′
1,i) ϕi ∈ C1(0,+∞) and t 7→ tϕi(t) are stricly increasing;

(ϕ′
2,i) tϕi(t) → 0 as t→ 0;

(ϕ′
3,i) 1 ≤ ℓi = inf

t>0

t2ϕi(t)

Φi(t)
≤ sup

t>0

t2ϕi(t)

Φi(t)
= mi < N, where Φi(t) =

∫ |t|

0
sϕi(s)ds and

ℓi < mi < ℓ∗i .

As mentioned in the introduction of this thesis, in this problem (S2), we will

assume that F (x, u, v) = Φ1∗(u) + G(v) where Φ1∗ denotes the Sobolev conjugate

function of Φ1 and that G is a function satisfying the following conditions:

(G1) There are C > 0, G ∈ C1(R,R), a1, a2 ∈ (1,∞) and a N -function A(t) =
∫ |t|

0
sa(s)ds satisfying

(i) m2 < a1 ≤
a(t)t2

A(t)
≤ a2, ∀t > 0

and

(ii) |g(s)| ≤ a1Ca(|s|)|s|, for all s ∈ R

where g(s) = G′(s). If a2 ≥ ℓ∗2, we add that

(iii) (g(t)− g(s))(t− s) ≥ Ca(|t− s|)|t− s|2, for all t, s ∈ R.

(G2) There exists ν ∈ (0, ℓ1) such that

0 ≤ νG(s) ≤ sg(s), for all s ∈ R.

Furthermore, we will assume that the R function meets the conditions below:

(R1) R ∈ C1(Ω × R
2), Ru(x, 0, 0) = 0, Rv(x, 0, 0) = 0, R(x, u, v) ≥ 0 and

Ru(x, u, v)u ≥ 0, for all (x, u, v) ∈ Ω× R
2.

(R2) There are N -functions B(t) =
∫ |t|

0
sb(s)ds, P (t) =

∫ |t|

0
sp(s)ds, Q(t) =

∫ |t|

0
sq(s)ds

and Z(t) =
∫ |t|

0
sz(s)ds satisfying

(i) m1 < p1 ≤
p(t)t2

P (t)
≤ p2 < ℓ∗1
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(ii) m1 < b1 ≤
b(t)t2

B(t)
≤ b2 < ℓ∗1

(iii) m2 < q1 ≤
q(t)t2

Q(t)
≤ q2 < ℓ∗2

(iv) m2 < z1 ≤
z(t)t2

Z(t)
≤ z2 < ℓ∗2,

with max{b2, q2} < min{ℓ∗1, ℓ
∗
2} such that

(5.42) |Ru(x, u, v)| ≤ C(p(|u|)u+ q(|v|)v) and |Rv(x, u, v)| ≤ C(b(|u|)u+ z(|v|)v),

for all (x, u, v) ∈ Ω× R
2 and for some constant C > 0.

(R3) There exists µ ∈ (m1, ℓ
∗
1) such that

1

µ
Ru(x, u, v) +

1

ν
Rv(x, u, v)−R(x, u, v) ≥ 0, for all x ∈ Ω and (u, v) ∈ R

2,

where ν is given by condition (G2).

(R4) There exists s ∈ (m1,max{p2, b2}], a nonempty open subset Ω0 ⊂ Ω and a constant

ω > 0 such that

R(x, u, v) ≥ ω|u|s for all x ∈ Ω0 and (u, v) ∈ R
2.

Example 5.2.1 Fix p ∈ (m1, ℓ
∗
1) and q ∈ (m2, ℓ

∗
2). The function R(u, v) = |u|p +

C|v|q + ε sin |u|p sin |v|q satisfies (R1)− (R4) with P (t) = B(t) = |t|p/p, Q(t) = Z(t) =

|t|q/q, C > 0 and ε > 0 small enough.

In what follows, őx some notations. In the sequel VA stands for the space

W 1,Φ2

0 (Ω) ∩ LA(Ω) endowed with the norm

∥v∥A= ∥v∥
W

1,Φ2
0 (Ω)

+|v|A,

where ∥v∥
W

1,Φ2
0 (Ω)

and |v|A denote the usual norms in in W 1,Φ2

0 (Ω) and LA(Ω), res-

pectively.

We write X for the space W 1,Φ1

0 (Ω)× VA endowed with the norm

∥(u, v)∥2= ∥u∥2
W

1,Φ1
0 (Ω)

+∥v∥2A,
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where ∥u∥
W

1,Φ1
0 (Ω)

denotes the usual norm in W 1,Φ1

0 (Ω). Under the assumptions (G1)

and (R2), the functional Hλ given by

Hλ(u, v) =

∫

Ω

H(x, u, v)dx.(5.43)

is well deőned, belongs to C1(X,R) and

H′
λ(u, v)(w1, w2) =

∫

Ω

Hu(x, u, v)w1dx+

∫

Ω

Hv(x, u, v)w2dx,(5.44)

for all (u, v), (w1, w2) ∈ X. Now, we consider the functional Q : X → R which is given

by

Q(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx,(5.45)

It is well known in the literature that Q ∈ C1(E,R) when Φ1, Φ2, Φ̃1 and Φ̃2 satisfy the

∆2-condition and this occurs when we have the condition satisőed to ℓ1 > 1, ℓ2 > 1 and

m1 <∞, m2 <∞. When ℓ1 = 1 (or ℓ2 = 1), we know that Φ̃1 /∈ (∆2) (or Φ̃2 /∈ (∆2))

and therefore cannot guarantee the diferentiability of functional Q. However, following

the ideas presented in Chapter 3, it is clear that the functional Q is continuous and

Gateaux-diferentiable with derivative Q′ : X → X∗ given by

Q′(u, v)(w1, w2) =

∫

Ω

ϕ1(|∇u|)∇u∇w1dx−

∫

Ω

ϕ2(|∇v|)∇v∇w2dx,

continuous from the norm topology of X to the weak∗-topology of X∗. Therefore, we

can conclude that the energy functional Jλ : X → R associated with the system (S2)

given by

Jλ(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

H(x, u, v)dx.

is continuous and Gateaux-diferentiable with derivative J ′
λ : X → X∗ deőned by

J ′
λ(u, v)(w1, w2) =

∫

Ω

ϕ1(|∇u|)∇u∇w1dx−

∫

Ω

ϕ2(|∇v|)∇v∇w2dx

−

∫

Ω

Hu(x, u, v)w1dx−

∫

Ω

Hv(x, u, v)w2dx

continuous from the norm topology of X to the weak∗-topology of X∗.

Since J ′
λ(0, 0) = 0, we say that (u, v) ∈ X is a nontrivial solution of (S2) when

J ′
λ(u, v)(w1, w2) = 0, for all (w1, w2) ∈ X and satisőes Jλ(u, v) ̸= 0.
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In order to apply the linking theorem for Gateaux-diferentiable functionals (See

Theorem A.2), we introduce one more piece of notation. Since (VA, ∥·∥A) is separable,

then there exists a sequence (en) ⊂ VA such

VA = span{en : n ∈ N}.(5.46)

Hereafter, for each n ∈ N we denote by V n
A and Xn the following spaces

V n
A = span{ej : j = 1, · · · , n} and Xn = W 1,Φ1

0 (Ω)× V n
A .

The restriction of Jλ to Xn will be denoted by Jλ,n. Then Jλ,n : Xn → R is the

functional given by

Jλ,n(u, v) =

∫

Ω

Φ1(|∇u|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

H(x, u, v)dx.

is continuous and Gateaux-diferentiable with derivative J ′
λ,n : Xn −→ X∗

n given by

J ′
λ,n(u, v)(w1, w2) =

∫

Ω

ϕ1(|∇u|)∇u∇w1dx−

∫

Ω

ϕ2(|∇v|)∇v∇w2dx

−

∫

Ω

Hu(x, u, v)w1dx−

∫

Ω

Hv(x, u, v)w2dx

continuous from the norm topology of Xn to the weak∗-topology of X∗
n.

In the following, we prove that Jλ,n satisőes the hypotheses of linking theorem

for Gateaux-diferentiable functionals (See Theorem A.2).

Lemma 5.8 Assume that (G1) − (G2) and (R1) − (R4) hold. For every λ > 0, there

exist σ > 0 and ρ > σ such that if u∗ ∈ W 1,Φ1

0 (Ω) satisfies ∥u∗∥W 1,Φ1
0 (Ω)

= 1, then

dn := sup
Mn

u∗

Jλ,n ≥ bn := inf
Nn

Jλ,n > 0 = max
∂Mn

u∗

Jλ,n,

where

Mn
u∗

= {(θu∗, v) ∈ Xn : ∥(θu∗, v)∥
2≤ ρ2, θ ≥ 0} and Nn = {(u, 0) ∈ Xn : ∥u∥

W
1,Φ1
0 (Ω)

= σ}.

Proof. By deőnition of the functional Jλ,n,

Jλ,n(u, 0) =

∫

Ω

Φ(|∇u|)dx−

∫

Ω

Φ∗(|u|)dx− λ

∫

Ω

R(x, u, 0)dx.

Note that, integrating the őrst inequality in (5.42), from 0 to t, we obtain

|R(x, t, s)−R(x, 0, s)| ≤ C(P (|t|) + uq(|s|)s) for all (x, t, s) ∈ Ω× R
2
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Hence, setting s = 0, it follows from (R1) that the inequality above reduces to

|R(x, t, 0)| ≤ CP (|t|), for all (x, t, 0) ∈ Ω× R
2,

for some constant C > 0. Thus, by (R2),

Jλ,n(u, 0) ≥ ξ0Φ(∥u∥1,Φ)− ξ1Φ∗
(∥u∥Φ∗

)− Cλξ1P (∥u∥P ),

where

ξ0Φ1
(t) = min{tℓ1 , tm1}, ξ1Φ1∗

(t) = max{tℓ
∗

1 , tm
∗

1} and ξ1P (t) = max{tp1 , tp2}.

Now, remember that by the assumption (R2)(i) it is possible to show the following

limits:

lim
t→0

P (|t|)

Φ1(|t|)
= 0 and lim

|t|→+∞

P (|t|)

Φ1∗(|t|)
= 0.

Through these two limits we can guarantee the existence of a constant C1 > 0 that

does not depend on u so that

∥u∥P≤ C1∥u∥1,Φ1 , ∀u ∈ W 1,Φ1

0 (Ω).

Another important inequality was proved by Donaldson and Trudinger [70], which

establishes the existence of a constant S0 > 0 that depends on N such that

∥u∥Φ1∗≤ S0∥u∥1,Φ1 , ∀u ∈ W 1,Φ1

0 (Ω).(5.47)

Thus,

Jλ,n(u, 0) ≥ ∥u∥m1
1,Φ1

−∥u∥
ℓ∗1
1,Φ1

−Cλ∥u∥p11,Φ1
, for ∥u∥1,Φ< 1

Since m1 < ℓ∗1 and m1 < p1, choose ρ > 0 suiciently small such that

Jλ,n(u, 0) ≥ Cσℓ2 , for ∥u∥1,Φ= ρ,(5.48)

therefore

bn := inf
Nn

Jλ,n ≥ Cσℓ2 , ∀n ∈ N.(5.49)

Now, from (G2) and (R1),

Jλ,n(0, v) ≤ 0, ∀v ∈ V n
A .(5.50)
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Consider u∗ ∈ W 1,Φ1

0 (Ω) with ∥u∗∥1,Φ1= 1, by assumptions (G2) and (R1),

Jλ,n(θu∗, v) ≤

∫

Ω

Φ1(|∇(θu∗)|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

Φ1∗(|θu∗|)dx

≤ ξ1Φ1
(θ)ξ1Φ1

(∥u∗∥1,Φ1)− ξ0Φ2
(∥v∥1,Φ2)− ξ0Φ1∗

(θ)ξ0Φ1∗
(∥u∗∥Φ1∗)

for each θ > 0 and v ∈ V n
A , where

ξ1Φ1
(t) = max{tℓ1 , tm1}, ξ0Φ1∗

(t) = min{tℓ
∗

1 , tm
∗

1} and ξ0Φ2
(t) = max{tℓ2 , tm2}.

If a2 < m∗
1, then A increases essentially more slowly than Φ2∗ near inőnity. From

Lemma 2.14 it follows that LΦ2∗(Ω) is continuously embedded in LA(Ω), consequently

W 1,Φ1

0 (Ω) = VA and as norms ∥·∥A and ∥·∥1,Φ2 are equivalent. Given this, there is a

constant C > 0 such that

Jλ,n(θu∗, v) ≤ ξ1Φ1
(θ)− Cξ0Φ2

(∥v∥A)− ξ0Φ∗
(θ)ξ0Φ1∗

(∥u∗∥Φ1∗),

for each θ > 0 and v ∈ V n
A .

Note that ∥(θu∗, v)∥
2= θ2 + ∥v∥2A= ρ2 implies that

θ2 ≥
ρ2

2
or ∥v∥2A≥

ρ2

2
.

Assume that θ2 ≥ ρ2/2 occurs, then for ρ > 0 large enough, we have

ξ1Φ1
(θ)− Cξ0Φ2

(∥v∥A)− ξ0Φ1∗
(θ)ξ0Φ1∗

(∥u∗∥Φ1∗) = θm1 − Cξ0Φ2
(∥v∥A)− θℓ

∗

1ξ0Φ∗
(∥u∗∥Φ∗

) < 0,

because m1 < ℓ∗1. Similar property happens when ∥v∥2A≥ ρ2/2. Therefore, we conclude

that there exists ρ > σ such that

Jλ,n(θu∗, v) ≤ 0,(5.51)

for all (θu∗, v) ∈ Xn so that ∥θu∗∥1,Φ1+∥v∥2A= ρ2 and θ > 0. By (5.50) and (5.51), we

have max
∂Mn

u∗

Jn = 0, since (0, 0) ∈ ∂Mn
u∗

, and the proof is complete in this case.

Now, if a2 ≥ m∗
1 , from (G1)(ii) there is a positive constant C such that

Jλ,n(θu∗, v) ≤

∫

Ω

Φ1(|∇(θu∗)|)dx−

∫

Ω

Φ2(|∇v|)dx−

∫

Ω

Φ1∗(|θu∗|)dx− C

∫

Ω

A(|v|)dx

≤ ξ1Φ1
(θ)ξ1Φ1

(∥u∗∥1,Φ)− ξ0Φ2
(∥v∥1,Φ2)− ξ0Φ1∗

(θ)ξ0Φ1∗
(∥u∗∥Φ1∗)− ξ0A(|v|A),
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where

ξ0A(t) = min{ta1 , ta2}.

Observing that ∥(θu∗, v)∥
2= θ2 + ∥v∥2A= ρ2 implies that

θ2 ≥
ρ2

2
, ∥v∥21,Φ2

≥
ρ2

4
or |v|2A ≥

ρ2

4
,

the same argument used in the former case implies that for ρ > 0 large enough

Jn(θu∗, v) ≤ 0,(5.52)

for all (θu∗, v) ∈ Xn so that ∥θu∗∥1,Φ1+∥v∥2A= ρ2 and θ > 0. Therefore, the lemma is

proved.

In order to prove the Theorem 1.10, we need to consider that Ω0 ⊂ Ω be an open

set satisfying (R4) and u0 ∈ W 1,Φ1

0 (Ω) such that

u0 ≥ 0, u0 ̸= 0, supp(u0) ⊂ Ω0 and ∥u0∥W 1,Φ1
0 (Ω)

= 1.(5.53)

Then, by Lemma 5.8, we can apply the linking theorem A.2 to functional Jλ,n using a

point zn = (u0, 0) and the sets

Yn = {0} × V n
r , Z = W 1,Φ1

0 (Ω)× {0} and Nn = {(u, 0) ∈ X1 : ∥u∥1,Φ1= σ}.

Then, there are sequences (uk, vk) ⊂ Xn such that

Jλ,n(uk, vk) → cλ,n and J ′
λ,n(uk, vk) → 0 as k → ∞(5.54)

where

bn ≤ cλ,n := inf
γ∈Γ

max
u∈Mn

u0

Jλ,n(γ(u)),(5.55)

Γ = {γ ∈ C(Mn
u0
, Xn) : γ|∂Mn

u0
= Id∂Mn

u0
}.

Lemma 5.9 The sequence (uk, vk) is bounded in Xn.

Proof. From (5.54)

Jλ,n(uk, vk)− J ′
n(uk, vk)(

1

µ
uk,

1

ν
vk) = cλ,n + ok(1)∥(uk, vk)∥
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By (G2), (R3), (ϕ′
i,3),

Jλ,n(uk, vk)− J ′
λ,n(uk, vk)(

1

µ
uk,

1

ν
vk) ≥

(

1−
m1

µ

)

ξ0Φ1
(∥uk∥1,Φ1) +

(

ℓ2
ν

− 1

)

ξ0Φ2
(∥vk∥1,Φ2),

where

ξ0Φ1
(t) = min{tℓ1 , tm1} and ξ0Φ2

(t) = min{tℓ2 , tm2}.

Since V n
A is a őnite dimensional space, the norms ∥·∥1,Φ2 and ∥·∥A are equivalent, hence,

from the above inequalities

cλ,n + ok(1)∥(uk, vk)∥≥

(

1−
m1

µ

)

ξ0Φ1
(∥uk∥1,Φ1) +

(

ℓ2
ν
− 1

)

ξ0Φ2
(C∥vk∥A),(5.56)

for some C = C(n) > 0. Suppose for contradiction that, up to a subsequence,

∥(uk, vk)∥→ +∞ as k → +∞. This way, we need to study the following situations:

(i) ∥uk∥1,Φ1→ +∞ and ∥vk∥A→ ∞

(ii) ∥uk∥1,Φ1→ +∞ and ∥vk∥A is bounded

(iii) ∥vk∥A→ ∞ and ∥uk∥1,Φ1 is bounded

In the őrst case, the inequality (5.56) implies that

2c2λ,n + ok(1)∥(uk, vk)∥
2≥

(

1−
m1

µ

)2

∥uk∥
2ℓ1
1,Φ1

+

(

ℓ2
ν
− 1

)2

∥vk∥
2ℓ2
A .

for k large enough. Which is absurd, because ℓ1 ≥ 1, ℓ2 ≥ 1 and ok(1) → 0.

In case (ii), we have for k large enough

2c2λ,n + C1 + ok(1)∥uk∥1,Φ≥

(

1−
m1

µ

)2

∥uk∥
2ℓ1
1,Φ1

an absurd. The last case is similar to the case (iii).

Corollary 5.3 The following sequences

{∥uk∥Φ1∗}k∈N,

{∫

Ω

Φ1(|∇uk|)dx

}

and

{∫

Ω

Φ1∗(|∇uk|)dx

}

are bounded.

From Lemma 2.21, Corollary 2.1 and the Lemma 2.14, we may assume that there

exists a subsequence of (uk, vk), still denoted by itself, and (wn, yn) ∈ Xn such that

uk
∗

−⇀ wn in W 1,Φ1

0 (Ω) and vk
∗

−⇀ yn in Vn, as k → ∞(5.57)

uk −⇀ wn in LΦ1∗(Ω)(5.58)

∂uk
∂xi

∗
−⇀

∂wn

∂xi
in LΦ1(Ω), i ∈ {1, · · · , N}.(5.59)
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uk −→ wn in LΦ1(Ω),(5.60)

and

uk(x) −→ wn(x) a.e. Ω.(5.61)

In view of (5.57) and Corollary 5.3, for each n ∈ N we may assume that there

exist nonnegative functions µn, νn ∈ M(RN), the space of Radon measures, such that

Φ(|∇uk|)
∗

−⇀ µn in M(RN) and Φ∗(|uk|)
∗

−⇀ νn in M(RN) as k → ∞.(5.62)

The result below is known as second concentration-compactness lemma of P. L.

Lions. We would like to point out that also this lemma holds for nonreŕexive Orlicz-

Sobolev space. The proof of this fact can be seen [60 Proposition 4.3].

Lemma 5.10 (i) For every n ∈ N and λ > 0, there exist an at most countable set Iλ,

a family {xi}i∈Iλ of distinct points in R
N and a family {νi}i∈Iλ of constant νi > 0 such

that

νn = Φ1∗(|wn|) +
∑

i∈Iλ

νiδxi
.(5.63)

(ii) In addition we have

µn ≥ Φ1(|∇wn|) +
∑

i∈Iλ

µiδxi
,(5.64)

for some µj > 0 satisfying

0 < νj ≤ max{S
ℓ∗1
0 µ

ℓ∗1/ℓ1
i , S

m∗

1
0 µ

m∗

1/ℓ1
i , S

ℓ∗1
0 µ

ℓ∗1/m1

i , S
m∗

1
0 µ

m∗

1/m1

i }(5.65)

for all i ∈ Iλ, where δxi
is the Dirac measure of mass 1 concentrated at xi.

Lemma 5.11 The set {xi}i∈Iλ in Lemma 5.10 is a finite set.

Proof. Let an xi be őxed. Take φ ∈ C∞
0 (RN) such that

0 ≤ φ ≤ 1, φ(x) = 1 in B1(0) and φ(x) = 0 in R
N\B2(0)

and put φε(x) = φ((x − xi)/ε) for ε > 0. It is clear that {φεuk}k∈N is bounded in

W 1,Φ1

0 (Ω), thus J ′
λ,n(uk, vk)(φεuk, 0) = ok(1), that is,

∫

Ω
ϕ1(|∇uk|)∇uk · ∇(φεuk)dx =

∫

Ω
ϕ1∗(|uk|)uk(φεuk)dx+ λ

∫

Ω
Ru(x, uk, vk)(φεuk)dx+ ok(1).
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Knowing that

∫

Ω

Ru(x, uk, vk)(φεuk)dx −→

∫

Ω

Ru(x, wn, yn)(φεwn)dx as k → ∞,

we can conclude that

∫

Ω
ϕ1(|∇uk|)∇uk · ∇(φεuk)dx ≤ m∗

1

∫

Ω
Φ1∗(|uk|)φεdx+ λ

∫

Ω
Ru(x,wn, yn)(φεwn)dx+ ok(1).

(5.66)

By (ϕ′
i,3),

∫

Ω

ϕ1(|∇uk|)∇uk · ∇(φεuk)dx ≥ ℓ1

∫

Ω

Φ1(|∇uk|)φεdx+

∫

Ω

ϕ1(|∇uk|)uk∇uk∇φεdx.

Therefore,

ℓ1

∫

Ω

Φ1(|∇uk|)φεdx+

∫

Ω

ϕ1(|∇uk|)uk∇uk∇φεdx ≤m∗
1

∫

Ω

Φ1∗(|uk|)φεdx

+ λ

∫

Ω

Ru(x,wn, yn)(φεwn)dx+ ok(1)

(5.67)

Since the sequence (ϕ1(|∇uk|)
∂uk
∂xj

)k∈N is limited to LΦ̃1(Ω), there is ωj ∈ LΦ̃1(Ω)

such that

ϕ1(|∇uk|)
∂uk
∂xj

∗
−⇀ ωj in LΦ̃1(Ω), j ∈ {1, · · · , N}(5.68)

for some subsequence. Keep in mind that

uk
∂φε

∂xj
−→ wn

∂φε

∂xj
in LΦ1(Ω), j ∈ {1, · · · , N}

we conclude that

∫

Ω

ukϕ1(|∇uk|)
∂uk
∂xj

∂φε

∂xj
dx −→

∫

Ω

wnϕ1(|∇wn|)
∂wn

∂xj

∂φε

∂xj
dx, j ∈ {1, · · · , N}.(5.69)

Therefore, considering ω = (ω1, · · · , ωN) we get

∫

Ω

ϕ1(|∇uk|)uk∇uk∇φεdx−

∫

Ω

unω∇φεdx = ok(1).(5.70)

From (5.67) and (5.70),

m∗
1

∫

Ω

Φ1∗(|uk|)φεdx+ λ

∫

Ω

Ru(x, un, vn)(φεun)dx ≥ℓ1

∫

Ω

Φ1(|∇uk|)φεdx

+

∫

Ω

unω∇φεdx+ ok(1).

(5.71)
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By (5.62), taking the limit of k → +∞, we get

m∗
1

∫

Ω

φεdνn + λ

∫

Ω

Ru(x, un, vn)φεundx ≥ℓ1

∫

Ω

φεdµn

+

∫

Ω

unw∇φεdx+ ok(1).

(5.72)

On the other hand, given v ∈ W 1,Φ1

0 (Ω), it follows from (5.54) that

ok(1) =

∫

Ω

ϕ1(|∇uk|)∇uk∇vdx−

∫

Ω

ϕ1∗(|uk|)ukvdx− λ

∫

Ω

Ru(x, uk, vk)vdx,

since the sequence (ϕ1∗(|uk|)uk) is bounded in LΦ̃1∗(Ω), there is ηn ∈ LΦ̃1∗(Ω) such that

ϕ1∗(|uk|)uk −⇀ ηn in LΦ̃1∗(Ω) as k → ∞(5.73)

so, from (5.68) and (5.73),

∫

Ω

ω∇vdx−

∫

Ω

ηnvdx− λ

∫

Ω

Ru(x, un, vn)vdx = 0, ∀v ∈ W 1,Φ1

0 (Ω).

In particular, for v = unφε, we have

∫

Ω

unω∇φεdx =

∫

Ω

ηnunφεdx+ λ

∫

Ω

Ru(x, un, vn)unφεdx−

∫

Ω

φεω∇undx,(5.74)

Therefore,

lim
ε→0

∫

Ω

un(ω∇φε)dx = 0(5.75)

It follows from (5.72) and (5.75) that

ℓ1µi ≤ m∗
1νi, i ∈ Iλ,(5.76)

and by Lemma 5.10,

ℓ1µi ≤ m∗
1S

β
0 µ

α
i ,(5.77)

for some α and β verifying

1 < α ∈

{

ℓ∗1
ℓ1
,
m∗

1

ℓ1
,
ℓ∗1
m1

,
m∗

1

m1

}

and β ∈ {ℓ∗1,m
∗
1}.(5.78)

Thereby,

0 <
ℓ1

m∗
1S

β
0

≤ µα−1
i , i ∈ Iλ,
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showing that

µi ≥
( ℓ1

m∗
1S

β
0

) 1
α−1 , i ∈ Iλ.(5.79)

By (5.76) and (5.79)

νi ≥
( ℓ1
m∗

1

) α
α−1S

− β
α−1

0 , i ∈ Iλ.

Since νn is a őnite measure, the last inequality yields Iλ is őnite.

In fact we will see that the set {xi}i∈Iλ is an empty set for λ > 0 large enough.

For this, we will establishes an important estimate from above of the mountain level

of functional Jλ,n.

Lemma 5.12 Let n ∈ N be arbitrary and consider u0 given in (5.53). Then, there is

λ0 > 0 such that if λ > λ0, we have that

max
Mn

u0

Jλ,n < ω,

where

ω :=

(

1−
m1

µ

)

min

{

(

ℓ1

m∗
1S

β
0

) 1
α−1

: α ∈

{

ℓ∗1
ℓ1
,
m∗

1

ℓ1
,
ℓ∗1
m1

,
m∗

1

m1

}

and β ∈ {ℓ∗1,m
∗
1}

}

.

Consequently,

cλ,n <

(

1−
m1

µ

)

min

{

(

ℓ1

m∗
1S

β
0

) 1
α−1

: α ∈

{

ℓ∗1
ℓ1
,
m∗

1

ℓ1
,
ℓ∗1
m1

,
m∗

1

m1

}

and β ∈ {ℓ∗1,m
∗
1}

}

,

(5.80)

where cλ,n is given in (5.55).

Proof. By (R4), given θ ≥ 0 and v ∈ V n
A , we have

Jλ,n(θu0, v) ≤ ξ1Φ1
(θ)ξ1Φ1

(∥u0∥1,Φ1)− ξ0Φ1∗
(θ)ξ1Φ1

(∥u0∥Φ1)− λ

∫

Ω0

R(x, θu0, v)dx

≤ ξ1Φ1
(θ)ξ1Φ1

(∥u0∥1,Φ1)− ξ0Φ1∗
(θ)ξ1Φ1

(∥u0∥Φ1)− λω

∫

Ω0

|θu0|
sdx

This inequality implies that

0 < bn ≤ inf
γ∈Γ

max
u∈Mn

u0

Jλ,n(γ(u)) ≤ max
Mn

u0

Jλ,n ≤ max
θ≥0

Vλ(θ)(5.81)
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where

Vλ(θ) = ξ1Φ1
(θ)ξ1Φ1

(∥u0∥1,Φ1)− ξ0Φ1∗
(θ)ξ1Φ1

(∥u0∥Φ1)− λω

∫

Ω0

|θu0|
sdx.(5.82)

In what follows, we denote by θλ > 0 the real number verifying

max
θ≥0

Vλ(θ) = Vλ(θλ)(5.83)

Let us see that Vλ(θλ) → 0 as λ→ ∞. For that, consider (λm) a sequence verifying

λm −→ ∞ as m→ ∞.

We claim that (θλm
) is a bounded sequence. Indeed, assuming by contradiction that

(θλm
) is not bounded, we have that for a subsequence, still denote by itself,

θλm
→ ∞ as m→ ∞.

According to (5.82), (5.81) and (5.83),

0 < max
θ≥0

Vλm
(θ) = Vλm

(θλm
) ≤ θm1

λm
ξ1Φ1

(∥u0∥1,Φ1)− θ
ℓ∗1
λm
ξ1Φ1

(∥u0∥Φ1) → −∞ as m→ ∞,

which is an absurd, and so, (θλm
) is bounded. We claim that θλm

→ 0 as m→ ∞. If the

above limit does not hold, we can assume by contradiction, that for some subsequence,

still denote by (θλm
), there is k0 > 0 such that

θλm
> k0 > 0, ∀n ∈ N

Then, by (5.82) and (5.83),

0 < max
θ≥0

Vλm
(θ) = Vλm

(θλm
) ≤ ξ1Φ1

(θλm
)ξ1Φ1

(∥u0∥1,Φ1)−ξ
0
Φ1∗

(θλm
)ξ1Φ1

(∥u0∥Φ1)

− λmω

∫

Ω0

|θλm
u0|

sdx,

thus

0 < max
θ≥0

Vλm
(θ) → −∞ as m→ ∞,

which is a contradiction. Hence,

tλm
→ 0 as m→ ∞,
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which leads to

max
θ≥0

Vλm
(θ) = Vλm

(θλm
) → 0 as m→ ∞,

and by (5.81) it follows that

cλm,n → 0 as m→ ∞.

Lemma 5.13 For every n ∈ N and λ > λ0 the set Iλ is empty, where λ0 was given in

Lemma 5.12.

Proof. Let (uk, uk) ⊂ Xn the (PS)cλ,n sequence obtained in (5.54). In view of as-

sumptions (G2), (R3), (ϕ′
i,3), we have that

cλ,n + ok(1) ≥ Jn(uk, vk)− J ′
λ,n(uk, vk)(

1

µ
uk,

1

ν
vk) ≥

(

1−
m1

µ

)∫

Ω

Φ1(|∇uk|)dx.

Fixing a function φ ∈ C∞
0 (RN) with φ(x) = 1 on Ω, we derive that

cλ,n + ok(1) ≥

(

1−
m1

µ

)∫

RN

Φ1(|∇uk|)φdx.

Taking the limit of k → +∞, we get

cλ,n ≥

(

1−
m1

µ

)∫

RN

φdµn ≥

(

1−
m1

µ

)

µn(Ω).

Supposing that Iλ is not empty, there is i ∈ Iλ, and so,

cλ,n ≥

(

1−
m1

µ

)

µi.

In (5.79) we show that

µi ≥
( ℓ1

m∗
1S

β
0

) 1
α−1 , i ∈ Iλ,

where α is given in (5.77) and (5.78). Therefore, we can conclude that

cλ,n ≥

(

1−
m1

µ

)

min

{

(

ℓ1

m∗
1S

β
0

) 1
α−1

: α ∈

{

ℓ∗1
ℓ1
,
m∗

1

ℓ1
,
ℓ∗1
m1

,
m∗

1

m1

}

and β ∈ {ℓ∗1,m
∗
1}

}

.

Then, if λ ≥ λ0, the last inequality together with Lemma 5.12 yields Iλ = ∅.
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Lemma 5.14 For λ ≥ λ0, the sequence (uk) is strongly convergent for its weak limit

wn in LΦ1∗(Ω) as k → ∞.

Proof. Let φ ∈ C∞(RN) be a function verifying φ(x) = 1, for x ∈ Ω. In this case,

lim
k→∞

∫

Ω

Φ1∗(uk)dx = lim
k→∞

∫

RN

Φ1∗(uk)φdx =

∫

RN

φdνn

The Lemma 5.10(item i) combined with Lemma 5.13 gives

lim
k→∞

∫

Ω

Φ1∗(uk)dx =

∫

RN

Φ1∗(un)φdx =

∫

Ω

Φ1∗(un)dx.

Since Φ1∗ is a convex function, it follows from a result due to Brezis and Lieb [28] that

lim
k→∞

∫

Ω

{Φ1∗(|uk|)− Φ1∗(|uk − un|)− Φ1∗(|un|)}dx = 0.

Then,

lim
k→∞

∫

Ω

Φ1∗(|uk − un|)dx = 0,

we can conclude that (uk) converges strongly for un in LΦ1∗(Ω).

Lemma 5.15 Consider λ > λ0 and (uk) ⊂ W 1,Φ1

0 (Ω) the sequence obtained in (5.54).

Then, for some subsequence, still denoted by itself,

uk → wn in W 1,Φ1

0 (Ω) as k → ∞.

Proof. Since (uk) is a bounded sequence in W 1,Φ1

0 (Ω), then

ok(1) =

∫

Ω
ϕ1(|∇uk|)∇uk∇(v−uk)dx−

∫

Ω
ϕ1∗(|uk|)uk(v−uk)dx−λ

∫

Ω
Ru(x, uk, vk)(v−uk)dx.

Given v ∈ W 1,Φ1

0 (Ω), by the convexity of Φ1 it follows that

Φ1(|∇v|)− Φ1(|∇uk|) ≥ ϕ1(|∇uk|)∇uk∇(v − uk),

thus,
∫

Ω

Φ1(|∇v|)dx−

∫

Ω

Φ1(|∇uk|)dx ≥

∫

Ω

ϕ1∗(|uk|)uk(v − uk)dx

− λ

∫

Ω

Ru(x, uk, vk)(v − uk)dx+ ok(1).

(5.84)

Through boundedness da sequence (uk) in W 1,Φ1

0 (Ω) together with the limits

uk(x) −→ wn a.e. in Ω and
∂uk
∂xi

−⇀
∂wn

∂xi
in L1(Ω),
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we can apply the Lemma 2.22 to get

lim inf
k→∞

∫

Ω

Φ1(|∇uk|)dx ≥

∫

Ω

Φ1(|∇wn|)dx.

Furthermore, since (uk) strongly converges to un in LΦ1∗(Ω),
∫

Ω

ϕ1∗(|uk|)uk(v − uk)dx→

∫

Ω

ϕ1∗(|wn|)wn(v − wn)dx, as k → ∞.

Therefore, it follows from (5.84) that
∫

Ω

Φ1(|∇v|)dx−

∫

Ω

Φ1(|∇wn|)dx ≥

∫

Ω

ϕ1∗(|wn|)wn(v − wn)dx

+ λ

∫

Ω

Ru(x, wn, yn)(v − wn)dx.

By arbitrariness v we can conclude that
∫

Ω

ϕ1(|∇wn|)∇wn∇(wn − uk)dx =

∫

Ω

ϕ1∗(|wn|)wn(wn − uk)dx

+ λ

∫

Ω

Ru(x, wn, yn)(wn − uk)dx,

implying that
∫

Ω

ϕ1(|∇wn|)∇wn∇(wn − uk)dx = ok(1).(5.85)

On the other hand, since (uk, vk) is a sequence (PS)cλ,n ,

ok(1) =J
′
λ,n(uk, vk)(wn − uk, 0)

=

∫

Ω

ϕ1(|∇uk|)∇uk∇(wn − uk)dx−

∫

Ω

ϕ1∗(|uk|)uk(wn − uk)dx

− λ

∫

Ω

Ru(x, uk, vk)(wn − uk)dx,

Therefore,
∫

Ω

ϕ1(|∇uk|)∇uk∇(wn − uk)dx = ok(1).(5.86)

From (5.85) and (5.86),
∫

Ω

(

ϕ1(|∇uk|)∇uk − ϕ1(|∇wn|)∇wn

)(

∇uk −∇wn

)

dx −→ 0 as k → ∞.

Now, applying a result due to Dal Maso and Murat [22], it follows that

∇uk(x) −→ ∇wn(x) a.e. in Ω as k → ∞.(5.87)
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Since (uk) is bounded inW 1,Φ1

0 (Ω) and Φ1 ∈ (∆2), then the sequence (ϕ1(|∇uk|)
∂uk
∂xj

)k∈N

is bounded by LΦ̃1(Ω), for each j ∈ {1, · · · , N}. Furthermore, by (5.87), it follows that

ϕ1(|∇uk(x)|)
∂uk(x)

∂xj
→ ϕ1(|∇wn(x)|)

∂wn(x)

∂xj
a.e. in Ω as k → ∞.

Thus, by Lemma 2.5 in [11],
∫

Ω

ϕ1(|∇uk|)∇uk∇vdx→

∫

Ω

ϕ1(|∇un|)∇un∇vdx, v ∈ C∞
0 (Ω) as k → ∞.(5.88)

Still due to the boundedness of the sequence (ϕ1(|∇uk|)
∂uk
∂xj

)k∈N in LΦ̃1(Ω), there will

be vj ∈ LΦ̃1(Ω) such that

ϕ1(|∇uk|)
∂uk
∂xj

∗
−⇀ vj in LΦ̃1(Ω) as k → ∞,

i.e,
∫

Ω

ϕ1(|∇uk|)
∂uk
∂xj

wdx→

∫

Ω

vjwdx, ∀w ∈ EΦ1(Ω) = LΦ1(Ω) as k → ∞.(5.89)

By (5.88) and (5.89), it follows that vj = ϕ1(|∇un|)
∂un
∂xj

, for each j ∈ {1, · · · , N}. Still

from (5.89),
∫

Ω

ϕ1(|∇uk|)∇uk∇wdx→

∫

Ω

ϕ1(|∇un|)∇un∇wdx, ∀w ∈ W 1,Φ1

0 (Ω) as k → ∞.

We know from (5.86) that
∫

Ω

ϕ1(|∇uk|)∇uk∇(un − uk)dx = ok(1),

then
∫

Ω

ϕ1(|∇uk|)|∇uk|
2dx→

∫

Ω

ϕ1(|∇un|)|∇un|
2dx as k → ∞.

Given this, we can conclude that

ϕ1(|∇uk|)|∇uk|
2 → ϕ1(|∇un|)|∇un|

2 in L1(Ω) as k → ∞.

By (ϕ′
i,3) together with the ∆2-condition, it follows that

uk → un in W 1,Φ1

0 (Ω) as k → ∞.

This őnishes the proof.
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Lemma 5.16 For λ > λ0, the sequence (wn, yn) is bounded in X. Moreover

Jλ,n(wn, yn) = cλ,n and J ′
λ,n(wn, yn) = 0 in X∗

n.(5.90)

Proof. Since V n
A is a őnite dimensional space, (vk) converges strongly to (yn) in V n

A .

Therefore,

(uk, vk) −→ (wn, yn) in Xn as k → ∞.

which implies

Jλ,n(wn, yn) = cλ,n ∈ [bn, dn] and J ′
λ,n(wn, yn) = 0 in X∗

n.

In a őrst moment, let us assume that a2 < ℓ∗2. By hypothesis m2 < a1, then

W 1,Φ2

0 (Ω) is continuously embedded in LA(Ω), thus, there will be C > 0 such

∥v∥A≤ C∥v∥1,Φ2 , ∀v ∈ V n
A .(5.91)

By (G2)(ii), (R3) and (5.91),

cλ,n =Jλ,n(wn, yn)− J ′
λ,n(wn, yn)(

1

µ
wn,

1

ν
yn)

≥

(

1−
m1

µ

)∫

Ω

Φ1(|∇wn|)dx+

(

ℓ2
ν

− 1

)∫

Ω

Φ2(|∇yn|)dx+

(

ℓ∗1
µ

− 1

)∫

Ω

Φ1∗(|∇wn|)dx

≥

(

1−
m1

µ

)

ξ0Φ(∥wn∥1,Φ1
) +

(

ℓ2
ν

− 1

)

ξ0Φ2

( 1

C
∥yn∥A

)

.

(5.92)

It follows from the inequalities (5.80) and (5.92) that (wn, yn) is bounded in X.

Now, let us assume that a2 ≥ ℓ∗2. By (R3), (G2), (5.91) and from items (i)− (iii)

of (G1), it follows that

cλ,n =Jλ,n(un, vn)− J ′
λ,n(un, vn)(

1

µ
un,

1

ν
vn)

≥

(

1−
m1

µ

)∫

Ω
Φ1(|∇un|)dx+

(

ℓ2
ν

− 1

)∫

Ω
Φ2(|∇vn|)dx

+
C

ν

∫

Ω
a(|vn|)|vn|

2dx− Ca1

∫

Ω
A(vn)dx

≥

(

1−
m1

µ

)∫

Ω
Φ1(|∇un|)dx+

(

ℓ2
ν

− 1

)∫

Ω
Φ2(|∇vn|)dx+

(

a1C

ν
− a1C

)∫

Ω
A(|vn|)dx

≥

(

1−
m1

µ

)

ξ0Φ1
(∥un∥1,Φ1) +

(

ℓ2
ν

− 1

)

ξ0Φ2
(∥vn∥1,Φ2) +

(

a1C

ν
− a1C

)

ξ0A(|vn|A).

From the above inequality together with (5.80), we can conclude that (wn, yn) is

bounded by X.
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5.2.1 Proof of Theorem 1.10

The proof of Theorem 1.10 will be carried out in three lemmas. We start observing

that since (wn, yn) is bounded, there is no loss of generality in assuming that

(wn, yn)
∗

−⇀ (u, v) in X as n→ ∞.(5.93)

The same arguments used in the proof of Lemma 5.15 can be repeated to show that

un → u in W 1,Φ1

0 (Ω) as n→ ∞.(5.94)

By the limit (5.93), it follows that

yn
∗

−⇀ v in LA(Ω)(5.95)

and

yn
∗

−⇀ v in W 1,Φ2

0 (Ω).(5.96)

Lemma 5.17 For λ > λ0, the sequence (yn) verifies the following limit yn → v in

LA(Ω).

Proof. From (5.46), there is (ξk) ⊂ VA such that

ξk → v in VA(5.97)

and

ξk =

j(k)
∑

i=1

αiei ∈ V
j(k)
A ,

where j(k) ∈ N for all k ∈ N. For each k ∈ N, it follows that

V
j(k)
A ⊂ V n

A for all n ≥ n0,

for some n0 ≥ j(k).

If a2 ≥ ℓ∗2, from (G1), we have that there is C > 0 such that

a1C

∫

Ω
A(|yn − ξk|)dx ≤ C

∫

Ω
a(|yn − ξk|)|yn − ξk|

2dx ≤

∫

Ω
(g(yn)− g(ξk))(yn − ξk)dx.

(5.98)
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Since J ′
λ,n(un, vn) = 0 in X∗

n, we derive that

∫

Ω
(g(yn)− g(ξk))(yn − ξk)dx =

∫

Ω
ϕ2(|∇yn|)∇yn(∇ξk −∇yn)dx− λ

∫

Ω
Rv(x,wn, yn)yndx

+ λ

∫

Ω
Rv(x,wn, yn)ξkdx−

∫

Ω
g(ξk)(yn − ξk)dx.

(5.99)

Due to the convexity of Φ2, we have

Φ2(|∇ξk|)− Φ2(|∇yn|) ≥ ϕ2(|∇yn|)∇yn∇(ξk − yn), n ∈ N.(5.100)

It follows from the above inequalities that

a1C

∫

Ω

A(|yn − ξk|)dx ≤

∫

Ω

Φ2(|∇ξk|)dx−

∫

Ω

Φ2(|∇wn|)dx− λ

∫

Ω

Rv(x, wn, yn)yndx

+ λ

∫

Ω

Rv(x, wn, yn)ξkdx−

∫

Ω

g(ξk)(yn − ξk)dx.

(5.101)

Knowing that

yn(x) −→ v(x) a.e. in Ω and
∂yn
∂xi

−⇀
∂v

∂xi
in L1(Ω),

we can apply the Lemma 2.22 to get

lim inf
n→∞

∫

Ω

Φ2(|∇vn|)dx ≥

∫

Ω

Φ2(|∇v|)dx.(5.102)

Taking as limit n→ ∞, it follows that

lim sup
n→∞

(

a1C

∫

Ω
A(|yn − ξk|)dx

)

≤

∫

Ω
Φ2(|∇ξk|)dx−

∫

Ω
Φ2(|∇v|)dx−

∫

Ω
Rv(x, u, v)vdx

+

∫

Ω
Rv(x, u, v)ξkdx−

∫

Ω
g(ξk)(v − ξk)dx.

(5.103)

By the limit (5.97), given δ > 0 there is k0 ∈ N such that

1

a1C

[∫

Ω

Φ2(|∇ξk|)dx−

∫

Ω

Φ2(|∇u|)dx −

∫

Ω

Rv(x, u, v)vdx

+

∫

Ω

Rv(x, u, v)ξkdx−

∫

Ω

g(ξk)(v − ξk)dx

]

<
δ

2
,

for each k ≥ k0. Hence,

lim sup
n→∞

∫

Ω

A(|yn − ξk|)dx ≤
δ

2
, for all k ≥ k0.(5.104)
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Given 0 < ε < 4, for δ suiciently small, it follows that

lim sup
n→∞

∫

Ω

A(|yn − ξk|)dx ≤
ε

4
, for all k ≥ k0.(5.105)

Fixing k ≥ k0 suiciently large such that

|ξk − v|A <
(ε

4

)1/a1
(5.106)

it follows from (G1)(i) that

∫

Ω

A (|yn − v|) dx ≤ C

∫

Ω

A (|yn − ξk|) dx+ C|ξk − v|a1A ≤ C

∫

Ω

A (|yn − ξk|) dx+
εC

4
,

(5.107)

for some constant C > 0 that does not depend on n and k. By (5.105) and (5.107), we

have

lim sup
n→∞

∫

Ω

A (|yn − v|) dx <
εC

2

and by the arbitrariness of ε > 0,

lim
n→∞

∫

Ω

A (|yn − v|) dx = 0.

Therefore,

yn → v in LA(Ω).

Now, let us consider a2 < ℓ∗2, then A increases essentially more slowly than

Φ2∗ near inőnity. In this case, the space W 1,Φ2

0 (Ω) is compactly embedded in LA(Ω),

therefore, the desired limit follows directly from that compact embedding.

The following lemma is made using similar arguments to those given in Lemma

5.15. Therefore, we will omit its proof.

Lemma 5.18 For λ > λ0, the sequence (yn) verifies the following limit yn → v in

W 1,Φ2

0 (Ω).

From the above lemmas, we can conclude that

yn → v in VA.(5.108)

In view of the above facts, it is possible to obtain the proof of the Theorem 1.10 as can

be seen in the following result.
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Lemma 5.19 For λ > λ0, the pair (u, v) satisfies J ′(u, v) = 0 in X and J(u, v) ̸= 0.

Proof. Fixing k, n ∈ N with n ≥ k, we have Xk ⊂ Xn. Thus, for (φ1, φ2) ∈ Xk, it

follows that

J ′
λ,n(wn, yn)(φ1, φ2) = 0, ∀n ≥ k,

because, by Lemma 5.16, J ′
λ,n(wn, yn) = 0. Combining (5.108) with (5.94) we get

J ′
λ(u, v)(φ1, φ2) = 0, for all (φ1, φ2) ∈ Xk.(5.109)

We claim that

J ′
λ(u, v)(φ1, φ2) = 0, for all (φ1, φ2) ∈ X.(5.110)

In fact, we start observing that for all φ1 ∈ W 1,Φ1

0 (Ω), the pair (φ1, 0) ∈ Xk for all k.

Hence, J ′
λ(u, v)(φ1, 0) = 0. On the other hand, for φ2 ∈ VA, there exists χn ∈ V

k(n)
A

such that

lim
n→∞

χn = φ2, in VA.

From (5.109),

J ′
λ(u, v)(0, χn) = 0, for all n ∈ N,(5.111)

which implies after passage to the limit as n→ ∞ that

J ′
λ(u, v)(0, φ2) = 0, for all φ2 ∈ VA.(5.112)

Thus, (5.110) is proved. Using the fact that (wn, yn) → (u, v) in X and that

J ′
λ(wn, yn) ≥ bn ≥ Cσℓ2 > 0, for all n ∈ N, for some constant C > 0 which does

not depend on n, we have that J ′
λ(u, v) ≥ Cσℓ2 > 0, from where it follows that (u, v)

is a nontrivial solution for (S2), and the proof is complete.
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Appendix A

Results on the critical point theory for

locally Lipschitz functionals

We recall some few notations and results on the critical point theory for locally

Lipschitz functionals deőned on a real Banach space X with norm ∥·∥X . All the results

we will list below can be found in [15,29,44] and in references therein.

Let I : X → R be a locally Lipschitz functional (I ∈ Liploc(X,R)), that is, for

each x ∈ X, there exist an open neighborhood N(x) of x and a constant k(x) > 0,

such that

|I(y1)− I(y2)| ≤ k(x)∥y1 − y2∥,

for all y1 and y2 in N(x).

A generalized directional derivative of a locally Lipschitz functional I : X → R

at x ∈ X in the direction v ∈ X, denoted by I0(x; v), is deőned by

I0(x; v) = lim sup
h→0 λ→0+

I(x+ h+ λv)− I(x+ h)

λ

and the generalized gradient of I at x is the set

∂I(x) = {µ ∈ X∗ : ⟨µ, v⟩ ≤ I0(x; v), v ∈ X}.

Let Q be a compact metric space and let Q∗ be a nonempty closed subset strictly



contained in Q. We set

P = {p ∈ C(Q,X) : p = p∗ on Q∗},(A.1)

where p∗ is a őxed continuous map on Q∗ and

c = inf
c∈P

max
x∈Q

I(p(x)).(A.2)

So

c ≥ max
x∈Q∗

I(p∗(x)).(A.3)

We say that the subset A ⊂ X links with the pair (Q,Q∗) if p∗(Q∗) ∩ A = ∅ and

for each p ∈ P , p(Q) ∩ A ̸= ∅.

Theorem A.1 (See [44]) Let I ∈ Liploc(X,R) and A ⊂ Ic = {x ∈ X : I(x) ≥ c} be a

closed subset which links with the pair (Q,Q∗). Then there exists a sequence (xn) ⊂ X

satisfying

lim
n→∞

d(xn, A) = 0, lim
n→∞

I(xn) = c e lim
n→∞

λI(xn) = 0,

with

λI(xn) = min{∥µ∥X∗ : µ ∈ ∂I(xn)}.

Proposition A.1 (See [44]) Let I : X → R be a continuous and Gateaux-differentiable

functional such that I ′ : X → X∗ is continuous from the norm topology of X to the

weak∗-topology of X∗. Then I ∈ Liploc(X,R) and ∂I(x) = {I ′(x)}, ∀x ∈ X.

The Theorem A.1 together with Proposition A.1 allows us to propose a linking

theorem for Gateaux-diferentiable functionals. This result will be fundamental to

study the class of system proposed in Chapter 6.

Theorem A.2 (The linking theorem) (See [44]) Let X be a real Banach space with

X = Y ⊕Z, where Y is finite dimensional. Suppose that I : X → R is continuous and

Gateaux-differentiable with derivative I ′ : X → X∗ continuous from the norm topology

of E to the weak∗-topology of X∗ satisfying:

(I1) There is σ > 0 such that if N = {u ∈ Z : ∥u∥≤ σ}, then b =̇ inf
∂N

I > 0.
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(I2) There are z∗ ∈ Z ∩ ∂B1 and ρ > σ such that

0 = sup
∂M

I < d =̇ sup
M

I,

where

M = {u = λz∗ + y : ∥u∥≤ ρ, λ ≥ 0, y ∈ Y }

If

c = inf
γ∈Γ

max
x∈N

I(γ(t)),

with

Γ = {γ ∈ C(N , X) : γ|∂N = Id∂N}.

Then, b ≤ c and there is a sequence (un) ⊂ X such that

I(un) → c and I ′(un) → 0.

Proof. The result follows from Proposition 2.2 and Theorem 4.7 with P = Γ, Q = N ,

Q∗ = ∂N , p∗ = IdQ∗
e A = {x ∈ Z + Y : I(x) ≥ c}.

For the last section of this paper we will use the already known saddle-point

theorem of Rabinowitz without Palais-Smale condition. The proof of this result also

follows from Theorem A.1 along with Proposition A.1.

Theorem A.3 (Saddle-point theorem) (See [44]) Let X be a real Banach space

with X = Y ⊕Z, where Y is finite dimensional. Suppose that I : X → R is continuous

and Gateaux-differentiable with derivative I ′ : X → X∗ continuous from the norm

topology of E to the weak∗-topology of X∗ satisfying:

(I1) there are constants ρ > 0 and α1 ∈ R such that if M = {u ∈ Y : ∥u∥≤ ρ}, then

I|∂M ≤ α1.

(I2) there is a constant α2 > α1 such that I|Z ≥ α2. If

c = inf
γ∈Γ

max
x∈M

I(γ(t)),

with

Γ = {γ ∈ C(M, X) : γ|∂M = Id|∂M}.

Then, there is (un) ⊂ X such that

I(un) → c and I ′(un) → 0.
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Definition A.1 (Cerami Sequence) Let (X, ∥·∥X) be a Banach space and

I : X → R a continuous, Gateaux-differentiable function, such that I ′ : X → X∗

is continuous from the norm topology of X to the weak∗ topology of X∗. We say that

(xn) ⊂ X is a Cerami sequence at the level c ∈ R, denoted by (C)c, when

I(xn) → c and (1 + ∥xn∥X)∥I
′(xn)∥X∗→ 0, when n→ ∞.

We will say that I verifies the Cerami condition, or simply the (C) condition, when

every sequence (C)c for c ∈ R, admits a subsequence that converges strongly on X.

Next we state a result of the mentha step due to Ghoussoub-Preiss Theorem.

This result produces Cerami sequences even if the functional is not of class C1. The

Your proof can be found in [29, Theorem 6] or [15, Theorem 5.46].

Theorem A.4 (Ghoussoub-Preiss) Let (X, ∥·∥X) be a Banach space and

I : X → R a continuous, Gateaux-differentiable function, such that I ′ : X → X∗

is continuous from the norm topology of X to the weak∗ topology of X∗. Set z0, z1 ∈ X

and consider

Γ = {σ ∈ C
(

[0, 1], X
)

: σ(0) = z0 and σ(1) = z1}.

Set the number c given by

c := inf
σ∈Γ

max
0≤t≤1

L(σ(t)).

Assume that there is a F subset of X such that {x ∈ F : L(x) ≥ c} separates z0 and

z1. So, there exists a sequence (xn) in X such that

δ(xn, F ) → 0, I(xn) → c and (1 + ∥xn∥)∥L
′(xn)∥∗→ 0,

where

δ(xn, F ) := inf
x∈F

δ(xn, x)

and

δ(xn, x) :=
{

∫ 1

0

∥γ′(t)∥

1 + ∥γ(t)∥
dt : γ ∈ C

(

[0, 1], X
)

, γ(0) = z0 e γ(1) = z1

}

.
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Corollary A.1 (Mountain Pass Theorem) Let (X, ∥·∥X) be a Banach space and

I : X → R a continuous, Gateaux-differentiable function, such that I ′ : X → X∗

is continuous from the norm topology of X to the weak∗ topology of X∗. In addition,

assume that I verifies the mountain pass geometry, that is:

i) I|∂Bρ
≥ η, for some constants ρ, η > 0

ii) I(e) < η, for some e /∈ Bρ(0)

If

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ η

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}.

Then there exists a sequence (xn) in X such that

I(xn) → c and (1 + ∥xn∥)∥I
′(xn)∥∗→ 0.

Proof. It is enough to apply Theorem A.4 with F = E [if c > inf
Bρ(0)

I] or F = ∂Bρ(0)

[if c = inf
Bρ(0)

I].

146



Appendix B

Construction of examples of potentials

satisfying the conditions (V,K) ∈ Q1

and (V,K) ∈ Q2

To construct such functions, it is crucial to recognize that (Q1) (mentioned in the

introduction) is less restrictive than any of the conditions listed below:

(a) There are r ≥ 1 and ρ ≥ 0 such that K ∈ Lr(RN \Bρ(0));

(b) K(x) → 0 as |x| → ∞;

(c) K = H1 +H2, with H1 and H2 verifying (a) and (b) respectively.

Now, for every n ∈ N, őx zn = (n, 0, · · · , 0). Consider
{

B 1
2n
(zn)

}

n∈N
the disjoint

sequence of open balls in R
N and the nonnegative function H1 : R

N → R given by

0 ≤ H1(x) ≤ 1, ∀x ∈ R
N , H1(zn) = 1, ∀n ∈ N, H1 ≡ 0 in R

N \
{

⋃

n∈N

B 1
2n
(zn)

}

and
∫

B 1
2n

(zn)

H1(x)dx ≤
1

2n
, ∀n ∈ N.

Thus, without diiculty we can see that the functions

V (x) = K(x) = H1(x) +
1

ln(2 + |x|)
(B.1)



verify the condition (Q1). Furthermore, clearly V and K satisfy the conditions (Q0)

and (Q2). However, these functions do not verify the (Q3) condition.

Now, consider the N -function B(t) = |t|p with p ∈ (m, ℓ∗) and deőne the

(B.2) K(x) = H1(x) +
1

ln(2 + |x|)

and

(B.3) V (x) = (|x|H1(x))
θ(m∗

−m)
m∗

−p +

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

.

It is clear that B satisőes the conditions (B1)−(B4), moreover, as mentioned previously,

these functions check (Q0) and (Q1). We will show that (Q3) is satisőed with B(t) = |t|p

where p ∈ (m, ℓ∗). In efect, we state that there is C > 0 depending on p,m and ℓ, so

that, for each x ∈ R
N , we have

G(x) = Cmin{V (x)
ℓ∗−p
ℓ∗−ℓ , V (x)

m∗
−p

m∗
−m} ≤ H(x) := min

t>0

{

V (x)
Φ(t)

tp
+

Φ∗(t)

tp

}

.(B.4)

In fact, for every x ∈ R
N őxed, the function

g(t) = V (x)tm−p + tm
∗−p, ∀t > 0

has CpV (x)
m∗

−p
m∗

−m as minimum value, where

Cp =





(

p−m

m∗ − p

)
m−p

m∗
−m

+

(

p−m

m∗ − p

)
m∗

−p
m∗

−m



 .

So,

CpV (x)
m∗

−p
m∗

−m ≤ V (x)|t|m−p + |t|m
∗−p, ∀x ∈ R

N

and all t ∈ R. In particular

CpV (x)
m∗

−p
m∗

−m ≤ V (x)|t|m−p + |t|m
∗−p, ∀x ∈ R

N

and |t| ≤ 1. I.e,

Cp|t|
pV (x)

m∗
−p

m∗
−m ≤ C(V (x)Φ(|t|) + Φ∗(|t|)), ∀x ∈ R

N

and |t| ≤ 1. Therefore,

Cp min{V (x)
ℓ∗−p
ℓ∗−ℓ , V (x)

m∗
−p

m∗
−m} ≤ C

(

V (x)
Φ(|t|)

|t|p
+

Φ∗(|t|)

|t|p

)

, ∀x ∈ R
N e |t| ≤ 1.

(B.5)
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Now, for each x ∈ R
N őxed, the function

h(t) = V (x)tℓ−p + tℓ
∗−p, ∀t > 0

has DpV (x)
ℓ∗−p
ℓ∗−ℓ as minimum value, where

Dp =





(

p− ℓ

ℓ∗ − p

)
ℓ−p
ℓ∗−ℓ

+

(

p− ℓ

ℓ∗ − p

)
ℓ∗−p
ℓ∗−ℓ



 .

So,

DpV (x)
ℓ∗−p
ℓ∗−ℓ ≤ V (x)|t|ℓ−p + |t|ℓ

∗−p, ∀x ∈ R
N

and all t ∈ R. In particular

DpV (x)
ℓ∗−p
ℓ∗−ℓ ≤ V (x)|t|ℓ−p + |t|ℓ

∗−p, ∀x ∈ R
N

and |t| > 1. I.e,

Dp|t|
pV (x)

ℓ∗−p
ℓ∗−ℓ ≤ C(V (x)Φ(|t|) + Φ∗(|t|)), ∀x ∈ R

N

and |t| > 1. Therefore,

Dp min{V (x)
ℓ∗−p
ℓ∗−ℓ , V (x)

m∗
−p

m∗
−m} ≤ C

(

V (x)
Φ(|t|)

|t|p
+

Φ∗(|t|)

|t|p

)

, ∀x ∈ R
N and |t| ≥ 1.

(B.6)

From (B.5) and (B.6), we obtain

C ′
p min{V (x)

ℓ∗−p
ℓ∗−ℓ , V (x)

m∗
−p

m∗
−m} ≤ CH(x), ∀x ∈ R

N and t ∈ R,

where C ′
p = min{Cp, Dp}. Proving (B.4). Now, consider x ∈ R

N \
⋃

n∈N

B 1
2n
(zn), hence,

H1(x) = 0, therefore

K(x)θ

V (x)
m∗

−p
m∗

−m

=

[

1

ln(2 + |x|)

]θ

[

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

+

(

1

ln(2 + |x|)

)
θ(ℓ∗−ℓ)
ℓ∗−q

]

m∗
−p

m∗
−m

≤

[

1

ln(2 + |x|)

]θ

[

1

ln(2 + |x|)

]
θ(m∗

−p)
m∗

−q

=
[

ln(2 + |x|)
]

θ(m∗
−p)

m∗
−q

−θ
.
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Similarly, for each x ∈ R
N \

⋃

n∈N

B 1
2n
(zn) , we have

K(x)θ

V (x)
ℓ∗−p
ℓ∗−ℓ

≤
[

ln(2 + |x|)
]

θ(ℓ∗−p)
ℓ∗−q

−θ
.

Therefore,

K(x)θ

G(x)
≤ C1

(

[

ln(2 + |x|)
]

θ(ℓ∗−p)
ℓ∗−q

−θ
+
[

ln(2 + |x|)
]

θ(m∗
−p)

m∗
−q

−θ
)

,(B.7)

for all x ∈ R
N \

⋃

n∈N

B 1
2n
(zn). On the other hand, if x ∈

⋃

n∈N

B 1
2n
(zn), we have x ̸= 0

and H1(x) ̸= 0. So,

K(x)θ

V (x)
m∗

−p
m∗

−m

≤

[

H1(x) +
1

ln(2 + |x|)

]θ

[

(|x|H1(x))
θ(m∗

−m)
m∗

−p +

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

]

m∗
−p

m∗
−m

=C2
H1(x)

θ

[

(|x|H1(x))
θ(m∗

−m)
m∗

−p +

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

]

m∗
−p

m∗
−m

+ C2

[

1

ln(2 + |x|)

]θ

[

(|x|H1(x))
θ(m∗

−m)
m∗

−p +

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

]

m∗
−p

m∗
−m

≤C2













H1(x)
θ

|x|θH1(x)θ
+

[

1

ln(2 + |x|)

]θ

[

1

ln(2 + |x|)

]
θ(m∗

−p)
m∗

−q













.

Similarly, for each x ∈
⋃

n∈N

B 1
2n
(zn), we have

K(x)θ

V (x)
ℓ∗−p
ℓ∗−ℓ

≤ C3













H1(x)
θ

|x|θH1(x)θ
+

[

1

ln(2 + |x|)

]θ

[

1

ln(2 + |x|)

]
θ(ℓ∗−p)
ℓ∗−q













.
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Therefore, for all x ∈
⋃

n∈N

B 1
2n
(zn), it follows

K(x)θ

G(x)
≤ C2

(

1

|x|θ
+ [ln(2 + |x|)]

θ(m∗
−p)

m∗
−q

−θ

)

+ C3

(

1

|x|θ
+ [ln(2 + |x|)]

θ(ℓ∗−p)
ℓ∗−q

−θ

)

.

(B.8)

By (B.7) and (B.8), we conclude that

K(x)θ

G(x)
≤ C4

(

1

|x|θ
+ [ln(2 + |x|)]

θ(m∗
−p)

m∗
−q

−θ + [ln(2 + |x|)]
θ(ℓ∗−p)
ℓ∗−q

−θ

)

,

for all x ∈ R
N \ {0}. As q < p, then θ(m∗−p)

m∗−q
− θ, θ(ℓ∗−p)

ℓ∗−q
− θ < 0. That said,

K(x)θ

G(x)
−→ 0, as |x| → +∞.

Knowing that G(x) ≤ H(x), for all x ∈ R
N , then

K(x)θ

H(x)
−→ 0, as |x| → +∞.

Now, let us see that V and Q do not verify the condition (Q2). Consider

x ∈ R
N \

⋃

B 1
2n
(zn), then H1(x) = 0. So,

K(x)

V (x)
=

1

ln(2 + |x|)
(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

+

(

1

ln(2 + |x|)

)
θ(ℓ∗−ℓ)
ℓ∗−q

.(B.9)

Note that the function ω : R −→ R deőned by

ω(t) =

tN

N − t
− t

tN

N − t
− q

=
tN − t(N − t)

tN − q(N − t)

is decreasing in the interval [0,m]. In fact, note that

ω′(t) =
(N − [(N − t)− t])(tN − q(N − t))− (tN − t(N − t))(N + q)

[tN − q(N − t)]2

=
2t(tN − q(N − t))− (tN − t(N − t))(N + q)

[tN − q(N − t)]2
.

Clearly, for all t ∈ [0,m], we have

2t(tN − q(N − t))− (tN − t(N − t))(N + q) < 0.
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Therefore, ω′(t) < 0, for all t ∈ [0,m]. Showing the decrease of the function ω in the

interval [0,m], in view of this, we come to the conclusion that

θ(m∗ −m)

m∗ − q
<
θ(ℓ∗ − ℓ)

ℓ∗ − q
.

Hence, for |x| → +∞, we have

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

>

(

1

ln(2 + |x|)

)
θ(ℓ∗−ℓ)
ℓ∗−q

.(B.10)

By (B.9) and (B.10),

K(x)

V (x)
≥

1

ln(2 + |x|)

2

(

1

ln(2 + |x|)

)
θ(m∗

−m)
m∗

−q

=
1

2
[ln(2 + |x|)]

θ(m∗
−m)

m∗
−q

−1.

Since m < q and 1 ≤ s, it follows that θ(m∗−m)
m∗−q

− 1 > 0. Therefore, for all

x ∈ R
N \

⋃

B 1
2n
(zn) such that |x| → +∞, it follows that

K(x)

V (x)
→ +∞.

As a consequence of the limit above, we can state that the functions V and K deőned

in (B.2) and (B.3) do not verify (Q2).

Remark B.1 In an analogous way, one can construct an example of functions V and

K satisfying the conditions (V,K) ∈ K1 and (V,K) ∈ K2 worked in chapter 3.
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