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ABSTRACT

The goal of this paper is to study the existence of solutions for some classes of el-
liptic PDEs involving the ®-Laplacian operator, Ag. Firstly, in order to generalize the
results obtained in the paper [10], we present the study of two quasilinear Schrodinger
equations with potential vanishing at infinity and the A/-function ci>(Complementary
of function ®) may not satisfy the As-condition. Here we present new compact em-
beddings in RY that are commonly known as Hardy-Type inequalities. These inequal-
ities, associated with a Mountain Pass Theorem without the Palais-Smale condition
for Gateaux-differentiable energy functionals (Ghoussoub-Preiss Mountain Pass The-
orem), yield solutions for the classes of problems initially studied. It is worth noting
that in one of the classes, we assume that the nonlinearity of the problem is a non-local
type with a Stein-Weiss convolution term. The regularity of the solutions was obtained
using the regularity results due to Lieberman [24].

In a second part of this thesis, we study the existence of solutions for two
classes of quasilinear systems driven by the operators Ag, (®;-Laplacian) and Ag,
(®y-Laplacian) where the N-functions ®; and @, or <i)1 and CIDQ may not satisfy the Ao-
condition. In the first class, we relax the Ag-condition of the functions ®;(i = 1,2) and
present a definition for the well-known Ambrosetti-Rabinowitz condition for nonlineari-
ty. In this class we base the results on a Rabinowitz saddle point theorem without
the Palais-Smale condition for differentiable Fréchet functionals combining with pro-
perties of the weak topology*. In the second class, we relax the As-conditions of the
N-functions ®;(i = 1,2) and assume that the nonlinearity has supercritical growth.
Here, we use a link theorem without the Palais-Smale condition for locally Lipschitz
functionals and combine it with a concentration-compactness lemma for non-reflexive
Orlicz-Sobolev space to guarantee the existence of solutions for this class.

Keywords: N-functions, Orlicz-Sobolev space, Variational methods, locally Lip-

schitz functionals, As-condition, Schrédinger equation.



RESUMO

O objetivo dessa tese é estudar a existéncia de solugao de algumas classes de
EDPs elipticas envolvendo o operador ®-Laplaciano, Ag. Num primeiro momento,
com o intuito de generalizar os resultados obtidos no paper [10], apresentamos o estudo
de duas equagoes quasilineares Schrodinger com potenciais que podem se anular no
infinito e a V-funcao CB(Complementar da func¢ao ®) pode nao satisfazer a condi¢ao A,.
Aqui, apresentamos novas imersdes compactas no RV que comumente sio conhecidas
como desigualdades do Tipo Hardy, essas desigualdades, associadas a um Teorema do
Passo da Montanha sem a condicao de Palais-Smale para funcionais energia Gateaux-
differentiable (Teorema do Passo da Montanha de Ghoussoub-Preiss) produzem uma
solucao para as classes de problemas inicialmente estudadas. Vale ressaltar que em uma
das classes assumimos que a nao linearidade do problema é tipo nao local com termo
de convolugao de Stein-Weiss. A regularidade das solucoes foram obtidas utilizando-se
dos resultados de regularidade devido a Lieberman [24].

Num segundo momento dessa tese, passamos a estudar a existéncia de solugoes
para duas classes de sistemas quasilineares dirigidos pelos operadores Ag, (®;-Laplacian)
e Ag, (Po-Laplacian) onde as N-fungdes ®; e &5 ou <i>1 e Ci)Q podem nao satisfazer a
condi¢do A,. Na primeira classe, relaxamos a Ag-condition das fungdes ®;(i = 1,2)
e apresentamos uma defini¢do para a conhecida condigao de Ambrosetti-Rabinowitz
para a nao linearidade. Nessa classe baseamos os resultados em um teorema do ponto
de sela de Rabinowitz sem a condicao de Palais-Smale para funcionais Fréchet dife-
renciaveis combinando com propriedades da topologia fraca*. Na segunda classe, rela-
xamos as condicoes Ay das N-funcoes (iDZ(@ = 1,2) e assumiremos que a nao-linearidade
tem crescimento super-critico. Aqui, usamos um teorema de link sem a condi¢ao de
Palais-Smale para funcionais localmente de Lipschitz e combinamos com um lema de
concentragao-compacidade para espaco de Orlicz-Sobolev nao reflexivo para garantir a
existéncia de solugoes para essa classe.

Palavras-chave: N-funcoes, espaco de Orlicz-Sobolev, métodos variacionais,

funcionais localmente Lipschitz, condicao As, equagoes de Schrodinger.
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Chapter 1

Introduction

In the study of partial differential equations, we encounter problems such as
(1.1) —Apu = f(z,u) in Q

where f(x,-) is a continuous function in R for each z € Q (where Q C R is a domain)
and p > 1. The above operator frequently appears in physical models, for example in
Newtonian and non-Newtonian fluids (see [42, 43| and references therein). There are
several techniques to address problem (1.1), one of which is the well-known variational
method. This method associates the problem with a functional, commonly called the
energy functional in the literature, which in this case would be a functional I : X — R
given by
1

(1.2) I(u) = ]3/RN |VulPdx — /QF(:E,u)dx

where F(t) = f(f f(s)ds and X is a Banach space. Under suitable conditions on the
function f : Q@ x R — R the functional (1.2) belongs to the class C'(X,R). Conse-
quently, the equation (1.1) can be approached by finding critical points of the functional
I, i.e., functions u € X such that I'(u) = 0, where I’ is the Fréchet derivative of the
functional I. Some topological properties of the energy space X, such as separabi-
lity and reflexivity, are also crucial when studying the critical points of the energy
functional. The works of Schwartz [36], Palais and Smale [68], Ambrosetti and Rabi-

nowitz [2|, and Benci and Rabinowitz [71] are clear examples of how to obtain critical



points for a functional belongs to the class C'! and highlight the importance of reflexi-
vity in obtaining critical points for the functional .
In order to generalize the study of equations of the type (1.1), several authors

have recently been working on quasilinear equations of the form
(1.3) —Agu = f(z,u) in Q

where f(z,) is a continuous function on R for each z € Q (where Q C RY is a domain)
and Agu = div(¢(|Vu|)Vu) in which ¢ : (0,00) — (0,00) is a function C* so that the
function ® : R — [0, 00) of the type

d(t) = /0|t sp(s)ds, teR,

is an N-function (See Definition 2.1). The operator described above is associated
with many applications in physics, such as nonlinear elasticity, plasticity, generalized
Newtonian fluids, non-Newtonian fluids, and plasma physics. The reader can find more
details about this subject in [66], [47], [57], and their references. Similarly to what was
described for equation (1.1), associated with the problem (1.3) we have the energy
functional I : Wh®(Q)) — R given by

(1.4) I(u):/RN CI>(|Vu|)dx—/QF(x,u)dx,

where F(t) = fot f(s)ds. It is easily seen in the literature that this functional belongs to
C" when the so-called Ay-condition (See definition 2.4) is assumed on ® and ® (Com-
plementary function of ®). Furthermore, this ensures that the Orlicz-Sobolev space
W?(Q) and D»®(Q) are reflexive Banach spaces (See for instance Chapter 2). The
papers Bonanno, Bisci and Radulescu [20, 21|, Cerny [67], Clément, Garcia-Huidobro
and Manasevich [63], Donaldson [69], Fuchs and Li [45], Fuchs and Osmolovski [47],
Fukagai, Ito and Narukawa [59], Gossez [34], Le and Schmitt [72], Mihailescu and Rad-
ulescu [50, 51], Mihailescu and Repovs [52], Mihailescu, Radulescu and Repovs [53],
Mustonen and Tienari [74], Alves e.t.al [9], Orlicz |75] and their references, are clear
examples of works where the so-called A,-condition is assumed on ® and & (Com-
plementary function of ®), which ensures that the Orlicz-Sobolev space W1*(Q2) and
DY?(Q) are reflexive Banach spaces.

In recent years, problem (1.3) without the Ag-condition on the function ® have

been studied. This type of problem presents many difficulties when applying variational
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methods. For example, it is observed in the literature that the energy functional
associated with the problem might not belong to C, so classical minimax type results
cannot be used here. To overcome this difficulty, some recent articles suggest the use
of the minimax theory developed by Szulkin |7]. Notable examples include [11]. In
that paper, Alves and Carvalho study a class of problems

—Agu+ V()p(u)u = f(u), inRY

u € WHP(RY) with N > 2

when V is Z"-periodic and f is a continuous function satisfying some technical condi-
tions. The A,-condition of N-function ® has not been required.
Another work in which the Ay-condition of A/-function ® can be relaxed is [16].

Silva, Carvalho, Silva and Gongalves study a class of problem

—Agpu = g(x,u), in
u =0, on 0f)

where Q C RV, N > 2, is a bounded domain with smooth boundary.

It is worth mentioning that in the works above we cannot rely on standard analysis
because the Orlicz-Sobolev spaces associated with the mentioned problems might not
be reflexive. This is a challenge to apply when applying variational methods. To
overcome these obstacles, we consider the weak* topology to recover some compactness
required in variational methods. Based on these new challenges, we dedicate the first
part of this thesis to studying two problems where the Ay-condition of the A-function
® is removed.

Specifically, in Chapter 3 we present a joint paper with Professor Marco Souto
[37]. The main goal of this chapter is to prove the existence of solutions of the following
class of quasilinear equations:

b —Agpu + V(2)o(lu)u = K(x)f(u), in RY

" ue€ DY*(RY), u>0, in RY

for N > 2 and assuming that V, K : R — R and f : R — R are continuous functions
with V', K being nonnegative functions and f having a quasicritical growth. The

motivation for studying equation (P;) initially arises from the problem proposed by



Ambrosetti, Felli and Malchiodi [4]. In that paper, the authors studied the problem

—Au+V(r)u = K(z)u?, in RY
(1.5)
u€ DY (RY), u>0, in RY

for N >2e2<p< N—J_rg Furthermore, they assumed that V' | K satisfying the

following assumptions:

V, K : RY — R are smooth functions and there exist 7, &, 71, 72, 73 > 0 such that

ay T3 N
<V(z) < d K(r) < —— R K
T S () <7 and 0< (x)_1+|x|£,Vx€ (VK)
and 7, £ verifying
N +2 4¢

N—3 rN_g P it0<&<Torl<p when&=r.

The condition (V' K) is interesting, because in Opic and Kufner |?| was showed

that it can be used to prove that the space E given by

E = {u c D"*(RY) : /RN V(z)uldr < —i—oo}

endowed with the norm

lulls= / (IVul? + V(2)u?)de
RN
is compactly embedded into the weighted Lebesgue space

LA = {u : R — R : u is measurable and K(z)|uftde < oo} :

RN
In [3], Ambrosetti and Wang have considered also the condition (V K), however
the inequality on V' is assumed only outside of a ball centered at origin.
Inspired by [4] and [3]|, Alves and Marco Souto in [10] generalized the problem
(1.5) for a general class of nonlinearity. Moreover, the authors assumed that the func-
tions V, K : RY — R are continuous and satisfy:
(K{)V >0, K € L*(RY) and K is positive almost everywhere.
(I) If {A,,} € RY is a sequence of Borelian sets such that sup |A4,| < +o0, then

lim K(z)dx =0, uniformly in n € N. (K7})
r=+00 J 4,nBs(0)



(IT) One of the below conditions occurs:

K oo
o e Lo(RY) ()
or there is p € (2,2*) such that
K
(xQ)*ip — 0 as |z| — +oo. (K})
V(@)=

These conditions generalize the condition (V K). Related to the function f, the authors

assumed the following conditions:

(fY lim& =0if (K3) holds or limsup )] < o0 if (K}) holds ,
t—=0 t—0+ p-1
(f%) f has a quasicritical growth, that is
: f(@)
1 —
maup 1y =0

(f3) s'=™f(s) is an increasing function in (0,+o00) and F(t) = fot f(s)ds is is su-

perquadratic at infinity, that is,

Flt)

|t 400 [t]?

Motivated by the above references, more precisely by papers [10], [11] and [16],
we begin to study the problem (P;) where the Ay-condition of the N-function ® is

removed. In this sense, we suppose that ® : R — [0, 00) is an AN-function of the type

(1.6) O(t) = /0|t| sp(s)ds, teR

for a function ¢ € C*((0, 00), (0,00)) satisfying

(1) t — to(t) is increasing for ¢ > 0.
(¢2) Jlim t¢(t) =0 and  lim_t¢(t) = +oo.
2 2
N
(¢p3) 1<€—infM<supM:m<N,m<€*:€— m # 1,

=5 TR0 B() T b O(h) N—¢

(1)

tm—2

(¢4) t—

is nonincreasing on (0, 0o).



In Example 2.2.4, we show that the function

(1.7) @a(t) = [t In([t” + 1) for 0 < a < ——

o ()2
is an N-function satisfying conditions (¢1) — (¢4) and 1 = ¢ = inf fa(t) and m < (*

t>0 D, (t)

where

In(t* + 1) et

o , fort > 0.
t * t*+1

ba (t) =

As can be seen in Lemma 2.19, the N-function (1.7) is an example of where function
o, (Complementary function of ®,) does not satisfy the Ay-condition. Therefore, by
Lemma 2.26, the Orlicz-Sobolev space associated with N-function (1.7) may not be
reflexive, consequently, the (P;) may be associated with a non-reflexive Orlicz-Sobolev
space. In order to generalize the results in the paper [10] to a class of A/-functions of
type (1.7) that satisfy conditions (¢1) — (¢4), Silva and Marco Souto in [37] introduced
the following assumptions regarding the potential V' and the coefficient K:

(Ko) V >0, K € L*(R") and K is positive almost everywhere.

(I) If {A,} € RY is a sequence of Borelian sets such that sup |A,,| < +o0, then

lim K(z)dx =0, uniformly in n € N. (K1)

T+ J A,,nB&(0)

(IT) One of the below conditions occurs:

K 0 N
VGL (R™) (K>)

It
or there are ay,as € (m, £*) and a N-function A(t) = / sa(s)ds verifying the follow-
0

ing properties:

(1.8) a; < a/(lt(lt) < ay
and
K(z)
() — 0 as |z| = +o0 (K3)

O(s)  Du(s)
A(s)  A(s)
gate function of ® (see the definition of ®, in Chapter 2 of tesis).

with H : RY — R given by H(z) = migl {V(x) } where ®, is the conju-
s>

This hypotheses above leads us to define that (V) K) € K; if conditions (Kj),
(K1), and (K5) are satisfied. Conversely, when conditions (Kj), (K1), and (K3) are

6



met, we denote (V, K) € Ky. In the appendix B, you can see examples of functions V'
and K belonging to the classes K; and Ky, respectively.

To study the main results of this chapter, we will divide the study of problem
(Py) into two conditions: (V, K) € Ky and (V, K) € Ks.

In the case (V, K) € K;. In our first main result, by means of some conditions
imposed on ® and f, we will show that the problem (P;) has a C>¥(RY) positive ground

state solution. More specifically, we assume that ® satisfies conditions (¢;) — (¢4) and

® €, i.e, there is a constant C' > 0 satisfying
(Cm) O(t) > CJt|™, for all ¢t € R.

Furthermore, f : R — R satisfies the following conditions

(f1) lim&:() and  limsup /)

10 t¢(t) troo 1P(t)
where ¢, (1)t is such that the Sobolev conjugate function ®, of ® is its primitive, that
[¢]

i 0.(0) = [ 0u(s)sds.

0
(fo) ™™ f(s) is an increasing function in (0, +00).

=0,

(f3) F(t) = fg f(s)ds is m-superlinear at infinity, that is,

Under these conditions, our first main result can be stated as follows.

Theorem 1.1 Assume that (V,K) € Ky and ® € C,,. Suppose that (¢1) — (¢4) and
(f1) — (f3) hold. Then problem (Py) possesses a nonnegative solutions that are locally
bounded.

To study the regularity of the solutions provided by Theorem 1.1, we add the
following assumptions:

(¢5) There are 0 < d < 1, C1,Cy > 0 and 1 < § < £* such that
CitP™ < to(t) < Cot®™ for t € [0,4].

(¢6) There are constants oy > 0 and d; > 0 such that

(6(0)t)
o) ="

We are in position to state the following regularity result:

0p < fort > 0.

7



Theorem 1.2 Suppose that @ satisfies (¢5) — (pg). Under the assumptions of Theorem

1.1, the problem (P) possesses a C%(RN) positive ground state solution.

For the next main result, we consider the problem (P;) without condition C,,. The
removal of this condition on the N-function ®, forced us to present a more restricted
growth condition that (f;). This constraint under the nonlinearity f will be necessary
to show that the nonnegative solutions of (P;), are positive. In this way, we will
consider B : R — [0,00) being a N-function given by B(t) = l'b(s)sds, where
b:(0,00) = (0,00) is a function satisfying the following conditions:

(By) t — tb(t) is increasing for ¢ > 0,
By) hm tb(t) =0 and lim th(t) = +oo,
Bs) There exist by € [m, f*] such that

(
(

L b(t)t? b(t)t2
— inf and (* :
T Ezsu gy V=0

For this case, we assume that f: R — R satisfies the conditions (f3) and (f3). More-
over, we will consider the following growth condition
|/ (1)l

_f(t) .
Moy — 0 and o lmsup e =0

(/1)

Our second main result can be written in the following form.

Theorem 1.3 Assume that (V, K) € Ky. Suppose that (¢1) — (¢4), (f2), (f3) and (f4)
hold. Then problem (Py) possesses a nonnegative solutions that are locally bounded. If
O also satisfies (¢5) and (¢pg), the solutions for the problem (Py) are Clloj‘(RN) positive

ground state solution.

To study this second class of problem where (V,K) € Kj, we assume that

f R — R satisfies (f2) and (f3). Moreover, we will consider the following condition

SOy SO

(f5) lim sup < 00

im =0.
o ta(?) R 16,0

Our first main result of this section can be stated as follows.

Theorem 1.4 Assume that (V,K) € Ky and & € C,,. Suppose that (¢1) — (¢pa),
(f2), (fs) and (fs) hold. Then problem (P;) possesses a nonnegative solutions that are
locally bounded. If ® also satisfies (¢5) and (¢g), the solutions for the problem (Py) are

CLY(RN) positive ground state solution.



In a second moment, as in Theorem 1.3, we relax the condition ® € C,, and
present a more restricted growth condition that (fs). More precisely, f : R — R

satisfies

(f6) lims.upM <oo and lim & =0.

=0 ta(t) t—o0 th(t)
Furthermore, we will assume that f satisfies (f2) and (f3).

Our second main result of this subsection can be written in the following form.

Theorem 1.5 Assume that (V, K) € Ky. Suppose that (¢1) — (é4), (f2), (fs) and (fs)
hold. Then problem (Py) possesses a nonnegative solutions that are locally bounded. If
® also satisfies (¢5) and (¢g), the solutions for the problem (Py) are Cu%(RYN) positive

loc

ground state solution.

It can be observed that Theorems 1.2 and 1.4 generalizes and strengthens the

Theorem 1.1 presented by Alves and Marco Souto in [10].

Now, continuing the study of the existence of positive solutions for a class of
quasilinear Schrédinger equations with a potential vanishing at infinity in non-reflexive
Orlicz-Sobolev spaces, in Chapter 4, we present a joint paper with Professor Marco
Souto [38]. We aim to extend the ideas presented in Chapter 3 by modifying the
structure of the right-hand side of equation (P;) with an Stein-Weiss convolution term.
More specifically, we propose to study equations of the type:

| B vt = e ([ TR ) Kwsie), = <7
u € DH*(RY)

where o > 0, N > 2, A > 0, VK € C(R",[0,00)) are nonnegative functions that
may vanish to infinity, the function f € C(R,R) is quasicritical and F(t) = fot f(s)ds.
To address the above problem, we suppose that ¢ : (0,00) — (0,00) is a C! function
satisfying the conditions (¢1) — (¢4) defined above, furthermore we will assume that
0<a<Xand A+2a € (0,N)N(0,2N — 2.

When o = 0, due to the presence of the Choquard type nonlinearity, the problem
(P,) is known as a Choquard equation. In that case, to show the existence of solution
using variational methods, a tool of the main tool to deal with such type of equations
is Hardy-Littlewood-Sobolev inequality [18]. Several works use this approach, we can
mention [17,25,65]

It is clear that there is a physical interpretation for Choquard type of equations,

we refer to [73] and survey of such type of equations.
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Recently, in [13], Alves, Radulescu and Tavares studied the equation (P,) with
V = K =1 and a = 0 using different assumptions on the N-function ®. In this work,
the authors aimed to show that the variational methods could be applied to establish
the existence of solutions assuming that the A/-function ® satisfies the conditions (¢1)—
(¢3) with £ > 1. One of the main difficulties was to prove that the energy functional
associated with equation (P,) is differentiable. However, good conditions involving the
function f made it possible to show the differentiability of the energy functional and
consequently allowed to guarantee the existence of a solution through the mountain
pass theorem. It is also worth mentioning that in the same work, Alves, Radulescu
and Tavares extended the result to the case where K = 1 and V is one of the following
potentials: periodic function, asymptotic periodic function, coercive or Bartsch-Wang-
like potential.

Before we present the first results of this chapter, we will write a fundamental tool
for studying problems with anisotropic Stein-Weiss convolution term that is the Stein-
Weiss inequality [19], that is the extension of the Hardy-Littlewood-Sobolev inequality.
Proposition 1.1 [Stein-Weiss inequality]/ Set t,r > 1, A € (0,N) o + 5 > 0 and

o+B+FANSN. If1/t+1/r+(A+0+3)/N=2and1 -1/t —=A/N <a/N <1-1/t.
Then there ezists a constant Cy = C(t,r, 0,5, N, \) such that

[ ] oy < ol ol
ry Jrv 2] Iw—yl [yl

forall g, € L"(RN) and g, € LY(RY), where Cy is independent of g1, go. Foro = =0,
it is reduced to the Hartree type (also called the Choquard type) nonlinearity, which is
driven by the classical Hardy-Littlewood-Sobolev inequality (See [18]).

(1.9)

Inspired by [10] and [37], to proceed with the study outlined in this chapter,
it will be necessary to present new assumptions regarding the potential V' and the
coefficient K, so that the study carried out in the previous chapter can serve as a guide
to determine the existence of a solution for the equation (7). In this sense, we consider

2N

the constant § = ——— — > 0 and we will assume that V' and K satisfy:
2N —2a— A\

(Qo) V >0,Q € L>*(R"Y) and K is positive almost everywhere.

(I) If {A,,} € RY is a sequence of Borelian sets such that sup |A4,| < +o0, then

lim K(x)’dx =0, uniformly in n € N. (@Q1)
T+ J A,,nB:(0)

10



(IT) One of the below conditions occurs:

0

KV e L>®(R") (Q2)

or there are by, by € (m, ¢*) and an N-function B(t) = O\tl b(T)rdr verifying the follo-

wing properties:

(B1) t — tb(t) is increasing for ¢ > 0.
(Bs) t1_1>r51+ tb(t) =0 and t£+moo th(t) = +oo.
(By) b < POL  forall £ 0
(By) The function B(|t|"/?) is convex in R
and
K 0
H@) 0 as |a] = +oo (Qs)
) D, . . .
where H(z) = Igl;g {V(:U) B((:; + B((:))} and ®, is the conjugate function of ® (see

Section 2).

This hypotheses above leads us to define that (V, K) € Q; if conditions (Qy),
(@Q1), and (Q2) are satisfied. Conversely, when conditions (Qy), (Q1), and (Q3) are
met, we denote (V, K) € Q,. In the appendix B, you can see examples of functions V'
and K belonging to the classes Q; and O, respectively.

To study the main results of this chapter, we will divide the study of problem
(P,) into two conditions: (V,K) € Q; and (V,K) € Qs.

2N

Note that the constant 0 = ——————— satisfies
2N — 200 — A

AP gL g 2 oAt
N°N g

2
1 — z
0 N

=2.

| =

These inequalities will be fundamental for us to apply the Proposition 1.1.
Inspired by the Chapter 3 and by papers [37] and [11], we need to assume certain

conditions on f.
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We will consider A : R — [O +00) and Z : R — [0,4+00) N-functions given
by A(w flwl ta(t)dt and Z(w flwl tz(t)dt where a : (0,4+00) — (0,+0c0) and

z: (0, +oo) — (0, +00) are functions satisfying the following conditions:

(Ay) t — ta(t) is increasing for ¢ >0 and ¢+ tz(¢) is increasing for ¢ > 0.

(As)  lim ta(t) =0, lim ta(t) = +oo and lim tz(t) =0, lim tz(t) = +oo.

t—0+ t——+o00 t—0t t—+oo

(A3) There exist ay,ag, 21, 22 € [m, £*] with a; < as < 21 < 29 such that

a(t)t?
(110) a1 < /(1()15) < asy, vt > 0.
and

1)t )t?
(1.11) z = inf () and z > sup ()

>0 Z (1) 0 ()
(A4) The functions A(|¢t|*/?) and Z(|t|'/?) are convex in R.

We assume that f: R — R is continuous and satisfies the following conditions:

- f() . f(t)
(f1) lim sup =0 and lim -
' t—=0 (a(|t|)|t|2—9)1/9 t—+oo (z(|t|)|t|2—9)1/9
(f2) tl_m/2f(t) is nondecreasing on (0, +00)
(f3) f()>0fort>0and f(t) =0fort <0
F(t)

(f2)

:+Oo

ltlsoo [t] 2
Assuming the conditions above, our first main result can be stated as follows.

Theorem 1.6 Assume that ® satisfies (¢1) — (¢a), 0 < a < X and A+ 2« € (0, N) N

(0,2N — 25) . Suppose that (V,K) € Q1, (A1) — (A4) and (f1), (f2), (f3), (f1) hold.
Then, problem (P,) possesses a nonnegative ground state solution. If 2a+ X\ < 2¢, then

the nonnegative solutions are locally bounded.

To study the regularity of the solutions provided by Theorem 1.6, we add the
assumptions (¢5) and (¢g).

We are in position to state the following regularity result:

12



Theorem 1.7 Supoose that ® satisfies (¢5)— (¢g). Under the assumptions of Theorem
1.6, if K € L'(RN), o = 0 and A < 2¢, then the problem (P) possesses a C7(RN)

loc
positive ground state solution.
To study this second class of problem where (V,K) € Q,, we assume that
f R — R satisfies (f2), (f3) and (fy). Furthermore, for this case, we replace the

condition (f;) with the following condition:
f(t)

- ft) .
(f5) lim sup < oo and lim =0
5 PN (%b(‘t’)’tPfG)l/@ t——o00 (%¢*(|t’>’t‘279)1/9

where ¢, (t)t is such that the Sobolev conjugate function ®, of ® is its primitive, that
[¢]
is, . (t) = G4 (s)sds.
0
Our first main result of this subsection can be stated as follows. Under these

conditions, the next result of the existence of a nonnegative solution has the following

statement:

Theorem 1.8 Assume that ¢ satisfies (¢1) — (¢4), 0 < a < X and A+ 2a € (0,N)N
(0,2N — 2%). Suppose that (V,K) € Qa, (B1) — (Ba) and (f2), (f3), (f1), (f5) hold. If

O, (|t|'?) is convex in R, then the problem (P;) possesses a monnegative ground state

solution.

In a second part of this thesis, we study the existence of solutions for two classes

of quasilinear systems of the type:

—Ag,u = Fy(z,u,v) + ARy (z,u,v) in
(S) —Ag,v = —Fy(z,u,v) — AR, (z,u,v) in Q
u=7v=0 on 0

where Ag,u = div(¢;(|Vu|)Vu), i = 1,2. This type of system has been explored using
variational methods techniques by several authors. For example, in [23|, Ding and
Figueiredo consider the noncooperative system (S) with ¢1(t) = 1, ¢a(t) = 1, A =1
allowing that the function F'(x,u,v) can assume a supercritical and subcritical growth
on v and u respectively. They established the existence of infinitely many solutions to
(S) provided the nonlinear terms F and R are even in (u,v). Already in [41], Clapp,
Ding and Hernandez showed that multiple existence of solutions to the noncooperative
system (.S) with some supercritical growth can be established without the symmetry

assumption. Motivated by some results found in [41] and [23|, Alves and Monari in [12]
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studied the existence of nontrivial solutions for (S) when ¢, (t) = [¢t[P72, ¢o(t) = [t]|972
(p,q > 1) with p and ¢ are different from 2, A = 1 and F(x,u,v) has a supercritical
growth on variable v and has a critical growth at infinity on variable u of the type |u|P’
with p* = pN/(N — p), the critical exponent of the embedding W,?(Q) — L (Q).
The main difficulty in this case is the lack of compactness of the functional energy
associated to system. To overcome this difficulty, they carefully estimate and prove
through the concentration-compactness principle due to Lions [65] the existence of a
Palais-Smale sequence that has a strongly convergent subsequence.

In a brief bibliographical research, we can mention some contributions devoted
to the study of system where ®; and ®, are less trivial functions, as can be seen in
[33,40]. We would like to highlight the paper [40], Wang et al. considered the following

quasilinear elliptic system in Orlicz-Sobolev spaces:

—Ag,u = Ry(z,u,v) in Q

(1.12) —Ag,v = Ry(z,u,v) in Q
u=uv=0 on Jf

where ) is a bounded domain in R¥(N > 2) with smooth boundary 9. In that
paper when R satisfies some appropriate conditions including (®;, ®5)-superlinear and
subcritical growth conditions at infinity as well as symmetric condition, by using the
mountain pass theorem and the symmetric mountain pass theorem, they obtained
that system (1.12) has a nontrivial weak solution and infinitely many weak solutions,
respectively. Some of the results obtained extend and improve those corresponding
results in Carvalho et al [49]. In [33], Huentutripay-Manasevich studied an eigenvalue

problem to the following system:

—Ag,u = ARy (x,u,v) in €
—Ag,v = AR, (z,u,v) in Q
u=v=0 on 0f

where the functions (®;)., i = 1,2, exists (See Lemma 2.15). Furthermore, the function

R has the form

R(z, s1,592) = A1(z, s1) + b(x)['1(s1)Ta(s2) + Aa(x, $2),
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with b € L*>°(Q2) and the functions I'y, ['y are given by

) = [ ls)sds

and v; an odd increasing homeomorphism from R onto R, ¢ = 1,2. Additionally, A;,
t = 1,2 are given by

Ay(z,t) = /Ot a;(x, s)ds

where ay,as : 2 X R — R are Caratheodory functions that satisfy the following growth
conditions:

lai(z,t)| < ai(z) + C: P P(Cit)

for a.e. € Qand for all ¢ € R. Here, fori = 1,2, C;, C; are positive constants, P, is an
N-function with P; << (®;). (See Definition 2.6) and a; € L (), with a;(x) > 0, for
a.e. x € Q. It is obvious that in [33], the Orlicz-Sobolev spaces need not be reflexive.

In a brief bibliographical research, one can find several other works involving the
system (.S) where the functions ®; and @, satisfy the Ay-condition and works in which
this condition is relaxed are rare. Given this, in Chapter 5, we present the work [39],
which is a joint collaboration with Professor Marco Souto. In these chapter we will
show the existence of solutions for the system (S) where 2 is a bounded domain in
RY(N > 2) with smooth boundary 9 and F, R : Q x R? — R are continuous function
verifying some conditions which will be mentioned later. Initially, we will assume that

the functions ¢;(i = 1,2) € C'(0, +00) are two functions which satisfy:

(di1) t > tg;(t) are stricly increasing and ¢ — t2¢;(t) is convex in (0, 00);
(¢2) ti(t) >0 as t — 0 and t¢;(t) = 400 as t — +oo;
20, (t 1t

(¢3) 1</t < ?il >, where ®;(t) = / spi(s)ds, t € R;

’ ®;(1) 0

D, (t

(@ 4) lim inf Z<_ ) > 0, for some ¢; > N;

’ t—+oo {4

@, (1) ( t¢/1(t)>'

i 1— 1+ <1, Vt>0.

eo) - (o
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Let d twice the diameter of €2, then we will assume that there exists § > 0 such

that

t2
(¢6) 7 < @y (t/d), Y|t| =6
Regarding the above conditions, in order to find a solution to the systems (.5),
we will assume that we consider F' = 0, A = 1 and that the function R satisfying the

following conditions:

(R}) Re CYQxR?) and R,(z,u,0)#0 forall (z,u) € QxR
/ 1 1 2
(RY,) R(z,u,0) < §<I>1(u/d) + 2—d2]u\ , forall (z,u) e QxR

1
(R;) R(z,0,v) > —§<I>2(U/d)—]\/[v, for all (z,v) € QxR, for some constant M > 0.

(R}) There are v > 0, p > 1 and 0 < § < 1 such that

1 1
(1) ;h(u)Ru(x, U, v)u + ;Rv(x, u,v)v — R(x,u,v) >0, Y(r,u,v)c QxR
and
1
(17) BR(x,u,v) — —h(u)Ry(x,u,v)u >0, V(z,u,v) € Qx R?
L
Dy (u)
where h(u) = ———.
(u) 26, ()

We note that R(u,v) = ®;(u)? ®o(v)? + v satisfies (R}) — (R}) for add 0,0 > 1,
where v*(z) := max{0,v(z)}. Furthermore, the functions ®(t) = (e — 1)/2 and
Dy(t) = [t]?/p (or y(t) = (e — 1)/2) with p > N satisfying ( 1) — (i) These
functions are examples of A-functions whose the complementary functions ®; and ®,

do not satisfy the As-condition, consequently I/VO1 Por (Q) x VVO1 P (€2) is nonreflexive.

Before we state the main result of this chapter, let us recall that
(u,v) € W™ (Q) x Wy **(Q) is a weak solution of (S) if
/¢1(\Vu])VuV<p1dm—/(ﬁg(\Vu])Vquonx—/Ru(x,u,v)cpldx—i—/Rv(m,u,v)cpgdm,
Q Q Q Q

for all (1, 2) € Wy ™ (Q) x Wy ™*(Q).

The main result of this chapter is the following.
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Theorem 1.9 Assume that (¢;,) — (¢;6) and (R}) — (R}) hold. If F =0 and A =1,

then, the system (S) possesses a nontrivial solution.

In proving this theorem, some difficulties arise when relaxing the As-condition
of the functions ®; and ®,. The first of them arises from the fact that the energy
functional .J : Wy (Q) x Wy **(Q) — R associated with the system (S) given by

T, ) :/Q<I>1(|Vu|)dm—/Q<Pg(|Vv|)dm—/R(x,u,v)dm.

Q

no belongs to C*(Wy*' () x W, **(2), R). Have this in mind, we have decide to work in
the space W} E®(Q), because it is topologically more rich than I/VO1 P (Q2), for example,
it is possible to prove that the energy functional J is CY (W3 E®1(Q2) x Wi E®2(Q), R).
Even knowing that the result contained in Proposition 3.7 in [8] presents inconsistency
when dropping the As-condition, we add a ”Ambrosetti-Rabinowitz” condition under
the function R and we refine part of the technique presented by Alves et al., so that,
together with the saddle-point theorem of Rabinowitz without Palais-Smale condition,
we can prove the existence of a Palais-Smale bounded sequence. Finally, due to the
possible lack of reflexivity of the spaces W, (I)(Q)(z = 1,2), we will utilize properties
of the weak* topology of these spaces to guarantee the existence of nontrivial solutions
for the system (), thereby proving Theorem 1.9.

Continuing the study of systems in non-reflexive Orlicz-Sobolev spaces, in Cha-
pter 5, we investigate the existence of solutions for the system (S) where A > 0 is a
parameter, € is a bounded domain in RY(N > 2) with smooth boundary 952, and

¢i(i =1,2) : (0,00) — (0, 00) are two functions which satisfy:

(¢1.4) ¢; € C1(0,+00) and t > tg;(t) are stricly increasing;
(¢2.1) toi(t) > 0 as t — 0 and t¢;(t) - +o00 as t — +o0;
i) t2¢i(t) t
‘ < ) = 2N~ N , — .
(p34) 1 < 4, glg 5t = s;%) 0 m; < N, where ®;(t) o 5¢i(s)ds and

With regard to the function F, we will assume that F(x,u,v) = ®1.(u) + G(v)
where @, denotes the Sobolev conjugate function of ®; and that G is a function

satisfying the following conditions:
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(G1) There are C > 0, G € CYR,R), aj,as € (1,00) and a N -function
A(t) = 0|t| sa(s)ds satisfying

(1) my < a; < a/(lt()tt; <ay, Vt>0

and

(17) lg(s)| < a1Ca(|s])|s|, forall seR

where g(s) = G'(s). If ay > 05, we add that

(i17) (g(t) — g(s))(t — s) > Ca(|t — s|)|t — s|*>, forallt,secR.

(G3) There exists v € (0, ¢;) such that
0 <vG(s) < sg(s), forallseR.

Furthermore, we will assume that the function R satisfies the following conditions:
(R)) R € CYQ x R?), R,(z,0,0) = 0, R,(x,0,0) = 0, R(x,u,v) > 0 and
Ry (z,u,v)u >0, for all (z,u,v) € Q x R2.
(Ry) There are N-functions B(t) = OM sb(s)ds, P(t) = 0|t| sp(s)ds, Q(t) = OM sq(s)ds
and Z(t) = OM sz(s)ds satisfying

(i) my < py < pg&f <pa <
(17) my < by < bg();; < by < 0]
(iii) my < g1 < qgg: <qp <l
(1v) me < 21 < Zz(t()j < 29 < 03,

with max{bs, g2} < min{¢;, ¢3} such that
(1.13)  [Ru(x, u,v)| < Clp(jul)u + q(jv))v) and [Ry(z,u,v)] < Cb(|ul)u + =(|v])v),

for all (z,u,v) € Q x R? and for some constant C' > 0.
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(R3) There exists u € (my, ¢7) such that
1 1 ,
—R,(z,u,v) + —R,(z,u,v) — R(x,u,v) >0, forall x € Qand (u,v) € R,

o v
where v is given by condition (Gy).
(R4) There exists s € (my, max{ps, b2}], a nonempty open subset y C Q and a constant

w > 0 such that
R(x,u,v) > wlul* for all z € Q and (u,v) € R*.

Let us there are examples of functions that satisfy the conditions listed above.
Consider ag,as € (0, % — 1) such that oy < ay. We would like to point out that
Oy (t) = [t|In(]t|** + 1) and Do(t) = |t|In(|t|** + 1) satistying (¢1,;) — (¢s,) with ¢4 =
by =1 and my = 1 4+ a1, my = 1 + ay respectively. These functions are examples

of N-functions whose the complementary functions ®, and @, do not satisfy the As-

condition, consequently VVO1 Por (Q) x I/VO1 P (€2) is nonreflexive.
Before stating the main result of this chapter, we would like to remember that
(u,v) € W™ (Q) x Wy **(Q) is a weak solution of (S) if

/(bl(]Vu\)Vquldw—/qﬁg(]Vfu])Vvagda:—/Hu(ac,u,v)wlda?+/Hy(x,u,v)wgd:c,
Q Q Q Q

for all (wy,ws) € W™ (Q) x Wy**(Q) where H(z,u,v) = F(z,u,v) + AR(x, u,v).

The main result of this chapter is the following.

Theorem 1.10 If (¢1,) — (¢3.4), (1 =1,2), (G1) — (G2), (R1) — (R4) hold, then there

exists Ao > 0 such that (S) possesses a nontrivial solution for all X > X,.

This theorem was inspired by the results presented in [12|. However, the first
difficulty in studying this case arises from the lack of differentiability of the energy
functional Jy : Wy " (Q) x Wy *?(2) — R associated with the system (S) given by

Ja(u,v) :/¢)1(|Vu|)dx—/(132(|Vv|)dm—/F(w,u,v)dx—)\/R(a:,u,v)dx.
Q Q Q Q
To get around this difficulty we will use the critical point theory for locally lipschitz
fuctionals, here, in particular we apply a version of the linking theorem without Palais-
Smale condition for locally lipschitz fuctionals (The version that will be applied in
Chapter 5 we took care to enunciate in Appendix A). A second difficulty of studying

this case is the lack of compactness of the energy functional Jy. To overcome this
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difficulty, we adapted some arguments presented in the works of Alves and Soares
in [12] and from Fukagai et al, in [58]|. Here, we carefully estimate and prove through
the second concentration-compactness lemma of P. L. Lions for nonreflexive Orlicz-
Sobolev space that there exists a constant Ay > 0 such that the sistem has a nontrivial
solution for any A > Aq.

In Appendix A, we present some minimax results involving critical point theory
for locally Lipschitz functionals. These results are utilized in Chapter 5.

This thesis concludes with Appendix B, where we provide detailed examples of
functions that satisfy the conditions (V,K) € Ky, (V.K) € Ko, (V,Q) € Q; and
(V,Q) € Q5.
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Chapter 2

Orlicz and Orlicz-Sobolev spaces: A

review

In this chapter, we will make a brief study of the main properties involving Orlicz
and Orlicz-Sobolev spaces. It is important to emphasize that the information present
in this chapter constitutes only the minimum language necessary for the study present
in this thesis. We suggest to interested readers the references [1,54,55,58,59| for a more

complete study on the subject. In Portuguese, we suggest the thesis [32].

2.1 N -function

In this section we recall some properties of A-function.

Definition 2.1 We will say that ® : R — [0, +00) is a N -function if
(i) ® is convex and continuous;
(i) ©(t) =0 < t=0;

(iii) ® is even;

P P
(iv) limﬂ =0 and lim # = 400

t—0 t——+o00

Example 2.1.1 Below, we list some classic examples of N -functions.

(i) ®,(t) = 1[t|P, where p € (1,00) and t € R;

)

(ii) ®o(t) = L|t]P + %|7§|‘17 where p,q € (1,00) and t € R;
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(11i) P3(t) = (1 +1)* — 1, where « > 1 and t € R;
(iv) ®4(t) = |t|PIn(1 +t), where p € (1,00) and t € R;
(v) ®5(t) =€ —1 fort € R;

(vi) ®(t) = el —|t| — 1 fort € R.

In the following, we list a result that characterizes the N -functions.

Lemma 2.1 Let ® : R — [0,+00) be a function. Then ® is a N -function if and only
of

(2.1) d(t) = /lt' o(s)ds, teR
0
where ¢ : [0,400) — [0, +00) is a function satisfying
(i) ¢ is right-continuous and non-decreasing in (0, 00);
(it) ©(t) = 0 if and only if t = 0;
(i) lim (1) = oo;
(iv) o(t) >0, fort > 0.

For each N-function, we can define a special class of functions called comple-

mentary functions.

Definition 2.2 (Complementary Function of ®) Let ® be a N -function. The com-
plementary function of ®, denoted by ®, is the function given by

d(t) = sup{st — ®(s)}, for t>0.

s>0

Example 2.1.2 The N -function ®4(t) = %|t]p with p € (1,00) and t € R, has as a

complementary function

1
By(t) = —|if", t € R
q
1,1 _
where e = 1.
It is clear in the example 2.1.2 that the definition of complementary function

generalizes the concept of conjugate function to Lebesgue spaces. The above definitions

allow us to do the following lemma:
Lemma 2.2 If & is a N-function, then ® is also a N -function.
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Next, we list some properties involving N -functions.
Lemma 2.3 The N -function ® satisfies:
1. ®(at) < a®(t), a €[0,1] and t > 0;
2. ®(pt) > po(t), 6>1andt > 0;
3. (Young’s inequality) Given s,t € R, then
st < B(s) + d(t),

equality holds if, and only if, s = @(t) ort = p(s), where ¢ and ¢ satisfy
s t
O(s) = / o(r)dr and ®(t) = / o(r)dr;
0 0
4. If ® is of the form (2.1) with ¢ continuous and increasing, then

N ||
B(1) = / oL (s)ds:

>~
KA

(p(t)) < @(2t), for > 0.

5. &MLy < (), fort > 0.

2.2 Orlicz Space

In this section, we aim to present Orlicz spaces. For more details, we suggest the
reader the references cited at the beginning of this chapter.

To continue this brief review of Orlicz spaces, from now on, unless otherwise
indicated, we will always assume that €2 is an open set of RY, with N > 1, and that
® is an N-function. In these configurations, we will present the definition of Orlicz
Spaces.

In what follows, fixed an open set Q C RV.

Definition 2.3 Let ® be a N -function. We define the Orlicz space associated with
D as

L*(Q) = {u € L;,.(Q): / ® (M) dx < +00 for some \ > O} :
0 A

The convexity of the A/-function ® guarantees that L®(f) is a vector space.

Furthermore, the space L®(€2) is a Banach space equipped with the Luxemburg norm

Hu]|¢:inf{)\>0:/<1><m>dx§1}.
.\
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Example 2.2.1 Considere a N -function ®(t) = %\t]p with p € (1,00) and t € R.
Then,

loc

L*(Q) = {u € L, (9): / ’%’pda: < 400 for some A\ > O} = LP(Q).
Q

As a consequence of this equality, we can conclude that Orlicz spaces are generalizations

of Lebesque spaces.

Throughout this thesis, the separability and reflexivity of Orlicz’s spaces are

sometimes questioned. The next definition plays a key role in these properties.

Definition 2.4 Let ® be a N -function. We say that a N -function ® verifies the A,-
condition (P € (Ay)), if there are constants K > 0, to > 0 such that

D(2t) < KB(t), Vt>tq.
Remark 2.1 |Q] = 00, ® € Ay with ty = 0.

Example 2.2.2 The N -functions ®,, ®5 and ®4 given in example 2.1.1 are examples
of N -functions that check the Ay-condition. Already the N -function ®5 defined in

example 2.1.1 also satisfies the Ay-condition whenever a € (1, %) The N -functions

®5 and P are examples of N -functions that do not satisfy the Ay-condition.

Lemma 2.4 Let ® be a N-function given by

[¢]
O(t) = / p(s)ds.
0
Then ® € (Ay) if and only if there are a > 0 and ty > 0 such that

to(t)
N < qn > .

Lemma 2.5 (Young’s Integral Inequality) Given u € L*(Q) and v € L*(Q), then

uwv € L'(Q) and /

Q

wvdzr < / & (u)dxr + / d(v)de.
Q Q
Lemma 2.6 (Young’s inequality) Given u € L*(Q) and v € L*(Q), then

/ wvdz < |[ullo-+][v]ls-
0

Definition 2.5 Let ® be a N -function. If |Q| < oo, the space E*(Q2) denotes the clos-
ing of L>®(Q) in L®(Q) with respect to the norm ||-||s. When || = oo, the space
E®(Q) denotes the closure of By(2) in L®(Q) with respect to morm |||, where

By(Q) ={u € L>(Q) : supp(u) CC Q}.
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Remark 2.2 E?(Q) = L®(Q) if and only if ® satisfies the Ay-condition.
Lemma 2.7 Let ® be a N-function. Then:
1. E*(Q) is separable;
0 E%Q) = T
3. L¥(Q) = (E*(Q)" and L*(Q) = (E*(Q));
4 L(Q) - BR(9) = B*©)
5. L2(Q) is separable if and only if ® satisfies the Ny-condition;
6. L*(Q) is reflexive if and only if ® and ® satisfy the No-condition ;

7. (Riesz Representation Theorem) Let F € (EQ)(Q))/, then there is a unique
v e L*(Q) such that

F(u) = /qudx, u € E*(Q).

Lemma 2.8 If ® is N-function and ([, ®(|u|)dz) is a bounded sequence, then (uy)
is a bounded sequence in L*(Q)). When ® € (Ay), the equivalence is valid.

Lemma 2.9 Let ® satisfying the Ay-condition. Then, u, — u in L*(Q) if and only if
Jo ®(Juy — ul)dz — 0.

The following result will be useful in applications involving Lebesgue’s Theorem

in the context of Orlicz Spaces.

Lemma 2.10 Let ® a N -function and (u,) a sequence in E®(Q) with u, — u in
E®(Q). Then, there is H € E*(Q) and a subsequence (uy,) such that

(i) |un,(7)] < H(x) a.e. in Q;

(i4) un,;(r) = u(z) a.e. in Q and all j € N.

The next results is a classic Brezis-Lieb lemma for reflexive Orlicz spaces.

Lemma 2.11 Let ® be a N-function such that ®, ® € (Ay) and (u,) C L*(Q) is
bounded. Suppose that u, — u a.e. in Q. Then u € L*(Q) and u,, — .

The following lemma is an immediate consequence of the Banach-Alaoglu-Bourbaki

theorem [27], and is crucial when the space L?(Q) can be nonreflexive.
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Lemma 2.12 Assume that ® is a N -function . If (u,) C L*(Q) is a bounded se-
quence, then there exists a subsequence of (uy), which we will still denote by (uy,), and
u € L*(Q) such that

U, ~u in L*(Q)
or equivalently,

/ upvdr — uvdx, Vv € E‘D(Q)
RN RN

Next, we present the first embedding result.
Lemma 2.13 Let ® be a N -function. Suppose || < oo, then

L*(Q) — LY(Q)

cont
For the next embedding result, we will make the following definition:

Definition 2.6 Let ®; and 5 N -functions. We say that ®, grows strictly slower
than ®+, if for any k > 0

P (t
lim 1(t)

In this case, we use the notation ®5 << 1.

Lemma 2.14 Let ®; and ®o N -functions such that @y << ®;1. Suppose that || < oo,
then

L (Q) — L™(Q).

cont

Now, we will define another class important set of N -functions called critical

growth functions.

Lemma 2.15 Let ® the N -function satisfying

(2.2) /01 20 s < oo and /100 2705 g5 — oo,

1 1
sttw sty

Then, the function ®;' : [0,00) — [0,00) given by

o (1) = /0 ),

1
SN

is bijective and its inverse ®,, extended in R so that @, is an even function, is a
N -function.
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The N-function ®, is called critical growth function. The motivation for this

denomination is seen in the example below.

Example 2.2.3 The N-function ®4(t) = %|t|p, with p € [1, N), has the critical growth
function

Pt eR,

1

where p* = %.

Now, we list results that play a crucial role in this work. To do this, let us consider

¢ :(0,00) = (0,00) a continuous function satisfying:
(¢1) t+— tp(t) is stricly increasing.

(p2) tp(t) — 0 ast — 0 and to(t) — +o0 as t — +oo

2 2 It
(p3) 1 <(l= gé% < stli%) % =m < N, where ®(t) = /0 so(s)ds.

Extend the function ¢ — ¢(s) to R as an odd function and define the function ®

by
It|
(2.3) (1) :/ so(s)ds, teR.
0
It is clear that ® is a N -function. In fact, define
to(t), t>0
p(t) =
0, t=0

It is clear that ¢(t) > 0 for ¢ > 0, and by (¢2) we conclude that ¢ is continuous

in [0,00) and tlim ©(t) = oo. Furthermore, from the condition (¢,) it follows that
—00

¢ is non-decreasing in (0,00). Therefore, by Lemma 2.1, we conclude that ® is a

N-function.

Remark 2.3 By the hypothesis (¢3), it follows that ® € (Ay). This implication is a

consequence of Lemma 2.4.

The next three lemmas involve the N-function ® defined in (2.3), its conjugate

function ® and critical growth function ®,.
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Lemma 2.16 Consider ® a N -function of the form (2.3) and satisfying (¢1), (¢2)
and (¢3). Define

&o(t) = min{t",t™} and £,(t) = max{t’, ™}, Vt > 0.

Then,
&(t)P(p) < D(pt) < &(E)P(p), Vp,t >0
and

So(llulle) < /Q@(U)dx < &(lulle), Vue L)

Lemma 2.17 Consider ® a N -function of the form (2.3) and satisfying (¢1), (¢2)
and (¢3) with € > 1. Define

&(t) = min{tﬁ,t%} and &(t) = max{tﬁ,t%}, vt > 0.

Then,
m td'(t) (
(24) 1S au) S7-1
&()P(p) < D(pt) < &(H)D(p), Vp,t >0
and

&([lulls) < /ch)(U)dx < &(lull pn)s Vu € LH(Q).

Remark 2.4 The inequality (2.4) guarantees that ® € (Ay), just apply Lemma 2.4.
Therefore, L*(Q) is reflexive.

Lemma 2.18 If ® is an N -function of the form (2.3) satisfying (¢1), (¢2) and (p3)
with £ =1, then

~ m

(pt) < tm1d(p), forall p>0 and 0<t < 1.

Lemma 2.19 If ® is an N -function of the form (2.3) satisfying (¢1), (¢2) and (p3)
with ¢ = 1, then ® does not verify the Ay-condition.

Proof. Suppose by contradiction that & € (Ay), then there is § > 1 such that
' (t)t
D(t)

easy computation shows that

< B, for all t > 0. We know that & = & and é(t) — sup{st — ®(¢) : s € R}. An

(2.5) O(D'(s5)) = P'(s)s — D(s), Vs >0.
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Deriving this expression with respect to s, we get

(@ (5))D"(s) = D"(s)s.

As ®"(s) > 0, we have

(2.6) (P (s)) =5, Vs>0.
()t . , .
Since q:)(t) < B, for all t > 0, making t = ®'(s), we are left with
(2.7) V@) gy

D(P'(s))

in other words, by (2.6) and (2.7), it follows
(2.8) sP'(s) < BB(D/(s)), Vs > 0.
According to (2.5) and (2.8)

s®'(s) < B(P'(s)s — D(s))

and therefore

o} d'(s)s
B-1= ()

Since (¢3) occurs when ¢ = 1, we can conclude that % =1, thatis, 5=8—1. An

Vs > 0.

contradiction. Therefore, ® ¢ (As). |

Example 2.2.4 It can be observed that the N -functions ®1, ®o, O3 and D4 satisfy the
condition (¢3) for £ > 1. Although it might appear that there is no valid example of an
N -function satisfying conditions (¢1) — (¢4) with £ = 1, we introduce the function

(2.9) Qo (t) = |t|In(jt|*+1) for0<a< -1

N -1
as an example of an N -function that satisfies (¢1) — (¢p4) for the case £ = 1.

In fact, consider ¢, : (0,+00) — (0, 4+00) a continuous function defined by

In(t* + 1) ot
+ « ,
t t*+1

Pa(t) = for t > 0.
It is easy to check that

[t]
By (1) :/0 sbals)ds = [t n(|t]” + 1), VteR.
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Now, we will prove that ®, is an N-function. Firstly, notice that

«

too(t) =In(t*+ 1) + «

)

t*+1
SO

«

lim t¢,(t) = lim (In(t* + 1
Jm 10a(t) = fim (n(E* 1) +agmm

) =0

and

(67

lim t¢,(t) = lim (In(t*+ 1)+« ) > lim (In(t* + 1)) = +o0.

t——+o00 t——+o00 @4+ 17 7 totoo
It remains to show that the function ¢ — t¢,(t) is increasing, for all ¢ > 0. Indeed,
1

toz—l Qtoz— (ta+ 1) ) tatoz—l

toa(t)) = S
(0alt)) = 0T T e T w1y
z50471 a
:ata+1(l+a—ata+1), Vit > 0.

(67

Since T < 1, for all ¢ > 0, we conclude that (¢ (t))" > 0, for all ¢ > 0. Having
done this study, it follows from Lemma 2.1 that ®, is a N -function.
Now, see that
<t2¢a(t)>' At + D) In(t* + 1) — o2t (te  In(t 4+ 1) + t27Y)
D, (1) [(t* + 1) In(t> + 1)]?

a?tet . ) o a
— [(t* 4 1) In(t> + 1)]2 [(t* + 1) In(t* + 1) —t* In(t* + 1) — t9]
a?tot ) )
= s DmEe roE D -

t2¢a(t)
D4 (1)

is decreasing in (0, +o00). Clearly

Since In(t* 4+ 1) — t* < 0 for all t > 0, it follows that <

t¢a(t)
®.(t)

/
) < 0, for all t > 0.

t2¢a(t)
®a(t)

Thus the function t —

> 1, for all

t > 0, since

t2ga(t)  tn(t*+1) o+l at®

D (t)  tln(t>+1) + Yt + D) n(te + 1) L+ (t* 4+ 1) In(t® + 1)

t2¢a(t)

Du(t)
suppose that ¢ > 1. By L’Hopital’s rule, we have

(2.10)

Let us now see that if there is £ > 1 such that

> (, then ¢/ = 1. In effect,

(2.11)
i at® i a’te! a
im = lim =

t=+oo (1o + 1) In(t* 4+ 1)  t=+oc at* tn(t® + 1) + ato—!

= lim —————— =0
oo In(to + 1) + 1

30



Therefore, by (2.10) and (2.11)

pa(t
1= lim 230 > /.
t— 400 (I)a(t)
Which is absurd. So, we conclude that ¢ = 1.
Still by (2.10) and L'Hopital’s rule, we have
t2 oY
im fa(t) =1+ lim at
=0+ Dy (t) =0+ (t* + 1) In(t> + 1)
. N 1 Oé2ta_1
= im
t—0+ at* L n(t + 1) + ate—!
o
=1+ lim ————
P YT
=1+«
Therefore,
20 (1)
1=/< <1 vt > 0.
=9, S

At this point, just choose o > 0, small enough, so that 1 + a < [*. And so, we will

have the desired example.

Remark 2.5 The Lemma 2.15 guarantees that ®, is a N -function. Hence, by Lemma
2.1, it follows that

0.0 = [ s0.(5)ds
0
where ¢, : [0,00) — [0,00) satisfies
1. $.(0) =0, s¢.(s) >0 for s >0, SILIEO S¢4(s) = o0
2. @, 1s continuous and non-decreasing.

Lemma 2.20 Consider ® a N -function of the form (2.3) and satisfying (¢1), (¢2)
and (¢3). Define

&(t) = min{t" ,t™} and &(t) = max{t" ™}, t>0.

Then,
R AL .
(2.12) < B ST >0
(2.13) E2(1) D (p) < Pulpt) < &3(1)Pu(p), Vp,t >0
and

&(llulle,) < /Q@*(U)dx < &(lulle.), Vue L*(Q).
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Remark 2.6 The inequality (2.12) guarantees that ® and ® satisfy the Ay-condition.
Therefore, L**(2) is separable and reflexive.

2.3 Orlicz-Sobolev Space

In this section, we study Orlicz-Sobolev spaces. We present some basic properties

as well as embeddings of Orlicz-Sobolev spaces into Orlicz spaces.

Definition 2.7 For a N-function ®, we define the Orlicz-Sobolev space W'*(Q)

as

Wi (Q) = {u e 1) 2

i — € L?(Q),i=1,...,Ng.
A RE Y

Definition 2.8 For a N -function ®, we define the Orlicz-Sobolev space W'E®(Q)

as

WIE®(Q) = {u c E*(Q) : g—“ c E*(Q),i=1, N} :
X

The spaces WL®(Q)) and WTE®(Q) are Banach spaces equipped with the norm

(2.14) [ullLe = [[Vulle + [lulle.

Remark 2.7 (i) W'E®(Q) C (E*(Q))""
topology of the norm of (E‘I)(Q))NH;

, in addition, W'E®(Q) is closed in the

(ii) Wh®(Q) C (LCD(Q))NH, in addition, WH®(Q) is closed in the norm topology of
(L@(Q))I\Url’

(iii) W2 (Q) is closed in the weak* topology of (L‘I)(Q))NH;

(iv) WTE®(Q) is separable.

(v) For each F € (W'E®(Q))’ there are vg, vy, -+ ,un € L2(Q) such that

N
ou
Fu:/uvdx—i— /—vidx, we WE®(Q);
= funr+ 3 [ 5 ()

(Ui) WlE(I)(Q) — COO(Q) N WlE@(Q)H'Hl,cp;
———lIll,e

(vii) If Q has the segment property', then W'E®(Q) = C>(Q)

Theorem 2.1 Let ® be a N -function satisfying the Ao-condition. Then:

1Segment property, we understand the domains {2 has the segment property if for every x € 0
there exists an open set U,, and a nonzero vector %,, such that x € U,, and if z € QN U,, then
z+ty, € Q, for 0 <t < 1.
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(i) Wh(Q) = WE®(Q);
(ii) W2 (Q) is separable;

(iii) W2(Q) is reflexive if and only if ®.

The main embedding result involving this function class can be found in |70,

Theorem 3.2].

Theorem 2.2 Let Q C RY open and admissible*. If ® is a N-function verifying (2.2),
then

Wh(Q) < L*(Q).

cont

Furthermore, if |2 < oo and ¥ is a N -function such that U << ®,, then

Wwh*(Q) — LY(Q).

comp

Theorem 2.3 Let Q C RY be open and admissible. If ® is a N -function which does
not check (2.2), then we have

Whe(Q) — C(Q) = C(Q) N LX(Q).

The following result is a version of the Lemma 2.12 for the space W1®(Q).

Lemma 2.21 Assume that ® is an N-function. If (u,) C WH?(Q) is a bounded se-
quence, then there exists a subsequence of (uy,), which we will still denote by (u,), and
u € WH®(Q) such that

ouy, EN ou

(2.15) U, —u in L*(Q) and Bz, .

in L*(Q)

or equivalently,

/unvdx—>/uvda:, VUGE&’*(Q)
Q Q

and

8un ou &
s wdx—)/ﬂaxiwdx, Yw € E¥(§2).

From now on, we denote the limit (2.15) by u, — u in W5®(Q2). As an immediate

consequence of the last lemma, we have the following corollary.

2By admissible, we understand the domains in which embedding occur W(Q) < L¥1(Q)
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Corollary 2.1 If (u,) C WY®(Q) is a bounded sequence with u, — u in L

oe(€2), then
u e Whe(Q).

Lemma 2.22 Suppose (u,) C WH?(Q) is a bounded sequence in WH*(Q), then there
is u € WH®(Q) such that u, — u in W®(Q) and

/<I>(|Vu|)dxSliminf/®(|Vun|)dx.

Proof. Since u,, — u in W*(Q), thus

ouy, ou -
i aﬁgpdm—)/gaxigodx, Vo € L=(Q),

1.e.

ou, « Ou

-\

: 1
oz, oz, in L(Q),

because (L'(Q))* = L>(92). Thus we can apply [30, Theorem 2.1] to get

/<I>(|Vu|)dx§hminf/<1>(|Vun|)dx,

which completes the proof. [

2.4 The spaces WlE®(Q) and W,*(Q)

In this section, we shell consider ® a N-function and  C R" an open set. We

define the Banach space W3 E®(Q) as being the closure of C5°(2) in WH®(Q) with
respect to the norm (2.14). The Banach space I/VO1 ®(Q) is defined as the weak* closure
of C§°(2) in WH2(Q).
Lemma 2.23 (i) W} E®(Q) is separable;

(ii) Wy *(Q) is the Kernel of the dash operator.

(111) (Poincaré-type inequality [See [35]]) If d = 2diam(Y) < oo, then

/Q<1>(|u|/d)dx < /Qd)(|Vu|)dx, Yu € W(Q)

Lemma 2.24 Let ® a N -function satisfying the Ag-condition. Then:

(i) Wy* () = Wg E®(Q);

(ii) Wy*(Q) is separable;

34



(iii) W3 (Q) is reflexive if and only if .

Theorem 2.4 Let Q) C RY open limited and admissible. If ® is a N -function verifying
(2.2), then

Wyt(Q) — L2(Q).

comp

2.5 The space DV*(RY)

Considering ® a N-function verifying the As-condition, the space DV®(RY) is
defined to be the complement of the space C§°(RY) with respect to the standard

(2.16) jul sy = [lulla, +[Vuls.

It is immediate to verify that

D'®(RY) — L*(RY).

cont

Lemma 2.25 There exists Sy > 0, such that

(2.17) |ulle. < Sn||Vulle, ue DM(RY).

By lemma above, it follows that the norm |u|pi.e @y is equivalent to the norm
|Vul|g. For this reason, in this thesis we will assume the norm of DV®(R”Y) as being the

norm ||Vul|g. Being L*(RY) and L®*(R"Y) Banach spaces, we conclude that D%®(RY)

is Banach.
Remark 2.8 Let Q C RN open bounded. Then, D*(Q) = W, *(Q).

Lemma 2.26 (i) DV®(RY) C L*(RY) x (L*(RM))N, furthermore, DV®(RY) is
closed in the topology of the norm of L*+(RN) x (L®(RM))V;

(ii) DY®(RYN) is separable;

(iii) DY®(RN) is reflexive if and only if ®, ®, ®,, ®, € (A,).

The following result is a version of the Lemma 2.12 for the space D"*(R"),

Lemma 2.27 Assume that ® is a N-function verificando the Aq-condition. If (u,) C
DY®(RY) is a bounded sequence, then there exists a subsequence of (uy), which we will
still denote by (uy), and u € DV ®(RY) such that

ouy, N ou

(2.18) u, ~u in L*(RY)  and in LT(RY)
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or equivalently,
/ upvdr — wvdx, Vv € E&)*(RN)
RN RN

and

ouy, 0 5
" pde — al wdr, Yw € E®(RY).
RN 5% RN OZ;

From now on, we denote the limit (2.18) by u,, — uin D¥®*(RY). As an immediate

consequence of the last lemma, we have the following corollary.

Corollary 2.2 If (u,) C DY*(RY) is a bounded sequence with u, — u in Ly (RY),
then u € DV®(RY).

Lemma 2.28 Suppose (u,) C D“®(RY) is a bounded sequence in D“®(RY), then

there is u € E such that u, — u in DY®(R™) and

/ (| Vu|)de < liminf/ (| Vun|)da.
RN n—00 RN
Proof. Consider ¢ € L®(R") arbitrary. For every R > 1, define the function

1, if JZEBR(O)

wr(t) =
0, ifze B50)

It is clear that wp € E®(RY), because wr € L¥(RY) and supp(wr) CC RY. As a
consequence, we have gwr € E¥(RY). We know that L®(RY) — L} (RY), such as

loc
Up,u € DVE(RY), then

ou, Ou
— — el RY), Vi=1,2,---,N
8x,-’ (99[;2 € loc( )7 ? ) <y ’
and hence
ou,, ou

B, WR, a—xin €L, (RY), Vi=1,2,--- N.

By Lemma 2.27, u,, — u in D“®(R"), thus

ou, ou,, ou B ou
/RN (890, CUR) Qﬁdl‘ N /RN ze (WRQD)CZZE - RN 81‘1 (CURQO)CZZL‘ N /RN (al‘in) (;de

By the arbitrariness of ¢ in L=(RY),

du, O
azin—\ 8ZWR’ in L'(RY)
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because (L*(RY))* = L>®(RY). Therefore, applying [30, Theorem 2.1], we can conclude
that

O(|Vuy|wg)dr < liminf O(|Vuy,|)dz.
n—

o0 RN

/ O (|Vu|)dr < liminf

RN

Passing the limit at R — 400, we get

/ <I>(|Vu|)dx§hminf/ O (|Vuy,|)dz,
RN n— o0 RN

which completes the proof. [ ]
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Chapter 3

Existence of positive solution for a
class of quasilinear Schrodinger
equations with potential vanishing at
infinity on nonreflexive Orlicz-Sobolev

spaces

Our main goal in this chapter is to prove the sequence of Theorem 1.1, 1.2, 1.3, 1.4
and 1.5 that correspond to the existence of positive solutions to the problem quasilinear

of type

—Agu+V(x)o(Ju)u = K(z)f(u), in RY
- { (@)6(Jul)u = K(2) f(u)

u € DM*(RY), u>0, in RY

where N > 2, V,K : RY¥ — R and f : R — R are continuous functions with V/,
K being nonnegative functions and f having a quasicritical growth and ® ¢ (As).
In this sense, we divide this chapter into 3 sections, where in Section 3.1 we present
preliminary results involving the energy functional associated with the problem (P;),
where the conditions (¢1) — (¢4) (mentioned in the introduction) are satisfied. In the

following Sections 3.2 and 3.3 we study the cases in which (V, K) € Ky or (V, K) € Ks.



3.1 Preliminary results

Since the potential V may vanish at infinity, we cannot study equation (P;) on

the Sobolev space DV®(RY) by variational methods. As in [10], we work in the space
(3.1) E = {u € DM (RY) . /RN V(z)®(|u|)dx < —I—oo}
with norm
lullz= [[ull pre@sy+ullve,

where

lullyo= inf {a =0 /RN V(2)® (|u] /o) dz < 1}
is the norm of Banach Space

LY (RY) = {u : RY — R measurable : /N V(z)®(|u])dx < +oo} :
R

It is immediate that F is continuously embedded in the spaces D*®(RY) and L (RY).

Now let us list some properties involving the space E.

Lemma 3.1 (FE,||||g) is a Banach space.

Proof. Let (u,) C E be a Cauchy sequence. So (u,) is a Cauchy sequence in

DY (RN |I-]]), that is, there is u € DV®(RY) satisfyin
( ying
(3.2) u, —u in DYP(RY).

As the embedding DV®(RY) — L®<(R¥) is continuous, then u,, — u in L®+(RY), thus,

there is a subsequence (u,,;) C (u,), verifying
(3.3) Up,(z) = u(z) in RY.

Since (u,) is a Cauchy sequence in E and the embedding E < L¥(RY) is continuous,
then (u,) is a Cauchy sequence in L (RY). Thus, given ¢ > 0, there is ny € N such

that

|tun — um|lve<e, VYn,m > ng.

39



Particularly,
tn — U, |lva<e, Vn,j>ng.

Thus,

(3.4) /RN V(x)® ('u"(x) — “”j<x>’> dr <1, Vn,j> no.

3

From Fatou’s Lemma and by (3.3)-(3.4),

/RN V(z)® (‘Un(x);U(QZ)‘) Lel s

Therefore,
|un — ullve<e, Vn>mng,
from where it follows that
(3.5) u, —u in LY(RY).
Gathering (3.2) and (3.5) we get
u, —u in FE.

To finish the proof, let us show that u € E. As u, — u in LY (RY), then ([Juy,|lve) is
bounded, that is, there is K > 0 so that ||u,,||v,e< K, for all j € N. So,

/RN V()@ (Jun, (2)]) dz < % /RN V(z)® (K”“’”ﬂ) dx

|, [|v,0
< CKHunjHV’CD / V(l‘)(b ( ‘un]('x)‘ ) dﬂf
- K Jgn [tn; || v.0
< Ck,

for every j € N, where C'x > 0 is a constant that depends only on K. By Fatou’s

Lemma, we obtain

[ V@ (u)de < .

proving that v € E. Thus we conclude that E is a Banach space. [

Lemma 3.2 F = CSO(RN)”.HE and E is compactly embedded in LY (RY).

loc
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Proof. It follows the same ideas as Theorem 8.21, which can be found in [1]|. For that

reason, we will omit its proof. [

Lemma 3.3 Suppose (u,) C E is a bounded sequence, then there is u € E such that
Uy — u in DPP(RY),  wu,(2) = u(z) ae. in RY

and

/<I>(|Vu|)dxgliminf/®(|Vun|)d:v,

Proof. Since (u,) is a bounded sequence in E, then (u,) is a bounded sequence in
DV®(RY) and by the Lemma 2.28, there is u € D"®(R") such that u, — uin D“®(R")

and

/<I>(|Vu|)dxSliminf/®(|Vun|)dx.

Let us show that v € E, because by Lemma 3.2 and Corollary 2.2, we can conclude

that less than one subsequence
Un (1) — u(x) ae. in RY.
By Fatou’s Lemma

/RN V(2)®(Ju(z)|)dz < lim inf /RN V() (2)])da

n—oo

Since (uy,,) is bounded in F, then (u,) is bounded in LE(RY). As ® € (Ay), there is
C' > 0 such that

/RN V(z)®(|uy(x)])de < C, Vn €N
Therefore,
/RN V(x)®(Ju(x)])dx < +oo,

showing that v € F, and the proof is complete. [

Now, we consider the functional @) : £ — R which is given by

(3.6) Qu) — /RN <I>(|Vu|)dx—|—/RN V ()0 (|u])dz.
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It is well known in the literature that Q € C*(F,R) when ® and ® satisfy the condition
(Ay) and this occurs when the condition (¢s3) is satisfied with ¢ > 1 and m < co. When
¢ = 1, we know that ® ¢ (A,) and therefore cannot guarantee the differentiability of

functional ). However, we will show that the functional @) is continuous and Gateaux-

differentiable with derivative Q' : E — E* defined by
Q' (u)v = o(|Vu|)VuVodz —|—/ V(x)p(Ju))uwvdz, Vu,v € E
RN RN
is continuous from the norm topology of E to the weak*-topology of E*.
The lemma below illustrates the computation of the Gateaux derivative of the
functional ), and this result can be found in [11, Lemma 4.1].

Lemma 3.4 The functional Q) is Gateauz differentiable, that is, Q'(u)v exists for all
u,v € E with

Q= [ o(Vu)VuVuds + / V(@)é(|ulJuvds.

RN

Proof. For each v € E and t € [-1,1] \ {0},
O(|Vu + tVo|) — O(|Vv]) = to(|Vu + stVo|)(Vu + stVv) Vo,

for some s € (0,1). Consequently,

O(|Vu + tVo|) — ®(|Vu|)

(3.7) t

< o(|Vu + stVol|)|Vu + stVu||Vul.

Since ® satisfies the Ay-condition, by Young’s inequality, there is C' > 0 such that
(3.8) O(|Vu + stVo])|[Vu + stVo||[Vo| < C(@(|Vul) + ©(|Vo|)) € L'RY).
A similar argument works to show that

(3.9) V(z)p(Ju+ stv])|u + sto||v] < C(V(2)®(|u|) + V(z)®(Jv])) € L'(RY).

Now, by using Lebesgue dominated convergence theorem, we derive that

fim QU = QW [ G Vuveds + / V(2)o(|u|)uvdz,
t—0 t RN RN
for all u,v € E. [
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Lemma 3.5 Let ® an N -function of the form (1.6) satisfying (¢1), (¢2) and (¢3). If
up, — u in Ly (RY), then there exists Hy € Ly (RY) and a subsequence (uy,) such that

i) |unj (z)| < Hy(z) for every x € RY and every j € N

i) Un,(x) = u(x) a.e. in RY and every j € N.
Proof. Since that

V@@l —uDll = [ Vi (2||un - U||v,<I>M> ds

[tn — ullve
< 2|uy — u||V7<1>/ V(z)® (M) dx
Q [tn — ullve

= 2[lun — ullve,
where 2||u,, — u||y.o< 1. Thus,
|V (x)®(2|u, —u|)||1— 0 as n — oo.

Therefore, there is H € L'(R") and a subsequence (u,,) such that
i) V(2)®(2lup, (r) — u(z)|) < H(x), for all 2z € RN and all j € N
i) Un, (x) = u(x), a.e. in RN,

From item i), we have

Clearly H, € LE(RY) where
1 o
Hy(2) = fu(a)| + 2@~ ( (“’”) ,

and the lemma follows. [ |

As an immediate consequence of the Lemma 3.5, we have the following result.
Lemma 3.6 The functional () : E — R is continuous in the norm topology.

Lemma 3.7 The Gateaux derivative Q' : E — E* is continuous from the norm topol-

ogy of E to the weak® topology of E*.

Proof. By the Proposition 3.2 of [27] is sufficient prove that, any sequence (u,) C E

such that u, — v in F, implies

(Q'(un),v) = (Q'(u),v), VveEE.

43



Consider (u,) C E such that u, — u in F, then
IVu,| — |Vu| in LP(RY) and wu, —u in LH(RY).

By Lemma 3.5, there are Hy € L (RY), H, € Ly (RY) and a subsequence (uy,) C (uy)
such that

i) |un, ()] < Hi(x) and |Vuy,, (z)| < Hy(z) for € RN and j € N

i) Un, (x) — u(x) and |Vu,, (z)| = |[Vu(z)| a.e. in RN and j € N.

Set v € E arbitrary. By the continuity of the function ¢, it follows that
O(| Vi, (2)]) Vi, (2)Vo(z) = ¢(|Vu(z)|)Vu(z)Vo(z), a.e. in RY.
Also, by (¢1) the function ¢(t)t is increasing for every t > 0, thus
OVt ()| Vit ()| V()| < (| H (@) )| H (@) | ().
Hence by Lebesgue dominated convergence theorem
(| Vi, |) Vn, Vodz — o(|Vu|)VuVudz,
RN RN
with this, we ensure that
o(|Vuy,|) Vu, Vodr — o(|Vu])VuVodz.
RN RN
Similarly, we have
[ ot = [ ouljuvds.
RN RN
Therefore,
(Q'(un), v) = (Q'(u), v).

By the arbitrariness of v € E, we conclude the results. ]

With these preliminary results established, we can now present the main outcomes
that will be developed throughout this chapter. To achieve this, we will divide the study
of problem (Py) into two conditions: (V, K) € K; and (V, K) € K.
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3.2 Existence of a solution in the case (V) K) € K,

Initially, we list some results that will be true if the conditions (f;) or (f;)

(mentioned in the introduction) is hold. Note that the condition (f;) implies that
N0
im

t—+oo @, (t)t

01 > 0 and C. > 0 such that

= 0. Then, by the conditions (f;) or (f4), given € > 0 there exists Jy > 0,

(3.10) K(@)|f(t)] < eCL(V(2)td(t) + tu(t)) + CoK (2)tds(t) X (60,51 (1),

for every t > 0 and = € RY, where C; = max { | K] oo ||§Hoo} This inequality yields
that the functional F : E — R given by

(3.11) Flu) = K(z)F(u)dx

RN
is well defined and belongs to C'(E,R) with derivative

F(u)v = K(z)f(u)vde, Yu,v € E.

RN

From the results presented in the previous section, we can conclude that the energy

functional J : E — R associated with the problem (P;), which is given by

J(u) = /RN O(|Vul|)dx + /RN V(x)®(|u|)dx — K(z)F(u)dz

RN

is a continuous and Gateaux-differentiable functional such that J' : E — E* given by

J (u)v = o(|Vu|)VuVodr + /RN V(z)o(|u|)uvdr — K(x)f(u)vdx

RN RN

is continuous from the norm topology of E to the weak*-topology of E*. (By Corollary
A.1, we have J is locally Lipschitz functional)
Once that we intend to find nonnegative solutions for the problem (F;), we will

assume that
(3.12) f(s)=0, Vseé& (—00,0].

Since J is locally Lipschitz functional (See Definition in Appendix A) and @),
given in (3.6), is convex, then this allows us to present a definition of a critical point

for J. In this sense, we will say that u € F is a critical point for the functional J if

(3.13) Qv) — Qu) > K(z)f(u)(v —u)dzx, YveE.

RN

Our next lemma establishes that a critical point u in the sense (3.13) is a weak

solution for (Py).
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Proposition 3.1 Ifu € E is a critical point of J in E, then u is a weak solution to
(P).

Proof. See [11, Lemma 4.1]. n

Now, let us check that J also satisfies the mountain pass geometry.

Lemma 3.8 There are p,n > 0 such that J(u) > n if ||ul|g= p.
Proof. Consider 0 < € < % with Oy = H%HOO By (3.10), there is C. > 0, such that
1
(3.14) K(z)|F(t)| < §V(a:)c1>(t) + C.®,(t), ¥t >0 and z € RV,
Thus,
1
J(u) > / O(|Vul)dr + —/ V(x)®(|u|)dx — Cg/ O, (|u|)dx
RN 2 RN RN
> Oy (&o([Vulls) + &o(llullve)) — Coa(llulla.),

for some Cy > 0, where () = min{t‘, t™} and &(¢) = max{t"", #™ }. Choose p > 0
such that

|ul| = ||ul| pre@~y+|ullv.e= p < 1.

As E is continuously embedded in L+ (RY), we get ||u]

»+< 1. Furthermore,

J(w) = Co([Vullg+lullve) — Callu

0*
(o

Using classical inequality
(x4+y)* <207 Y 2* +y*), z,y >0 with «o>1,
we concluded that

J(u) = Csljul|5—Csllu

Z*
E»

for some positive constant C'3. Since 0 < m < ¢£*, there is 7 > 0 such that
J(u) >n forall |ullg= p.
This finishes the proof. [

Lemma 3.9 There is e € E with ||e|][g> p and J(e) < 0.

46



Proof. Consider ¢ € Cg°(RY) \ {0} and C; € R such that
(3.15) C1 > & ([l preyy) + &llYve)-
By (f3), there exists Cy > 0 satisfying
F(t) > Cijt|™ = Cy, VteR.
Thus
K(z)F(t) > CiK(z)|t|™ — CoK(z), Vt€R and z &RV,
That said, considering ¢ > 0, we have

st < [ ovids+ [ Vwehds =i [ K@lomds -+ Calsupp(o)|

RN

before that, it follows from the 2.16 that

T(0) <6 OE1¥l0w0) + 6110la) = Cot™ [ K@)lolmde -+ Calsupp()].
therefore, for t > 1,

(3.16)
J(ty) <t™ (& ([Pl pre@yy) + & ([¢lve)) — Cit™ /RN K(z)[|"dx + Cs|supp ().

By (3.15) and (3.16), we can conclude that
J(ty)) —» —o0 as t— +oo.

The last limit guarantees the existence of ¢ > 0 large enough that the result is verified
with e = t1). ]
In what follows, let us denote by ¢ > 0 the mountain pass level associated with
J, that is,
= inf J(y(t
¢ = inf max J(7(t))

where

I'={yeC(0,1],X): v(0) =0 and ~(1) =e}.
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Associated with ¢, we have a Cerami sequence (u,) C F, that is,
(3.17) J(u,) = ¢ and (14 ||un|])||J (wn)]l«— O.

The above sequence is obtained from the Corollary A.1 in Appendix A.
To show that the sequences obtained in (3.17) is bounded, let us prove a Hardy
Type Inequality.

Proposition 3.2 (Hardy Type Inequality) Suppose that (V, K) € Ky, then E is com-

pactly embedded in LZ(RYN), where Z(t) = O|t| sz(s)ds is a N -function satisfying

1 <
(3.18) 0<x <75

S~—
|

where m < z1 < z9 < 0¥,
Remark 3.1 The inequality (3.18) implies the following inequalities

§o,2(t)Z(p) < Z(pt) < & z(t)Z(p), Vp,t >0

when
Co.z(t) = min{t*, 1} and & z(t) = max{t*, ¢}, Vt>0.

Besides by Lemma 2.16 and Lemma 2.20, we have
- Z(t])

lim———= =0 d lim ——= = 0.
0 (|t]) BT N ()

Proof of Proposition 3.2: We will assume that (K3) is true. In this case, by Remark

3.1, given € > 0, there are 0 < sy < s; and C' > 0, such that

(3.19) K(2)Z(|s]) < eC(V(2)@(|s]) + Pu([s])) + CK(2) X505 (Is)P(Is)),

for all s € R and € RY. Thus, for r > 0 large enough,

(3.20) / K (@)Z(jul)dz < 2CO(u) + CP. (1) / K(x)dz, Vuc E,
B, (0)¢ AunBr(0)°

where @ : E — R is the function defined in (3.6) and

Ay ={r e RY : 55 < |u(z)] < 51}

Consider (v,) a bounded sequence in E. To see that the operator i : E — LE(RY)
is compact just prove that (v,) has a convergent subsequence on LZ(R"). By Lemma

3.3, there is v € E such that

v, = vin DY?(RY),  w,(z) = v(z) ae. in RY
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or equivalently
w, = 0in D**(RY),  w,(z) =0 a.e. in RY,

where w,, = v, —v. By the boundedness of (v,) in F and by the fact that ® and P,
satisfy the As-condition, there is M; > 0 such that

V(2)®(|jwn|)dz < My and / B, (|wn|)dz < M, ¥n €N,

RN RN

implying that (Q(w,)) is bounded.
On the other hand, defining

A, ={z e RY: 55 < |Jwp(z)| < 51}
the last inequality implies that

n

With this, we can guarantee that sup |A,,| < +00. Therefore, by (K;),
neN

€
3.21 / K(r)dr < ———, VneN.
( ) AnNB,(0)° (@) D.(s1)

From (3.20) and (3.21),

/ K(x)Z(|wy,|)dx < eCM; + <b*(31)/ K(z)dr <e(CM;+1), VneN,
By (0)¢ AnNBr(0)¢
and hence,
(3.22) lim sup/ K(2)Z(Jw,|)dx < e(CM; + 1).
n—o0 Br(())c

Consider the functions P, : R — R and P, : R — R given by Pi(t) = Z(|t|) and
Py(t) = ®.(]t]). Of course, P, and P, are continuous in addition

P1 (t)

i =0.
|t|—1>r£oo Py(t)

Finally, it follows from the boundedness of (v,) in E and from the fact that ®, satisfy

the As-condition the existence of a constant C; > 0, so that

/ Py(w, )z < / B, (|w|)dz < Cr, ¥n € N.
RN RN
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Therefore, by compactness Lemma of Strauss |26, Theorem A.I, p. 338], we have

lim Py (wy,)dz = 0.
Thus,
(3.23) lim sup/ K(x)Z(Jwy|)dz = 0.
n—o0

According to (3.22) and (3.23), we get
lim sup K(z)Z(|wy,|)dx < e(CM; +1).
n—o0 RN
By the arbitrariness of € > 0, it follows that
limsup [ K(x)Z(|wy|)dx = 0.

n—o0 RN

As Z verifies the As-condition, we have that
w, =0 in LZRY),

in other words

v, — v in LZ(RY).

Showing the result for the case (K3).

Next lemma is an important step to prove that the Cerami sequence obtained in

(3.17) is bounded.

Lemma 3.10 Let (v,) be a bounded sequence in E such that v, — v in DY®(RN).

Suppose that f satisfies (f1) or (fa), then

(3.24) lim K(x)F(v,)dzx = K(z)F(v)dx,
n—oo JpN RN
(3.25) 7}1—{20 K(z)f(v,)vpdx = K(z)f(v)vdx
RN RN
and
326)  Jim [ K@fede = [ K@fe)ud Ve CRRY),
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Proof. As in (3.10), given € > 0, there exists dy > 0, 6; > 0 and C. > 0 such that
(327)  K(z)f(t) < eC(V(2)td(t) + te.(t)) + C-K(x)tb(t), ¥Vt >0 and z € RY
where €} = max{|| K|, ||§HOO} Hence,

(3.28) K(2)F(t) < eCy(V(2)®(t) + @.(t)) + C.B(t), ¥Vt >0 and z € R".
From Proposition 3.2,

(3.29) K(x)B(v,)dz — K(x)B(v)dx

RN RN

then there is 7 > 0, so that
(3.30) / K(@)B(un)de < =, WYneN.
B, (0) Ce
Moreover, as (v,) is bounded in E, there is a constant M; > 0 satisfying

/ V()0 (loa|)dz < My and / B, (|va])dz < My, ¥n €N,
RN RN

Combining the last inequalities with (3.28) and (3.30),

/ K(z)F(v,)dz
7 (0)

"o

S E(ClMl + 1), Vn € N.

Therefore

n—-+oo

(3.31) lim sup / K(2)F(v,)dz < e(CLMi + 1).
B2, (0)

On the other hand, using (f2) and the compactness Lemma of Strauss [26, The-
orem A.I, p. 338|, it follows that

(3.32) lim K(x)F(v,)dx = / K(z)F(v)dx.
"0 B (0) By (0)
In light of this, we can conclude that
lim K(x)F(v,)dx = K(x)F(v)dx.
n—-+00 RN R™

To show (3.25), consider ro > 0 given in (3.30). By (3.27),

/ K(x)f(vp)vpde <eCy (m/ V(z)®(|v,|)dx +m* <b*(\vn|)d:r;>
B, (0) <. (0)

Bg, (0)

+ C.2 / K(x)Z(v,)dx
Bs, (0)

<e((m* 4+ m)C1 M + z),
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for all n € N. Therefore

(3.33) lim sup/ K(z)f(up)upde < e((m* + m)C1 M + z3).
Bz, (0)

n—-+o0o

On the other hand, using (f1) or (fs4) and the compactness Lemma of Strauss |26,
Theorem A.I, p. 338, we can conclude that

(3.34) lim K(z)f(u,)u,dx = 0.

n—-+oo BTO (0)

Thus, the limit (3.24) is obtained from (3.33) and (3.34). Related the limit (3.26), it
follows directly from the condition (f;) or (fs) together with a version of the compact-
ness lemma of Strauss for non-autonomous problem. (This version is an immediate
consequence of |26, Theorem A.I, p. 338| where K (z)dx is used as the new measure)
[

Now, we can prove that the Cerami sequence (u,) obtained is bounded.

Lemma 3.11 Let (u,,) be the Cerami sequence given in (3.17). There is a constant
M > 0 such that J(tu,) < M for every t € [0,1] and n € N.

Proof. Let t, € [0,1] be such that J(t,u,) = m[g)lc] J(tuy,). If t, =0 and t, = 1, we
te|0,

are done. Thereby, we can assume ¢, € (0,1), and so, J'(t,u,)u, = 0. From this,

md (tyun) =md (tyu,) — J (tyun) (Ehuy)
:/RN (m®(|V (tnun)]) = S|V (tnun) )|V (tnun)[*) da
+ /[RN V(x) (m®(|tnun|) — ¢(|tnun|)|tnun|2)dx + /RN K(x)H(t,u,)dz,

where H(s) = sf(s) — mF(s). By (fz) the a function H(s) is increasing for all s > 0
and decreasing for s < 0, and by (¢,) the function s — m®(s) — ¢(s)s? is increasing

for s > 0. Thus,
md (tuy,) < md(thu,) < md(uy) — J (up)u, = md(u,) —o,(1), Vt € [0,1].
Since (J(u,)) is bounded, there is M > 0 such that

J(tu,) < M, Vte[0,1] and n € N.
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Proposition 3.3 The Cerami sequence (u,) given in (3.17) is bounded.

Proof. Suppose for contradiction that, up to a subsequence, ||u,||p— oco. This way,
we need to study the following situations:
i) ||Vun|le— 400 and (||u,|lv.e) is bounded,
it) ||un|lv,e— oo and (||Vu,||e) is bounded,
and
i11) ||Vuglle— +oo and ||uy||v,e— +o0.

In the case #ii), consider w, = . Since ||wy,||g= 1, by Lemma 3.3, there

Unp,
[unll e
exists w € E such that w, = w in D»®(RY). Now, let us show that w = 0. Before
that, as J(u,) — ¢, we have J(u,) > 0, for every n large enough. Thus, there is ny € N

such that

(3.35) /\wwmm+/vwmmmmz K (2)F(u,)dz, ¥n > no
RN RN RN

As |[|Vu,|le> 1 and ||uy||v.e> 1 for every n > ny, we have

/ MW%MMSHWM@;Wi/‘V@@WMMxSWMW@Vnzm.

RN RN
So, by (3.35),
IVl el [ K@) Pz, Vo> max{, n).
RN
Therefore, there is a constant C' > 0 such that
C([|Vun|lo+|wnlv.e)™ / K(x)F(uy)dz, ¥n > max{ng,ni},

or equivalently,

C(|unllz)™ / K(x)F(uy)dz, ¥Yn > max{ng,n}.

Thus,

. F(u,)

RN [y RN [ |™

> [ k@2 g s [ k@) E) s

The condition (f3;) implies that for every 7 > 0, there is £ > 0 sufficiently large such
that

>, V|s|>¢.
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So

Flu,
ez [ ke e [ K,
QN {Jun|>€} || QN {fun|>€}

where Q = {z € RV : w(z) # 0}. By Fatou’s Lemma,

1+027/K($)|w(x)|md93, V71 >0.
Q

Therefore,

/Q K (@) |w(z)|™dz = 0.

As K(x) > 0 for almost everywhere in RY, we have w = 0.

Note that for every M > 1, there is ng € N such that ﬁ € [0, 1] for all
n > ng. Given this, we get
M M
Ttwn) 20 () = I ) = T (0w,
2/ @(M\an|)dx+/ V) ®(Mluw)dz — | K(z)F(Muw,)dz
RN RN RN
>MQ(un) — . K(z)F(Muw,)dz,

where @ : £ — R is the function defined in (3.6). By definition of the sequence (wy,),

we have |[Vw,|le< 1 and ||w,||v.e< 1, for all n € N. Then,
/RN O(|Vwy,|)dz > ||Vw,||§, and /RN V(2)®(Jwp|)dr > [Jw, Ve, ¥ n €N
So there is C' > 0 such that
Q(wn) = [Vwng+lwnlve> C([Vwnllo+llwnlv.e)™, VneN.
Thus
J(tpuy) > MC(J|wy||g)™ / K(z)F(Mw,)dx
=MC — K(z)F(Mw,)dz.
RN

By Lemma 3.10,

lim K(z)F(Mw,)dx = 0,

n—oo RN

o4



therefore,

liminf J(¢,u,) > M, ¥ M > 1.

n—o0

which contradicts the Lemma 3.11, once that (J(t,u,)) is bounded from above. There-
fore (u,) is bounded in E.
The cases i) and i7) are analogous to the case 7). |
Since that the Cerami sequence (u,) given in (3.17) is bounded in E, by Lemma

3.3, we can assume that for some subsequence, there is u € E such that

(3.36) u, = u in DY*(RY) and wu,(z) — u(z) a.e. RY

and

(3.37) liminf/ O(|Vuy,|)dx > / O(|Vul)de.
n—oo RN RN

Fix v € C(RY). By boundedness of Cerami sequence (u,), we have
J'(uy)(v — u,) = 0,(1), hence, since ¢ is a convex function, it is possible to show

that

(3.38) Qv) = Qun) = | K(2)f(un)(v — un)dz + 0n(1),

RN
where @ : E — R is the function defined in (3.6). By (3.36), it follows from Fatou’s

Lemma that

(3.39) liminf/RN V(x)®(|uy,|)dx 2/ V(z)P(|ul|)dzx.

n—oo RN

Combining (3.37) and (3.39), we conclude that

(3.40) lim inf Q(u,) > Q(u).

n—00

From (3.38) and (3.40) together with the Lemma 3.10, we get

Q) — Qu) > K(z)f(u)(v —u)dz, YwveOrRY).

RN

As F = CgO(RN)ME and ® € (A,), we conclude that

(3.41) Q) — Qu) > K(x)f(u)(v—u)dx, VYwveELE.

RN

25



In other words, u is a critical point of the J functional. Its follows from Proposition
3.1, we can conclude that u is a weak solution for (P;). Now, we substitute v = u* :=
max{0,u(x)} in (3.41) and use (3.12) to get
—/ O(|Vu~|)dx —/ V(z)®(u™)dx > K(z)f(u)u dx =0,
RN RN RN

which leads to

/RN O(|Vu|)dz =0 and /RN V(2)®(u)dz = 0

whence it is readily inferred that «~ = 0, therefore, u is a weak nonnegative solution.

Note that u is nontrivial. Consider a sequence (¢) C C5°(RY) such that ¢ — u
in D (RY). Since that the Cerami sequence (u,) given in (3.17) is bounded in E and
® is convex, we can show that
(3.42) Qler) = Qun) 2 | K(2)f (un)(pr = tn)dz + 0n(1)llpe]—0n(1).

R
Since (||¢k|)ken is @ bounded sequence, it follows from (3.42) and from Lemma 3.10
that
Q(pr) = limsup Q(u,) + ; K(x)f(u)(pr —u)dx.
n—oo R

Now, note that being ® € (A,) and ¢, — w in E, we conclude from the inequality

above that

(3.43) Qu) > limﬁsup Q(uy).

From (3.40) and (3.43),

(3.44) Tim Q(un) = Q(u).

By Lemma 3.10, we have

(3.45) nh_}nolo - K(z)F(uy,)dx = - K(z)F (u)dz,

Therefore, by (3.17), (3.44) and (3.45), we conclude
0<c= lim J(uy) _/ o(|Vu)dr — | K(z)F(u)de = J(u),
n—oo RN RN
that is, u # 0.
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3.2.1 Boundedness of nonnegative solutions of (P;) for the class
(V7 K) S ICl

To study the boundedness of nonnegative solutions to the problem (P;) in the

case (V, K) € Ky, we define the N-function T : R — R given by

(1) it D Cy
(3.46) T(t) =

B(t) it d ¢C,
It is clear that T € C'(R) and

to.(t) it & €Cpy
T'(t) =
th(t) if ® £C,,
Remark 3.2 The function T defined in (3.46) satisfies

(3.47) Sox()Y(p) > Y(tp) > &1x(t)Y(p), Vt,p >0,
where

min{t™ ,t"} if ® € Cp,
min{t” ,t* } if ® €C,,

max{t™ ,t"} if ® € C,,

d =
and &1,x(1) { max{t"" 12"} if & & Cp,

To prove the following result in the cases where ® € C,, or ® ¢ C,, we will define
the real number v given by
m if ® €,

’y:
0 ifd&C,

Note that if ® € C,,, then according to Theorems 1.1 and 1.2 the nonlinearity f satisfies
the condition (f1). Now in the case where ® ¢ C,, the nonlinearity f satisfies (fy), in

both cases, given n > 0, there exists C,, > 0 such that
(3.48) K(x)f(t) < nCV(2)té(t) + C,Y'(t), V¢t >0 and z € RY,

where C] = ||K||. Thus, we can begin by presenting a technical result that will be
fundamental to guarantee the boundedness of the nonnegative solutions of the problem
(P1). We would like to mention that the technique presented in the following lemma

can be found in [5].
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Lemma 3.12 Let u € E be a nonnegative solution of (Py), o € RY and Ry > 0.

Then
/ \Vul"dz < C /
Ap ¢ Ap s

where 0 <t <s < Ry, k>1, Ay, ={x € B,(x0) : u(x) >k} and C > 0 is a constant

,Y*

u—k
S_

de + (K7 + 1)|Ak,3|>

that does not depend on k.

Proof. Let u € E be a weak solution nonnegative of (P;) and zq € RY. Moreover, fix
0<t<s<Ryand ¢ € C(RY) verifying

2
0<¢<1 supp(Q) C By(zo), (=1 on By(x) and [V(| < —.

For k > 1, set o = ("™(u — k)T and
= / B(|Vu| )" de.
-Ak,s
Using ¢ as a test function and (®(t) < ¢(t)t?, we find

(r<m [ " Hu— k) (| V)| Vul[V|dr — / V(@)p(u)u¢™ (u — k) dx
Ak,s Ak,s

+ K(x)f(u)("™(u — k)" dx.
A, s

1

o in the inequality (3.48), there exists a constant Cy > 0 such that

Considering n =

(3.49) ¢J<m " Hu — k) To(|Vaul) | Vul [ V¢ dr + C’g/ Y (u)"™(u — k)t dw.
Ak, s Ag,s

For each 7 € (0, 1), the Young’s inequality gives

(3.50) (| Vul)|Vau|| V¢ (u— k)T < B((|Vau])|[Vul¢™ ) + Cﬂ(‘ Z - ]; D

It follows from Lemma 2.18,

m
m—

(3.51) O((|Vul)|[Vul¢™ ') < Cy(r¢" ) m1 (| u)).

From (3.49), (3.50) and (3.51),

0J SmC’4T% /
Ak,s

+ C’g/ Y (u)¢™(u — k)tdz.
Ak,s

O(|Vul)¢™ + ng/A @(‘Z:ﬂ)dx
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Choosing 7 € (0, 1) such that 0 < mCyr m1 < (, we derive

(3.52) J< 05/A @(’ 4= ];Ddx + C5/A T ()™ — k)*da.

S — k,s
By Young’s inequality,

4 fD + O (k).

S —

(3.53) T ()™ (u — k)T < G (

Therefore, a combination of (3.52) and (3.53), yields

Z:’Z‘)dx+c7/f‘k’sr(

Now, using that / < m < m* < ~* and applying the Lemma 2.16 and the Remark 3.2

—k
(354) J< 07/ <I>< U Dd:v+07/ T(k)da.
Aps t A

s — k,s

for functions ® and T, respectivamente, we get

o(|“=3]) < e (|55 + ). v (|5 ) < T (A5 )

and

T(k) < (k7 +1).

From (3.54) and the inequality above,

r<al |
-Ak,s

By definition of J and the function ( we can conclude that

/ &(|Vu|)dz < Cs (/ \”‘k
Ap ¢ A s s—1

By Lemma 2.16, we have

u—k
s—t

o .
de + (K7 + 1)\Ak,s\> :

T de+ (B + 1)|Ak,s|) .

/ |vu|vdxz/ (| Vu|)dz.
Ak,t -Ak,t
Thus

_k * *
Akt Ag,s s—1

Lemma 3.13 Let u € E be a nonnegative solution of (Py). Then, u € LS (RY).

loc
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Proof. To begin with, consider A a compact subset on RY. Fix R; € (0,1) and xg € A.

Given M > 1, define the sequences

n n M 1
BB ontonn Kn:7(1_2_

(%2 —, O
n 2 27'L+1 b n 2 n+1

),Vn:QLZ&nm

For every n € N, we consider

=
A

with £ € C*(R) satisfying

Kn,on

0<¢E<T, £)=1if tg%, E(t) =0 if tzz and [¢] < C.
By definition of &,,
& =1in B, (xg) and &, =0 outside Bz, (o),
consequently
D [ (= Kan)t)d.
Br, (o)

Note that,

27(n+1)
IV ((u— Kn+1)+§N>|W < 27(|VU|W§Z + R ((u - Kn+1)+)’YXBRl(xo));

Since W1®(By, (7)) — W (Bs,(10)) and ((u — K,y1)")é € WH(RY), then
(u — Kpp1)1)E, € WY (RY). Therefore,

i1 < C(N, 7, Ry) ( /
Axk

Applying the Lemma 3.12 to the previous inequality and then by the fact that

|Vu|"dz + 27"/ ((u— Kn+1)+)“’dx) :

Axk

n+1vﬁ n+17Tn

lon — Tl = 2n—i3 and 7 < 7" + 1 for every t > 0, we obtain

2"
Juit < C(Ny, Ry) (2" / (= K1) ") o+ (K + 27 4 DA, 0,)

AK'{H»L”TL
M
On the other hand, such as K, 11 — K,, = DTES
27" (n+3)
(3.55) |Akiron| < N
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which yields

/A ((u - Kn+1)+)7*dx = /A ((u o Kn)Jr)’y*dx + ‘K"Jrl - K"P* |“’4Kn+170n|

consequently, there exists a constant C' = C'(N,~, Ry) > 0 such that
Jn+1 < CDnJ7ll+w7 n = 07 17 27 T

where D = 20775 and w = 77 — 1.

Note that

(3.56) Jo = /,4

Then, by the Lebesgue’s Theorem, Igim Jo = 0, from where it follows that
— 00

((u— KO)JF)’Y*da: < / ((u— KO)JF)’Y*d:E.

K(,o0 Br, (o)

Jo < C 5D, forall M > M*

for some M* > 1 that depends on z. Fix M = M*. Thus, by [62, Lemma 4.7|, we
deduce that

J, =0 as n — oo.

On the other hand,

* M* *
lim J, = lim (u—Ko)*)" dx :/ (u—")")" da,
n—00 n—o0 J 4, A 2
n,on ]Vé 7%
hence,
M* *
/ ((u — )4')7 dr =0,
A]%*,% 2
leading to
M*
u(z) < 5y e in Br, ().
2

Since xg is arbitrary and A is a compact subset, the last inequality ensures that

I1

u(z) < 5 ae in A

for some constant IT > 0. By the arbitrariness of A, we conclude that v € L% (RY). =
The above results ensure that Theorem 1.1 and the first part of Theorem 1.3 are

valid.
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3.2.2  Regularity of nonnegative Solutions of (P;) for class
(V, K) - K1

At this point, in order to study the regularity of solutions to the problem (P;) we
now require that the N'-fuction ® satisfies the (¢g). The following results are anchored
in the regularity theory due to Lieberman [24, Theorem 1.7|. Here, we highlight that
the hypothesis (¢g) restricts the problem (P;) to the case in which ® € (A,), causing
us to stray for a moment from the objective of our thesis (which is to study problems

in which @ ¢ (A,)).

Lemma 3.14 Under the hypotheses of Theorem 1.2 (or Theorem 1.3) if u € E €
L2 (RN) be a nonnegative solution of (Py). Then u € CL*(RN).

loc loc

Proof. It is enough to apply the regularity theorem due to Lieberman [24, Theorem
1.7]. And this is possible due to the condition (¢s). n

Corollary 3.1 Let uw € E be a nonnegative solution of (Py). Then, u is positive

solution.

Proof. If @ ¢ RY is a bounded domain, the Lemma 3.14 implies that u € C*(Q).

Using this fact, in the sequel, we fix M; > maX{HVuHLOO@, 1} and

o(t) for 0 <t < M,
%tﬁﬂ , for t > M,
1

where 3 is given in the hypothesis (¢5). Still by the condition (¢5), there are ay, ap > 0
satisfying

(3.57) e(lyDlyl* = o(lyN)lyl* = calyl” and [e(ly))y| < asly|”™", Vy € RV,

Now, consider the vector measurable functions G; : Q2 x R x RY — R given by

Gi(x,t,p) = o-¢(|pl)p. From (3.57),

(e} _ _
(3.58) |G1(z,t,p)| SQ—ilplﬂ "and |p/°T! < pGi(z,t,p),
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for all (z,t,p) € Q x R x RY. We next will consider the scalar measurable function
Gy : Q2 xR x RY — R given by Gy(x,t,p) = ail(V(x)gb(\t])t — K(2)f(t)). Remember
that from the inequality (3.10), there will be a constant C; > 0 satisfying

(3.59) K@)|f@)] < CiV(x)o([t)[t| + Crou([t)|t], vVt €RY and x € RY.

Fix M € (0,00). Through the condition (¢5) and by a simple computation yields
there exists Cy = Co(M) > 0 verifying

|Ga(, t.p)| < Coft]™", for every (x,t,p) € Q@ x (=M, M) x RY.

By the arbitrariness of M, we can conclude that functions GGy and G5 fulfill the structure
required by Trudinger [61]. Also, as u is a weak solution of (P;), we infer that u is a

quasilinear problem solution
—div Gy(z,u, Vu(z)) + Go(z,u, Vu(z)) =0 in Q.

By [61, Theorem 1.1], we deduce that v > 0 in Q. As Q arbitrary, we conclude that

u>0in RV, m

3.3 Existence of solution in the case (V) K) € K,

To study this second class of problem where (V, K) € Ky, we will see some results

that will be fundamental throughout this section.

Remark 3.3 The inequality (1.8) implies the following inequalities

£0.a(t)A(p) < A(pt) < &,at)A(p), Vp,t >0

when

Eo.4(t) = min{t™,t"} and & a(t) = max{t™,t*?}, Vi >0.

Besides by Lemma 2.16 and Lemma 2.20, we have

lim——% =0 and lim A(t)

=0.
t—0 (ID(t) [t]—o00 (I)*(t)

Proposition 3.4 (Hardy Type Inequality) If (V, K) € Ko, then E is compactly embed-
ded in L1-(RYN) where A is given in (K3).
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Proof. As E is continuously embedded in L®+(RY), there exists C; > 0 such that

(3.60) [l

0, < Ci||ullg, Yu € E.

By (Kj3) given € > 0 there is r > 0 large enough such that

(3.61) K(x)A(t) <e(V(x)®(|t]) + D.(|t])), YVt >0 and |x| >r.

On the other hand, by the Remark 3.3, there is a constant C'y > 0 such that
A(t) < Cy®(t) + Co®.(t), VE>0.

Hence, for each z € B,(0),

K

(3.62) K(z)A(t) < Cy || = V(2)®(t) + Co| | K||0®.(t), ¥t > 0.
Vil 5,00

Combining (3.61) and (3.62),

(3.63) K(2)A(t) <C3V (2)®(t) + C5®,(t), V¢ >0 and z € RV,

with Cs = max{1, Cs|| K |s0, Cs ||§}|Lw(BT(O))}. By the inequalities (3.60) and (3.63),

we get

Jul
Csllullp+Crlfulle

K(x)A ( ) dz < Cy,

RN
where (Y is a positive constant that does not depend on u. So we can conclude that
E C LARY).

Now, consider (v,) a bounded sequence in E. To see that the operator
i . E — L%(RY) is compact just prove that (v,) has a convergent subsequence on
L4 (RYM). Since (v,) is bounded in E, we have that (v,) is bounded in D%®(RY), so
there is u € F such that v, — v in DV®(R"), or equivalently w, — 0 in D“®(R"),

where w,, = v,, — v. By the limitation of (v,) in F and ®,®, € (A,), there is M; > 0

such that

(3.64) /}RN V(2)®(jw,|)dz < M, and /RN B, (lwn|)dz < My, ¥n € N.
Thus, by (3.61) and (3.64), we obtain

(3.65) /B o K(x)A(|Jwy,|)dx < eM;, VYn e N.
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Again, we use the Corollary 2.2 and the fact that E is compactly embedded in L (RY)

loc

to ensure the existence of a subsequence of (v,,), still denoted by itself, such that
v, = v in L*(B,(0)).
Thus, there is a subsequence of (v,), still denoted by itself, that such
vp(x) = v(z) a.e. in B,(0),
that is,
wy(x) = 0 a.e. in B,.(0).

Consider the functions P, : R — R and P : R — R given by

Pi(t) = A(t) and Py(t) = P.(1).

Clearly P, and P, are continuous, moreover

1)
1
|t\—1>r£oo Py(t)

= 0.
Finally, it follows from the boundedness of (v,) in E that there is C; > 0, such that

/ Py(wy,)dx < / O, (wy,)dr < Cy, YneN.
RN

RN

Then, by compactness Lemma of Strauss [26, Theorem A.I, p. 338|,

/ Py (wy,)dz — 0.
Br(0)

Therefore,

(3.66) lim K(z)A(|w,|)dxz = 0.

By (3.65) e (3.66), we have

lim sup K(z)A(Jw,|)dx < e(CM; + 1).

n—o00 RN

By the arbitrariness of € > 0, it follows that

lim K(z)A(Jwy,|)dx = 0.

n—o0 RN
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Since A € (Aj), we can conclude that
v, — v in LE(RY),

which completes the proof. [

Note that the condition (fg) implies that lim f®) = 0. Then, by the condi-
t—-+o0 ¢* (t)t

tions (f5) or (fs), given € > 0 there exists 49 > 0, 6; > 0 and C. > 0 such that

(3.67) K(z)|f(t)] < eK(2)a(t)t + el K[ocpu(t)t + Co K () (E)EX 150,511 (1),

for all t > 0 and x € RY. This inequality together with the Proposition 3.4 yields that
the functional F : ' — R, given by
(3.68) Flu) = K(z)F(u)dx
RN
is well defined and belongs to C'(E,R) with derivative
Fl(u)v = K(z)f(u)vdz, Yu,v € E.

RN
Therefore, we can conclude that the energy functional J : £ — R associated to problem
(Py), which is given by

J(u) = / O(|Vul|)dx +/ V(x)®(|u|)dx — K(z)F(u)dz
RN RN RN
is a continuous and Gateaux-differentiable functional such that J' : E — E* given by
J' (u)v = &(|Vu|)VuVodz + / V(x)d(|u])uvdz — K(z)f(u)vdx
RN RN RN

is continuous from the norm topology of E to the weak*-topology of E*. From (3.67)
and (f3), it follows that J satisfies the geometry of the mountain pass. Hence, there is

a Cerami sequence (u,) C FE, such that,
(3.69) J(uy) = ¢ and (14 |Jug|) ]| (un)]]s— 0
where c is the mountain pass level given by
= inf J(y(t
¢ = Inf max J(7(t))
with

'={yeC(0,1],X): v(0) =0 and J(y(1)) < 0}.
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As in the previous section, the above sequence is obtained from the Corollary A.1 in
Appendix A.
In order to show that the Cerami sequence obtained in (3.69) is bounded, we

present the following result.

Lemma 3.15 Let (v,) be a bounded sequence in E such that v, — v in DY®(RN).

Suppose that f satisfies (f5) or (fs), then

(3.70) lm [ K@F@)de= | K@)FE)dr,
(3.71) Jin | K@ )ed= | K@) f(e)eds

and

372 Jm [ K@ fevde= | K@)f(@)gds, Ve GFRY),

Proof. As in (3.67), given £ > 0, there exists 6y > 0, 6; > 0 C; > 0 and C. > 0 such
that

(3.73) K(2)[f(1)] < C1E (z)a(t)t + | K| s ()t + Co K (1) du(£)EX 180,611 (1),

for all t > 0 and x € RY. By the condition (K3), there is ry > 0 sufficiently large

satisfying
K(x)A(t) <e(V(x)®(t) + Du(t)), VYVt >0 and |z| > ro.
From the above inequalities, we have
(3.74) K(z)F(t) < eCiV(x)P(t) + eCo®.(t) + C. K (x)P.(61) X (50,61 ()
for all ¢ > 0 and |z| > 79. Repeating the same arguments used in the proof of
Proposition 2.1, it follows that
n—+o0

(3.75) lim sup/ K(x)F(v,)dzx < eCs,
Be (0)

for some constant ('3 > 0 that does not depend on n and €. On the other hand, the

compactness lemma of Strauss |26, Theorem A.I, p. 338|, guarantees that

(3.76) lim K(a:)F(vn)d:B:/B (O)K(x)F(v)dx.

n—-+oo BTO (O)
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In light of this, we can conclude that

lim K(z)F(vy)de = [ K(x)F(v)dz.

n—+oo Jpn R

In the same way, we can get the limit (3.71). Related the limit (3.72), it follows directly

from the condition (f5) or (fs) together with a version of the compactness lemma

of Strauss for non-autonomous problem.(This version is an immediate consequence

of [26, Theorem A.I, p. 338| where K (z)dz is used as the new measure) n
Repeating the same arguments used in the proof of Lemma 3.11 and of Propo-

sition 3.3, it follows that the Cerami sequence (u,) given in (3.69) is bounded, up to

some subsequence, we can assume that there is u € E such that
(3.77) u, = u in DY"*(RY) and wu,(z) = u(z) a.e. RY.

As in the previous section, we can conclude that u € E is a nonnegative solution for
the problem (P;). By repeating the arguments presented in Subsections 3.2.1 and 3.2.2
we can guarantee the boundedness and regularity of the nonnegative solutions of (P;)

for the case (V, K) € Ky, thereby proving the Theorems 1.4 and 1.5.
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Chapter 4

A Generalized Choquard equation
with weighted Stein-Weiss potential
on a nonreflexive Orlicz-Sobolev

Spaces

Continuing the study of the existence of positive solutions for a class of quasilinear
Schrodinger equations with a potential vanishing at infinity on nonreflexive Orlicz-
Sobolev spaces, in this chapter, we study the problem with an Stein-Weiss convolution

term of the type:

e V@=L ([ KOPEON g
| e vestme= e (TR ) e sate). 2 c v
u € DH(RY)

where « >0, N >2, A >0, V,K € C(R",[0,00)) are nonnegative functions that may
vanish to infinity, F'(t) = f(f f(s)ds where the function f € C(R,R) is quasicritical
and ® ¢ (A,). Our main goal in this chapter is to study to prove the sequence of
Theorems 1.6, 1.7 and 1.8. As in the Chapter 3, we assume that ¢ : (0,00) — (0, 00)
is a C'! function satisfying the conditions (¢1) — (¢4)(mentioned in the introduction),

furthermore, we will assume that 0 < a < A, A+ 2a € (0,N) N (0,2N — 2¥) and



2N

consider the constant § = IN —2a > 0 and observe that

1 A 0 1 2 A2«
4.1 l—--——< —=<1--= d - — = 2.
(41) §6 NSNS g ™Myt TN

4.1 Existence of a solution in the case (V, K) € O

Initially, we will assume the case (V, K) € Q; (mentioned in the introduction)
and see some technical results that are fundamental to guarantee the existence of a

non-trivial solution.

Remark 4.1 The inequality (1.10) and (1.11) implies the following inequalities
€0,a(t)A(p) < A(pt) < &1a(t)A(p), Vp,t >0

§o,2(t)Z(p) < Z(pt) < &2(t)Z(p), Vp,t >0

when

Eo,4(t) = min{t™, 1} and & a(t) = max{t™, "}, Vi >0.
fo.z(t) = min{t*',t**} and & z(t) = max{t*, t*}, Vt>0.

Besides by Lemma 2.16 and Lemma 2.20, we have

A(t)

limsup —= <1 and limsu <1
t—0 P (I)(t) - \t|—>oop CI)*(t) N

. Z(t) : Z(t)

limsup—= <1 and limsu < 1.
o @) o @(l)

Lemma 4.1 Consider W € L>®(RY) positive almost everywhere and ¥ : R — R an
N -function of the form

[¢]
\If(t):/o si(s)ds,

where 1 : (0,00) — (0,00) is a C' function satisfying:

(¢1) t — to(t) is increasing for t > 0;
(¥2) t1_1>1(1]1+ to(t) =0 and tlgnoo tp(t) = +oo;
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(13) There exist 71,72 € [1, N) such that 7 <

< 1y for each t > 0.
Then the N -function U satisfies

(4.2) Eow ()W (p) < W(pt) < &4 (D)W(p), ¥p,t >0

and

4.3)  Lowlllullry @) < /QW(UC)‘I’(U)dl’ < &u(llullpy @y), Vu€ Lip(RY)
where
&u(t) =min{t™,t™} and & ¢(t) = max{t™,t™}, Vt>0

and

Ly, (RY) = {u € Ly, (RY): W(z)¥ (Ju|) de < +oo} :

loc
RN

15 the Banach space endowed with the Luzemburg norm given by

. |ul
||UHL$V(RN) = inf {)\ >0: v W(Z‘)\I] <T dx S 1;.

Proof. The inequality (4.2) is a consequence of Lemma 2.16. Now, Multiplying W (x)

on both sides of the inequality (4.2) and considering ¢ = ||ul| s @~ and p = il

we obtain

Ealllull g, @) < /QW(x)‘I’(U)dl" < &(llullpy @v)), Vu € Ly (RY).

Showing the inequality (4.3).

HUHL‘VI’V(RN)7

Consider E the energy space defined as in (3.1). The following immersion follows

directly from the above limits and its proof will be omitted.

Proposition 4.1 (Hardy-type inequality) If (V,K) € Q, then the space E is conti-

nuous embedded in L1.,(RY) and L%,(RY).

To state the result below, we will define the functions H : R — [0,00) and

P:R — [0,00) given by H(t) = A(|t|'/?) and P(t) = Z(|t|*/?). Through the assump-

tions imposed under A and Z it is possible to show that H and P are N -functions,
1
in addition, the functions & : (0,00) — (0,00) defined by h(t)t = 5&(251/9)t(2/0)*1 and

1
p(t)t = 52(151/9)25(2/9)_1 are increasing and satisfy

(4.4) H(w) = /0 " h@dr,  and Pl = /0 " otV
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Lemma 4.2 Suppose that (V,K) € Qy and (f]) holds. For each u € E, there is a
constant Cy > 0 that does not depend on wu, such that

[ [ EOEOPDEED gy < [mauly, i) + (ol )]
e Jex el — Pl

Furthermore, for u € E, there is a constant Cy > 0, which does not depend on u, such

that

K(z)K(y)F(u(z)) f(u(y))v(y)
(4.5) /]RN - ’95| PR d:cdy‘ < CoCulv||g, Vv € E,
where

=

Cu i= (s ull g} + mac{lful 2 [l (oDl |, oy 2Dl o )
and H and P are the complementary functions of H and P, respectively.

Proof. By (f]), there is a constant C' > 0 such that

(4.6) )] < Cla®)t*? 4 2(t)t*7%), VteR.

For each t > 0, we have

6—1
0

oi< [ 15l < Mﬂf@wff [/d] < i M’f‘w%}é

Thus,
(4.7)
Fof <0 ( [ e )
<t (a(t)t2*9 +2()t*7?) (ra(7) and 7z(7) are increasing in (0, c0))

C(A([th) + Z(|t)), vt=0.

Similarly,
|F(@0)]° < C(A(It) + Z(Jt]), VE<0

Therefore,
[F@®)]° < C(A(t) + Z([t])), VteR

that is,

@8 [ K@'|Fw)ld < O/RN K () A(lul)dz + C/RN K () Z(Jul)dz < oo,
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for all u € E. By the Proposition 1.1 (Stein-Weiss inequality), it follows that
‘ / K(z)K (y)F(u(z))F(u(y))
RN JRN

|z — yMy|

2
0
da:dy‘ < c‘/ K (2)?)F(w)|’dx
N

SN

<c< K ()P A([u]) dm+/ K(x (|u|)dm>

</ K(x |u|d:x> (/ K(z |u|dm>],

for every u € E and C' > 0 is a positive constant that does not depend on u. It follows

from Lemma 4.1 that
[ K@ Alul)ds < max{lul oy 0l o
and
0 z z
[ K@) 2o < max{ul o Bl o
Since E is continuously embedded in L%, (RY) and LZ,(R"), we can conclude that the

previous inequalities sums up to

(4.9) - K ()’ A(Jul)dz < Cmax{|ull %, ull%},
and
(4.10) - K ()" Z(|ul)dz < Cmax{]|ull3, [JullZ},

for some constant C' > 0. Thus,

‘ / K(z)K (y)F(u(z))F(u(y))
RN JRN

|| =y Myl

dedy| < € |(max{ ul . [l 1) + (max{|ul, Jul 27 ]

for every u € F and C' > 0 is a positive constant that does not depend on u.

Now, consider u,v € E, from (4.6) we have
/ K(@)|f (w0l dz <c/ K (@) a(jul)|u> o dz
+C'/ K(2)?z(Ju)) Jul*~?v|d.

Consider the functions H : R — [0,00) and P : R — [0, 00) defined in (4.4), it follows
from hypotheses (Bs) and (Aj3) that H and P satisfy the As-condition. Knowing this,

we can obtain
/ K( wwwedx—/ K (2)° H (0ulh(jul’))dz

<o [ K@ H(u)dz = ¢, /RN K () A(|u])dz

RN
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/ K ()" P(=(Jul) [uf*~*)d = / K (2)° P(0]ulp(ul"))de

< [ K@'P(u’ d:v—cl/ K (2)° Z(Jul)dx
RN
By (4.9) and (4.10), we have that
/ K (2)° H alful) [u**)dx < Cymax{[lul%, ]2},
and
/ K (2)° B(=((ul)ul*)da < Comax{[[ull2, ]}

Moreover, we have

0
K(x)'H B dr = K(z)’A _ de =1
RN |'U|LA o (RN) RN ‘U’LSG(IRN)

0
/ K(z)'P |”—|9 de = | K(x)°Z _ L dx = 1.
RN |v|LZ,(RN) RN |U|Lf(9(RN)

With this, we conclude that a(|u|)jul>? € LEZ,(RY), 2(|u))|ul>*? € LE,(RN),
lv|? € L, (RY) and |v]? € LE,(RY). Furthermore,

and

o1l 22, vy = Nl ey < Gl

and

ol°ll .z, vy = HvHi}z(g(RN)S Cy|v|%,
where C; > 0, i = 1,2, are positives constants that does not depend on v. By Propo-
sition 4.1, it follows that

220 0 2.0 0
" SOOI g o1y CHZ DI

<Cs(llallu)lul*?ll i g lolB+ 12Dl e g 10l1%),
K9 KO

where C; > 0, ¢ = 3,4, are positives constants that does not depend on v and v. From
(4.11), (4.8) together with the Proposition 1.1 (Stein-Weiss inequality), it follows that

[ [ EROPE00N0),,
RN JRN

\x| |z —yPPyl

| Eari ]

1 _ _ 1
< Co (max{||ul|F, [lull 3} + max{[Ju||Z, lul 3} (la(ul)]ul? "IILZO(RN)+IIz(IUI)IUI2 ellLig(RN))ellvllE.

y| < c‘ /R K@) |F () de
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Lemma 4.3 Assume that (V, K) € Q and (f]) holds. Let (u,) be a bounded sequence

in E, and consider u € E such that u, — u in E. We will show the following limits

(4.12) lim K(2)°|F(u,) — F(u)|’dz = 0,

n—o0 RN

(4.13) lim K (@) f(up)un — f(u)ul’de =0
n—oo RN
and
(4.14) lim K(2)°|f(un)p — f(u)e|’dx = 0.
n—oo RN
Proof. By remark 4.1, limsu alt)t*”’ <1 and limsu Gl < 1, then from (f])
} 11 ——— < — <1, :
' 0 (D N O :

given € > 0 there exist §y > 0, 6; > 0 and C. > 0 such that

(4.15) FOF < (SR + 0uF) + Coon (0P Xipo (1)

In the same way as (4.7),

*

%(h(t)) +

C.m*

—(I)*(t)X[(;o,tSﬂ(t)

(4.16) IF(1)]° < g<—2<I>(t) + ;

— \4
From (4.16), Proposition 4.1 and the Sobolev inequality, it follows that the sequence
(K(-)F(uy,)) is bounded in L¢(RY). It is clear that K (x)F(u,(z)) — K(x)F(u(x)) a.e.
in RY in the sense of subsequence. Then, by the Brézis-Lieb Lemma [56, Lemma 1.32]

we obtain

(4.17)

K($)9|F(un) — F(u)\gdx = /RN K(a:)e\F(un)]odx — /RN K(x)o\F(u)\edm + o,(1).

RN
In view of this fact, to verify (4.12), we only need to prove that the right side of (4.17)
is a quantity o,(1). Note that F,, = {z € RY : |v,(z)| > o} is such that

bR < [ (u@hdr< [ @iz <
n RN
for some constant C; > 0 that does not depend on n. Thus, sup |F,| < 4+00. From

neN
(Q1), we have

lim K(2)dz = 0, uniformly in n € N,
=+ J F,nB:(0)
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thus, there is g > 0, so that

£
K@)’de < ———— VYneN.
/anB,gO(O) (@) P, (61)C:

Moreover, as (v,) is bounded in E, there is a constant M; > 0 satisfying

/ V(2)®(lun)dz < My and / &, (|un|)dz < My, ¥n € N.
RN RN

By (4.16), it follows that

K (2)?|F(u,)|?dz <eC Uy, |)dx D, (lu,|)dr
[ K@E ) < (/W Vel + [ o) )

+ OB, (5) / K (2)dz

FanBs, (0)

<e(Ci My + 1),
for all n € N where €y > 0 does not depend of £ > 0. Therefore

(4.18) lim sup/ K (2)°|F (u,)|’de < e(CyM; + 1).
< (0)

n——4o0o

On the other hand, using the compactness Lemma of Strauss [26, Theorem A.I,

p. 338], it follows that

(4.19) lim K(2)°|F(uy,)|’de = / K(z)|F(u)|’d.
0 ) By (0) By (0)
In light of this, we can conclude that
lim K(z)?|F(uy)|’dx = K(z)?|F(uw)|dx.
n—-+00o RN Rn

Through this limit together with (4.17), we will get (4.12). Similarly, the limit (4.13)
is shown. Related the limit (4.14), it follows directly from the condition (f]) together
with a version of the compactness Lemma of Strauss for non-autonomous problem.(This
version is an immediate consequence of |26, Theorem A.I, p. 338] where K (x)dz is used
as the new measure) |

The following result is an immediate consequence of Stein-Weiss inequality and
Lemma 4.3.

Lemma 4.4 Assume that (V,K) € Qy and (f]) holds. Let (u,) be a sequence bounded
in E and u € E such that u,, — u in DY®(RY). Then

(120) SGLOLECIT MWy gy g CLOTTCLITO) P
RN ]RN

lim
n—oo Jgn Jgn Ix\ |z — y|Myle lz] |z — y|y|«
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(4.21)

K () K (5) F (1 (2)) f 11 (1)) (9) K () K (y)F(u()) f (uly) uly)
A Jon o |:c| FESYE o dy*/ﬂw o ol —yPlle
an

422

. K@) K @)F (a2 () e0) [ K@K 0P 00)e)
A fon S |x| TPl - 2o — Pyl

for all ¢ € C3°(RY).

By the inequality (4.6), together with all the results presented above, it is verified
that the function

[ [ DRIy,
e Jox — Jelele — yPlyl® |

is well defined, is continuously differentiable and the Gateaux derivative W' : £ — E*

is given by

o= [ [ KOKOPGDS0) 0y, v, e g
o Jex el — gDyl Tmres

This fact is proved similarly to Lemma 3.2, found in [13].
From the results presented in Section 3.1, we can conclude that the energy

function associated with (P,) given by

J(u) = /RN &(|Vul)da + /RN V(2)®(Jul)dz — ;/RN N K@)ﬁ‘%‘)jﬁl‘;ﬁ)’ﬁ“(y))d:cdy,

for u € F is a continuous and Gateaux-differentiable functional such that J' : £ — E*

given by
J (u)v = ¢(|Vu|)Vquda:—|—/ V(z)o(|u|)uvdr
/ )0 Flato) )
BN JRN [z = y[Myl

is continuous from the norm topology of E to the weak*-topology of E*.

Asin (3.1) that u € E is a critical point for the functional J if

(4.23)

/ K@K @ F ) f@@)ew) —uw) o0 g, e g
i~y [l =yl |
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where the functional ) : F — R is defined by

Q) = [ ®(Vuhds+ [ V@)

RN

As with Proposition 3.1, a critical point « in the sense (4.23) is a weak solution for
(P2), that is,

(4.24)
K(z) K (y)F(u(x)) f(u(y))v(y)

2|z — y[My|e

o(|Vu|)VuVodx + /RN V(z)p(|u])uvdx — /RN o dxdy = 0,

RN

for each v € F.

Lemma 4.5 Suppose that (V,K) € Q1 and (f]) hold. Then there are p,n > 0 such
that J(u) > n for allu € ENOB,(0).

Proof. By Lemma 4.2, there exists a positive constant C' > 0 satisfying

/ K(z)K(y)F(u(z))F(u(y)) dedy| < C
RN JRN |{L‘ - y|>\ -

2 2
(max{[Julg, [[ulF}) " + (max{llulz, [ulF ),

for all w € E. Hence, by defining the functional J together with Proposition 4.1, we
get

() Z&(([Vulle) + &o(lulve) = C (max{Julg, ul#})? - C (max{ul3, u]3})

2a;
2[[Vullg+lulVe—C(lullz) = = C(llullz) .
for u € E with |lul]|g< 1 where &(t) = I}li(r)l{té, t™}. By the classical inequality
>
(x+y)° <2772 +y7), x,y>0, and o> 1,
we get for u € F with ||u||g< 1 that
. 201 221 201 221
J(u) = C(IIVullatlulve)” = C(llulld +lulg ) = Cllullp—C(lully +lullg ),

2 2 2
for some constant C' > 0. As g > 1, then m < % and m < % Hence, setting
p = ||u|| small enough,

2aq
0

J(w) = Cllulg=C(llullf +llullg) =n>0.

Which completes the proof.

By a standard argument, the following lemma follows from the condition (f}).
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Lemma 4.6 There is e € E with ||ul|g> p and J(e) < 0.

The previous lemmas establish the mountain pass geometry for the functinal J in
both cases. In what follows, let us denote by ¢ > 0 the mountain pass level associated

with J, that is,

— inf J(~(t
¢ = Inf max (v(1))

where

I'={yeC(0,1],X): v(0) =0 and ~(1) =e}.
Associated with ¢, we have a Cerami sequence (u,) C F, that is,
(4.25) J(u,) — ¢ and (14 [Jun|]) || (un)|l«— O.

The above sequence is obtained from the Corollary A.1 in Appendix A.

Now, we are able to prove that the Cerami sequence given in (4.25) is bounded

in F.

Lemma 4.7 Let (u,) the Cerami sequence given in (4.25). There is a constant M > 0

such that J(tu,) < M for everyt € [0,1] and n € N.

Proof. Let t, € [0, 1] be such that J(t,u,) = m[amlc] J(tuy,). If t, =0 and t, = 1, we
te|0,

are done. Thereby, we can assume t,, € (0, 1), and so J'(t,u,)u, = 0. From this,
md (tptn) =md (tpt,) — J (Eptn) (tatiy)
:/RN (Mm®(IV (taun)]) = 61V (taun) )|V (tnun)[*) dz
+ [ V@) (i) = o, Dltw ) o

K(z)K Ft,u,(x iy, nln, —TF nln (1)) F (t,u,
+// (@) K (y) [F (tnwn(2)) f (tntin(y)) tntin () 5 F(tnun()) F (¢ (y))]dwdy'

|||z = y[Mylo

The conditions (f3) and (f}) guarantee that the functions f(t)t — %F (t) and F'(t) are
nondecreasing for ¢ > 0. The condition (¢4) ensures that the function m®(t) — ¢(¢)t>

is increasing for ¢ > 0. Thus,
mdJ (tnu,) < md(u,) — J (uy)u, = mJ(u,) — 0,(1).
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Since (J(u,)) is bounded, there is M > 0 such that

J(tu,) < M, Vte[0,1] and n € N.

Proposition 4.2 The Cerami sequence (uy) given in (4.25) is bounded.

Proof. Suppose by contradiction that ||u,||g— oo, then we have the following cases:
i) ||Vup|le— 400 and (||uy,||v.e) is bounded
i) ||un|lv.e— oo and (||Vuy,|le) is bounded
i11) ||Vug|le— 400 and ||uy,||v,e— +o0.
In the case #ii), consider

Unp,

lualle’

Vn € N.

Wn,

Since |lw,||z= 1, by Lemma 3.3, there exists w € E such that w, — w in D»®(RY).
There are two possible cases: w = 0 or w # 0.

Case: w =0

Note that for every constant o > 1 there is ng € N such that T € [0,1], for
Un||E
n > ng. Given this, we get
g
J(thtn) 2J(—=—Un
(tnun) (IIVunH@ )
=J(owy,)
:/ @(U|an\)dx+/ V(x)cb(a|wn|)dx—1/ K@)K W Floun(@) Floww)) g,
RN RN 2 Jry JrN |||z =y y[

) K (y) F(own () F(own(y))

dxdy
||z — y|*y|

ZUQ(wn) - %/RN BN K(

By definition of the sequence (w,,), we have ||Vw,|s< 1 and ||w,|ve< 1, for alln € N.
Then,

/ (| Vun)de > Vw3 and / V(@)®(|wal)dz > [l
RN RN
So there is C' > 0 such that

Qwn) = [Vwnlg +l[wnllve> C([Vwnllotlwnllve)™, ¥neN.

80



Thus

T (tou) =0 C(|Jw, ]| p)™ — % /R s K(z)K (ﬁf;gtﬁnﬁ)‘)ﬁ(own(y))

ol K(a)K (5)F (0w, () Flow,(v)
¢ 2/RN oo 2oz — Pyl drdy

dxdy

If w =0, it follows from (4.20) that

| K (2)K (4) F(ow,(x)) Fow,(y))
. / oo [2lolz — gyl

dxdy = 0,

n—0o0

therefore,

liminf J(t,u,) > Co, Vo >1.

n—oo

which constitutes a contradiction with Lemma 4.7, once that (J(t,u,)) is bounded
from above.
Case: w # 0

Recalling that

() _ wp(z) = w(z), a.e. in RY

[Un| = |wy|||un||g  and =
HunHE

we will get that
|w, (2)] = |w(z)|, a.e. inRY.
Furthermore, from the fact that ||u,||g— 400, we can conclude that
un (2)] = |wn(2)|||un || p— +00, as n— oo for x € {y € RY 1 w(y) # 0}.
By (4.25),
(4.26) 0 = limsup — —lim sup M
nooo UnllB oo [uallB

As ||uy|le> 1 and ||un|lv.e> 1 for every n > no,

(4.27) / B(|Vun|)dz < [ Vauy | and/ V(@) (un)dz < [lunfas Yn > no.
RN RN
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Thus, it follows from (f}), (4.26), (4.27) and Fatou’s Lemma that

J(uy,
0 =lim sup (ui
oo |[Un||

1 1
< lim sup {—/ (|Vun])dx+ / V(x)®(|un|)dx]

‘“ﬂiﬂlf{ Lo L2 |>y|a ]
<2 gtmine | [ [ CSEEW SO ) 2D )]

s Y| u, ()] 2 [un(y)|>

which is a contradiction. This shows that (u,) is bounded in E.
The cases i) and ii) are analogous to the case 7).
n
Since that the Cerami sequence (u,) given in (4.25) is bounded in £, by Lemma

3.3, we can assume that for some subsequence, there is u € E such that

(4.28) U, — u in DY*(RY)  and u,(z) — u(z) ae. RY.
and
(4.29) liminf/ @(|Vun|)da72/ O(|Vul|)dz

n—oo RN RN

Fix v € C(RY). By boundedness of Cerami sequence (u,), we have
J'(uy)(v — u,) = 0,(1), hence, since ¢ is a convex function, it is possible to show

that

(4.30)
Q) — Q(un) / RNK (1) F (1 (@) f (1 (1)) (1) — un (1))

x|z — y[My|®

dzxdy + o,(1).

By (4.28), it follows from Fatou’s Lemma that

n—oo

(4.31) lim inf /RN V(2)®(|un|)dz > /RN V(2)®(|u)da.

Combining (4.29) and (4.31), we conclude that

(4.32) liminf Q(u,) > Q(u).

n—o0
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From (4.30) and (4.32) together with the limits (4.20) and (4.22), we get

/ K (z)K (y) F(u(x ))f(U(y))(v(y)—U(y))dxdy.

|z — y[Myl

As £ = CSO(RN)H-”E and ¢ € (Ay), we conclude that

(4.33)

o [ [ EDEOPCE 00 )y, e
RN JRN ||*x =y [yl

In other words, w is a critical point of the J functional. By (4.24), we can conclude
that u is a weak solution for (P2). Now, we substitute v = u* := max{0,u(z)} in
(4.33) and we get

- /RN <I>(|Vu_|)d:v - RN V(m)q)( dl‘ = /]RN RN K( )K( |)JSF(|1;(x)>yf)(\q|;(|i)>(u_(y>)dxdy =0

which leads to

/RN B(|Vu|)de =0 and /RN V(2)®(u~)dz — 0

whence it is readily inferred that u~ = 0, therefore, u is a weak nonnegative solution.

Note that u is nontrivial. In the sense, consider a sequence () C C5°(RY)
such that ¢, — u in DY®(RY). Since (u,) is bounded, we get J'(u,)(pr — u,) =
on(1)]|¢k]|—0n(1). As @ is convex, we can show that

430 Hoe) ~Tua) —oni) 2 [ [ SO e ey

Since (||¢k||)ken is a bounded sequence, it follows from (4.34) and from limits (4.21)
and (4.22) that

/ K(z) K (y) F(un(x)) f(un ())(sok(y)—un(y))dxdy
RN JRN |

Q) — limsup Q(u,) > limsup
|||z — y|*y|*

n— oo n—oo

for every k € N. Notice that & € (Ay) and ¢, — u in F, we conclude from the

inequality above that

(4.35) Q(u) > limsup Q(uy).

n—oo

From (4.32) and (4.35),

(4.36) Q(u) = lim Q(uy,).

n—o0

By (4.20), we have

(4.37)
. K@) K () F () Flunly)) | K (@)K () F(un (2) P (v)) |
W o S \x| Pl W / oy ez gDl W
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Therefore

0<c= lim J(up)

n— oo

:/RN O(|Vul|)dz + /RN V(z)®(|u|)dz — /RN - K(m)K(y)F(u(m))F(u(y))dxdy

|2z — y Myl

=J(u),

that is, u # 0.
Now, we prove that the solution obtained is a ground state solution. Let us recall

the definition of a ground state solution:

Definition 4.1 A weak solution uw € E of (Ps) is called a ground state solution if it
has the least energy, i.e., we say, the solution u is ground state solution of (Py) if
(4.38) J(u)=>b= ing J(u)

ue

where S is the set of all critical points of the functional J.

In order to prove the result below, we will use the following continuity result:
Lemma 4.8 The function v J'(u) - u is continuous from E to R.

The above lemma is immediate whenever J € C'(E, R).

Lemma 4.9 Assume that (V, K) € Q; and f satisfies (fi)—(f1). For eachv € E\{0}
the function 1,(s) = J(sv) has the following properties:

(11) there is a bounded closed interval [a,,b,] (which can be degenerate) such that

0 < a, and J'(sv)-v >0, for all s < a,
(1) 0 < max J(sv) = J(Tv), for all T € [a,, b,], J(sv) >0 in s € (0,a,)
(¢3) J(Tv) < max J(sv), for all T ¢ [ay, by]

(¢4) There are s, > b, and 6, > 0 such that J'(su) -u < 0 and J(su) < 0, for all
s> s, and u € By, (v).

Proof. Fixed v # 0, the function h(t) = J(tv) has derivative h'(t) = J'(tv) - v. As in
the Lemma 4.5, there will be r > 0 such that J'(v)-v > 0, for all 0 < ||v|| < R. Hence,

(4.39) J(sv) = / J'(tv) -vdt > 0, for 0 < s < HZ_”
0
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From (f}), there exists s, > 0 such that
(4.40) J(sv) <0, forall s > s,

thus, max J(sv) = J(tv) > 0 for some 7 € (0,s,). By definition of the J functional,

we have

/ K@K @Ft@) e .

m

t 2 |a|ofe — yPyletz !
Using the hypothesis (¢4), we can conclude that the function

o(|Vtv|)| Vol o([tv])[vf?
R R

is nonincreasing, since the hypothesis (f}) guarantees that the function

. K@K @F(to@) ) ,

rv ey tE|lee -y Pyl

t—

is nondecreasing. Therefore, by (4.39) and (4.40) there will be an interval [a,, b,] such
that A'(7) > 0in t < a,, K'(7) < 0in 7 > b, and A'(7) = 0 in the interval [a,, b,].
The conclusion (¢), (¢2) and (¢3) is immediate. The property (1) follows from the
previous items together with (4.40) and with the continuity of J and v — J'(v)v.
n
In the proof of the lemma below, we have adapted the ideas presented by Willem,
which can be found in Theorem 4.2 in [56].

Proposition 4.3 If u € E is a nontrivial solution for (Py) such that J(u) = ¢, where
c is the level given in (4.25). Then ¢ = inf,es J(u) where S is the set of all critical
points of the functional J.

Proof. By condition (f}), we can fix without losing generality e € E such that J(e) < 0
and J'(e) - e < 0. Consider the following sets:

F={y:00,1] = E:74(0) =0, v(1) = e}, To={y:[0,1] = E:~(0) =0, J(v(1)) < 0}
and
N={ve E\{0}:J(v)-v=0}, S={ve E\{0}:J(v)=0}
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We will compare the following numbers:

¢ = Inf max J(1(#)), co= inf mnax J(1(#), d = inf max J(sv),

and
a = inf J(v), b= inf J(v).
veN veS
Let us see some immediate inequalities:
(1) It is obvious that ¢y < ¢ and a < b;

(17) Let us see ¢y < d. Note that if v # 0, then the path (¢) = ts,v is such that
~7(0) =0 and J(y(1)) = J(syv) < 0. Therefore, v € 'y and

< =
¢ < max.J (7(t)) = max J(sv),

that is, ¢g is a lower bound for the definition of d. The affirmation is justified.

(77i) Let us show that a < ¢. In fact, fix y € I'. Just check that J'(y(1))-~(1) = J'(e)-
e <0< J'(y(t)) ~(t) for t > 0 small enough. Having the Lemma 4.8 true, we can
use the Intermediate Value Theorem to guarantee the existence of t; € (0, 1) such
that J'(y(t1))-v(t1) = 0,50 v(t1) € N. Thus a < J(y(t1)) < ga}ﬁ J(y(t)) < c+e,

and therefore the inequality a < ¢ is shown.
(1v) Now ¢ < ¢g. Let v € I'. The idea is to define a function 4 € I" such that

max J(y(t)) = max J(3(1))

For this, define 7 : [0, 1] — E as follows:

3(t) = ~(2t), for t € [0, %]

It remains to define the function 7 to values t € B, 1{. Remember that J(e) <0
and J(3(3)) = J(v(1)) < 0. Being 7(1) = v, consider any point u of the
segment [e,v;]. We cover this compact segment with a finite number of balls
Bs, (u) obtained through the property (14), that is, [e, 1] C Bs, (u1)UBs,, (u2)U
-+ U By, (uy). Consider A = max{sy,, Suy, " , Su, }, numbers given by (4.40)
and (14). Set the 7 : E, 1] — F the polygonal line segment from v; going
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to Avp, then connecting A\v; to Ae and finally, connecting Ae to the point e.
1
It is easily shown that 4 € T', J(5(t)) < 0 for all t € {5, 1] and therefore,

= Y . i > c.
trél[g,}ﬁ J(y(t)) tem[oa’}lc] J(3(t)). Showing that ¢y > ¢

(v) Let us see that d < a. Fix v € N so that J(v) < a+e. In the proof of the Lemma
4.9 the function defined by v, (t) = J(tv) satisfies ¢](t) = 0 only if ¢ € [a,, b,].
Consider v € N and note that ¢/ (1) = J'(v).v = 0, this implies that 1 € [a,, b,].
Knowing that the function 1, reaches a maximum in the interval [a,, b,]|, we will
obtain ¥, (t) < 1,(1) for all ¢ > 0, because v, is constant in [a,, b,]. In light of
this,

d< mfgcJ(sv) <Jw)<a+e.

If € is arbitrary, we have d < a.

Finally, consider u € § satisfying J(u) = ¢. By the inequalities above we can

conclude that a =b=c=c¢, = d.

4.1.1 Boundedness of nonnegative solutions of (/) for the class
(V, K) - Ql

Assuming the assumptions of Theorem 1.6, the above argument guarantees the
existence of a nonnegative ground state solution for problem (P), thus showing the
first part of Theorem 1.6. Now, to show to study the boundedness of nonnegative
solutions of the problem (P,) we will make heavy use of hypothesis 2a0 + A < 2.

Now, we begin by presenting a technical result, which is an adaptation of a result

that can be found in [5].

Lemma 4.10 Let u € E be a nonnegative solution of (Py), o € RN and Ry > 0.
Then
u—Fk

.
/ Vul'dz < C / de+ (K + D)4l | +C /
Ag ¢ Ak,s t Ak,s

where 0 <t < s < Ry, k>1, Ay, ={x € B,(x0) : u(z) > k} and C > 0 is a constant

4 0

u—k
s—t

s —

de + (k¥ + 1)|Ak,sl>

that does not depend on k.
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Proof: Let u € E be a weak solution nonnegative of (P) and xq € RY. Moreover, fix

0<t<s<Ryand ¢ € C(RY) verifying

2
0<¢<1, supp(¢) C Bs(xg), (=1 on By(xg) and |V(| < Pyt

For k > 1, set o = ("™ (u — k)" and
7= [ a(Tuperis
Ak,s
Using ¢ as a test function and (®(t) < ¢(¢)t?, we find
07 <m [ "N u— k) (| Vul)[Vul[V(|dr — / V(z)¢(u)u¢™ (u — k)" dx
.Ak s Ak,s

- [ E@E@F@@) )66 -6,
A s JRN

x|z — y Myl

< / ™ — kYo (|Vu]) |Vl | V¢ dac
A,

raeam| [ ke Fwra | [ Keree - o

By (f1), given n > 0, there exists C. > 0 such that

K@)ft)? < -K(2)at)t*° + C.K(2)2(t)*°, Vt>0and z € RY.

| ™

Thus,

(4.41)

tJ <m ¢ Hu = k)T o(|Vul) |Vl [V¢|da
Ak,s

[

+ Cs
-Ak‘,,s -Ak,s

Q°(@)a(lulyu=? (¢ (u— k)*)’d + Q ()2 (ful)u?~* (¢ (u — k)*)"dﬂcl

where Cy = C1(0, A\, N) ([on Q(2)°|F(u )\edm)%. For each 7 € (0,1), the Young’s

inequalities gives

(4.42)  o(|Vu])|Vul|[VCIC™"H (u — k)T < &(¢(|Vul)|Vul¢™ 1) + C?@(‘ Z - IZD

It follows from Lemma 2.18,
(4.43) O(o(|Vul)[Vul¢™ ') < Ca(r (™) m10(|Vul).
From (4.41), (4.42) and (4.43),

O(|Vul)C™ +mCs /A <I>(‘ u- ];Ddx

LJ SmC’4Tﬁ /

Ak.s S

=

+ (s

/ K (z)a(lul)u®* (™ (u — k)*) dz + i K (@)2(Jul)u®* (¢" (u — k)*)d
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Choosing 7 € (0,1) such that 0 < mCyrm1 < {, we derive

J§O5/Aky5<1><

u—k

S —

K’ (z)a(|ul)u**(("™(u — k)*)*dx
Ag,s

/ K*(2)2(|ulJu®~ O(Cm(u—kﬁ)odw]

de + (Y

(4.44)

D=

By Young’s inequalities,

(4.45) ()2 (¢ (u — k)Y < CZ (‘ Z - ’t’“ D +CsZ(k).
and
(4.46) a(u)u® 0 (™ (u — k)Y < CA (‘ = ’Z D + CsA(k).

Therefore, a combination of (4.44) and (4.45), yields

J§C7/Ak’5<1>( /Ak’SA(‘Z_f’)quL/AmA(k:)dx
+ /AZ< “_f‘)der/Ak’S Z(k)dx]

Now, using that £/ < m < as < £* and applying the Lemmas 2.16, 2.20 and the Remark

u—k

S —

D dx+CY

(4.47)

=

4.1 for functions ®, A and P, respectively, we get

of|22) <o (2 1)

s—t
A()’;:’ZD gA(l)(‘Z:]; : +1) and A(k) < (k" +1).

u—k

s—1

and

z(‘ls‘:’;)) < z<1)<‘ls‘:’; " 1) and Z() < (K 4 1)

From (4.47) and the inequality above,

—k
J < Cs / ‘ ’ dx+(l<:l 1) A | + Cs / Y
Ak.s s—t -Ak,s S —

Lemma 4.11 Let u € E be a nonnegative solution of (P,). Then, u € L2 (RY).

1

(K" + 1)|Ak,s|>
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Proof: To begin with, consider U a compact subset on RY. Fix R, € (0,1), o € U

and define the sequences

R R nt 0Op
an:71 2ni1 and En:$ forn=20,1,2,---.

Note that
Ry _
on 4 - and 0,41 <0, <o, < Ry.

Since E is continuously embedded in W,2*(RY), it follows from Lebesgue domi-
nated convergence theorem,
(4.48) lim ((u—P)") de =0,

M —o0 BRl (IO)

hence, there is P* > 1 which depends on xy and R;, such that
(4.49) / ((u— P)*)e*dx <1, for P> P".
BR1 (LL’())

Now, consider M > 4P* and for every n € N define

M 1 e
Kn:7(1—2n+1> and Jn:/A (u—K,)*) dz, forn=0,1,2,---.

Kn,on

2n+1
§n:§( 7 <|x—x0|—%)), reRY andn=0,1,2,---,
1

where £ € C*(R) satisfies

0<¢<1, £(t)=1 for t < and £(t) =0 for ¢t >

DO | —
=] w

From definition of &,,
& =1 in B, (xg) and &, =0 outside Bz, (o),

consequently

Join < / (4= Ko 6) de
B, (%0)

(4.50) <G ( /A .
e/,

o*

l

IV ((u - K+1)+€n)|€dw>

\Vu|‘dx + 2‘5”/ ((u— Kn+1)+)edaz‘> :

Ak

n+1:9n nt1:91
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for some constant Cy = C(N, ¢, R;) > 0. Applying the Lemma 4.10 to the previous

inequality, we get

(4.51)
li* u— Knk-‘rl & 0* ‘n +\¢
']n+1 SC?)( ‘7— dr + (Kﬁ+1 + 1)‘AKH+17U71| +2 ((u - Kn-l-l) )d.l?)
AKpi1.0n On — On Ak, 150
— Kpaq |© . %
+03(/ 2 (2 + DAk )
AK’IL+17071 Un o Un
. . _ Ry
where C5 > 0 is a constant that depends only on N, ¢ and R;. Being |0, —7,| = ons)

we conclude that

£ * *
Ji1 < Ca(N, 1, Rl)(ﬂ" /A (u = Knp1)") dae + (M" +1)| Ak, 0,
K

n+1:9n

(4.52) 4 2fn /A (u— Kn+1)+)‘dx)

n4+1:9n

-

+Cu(N, £, Ry) (2‘*" /

(= Kns1) ) do+ (M +1)| Ak, )
Ax

n+1:9n

Combined the inequality above with t¢ < t*" 4+ 1, for t > 0 and using that 7, < o,,
we get that

I <0(N£R)(2f"/
nt+1 = “4 s 4y 411

} ((u— K1) ") da+ (MY 42 + 1) Ak, 0, \)

Knt1:9ny,

(0= K1) da+ (M +2 4+ 1) Ak, ]) -

n41:9n

(4.53)

D=

+Cu(N, 1, Ry) (2“ /
Ak

M

On the other hand, since K, — K,, = TEEE

M\" .
(2n+3) ‘Alevanl = (Knp1 = Kn)g AKnH:Un‘
(4.54) < (Kpy1 — K,)" da
AKypiiiom
<[ e K P @0 <
AKpi1.om
which yields
1
(4.55) [Atern] < TN
(2n+3)
Thus,
(u— Ko1)) da < / ((u—K,)")" da + (K1 — K,)" da
ARy i1.0m ARy i1.0m AKp 1,00
S ((u - Kn)+)z*d$ + |Kn+1 - Kn‘z* ‘AKn.H,anl
Ak on
<2J,
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and consequently

* ) )
Joi1 <C5(N, L, Ry) (25"“ 4 o) (9 g q)gn(tte )) I
(4.56) .
+ C5(N, 0, Ry) (2zn+1 +oneH) 4 (9t 4 1)2,1(”[*)) 7

Due to the fact that M > 4M*, we conclude from the inequality (4.49) that
Jp < / ((u — M*)+)f*d:)3 <1, form=0,1,2,---,
Br, (z0)
hence,
(4.57) Jpi1 < CDnJ’rlL+w7

where C = 205(]\[7@’ 31)7 D = 22(€+z*)% and w = % _

We claim that
Jo < C 5D %, for M > M*.
Indeed, note that,

(4.58) Jo = /A

Since F is continuously embedded in W,2(RY), it follows from Lebesgue dominated

((u— KO)J“)Z*dx < / ((u— KO)JF)E*dx

K(,00 B, (z0)

convergence theorem,
lim ((u— KO)JF)Z*dx =0.
M—o0 BR1 (960)
Therefore, there exists M > 5P* that depends on xg, such that
(4.59) / ((u— K@*)”dx <CwD =, for M > M".
Br, (z0)
From (4.58) and (4.59),
(4.60) Jo<C wD e, for M > M.
Fix M = M*, by |Lemma 4.7, 62|, we deduce that

J,—0 as n — oo.

On the other hand,

lim J, = lim ((u— Kn)+)£*dx = /A ((u— M*)J“)Z*dx

n—oo n—oo
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Hence,

leading to

5 e in Br, (o).

Since xg is arbitrary and U is a compact subset, the last inequality ensures that
A .
(4.61) u(zr) < 5 ae in A

for some constant A > 0. By the arbitrariness of U, we conclude that u € L (RY).

loc

These Lemmas guarantae that the Theorem 1.6 is valid.

4.1.2 Regularity of nonnegative Solutions of () for the class
(V, K) € Oy

Let us consider the hypotheses of Theorem 1.7. By the argument presented in
this chapter, we can infer from Theorem 1.6 that there exists possesses a nonnegative
ground state solution, locally bounded u € E, to problem (P). Therefore, to conclude
the proof of Theorem 1.7, it suffices to examine the regularity of this solution. It will
be crucial here to assume that o = 0. The regularity will be divided into the following

lemmas:

Lemma 4.12 u € C.)(RY), for some v € (0,1).

Proof. By (f]) together with the Remark 4.1, there exists C; > 0 such that

FO) < Gl Vi1
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Hence, by Holder inequality

6—1

/[uzu |z — y[> dy < </[u21] |$_y*<991>dy> </[u21] F(u(y)) dy)

6—1

6

1

_0 o 1
K 7—1 0
<0, ( / Wdy) (/@)
RN |z —y[~ o RN
0—
s K Py K . 5
<c (/ (I>*(u)dy> / %dﬁ/ W7,
By lo—yl<t [z —y[~o e—yl>1 [z —y| "7
g 1
_6
<Ci (/ <I>*(u)dy) <||K||go/ ﬁdy—k/ K(y)7 dy)
RY le—yl<1 |z —y|"T jz—y[>1

1
o 1 A(6—1) o—1 4
<c, / cb*(u)dy) (nKnio / PN G R )
RN 0 Lo (RN)

On the other hand,

K(y))F K
KO by <Py [ 2
[u<1] |z — y| Ry |7 — Y|
K(y) K(y)
<||F |l 0,1 (/ dy+/ —=dy
(101 lze—y|<1 |l’ - y|/\ |lz—y|>1 |‘T - y|>\
1
< Fllon) (nKnm |y ||K||L1<RN>) ,
that is,
K(y))F
/ (y) (U(y))d <0
RN |$ - y|A
where

% 0 1 N-1 A(6-1) -1 %
¢, -{c, ( / <1>*<u>dy) (HKHM [y w7 ) ;
RN 0 L7 (RN)
1
IFlemto (1T |12y 1K s )
0
showing that

K(y)F(u(y))

4.62
( ) RN |ZE - y|)‘

dy € L®(RY).

Let © C RY be an open set and M > 0 the constant satisfying (4.61). Define the
scalar measurable function Z : Q x R x RY — R given by

K(y)F(u(y))d

Z(x,t,p) = V(z)e(|t|)t — ( ey |z —y

y) K(@)f()
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o(t), for0<t<M/2 ~ f&) , for0O<t<M/2
o(t) = and f(t) = ;
&(M/2), for t > M/2 f(M/2), for t > M/2

where M > 0 is the constant satisfying (4.61). By (4.62), there exists a constant Cj
such that

|Z(z,t,p)] < C3, V2 € Q, p€ RY and t € [0, M/2].

This fact together with the hypothesis (¢g) allows us to apply the theorem of regularity
due to Lieberman [24, Theorem 1.7|. Thus showing the result

Corollary 4.1 Let w € E be a nonnegative solution of (Py). Then, u is positive

solution.

Proof: If Q ¢ RY is a bounded domain, the Lemma 4.12 implies that u € C*(Q).

Using this fact, in the sequel, we fix M; > maX{HVuHLOO@, 1} and

o(t) for 0 <t < M,

il _12) 82 for t > M,
My

where [ is given in the hypothesis (¢s5). Still by condition (¢5), there are oy, a5 > 0
satisfying

(4.63)  o(yDlyl> = oDyl = culyl® and  |e(|y))y| < aolyl’™", vy e RY.

Now, consider the vector measurable functions G : 2 x R x RY — R¥ given by

G(z,t,p) = ailgo(|p|)p. From (4.63) ,
(4.64) Gla,tp)| < 2P and - pGla,tp) > o7,
(651
for all (x,t,p) € O x R x RY. We next will consider the scalar measurable function
L:QxRxRY — R given by

K(y)F(U(y))d
RN |95 - ZJ|A

Lant.p) = - (Violie - ( y) K@) f0)
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By (f}), there will be a constant C; > 0 satisfying
(4.65) K()|f(t)] < CiK (x)a(|[t)|t| + Cio.(|t)t|, ¥Vt € RY and z € RY.

Fix M € (0,00). Through the condition (¢5) and by a simple computation yields
there exists Cy = Cy(M) > 0 verifying

|L(x,t,p)| < Cylt|P~t, for every (z,t,p) € Qx (=M, M) x RY.

By the arbitrariness of M, we can conclude that functions G and L fulfill the structure
required by Trudinger [61]. Also, as u is a weak solution of (P), we infer that u is a

quasilinear problem solution
—div G(x,u, Vu(x)) + L(z,u, Vu(z)) =0 in Q.

By [61, Theorem 1.1], we deduce that « > 0 in . By the arbitrariness of Q , we

conclude that v > 0 in RY.

4.2 Existence of a solution in the case (V,K) € O,

To study this second class of problem where (V,K) € Q,, we assume that
f R — R satisfies (f5), (fi) and (f;). Furthermore, for this case, we replace the
condition (f}) with the following condition:

: f() . F(t)
(f3) lim sup g < 0 and lim =5 =0
T e Gelie)” S5 Gon(lele)

where ¢, (t)t is such that the Sobolev conjugate function ®, of ® is its primitive, that
is, . (t) = ! ¢4 (s)sds.

Our ﬁrgt main result of this subsection can be stated as follows. Under these
conditions, the next result of the existence of a nonnegative solution has the following

statement:

Theorem 4.1 Assume that © satisfies (¢1) — (¢4), 0 < a < A and A +2a € (0,N) N
(0,2N — 2). Suppose that (V, K) € Qs, (By) — (Bs) and (), (f3), (£2), (f2) hold. If

@, (|t|"?) is convex in R, then the problem (P;) possesses a nonnegative ground state

solution.
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Remark 4.2 The inequality (Bs) implies the following inequalities

o.8(t)B(p) < B(pt) < &1,8(t)B(p), Vp,t >0

when

Eo.p(t) = min{t™ 12} and & p(t) = max{t" "}, Vt>0.
Besides by Lemma 2.16 and Lemma 2.20, we have

B(t)

B(t
limsup —= =0 and limsup ®)

=0
t—0 (I)(t) [t|—o00 (I)*(t)

Proposition 4.4 (Hardy-type inequality) If (V,K) € Qs, then the space E is con-

tinuous embedded in L%,(RY).

Proof. Now, let us assume that (V,K) € Q,. As E is continuously embedded in
L®+(RY), there exists C; > 0 such that

(4.66) lu

< Cillullg, Yue E.

Given condition (Q3), for any 0 < & < 1, there exists a positive real number r such

that
[;(Z); <&, Vz| >
where H(z) is defined as H(z) = rTn>151 {V(x) EE:; + (I;k <(77_—)) } Consequently, we deduce
that
(4.67) K(2)"B(t) < V(2)®(t) + ®.(t), Vt>0and |z| >

On the other hand, by the Remark 4.1, there is a constant C'y > 0 such that
B(t) < Cy®(t) + Ca®.(t), Vi > 0.

Hence, for each z € B,.(0),

KB

(4.68)  K(z)’B(t) < Cy ||~ V(2)®(t) + Cof K[| ®.(t), VE> 0.
Vol e (s, (0))

Combining (4.67) and (4.68),

(4.69) K(x)?B(t) <C3V(2)®(t) + C3®.(t), Vt>0 and z € RY,
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with C3 = max{1, Cs||K?||s, Cs

obtain

] ] ]
QxB( der < C V(z)® dr + C P, [ —— |dx <C
o OB Gl Gl # o VO v * Jow ® \ Tl .

where C} is a positive constant that does not depend on u. So we can conclude that

}. Applying the inequality (4.66), we

Vol Lo (B,.(0))

E C L%Z,(RY). Furthermore, there is a constant C5 > 0 that does not depend on u, so
HuHLge(RN)g Cs|lulg. Concluding that E is continuous embedded in L%, (RY). ]

Note that the condition (ff) implies that there exists dg > 0, 4; > 0 and C. > 0
such that

(4.70) IF(1)]” < Cot)t*~ + gm(t)t?“) + Cepu ()Xo (£),  VE>0

where C' > 0 is a constant that does not depend of ¢ > 0. Assuming that ®,(|¢t|'/?) is
convex in R, we can repeat the same arguments used in the proof of Lemma 4.2, we
can state the following results.

Here we will define the functions H; : R — [0,00) and P, : R — [0, 00) given
by Hi(t) = A(|t|'?) and Py (t) = ®,(|t|'/?). Through the assumptions imposed un-
der B and ®, it is possible to show that H; and P, are N-functions, in addition,
the functions hy,p; : (0,00) — (0,00) defined by hy(t)t = %b(zﬁlw)t@/(’)_1 and

1
p1(t)t = 5¢*(t1/9)t(2/9)_1 are increasing and satisfy

(4.71) Hy(w) = /Olwl thi(t)dt, and Pj(w)= /0|w| tp1(t)dt.

Lemma 4.13 Suppose that (V,K) € Qs and (fi) holds. For each uw € E, there is a
constant C > 0 that does not depend on u, such that

‘/ K(x)K(y)F(u(w))F(u(y))dxdy‘ <Oy
xS 2]z — y[Ay|* -

2 2
b bay ) ? A 1\ °?
(mac{llaly, al2}) * + (el ullz}) } .

Furthermore, for u € E, there is a constant Cy > 0, which does not depend on u, such

that

K(z)K(y)F(u(z))f(u(y))v(y)
(4.72) /RN " 27— gyl da:dy‘ < GO ||v||E, Vv € E,
where

1

b b * m*) ¢ - —
Cu i= (max{ull 2, el } + masc{llulls, el }) ™ (10 020, g, w2l 5, o)
L 5 ([RY) L [ (RY)

D=

and Hy and P, are the complementary functions of Hy and Py, respectively.
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Lemma 4.14 Suppose that (V, K) € Qs and (fi) holds. Let (uy,,) be a bounded sequence

in E, and consider u € E such that u, — u in E. We will show the following limits

(4.73) lim K(2)°|F(u,) — F(u)|’dz = 0,

n—o0 RN

(4.74) lim K(2)°| f(up)un — f(u)ul’de =0
n—oo JpN

and

(4.75) lim K(2)°|f(un)p — f(u)p|’dz = 0.

n—oo RN

Proof. Due to similarity, it suffices to verify (4.73). By (4.70), for any € > 0 there
exists 0p > 0, 6; > 0 and C. > 0 such that

ba m* C.m*

(4.76) PO < =(ZB0) + 2-0.()) + == 0. (t)xi501(8)

By the condition (Q3), there is ro > 0 sufficiently large satisfying
K(x)B(t) <e(V(z)®(t) + ®.(t)), Vt>0 and |z| > ro.
From the above inequalities, we have
K(z)F(t) < eCV(z)®(t) + eCr®.(t) + C-Q(2) Pu(01) X081 (1),

for all t > 0 and || > ry. From (4.76), Proposition 4.4 and the Sobolev inequal-
ity, it follows that the sequence (K (-)F(u,)) is bounded in L(RY). Tt is clear that
K(x)F(u,(z)) = K(x)F(u(z)) a.e. in RY in the sense of subsequence. Then, by the

Brézis-Lieb Lemma [56, Lemma 1.32] we obtain

(4.77)
K(2)?|F(u,) — F(u)|’dr = /RN K(2)°|F(uy,)| dx — K(2)°|F(u)|’dz 4 0,(1)

RN RN

In view of this fact, to verify (4.73), we only need to prove that the right side of (4.77)

is 0,(1). Repeating the same arguments used in the proof of Lemma 4.3, it follows that

(4.78) lim sup/ K(2)°|F(u,)|’de < e(CLM, +1).
B, (0)

n——+oo

99



On the other hand, using (ff) and the compactness Lemma of Strauss [26, Theorem

A p. 338|, it is guaranteed that

(4.79) lim K(2)°|F(uy,)|?dx = / K(z)?|F(u)|’d.
"0 By (0) Bry (0)
In light of this, we can conclude that
lim K(2)?|F(uy)|dx = K(z)?|F(uw)|’dx.
n—+oo RN Rn

Through this limit together with (4.77), we will get (4.73). Similarly, we show the limit
(4.74). Related the limit (4.75), it follows directly from the condition (ff) together with
a version of the compactness lemma of Strauss for non-autonomous problem.

Corollary 4.2 Assume that (V,Q) € Qs and (fL) holds. Let (u,) be a sequence
bounded in E and u € E such that u,, — u in DY®*(RY). Then

(4.80) lim K () K (y) F (un(x ))F(un(y))dxdy:/ K(x)K(y)F(U(x))F(U(y))dxdy,
n—oo Jgn Jry va\ |z —y[yl RN JRN ]|z — y[Myl*

481

K () () F 1 (2)) f (0 ()0 (1) K () K () F(u(@)) f(u(y))u(y)
W% Jow S |a:| [z — gyl d“””dy‘/m . alole — Pl W
an
482

K (@)K (5) F(un (@) (un0)ply) K () K () F () f () ()
lim dxdy dxdy
A Jon o |x| = — Pyl - 2]z — yP gl

for all p € C§°(RY).

By the inequalities (4.70) and Proposition 4.4, together with all the results pre-
sented above, it is verified that the function

[ [ K@E@Fu@)Fu),
D= fo ST i et w€ B

is well defined, is continuously differentiable and the Gateaux derivative ¥V’ : £ — E*

is given by

U_/ K(2)K (y)F(u(x)) f(u(y))v(y)

dzdy, Vu,v € E.
||z — y[My|*
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From the results presented in Section 3.1, we can conclude that the energy func-

tion J : £ — R associated with (P) given by

J(u) = /RN &(|Vul)da + /RN V(2)®(jul)dz — ;/RN N K@)ﬁ'(f‘)ff“;‘ﬁ)’ﬁ“(y))dwdy,

is continuous and Gateaux-differentiable and the Gateaux derivative J' : E — E*

given by

N B K(2) K (y) F(u(x)) f(u(y))o(y) .
J(u)v = o ¢(|Vu|)Vqud:z:—|—/RN V(z)o(|u])uvdx /]RN - 2o — yP g dxdy

is continuous from the norm topology of E to the weak*-topology of E*.

Now, by using Lemmas 4.5 and 4.6, the functinal J verify the mountain pass
geometry. In what follows, let us denote by ¢ > 0 the mountain pass level associated
with J, that is,

¢ = inf max J(y(t))

~vel' t€]0,1]

where

F'={yeC(0,1],X): v(0) =0 and ~(1) = e}.
Associated with ¢, we have a Cerami sequence (u,) C E, that is,
(4.83) J(u,) = ¢ and (14 ||un ||| (wn)]|«— O.

The above sequence is obtained from the Corollary A.1 in Appendix A..
Repeating the same arguments used in the proof of Lemma 4.7 and of Proposition
4.2, it follows that the Cerami sequence (u,) given in (4.83) is bounded, up to some

subsequence, we can assume that there is u € E such that
u, = u in DY*(RY) and wu,(z) = u(z) a.e. RY.

As in the previous section, we can conclude that v is a nonnegative ground state

solution for the problem (P).
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Chapter 5

Quasilinear systems on nonreflexive

Orlicz-Sobolev spaces

In this chapter, we study the existence of solutions for the class of quasilinear

systems in Orlicz-Sobolev spaces of the type:

—Ag,u = Fy(z,u,v) + AR, (z,u,v) in Q
(S) —Ag,v = —Fy(z,u,v) — AR,(z,u,v) in

u=v=0 on Jf2

where  is a bounded domain in RY(N > 2) with smooth boundary 9, A > 0 and
Ag,u = div(¢;(|Vu|)Vu), ¢ = 1,2. Furthermore, we assume that ®; : R — [0, 00) are

N-functions of the type
[¢]
(5.1) D,(t) :/ spi(s)ds, teR
0

with ¢; € C(0,00) and ®; € (Ay) or ®; € (Ay).



5.1 The N-functions ®; and ®; may not verify the
As-condition.

In this section, we study the quasilinear system (S) assuming that A = 1 and

F =01in Q, i.e., we study the quasilinear system of the type:

—Ag,u = Ry (z,u,v) in
(S1) —Ag,v = —Ry(z,u,v) in Q
u=v=0 on Jf
where  is a bounded domain in RY(N > 2) with smooth boundary 9Q. To show

the veracity of Theorem 1.9, we will assume that ¢;(i = 1,2) € C'(0,+o0) are two

functions which satisfy:

(¢in) t > tg;(t) are stricly increasing and ¢ — t?¢;(t) is convex in (0, 00);
(¢i2) to;(t) — 0 as t — 0 and to;(t) — +o00 as t — 4o0;
(i 3) 1<y < t%i(t), where ®;(t) = /t| soi(s)ds, t € R;
’ ®;(1) 0
(¢ia) I%Ln +l(£lof @ZS) > 0, for some ¢; > N;
N ST

The hypothesis (¢; 5) first appears in the paper [8] and here it will be fundamental
to prove that sequences (PS) are bounded (See for example the Lemma 5.3). The
assumption (¢;4) implies that the embedding

Wo P (Q) — Wha(Q)
for some ¢; > N is continuous. Hence,

Wy (Q) = C" (D)
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is continuous for some «; € (0, 1) and

(5.2) Wy *'(Q) — C(Q)

is compact. In what follows, we denote by A; > 0 the best constant that satisfies
(5.3) lulle@< Adlulls, Yu € Wy®(€),

where “‘Hi: HV‘ HLq’i(Q)'

Let d twice the diameter of €2, then we will assume that there exists 6 > 0 such

that
t2
(i) P < O4y(t/d), V|t| =9
Regarding the function R, let us assume that:
(R}) Re C'Q xR?) and R,(x,u,0)#0 forall (z,u) € Q x R;
/ 1 1 2
(RS) R(z,u,0) < ?Ih(u/d) + 2—d2|u| , forall (z,u) € QxR;

1
(R) R(x,0,v) > —§<I>2(v/d)—Mv, for all (z,v) € QxR, for some constant M > 0;

(R))) There are v > 0, 4 > 1 and 0 < § < 1 such that

(1) lh(u)Ru(:U, u, v)u + le(a:, u,v)v — R(z,u,v) >0, V(z,u,v) € QxR
1 v
and
(17) BR(z,u,v) — lh(u)Ru(aj, u,v)u >0, V(r,u,v) € Q x R?
i
D4 (u)
here h(u) = ———~.
where h(u) 20, ()

Under the assumptions (¢;1) — (¢i6) it is well known in the literature that the
N-functions ®; and ®, might not satisfy the As-condition, and as a consequence,
Wy (Q) and Wy **(Q) might not be reflexive anymore (See Lemma 2.24). Another
important fact we can highlight is that under these conditions, it is well known that

there are u € Wy (Q) and v € Wy **(Q) such that

/<I>1(|Vu\)dac =00 and /CIJQ(|VU|)dx = 00.
Q Q
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In order to avoid this problem, we will work with the space W} E®1(Q) x Wi E®2(Q),
because in this space the functional @ : Wi E®1(Q2) x WlE®2(2) — R given by

Q(u, v) :/Q<I>1(|Vu|)dx—/ﬂé[)2(|Vv|)dx

belongs to CH (W} E®(Q) x WlE®2(Q),R) (See Lemma 3.4 in [48]). However, inde-
pendent of Ay-condition, the compact embedding Wy * (Q) < C(Q) guarantees that
the functional H : W, (Q) x Wy **(Q) — R given by

H(u,v) :/QR(az,u,v)dx

belongs to C*(Wy*'(Q) x Wy **(€2),R). In particular, Hlwape () xwipe2(q) is also of
class C'. That is, the energy functional J : W} E®1(Q) x Wl E®2(Q2) — R associated
to the system (S;) given by

J(u,v):/Q<I>1(|Vu|)dx—/Qq)g(|Vv|)d:B—/R(x,u,v)dx

Q
belongs to CHWiE® (Q) x WLE®2(Q),R).
In order to apply the Saddle-point theorem, in the next one we fix some no-

tations. Since WJlE®2(Q) is separable (See Lemma 2.7), there exists a sequence

(en) C W E®2(Q) such that

(5.4) Wy E®(Q) = span{e, : n € N}.
Hereafter, for each n € N we denote by V,,, X, and X the following spaces
V,=span{e;:j=1,---,n}, X,=WIE*(Q)xV, and X, =Wy"(Q)xV,.

The restriction of J to X,, will be denoted by J,,. From the regularity of J, it follows
that J,, belongs to C'(X,,,R) with

J (u,v)(wy, ws) :/ngl(\VuDVquldx—/52¢2(|VU|)VUVw2dJ;

—/Ru(w,u,v)wldx—/Rv(x,u,v)wgdx,
0

Q
for all (wy,wsy) € X,,.
In the following, we prove that .J,, satisfies the hypotheses of Saddle-point theorem

for Gateaux-differentiable functionals (See Theorem A.3).
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Lemma 5.1 Under the space Z = WEE®1 () x {0} the functional J,, is bounded from

below.

Proof. By the condition (R5),

(5.5) Jn(u,0) > /Q‘I)l(‘VuDdx— %/Q 1(Jul/d)dx — — ¥ / |u|?dz.

Hence, using the Poincaré inequality (See Lemma (2.23)) together with the hypothesis
(¢i6) on the inequality (5.5), we obtain

52
> _ 2>_ 1 ;7®q )
Jun(w,0) > = oo e [ul’ > o510, Yu e WgE™ ()

This finishes the proof. ]

Lemma 5.2 If ||v]ja— oo, then J(0,v) — —o0.

Proof. Let v € WiE®2(Q) with |[v|s> 1. The assumption (Rj) together with the

Poincaré inequality (See Lemma (2.23)) implies that

1
(5.6) J(0,v) < —§/<I>2(|VU|)d:E+M/ |v|dzx.
Q Q
From (¢, 3),
d Po(rs)ris _ ly
—In(P > =Y 0
ds n(@2(rs)) = Dy(rs) — s’ 57>
thus,
“d “1
/1 Eln(q)g(rs))ds > 62/1 gds, vt > 1.
Therefore,
Oo(rt) o e
In > In(t™), Vt>1.
2y(r) = M)
Because of the monotonicity of the logarithmic function,
a(rt) N
Py(r)

And as a consequence of this inequality, we have
(5.7 [ @vede = ol for ol 1.
By combining the inequalities (5.6) and (5.7), we conclude that
J(0,v) < —[lolly*+M 2| Az o]z
Since 1 < /5, the result follows. [
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Corollary 5.1 If ||v||a— oo, then J,(0,v) — —o0.

Corollary 5.2 There s M > 0 such that i%f Jp > Igl/\%x(]n = b, where

Proof. By the above Corollary J,(0,v) = —o0 as ||v]2— +o0 in Y, then, fix M > 1

such that J,(0,v) < iIZIf Jy, for |[v]]s= M and v € Y,,. Since dimY, < oo, we can

conclude inf J,, > max J,,. [ ]
z Na

Then, by results above, we can apply the Saddle-point theorem (See Theorem
A.3) to functional J,, using the sets

Y, ={0}xV,, Z=WgE*(Q)x{0}, and M, = By(0)NY,,

where M > 0 is obtained from Corollary 5.2. Thus, there exists a sequence

(ug, vg) C X,, with

(5.8) Jn(ug,vr) — ¢, and  J) (ug,vr) — 0 as k — 4o0.
where
) = inf
(5.9) ¢n = inf max Ju(y(u)),
with

F={yeC(M,,X,): v|r, =1d}.
Lemma 5.3 The sequence (ug,vy) satisfying (5.8) is bounded in X,.

Proof. Define the function

Oy (t) .
—= if
n(t) = 0 it >0
0 ift=0

and consider the sequence

gr(z) = n(uk(z)), = €.
A direct computation leads to

= [1 - u;g?gi) (1 n “f(liz;))} V.
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Furthermore, considering the hypothesis (¢15) and using the Lemma 2.7(item 4) we
can conclude that g, € W3 E® () and ||gr|[1< ||u|; for each k € N. Being (uy,vx) a
sequence (PS)., , then by (R})(:) and (¢;3),

1 1
cn + 140k (1)|| (ur, v&) [|> T (ug, vr) — J:L(ukvvk)(pgka ;Uk)

1 1
= [ e(Vude—; [ oV VurPS(urde — [ ¥(Verldo+ o [ 0Vl Vulds
Q HJa Q VJa
(5.10) | )
—1—7/ Ru(x,ukmk)ukh(uk)dm—i—f/ Rﬂ(;v,uk,wk)vkdx—/R(x,ukmk)dac
B Ja vJa Q

> [ os0vudas - [ o9udTuPsud+ (2 1) [ ex(vad.

t2¢1(t) t2¢1(t) $1(t)
introduced by Alves et al in [8]) On the other hand, it follows from (R})(i7) that

where h(t) = 20 and S(t) = 1 — 220 (1 + 7fqﬁ/l(t)).(The functions S and h were

1
n + 1+ op(D)||grlli> —Bn(ur, vi) + Jé(uk»vk)(ﬁgk’ 0)

1
—ﬁ/Ru(Luk,Uk)ukh(Uk)dxﬂLﬁ/R(%Umvkz)d%
Q Q

ie,
(5.11) —i/Q¢1(|Vuk])]Vuk\25(uk)dx > —c,—1— ok(l)HukHl—ﬁ/Q<I>1(|Vuk\)dx.
From (5.10) and (5.11),

(5.12)

2e -+ 1) + ou(1) (w2 (1= 5) [

Q

B, (V| )dz + (é - 1) /Q<1>2(|Vvk\)dx.

v

Suppose for contradiction that, up to a subsequence, ||(ug, vx)||— +00 as k = +o0. In
this way, we need to study the following situations:

(1) ||ugli— +oo and ||vg|[a— oo

(i7) ||ug|li— +oo and ||vg]|2 is bounded

(1i1) ||vg||]a— oo and ||ugl|; is bounded

In the first case, there is ky € N such that

/(I)l(|Vuk|)dx > lugli  and /¢2(|Vvk|)dx > Jlvell, Yk > ko.
Q Q
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Hence, the inequality (5.12) is reduced to

g 2
262 + op (1)) (s ) 2> (1 = B)? [lue2+ (5 _ 1) loull2, ¥k > k.

Which is absurd.

In case (i7), there is kg € N such that
/Qapl(yvuk\)dx > gl Yk > ko
Thus, the inequality (5.12) is reduced to
26, + C1 + on(Dlfurlhi> (1 = B)* flurllf, Yk 2 k.

which is absurd. The last case is similar to the case (i7). The above analysis shows
that (ug,vx) is now a bounded sequence in X,.

|

From Lemmas 5.3 and 2.21, we may assume that there exists a subsequence of

(ug,vy), still denoted by itself, and (w,,y,) € X such that
(5.13)  wp = w, weakly in Wy *(Q) and v, — y, weakly in V,, as k — oc.

Here, we highlight that the pair (w,, y,,) may not belong to the space X,,, because
whenever ®; does not satisfy the As-condition the space X, is not a weak* closed
subspace of X .

The results below will be used to ensure that the sequence (w,,, y,,) is bounded in

Wy (Q) x Wy **(Q), moreover, we will do some results that will be fundamental.

Lemma 5.4 The sequence (ug,vy) obtained in (5.8) satisfies
/ng51(|Vuk|)VukV<pdx = /QRu(x,uk,vk)gpdx +o0x(1), Yk €N and o e Wy (Q).

Proof. From (5.8),

(5.14) T (e, vi) (9, 0) = o(1) ol Ve € Wy E™(Q).

By definition, the space Wy**(Q) is the weak* closure of C°(€Q) in Wh®1(Q), thus,

given ¢ € W, (Q) there will be a sequence (pp,) in C5°(€) such that

(5.15) Pm —— ¢ in Wy (Q).
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It is clear that (||@ml|1) is bounded in R, so by (5.14),
on(1) = /Q 61 (Vi) Vi Vo — /Q Ru(z, uk, v)omdz, Wk € N
Using the fact that ¢1(!Vuk|)g—?j € E*1(Q) along with the limit (5.15), we will get
Jm [ (V) VuTends = [ o VulVuTeds

Therefore, since the spaces Wy ' (Q), Wy **(Q) are embedded in C'(2), we can conclude
that

ok(l):/¢1(|Vuk|)Vung0dx—/Ru(a:,uk,vk)gpdx, Vk € N.
Q Q

Before proceeding with the results, we need to make the following definitions:

e We will denote by D(Jg,) C Wy ®(2), the following set:

D(Js,) = {u e Wy*(Q) : / O, (|Vu|)dz < +oo}
Q
e We will denote by dom(¢;(t)t) € Wy* (), the following set:
dom(¢;(t)t) = {u e Wy*(Q) / O, (¢s(|Vul)|Vul)dr < +oo}
Q

Lemma 5.5 Let be (w,) the sequence obtained in (5.13). Then (w,) C D(Jp,) N
dom(¢1(t)t), furthermore,

Cp = khm Jn(Uk,Uk) - Jn<wn7yn)
and
/‘I’l(\vwﬂ)dﬂf—
Q
2/ Ru(x, wn, yn) (o1 — wy)dx + / R, (2, wn, yn) (w2 — yp)dx,
Q Q

for all (g1, 02) € Wy () x V.

By (Vo) — / 62|V V¥ (22 — )l

(5.16) @

Proof. Using the fact that J/ (ug,vr) — 0 as k — oo together with Lemma 5.4, we

can conclude that

(5.17)

/¢1(\Vuk])Vung01da:—/@(\Vvk])V'ukV(pgdx:/Ru(x,uk,vk)gplda:
Q Q Q

—i—/RU(x,uk,vk)chdx—Fok(l),
Q
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for each (¢1,p2) € W(}@l(ﬂ) x V,, and k € N. Since ®, is convex, we have

/<I>1(|Vn1|)da:— <I>1(|Vuk|)da:2/¢1(|Vuk|)VukV(n1—uk)dx,
Q Q

Q
for all n; € VVO1 ®1(Q). Hence, considering p; = 1 —uy, in (5.17) and using the inequality

above, we get

(5.18)
/ (IVm|)d /q) (|Vug|)dz — / o2 (|Vor|) Vo Vipadx

2/ (x, ug, vg) (M — g, da:—i—/R T, Uk, Vg )padx + o (1),

for every (1, ¢2) € Wy® (Q) x V,, and k € N. Since uy — w, in Wy'*(Q), it follows
from Lemma 2.22 that

(5.19) /Q(I)1(|an|)dx < kli_)ll;lo/Q(I)l(|Vuk|)dx
Remember that dimV,, = n, so vy — v, in V,,. Hence,
(5.20)
| @vmbds— [ @(Vul)ds ~ [ (Vi) Vi

Z/Ru(x,wn,yn)(m—wn)dx—i—/RU(x,wn,yn)gonx,
Q Q

for each (1, p2) € Wy (Q) x V,,. Justifying the inequality (5.16).
Considering (71, ¢2) = (wy, 0) in the inequality (5.18), we get

/Q(I)l(|an|)dx—/Q<I>1(|Vuk|)dat2/Ru(x,uk,vk)(wn—uk)dx—i—ok(l).

Q

Thus,

(5.21) /@1(|an|)dx2 lim /@1(|Vuk|)dx
Q k—o0 Q

Combining (5.19) and (5.21),

lim CI>1(|Vuk])dx:/<I>1(|an|)d:c
Q

k—o0 Q

Therefore, we can conclude that

= lim J,(ug, vr) = Jn(Wn, Yn)-

k—o0
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Finally, we will show that w,, € dom(¢1(t)t). By the inequality (5.18),

1 1
/@1(]Vuk— EVuk])da:—/Cbl(]Vuk\)dx > _E/ Ry (x, ug, vg)ugdz + o (1),
0 0

Q

ie,

k

Py (|Vug — +Vug|) — ®1(|V
0 Q
As (uz) and (vg) are bounded in W, ®'(Q) and W, **(Q), respectively, there will be
M > 0 such that
1
/ (Vg — 3 Veae )~ / By (|Vug|)dz < M, Vi € N.
Q Q

Since @, is in C' class, there exists 0;(z) € [0,1] such that

—1 & :

k

Recalling that 0 < 1 — 0’“—(96) <1, we know that 1 — QkT(z) > (1 — 0’“7(93))2 which leads to

/¢1 1—— )) uk|)(1 Or( >) |Vug|?de < M, Vk € N.

N-1

As Vuy, = Va, in (L*(Q))" ", we also have (1—%8) vy, "~ Y, in (L*(Q))
as k — oo. Then, by using the fact that ¢;(¢)t? is convex, we can apply [30, Theorem
2.1, Chapter 8] to get

liminf/¢1 1—— () V) (1 -

k—oo

PVl = [ onlVun e o
and so,
[ en((Twnlun o < .
By Lemma 2.3(item 3)
oL (D)2 = By (t) + D1 (1 (0)1), VEER
thus
01(|Vw,])|[ Vi, |? = @1 (|Vw,|) + 1 (61| Vwn|) [ Vw,|)

which leads to

/¢1(|an|)|an\2dl‘=/@1(|an|)df€+/é1(¢1(|an|)|an|2)dfv
Q Q Q
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Since [, o1(|Vw,|)|[Vwy|?dz is finite, so from the above identity we see that
Jo @1(|Vw,|)dz  and fﬂ (61 (|Vw,])|Vw,|?)dz  are also finite, showing that
w, € D(Jp,) Ndom(éy(t)t). This finishes the proof. u

Lemma 5.6 For ecach (p1,2) € Wol’q)l(Q) X V., the following equality holds

/ 61 (V| Ve, Vo1 da — / 63|V Vya Vipadar = / R s yo)prde
Q 9] Q

+ / Ru(l'a W, yn)@de
Q

Proof. Given ¢ € (0,1/2) and ¢ € C§°(R2), we set the function

1
1—

Ve = (1 = e)wn +ep1).

£
2

Consider ¢, € V,, and apply (v, w2 + y,,) on the inequality (5.16), hence
/ By (| Vo] )dz — /@1(|an|)dx - 5/ 05 (V) Vi Vigadd
Q Q Q

E/Ru(af,wn,yn)(va—wn)d:ﬂ+6/Ru(m,wmyn)%daﬁ,
Q Q

and so,

fQ (|Voe|)dx — fQ (|Vw,|)d
€

Z/Ru(x,wn,yn)<vs_ )dx+/Rv($,wn,yn)sozdx-
0 € 0

/ 62V ) V9V pda

Note that

€ 1—-¢
=211 — .
=3 < I )*‘“

Hence, by the convexity of ®q,

1—¢ 1—¢
(V) + (11— 1) @42V i),
) 2

<I>1(1 i : ((1— &)V, + swl)) <

Thus, by Lebesgue dominated convergence theorem, we get

Vw,
)

(5.22) ¢ y
> /Ru(m,wn,yn)<901 —f)dxﬂL/Rv(x,wmyn)wzdx-
Q Q

Therefore

(5.23) /¢1(|an|)anV901 - / Ru(z,wn, yn)rdz > A, Yo, € C°(Q),
Q Q
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where
1 , 1
A=— [ &:(|Vw,|)|Vw,|"de — = | Ru(z, wn, yn)w,dz.
2 Ja 2 Ja
As C5°(Q) is a vector space, the last inequality gives
(5.24) / o1 (|Vw,|) Vw, Vi — / Ru(x, wn, yn)prde =0, Vo € C°(Q).
Q Q

We know that W, *'(Q) is the weak* closure of C5°(Q) in W'®1(Q), then using the
fact that ¢;(|Vw,|)|Vw,| € L*(Q) we can conclude that

(5.25) A¢1(|an\)anV<p1dx — /S)Ru(:v,wn,yn)goldx =0, Yo, € W(Q).
Still by (5.22), we have
—/Q@(!Vyn\)VynVsoQ z/QRu(rc,wn,yn)sozdw, Vipa € Vo,
Since V,, is a vector space, the above inequality gives
6200 [ 6V VinVer = - [ R wn)ods, Ver € Vi
From (5.25) and (5.26),
| 6190090,V = [ 690 9.V2 = [ Rulawnm)rds
+ /Q R, (z, Wy, yn)pedx,
for any (1, ¢2) € Wy () x V. u
Lemma 5.7 The sequence (wy,y,) is bounded in X.
Proof. Consider the sequence
gn(x) = n(wn(z)), =€ Q.

where 7 is given in Lemma 5.3. A direct computation leads to

Dy (wy,) Wy @) (Wn)
V%:[“%%@mu@+ @mm>}W%‘

The last identity together with (¢;5) implies that

(5.27) IVgal < [Vwn|, VneN
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On the other hand, (¢;3) also gives
1
1
From (5.27) and (5.28), g, € D(Jg,) with
19211 < (lwall1, Vn € N.
By the Lemmas 5.5 and 5.6,
1
cn:/®1(|an|)dx——/¢1(|an|)|an|25’(wn)d:U—/<I>2(|Vyn|)dx
Q K Ja Q
1 1
1 [ (V) FyaPds + 3 [ Rule v, ounb(u)do
VJa HJa

1
+_/Rv(l‘awnayn)yndm_/R('xuwnay’rL)dx?
Q Q

v

where h(t) = t;l’q;(tz) and S(t) =1— 1;2(;5(()) [1 + t(bl((t))} By (R})(i) together with (¢;3),

(5.29)

Cn 2/9 (| Vw,|)dx — —/qbl (Vw,|)|Vw, [2S (w, )dx + (6_2 - 1) /Q<I>2(|Vyn|)dx

On the other hand, the Lemmas 5.5 and 5.6 together with (R})(i7) imply that

e 1 :
Ben = — / 1|V )+ / (V) [ Vit [2S )z + / Do(|V g

1

__/Ru(x,wn,yn)wnh(wn)dx—i—ﬁ/R(m,wn,yn)dx,
mJao Q

2—6/Q(I)l(|an|)d:B—l—%[)¢1(]an|)|an|23(10”)(1$

ie,

(5.30) —%/Qqﬁl(]an\)\an]QS(wn)dxzacn—a/él(]an])dm

Q

From (5.29) and (5.30),

(1= 8)en = (1-5) [ @(Tu e+ (6 - 1) JREGA

As a consequence of Lemma 5.2, we have that (¢,) is bounded. Therefore the sequences
( [y ®1(|]Vwy|)dz) and ([, P2(|Vya|)dz) are bounded and consequently (w,,y,) is
bounded at W, (Q) x W, **(Q). .
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Since (wy, yn) is bounded, it follows from Lemmas 2.21 and 2.22 that

(5.31) (Wn, Yn) — (w,v) in Wy (Q) x W, (Q) as n — oo,
(5.32) /6131(|Vu|)dx §liminf/<1>1(|an|)dx

and

(5.33) /(132(|Vv|)dx < liminf/q)g(|Vyn|)dx.

These limits will be fundamental to the argument used below.
Proof of Theorem 1.9 Fixing k,n € N with n > k, we have X; C X/. Thus, for
(p1,p2) € X}, it follows from Lemma 5.6 that

/¢1(\an|)anVg01dm—/¢2(!Vyn|)Vyan02dx:/Ru(w,wn,yn)goldx

(5.34) @ @ @

+/Rv($,wn,yn)¢2d%
Q

for all n > k. By the above equality together with the convexity of ®;, we will obtain

(5.35) /chl(\wl\)dx—/Qq>1(|wn|)dxz/Ru(a;,wn,yn)(@l ~ wy)da,

Q

for each o, € Wy (€). From this inequality, we can conclude that

1 1
/@1(|an——an|)dx—/<bl(|an|)de ——/Ru(x,wn,yn)wndx,
Q n Q nJa

i.e,

/ (®1(|Vwn — LVw,|) — 1 (|Vwy|))
Q

d:pg/Ru(x,wn,yn)wnda:.
Q

n

As (wy) and (y,) are bounded in W, ®*(Q) and W, **(Q), respectively, there will be
M > 0 such that

de < M, ¥n € N.

1

/ Oy (|Vw, — %an|) — & (|Vw,|)
Q

n

Since @, is in C* class, there exists 0, (x) € [0, 1] such that

By (|Vw, — %viuzn ~0(IVunl) _ gném))vw)(l _ enff))wwn\?.
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Recalling that 0 < 1 — Q”T(z) <1, we know that 1 — Q”T(‘T) > (1 M) which leads to

/£¢1ﬂ(

As Vw, — Vu in (L‘I’l(Q))N_l, we also have (1—%22) vy, ~~ Yy in (Lq’l(Q))N_1

w))vwn|)(1 - M)2|an|2dm <M, VneN.
n

as n — oo. Then, by using the fact that ¢ (¢)t* is convex, we can apply |30, Theorem

2.1, Chapter 8] to get

liminf/gbl )an|)( On T(Lx)

n—o0

)2|vwn|2Z/¢1(\VU\)|Vu\2d:v
Q

and so,

[ en1wlun s <
By Lemma 2.3(item 3),
G1(1)12 = @1 (t) + By (¢ (1)E), VEER
thus
&1 (|Vwn ) [Vwn > = 1(|Vawn|) + $1 (61 (|Vewn|) [ Vaw,|)

which leads to

/ (V0| Ve P = / &y (|Viwn|)dz + / &1 (61(| Vi )| Ve )l
Q Q

Since [, ¢1(|Vu|)|Vu|?dz is finite, we see that [, ®;(|Vu|)dz and [;, ®1(¢:1(|Vu|)|Vul?)dx
are also finite, showing that u € D(Jg,) and u € dom(¢;(t)t). Furthermore, it follows
from (5.32) and (5.35) that

(5.36)
/Q<I>1(]V901])dx—/9<1>1(|Vu\)dx2/Ru(x,u,v)(gol—u)dx, Yoy € W),

Q
On the other hand, it follows from the equality (5.34) that
(5.37)
[ @196t — [ @:0l)de > ~ [ R, — ), Vs € Vi
Q Q Q

From this inequality, we can conclude that

1 1
/ D[V — V) / Bo(| V) > © / Ry, wn, gy )y,
Q n Q nJjo
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ie,

/Q 2(’ Y n le 2(| Y Dd;)’;S—/QRU(.T,wnyyn)yndx

As (wy) and (y,) are bounded in Wy '*'(Q) and Wy **(Q), respectively, there will be
M > 0 such that

Oy (|Vy, — LV, |) — Oo(|Vy,,
/2(|y ”le 2(\y|)dx§M’ Ve N,
Q

n

Since @, is in C?' class, there exists 0,,(z) € [0, 1] such that

Do (IVyn — %vynb — O2(IVyal) _ ¢2<‘(1 _ Hn(x))vy |)(1 _ On ()

—= n n
n

)\VynP.

Recalling that 0 < 1 — Q"T(I) <1, we know that 1 — 9”7(@ > (1 — Q"T(I))2 which leads to

/{;mu =gy (= 2wy, e < 1, e

n

N— N-1

As Vy, — Vo in (L‘I’2(Q)) 1, we also have (1 — M“)Vyn —= Vv in (L%(Q))

as n — oo. Then, by using the fact that ¢,(f)t* is convex, we can apply [30, Theorem

2.1, Chapter 8] to get

ot [ 621 = )y (1= )90 > [ oa(vepIvepas

n—oo

and so,
[ exveloae <
By Lemma 2.3(item 3),
G ()12 = By(t) + Do(do(t)t), Yt E€R
thus
/Q(bg(]Vv\)|Vv|2dx = /Q<I>2(]Vv|)dx + /Q Oy (o(|V0])| V0] ) dar.

Since [, ¢2(|Vv|)|Vo|*dx is finite, we see that [, ®o(|Vo|)dx and [, o(¢2(|Vu|)|Vo|?)dx
are also finite, showing that v € D(Jg,) and v € dom(¢p2(t)t).
Now, for ¢ € WiE®2(Q), there exists x,, € V,, such that

(5.38) lim x, =¢ in WiE®2(Q).
—00

m
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From (5.34),

— [ VDV v = ) = [ Rl 0) 0 = ) =
The convexity of &5 implies that
(5.39)
/Q<I>2(]V>Cm|)dx —/QCI>2(|Vyn])dx > —/QRqJ(x,wn,yn)(Xm — yp)dz, ¥Yn > m.

Thus, by the limit (5.33) we have

(5.40) /Q<I>2(|me|)dx— /QCI>2(|VU|)dx > —/QRv(x,u,U)(Xm _ v)dz.

Now we use (5.38) in the above inequality to get

(5.41) /QCDQ(\Vgol)dx—/Q(I)Q(Wv])dm > —/QRW@,U,U)(@—U)dx.

Repeating the arguments used in Lemma 5.6, the inequalities (5.36) and (5.41) imply

/¢1(]VU|)Vqupldx_/Ru(x,u,v)gpldx, VSOQGWOL(IH(Q%
Q Q

/¢2(|VU|)VUV(,02(Z$ = —/ Ry(w,u,v)podz, Vo, € Wy E®2(0).
Q Q

Finally, the fact that ¢o(|V])|Vo| € L®2(Q) together with the density weak* of CS°(€2)
in Wy **(Q) given
/ o1(|Vu|)VuVeide — / P2(|Vv|)VoVpadr = / Ry (z,u,v)pi1de +/ Ry(x,u,v)padr,
Q Q Q Q

for every (1, p2) € Wy (Q) x W, *2(Q). To conclude, the hypothesis (R} ) guarantees

that (u,v) is a nontrivial solution for (S7), and the proof of Theorem 1.9 is complete.

5.2 The N-functions ®; and &, may not verify the
As-condition.

Continuing the study of systems (S) in non-reflexive Orlicz-Sobolev spaces, in
this section, we study the existence of solutions for the following class of quasilinear

systems of the type:
—Agp,u = Fy(z,u,v) + AR, (z,u,v) in Q
(S2) —Ag,v = —F,(z,u,v) — AR,(z,u,v) in Q

u=v=0 on Jf
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where ) is a bounded domain in RY(N > 2) with smooth boundary 92 and A > 0.
Our main goal in this section is to prove of Theorem 1.10. For this, we assume that

¢i(t =1,2) : (0,00) — (0,00) are two functions which satisfy:

(01.) ¢; € C1(0,+00) and t > tg;(t) are stricly increasing;

(#5,) toi(t) — 0 as t — 0;

/ S 0) it
(¢5:) 1 < & = inf @, () =P ®;(t)

= m; < N, where ®,(t) = s¢i(s)ds and

It]
0
< m; < L.

As mentioned in the introduction of this thesis, in this problem (Ss), we will
assume that F(z,u,v) = ®1.(u) + G(v) where ®,, denotes the Sobolev conjugate
function of ®; and that G is a function satisfying the following conditions:

(G1) There are C > 0, G € CY(R,R), aj,a; € (1,00) and a N-function A(t) =
O\tl sa(s)ds satistying

(1) me < a; < ajgt();j < ay, Vt>0

and

(17) lg(s)| < a1Ca(|s])|s|, forall seR

where g(s) = G'(s). If ay > 5, we add that

(vi1) (g(t) — g(s))(t — s) > Ca(|t — s|)|t — s|?>, forallt,secRR.

(G2) There exists v € (0, ;) such that
0 <vG(s) <sg(s), forallselR.

Furthermore, we will assume that the R function meets the conditions below:
(R)) R € CYQ x R?), R,(z,0,0) = 0, R,(2,0,0) = 0, R(z,u,v) > 0 and
Ry(z,u,v)u >0, for all (z,u,v) € Q x R2
(R3) There are N-functions B(t) = Olt\ sb(s)ds, P(t) = U|t| sp(s)ds, Q(t) = O\tl sq(s)ds

and Z(t) = OM sz(s)ds satisfying

() my < p; <




(ZZ) mp < b < B(t) < by < [{

t)t? .

(131) mo < q1 < ch()t> < g <l
t)t?

(1v) me < 21 < ZZ(()t) <z < 0,

with max{by, g2} < min{¢;, ¢3} such that
(5:42)  |Ru(z,u,v)| < Clp(Jul)u+ q(jv])v) and |R,(z,u,v)] < CO(ul)u+ z(Jv])v),

for all (z,u,v) € Q x R? and for some constant C' > 0.
(R3) There exists u € (my, £7) such that

1 1
~Ry(z,u,v) + =Ry(x,u,v) — R(z,u,v) >0, forall z € Qand (u,v) € R?
1 v

where v is given by condition (Gs).
(R4) There exists s € (my, max{ps, b2}], a nonempty open subset y C 2 and a constant

w > 0 such that
R(x,u,v) > wlul® for all 2 € Q and (u,v) € R?.

Example 5.2.1 Fiz p € (my,07) and q € (mo,03). The function R(u,v) = |ulP +
Clv|? + e sin |ulP sin |v]? satisfies (R1) — (Ry) with P(t) = B(t) = |t|P/p, Q(t) = Z(t) =
[t|/q, C >0 and e > 0 small enough.

In what follows, fix some notations. In the sequel V, stands for the space

Wy (Q) N LA(Q) endowed with the norm
[olla= Nlollyaez o) +vla,

where ||v]|, 1.4, and |v|4 denote the usual norms in in Wy **(Q) and LA(Q), res-

||WO )
pectively.
We write X for the space Wy ' (Q) x V4 endowed with the norm

1 0)IP= MleellG: g + 01
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where ]|uHW01,¢1(Q) denotes the usual norm in W, *(Q). Under the assumptions (G, )

and (Ry), the functional H, given by

(5.43) H(u,v) = / H(z,u,v)dz.
0

is well defined, belongs to C'(X,R) and

(5.44) Hi\(u,v)(wl,wg):/Hu(x,u,v)wldx—i—/Hv(x,u,v)wgdx,
Q Q

for all (u,v), (wy,ws) € X. Now, we consider the functional @) : X — R which is given

by

(5.45) Q(u,v) :/Q<I>1(\Vu\)dx—/g<b2(|Vv\)dx,

It is well known in the literature that Q € C'(E,R) when @, s, @, and P, satisfy the
As-condition and this occurs when we have the condition satisfied to £; > 1, 5 > 1 and
my < 00, my < co. When £; =1 (or £y = 1), we know that ®; ¢ (A;) (or &y ¢ (Ay))
and therefore cannot guarantee the differentiability of functional (). However, following
the ideas presented in Chapter 3, it is clear that the functional @) is continuous and

Gateaux-differentiable with derivative Q' : X — X* given by

Q'(u,v)(wl,wg):/Qcﬁl(\Vu\)VuV'wld:c—/Q@(]VU\)Vvagdx,

continuous from the norm topology of X to the weak*-topology of X*. Therefore, we
can conclude that the energy functional Jy : X — R associated with the system (S5)

given by

J,\(u,v):/QCI>1(]Vu])d:E—/Q<I>2(|Vv])dm—/QH(x,u,v)d:E.

is continuous and Gateaux-differentiable with derivative J} : X — X* defined by

J/’\(u,v)('wl,wg)—/Q¢1(|Vu\)Vqu1dx—/Qcﬁg(\VvDVvagd:r;

—/Hu(x,u,v)wldx—/Hv(x,u,v)wgdx
Q Q

continuous from the norm topology of X to the weak*-topology of X*.
Since J{(0,0) = 0, we say that (u,v) € X is a nontrivial solution of (S;) when
Ji (u, v)(wy, we) = 0, for all (wy,ws) € X and satisfies Jy(u,v) # 0.
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In order to apply the linking theorem for Gateaux-differentiable functionals (See
Theorem A.2), we introduce one more piece of notation. Since (Vy, ||-||4) is separable,

then there exists a sequence (e,) C V4 such

(5.46) Vy = span{e, : n € N}.
Hereafter, for each n € N we denote by V} and X,, the following spaces
Vi =span{e;:j=1,---,n} and X, =W, "(Q)x V}.

The restriction of Jy to X, will be denoted by Jy,. Then J,, : X, — R is the

functional given by

Tan (0, v) :/bel(\Vu\)dx—/Qq)2(|Vv\)d:L‘—/QH(:C,u,v)da;.

is continuous and Gateaux-differentiable with derivative Jj ,, : X;, — X' given by
Ao (1, 0) (wr, wo) :/ o1 (|Vul)VuVwde — / oa(|Vo|) VoVwsdz
Q Q

—/Hu(as,u,v)wld:r—/Hv(x,u,v)wgdx
Q 0

continuous from the norm topology of X,, to the weak*-topology of X.
In the following, we prove that .Jy,, satisfies the hypotheses of linking theorem

for Gateaux-differentiable functionals (See Theorem A.2).

Lemma 5.8 Assume that (G1) — (G2) and (Ry) — (R4) hold. For every A\ > 0, there

exist 0 > 0 and p > o such that if u, € Wy (Q) satisfies ||u, y= 1, then

ng’q’l(g

dy, :=sup Jy, > b, :=inf J,,, > 0= max J
n /\/lgl:: An Z Un N, An oM. Ans

where
M? = {(Ous,v) € X ¢ ||(Ous, v)|*< p%, 0> 0} and N, = {(u,0) € X, : ”“”W&""l(ﬁ): o}
Proof. By definition of the functional J) ,,

Jan(u,0) = /QCD(]VuDd:U — /Q D, (|ul)dx — )\/QR(:L’,U, 0)dx.

Note that, integrating the first inequality in (5.42), from 0 to ¢, we obtain

|R(x,t,8) — R(z,0,s)| < C(P(|t|) + ug(|s])s) for all (x,t,s) € Q x R?
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Hence, setting s = 0, it follows from (R;) that the inequality above reduces to
|R(z,t,0)] < CP(|t]), forall (x,t,0) € Q x R?
for some constant C' > 0. Thus, by (R»),

Tan(u,0) = Eg(llullre) — &, (lulle.) — CAER([lullp),

where
€, () = min{t" ™}, & () =max{tT,t™} and Ep(t) = max{t", 7}

Now, remember that by the assumption (R9)(7) it is possible to show the following

limits:

: P([t])
lim =0 and im =
t—0 Oy (|t]) lt|—+o00 P14 ([t])

Through these two limits we can guarantee the existence of a constant C; > 0 that

does not depend on u so that
lullp< Cillullye,, Vu € Wy ().

Another important inequality was proved by Donaldson and Trudinger [70], which

establishes the existence of a constant Sy > 0 that depends on N such that
(5.47) lulle,. < Sollulle,,  Vu € Wo™ (92).
Thus,

Tan(,0) > [ull 75, — lullyis, ~CAuly,,  for ulle< 1

Since m; < {7 and m; < p1, choose p > 0 sufficiently small such that

(5.48) Ian(u,0) > Co’, for lull1,0= p.
therefore
(5.49) by = ij\rflf Jan > Co®, ¥n e N.

Now, from (G3) and (R;),

(5.50) Tan(0,0) <0, Yve Vi,
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Consider u, € Wy *(Q) with ||u.]/1.6,= 1, by assumptions (G5) and (R;),

Ian (O, v) §/@1(\V(9u*)\)dx—A@Q(\Vv\)dx—/Qi)l*(leu*\)dx

Q

< &, (0)€a, (lucllie,) — &, (I0ll1e,) — &3, (0),. (

U@, )
for each 6 > 0 and v € V', where
€5, (t) = max{t",t™}, & (1) =min{t",¢"} and €3 (t) = max{t", t"}.

If ay < mj, then A increases essentially more slowly than ®,, near infinity. From
Lemma 2.14 it follows that L®2*(2) is continuously embedded in L4(2), consequently
Wy (Q) = V4 and as norms ||-||4 and ||-||1.e, are equivalent. Given this, there is a

constant C > 0 such that

Tan(Ous,v) < &, (0) = C&g, (I[v]l4) — &a, (0)8a,.(

Usl@1.),

for each 8 > 0 and v € V}.

Note that ||(Qu.,v)|*= 6% + ||v]|4= p? implies that
2 2
0 > % or |jv|%> %

Assume that 6% > p?/2 occurs, then for p > 0 large enough, we have

€, (0) — C&q, (lvlla) — &5, (005, (lulle,.) = 0™ — C&g, (Ilvlla) — 09 (

U*| q>*) < 0,

because m; < ¢%. Similar property happens when ||v||4> p?/2. Therefore, we conclude

that there exists p > o such that
(5.51) Ian(Ou,, v) <0,

for all (Qu,,v) € X,, so that ||0u.|1.e,+|[v||3= p* and 6 > 0. By (5.50) and (5.51), we

have max Jn =0, since (0,0) € OM],_, and the proof is complete in this case.

Now, if ay > mj , from (Gy)(#i) there is a positive constant C' such that

Ian (O, v) g/<I>1(]V(¢9u*)])dx—/QQQ(\Vv])dx—/Qd)l*(wu*])d:v—(}’/A(]v])dx

Q Q

Uslle,.) = E4([0]a),

< &, (0)&, (lusllie) — €6, (vl1e,) — &5, ()85, (
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where
€%(t) = min{t™, t*2}.
Observing that ||(Qu., v)|*= 62 + ||v||3= p* implies that

2 2 2
0> 5 olte,z 5 or oy =2

4

the same argument used in the former case implies that for p > 0 large enough
(5.52) I (Ouy, v) <0,

for all (Qu.,v) € X,, so that ||0u.||1.e,+|v]|3= p* and § > 0. Therefore, the lemma is
proved. [
In order to prove the Theorem 1.10, we need to consider that 2y C {2 be an open

set satisfying (Ry) and ug € Wy'*' () such that
(5.53) up >0, ug#0, supp(ug) C Qo and |lugll 181,60, = 1.
Wy (D)

Then, by Lemma 5.8, we can apply the linking theorem A.2 to functional J,,, using a

point z, = (uo, 0) and the sets
Y, ={0} x V", Z=Wy"(Q)x {0} and N, ={(u,0)€ X, :|ulle,= 0}

Then, there are sequences (uy,vy) C X, such that

(5.54) Ian(up, vr) = can and  Jy  (ug,vp) = 0 as k — oo
where

) < ;= inf
(5.55) bu < Can 1= Inf Brvid Ian(y(w)),

I'= {’7 S C(Mn Xn) : ’}/|3MZO = ]daMﬁo}'

uo?

Lemma 5.9 The sequence (u,vy) is bounded in X, .

Proof. From (5.54)

1 1
T (U, V) — J;(“k;”k)(ﬁuh ;Ulc) = can + 0k (1) ] (g, vg) ||
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y (G2), (Rs), (¢f3),
mq 62

1 1
Il 0 = ik, ) G T = (1= 2 ) 8, undnn) + (2 1) 6, nl)

where
¢35, (t) = min{t", ¢™} and &3 (t) = min{t?, ™},

Since V} is a finite dimensional space, the norms ||-||;,¢, and ||-|| 4 are equivalent, hence,

from the above inequalities

m 14
550 enn+ oDl (172 ) &, (e + (2 - 1) G.Clll)
for some C = C(n) > 0. Suppose for contradiction that, up to a subsequence,

|| (ug, vg)|| = 400 as k — +oo. This way, we need to study the following situations:
(4) ||ug]|1,0,— +00 and |Jvg||a— oo
(7) ||ug|lr,0,— +o0 and ||vg||4 is bounded
(17) [Jvg]|a— oo and ||ug||1.e, is bounded
In the first case, the inequality (5.56) implies that

l
26+ or(O 172 (172 sl + (2 1) et

for k large enough. Which is absurd, because ¢; > 1, {5 > 1 and ox(1) — 0.

In case (iz), we have for k large enough
o\ 2
1
28+ Gt oDl (1= ) fuelts,
an absurd. The last case is similar to the case (7ii). ]
Corollary 5.3 The following sequences
b ies, { [ @0Vubas}  and { [ @nvuir)
Q Q
are bounded.

From Lemma 2.21, Corollary 2.1 and the Lemma 2.14, we may assume that there

exists a subsequence of (ug, vy ), still denoted by itself, and (w,,y,) € X,, such that

(5.57) u, = w, inWy*(Q) and v, =—y, inV,, as k— oo
(5.58) up — w, in L*(Q)

uy + 0w, .
(5.59) U o T80 L¥(Q), i€ {1, , N,
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(5.60) up — w, in L*(5),
and
(5.61) uk(z) — wy(z) ae. Q.

In view of (5.57) and Corollary 5.3, for each n € N we may assume that there

exist nonnegative functions ji,, v, € M(RY), the space of Radon measures, such that
(5.62) ®(|Vug|) — p, in M(RY) and @,(|up|) — v, in MRY) as k — oco.

The result below is known as second concentration-compactness lemma of P. L.
Lions. We would like to point out that also this lemma holds for nonreflexive Orlicz-

Sobolev space. The proof of this fact can be seen [60 Proposition 4.3].

Lemma 5.10 (i) For every n € N and A > 0, there exist an at most countable set I,

a family {z;}icr, of distinct points in RN and a family {v;}icr, of constant v; > 0 such

that
(5.63) Vo = Pp(Jwn]) + ) vids,.
i€l
(74) In addition we have
(5.64) pn = @1(|Vwn|) + > i,
i€y
for some p; > 0 satisfying
(5.65) 0<y; < max{SﬁTufT/el, Sgﬁulmﬂf/el, ngufi/ml, Sgﬁuﬁ/ml}

for all i € I, where d,, is the Dirac measure of mass 1 concentrated at x;.
Lemma 5.11 The set {x;}icr, in Lemma 5.10 is a finite set.
Proof. Let an z; be fixed. Take ¢ € C5°(RY) such that

0<p<1, o) =1inB;(0) and ¢(x)=0in RY\By(0)

and put p.(x) = o((x — x;)/e) for € > 0. It is clear that {p.u}ren is bounded in
Wol’q)l(Q), thus Jﬁwn(uk,vk)(%uk, 0) = ox(1), that is,

/¢1(|Vuk’)vuk'V(%uk)dﬂﬂ—/¢1*(’Uk’)uk(%uk)d$+)\/ Ry(x, up, vp) (peur)dz + or(1).
0 Q O
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Knowing that

/Ru(x,uk,vk)(gpsuk)dx — / Ru(x, wn, yn)(pewy)dx as k — oo,
Q Q

we can conclude that

(5.66)

/ (bl(‘vuk‘)vuk : V(Sosuk)dx < mi/ (I)l*(|uk|)90€d$ + )\/ Ru(mawmyn)(<ﬁswn>dm + Ok(l)'
Q Q Q
By ( ;73)’

/ 61| Vg Vg - V(o) d > £, /
Q

&y (|Vun|)pods + / (| Vg eV Viod
Q Q

Therefore,

61/ <I>1(|Vuk\)<p€dx+/ &1 (|Vug|)urVur Vo de §m’{/ Dy, (|ug|)pedx
Q Q Q

(5.67)
+ )\/ Ru(.’IJ, W, yn)(ﬁoawn)dx + Ok(l)
Q
o . .
Since the sequence (¢1(]Vuk|)a—?)keN is limited to L*'(Q2), there is w; € L*1(Q)
J
such that
(5.68) ¢1(|Vuk|)% — w; in L*(Q), je{l,---,N}
j

for some subsequence. Keep in mind that

0p. 0p.
P, 0

" in L*(Q), je{l.--- N
8x] 81‘] ln ()7]6{’ ) }

Ug

we conclude that

Ouy, 0p. ow,, 0y, )
Therefore, considering w = (wy, -+ ,wy) we get
(5.70) /¢1(]Vuk|)ukVukV<pada: — / u,wVpdr = og(1).
Q Q

From (5.67) and (5.70),

m”i/ <I>1*(|uk|)sosdx+k/Ru(x,un,vn)(sosun)dx Zﬁl/qh(\wkl)%dfc
Q Q

(5.71) @

+ / Up,wVpedr + o(1).
Q
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By (5.62), taking the limit of k — +o00, we get
my / o dvy, + )\/ R (x, Uy, vy)petiydr >0, / Yedpiy
(5.72) @ @ 2
+ / upwVp-dr + og(1).
Q
On the other hand, given v € Wy'* (), it follows from (5.54) that
or(1) = / &1 (|Vug|) Vur, Vodz — / 1 (|ur] ) ugvde — )\/ R, (x, ug, vy )vdz,
Q 0 Q
since the sequence (¢, (|ux|)uy) is bounded in L®+(Q), there is 1, € L*1*(Q) such that
(5.73) b1 (Jug] ), — 7y in L¥+(Q) as k — oo
so, from (5.68) and (5.73),
/wVvdx - / Npodr — )\/ Ru(2, Uy, vy )vdr = 0, Yo € W ™(Q).
Q Q Q
In particular, for v = u,p., we have
(5.74) / UpwVp.dr = / N UnPedr + )\/ Ru(x, Uy, vy )uppedr — / pewVu,dr,
Q Q Q Q
Therefore,
(5.75) ll_{r(l) i up(wWVep)dr =0
It follows from (5.72) and (5.75) that
(576) fluz S mil/i, 1€ [,\,
and by Lemma 5.10,

(5.77) s < mySEs,

for some o and 3 verifying

o mt 0 omt
7 1< ) S d 0, mi}.
(5.78) ae{gl, eyt and [ € {{;,m]}
Thereby,
gl -1 .
0< <pimh, vE€ Iy,
m’l‘Sg =H A
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showing that

El 1
5.79 P> aml g el
( ) H (m,{Sg) A
By (5.76) and (5.79)
b\ o B
;> amL S, et d e .

vi = (mT) 0 v A

Since v, is a finite measure, the last inequality yields I, is finite. ]

In fact we will see that the set {z;};cr, is an empty set for A > 0 large enough.
For this, we will establishes an important estimate from above of the mountain level

of functional Jj ,,.

Lemma 5.12 Let n € N be arbitrary and consider ug given in (5.53). Then, there is

Ao > 0 such that if A > \g, we have that

max .Jy , < w,
o

where
my\ 6\ om0 m’{} A
w:=|(1—— ) min — € —, —, , and (€ {{i,m .
( M) {(m’{Sg) {51 b mymy fehmi}
Consequently,
(5.80)

mi\ . 2 = omy 0 mf} ..
cxn < |1 —— ) min A€ —,—, —, and [ € {li,m ,
» < M > {(m’{Sg) {51 b mymy geifmi}

where ¢y, is given in (5.55).
Proof. By (R4), given > 0 and v € V}', we have

Tan(Buo,v) < &, (0)€s, (luollie,) — &, (0)s, (luolle,) — A/ R(x,0ug, v)dz

Qo
< &, (0)&s, (luollre,) — &g, (0)s, (luolle,) — Aw g |Ouo|*da
0
This inequality implies that
. < i < <
(5.81) 0<b, < Hg urenj\a/éo Ian(y(u)) < I/{l/l%())( Jan < rglzagcv,\(G)
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where
(5.82) Va(0) = £, (0)8a, (Iuoll1.e,) — &a,, (0)€a, (luolla,) — Aw/ |Buo|*dr.
Qo
In what follows, we denote by #, > 0 the real number verifying
(5.83) max Va(0) = VA(01)
Let us see that V\(6\) — 0 as A — oo. For that, consider (\,,) a sequence verifying

Ay — 0O as m — 0.

We claim that (6),,) is a bounded sequence. Indeed, assuming by contradiction that

(0y,,) is not bounded, we have that for a subsequence, still denote by itself,
0y, — 00 as m — oQ.
According to (5.82), (5.81) and (5.83),
0 < max Vs, (6) = Vi, (0,.) < 0326, (luollaa,) = 63, &5, (luolls,) = 00 as m — oo,

which is an absurd, and so, (6,,,) is bounded. We claim that 8, — 0 as m — co. If the
above limit does not hold, we can assume by contradiction, that for some subsequence,

still denote by (0,,,), there is ky > 0 such that
0y, > ko >0, VneN
Then, by (5.82) and (5.83),

O < Iglgg(v/\m (0> = V/\m (eAm) S 5%1 (0)\771)5&)1(HuOHLq)l)_fgl* (6/\771)5%1“‘”0“@1)

— Amw [ ]0a,, uol’dz,
Qo

thus

0< IglaXV,\m(Q) — —00 as m — 00,
>0

which is a contradiction. Hence,

tx, — 0 as m — oo,
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which leads to

Igl;ig(V)\m(Q) =WV (0,) =0 as m — oo,

and by (5.81) it follows that

Crnm — 0 as m — oo.

Lemma 5.13 For everyn € N and A > \g the set I is empty, where \g was given in

Lemma 5.12.

Proof. Let (ug,ur) C X, the (PS)., . sequence obtained in (5.54). In view of as-

CA\,n

sumptions (G2), (R3), (¢3), we have that
y 1 1 ma
Can + 0k (1) > T (up, vr) — I3, (ur, vi) (=g, —vp) > | 1 — — O (|Vug|)dz.
p v n) Ja
Fixing a function ¢ € C3°(RY) with ¢(x) =1 on Q, we derive that
Can +or(1) > (1 - m) / O (|Vug|)pde.
RN

L

Taking the limit of £ — 400, we get

w RN 2

Supposing that I, is not empty, there is ¢ € I, and so,
m
Can 2 (1 - —1) i
I

N
m*Sﬁ)OHl’ 1 € I,
120

In (5.79) we show that

i > (

where « is given in (5.77) and (5.78). Therefore, we can conclude that

m\ . 0 \o1 om0 m’{}
Cxn > [ 1—— ) min e —,—,—, — 5 and fe{l7,m} ;.
S P (O (R

Then, if A > ), the last inequality together with Lemma 5.12 yields I, = ().
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Lemma 5.14 For A > )y, the sequence (uy) is strongly convergent for its weak limit

wy, in L**(Q) as k — oo.
Proof. Let o € C*°(R") be a function verifying ¢(z) = 1, for x € Q. In this case,

lim [ @, (ug)dx = lim Dy, (ug)pdz :/ odvy,

k—o0 Q k—o0 RN RN

The Lemma 5.10(item i) combined with Lemma 5.13 gives

lim [ Oy, (uy)de = /

k—oo Jq RN

<I>1*(un)g0dx:/®1*(un)dx.
Q

Since @1, is a convex function, it follows from a result due to Brezis and Lieb [28| that

lim / (@1 (Jus]) — Dro (s — t]) — By (g bl = 0.

k—o0
Then,
lim [ @, (Jup — uy|)dz =0,
k—oo Jq
we can conclude that (ug) converges strongly for u,, in L®1+(). n

Lemma 5.15 Consider A > X\ and (uz) C Wy (Q) the sequence obtained in (5.54).

Then, for some subsequence, still denoted by itself,
up = wy in WyPH(Q) as k — oo.
Proof. Since (uy) is a bounded sequence in Wy'**(2), then

ok(l)—/Qcbl(]Vuk\)VukV(v—uk)da:—/Q¢1*(\uk\)uk(v—uk)dx—)\/ﬂRu(a;,uk,vk)(v—uk)dx.

Given v € W™ (), by the convexity of ®; it follows that

P1(|Vo]) = @1 (|Vur|) > é1(|Vur|) Vur V(v — ug),
thus,
s /Q<P1(|Vv|)dx—/g(l>1(|Vuk|)dx 2/§2¢1*(|uk|)uk(v—uk)d:p
— )\/QRu(x, Uk, Vk) (v — ug)dx + og(1).

Through boundedness da sequence (u;) in Wy *(Q) together with the limits

ouy, R ow,

up(r) — w, a.e.in ) and in L'(Q),

134



we can apply the Lemma 2.22 to get

nmmf/@l(\vuky)dxz/@1(|an\)dx.
Q Q

k—oo

Furthermore, since (uy) strongly converges to u, in L**(Q),

/ﬂgbl*(|uk|)uk(v — uy,)dx — /quﬁl*(|wn|)wn(v —wy)dz, as k — oo.
Therefore, it follows from (5.84) that
/ ¢, (|Vo|)de — / O (|Vw,|)dz 2/ O14(Jwn | )wp (v — wy,)dx
) Q Q
+ A /Q Ry (x,wp, yn) (v — wy,)dz.
By arbitrariness v we can conclude that
A¢1(|an|)anV(wn — ug)dxr = /Q O14(|wn | )wy (W, — ug)dx
+ )\/QRU(JJ, Wy, Yn ) (W, — uy)dex,
implying that
(5.85) /ﬂ (V) V0,V (10, — )l = (1),
On the other hand, since (uy,vy) is a sequence (PS)., .,
or(1) =y, (up, v ) (wn, — ug, 0)
= [ (Ve V¥, = e = [ o, — )
- )\/QRu(w, g, Uk ) (Wi, — ug)de,
Therefore,
(5.56) | 9 VT (w, = w)ds = (1),
From (5.85) and (5.86),
/Q (01(|Vur]) Vg, — ¢1(|]Vw,|) Vw,) (Vug — Vw,)de — 0 as k — oo,

Now, applying a result due to Dal Maso and Murat [22], it follows that

(5.87) Vug(x) — Vw,(z) ae. in Q as k — oo.
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Since (1) is bounded in Wy ®* () and ®; € (A,), then the sequence (gbﬂ\VuH)%)keN
L

is bounded by L®1 (), for each j € {1,--- , N}. Furthermore, by (5.87), it follows that

QU] _, (10 () 222

a.e.in ) as k — oo.
8a:j 8a:j

¢1([Vur(2)])

Thus, by Lemma 2.5 in [11],

(5.88) /¢1(|Vuk|)VukVUd:c—>/(bl(\VunDVuandm, veCE) as k — oo.
0 Q

o .
Still due to the boundedness of the sequence (¢1(|Vuk|)a—zk)keN in L*1(Q), there will
J

be v; € L‘i’l(Q) such that

¢1(|Vuk])% = in Lél(Q) as k — oo,
al‘j

ie,

(5.89) /£2¢1(|Vuk|)%wdx — /ijwdx, Yw € E*(Q) = L**(Q) as k — oo.
j

By (5.88) and (5.89), it follows that v; = ¢1(|Vun|)a—n, for each j € {1,---, N}. Still
J
from (5.89),

ou
x
/Q<b1(|Vuk\)Vukadx — /§2¢1(|Vun])Vuandx, Yw € WP (Q) as k — oo.
We know from (5.86) that
/Q¢1(|Vuk|)vukv(un — up)dz = ok(1),
then

/Qﬁb1(fvuk|)|vwg|2dx — /ngl(|Vun|)|Vun\2dx as k — 00.
Given this, we can conclude that
1 (|IVur) | Vur? = é1(|Vu,))|[Vu,[* in L'(Q) as k — oo.
By (¢;3) together with the As-condition, it follows that
up — u, in Wy*(Q) as k — oo.
This finishes the proof. [
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Lemma 5.16 For A > \g, the sequence (wy,,y,) is bounded in X. Moreover
(5.90) Ian(Wn, Yn) = cxp and J3 (W, yn) =0 in X,

Proof. Since V} is a finite dimensional space, (v;) converges strongly to (y,) in V}.
Therefore,

(ug,vg) — (Wn,yn) in X, as k — oc.

which implies
Ian(Wn, Yn) = cap € [bn,dn] and  Jy, (wn, yn) =0 in X,

In a first moment, let us assume that a; < ¢5. By hypothesis my < a;, then

Wy *2(Q) is continuously embedded in LA(Q), thus, there will be C' > 0 such

(5.91) lol|a< Cllv]|1,8,, Yv € VY.

1 1
e =0 (Wn, Yn) — J//\,n(wnvyn)(;wnv ;yn)

(5.92) > (1 - "/T) /Q<I>1(\an|)dx + (ff - 1) /Q(I>2(|Vyn|)dx + <il - 1> /Q<I>1*(|an|)dx

> (1= ™) bllundian) + (2 - 1) &, (Glualo).

2-
It follows from the inequalities (5.80) and (5.92) that (w,, y,) is bounded in X.

Now, let us assume that ay > 5. By (R3), (G2), (5.91) and from items (i) — (i)
of (Gy), it follows that

1 1
Ch\n :J)\,n(uTh Un) - J$\7n(un> Un)(;uny ;'Un)

> <1 _ ”;1> /Q<1>1(|vun|)dx+ <£j _ 1) /chz(\vun\)dx

+ S [ aunblenfds — Car [ Ao
vJa Q

> <1 - ”;1> /Q<1>1(|Vun|)daz+ <€3 - 1) /QCDQ(an\)d;E—I— <"’1VC - a10> /QA(|Un|)d:U

l C
> (1= ) 6 (unlha) + (2 = 1) b, o) + (25 - 1) €hlunla)

From the above inequality together with (5.80), we can conclude that (wy,y,) is
bounded by X. [ ]
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5.2.1 Proof of Theorem 1.10

The proof of Theorem 1.10 will be carried out in three lemmas. We start observing

that since (w,, y,) is bounded, there is no loss of generality in assuming that

(5.93) (Wn, yn) — (u,v) in X as n — oo.

The same arguments used in the proof of Lemma 5.15 can be repeated to show that
(5.94) U, = u in Wy*(Q) as n — oo.

By the limit (5.93), it follows that

(5.95) Yo — v in L)
and
(5.96) Yo — v in WP (Q).

Lemma 5.17 For A > Xy, the sequence (y,) verifies the following limit y, — v in
LA(R).

Proof. From (5.46), there is () C V4 such that
(597) gk — v in VA
and

(k) |

& = Z Q;e; € ijl(k)a

i=1

where j(k) € N for all k£ € N. For each k € N, it follows that
Vi c vy forall n>n
A A = N0,

for some ng > j(k).

If ay > 05, from (G4), we have that there is C' > 0 such that

(5.98)
e, /Q A(lya — &x)de < C /Q a(lyn — EDlyn — &xdx < /Q (9(um) — 9(68)) (9 — E4)d
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Since J} ,,(tn, v,) = 0 in X7, we derive that

(5.99)
/@@M—M&M%—&M%i/@M@MWMV&—WMMHA/RWWMWM%M
Q Q Q

+5LRxawMMKMx—[g@w@W—&Mx

Due to the convexity of ®5, we have

It follows from the above inequalities that

(5.101)
e, / Allyn — &)dz < / 0o([V8il)de — [ Ba([Tuw e = A / Ro(s s gy

Q

A / Ry (i, wn, yo)Eucd — / 9(60) (9o — E)da.

Knowing that

OYn R ov

€.in d in L'(Q
Yn(z) — v(z) a.e.in an oz, o in L°(Q),
we can apply the Lemma 2.22 to get
(5.102) liminf/ By (|Vvn|)dz > / By (|Vo|)da.
Taking as limit n — oo, it follows that
(5.103)
lim sup <a1C'/A(]yn§k|)d$> g/ (I>2(|V§k|)daz/<l>2(|VU|)dx/ Ry (z,u,v)vdx
n—00 Q Q Q Q

54mwmw@m—4mmw—mm.

By the limit (5.97), given ¢ > 0 there is ky € N such that

1

e Vg @2(|v§k‘)dx—/n Do (|Vu|)dz —/QRl,(x,u’v)vdx

+ [ Risuvgds— [ @) -aoi| <3,

for each k > ky. Hence,

|

for all & > k.

Y
n—oo

(5.104) lim sup/ A(lyn — &|)dx <
Q
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Given 0 < £ < 4, for ¢ sufficiently small, it follows that

(5.105) lim sup/ A(lyn — &|)dz <
Q

n—oo

, for all k > k.

=1 M

Fixing k > kq sufficiently large such that

(5.106) € — vl < (Z)l/al

it follows from (G4)(i) that

(5.107)
/A |y — v|) dx<C’/ (|yn — &k|) dx + C|& — v|% <C’/ (lyn — &) dx—i——

for some constant C' > 0 that does not depend on n and k. By (5.105) and (5.107), we

have

limsup/ A(lyn —v])da < ¢
Q

n—o0 2

and by the arbitrariness of € > 0,

lim [ A(ly, —v|)dx = 0.

n—oo 0

Therefore,
Yo — v in LA(9).

Now, let us consider a; < /3, then A increases essentially more slowly than
®,, near infinity. In this case, the space Wy **(Q) is compactly embedded in L*(Q),
therefore, the desired limit follows directly from that compact embedding. ]
The following lemma is made using similar arguments to those given in Lemma

5.15. Therefore, we will omit its proof.

Lemma 5.18 For A > )y, the sequence (y,) verifies the following limit y, — v in
Wy ™2 (Q).

From the above lemmas, we can conclude that
(5.108) Yp = v in Vjy.

In view of the above facts, it is possible to obtain the proof of the Theorem 1.10 as can

be seen in the following result.
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Lemma 5.19 For A\ > ), the pair (u,v) satisfies J' (u,v) =0 in X and J(u,v) # 0.

Proof. Fixing k,n € N with n > k, we have X}, C X,,. Thus, for (p1,¢s) € Xy, it
follows that
J;\,n(wTwyn)(SOla ()02) = 07 vn > ka

because, by Lemma 5.16, J} , (wy,y,) = 0. Combining (5.108) with (5.94) we get
(5.109) J5(u,v) (@1, p2) =0, for all (1, ¢2) € X.

We claim that

(5.110) J3(u,v)(p1,p2) =0,  for all (p1,92) € X.

In fact, we start observing that for all ¢, € Wy (Q), the pair (¢1,0) € X}, for all k.
Hence, J}(u,v)(¢1,0) = 0. On the other hand, for ¢y € Vy, there exists x,, € V:(")
such that

lim x, = ¢z, in V.

n—oo
From (5.109),
(5.111) Ji(u,v)(0,x,) =0, forallneN,
which implies after passage to the limit as n — oo that

(5.112) J5(u,0)(0,p9) =0, for all py € V.

Thus, (5.110) is proved. Using the fact that (w,,y,) — (u,v) in X and that
J\(Wny Yp) > by > Co®2 > 0, for alln € N, for some constant C' > 0 which does
not depend on n, we have that J4(u,v) > Co® > 0, from where it follows that (u,v)

is a nontrivial solution for (Sy), and the proof is complete. |
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Appendix A

Results on the critical point theory for

locally Lipschitz functionals

We recall some few notations and results on the critical point theory for locally
Lipschitz functionals defined on a real Banach space X with norm ||-||x. All the results
we will list below can be found in [15,29,44] and in references therein.

Let I : X — R be a locally Lipschitz functional (I € Lip,,.(X,R)), that is, for
each € X, there exist an open neighborhood N(z) of x and a constant k(xz) > 0,

such that

[ (y1) = 1(y2)| < k(2)llyr — e,

for all y; and y, in N(z).
A generalized directional derivative of a locally Lipschitz functional I : X — R
at x € X in the direction v € X, denoted by I°(z;v), is defined by
I h+Av)—1 h
I°(z;v) = limsup (w+ht ) = I{w+h)

h—0 A—0t A

and the generalized gradient of I at x is the set
OI(z) = {u e X*: {u,v) < I°x;v), ve X}

Let @@ be a compact metric space and let ), be a nonempty closed subset strictly



contained in (). We set

(Al) PZ{pEC(Q,X):p:p* on Q*}a

where p, is a fixed continuous map on (), and

(A.2) c= (1:27@ max I(p(z)).
So
(A.3) ¢ 2 max I(p.(z)).

We say that the subset A C X links with the pair (Q,Q.) if p.(Q.) N A = () and
for each p € P, p(Q) N A #£ 0.

Theorem A.1 (See [}}]) Let I € Lipie(X,R) and AC I, ={x € X : I(x) > ¢} be a
closed subset which links with the pair (Q, Q). Then there exists a sequence (z,) C X
satisfying

lim d(z,,A) =0, lim I(z,)=c e lim A\;(z,) =0,

n—oo n—oo n—oo
with
Ar(zn) = mind||pl|x«: p € 0I(x,)}.

Proposition A.1 (See [}4]) Let I : X — R be a continuous and Gateauz-differentiable
functional such that I' : X — X* is continuous from the norm topology of X to the
weak*-topology of X*. Then I € Lipjoe(X,R) and 0I(x) = {I'(x)}, Vo € X.

The Theorem A.1 together with Proposition A.1 allows us to propose a linking
theorem for Gateaux-differentiable functionals. This result will be fundamental to

study the class of system proposed in Chapter 6.

Theorem A.2 (The linking theorem) (See [//]) Let X be a real Banach space with
X =Y ®Z, where Y is finite dimensional. Suppose that I : X — R is continuous and
Gateauz-differentiable with derivative I' : X — X* continuous from the norm topology
of E to the weak*-topology of X* satisfying:

(I,) There is o > 0 such that if N ={u € Z : ||u||< o}, then b iiarjl\;l > 0.
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(I3) There are z, € ZN OBy and p > o such that

0=supl <d=supl,
oM M

where

M={u=Xrz+y:|ull<p, A>0,yeY}
If

¢ = Inf max I(y(t)),

with
I'={yeCWN,X):v|on = Idon}.
Then, b < ¢ and there is a sequence (u,) C X such that
I(uy) = ¢ and I'(u,) — 0.
Proof. The result follows from Proposition 2.2 and Theorem 4.7 with P =T, Q = N,
Qi=0N,p.=Idg, e A={x € Z+Y :1(z)>c}. n
For the last section of this paper we will use the already known saddle-point

theorem of Rabinowitz without Palais-Smale condition. The proof of this result also

follows from Theorem A.1 along with Proposition A.1.

Theorem A.3 (Saddle-point theorem) (See [/4]) Let X be a real Banach space
with X =Y @& Z, where Y s finite dimensional. Suppose that I : X — R is continuous
and Gateaux-differentiable with derivative I' : X — X* continuous from the norm
topology of E to the weak"-topology of X* satisfying:
(Iy) there are constants p > 0 and ay € R such that if M = {u € Y : ||u||< p}, then
Tlopm < as.
(Iy) there is a constant cg > o such that I|z; > ag. If
= inf 1

c= inf max I(y(t)),

with
I'= {”)/ € C(M,X) : ’}/laM = [d‘aM}

Then, there is (u,) C X such that

I(u,) — ¢ and I'(u,) — 0.
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Definition A.1 (Cerami Sequence) Let (X, |-|[x) be a Banach space and
I : X — R a continuous, Gateauz-differentiable function, such that I' : X — X*
s continuous from the norm topology of X to the weak® topology of X*. We say that

(r,) C X is a Cerami sequence at the level ¢ € R, denoted by (C)., when

I(zn) = ¢ and (14 [lzn|lx) 11" (2n)]

x+— 0, when n — oc.

We will say that I wverifies the Cerami condition, or simply the (C) condition, when

every sequence (C'). for ¢ € R, admits a subsequence that converges strongly on X .

Next we state a result of the mentha step due to Ghoussoub-Preiss Theorem.
This result produces Cerami sequences even if the functional is not of class C'. The

Your proof can be found in [29, Theorem 6] or [15, Theorem 5.46].

Theorem A.4 (Ghoussoub-Preiss) Let (X, |-|[x) be a Banach space and
I : X — R a continuous, Gateauz-differentiable function, such that I' : X — X*
18 continuous from the norm topology of X to the weak* topology of X*. Set zg,z1 € X

and consider
I'={oceC([0,1],X): 0(0) =2 and o(1) = 2z }.
Set the number ¢ given by

ci= ;1;? max L(o(t)).

Assume that there is a F subset of X such that {x € F : L(z) > ¢} separates zy and

z1. So, there exists a sequence (x,) i X such that
8(xn, F) =0, I(z,) = c and (1+ ||za]])]| L (x,)|[«— 0,
where

d(zp, F) := inf 6(x,, x)

zeF

and

_y ol _ _
p, ) = {/0 Tr ||7(t)‘|dt 1y € C([0,1],X), 7(0) = 20 e (1) = zl}.
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Corollary A.1 (Mountain Pass Theorem) Let (X, |-||x) be a Banach space and

I : X — R a continuous, Gateauz-differentiable function, such that I' : X — X*

15 continuous from the norm topology of X to the weak* topology of X*. In addition,

assume that I verifies the mountain pass geometry, that is:

i) I|ap, > 1, for some constants p,n >0

ii) I(e) <n, for some e ¢ B,(0)
If

= inf I(~(t)) >
¢ = Inf max (v(t)) >n

where

={yeC(0,1,X): v(0) =0 and (1) =e}.

Then there ezists a sequence (x,) in X such that

I(z,) = ¢ and (1+ ||z, |)||I (z,)]«— O.

Proof. It is enough to apply Theorem A.4 with F = F [if ¢ > Bin(f) I| or F = 0B,(0)
»(0

lif c = inf) I].

B,(0
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Appendix B

Construction of examples of potentials
satisfying the conditions (V, K) € O,
and (V, K) € Qo

To construct such functions, it is crucial to recognize that (@1) (mentioned in the

introduction) is less restrictive than any of the conditions listed below:
(a) There are r > 1 and p > 0 such that K € L" (RN \ B,(0));

(b) K(x) — 0 as |z| — o0;

(¢) K = Hy + H,, with Hy and H, verifying (a) and (b) respectively.

Now, for every n € N, fix z, = (n,0,---,0). Consider {B%(zn)} the disjoint
n N

ne

sequence of open balls in RY and the nonnegative function H; : RY — R given by
0< Hi(z)<1,VeeRY, Hi(z)=1V¥neN, H =0 in RV\ { U B%(zn)}
neN

and

1
/ Hy(z)dr < -, VneN.
By (2n) 2

1
b1
Thus, without difficulty we can see that the functions

1

(B.1) V() = K(e) = H(o) + s



verify the condition (@). Furthermore, clearly V' and K satisfy the conditions (Qo)
and (Q)2). However, these functions do not verify the (Q3) condition.
Now, consider the N-function B(t) = |t|P with p € (m,¢*) and define the

1

(B‘Q) K(:E) = H1<.CC) + m
and

o(m* —m)

P T
(B.3) V(z) = (|lz[Hi(z)) == + (ln(2+|x|)>

It is clear that B satisfies the conditions (B;)—(By), moreover, as mentioned previously,
these functions check (Qy) and (Q1). We will show that (Q)3) is satisfied with B(t) = |t
where p € (m, (*). In effect, we state that there is C' > 0 depending on p, m and ¢, so

that, for each z € R, we have

m

(B4) G(x) = Cmin{V(2)7F,V(2)"=r} < H(x) = min {v@)@(” L &0 } |

t>0

In fact, for every z € RY fixed, the function

glt) = V()™ P+t P V>0

*
m_—p

has C,V (z)="== as minimum value, where

*
m—p m_—p

—m m* —m —m m*—m
- [(2) ™ ()
p m-—p

*
mo —

GV ()= < V(@)™ + |t

So,

mP Y e RY

and all ¢ € R. In particular
CV (z)m— < V(@)™ + [t} 7, VaeRN
and |t| < 1. Le,

*

ColtPV (@)= < C(V (2)(|t]) + &.(¢]), Vo e RY

and |t| < 1. Therefore,

(B.5)

O, min{V (z) 7=, V(z) "=} < C <V(x)®|§|‘i|> + q)"“t("ﬂ)) Ve eRY e |t <1.
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Now, for each z € RY fixed, the function
h(t) =V (@)t P +¢"77 ¥Vt >0

£ —p ..
has D,V (z)7=¢ as minimum value, where

So,
DV (@)= S V(@)™ + 1177, ¥z e RN
and all ¢ € R. In particular

4

= < V(@) +t" 7, vz eRN

D,V (x)
and [t| > 1. Le,

)

DtV (z) 7= < O(V(2)@(Jt]) + @u([t])), Vo € RY

and |t| > 1. Therefore,

(B.6)

*—p m*—p (0] D,
D, min{V(x)i*ﬁ,V(x)m*fm} <C (V(x) |i||i|) + |t(||ff‘)) , Vo € RY and [t| > 1.

From (B.5) and (B.6), we obtain

*
m*—p

¢ min{V (z) ¢, V(2)# 5} < CH(x), Vo €RY and t€R,

where C}, = min{C,, D,}. Proving (B.4). Now, consider z € R" \ U Bi(zn), hence,

neN

H,(z) = 0, therefore

= o —p)
1 m*—q
In(2+ |x|)
0(m™ —p) 9

:[ln(2 + |x|)] mr=q
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Similarly, for each z € RV \ U B (2,) , we have

neN
K(z)? G
i < [In(2+[z)] 7 .
V(x)r—t
Therefore,
K e 0 g(e**;p_g G(M:*P)_e
(B.7) G((x)) < ([ln(Q +|z))] T T+ [In(2 + |z))] e ) 7

for all z € RV B (z,). On the other hand, if z € B (z,), we have = # 0
2n 2n

neN neN

and Hy(z) # 0. So,

1 (%
H [
K@) 56+
V@R e 1\
H 6
:C2 I(SE) m*—p

() | pa=
)
In(2+ |z|)

e T e
(ol In(2+ |2])

1 6
Hy(z)° Ln@ + \x!)}
+ o(m*—p)

||° Hy ()" "y
=

<Cy

Similarly, for each x € U B (zn), we have
neN

]

K(x)? Hy(x)? In(2+ |x|)

V(e)7 = P Hr (@) { 1 =
In(
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Therefore, for all z € U B (zn), it follows

neN
(B.8)
K(z)? 1 o(m*—p) _g 1 0 —p)
< — m*—q _— = ,
G = Cy <|$|9 + [In(2 + |x|)] +Cs L + [In(2 + |x|)] *

By (B.7) and (B.8), we conclude that

1 O(m*—p) _ 0(L*—p) _
=G (Wﬂl”(?ﬂxl)] m= 0 4 [In(2 + |z|)] T 9)7

for all z € RV \ {0}. As g < p, then 22220 — g UZ=B) 9 < 0. That said,

— 0, as |z| — +oo.

Knowing that G(x) < H(x), for all z € RY, then

K (z)"
H(x)

— 0, as |z| — +oo.

Now, let us see that V and ) do not verify the condition (Q3). Consider
r e RN\ UB%(Z,,I), then Hy(z) = 0. So,

1

K(x) In(2+ |x
(B,9) = o(m* —m) |) 00" —0) *

B e I e

Note that the function w : R — R defined by

N

w(t):N—_t_ A )
N IV gV 1)
N_—¢ 1

is decreasing in the interval [0,m]. In fact, note that

(N =[N —1) )N = g(N — 1)) = (N —t(N = ))(N + q)

(i) = N — gV — P
_2t(tN —q(N —1t)) — (tN —t(N —t))(N +q)
- N g =P '

Clearly, for all ¢ € [0, m], we have

%N — q(N — t)) — (LN — t(N — t))(N + q) < 0.

151



Therefore, w'(t) < 0, for all ¢t € [0,m]. Showing the decrease of the function w in the

interval [0, m], in view of this, we come to the conclusion that

O(m*—m) 00" —1)
< .
m* —gq 0 —q

Hence, for |z| — 400, we have

o(m™* —m) 6(e*—0)

(B10) (marm) 2 )

By (B.9) and (B.10),

In(2+ |z|)

6(m* —m)

A (m(ziwasw)

o(m* —m

1 )
= Slin(@+ o)) =

Since m < ¢ and 1 < s, it follows that e(zr_:qm) — 1 > 0. Therefore, for all

z € RY\ B (2,) such that [z| — +oo, it follows that

K(x)
V()

— +00.

As a consequence of the limit above, we can state that the functions V' and K defined

in (B.2) and (B.3) do not verify (Qs).

Remark B.1 In an analogous way, one can construct an example of functions V' and

K satisfying the conditions (V, K) € Ky and (V, K) € Ky worked in chapter 3.
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