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Abstract

Most applications will exhibit vulnerabilities that impact their availability, integrity, or con-

identiality during their life cycle. Nevertheless, the leading cause for such vulnerabilities

is not the application itself but its dependencies. Continuous compliance processes often

perform vulnerability assessment to prevent compliance breaches during a CI/CD pipeline.

However, current proposals do not extend beyond the pipeline and thus do not take into ac-

count incident response when dynamic aspects change, such as newfound vulnerabilities on

deployed applications. In this work, we leverage Zero Trust to continuously assess vulner-

ability compliance and isolate workloads that do not conform to a minimum vulnerability

posture. Our approach builds on top of SPIRE, a selective identity provider, and integrates

incident response caused by dynamic aspects to continuous compliance.

ii



Resumo

A maioria das aplicações exibirá vulnerabilidades durante seu ciclo de vida, as quais podem

afetar sua disponibilidade, integridade e conidencialidade. Entretanto, a origem principal

para tais vulnerabilidades não é a aplicação em si, mas suas dependências. Processos de

conformidade contínua frequentemente executam veriicações de vulnerabilidade para pre-

venir violações de conformidade durante pipelines CI/CD. Entretanto, propostas atuais não

se estendem além do pipeline, e portanto não consideram resposta a incidente de acordo com

aspectos dinâmicos, tal qual o surgimento de vulnerabilidades em aplicações já implantadas.

Este trabalho busca utilizar Zero Trust para veriicar conformidade de vulnerabilidade de

forma contínua e isolar cargas de trabalho que não respeitam uma postura mínima de vulner-

abilidades. A abordagem proposta aproveita o SPIRE, um provedor seletivo de identidades

graduado pela CNCF, e integra resposta a incidentes de violação de conformidade ao modelo

de conformidade contínua.
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Chapter 1

Introduction

Currently, the industry faces an emergent awareness regarding software supply chain attacks

and their impacts on deployed products. From 2019 to 2021, attacks in supply chains around

the world suffered a surprising growth of 742% [30], with examples such as SolarWind’s

Orion Platform and XZ Utils. Such attacks seek to weaken some part of the supply chain

to inject vulnerable or malicious dependencies in order to exploit them after the product is

delivered or deployed. This allows attackers to bypass security measures focused on outsider

attacks and infect the ecosystem from the inside. This problem is intensiied due to the preva-

lence of open-source projects being used as dependencies, allowing attackers to potentially

infect multitudes of closed-source projects via successfully attacking some fundamental de-

pendencies. As an example, in 2022, 245,000 open-source malicious dependencies were

found, doubling the total amount of discovered malicious dependencies in all previous years

combined [30].

Considerable effort has been made to develop tools and strategies to mitigate issues of

supply chain security. DevSecOps best practices are among them, such as the use of SAST

(Static Application Security Testing) during a CI/CD pipeline to help prevent local vulnera-

bilities in source code. Adopting SBOM (Software Bill of Materials) is also recommended

to improve the transparency of the supply chain by describing all of the software components

and dependencies used. SBOM is then frequently used to power SCA (Software Component

Analysis) tools that look for known vulnerabilities in said dependencies, be they direct or

transitive. The resulting output can be used to halt the release of a vulnerable system.

Many compliance regulations such as PCI DSS [7] and FedRAMP [2] include re-

1
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quirements about vulnerability detection and mitigation, which accentuates the impor-

tance of SCA in the development lifecycle. As regional and international markets push

compliance as a requirement for software, continuous compliance has become a focal

point for DevSecOps [28]. Approaches to ensure continuous compliance include build-

ing on top of DevSecOps best practices to integrate CaC (Compliance as Code), which

can potentially automate checking if security controls are satisied during a pipeline [1;

26].

1.1 The problem

The problem of vulnerable products is not necessarily mitigated if the code is compliant

before a release. New vulnerabilities can be discovered at any time. The absence of known

vulnerabilities in the product at release does not mean the product is completely free from

them. A new CVE (Common Vulnerabilities Enumeration) entry can be reported as related

to a dependency that was previously considered safe, as was the case for the recent XZ Utils

disclosure that enabled a backdoor, affecting various Linux distributions. Recent studies

have also shown that generative AI such as ChatGPT-4 can automatically generate exploits

for CVEs [21], making new entries instantaneously exploitable. These high impact and short

time to exploit are evidence of the need for continuous compliance approaches that ind new

vulnerabilities as quickly as possible.

The problem does not stop at vulnerabilities. Although not as pressing as immediate

vulnerability exploitation, security controls requiring strict licenses for third-party depen-

dencies as well as evidence of good risk management can also be violated during runtime. A

previously reliable open-source project could change licenses, or could even be abandoned.

This poses a problem to current continuous compliance strategies of always preventing, but

not considering sudden violation as an incident.

In this scenario, ZTA (Zero-Trust architecture), deined by NIST (National Institute of

Standards and Technology) [29], shows principles to help solve these problems, as it holds

that by default, any person, event, or device inside and outside a network and information

system is untrustworthy before suficient authentication. Zero-Trust then poses authentica-

tion as based on speciic evidence to meet criteria, which therefore deines trust as dynamic



1.2 Objectives 3

rather than static [15]. That also means that if trust can change over time, it must be checked

continuously. Thus, only after continuous authentication can a service communicate with

others within the network.

This idea of ªnever trust, always verifyº diametrically opposes the notion that the prod-

uct is trustworthy if it originated from a trusted DevSecOps pipeline. For this reason, we

propose leveraging ZTA to extend continuous compliance beyond deployment in a zero-trust

environment, by deining vulnerability tolerance as a policy for trust assessment to isolate

untrusted services and prevent vulnerability exploitation.

1.2 Objectives

The main goal of this work is to build upon the state of practice on continuous compliance

by deining vulnerability management as a trust policy. In order to achieve this goal, we

enumerated the following speciic objectives:

1. Identify threat points on general continuous compliance approaches where vulnerabil-

ity status can be exploited for supply chain attacks.

2. Design an architecture for integrating DevSecOps and continuous compliance best

practices to useful ZTA principles to mitigate found threats.

3. Implement the designed architecture using identiied tools on state of practice.

4. Analyse the implementation’s impact on resources and security as well as its limita-

tions.

1.3 Contributions

In this work, we present the following three contributions:

1. We show how integrating vulnerability assessment as a policy on a ZTA’s trust engine

can isolate a non-conforming application within an environment after failing authenti-

cation. This can prevent vulnerability exploitation and can be considered an immediate

response to compliance violations.
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2. We implement this approach through a new custom workload attestor plugin for

SPIRE, an open-source selective identity provider. It triggers SCA for each authentica-

tion attempt and then checks if found vulnerabilities are tolerated for each conigured

identity.

3. We evaluate the solution’s impact on performance and security and conirm its practi-

cality regarding added performance and resource costs. Furthermore, we discuss how

the approach impacts organizations by considering the roles of operations, security,

and development teams.

1.4 Structure

This work is organized as follows. Section 2 reviews the background needed to understand

our approach and implementation, alongside related work and our gap analysis. Section 3

explains threats related to vulnerability posture found in the current state of practice, and lays

out the requirements for solving the problem. Section 4 provides an overview of a proposed

architecture for mitigating said threats, and Section 5 details its implementation using well-

known tools. In Section 6, we evaluate our solution regarding performance and security.

Section 7 explains the threats to the research’s validity as well as employed mitigations,

and inally, Section 8 concludes our work with some inal considerations and future work

directions.



Chapter 2

Background and related work

This section reviews the concepts of continuous compliance and ZTA, as well as related work

on these lines of research. We also explain relevant technology for the state of practice of

these concepts while explaining the technology used for the solution.

2.1 Continuous compliance and supply chain security

Among the efforts to protect a supply chain and prevent attacks is the adoption of DevSec-

Ops best practices. These practices can include using security frameworks such as SLSA

(Supply-chain Levels for Software Artifacts). Security frameworks are guidelines for achiev-

ing security guarantees on a software supply chain. SLSA in particular speciies incremental

levels for artifact security to attain better security guarantees, such as hardened builds and

non-forgeable provanance [8]. The main point of such frameworks is to propose a secure

way to produce software in a DevSecOps process, aiming to make a pipeline impervious to

direct attacks.

However, attacks also often exploit vulnerabilities present in code when the product is

delivered. That means that even if the CI/CD pipeline itself is secure, the same may not be

true about the source code of a project. Vulnerabilities can be found directly in source code

but are even more frequently found in its dependencies, such as its libraries, frameworks,

and other tools. Synopsy’s BDSA (Black Duck Security Advisories) analysis report for 2024

states that most vulnerabilities found in audits were associated with JavaScript libraries [34].

Such vulnerabilities can come from direct and transitive dependencies (i.e., dependencies

5
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included in dependencies recursively).

Security advisories like NIST and GHSA (GitHub Security Advisory) disclose vulner-

abilities in the form of CVEs (Common Vulnerabilities and Exposure). CVEs are records

stored in vulnerability databases that often provide APIs for consultation, the most effective

of them being NVD (National Vulnerability Database) [25], which is managed by NIST and

kept up to date with CVEs from multiple advisories. A CVE describes, among other details,

affected versions of software. By frequently querying databases such as NVD, it is possible

to verify if there is any reported vulnerability for a given software version before shipping it

with the product.

SCA tools can automate this process and search these databases for vulnerabilities in a

project’s dependencies. Examples of tools are Trivy from AquaSecurity or Snyk, both able

to search on popular dependency iles like the Maven POM (Project Object Model) or NPM

package.json, depending on the language and package manager used. As a powerful

alternative, they can ingest SBOMs for a transparent inventory of dependencies, regardless

of which technology the project was developed upon. Another example is OWASP’s (Open

Web Application Security Project) Dependency Track, which not only supports NVD but can

also be integrated with many other public and private data sources. This makes it possible to

aggregate more knowledge and allows companies with private vulnerability intelligence to

combine their information with open-source vulnerability information.

Nonetheless, SBOM is only helpful while it is reliable. Given the popularity of software

supply chain attacks for exploiting vulnerabilities, an attacker could try to tamper with an

unprotected SBOM to change dependency versions. This could potentially misguide SCA

into outputting a reduced list of CVEs to mask a known vulnerability. To mitigate this,

artifact signing to demonstrate provenance can help discriminate a fake or tampered artifact

from a legitimate one.

A popular option for signing, verifying, and attaching artifacts to a container image is

Cosign [9], from the Sigstore framework. Attached artifacts can then be stored alongside

the product’s image in an OCI registry in the form of in-toto attestation, a ixed, lightweight

format to describe supply chain metadata, including SBOMs [27]. To both sign and verify

signatures on attestations, Cosign uses Rekor, another component of the Sigstore framework

that works as a transparency log, providing an auditable record of when a signature was
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created [9]. By using the Sigstore framework or similar tools as a support for artifact trust-

worthiness, an operator can reliably apply SCA to a supply chain.

After acquiring knowledge of vulnerabilities, teams must remediate them in order to keep

the software secure. However, vulnerability remediation can be a high-effort task. As shown

in a study made by Kenna Security and Cyentia [19], hundreds of companies remediated

only a monthly rate of 15.5% of known vulnerabilities on average, while a quarter had an

even lower rate of 6.6%. To assist with prioritization, there are well-used scoring systems that

help estimate how vulnerable the current state of a product is. CVSS (Common Vulnerability

Scoring System) is a very dependable and robust method used to describe the severity of a

CVE (i.e., how critical it is) [25].

CVSS estimates how vulnerable an application is based on exploitability and impact

properties, and ranges from 0.0 to 10.0, usually discretized in classes. The classes and

their respective closed intervals are LOW for [0.1, 3.0], MEDIUM for [4.0, 6.9], HIGH for

[7.0, 8.9], and CRITICAL for [9.0, 10.0]. By using CVSS, teams can choose to remediate

the most critical vulnerabilities, and might even compromise by disregarding CVEs with low

severity.

Another way to describe the potential impact of a vulnerability is to use EPSS (Exploit

Prediction Scoring System) [24], which expresses the likelihood between 0.0 and 1.0 of

a CVE being exploited within the next 30 days. This metric is updated daily for every

public CVE reported, and is maintained by FIRST [3] (Forum of Incident Response and

Security Teams). Therefore, unlike CVSS, EPSS does not measure severity, but risk. It is

not interchangeable with CVSS, but is also widely used, and can help further prioritize CVEs

as well as deine remediation for low risk ones.

Finally, to standardize a developer’s stance towards known vulnerabilities, CISA [6] (Cy-

bersecurity and Infrastructure Security Agency) speciied VEX (Vulnerability Exploitability

eXchange) [17]. This format allows a formal statement about vulnerabilities and is readable

by both machines and humans. VEX is useful for improving transparency and formally ig-

noring non-applicable vulnerabilities. For instance, a vulnerability that comes from a library

could have high EPSS and CVSS values, but the vulnerable code might be unreachable in

the context of a speciic application, making the threat harmless. The company can then use

VEX as a means to declare the vulnerability and issue a NOT AFFECTED status. As another



2.1 Continuous compliance and supply chain security 8

example, if a medium EPSS vulnerability could affect the product, the company can declare

that it will be ixed in the next patch cycle using an AFFECTED status. This makes VEX a

powerful format to enhance transparency and further improve trustworthiness between stake-

holders.

This level of effort to improve software quality and prevent security issues is needed to

comply with certain regimes. Many vendors are required by organizations or governments

to abide by one or more compliance regimes. These can be deined as a set of encoded best

practices, such as guidelines for data encryption, storage management, and vulnerability

management [26]. Regimes like PCI DSS and FedRAMP consist of many requirements,

and for each requirement, there is usually some sort of control, a rule deined by industry

standards for fulilling that requirement. Because expensive auditing is needed to provide

evidence of fulilling compliance, vendors strive to keep internal compliance, often manually,

to avoid failing an audit and needing to request another one [26].

Upholding compliance continuously has thus become relevant for DevSecOps [28]. As

described by Ramaj et al. [28], works related to continuous compliance seek to automate

general security activities, like SCA, for compliance assessment. For instance, compliance-

speciic tools (like OpenScap, UpGuard1 and CIS-CAT) are discussed as useful to verify if a

software conforms to speciic regimes, while non-speciic tools are pointed as helpful when

assessing general compliance requirements common to many regimes.

There is also the notion of CaC (Compliance as Code), which proposes to formalize

security controls into code so they can be validated pragmatically [28]. Some approaches

include integrating common compliance controls into automated testing [13; 26], and others

aim to parameterize controls so that compliance can be checked in a data-driven testing

architecture [32]. Finally, there is research in assessing vulnerabilities in cloud infrastructure

and automatically producing security checks so the next pipeline iteration can further avoid

these vulnerabilities [35].

Although promising, these solutions fall into what Nygard called ªpipeline compli-

anceº [1]: compliance embedded in a CI/CD pipeline as a set of functions whose results

are validated before release. He states that if the entire responsibility of internal audit sits

within a pipeline, frequent changes may reduce correctness and cause ownership issues. He

then proposes a form of ªcomposite complianceº to distribute responsibility by assuming
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that if the parts of a system are compliant, then the system as a whole is also compliant. This

allows for the pipelines to be separated based on each component, and different teams could

specialize in building secure components for a secure ecosystem. This, however, introduces

the threat of a previously compliant component violating one or more compliance controls

and then compromising the whole system. This is especially concerning when considering

ecosystems comprised of many microservices and their replicas.

As a inal solution, the author proposes ªpoint of change complianceº, an architecture

where a security team deines compliance requirements, and pipelines built for these base-

lines run without security checks while producing security evidence. Before deployment, the

inal product is analyzed by an admission controller, which checks if the gathered evidence

satisies the requirements. If not, the pipeline fails. Otherwise, the product can be trusted

because it is compliant, and is consequently deployed. Through this method, there is no con-

fusion of ownership between developers and security oficers. Note that this method does

not necessarily replace ªcomposite complianceº, and could also be distributed if needed.

While these forms of continuous compliance solve the issue of avoiding the launch of a

non-compliant service, compliance is violated if the vulnerability status of a service changes.

Causes for this include the discovery of a new vulnerability that exceeds severity tolerance

or even risk recalculation for an old one due to recent exploits. Since this situation cannot

be completely prevented, and in such cases, the component was already admitted and is

therefore trusted, it can potentially endanger the rest of the ecosystem.

This absence of consideration for new vulnerabilities leaves a gap within the state of

the art. If continuous compliance cannot address the possibility of sudden compliance viola-

tions, then the responsibility of mitigating them falls to the people involved in the compliance

process. Whether they are the developers providing the now vulnerable images, the security

team deining compliance, or operators managing the environment is unclear, which rekin-

dles the aforementioned ownership problem.

2.2 Zero-trust principles and tools

The problem of trusting a component indeinitely because of an initial state of compliance

can be solved by leveraging ZTA. The Zero Trust Architecture is an approach that seeks to
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protect data in its various states, be it at rest or in transit [33]. NIST (National Institute of

Standards and Technology) deines ZTA as not a single network architecture achievable using

one technology but a set of many guiding principles that must be strategically implemented

to secure enterprise assets. This gives lexibility for ZTA to be applied to many contexts,

such as in the work of Chen et al. [16] where the authors also leverage ZTA in order to add

security awareness to healthcare devices in a 5G network.

One important principle of Zero Trust is that of communication security. It declares that

communication needs to be secured regardless of its location. In other words, there should

never be a communication that due to taking place in a certain perimeter is considered safe

enough to be unauthenticated or unencrypted. This means that just because a component

was able to be deployed, that does not imply that it is safe to communicate with it inse-

curely. A standard solution for this is the use of a software-deined perimeter (instead of a

irewall-deined perimeter), frequently through mTLS [15]. In orchestrated, containerized

environments such as Kubernetes, mTLS can be empowered by Service Meshes like Istio to

remove overhead from applications and secure trafic between microservices [20]. Trust in

ZTA is also never static, but rather dynamic [15]. This results in needing to authenticate a

component before establishing trust, and since this trust is not static, authentication must be

continuous, which is a strong pillar of ZTA [23].

X.509 certiicates can be provided traditionally, by manual procedure or using a tool,

which amounts to creating a CSR (Certiicate Signing Request) and having a single CA

(Certiicate Authority) or the chain of CAs sign it. In this traditional process, this process

must be repeated in order to rotate the certiicates before they expire. If they do expire, the

TLS handshake will fail at some point, breaking the communication.

To help operationalize this, as well as avoid other security issues like credential theft,

secretless authentication allows for an intermediary tool to manage the secret and its rotations

and deliver it to the application. The intermediary tool identiies the application and issues

the most up-to-date secrets it needs. Identity providers like Kerberos [11] and WS02 Identity

Server [12] do that by granting identities to applications, and embedding secrets in those

identities. Said secrets can take the form of X.509 certiicates to power mTLS and secure

communication between identiied parties. In this approach, a client or application must

perform authentication, in which the identity provider will return the appropriate session
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key. After this session key expires, the application or client must once again request it in

order to keep its identity.

There is also SPIFFE [14], an identity provisioning speciication that proposes that the

identities assigned within a certain Trust Domain (a logical perimeter for an ecosystem)

should be identiiable and veriiable. Identities, here called SPIFFE IDs, are merely seman-

tic URIs but always come embedded in an SVID (SPIFFE Veriiable Identity Documents).

The SVID contains signatures to prove that its SPIFFE ID is valid. Currently, the standard

deines JWT and X.509 as valid SVID formats1. SVID in the X.509 format is very similar

to identities from other identity providers and can be used as certiicates to power mTLS.

The SPIFFE standard is most famously implemented by SPIRE, a tool that graduated from

CNCF (Cloud Native Computing Foundation) and was adopted by many companies such as

Netlix, Pinterest, and Uber. SPIFFE and SPIRE have also been receiving contributions from

big tech companies such as VMWare, Google, and Hewlett-Packard Enterprise [10].

SPIRE differs from other tools because it requires a secret-less authentication process

before issuing an identity, and uses short-lived keys for these identities. In SPIRE, this

authentication is known as attestation. Whenever an identity is deined in SPIRE, it must

contain a set of selectors. Selectors are the properties that need to be satisied by the workload

that is requesting the identity. During attestation, SPIRE collects selectors from the workload

and compares them with each entry in its database. If a workload with those selectors is

eligible for some identity, that identity is granted to it embedded in the SVID of the requested

type (most often, a set composed of a X.509 certiicate, the associated private key, and the

set of CAs needed for validation).

SPIRE has two main components to support this attestation-based selective provisioning:

the SPIRE Server and the SPIRE Agent. The server acts as the one source of truth for the

Trust Domain. Considering a distributed cloud architecture of many nodes or instances, a

SPIRE Agent represents a node. An Agent and, therefore, a node is not trustworthy by

default. Before it can be trusted, it is subjected to an attestation, which can consider different

properties of a node, such as where it is running and properties from its software or hardware

stack. If successful, the Server issues the Agent’s identity, enabling it to attest its local

workloads (i.e., services running on the node). Afterward, workloads can try to attest with

1https://github.com/spiffe/spiffe/tree/main/standards
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the Agent to receive their identity. The SVIDs for each workload and Agent are typically

short-lived and can be rotated easily, implying a reattestation. Hence, if a workload loses

mTLS clearance because its SVID expired (depending on the TLS implementation), that can

only mean it could not reattest and, therefore, is rightfully isolated in the network.

As a result of its selective identity provisioning, SPIRE also supports another principle

of ZTA: continuous authentication. Because identities are short-lived and depend on peri-

odic attestation, if two services communicate through SVID-powered mTLS connections,

they will implicitly authenticate each other continuously. Finally, although SPIRE does not

support every attestation use case with its built-in components, it is extensible with its plugin

architecture, allowing for customization by implementing new plugins, including workload

attestation plugins. Thus, it is a viable alternative for assessing compliance as a criterion for

determining trust.

Although compliance is seen as important, efforts to establish good practices of ZTA do

not detail the role of compliance. As part of their multivocal review of both academic and

gray literature, Buck et al. [15] describe the trust assessment process of a ZTA implementa-

tion as needing two components: a Trust Engine and a zero-trust PEP (Policy Enforcement

Point). While the Trust Engine assesses trust based on policy, the PEP enforces the deci-

sion by providing secure communication. Compliance can be used as policy in theory, but

no work is shown by the authors to explore this possibility despite its relevancy. The same

can be said by the survey from He et al. [23], who point out that further attention on con-

tinuous diagnostics and mitigation systems is needed to integrate industrial compliance into

ZTA. Finally, industry standards for achieving maturity in Zero Trust also lack guidance

on integrating security posture while at the same time recommending vulnerability manage-

ment [18]. This research gap appears, therefore, to be a missing link for connecting ZTA to

continuous compliance.



Chapter 3

Threat model and requirements

Here we explain our assumptions for an environment where our approach of integrating ZTA

to continuous compliance applies. After that, we detail threats that can be found in such a

worklow that uses the current state of practice for continuous compliance and ZTA and ind

requirements to evaluate a solution to the problem.

3.1 Assumptions

We assume a typical environment where developers and operators develop and maintain

cloud-native applications. Following the DevOps (or DevSecOps) movement, developers

and operators try to cooperate but are not specialists in each other’s work. That means that

while there is collaboration, responsibilities are deined well enough so there are no own-

ership issues. Therefore, being responsible for the system’s long-term operation, operators

have to understand system security and want bug-free applications but do not get deeply in-

volved in the development process. Nevertheless, we assume operators are benign and do

not represent an internal threat.

We also assume developers are mostly benign but may not have the necessary knowledge

to build services that are secure in the long term. For this reason, they may use libraries

and modules that are not mature enough. However, we assume that the tests used in the

CI/CD pipeline follow best practices and include security tests. If some developers are not

trusted, such as in an open-source community, there must be a process that forces reviews

by selected community members and evidence of this process is collected. Additionally,

13
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companies interested in maintaining compliance can employ discussed approaches when

building their pipelines. Consequently, we assume that there are no known vulnerabilities in

the application at the initial state of a release, and thus, it is compliant.

Finally, we assume that ZTA is implemented in an effort to protect the environment with

dynamic trust assessment. Therefore, all services have unique identities, and their com-

munication is authenticated. As a result, if a service does not have a valid identity, it will

be unable to communicate with other services and will be effectively isolated. Isolating a

service should trigger termination (e.g., due to failing health checks) and trigger alerts in

monitoring tools.

3.2 Considered threats

Due to these assumptions, we are concerned with threats to compliance after deployment,

speciically regarding changes in dynamic aspects. In this work, we consider only vulner-

ability posture as a dynamic aspect because of its direct impact on security. Figure 3.1

illustrates these assumptions and indicates our considered threat points.

Figure 3.1: Assumed worklow and considered threats

Firstly, it is possible that a third-party attacker can intercept the release and switch it with

a tampered image if the OCI container registry storing it is not safe enough. Although we

do not concern ourselves with the registry integrity, the image’s provenance and its SBOM

are a concern. If the provenance of either artifact is compromised, there would not be a way

of reliably assessing vulnerability. That means a more sophisticated attacker who knows a
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vulnerable release will fail the pipeline can even try to switch the original SBOM with one

that masks the vulnerable state in a way that will be accepted. This can be summarized as

Threat A – use of a compromised image and Threat B – use of a compromised SBOM.

Moreover, as discussed before, an initially compliant release can later violate compliance

on account of dynamic aspects. A new vulnerability could be exploited by an attacker at

any time, and the likelihood of this happening will increase as long as the release remains

available. If incident response is manual, this means an attacker could beneit from a delay

in incident response. This creates Threat C – exploit of a newfound vulnerability.

Lastly, if a service is compromised (e.g., because of an exploit), it could compromise

other services through communication. Although ZTA is implemented, since vulnerability

posture is not taken into consideration for assessing trust, then the compromised service is

trusted. This means the inal Threat D – compromise propagation, is not correctly mitigated.

3.3 Requirements for a solution

Considering these assumptions and threats, the solution must provide a way to identify if

compliance is upheld. If, at some point, compliance is violated due to new vulnerabilities,

the solution must breach the gap left by continuous compliance strategies and apply an auto-

matic incident response. This can lessen the overhead and responsibilities of teams to detect

and enact an emergency intervention. To achieve this while integrating with a ZTA environ-

ment, selective identity provisioning must be implemented so that non-compliant services

are denied their identities. This requires mapping compliance into policy, also breaching the

gap left by current ZTA research.

Such a solution should not only be able to mitigate listed threats but also allow operators

to work with developers and compliance oficers to decide the best way to remediate the

sudden unavailability of certain services.



Chapter 4

Enforcing continuous compliance

Compliance must be present during the entire life cycle of the application in order to keep

it compliant. As mentioned before, this can be made possible by adopting DevSecOps best

practices, SCA, and a supply chain security framework during a CI/CD pipeline, as well as

employing continuous compliance. By implementing these known practices, a company can

enforce an initial state of compliance by making sure the static part of a release (its build and

attached artifacts) follows compliance rules. SLSA-compliant build processes further help

with this and, in its level 3, guarantee artifact provenance and hardened builds [8].

However, to continually ensure compliance, it is necessary to continue to perform SCA,

even after deployment or delivery. To operationalize this, we propose integrating workload

attestation using vulnerability tolerance as a minimum security posture criterion for selective

identity provisioning. Figure 4.1 illustrates our architecture.

We propose a workload attestor that can perform SCA based on the same parameters

as previously performed during the pipeline. The yielded results should be the same. That

means that if the workload keeps its initial compliant state, it must also satisfy the vulnerabil-

ity tolerance criterion, and thus should be eligible for an adequate identity. If the results have

changed even with the same static parameters, than changes in dynamic properties were de-

tected and captured during SCA. For our architecture, we consider the SBOM as the source

of truth for this operation.

The workload attestor should work as an extension (or plugin) to an identity provider,

where the attestor is responsible for returning the current vulnerability state and the provider

decides whether or not the state is acceptable. This architecture is agnostic to how the com-

16
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Figure 4.1: Proposed architecture

munication between both components happens, and which protocols to employ. As long as

the identity provider can request the workload attestor to perform SCA based on an SBOM,

in a synchronous manner, and the attestor can respond to the found vulnerability state, the

functionality is successfully implemented. Said state should be measured by CVSS and

EPSS (which are attached to CVEs) due to them being the prevalent vulnerability scoring

systems. The identity provider should be able to check if the results satisfy the criteria for

any identity, and if so, return an X.509 certiicate that represents it.

By receiving the certiicates, contemplated applications can use mTLS communication
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to leverage Zero Trust further by imposing communication security. How mTLS is imple-

mented in the environment is not in the scope of our proposal, but Service Meshes like Istio

could remove the overhead of implementing mTLS between microservices [20]. Regard-

less, if such identities are short-lived, periodic reattestation is a natural necessity in order to

renew them. Given that the mean of new CVE reports per day in 2023 for NVD is 79.18,

which amounts to around 3.29 per hour [22], reattesting more than once per hour increases

the chance of denying a workload its identity as soon as it is no longer compliant. In time,

the workload will lose communication privileges and be isolated, creating an availability

incident.

This worklow assumes the authentication between any given workload and the identity

provider is secretless. That is, the workload must not contain the certiicate beforehand and

must only come into its possession through the identity provider. The reasons for that are:

1) the identity provider can be the sole source of certiicates and thus the root of trust in

the Zero-Trust environment, and 2) always having short-lived identities represents that the

workload continues compliant with vulnerability tolerance rules.

If secrets were within the workload in some way, they would need to be long-lived, which

would mean that continued compliance would not be a guarantee. If secrets were given to

the workload, but through another component, then for the secrets to be trusted their source

would need to be assessed, and there would not be a single root of trust. Additionally, the

extra component would challenge the role of the identity provider. Either both components

would need to co-exist, adding unnecessary complexity to achieve the same results, or the

identity provider would be entirely replaced by this other component. Replacing the identity

provider would mean that the extra component needs to manage the secrets since would

become the root of trust. To make the secrets short-lived, it would need to manage them for

the workloads, basically returning to secretless authentication.

Considering this architecture, the post-deployment process also follows Nygard’s pro-

posal for separation of responsibilities on ªpoint of change complianceº [1]. That is, security

oficers keep working together to deine compliance criteria as before, as well as developers

continue in charge of fulilling compliance, but now operators are responsible for ensuring

that both the pipeline and the attestor can perform SCA on the same terms by coniguring

the Zero-Trust environment.
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Figure 4.2: Response to availability incident

As a consequence of this architecture, in the case of an availability incident caused by

compliance violation, each role may only act accordingly, as shown in Figure 4.2. The

security oficers could issue a VEX so that SCA ignores some vulnerabilities, developers

can patch vulnerabilities and release new versions to be attested, and inally, operators are

able to roll back to previous non-vulnerable versions of the service. Since isolation is a

response to violation, the maximum CVSS/EPSS requirements for issuing an identity should

be deined by security oficers considering the trade-off of availability versus exploitation

prevention.
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Implementation

In this section, we discuss the implementation of the proposal explained in the previous sec-

tion. To perform continuous SCA, we selected Dependency Track, an OWASP tool, due

to its openness, robustness, and integration possibilities. Dependency Track already yields

CVSS and EPSS for every vulnerability in an SBOM’s dependency list. As for its integra-

tion, it supports the NVD database by default and allows additional private data sources that

extend the relevance of this approach. Finally, it provides a REST API to help automate its

use. Other mentioned tools, such as Trivy and Snyk were considered, but since they lack

these features, using them instead of Dependency Track would require more complexity as

additional integration to other APIs would be needed to yield similar results.

For the identity provider, we chose SPIRE due to its openness, lexibility, and native

workload-attesting capabilities. In addition, it is already used to implement ZTA’s commu-

nication security and continuous authentication principles. We nevertheless expand SPIRE

in regards to its available selectors. This is done by implementing a workload attestor plugin

that will be used during a workload attestation. Our custom plugin connects to a Dependency

Track instance to return the SCA results and uses this information to provide the workload

properties to the SPIRE agent as selectors.

Two preconditions are necessary for the plugin features: (1) it needs to have access to

the image information (i.e., its complete identiication) to tell which workload is attesting,

and (2) it must also have access to that image’s SBOM. With this information, it can call

Dependency Track to feed it the SBOM and then gather the results.

These conditions can be provided in any containerized environment. However, in this

20
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work, we use Kubernetes as an orchestration tool due to its popularity. The following sub-

sections will respectively propose how to embed the evidence so it can be accessible, and

then detail how the plugin can collect the evidence to use SCA.

As illustrated by Figure 5.1, developers and operators can collaborate independently on

the attestation process. Developers input the code into a DevSecOps pipeline that deploys an

initially compliant image into Kubernetes as a Pod, which is the logical group of containers

and the smallest and deployable units of computing Kubernetes manages1. After the Pod

starts, it needs to attest itself to a SPIRE Agent before acquiring its identity. The SPIRE

Agent is already attested to the SPIRE Server, and therefore can issue identities and knows

the required selectors for each one. Those selectors are deined by an operator that manages

SPIRE, and should implement the rules and thresholds speciied by the security oficer.

Similar approaches for satisfying our two preconditions could be implemented in other

contexts. For example, if we assume that microservices run in micro-VMs orchestrated by a

system such as OpenStack2, the image information could be retrieved from the image service

and the SBOM embedded in the image metadata.

Figure 5.1: Proposal of compliance attestation within SPIRE

1https://kubernetes.io/docs/concepts/workloads/pods/
2https://www.openstack.org/
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5.1 Embedding the basic information

To ensure the product possesses an SBOM describing it, its build pipeline should contain

a step that generates and saves this artifact before release. Ideally, this information is open

so that clients and other interested stakeholders can access it for transparency reasons. This

can be done by making the SBOMs available in a repository, a public artifact registry of

some kind, or within the same OCI registry where the product images are kept. The latter

is eficient because if a client or other interested stakeholder has access to the image, they

also have access to the SBOM. As mentioned before, Cosign can be helpful to both sign and

attach the SBOM to the image, storing it in the registry and making it available for the future.

SBOMs come in various formats. CycloneDX is a format also created by OWASP, with

high interoperability due to high adoption, and is required by Dependency Track. Many tools

can produce CycloneDX formatted SBOMs, such as the aforementioned Trivy and Snyk.

In addition to the SBOM, another compliance evidence that can be used is a provenance

artifact. The provenance can prove that the image’s origins are trustworthy. That means it

came from a trusted, quality pipeline, managed by a specialized or otherwise trusted party.

An example of this artifact is a SLSA Provenance, that can be generated by adhering to

pipeline platforms with at least SLSA level 2 or, preferably, level 3 guarantees. SLSA level

2 means that the tool provides signed provenance evidence that the image was built on that

pipeline. This does not require the platform to protect secret material used to sign the prove-

nance, and thus the provenance could be forged. In addition to this, SLSA level 2 does not

include integrity guarantees for the build platform, which means that there is no mitigation

against tampering. This is why SLSA level 3 is preferable, as it requires the platform to

be hardened against integrity attacks and prevent provenance secrets from being accessible

outside of signing procedures, which in turn means provenance is non-forgeable [8].

If available, the workload attestor plugin will use SLSA Provenance to report the image’s

origins in addition to vulnerability data. This allows administrators to restrict the origin of

their images (e.g., the CI pipeline that produced it) and the source code repository and branch

used.

Lastly, to make sure the SBOM and provenance are trustworthy, the same authority

should sign both. This way, we can discriminate if the in-toto attestations come from the
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same pipeline as the built image and tell apart a legitimate artifact from one forged by an

attacker.

5.2 Framework for evidence collection

The plugin implementation follows the desired worklow speciied by SPIRE for a workload

attestor. It is triggered by the SPIRE Agent when a workload tries to fetch an identity. When

it does so, the Agent begins the workload attestation process, which triggers all installed

workload attestor plugins, including our custom one. Figure 5.2 illustrates the worklow for

the plugin.

Figure 5.2: Compliance workload attestor plugin

When it starts, the plugin immediately collects information about the running image. For

our scope of this work, it queries the Kubernetes API regarding the Pod and its containers.

This information will include the image source and its hash digest. After it discovers which

container started the attestation, the plugin tries to fetch all attached evidence using Cosign

and looks among them for SBOM and SLSA Provenance. It then checks their signature

using Rekor to build selectors regarding who issued the artifacts (the pipeline that generated

them) and who signed them. Then, it proceeds to process both artifacts.

Firstly, it uses the SBOM to feed Dependency Track’s SCA via its REST API. It registers

the application in Dependency Track if there is no entry for this image version using digest

and then triggers component analysis. Following that, the plugin will request Dependency

Track all of that image’s known CVEs, alongside their CVSS scores and EPSS likelihoods.
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Then, the CVE list will be processed to return the highest CVSS severity and EPSS risk

scores and build them as selectors. Using these selectors should help an operator deine

vulnerability tolerance.

Secondly, the SLSA Provenance will be inspected to ind the repository’s location and the

build pipeline used. It will include the repository and the reference version (i.e., branch or

tag) used to build the image in the selectors. These selectors should be applied to guarantee

that SPIRE considers only a speciic origin for the image.

After all selectors are built, they are returned so that the SPIRE Agent can compare

the results found with the criteria deined for the identities in its database. If one or more

artifacts are not found during attestation, no selector about them will be built, and thus, no

identity that requires such selectors will be issued. Table 5.1 lists all available selectors for

the compliance workload attestor plugin.
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Selector Semantics Example

attestation-certificate-

identity

The identity that generated the attesta-

tions (i.e., worklow that produced the

evidence)

https://github.

com/company/

trusted-workflows/

.github/workflows/

devsecops-pipeline.yml@

refs/heads/main

attestation-certificate-

oidc-issuer

The OIDC issuer that signed the attesta-

tions (i.e., GitHub OIDC Issuer, which

signed in the pipeline’s behalf)

https://token.actions.

githubusercontent.com

has-provenance The image possesses a SLSA Prove-

nance

True or False

source-code-uri The public URI for the repository that

produced the image

https://github.com/

repository.git

source-code-version The version (i.e. branch or tag) of the

source code

main

has-sbom The image has an SBOM True or False

contains-cvss-severities The list of CVSS severities tolerated for

the application

LOW or LOW,MEDIUM or

LOW,MEDIUM,HIGH or

LOW,MEDIUM,HIGH,

CRITICAL

contains-epss-risks The list of EPSS risks tolerated for the

application

LOW or LOW,MEDIUM or

LOW,MEDIUM,HIGH or

LOW,MEDIUM,HIGH,

CRITICAL

Table 5.1: Selectors for the workload attestor plugin

Listing 5.1 illustrates how to register an entry for an identity to the SPIRE Server using

the deined selectors. The URI for the identity is deined in the snippet as -spiffeID, where

example.org is the Trust Domain and example-service/main/severity-high/

risk-high is the full identity name. As for the selectors, they are deined by using the

-selector argument, and all of them are preixed by cc, which signalizes for SPIRE that
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this selector comes from the continuous compliance plugin. Via these selectors, this entry

imposes that example-service should only tolerate CVEs if they are not CRITICAL, both

in severity (CVSS) or in risk (EPSS). The entry also restricts the provenance of the product.

By deining the source-code-uri selector, it will only match workloads that come from

that speciic Git repository, and by deining attestation-certificate-identity it

restricts the pipeline that built the workload. In this example, the pipeline is not in the same

location as the repository, which is not the default but can be the case if the pipeline runs in

another platform, or if employing reusable pipelines.

Listing 5.1: SPIRE entry creation example

1 spire-server entry create \

2 -spiffeID spiffe://example.org/example-service/main/severity-high/

risk-high \

3 -parentID spiffe://example.org/ns/spire/sa/spire-agent \

4 -selector cc:has-sbom:true \

5 -selector cc:contains-epss-risks:LOW,MEDIUM,HIGH \

6 -selector cc:contains-cvss-severities:LOW,MEDIUM,HIGH \

7 -selector cc:attestation-certificate-identity:https://github.com/

example-company/trusted-pipelines/.github/workflows/devsecops-

pipeline.yml@refs/heads/main \

8 -selector cc:has-provenance:true \

9 -selector cc:source-code-uri:https://github.com/example-company/

example-service \

10 -selector cc:source-code-version:vd.1.4 \

11 -selector cc:attestation-certificate-oidc-issuer:https://token.

actions.githubusercontent.com

To make sure the communication with Dependency Track is protected, it also uses mTLS

powered by SPIRE so that only attested SPIRE Agents can communicate with Dependency

Track, preventing unauthorized or illegitimate Agents to deposit SBOMs or consume analy-

sis results. Furthermore, since Dependency Track does not have native support for SPIRE,

we use an oficial utility sidecar, named SPIFFE Helper [4], to fetch SVIDs and conigure

non-SPIRE-aware workloads to use them.

It is important to note the format of both contains-cvss-severities and

contains-epss-risks selectors. It would certainly be more intuitive if thresholds could

be represented as a number. For instance, CVSS could be represented as the actual value,
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providing more control for operators. EPSS would beneit the most from this, as it does not

contain oficial classes like CVSS does.

The reasoning behind it being a comma-separated string instead of a number is that

SPIRE does not natively support numeric selectors, they are all used as strings. To be more

speciic, to compare selectors during attestation, SPIRE checks if the set of expected se-

lectors is a subset of returned selectors, and element comparison is done by string equality.

This way, if numbers were used, they would have no inherent numerical value or order. Using

them more semantically would require contributions to the selector comparison logic within

SPIRE, and this is not currently aligned with the community vision of selectors, which sees

the selectors as properties that a node or workload has or does not have.

The comma-separated strings are a workaround for this limitation. If a HIGH severity is

found, the attestor returns that all preceding levels were achieved (LOW,MEDIUM,HIGH). To

make this viable to EPSS, we needed to map the values on a similar scale and then provide

classes the same way. Without an oficial deinition for EPSS risk classes, we allow every

organization to conigure the intervals for each class in plugin settings.
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Evaluation

Because SPIRE is a graduate project at CNCF, it is already considered a stable, production-

ready system [5]. Therefore, instead of evaluating the use of SPIRE, we chose to focus on

the plugin itself. Additionally, given that CVEs and their scoring systems CVSS and EPSS

are well established in the state of the art as sources of vulnerability intelligence, we also do

not include performance analysis on these systems.

We separate our evaluation into two aspects: (1) a quantitative analysis of performance,

to evaluate the impact of our plugin and supporting architecture on a running SPIRE en-

vironment; and (2) a qualitative security analysis to verify how the established threats are

mitigated by adopting our plugin.

6.1 Performance costs

To consider the performance cost, we should irst consider the necessary resource alloca-

tion for running Dependency Track, which is responsible for analyzing the SBOM. As per

oficial guidance, the sum of the Dependency Track Docker containers requires a minimum

of 4.5 GiB of memory and 2 CPU cores, and a recommended allocation of 16 GiB for

memory and 4 CPU cores [31]. In a production environment concerned with compliance, a

vulnerability assessment tool should be used. Hence, these resources should be a necessary

expense.

We run this tool on top of Kubernetes and measure the resources used through a con-

trolled workload to evaluate the adequacy of these recommendations to various degrees of

28
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stress. Our speciic cluster had 2 Worker Nodes, both running SPIRE Agents, while the

SPIRE Server ran on the Master Node. One of them hosted Dependency Track, and the other

hosted a dummy application to try and attest to SPIRE. Because we wanted to test the rec-

ommended resources, we allocated 16 GiB of RAM and 4 CPU cores for each Node. Other

cluster conigurations could apply to the context, as long as Dependency Track is isolated on

one Node to avoid sharing resources, and the allocated RAM and CPU for this speciic node

is greater or equal to the recommended amount.

Apart from the use of resources, because SCA runs entirely on Dependency Track and

is completely parallel to the attestation process, the only possible overhead imposed by inte-

grating Dependency Track would be the latency of REST API communications.

6.1.1 Impact on resources

By default, a SPIRE workload attestation occurs at half of the certiicate’s expiration time.

Since a short-lived certiicate has one hour of longevity by default, reattestation will usually

be made every 30 minutes. As mentioned before, because the mean of new CVEs per hour in

2023 for NVD is 3.29 [22], checking for new vulnerabilities frequently is advised. Therefore,

to test the solution with a realistic workload, we imposed the following levels of demand to

Dependency Track: 1 request per second, 50 requests per second, 100 requests per second,

and 250 requests per second. This means achieving the lowest considered load would require

1 800 workloads renewing their identities (and checking for vulnerabilities). Similarly, to

achieve the highest workload case, 900 000 workloads would be needed.

The requests to the Dependency Track API were made to check on an application whose

SBOM contained over 800 dependencies, above the average of 526 [34] per application.

The chosen SBOM is among the examples in the CycloneDX GitHub repository1. Each ex-

periment had 30 iterations that lasted 20 minutes and were executed in a Kubernetes cluster

within a private, on-premises OpenStack infrastructure. In our case, this meant that one Node

is a Virtual Machine provided by Nova2. For each experiment, we monitored resource usage

1https://github.com/CycloneDX/bom-examples/blob/master/SBOM/

keycloak-10.0.2/bom.xml
2https://docs.openstack.org/nova/latest/
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for the Dependency Track REST API container within the Kubernetes Pod using Cadvisor3, a

sidecar (i.e., a secondary container within a Kubernetes Pod) that analyzes container metrics

and exposes them. The metrics were collected by a local Prometheus4 and exported for anal-

ysis in the granularity of 20 seconds per data point. Metric collection ignored Dependency

Track’s front-end container counterpart due to not being relevant for the experiments.

For each experiment, we normalized the timestamp for each measurement as the number

of minutes elapsed since the start of the experiment. We grouped the measurements by ex-

periment and minute timestamp and took the mean of each measurement in order to analyze

the general resource usage over time.

Figure 6.1: Dependency Track CPU usage per request rate

Figure 6.1 illustrates the mean CPU usage for each experiment over its duration. We

can see that although processing time changes with higher demands, it remains well under

the required 4 CPU cores, as observed peaks reach just above 100% of one core’s worth

of time. Figure 6.2 exhibits a different behavior regarding memory usage. While it is true

that even the worst load stays well below the 16 GiB recommendation, it is not as stable.

This correlates to Dependency Track updating its database mirrors periodically, parallel to

synchronous requests. As a result of this independent update, Dependency Track appears to

3https://github.com/google/cadvisor
4https://prometheus.io/
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Figure 6.2: Dependency Track memory usage per request rate

withstand both sudden peaks in demand, as well as high stable demands.

To verify if resource use changes with the number of dependencies to track, rather than

how many requests are made, we further experimented on escalating numbers of dependen-

cies: 100 dependencies, 250 dependencies, 500 dependencies, and inally 1000 dependen-

cies. For each amount, we used different SBOMs based on the SBOMs publicly available at

CycloneDX’s GitHub repository5.

Figure 6.3 shows an unstable usage of CPU, which is very different than shown in Fig-

ure 6.1. Firstly, the number of dependencies does not seem to impact much, except at the

beginning. At the start of every experiment, there is a peak that seems proportional to the

number of dependencies. After that, CPU usage luctuates, but in general, stays below the

initial peak. The same can be said when accounting for memory usage, as displayed by Fig-

ure 6.4. But in the case of memory, there seems to be a similar behavior as in Figure 6.2, in

that after each peak there is a gradual release of memory.

In general, this consistent initial peak suggests that the most resource-intensive phase is

also the least frequent one. That is, this peak will be as infrequent as service deployment

since the number of dependencies should change only once in the lifetime of a service ver-

sion. Additionally, the number of dependencies is not necessarily linear to the number of

5https://github.com/CycloneDX/bom-examples/tree/master/SBOM
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Figure 6.3: Dependency Track CPU usage per number of dependencies

services, since in a scenario where applications use the same development stack they also

share many dependencies. Therefore, the worst-case scenario for resource usage on Depen-

dency Track happens when multiple unique services, with many dependencies and different

stacks, are executed in the same environment.

Even in the explored worst-case scenarios, resource usage stays below the oficial rec-

ommendation, allocating a little under 7GiB of RAM and using 2 CPU cores worth of time.

These requirements can be satisied with a large general-purpose instance from a public

cloud vendor, such as AWS with t2.large6 or DigitalOcean with one of their Basic Droplets7

6.1.2 Impact on latency

Regarding added latency, there are two major points of interest. The irst is latency due to Sigstore

related requests, and the second is due to Dependency Track related requests. While the latter are

requests to only one component, the former are comprised of requests to both Cosign (to download

attestations) and Rekor (to validate the signature and its trustworthiness).

To test this, we performed over 1 600 attestations on a test environment using the public default

remote of Sigstore and a Dependency Track instance running in the same Kubernetes cluster as SPIRE.

We measured the individual latency for each type of Sigstore request, as well as Dependency Track

6https://aws.amazon.com/pt/ec2/instance-types/
7https://www.digitalocean.com/pricing/droplets
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Figure 6.4: Dependency Track memory usage per number of dependencies

Figure 6.5: Distribution of latency in Sigstore requests
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Figure 6.6: Distribution of latency in Dependency Track requests

requests, for each attestation. The workload we used to attest was a simple application called SPIFFE

Helper8, a simple utility that can be used as a sidecar to communicate to SPIRE in case the main

application is not SPIRE-aware. In our case, we used it as a standalone service, and only to trigger

attestations.

Figure 6.5 shows the latency distribution for each type of Sigstore component. Although the

distributions are highly skewed, we can see by their 99th percentiles that usually the attestations are

downloaded in 2 529ms or less and are then veriied in 3 460ms or less. This amounts to just above

6 seconds of added delay in an attestation. As for Dependency Track, since the distribution is log-

normal, we bootstraped the MLE (Maximum Likelihood Estimation) of the mean of latency on 5 000

re-samples. The resulting mean of means, as shown in Figure 6.6, is 84.6 ms, with a Conidence

Interval of [84.1 ms, 85.1ms] for a conidence level of 95%.

When adding the impact of both Dependency Track and Cosign in latency, the total additional

processing time per attestation is less than 6 seconds in most cases. This latency does not signiicantly

affect an attestation attempt, since they by default are tried twice every hour.

8https://github.com/spiffe/spiffe-helper
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6.2 Security evaluation

To evaluate the security aspect of the proposed plugin, we review the worklow for workload attesta-

tion and check how it mitigates threats deined in Section 3.

Firstly, due to periodic reattestation through SPIRE, workloads are continuously being analyzed

by workload attestor plugins. By adding our vulnerability compliance plugin, this periodic reattes-

tation performs SCA and, because of Dependency Track’s self-update, the plugin always returns the

current vulnerability posture from the workload. Therefore, changes in this posture are tracked at

each reattestation, extending continuous compliance beyond when the deployment happened.

Because vulnerability posture is mapped as a policy via SPIRE selectors, changes in this pos-

ture cause identities to no longer be issued. Consequently, mTLS connections to the non-compliant

workload will cease after the previous certiicate expires. This effectively implements compliance as

a policy for trust assessment, helping to ill the gap we found in ZTA’s treatment of compliance while

applying automatic incident response.

Since we assume that isolated services are terminated, availability is damaged in exchange for

preventing exploitation. This mitigates Threat C – exploit of a newfound vulnerability. Even if

termination is not triggered by health checks or similar mechanisms, isolation will mitigate Threat D

– compromise propagation.

The failed workload is free to retry attestation ad infinitum, but the only way the result can be

changed is through outside forces, such as databases recalculating CVSS and/or EPSS values, or

introduction of VEX into Dependency Track. In both cases, the workload has become compliant

again because either its vulnerability state changed or it has been manually attenuated due to internal

oficers’ intervention.

Additionally, since the SBOM is the source of truth for vulnerability assessment, its provenance

is also considered. In case of an attempt to alter or forge the SBOM, Cosign and Rekor can easily

use the SLSA Provenance to discriminate the origin of the trustworthiness of the SBOM. And due to

SLSA 3 guaranteeing that forging the provenance is beyond the capabilities of most adversaries, we

can avoid Threat B – use of compromised SBOM. Furthermore, as a result of SLSA Provenance also

representing the origin of the image, Threat A – use of compromised image is also mitigated.

As a result of fulilling these requirements, the threats pointed out in Section 3 are also mitigated.

Table 6.1 encapsulates the discussed mitigations for each threat.

The consequence of an automated isolation of non-compliant service is, of course, denial of

service. This can aggravate the applicability of our solution for non-critical applications. In such
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Threat Cause of mitigation

Threat A: use of compromised image Employing non-forgeable provenance through

SLSA 3

Threat B: use of compromised SBOM Employing non-forgeable provenance through

SLSA 3

Threat C: exploit of newfound vulnerability Reattestation failure and automated termination

of vulnerable service

Threat D: propagation of compromise Reattestation failure and isolation of communi-

cation

Table 6.1: Threat and mitigation strategies

scenarios, a new CVE may be considered a threat to compliance, but availability might be more im-

portant. On the one hand, the security team could increase vulnerability tolerance to make attestation

possible, but this would be a bad practice. On the other hand, developers could issue a VEX stating

that the new CVE does not affect the product, but this would not be true. For such situations, the

developers or operators could issue a VEX indicating that the vulnerability has been considered and

a ix will be provided, but this does not impact the attestor analysis.

A solution for this problem would be adding a conigurable grace period for new vulnerabilities,

either based on severity (or risk) or based on statements within VEX. This would create an exploitation

prevention versus availability trade-off that would facilitate the solution’s applicability and give more

time for developers to patch new CVEs before service isolation. However, this is not part of this

work’s scope, and extending the solution to support non-critical applications could be a future work

direction.

In summary, the implemented plugin, through the help of Sigstore and Dependency Track, can

map selective identity provisioning with vulnerability posture rules for compliance. This effectively

isolates non-compliant services, even if they were previously considered compliant at some point,

and prevents threat exploits as soon as possible without human intervention.



Chapter 7

Threats to validity

There are some aspects of the research that need to be highlighted due to the impact on its validity.

Firstly, this research was conducted with support from HPE (Hewlett Packard Enterprise) Brazil,

which are potential users for the results yielded from it. Through periodic meetings with experts

from HPE, we collected insights and directions that helped bring conidence in the practicality of the

plugin, and consequently to its external validity.

There is, however, one problem with its practicality due to a SPIRE limitation. The plugin

cannot produce numerical selectors because the SPIRE Agent compares the set of returned selec-

tors with the set of expected selectors with string equality. This mostly impacts the selectors for

CVSS (contains-cvss-severities) and EPSS scores (contains-epss-risks), which

are known numerical metrics and also forces the user to conigure expected results less intuitively.

We have consulted with SPIRE’s open-source community about the possibility of supporting

numeric selectors, but this is not currently aligned with their vision of identity selectors, which sees

them as categorical properties that a node or workload has or does not have. This was therefore not

included in our implementation and is not included in the list of future avenues of research.

Another threat that could be pointed out for internal validation. This regards the OpenStack

infrastructure used as an environment for performance testing. Because the compute used for the

instances that compose the Kubernetes cluster is a shared one, one could argue that resource usage

could have been impacted by luctuations caused by third-party usage. We mitigated this, however, by

performing each experiment with 30 iterations. This not only increased our sample but also removed

bias by reducing possible noise from the environment.

Lastly, the choice of tools could also be questioned and seen as a threat. This research is supported

by the selection of prestigious tools, and based on related work and expert suggestions. The correct
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mitigation of our found threats pertaining to vulnerability status strongly relies on the correctness

of such tools. This in turn depends on the moderation of their respective open-source communities.

While it is possible for such tools to loose quality or become inadequate over time, this is mitigated

due to the involvement of renowned organizations like CNCF and OWASP.



Chapter 8

Conclusion

In this work, we proposed a worklow to continuously assess workloads for compliance regarding

their provenance and vulnerability state. This solution addresses the gap of previous continuous

compliance approaches, which disregarded vulnerabilities after deployment. Our approach leverages

Zero-Trust environments so applications are explicitly and continuously authenticated. Doing so also

addresses the lack of examples of compliance as a policy for trust assessment on ZTA.

8.1 Results

In addition to assuming continuous compliance is used in the DevSecOps context and ZTA is used

in the deployment environment, our solution has two additional requirements: (1) the CI/CD pipeline

produces compliance evidence (namely, an SBOM and, ideally, information on the build pipeline

and source-code repository information such as SLSA Provenance); and (2) an identity provisioning

tool that periodically renews the identities used by service in the Zero-Trust context (which will

effectively isolate workloads that cannot renew their identities). We understand these assumptions

and requirements align with the good practices of DevSecOps.

By considering these requirements, we found four main threats that could allow attackers to enact

supply chain attacks: use of compromised image and use of compromised SBOM (both to bypass

compliance assessment), exploitation of newfound vulnerability before remediation, and propagation

of compromise.

Our solution was to implement a new plugin for the CNCF SPIRE framework as a means to inte-

grate vulnerability posture to ZTA. The plugin leverages popular tools, such as the Sigstore framework

for downloading and verifying evidence of compliance and OWASP’s Dependency Track to perform
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SCA. Employing our plugin allows SPIRE’s authentication to consider vulnerability posture and iso-

late non-conforming workloads as soon as possible. This extends continuous compliance assessment

after deployment and helps mitigate compromise propagation. Since isolation should also lead to ter-

mination due to health checks, vulnerability exploitation can also be mitigated. Lastly, by verifying

the origins of SBOM and image through non-forgeable SLSA Provenance we can also eliminate the

threat of bypassing or misguiding compliance assessment.

We evaluated that the performance impact of our plugin does not add signiicant latency to

SPIRE’s attestation and that the resources necessary to employ our implementation amount only

to the requirements to run Dependency Track in a scalable way. This means that in an environment

concerned with compliance, such a tool or a similar one would be needed regardless; therefore, these

requirements would be a necessary expense. Finally, adopting the plugin does not complicate the

development or operation of modern cloud-native applications, since it does not add ownership issues

and allows collaboration between developers, operators, and security oficers.

8.2 Future work

As future work, we envisage designing and implementing additional compliance metrics and rein-

ing our plugin usability and interfaces in conjunction with SPIRE’s open-source community. For

instance, other dynamic properties like licensing restrictions could also be monitored in our approach

by adding low complexity while expanding selectors. One example of a dynamic property that could

be monitored is the Scorecard of each dependency.

Another improvement we envisage is adding a grace period coniguration for different CVSS

severities. With such support, non-critical applications can better beneit from the solution without

automatic loss of availability.

Finally, we also believe in combining such an approach with technologies like conidential com-

puting. For example, conidential computing ensures the integrity of the running binary but does not

provide transparency into the security of its building process, which could be achieved using prove-

nance artifacts. Combining both approaches would reduce the need for trust in the infrastructure and

service operators at the same time as it ensures continuous compliance.
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