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Resumo

Na primeira parte desta tese estudamos a geometria de imersões de hipersuperfícies

tipo-espaço em espaços de curvatura seccional constante, mais especificamente nos

ambientes do Steady State space Hn+1 e no Anti-de Sitter H
n+1
1 . Nesses resultados,

utilizamos condições adequadas sobre o comportamento das curvaturas médias de or-

dem superiores para provar alguns resultados de caracterizações de hipersuperfícies

totalmente umbílicas no Hn+1 e H
n+1
1 . Nesse processo também foi usado uma ex-

tensão adequada do princípio do máximo generalizado de Omori-Yau devido a Alías,

Impera e Rigoli em [10]. Na segunda parte estudamos a geometria de subvariedades

tipo-espaço com vetor curvatura média normalizado paralelo em ambientes de curva-

tura seccional constantes, onde utilizamos técnicas de crescimento de volume polino-

mial e um princípio do máximo no infinito devido a Alías, Caminha e Nascimento

[7]. Também abordamos estruturas que possuem hipóteses de serem estocasticamente

completa, L�parabólicas e L1-Lioville para garantir que determinada subvariedade

seja totalmente umbílica. Na terceira e última parte, estudamos a geometria de sub-

variedades Weingarten linear tipo-espaço completa imersa com vetor curvatura média

normalizado paralelo e fibrado normal flat em espaços semi-Riemannianos localmente

simétrico Ln+p
p com index p. Nesse sentido, nosso objetivo foi estabelecer condições

suficientes para garantir que uma dada subvariedade Mn seja totalmente umbílica ou

isométrica a uma hypersuperfície isoparamétrica de uma subvariedade totalmente ge-

odésica Ln+1
1 ,! Ln+p

p .

Palavras-chave: Espaços localmente simétricos, Steady State space, Anti-de Sitter

space, Subvairiedades tipo-espaço, Princípio do máximo.
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Abstract

In the first part of this these we study the geometry of immersions of the spacelike

hypersurfaces in constant sectional curvature space, more specifically into the Steady

State Space Hn+1
1 and Anti-De Sitter space H

n+1
1 . In these results, we use suitable

conditions on the behavior of higher order mean curvatures Hr to prove some results

of characterizations of totally umbilical hypersurfaces in the Hn+1 and H
n+1
1 , also in

this process was use an suitable extension of the Omori-Yau’s generalized maximum

principle due to Alías, Impera and Rigoli in [10]. In the second part we study the

geometry of spacelike submanifolds with parallel normalized mean curvature vector in

constant sectional curvature spaces, where we use polynomial volume growth techniques

and a maximum principle at infinity established by Alías, Caminha and Nascimento

[7], our objects have hypotheses like: stochastically completeness, L�parabolicity and

L1-Lioville to ensure that a given submanifold is totally umbilical. In the third and

last part, we study the geometry of linear Weingarten spacelike complete submanifolds

immersed with parallel normalized mean curvature vector and flat normal bundle in

locally symmetric semi-Riemannian spaces Ln+p
p with index p. In this sense, our ob-

jective was to establish sufficient conditions to guarantee that a given submanifold Mn

is totally umbilical or isometric to an isoparametric hypersurface of a totally geodesic

submanifold Ln+1
1 ,! Ln+p

p .

Keywords: Locally symmetric spaces, Steady State space, Anti-de Sitter space, Spa-

ceike submanifold, maximum principle.
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Introduction

The investigation of the geometric behavior of spacelike hypersurfaces immersed

in a Lorentzian space is an important thematic, from both the physical and mathema-

tical points of view. For example, Marsden and Tipler [95] and Stumbles [115] pointed

out that spacelike hypersurfaces immersed with constant mean curvature in a Lorentz

manifold play an important role in the general relativity, in that they serve as conveni-

ent initial data for the Cauchy problem for Einstein’s equations. From a mathematical

viewpoint, a basic question related to this topic is the existence and uniqueness of

spacelike hypersurfaces in Lorentz manifolds, under the assumption of some reasonable

geometric properties, like the constancy of the mean or scalar curvature, for instance.

A first relevant result in this direction was the proof of the famous conjecture due

to Calabi [46] for maximal hypersurfaces (that is, hypersurfaces with vanishing mean

curvature) in the Lorentz-Minkowski space, given by Cheng and Yau [55]. As for the

case of the de Sitter space, Goddard [72] conjectured that every complete spacelike

hypersurface with constant mean curvature should be totally umbilical. Although the

conjecture turned out to be false in its original form, it motivated a great deal of work

of several authors trying to find a positive answer to the conjecture under appropriate

additional hypotheses (see, for example, [22, 98]).

Here, initially we deal with complete spacelike hypersurfaces immersed in a special

Lorentz space form with negative constant sectional curvature equal to 1. This space

is known as an open region of de Sitter space, is the so-called steady state space Hn+1

and is defined as been the hyperquadric

Hn+1 =
�
p 2 S

n+1
1 : hp, ai > 0

 
.



The importance of considering Hn+1 comes from the fact that, in Cosmology, H4 is the

steady state model of the universe proposed by Bondi-Gold [35] and Hoyle [84], when

looking for a model of the universe which looks the same not only at all points and

in all directions (that is, spatially isotropic and homogeneous), but also at all times.

For more details, we recommend for the readers to see Section 5.2 of [83] or Section

14.8 of [121]. From a mathematical point of view, the interest in the study of spacelike

hypersurfaces immersed in a Lorentzian space is motivated by their nice Bernstein-

type properties. In this direction, several authors have approached the problem of

to characterizing spacelike hyperplanes of Hn+1, which are totally umbilical spacelike

hypersurfaces isometric to the Euclidean space R
n and give a complete foliation of

Hn+1. We refer to readers, for instance, the works [1, 13, 44, 45, 101].

Inspired by this construction and importance, we developed the following results

below that can be found and seen in more detail in Chapter 2.

Theorem A.1 Let  : Σ
n ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2. Suppose that the mean curvature H of

Σ
n is positive, bounded and satisfies

H ÿ H2. (1)

If

|a>| ÿ C inf
Σ

(H2 �H), (2)

for some positive constant C, then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

Theorem A.2 Let  : Σ
n ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, with sectional curvature KΣ ÿ 1 and

bounded from below. Suppose that, for some 1 ÿ r ÿ n � 1, Hr+1 is bounded and

satisfies

� ÿ Hr ÿ Hr+1, (3)

where � is a positive constant. If

|a>| ÿ C inf
Σ

(Hr+1 �Hr), (4)

for some positive constant C, then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

Theorem A.3 Let  : Σ
n ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

2



orthogonal to a nonzero null vector a 2 L
n+2, and locally tangent from above to a

spacelike hyperplane E'̃ , with '̃ ÿ ' . Suppose that H is bounded and, for some 1 ÿ r ÿ
n� 1, Hr+1 is positive and such that

Hr ÿ Hr+1. (5)

If

|a>| ÿ C inf
Σ

(Hr+1 �Hr), (6)

for some positive constant C, then Σ
n must be the spacelike hyperplane E'̃ .

Theorem A.4 Let  : Σ
n ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2. Suppose that la = �fa for some positive

constant � 2 R, the mean curvature H of Σn is bounded and that

H2 � 1. (7)

Then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

Theorem A.5 Let  : Σ
n ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, and locally tangent from above to a

spacelike hyperplane E'̃ , with '̃ ÿ ' . Suppose that la = �fa for some positive constant

� 2 R, and that, for some 1 ÿ r ÿ n� 2, the r-th mean curvature Hr of Σn is bounded

and such that

� ÿ Hr ÿ Hr+2, (8)

where � is a positive constant. Then, Σn must be the spacelike hyperplane E'̃ .

In the sequence of this work, we deal with complete hypersurfaces immersed in a

special Lorentz space form with negative constant sectional curvature equal to �1. Such

manifold is known as an anti-de Sitter space and is defined as been the hyperquadric

H
n+1
1 = {x 2 R

n+2
2 : ds2(x, x) = �1},

where R
n+2
2 is the (n+ 2)-dimensional semi-Euclidean space with index 2. We observe

that an interesting feature of the four-dimensional anti-de Sitter space H
4
1 is that, as a

cosmological model, this spacetime is a maximally symmetric universe with constant

negative curvature, which is conformally related to the half of the Einstein static uni-

verse. Consequently, H4
1 represents (locally) an unique solution to Einstein’s equation

in the absence of any ordinary matter or gravitational radiation. So, this spacetime

3



may be thought of as a ground state of General Relativity (see, for instance, Chapter

6 of [122] and Chapter 14 of [123]).

Concerning the study of complete spacelike hypersurfaces immersed in the anti-de

Sitter space, Choi, Ki and Kim [57] used the generalized maximum principle of Omori

[105] and Yau [131] in order to show that if the height function with respect to a time-

like vector of a complete maximal spacelike hypersurface Σ
n of Hn+1

1 obeys a certain

boundedness, then Σ
n must be totally geodesic. Later on, by extending a technique

due to Yau [132], the second author jointly with Camargo [48] obtained another rigidity

results to complete maximal spacelike hypersurfaces of Hn+1
1 , imposing suitable condi-

tions on both the norm of the second fundamental form and a certain height function

naturally attached to the hypersurface. They also characterized complete maximal

spacelike graphs satisfying a certain assumption on the gradient of the function which

determines the graph. Afterwards, working with a suitable warped product model of

H
n+1
1 , these same authors jointly with Caminha and Parente [47] extended the main

result of [48] showing that if Σ
n is a complete spacelike hypersurface with constant

mean curvature and bounded scalar curvature in H
n+1
1 , such that the gradient of its

height function with respect to a timelike vector has integrable norm, then Σ
n must be

totally umbilical. Next, the second author jointly with Aquino [14] obtained another

characterizations theorems concerning complete constant mean curvature spacelike hy-

persurfaces of Hn+1
1 , under suitable constraints on the behavior of the Gauss mapping.

Furthermore, these same authors jointly with the fourth author [15] obtained similar

results related to complete spacelike hypersurfaces with constant scalar curvature in

H
n+1
1 .

Related to higher codimension, Ishihara [85] proved that a n-dimensional com-

plete maximal spacelike submanifold immersed in the anti-de Sitter space Hn+p
p of index

p must have the squared norm of the second fundamental form bounded from above

by np. Moreover, the only ones that attain this estimate are the maximal hyperbo-

lic cylinders H
k1

ã
� n

k1

;
å · · · å H

kp+1

ã
� n

kp+1

;
, where k1 + · · · + kp+1 = n. Later on,

Cao and Wei [50] showed that, if n � 3, then every n-dimensional complete maximal

spacelike hypersurface in H
n+1
1 with exactly two principal curvatures everywhere is iso-

metric to some hyperbolic cylinder under an additional condition on these curvatures.

Afterwards, Perdomo [107] studied the 2-dimensional case and constructed new exam-

4



ples of complete maximal surfaces in H
3
1. More recently, Chaves, Sousa and Valério [52]

studied complete maximal spacelike hypersurfaces in H
n+1
1 with either constant scalar

curvature or constant non-zero Gauss-Kronecker curvature. In this setting, they cha-

racterized the hyperbolic cylinders as the only such hypersurfaces with (n�1) principal

curvatures with the same sign everywhere.

Motivated by these works, we were able to establish the following results, which

can be found in more detail in the Chapter 2

Theorem B.1 Let  : Σ
n ! H

n+1
1 be a complete spacelike hypersurface such that

f 2
a ÿ 1

2
for some fixed unit timelike vector a 2 R

n+2
2 . Suppose that the mean curvature

H is positive, bounded and that the second mean curvature satisfies

0 ÿ H2 ÿ 1.

If

|a>| ÿ C inf
Σ

(H �H2) ,

for some positive constant C, then Σ
n is a totally umbilical spacelike hypersurface M' ,

with ' 2 = 1
2
.

Theorem B.2 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectional

curvature bounded from below satisfying KΣ ÿ �1, and such that f 2
a ÿ 1

2
for some fixed

unit timelike vector a 2 R
n+2
2 . Suppose that, for some 1 ÿ r ÿ n � 1, Hr is bounded

and such that

0 ÿ Hr+1 ÿ Hr.

If

|a>| ÿ C inf
Σ

(Hr �Hr+1) ,

for some positive constant C, then Σ
n is a totally umbilical spacelike hypersurface M'

with ' 2 = 1
2
.

Theorem B.3 Let  : Σ
n ! H

n+1
1 be a complete spacelike hypersurface such that

f 2
a ÿ 1

2
for some fixed unit timelike vector a 2 R

n+2
2 . Suppose that H is bounded, for

some 1 ÿ r ÿ n� 1, Hr+1 is positive and such that

Hr+1 ÿ Hr.

Let us assume in addition that

|a>| ÿ C inf
Σ

(Hr �Hr+1),

for some positive constant C.

5



(i) If Σ
n is contained in Ω

+(a, ã), for some 1p
2
< ã ÿ 1, and it is locally tangent

from bellow to a totally umbilical spacelike hypersurface M' , with 0 < ' < ã, then

Σ
n is isometric to M' and ' = 1p

2
;

(ii) If Σn is contained in Ω
�(a, ã), for some �1 ÿ ã < � 1p

2
, and it is locally tangent

from above to a totally umbilical spacelike hypersurface M' , with ã < ' < 0, then

Σ
n is isometric to M' and ' = � 1p

2
.

Theorem B.4 Let  : Σn ! H
n+1
1 be a complete r-maximal (2 ÿ r ÿ n� 1) spacelike

hypersurface with sectional curvature bounded from below satisfying KΣ ÿ �1, and

such that f 2
a ÿ 1

2
and |a>| is bounded for some fixed unit timelike vector a 2 R

n+2
2 . If

Hr is a nonnegative constant, then the index of minimum relative nullity +0 of Σn is

at least n� r + 1. Moreover, if Hr�1 does not vanish on Σ
n, then through every point

of Σn there passes an (n� r+ 1)-dimensional hyperbolic space H
n�r+1 ,! H

n+1
1 totally

contained in Σ
n.

Theorem B.5 There does not exist complete 1-maximal spacelike hypersurface  :

Σ
n ! H

n+1
1 with nonnegative constant mean curvature and such that f 2

a ÿ 1
2

and |a>|

is bounded for some fixed unit timelike vector a 2 R
n+2
2 .

Theorem B.6 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectional

curvature bounded from below. If Σn is contained either in Ω
�(a, ã) or in Ω

+(a, ã), for

some unit timelike vector a 2 R
n+2
2 and some 0 < ã < 1, then

sup
Σ

Hr �

0
@ sup

Σ
u±

q
1� (sup

Σ
u±)2

1
A

r

, for all r = 1, . . . , n,

where u± 2 C1(Σ) is defined by u± = ±la as we have Σn ã Ω
�(a, ã) or Σn ã Ω

+(a, ã).

Theorem B.7 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectional

curvature bounded from below. If Σ
n is contained either in Ω

�(a, ã) or in Ω
+(a, ã),

for some unit timelike vector a 2 R
n+2
2 and some 0 < ã < 1, then its Ricci curvature

satisfies

inf
Σ

Ric = inf
p2Σ

v2TpΣ

|v|=1

Ricp(v, v) ÿ
n� 1

(sup
Σ
u±)2 � 1

,

where u± 2 C1(Σ) is defined by u± = ±la as we have Σn ã Ω
�(a, ã) or Σn ã Ω

+(a, ã).

Theorem B.8 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface of Hn+1

1 with

bounded second fundamental form, such that f 2
a ÿ 1/2 for some fixed unit timelike

6



vector a 2 R
n+2
2 . Suppose that, for some 1 ÿ r ÿ n� 1, the r-th mean curvature Hr of

Σ
n is positive and satisfies

0 ÿ Hr+1 ÿ Hr.

If |a>| 2 L1(Σ) and Σ
n is contained in the open region Ω

+
a (respect. Ω

�
a ), then Σ

n

is the totally umbilical spacelike hypersurface M' of H
n+1
1 with ' =

p
2/2 (respect.

' = �
p
2/2).

Theorem B.9 Let  : Σn ! H
n+1
1 be a complete r-maximal spacelike hypersurface,

2 ÿ r ÿ n � 1, with bounded second fundamental form, such that f 2
a ÿ 1/2 and

|a>| 2 L1(Σ) for some fixed unit timelike vector a 2 R
n+2
2 . If Hr is a nonnegative

constant and Σ
n is contained either in Ω

+
a or Ω

�
a , then the index of minimum relative

nullity +0 of Σn is at least n � r + 1. Moreover, if Hr�1 does not vanish on Σ
n, then

through every point of Σ
n there passes an (n � r + 1)-dimensional hyperbolic space

H
n�r+1 ,! H

n+1
1 which is totally contained in Σ

n.

Theorem B.10 There does not exist complete 1-maximal spacelike hypersurface  :

Σ
n ! H

n+1
1 with nonnegative constant mean curvature, which is contained either in

Ω
+
a or Ω

�
a , for some fixed unit timelike vector a 2 R

n+2
2 , and such that f 2

a ÿ 1
2

and

|a>| 2 L1(Σ).

Theorem B.11 Let  : Σ
n ! H

n+1
1 be a complete spacelike hypersurface of H

n+1
1

with bounded second fundamental form such that f 2
a ÿ 1/2 for some fixed unit timelike

vector a 2 R
n+2
2 . Suppose, for some 1 ÿ r ÿ n, that the r-th mean curvature Hr of Σn

satisfies

0 < Hr ÿ 1.

If |a>| 2 L1(Σ), la � �fa, Σ
n is contained in the open region Ω

+
a (respect. Ω

�
a ) and it is

locally tangent from below (respect. above) to a totally umbilical spacelike hypersurface

M' , then ' =
p
2/2 (respect. ' = �

p
2/2) and Σ

n is the totally umbilical spacelike

hypersurface M' .

Theorem B.12 Let  : Σ
n ! H

n+1
1 be a complete spacelike hypersurface of H

n+1
1

with bounded second fundamental form such that f 2
a ÿ 1/2 for some fixed unit timelike

vector a 2 R
n+2
2 . Suppose that the second mean curvature satisfies

0 < H2 ÿ 1.

7



If |a>| 2 L1(Σ) and la � �fa, then Σ
n is a totally umbilical spacelike hypersurface M' ,

with ' 2 = 1/2.

The second part of this thesis is related to geometry of spacelike submanifolds

immersed in a Lorentzian space form. This investigation constitutes a classical and

still fruitful thematic into the scop of Differential Geometry. Working in this branch,

Ishihara [85] proved that the only n-dimensional complete maximal submanifold im-

mersed in the pseudo-Euclidean space R
n+p
p of index p must be the totally geodesic

ones. When the ambient spacetime is the anti-de Sitter space H
n+p
p of index p, Ishihara

also proved that an n-dimensional complete maximal spacelike submanifold immer-

sed in H
n+p
p must have the squared norm of the second fundamental form bounded

from above by np. Moreover, the only ones that attain this estimate are generalized

hyperbolic cylinders.

In [60], Cheng extended previous results due to Akutagawa [22] and Rama-

nathan [111] showing that an n-dimensional complete spacelike submanifold with pa-

rallel mean curvature vector h (that is, h is parallel as a section of the normal bundle) in

the de Sitter space Sn+p
p of index p, such that H2 ÿ 1, when n = 2, or H2 ÿ 4(n�1)/n2,

when n � 3, must be totally umbilical. Here, H = ||h|| stands for the mean curvature

function. Afterwards, Aiyama [20] studied compact spacelike submanifolds in S
n+p
p

with parallel mean curvature vector and proved that if the normal connection is flat,

then these spacelike submanifolds must be totally umbilical. Furthermore, she proved

that a compact spacelike submanifold in S
n+p
p with parallel mean curvature vector and

nonnegative sectional curvature must be totally umbilical. Next, Cheng [58] obtained a

refinement of Ishihara’s result [85] for the case of complete maximal spacelike surfaces

immersed in H
2+p
p .

In [12], Alías and Romero developed some integral formulas for compact spacelike

submanifolds in S
n+p
q , with index 1 ÿ q ÿ p, which have a very clear geometric meaning

and, as application, they obtained a Bernstein type result for complete maximal sub-

manifolds, extending a previous result due to Ishihara [85]. Moreover, they extended

Ramanathan’s result [111] showing that the only compact spacelike surfaces in S
2+p
p

with parallel mean curvature vector are the totally umbilical ones. Afterwards, Cheng

and Ishikawa [61] also investigated complete maximal spacelike submanifolds immersed

8



in S
n+p
q , with index 1 ÿ q ÿ p, obtaining characterizations results for totally geodesic

spacelike submanifolds under pinching conditions on scalar curvature, Ricci curvature

and sectional curvature, respectively.

Later on, Brasil, Chaves and Colares [32] considered n-dimensional complete

spacelike submanifolds immersed in S
n+p
p with parallel mean curvature vector. In this

setting, they used a Simons type inequality to obtain some rigidity results characteri-

zing umbilical submanifolds and hyperbolic cylinders in S
n+p
p . In [96], also applied a

Simons type inequality in order to obtain sharp estimates for the supremum of the sca-

lar curvature of complete spacelike submanifolds with parallel mean curvature vector

in an indefinite space form.

More recently, Yang and Li [129] applied the Omori-Yau maximum principle [105,

131] in order to get characterization results concerning complete spacelike submanifolds

with parallel mean curvature vector h in S
n+p
q , for 1 ÿ q ÿ p, where h is supposed to be

either spacelike or timelike. Afterwards, the second and third authors jointly with dos

Santos [62, 63] used the technique due to Alías and Romero [12] and, under appropriate

restrictions on the Ricci curvature and second fundamental form, they showed that an

n-dimensional complete maximal spacelike submanifold of either R
n+p
q or H

n+p
q must

be totally geodesic.

The study of spacelike submanifolds immersed in a Lorentzian space is motivated

by their nice Bernstein type properties. For instance, it was proved by Calabi [46]

(for n = 4) and by Cheng and Yau [55] (for all n) that the only complete maximal

spacelike hypersurfaces (that is, with mean curvature identically zero) of the Lorentz-

Minkowski space R
n+1
1 are the spacelike hyperplanes. In [102], Nishikawa proved that

a complete maximal spacelike hypersurface in the de Sitter space S
n+1
1 must be totally

geodesic. In [72], Goddard conjectured that the complete spacelike hypersurfaces of

S
n+1
1 with constant mean curvature H must be totally umbilical. Ramanathan [111]

proved Goddard’s conjecture in S
3
1 for 0 ÿ H ÿ 1. Moreover, for H > 1, he showed

that the conjecture is false, as can be seen from an example due to Dajczer and Nomizu

in [68]. Independently, Akutagawa [22] proved that Goddard’s conjecture is true when

either n = 2 and H2 ÿ 1 or n � 3 and H2 < 4(n�1)/n2. He also constructed complete

spacelike rotation surfaces in S
3
1 having constant mean curvature H > 1 and which

are not totally umbilical. Next, Montiel [98] showed that Goddard’s conjecture is true
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for closed (that is, compact without boundary) spacelike hypersurfaces. Furthermore,

he exhibited examples of complete spacelike hypersurfaces in S
n+1
1 with constant mean

curvature H2 � 4(n � 1)/n2 and being non totally umbilical, the so-called hyperbolic

cylinders.

In higher codimension, Ishihara [85] obtained an extension of Cheng-Yau’s result

showing that the only n-dimensional complete maximal submanifold immersed in the

pseudo-Euclidean space R
n+p
p of index p must be the totally geodesic ones. However,

in the case that the mean curvature is a positive constant, Treibergs [119] surprisingly

showed that there are many entire solutions of the corresponding constant mean cur-

vature equation in R
n+1
1 , which he was able to classify by their projective boundary

values at infinity. In [60], Cheng extended Akutagawa’s result for complete spacelike

submanifolds with parallel mean curvature vector h (that is, h is parallel as a section

of the normal bundle) in the de Sitter space S
n+p
p of index p. Afterwards, Aiyama [20]

studied compact spacelike submanifolds in S
n+p
p with parallel mean curvature vector

and proved that if the normal connection is flat, then these spacelike submanifolds must

be totally umbilical. Furthermore, she proved that a compact spacelike submanifold

in S
n+p
p with parallel mean curvature vector and nonnegative sectional curvature must

be totally umbilical.

Meanwhile, Alías and Romero [12] developed some integral formulas for compact

spacelike submanifolds in S
n+p
q (1 ÿ q ÿ p) which have a very clear geometric meaning

and, as application, they obtained a Bernstein type result for complete maximal sub-

manifolds, extending a previous result due to Ishihara [85]. Moreover, they extended

Ramanathan’s result [111] showing that the only compact spacelike surfaces in S
2+p
p

with parallel mean curvature vector are the totally umbilical ones and, in particular,

they also reproved Cheng’s result [60] establishing that every complete spacelike surface

in S
2+p
p with parallel mean curvature vector h such that H2 < 1 is totally umbilical,

where H = ||h|| stands for the mean curvature function. Next, Li [88] showed that

Montiel’s result [98] still holds for higher codimensional spacelike submanifolds in S
n+p
p .

In [61], Cheng and Ishikawa investigated complete maximal spacelike submanifolds im-

mersed in S
n+p
q , with index 1 ÿ q ÿ p, obtaining characterizations results for totally

geodesic spacelike submanifolds under pinching conditions on scalar curvature, Ricci

curvature and sectional curvature, respectively.
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When the ambient spacetime is the anti-de Sitter space H
n+p
p of index p, in [85]

Ishihara also proved that an n-dimensional complete maximal spacelike submanifold

immersed in H
n+p
p must have the squared norm of the second fundamental form boun-

ded from above by np. Moreover, the only ones that attain this estimate are generalized

hyperbolic cylinders. Later on, Cheng [58] obtained a refinement of Ishihara’s result [85]

for the case of complete maximal spacelike surfaces immersed in H
2+p
p .

More recently, Yang and Li [129] applied the Omori-Yau maximum principle [105,

131] in order to get characterization results concerning complete spacelike submanifolds

with parallel mean curvature vector in S
n+p
q , for 1 ÿ q ÿ p. Afterwards, the second

and third authors jointly with dos Santos [62, 63] used the technique due to Alías

and Romero [12] and, under appropriate constraints on the Ricci curvature and second

fundamental form, they showed that an n-dimensional complete maximal spacelike

submanifold of either R
n+p
q or H

n+p
q must be totally geodesic. Moreover, they esta-

blished sufficient conditions to guarantee that a complete spacelike submanifold with

nonzero parallel mean curvature vector h in these ambient spaces must be pseudo-

umbilical, which means that h is an umbilical direction. Their approach was based on

a generalized form of a maximum principle at the infinity due to Yau [133].

Motivated by all these works, here we establish the following rigidity results with

respect to spacelike submanifolds in Lorentzian spacial forms, which can be found in

more detail in Chapter 3.

Theorem C.1 Let Mn be a complete spacelike submanifold immersed in L
n+p
q (c), with

c 2 {0,�1, 1} and 1 ÿ q < p� 1, having spacelike and parallel mean curvature vector.

When c = �1, suppose in addition that H > 1. If M has polynomial volume growth,

|rΦ| is bounded and assuming that there is a constant µ suth that supM |Φ|ÿ µ < µå,

where µå is the positive root of the function

PH(x) := �5x2 � 2n(n� 2)p
n(n� 1)

Hx+ 2n(c+H2). (9)

Then, supM |Φ|= 0 and Mn is a totally umbilical submanifold.

Theorem C.2 Let Mn be a complete spacelike submanifold immersed in de Sitter space

S
n+p
q , with 1 < q < p� 1, having timelike and parallel mean curvature vector. Suppose

that H < 1. If M has polynomial volume growth, |rΦ| is bounded and assuming that

there is a constant � suth that supM |Φ|ÿ � < �å, where �å is the positive root of the
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function

QH(x) := �4(2q � 1)

q � 1
x2 � 2n(n� 2)p

n(n� 1)
Hx+ 2n(1�H2). (10)

Then, supM |Φ|= 0 and Mn is a totally umbilical submanifold.

Theorem C.3 Let Mn be an n-dimensional complete noncompact spacelike subma-

nifold immersed with spacelike and parallel mean curvature vector in an (n + p)-

dimensional pseudo-Riemannian space form L
n+p
q (c), with constant sectional curvature

c 2 {0,�1, 1} and index 1 ÿ q < p � 1. When c = �1, suppose in addition that the

mean curvature satisfies H > 1. If |Φ| converges to zero at infinity with supM |Φ| ÿ µå,

where µå is the positive root of the polynomial function

PH(x) := �5x2 � 2n(n� 2)p
n(n� 1)

Hx+ 2n(c+H2), (11)

then supM |Φ| = 0 and Mn is a totally umbilical submanifold of Ln+p
q (c).

Theorem C.4 Let Mn be an n-dimensional complete noncompact spacelike submani-

fold immersed with timelike and parallel mean curvature vector in the (n+ p)- dimen-

sional de Sitter space S
n+p
q , with index 1 < q < p � 1. Suppose in addition that the

mean curvature satisfies H < 1. If |Φ| converges to zero at infinity with supM |Φ| ÿ �å,

where �å is the positive root of the polynomial function

QH(x) := �4(2q � 1)

q � 1
x2 � 2n(n� 2)p

n(n� 1)
Hx+ 2n(1�H2), (12)

then supM |Φ| = 0 and Mn is a totally umbilical submanifold of Sn+p
q .

Theorem C.5 Let Mn be a stochastically complete spacelike submanifold immersed in

L
n+p
q (c), with c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean

curvature vector. When c = �1, suppose in addition that H > 1. Then, either

(i) supM |Φ|= 0 and Mn is a totally umbilical submanifold, or

(ii) supM |Φ|� µå(n, c,H), where µå(n, c,H) is the positive root of the function

PH(x) := �5

2
x2 � n(n� 2)p

n(n� 1)
Hx+ n(c+H2). (13)

Moreover, if the equality holds and this supremum is attained at some point of Mn, then

Mn is a pseudo-umbilical submanifold of Ln+p
q (c) such that its principal curvatures are

constant.

Theorem C.6 Let Mn be a stochastically complete spacelike submanifold immersed in

de Sitter space S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature

vector. Suppose that H < 1. Then, either
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(i) supM |Φ|= 0 and Mn is a totally umbilical submanifold, or

(ii) supM |Φ|� �å(n, q,H), where �å(n, q,H) is the positive root of the function

QH(x) := �2(2q � 1)

q � 1
x2 � n(n� 2)p

n(n� 1)
Hx+ n(1�H2). (14)

Moreover, if the equality holds and this supremum is attained at some point of Mn,

then Mn is a pseudo-umbilical submanifold of Sn+p
q such that its principal curvatures

are constant.

Theorem C.7 Let Mn be a parabolic spacelike submanifold immersed in L
n+p
q (c), with

c 2 {0,�1, 1} and 1 ÿ q < p� 1, having spacelike and parallel mean curvature vector.

When c = �1, suppose in addition that H > 1. Then either supM |Φ|= 0 and Mn is a

totally umbilical submanifold or supM |Φ|� µå(n, c,H), where µå(n, c,H) is the positive

root of Teorema C.5. Moreover, when supM |Φ|= µå(n, c,H), Mn is a pseudo-umbilical

submanifold of Ln+p
q (c) such that its principal curvatures are constant.

Theorem C.8 Let Mn be a parabolic spacelike submanifold immersed in de Sitter

space S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature vector,

suppose in addition that H < 1. Then either supM |Φ|= 0 and Mn is a totally umbilical

submanifold or supM |Φ|� �å(n, q,H), where �å(n, q,H) is the positive root of Teorema

C.6. Moreover, when supM |Φ|= �å(n, q,H), Mn is a pseudo-umbilical submanifold of

S
n+p
q such that its principal curvatures are constant.

Theorem C.9 Let Mn be a L1-Liouville spacelike submanifold immersed in L
n+p
q (c),

with c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean curvature

vector. When c = �1, suppose in addition that H > 1. If supM |Φ| ÿ µå(n, c,H) and

' := (µå(n, c,H))2 � |Φ|2 2 L1(M), where µå(n, c,H) is the positive root of Teorema

C.5, then either |Φ| ; 0 and Mn is a totally umbilical submanifold or |Φ| ; µå(n, c,H)

and Mn is a pseudo-umbilical submanifold of Ln+p
q (c) such that its principal curvatures

are constant.

Theorem C.10 Let Mn be a L1-Liouville spacelike submanifold immersed in de Sitter

space S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature vector,

suppose in addition that H < 1. If supM |Φ| ÿ �å(n, q,H) and ã := (�å(n, q,H))2 �
|Φ|2 2 L1(M), where �å(n, q,H) is the positive root of Teorema C.6, then either |Φ| ; 0
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and Mn is a totally umbilical submanifold or |Φ| ; �å(n, q,H) and Mn is a pseudo-

umbilical submanifold of Sn+p
q such that its principal curvatures are constant.

Theorem C.11 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector in the de Sitter space S
n+p
p with

index p > 1, such that R = aH + b with a � 0 and 0 < b ÿ 1. Then

(i) either supM |Φ| = 0 and Mn is a totally umbilical submanifold,

(ii) or

sup
M

|Φ| � µ(n, p, a, b) > 0, (15)

where µ(n, p, a, b) is a positive constant that depends only on n, p, a, b. Moreo-

ver, if Mn has nonnegative sectional curvature, b < 1, the equality supM |Φ| =

µ(n, p, a, b) holds and this supremum is attained at some point of Mn, then Mn

is isometric to a product M1 å M2 å . . . å Mk, where the factors Mi are to-

tally umbilical submanifolds of Sn+p
p which are mutually perpendicular along their

intersections.

Theorem C.12 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector in the de Sitter space S
n+p
p with

index p > 1, such that R = aH + b with a � 0 and 0 < b ÿ 1. If Mn is a L-parabolic

submanifold with nonnegative sectional curvature and such that supM |Φ| ÿ µ(n, p, a, b),

where µ(n, p, a, b) is the positive constant depending only on n, p, a, b which was obtai-

ned in Theorem C.11, then either |Φ| ; 0 and Mn is totally umbilical, or supM |Φ| =

µ(n, p, a, b) and Mn is isometric to a product M1 åM2 å . . . åMk, where the factors

Mi are totally umbilical submanifolds of Sn+p
p which are mutually perpendicular along

their intersections.

Theorem C.13 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed in S
n+p
p with parallel normalized mean curvature vector, such that R = aH + b

with a � 0 and 0 < b ÿ 1. If supM |Φ|2 < +1 and, for some reference point o 2 Mn,
Z +1

0

dr

vol(@Br)
= +1, (16)

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn centered

at the origin o.

In the third and last part of this work we study immersions of spacelike submani-

folds in locally symmetric semi-Riemannian spaces. Let us denote by Ln+p
p an (n+ p)-

dimensional connected semi-Riemannian space with index p. We recall that Ln+p
p is
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said to be locally symmetric when its curvature tensor R̄ is parallel in the sense that

rR̄ = 0, where r denotes the Levi-Civita connection of Ln+p
p . In 1984, Nishikawa [102]

introduced an important class of locally symmetric Lorentz spaces satisfying certain

curvature constraints. In this setting, he extended the classical results of Calabi [46]

and Cheng-Yau [55] showing that the only complete maximal spacelike hypersurfaces

immersed in this ambient space having nonnegative sectional curvature are the totally

geodesic ones. This seminal Nishikawa’s paper induced the appearing of several works

approaching the problem of characterizing complete spacelike hypersurfaces immersed

in such a locally symmetric Lorentz space (see, for instance, [39, 90, 64, 65, 93]).

We also recall that a spacelike submanifold Mn of Ln+p
p is called linear Wein-

garten if its mean curvature H and its normalized scalar curvature R satisfy a linear

relation of the type R = aH + b, for some real constants a and b. When the ambient

space is the de Sitter space S
n+1
1 , Cheng [59], studying the case b = 0, proved that if

Mn is a complete linear Weingarten spacelike hypersurface with nonnegative sectional

curvature such that H attains its maximum, then Mn must be totally umbilical. For

higher codimension, considering again the particular case b = 0, Liu [92] showed that

the totally umbilical round spheres are the only n-dimensional compact linear Wein-

garten spacelike submanifolds of S
n+p
p with nonnegative sectional curvature and flat

normal bundle. Generalizing the ideas of a previous work [127], Yang and Hou [128]

showed that a linear Weingarten spacelike submanifold in S
n+p
p , with a > 0, b < 1,

having parallel normalized mean curvature vector field (that is, the mean curvature

function is positive and that the corresponding normalized mean curvature vector field

is parallel as a section of the normal bundle) and such that the squared norm of its

second fundamental form satisfies a suitable boundedness, must be either totally um-

bilical or isometric to a certain hyperbolic cylinder. More recently, Araújo, De Lima,

Velásquez and dos Santos [17] studied n-dimensional complete spacelike submanifolds

Mn with flat normal bundle and parallel normalized mean curvature vector immersed

in an (n + p)-dimensional locally symmetric semi-Riemannian manifold Ln+p
p of index

p obeying some standard curvature conditions which are naturally satisfied when the

ambient space is a semi-Riemannian space form. In this setting, they obtained suffici-

ent conditions to guarantee that, in fact, p = 1 and Mn is isometric to an isoparametric

hypersurface of Ln+1
1 having two distinct principal curvatures, one of which is simple.
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Proceeding with this picture, in this work we also consider complete linear Wein-

garten spacelike submanifolds with parallel normalized mean curvature vector field and

flat normal bundle in a locally symmetric semi-Riemannian space Ln+p
p obeying cer-

tain curvature conditions, which are inspired in those ones considered in Nishikawa’s

paper [102]. Extending the techniques developed in [17] and [128], our purpose is

establish sufficient conditions to guarantee that such a spacelike submanifold Mn be

either totally umbilical or isometric to an isoparametric hypersurface of a totally geo-

desic submanifold Ln+1
1 ,! Ln+p

p , with two distinct principal curvatures, one of which

is simple (see Theorem 4.1.2). Before, in Section 3.6 we recall some basic facts con-

cerning spacelike submanifolds immersed in a semi-Riemannian space. Afterwards, in

Chapter 4 we present our set up, jointly with an example of a semi-Riemannian space

which has no constant sectional curvature but obeys ours curvature constraints (see

Example 1.2.1), and some key lemmas which are used to prove our main result.

Motivated by these last works described above, here we establish some rigidity

results with respect to spacelike submanifolds in locally symmetric semi-Riemannian

spaces, which can be found in more detail in Chapter 4

Theorem D.1 Let Mn be an n-dimensional spacelike submanifold immersed with flat

normal bundle and parallel normalized mean curvature vector field in a locally symme-

tric semi-Riemannian space Ln+p
p satisfying curvature conditions (1.36), (1.37) and

(1.38). Then, we have

1

2
∆tr(hn+1)2 �

X

i,j,k

(hn+1
ijk )2 +

X

i,j

hn+1
ij (nH)ij + cntr(hn+1)2 � cn2H2 (17)

�nHtr(hn+1)3 + (tr(hn+1)2)2 +
X

�>n+1

(tr(hn+1h�))2,

and

1

2
∆ k ' k2 �

X

i,j,k,µ>n+1

(hµ
ijk)

2 + cn k ' k2 �nH
X

µ>n+1

tr((hµ)2hn+1) (18)

+
X

µ>n+1

(tr(hn+1hµ))2 +
X

µ,�>n+1

(tr(hµh�))2,

where c =
c1
n

+ 2c2.

Theorem D.2 Let Mn be an n-dimensional complete linear Weingarten spacelike sub-

manifold immersed with flat normal bundle in a locally symmetric semi-Riemannian

space Ln+p
p satisfying curvature conditions (1.36), (1.37), (1.38) and (1.39), with paral-
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lel normalized mean curvature vector field and such that R = aH+ b for some a, b 2 R,

with (n� 1)a2 + 4n(R� b) � 0. If c =
c1
n

+ 2c2 > 0 and S ÿ 2
p
n� 1 c, then either

(i) Mn is totally umbilical, or

(ii) supM S = 2
p
n� 1 c. Moreover, if Ln+p

p is conformally flat, supM S is attained

at some point in Mn and R > b, then Mn is isometric to an isoparametric

hypersurface of a totally geodesic submanifold Ln+1
1 ,! Ln+p

p , with two distinct

principal curvatures, one of which is simple.

Theorem D.3 Let Mn be a complete linear Weingarten spacelike submanifold immer-

sed with parallel normalized mean curvature vector field and flat normal bundle in a

locally symmetric semi-Riemannian space Ln+p
p with p > 1 and satisfying conditions

(1.36), (1.37), (1.38) and (1.39), such that R = aH+b, with a � 0 and b ÿ R < b+c,

where c =
c1
n

+ 2c2. Suppose that there exists an orthogonal basis for TM that diago-

nalizes simultaneously all Aá, á 2 TM?. Then,

(i) either |Φ| ; 0 and Mn is a totally umbilical submanifold,

(ii) or

sup
M

|Φ| � µ(n, p, a, b, c,R) > 0,

where µ(n, p, a, b, c,R) is a positive constant that depends only on n, p, a, b, c,R.

Moreover, if b < R, the equality supM |Φ| = µ(n, p, a, b, c,R) holds and this supre-

mum is attained at some point of Mn, then Mn is an isoparametric submanifold,

in the sense that their principal curvatures are constant.

Theorem D.4 Let Mn be a complete linear Weingarten spacelike submanifold immer-

sed with parallel normalized mean curvature vector field and flat normal bundle in a

locally symmetric semi-Riemannian space Ln+p
p with p > 1 and satisfying conditions

(1.36), (1.38) and (1.39), such that R = aH+ b, with a � 0 and b ÿ R < b+ c, where

c =
c1
n

+ 2c2. Suppose that there exists an orthogonal basis for TM that diagonalizes

simultaneously all Aá, á 2 TM?. Assume in addition that 0 ÿ |Φ| ÿ µ(n, p, a, b, c,R),

where µ(n, p, a, b, c,R) is the positive constant which was obtained in Theorem 4.2.2.

If Mn is a L-parabolic submanifold, then either |Φ| ; 0 and Mn is totally umbilical,

or |Φ| ; µ(n, p, a, b, c,R) and Mn is an isoparametric submanifold.

Theorem D.5 Let Mn be a complete linear Weingarten spacelike submanifold immer-

sed with parallel normalized mean curvature vector field in a locally symmetric Einstein

semi-Riemannian space Ln+p
p satisfying conditions (1.36), (1.38) and (1.39), such that
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R = aH + b, with a � 0 and b ÿ R < b + c, where c =
c1
n

+ 2c2. If supM |Φ|2 < +1
and, for some reference point o 2 Mn,

Z +1

0

dr

vol(@Br)
= +1, (19)

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn centered

at the origin o.

Theorem D.6 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector field and flat normal bundle

in locally symmetric Einstein semi-Riemannian space Ln+p
p with p > 1 and satisfying

conditions (1.36), (1.37), (1.38) and (1.39), such that R = aH + b, with a � 0 and

b ÿ R < b + c, where c =
c1
n

+ 2c2. Suppose that there exists an orthogonal basis

for TM that diagonalizes simultaneously all Aá, á 2 TM?. Assume in addition that

0 ÿ |Φ| ÿ µ(n, p, a, b, c,R), where µ(n, p, a, b, c,R) is the positive constant which was

obtained in Theorem D.3. If |rH| 2 L1(M), then either |Φ| ; 0 and Mn is totally

umbilical, or |Φ| ; µ(n, p, a, b, c,R) and Mn is an isoparametric submanifold.

This work is presented with the following organization. In Chapter 1 we establish

the notations and preliminary facts that will be used throughout the text. In Chapter 2

we establish some rigidity results for complete spacelike hypersurface immersed into the

steady state space Hn+1 and the anti-de Sitter space Hn+1
1 . In the case of Hn+1

1 , we also

show some curvature estimation and nonexistence results, and we estimate the nullity

index for r-maximal spacelike hypersurfaces. In Chapter 3 we study the geometry

of spacelike submanifolds immersed into pseudo-Riemannian space form. Here, via

the application of new maximum principles in Riemannian manifolds, we establish

some results for stochastically, parabolic, L1-Liouville and linear Weingarten complete

spacelike submanifolds. Finally, in Chapter 4 we provide some results for complete

spacelike submanifolds in locally symmetric semi-Riemannian spaces, ambient spaces

that extend the pseudo-Riemannian space forms.
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Capítulo 1

Preliminary

In this first chapter we aim to establish the notations that will be used in the other

chapters of this work, as well as the basic facts of the theory of isometric immersions

which we will make use of later. For more details, we indicate as references [103], [67],

[49] and [41].

Initially, if Mn is a smooth manifold then C1(M) will always denote the ring

of real functions of class C1 on Mn and X(M) the C1(M)-module of vector fields of

class C1 on Mn. Next, we describe in two sections the elements that we must consider

about the theory of ambient spaces and also about the isometric immersions in these

spaces, objects that are of great interest in our study.

1.1 Spacelike hypersurfaces in Lorentz manifolds with

constant sectional curvature

Let R
n+2
+ be the (n + 2)-dimensional semi-Euclidean space endowed with the

metric tensor h , i of index + 2 {1, 2}, given by

hv, wi =
n+1X

i=1

viwi � vn+2wn+2

if + = 1, or

hv, wi =
nX

i=1

viwi � vn+1wn+1 � vn+2wn+2,



when + = 2. As is common in the current literature, Rn+2
1 is denoted by L

n+2, and is

called the (n + 2)-dimensional Lorentz-Minkowski space. The (n + 1)-dimensional de

Sitter space is defined as the following hyperquadric of Ln+2

S
n+1
1 = {x 2 L

n+2; hx, xi = 1},

while the (n+ 1)-dimensional anti-de Sitter space corresponds to the following hyper-

quadric of Rn+2
2

H
n+1
1 = {x 2 R

n+2
2 ; hx, xi = �1}.

As it is well known, Ln+1, Sn+1
1 and eHn+1

1 are the standard simply connected Lorentzian

space forms of constant sectional curvature 0, 1 and �1, respectively, where eHn+1
1

denotes the universal covering of Hn+1
1 (see, for instance, Section 5.3 of [36] or Section

8.6 of [103]). To describe another Lorentz manifold of constant sectional curvature

equal to 1, let a 2 L
n+2 \ {0} be a past-pointing null vector, that is, ha, ai = 0 and

ha, en+2i > 0, where en+2 = (0, . . . , 0, 1). Then, the open region of the de Sitter space

S
n+1
1 , given by

Hn+1 =
�
p 2 S

n+1
1 : hp, ai > 0

 

is the so-called steady state space.

In order to simplify our notation, throughout this work we will denote these

(n + 1)-dimensional spaces by L
n+1
1 (c) according to c 2 {�1, 0, 1}. More specifically,

L
n+1
1 (c) = H

n+1
1 when c = �1, L

n+1
1 (c) = L

n+1 if c = 0 and L
n+1
1 (c) = S

n+1
1 or

L
n+1
1 (c) = Hn+1 when c = 1.

In this setting, let  : Σ
n ! L

n+1
1 (c) be a connected spacelike hypersurface

immersed into L
n+1
1 (c), which means that the induced metric via  is a Riemannian

metric on Σ
n. In order to set up our notation, we will denote by r0,r and r the

Levi-Civita connections of Rn+2
2 , Ln+1

1 (c) and Σ
n, respectively. Then, the Gauss and

Weingarten formulas corresponding to Σ
n are given, respectively, by

r0
XY = rXY � hA(X), Y iN � chX, Y i (1.1)

and

A(X) = �rXN = �r0
XN, (1.2)

for all tangent vector fields X, Y 2 X(Σ), where A stands for the Weingarten operator

of  : Σn ! L
n+1
1 (c) with respect to a choice of timelike orientation N for Σ

n.
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As in [103], the curvature tensor R of the spacelike hypersurface  : Σn ! L
n+1
1 (c)

is given by

R(X, Y )Z = r[X,Y ]Z � [rX ,rY ]Z,

where [ ] denotes the Lie bracket and X, Y, Z 2 X(Σ). So, the Gauss equation is given

by

R(X, Y )Z = c {hX,ZiY � hY, ZiX}+ hA(Y ), ZiA(X)� hA(X), ZiA(Y ), (1.3)

for every tangent vector fields X, Y, Z 2 X(Σ).

On the other hand, at each p 2 Σ
n, the Weingarten operator A restricts to a

self-adjoint linear map Ap : TpΣ ! TpΣ. For 0 ÿ r ÿ n, let Sr(p) denote the r-th

elementary symmetric function on the eigenvalues of Ap. Thus, one gets n smooth

functions Sr : Σ
n ! R, such that

det(tI � A) =
nX

k=0

(�1)kSkt
n�k,

where S0 = 1 by convention. If p 2 Σ
n and {ek} is a basis of TpΣ formed by eigenvectors

of Ap, with corresponding eigenvalues {�k}, one immediately sees that

Sr = �r(�1, . . . ,�n),

where �r 2 R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the in-

determinates X1, . . . , Xn. This allows us to define the r-th mean curvature Hr of

 : Σn ! L
n+1
1 (c), 0 ÿ r ÿ n, by

7
n

r

ç
Hr = (�1)rSr. (1.4)

We observe that H0 = 1, while H1 = �(1/n)S1 is the usual mean curvature H of

 : Σn ! L
n+1
1 (c). It also follows from Gauss equation that H2 is, up to a constant,

the normalized scalar curvature R of  : Σn ! L
n+1
1 (c). Indeed, from (1.3) we have

that the Ricci curvature of  : Σn ! L
n+1
1 (c) is given by

Ric(X, Y ) = c(n� 1)hX, Y i � tr(A)hA(X), Y i+ hA(X), A(Y )i, (1.5)

for all X, Y 2 X(Σ). Hence, we obtain the following relation

|A|2 = n2H2 � n(n� 1)H2 = n2H2 + n(n� 1)(R + 1). (1.6)
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For 0 ÿ r ÿ n, one defines the r-th Newton transformation Pr on Σ
n by setting

P0 = I (the identity operator) and, for 1 ÿ r ÿ n, via the recurrence relation

Pr =

7
n

r

ç
HrI + APr�1. (1.7)

With a trivial induction, from (1.7) we verify that

Pr =

7
n

r

ç
HrI +

7
n

r � 1

ç
Hr�1A+

7
n

r � 2

ç
Hr�2A

2 + · · ·+ Ar, (1.8)

so that Cayley-Hamilton theorem gives Pn = 0. Moreover, since Pr is a polynomial in

A for every r, it is also self-adjoint and commutes with A. Therefore, all bases of TpΣ

diagonalizing A at p 2 Σ
n also diagonalize all of the Pr at p. So, let {e1, . . . , en} be an

orthonormal frame on TpΣ which diagonalizes Ap, Ap(ei) = �i(p)ei, then from (1.8) we

have that

(Pr)pei = (�1)r
X

i1<...<ir,ij 6=i

�i1(p) . . .�ir(p)ei. (1.9)

Moreover, it is not difficult to check that Prei = (�1)rSr(Ai)ei and, consequently, we

obtain the following lemma (see Lemma 2.1 of [38]).

Lemma 1.1.1 With the above notations, the following formulas hold:

(a) Sr(Ai) = Sr � �iSr�1(Ai);

(b) tr(Pr) = (�1)r
nX

i=1

Sr(Ai) = (�1)r(n� r)Sr = crHr;

(c) tr(APr) = (�1)r
nX

i=1

�iSr(Ai) = (�1)r(r + 1)Sr+1 = �crHr+1;

(d) tr(A2Pr) = (�1)r
nX

i=1

�2iSr(Ai) =

7
n

r + 1

ç
(nHHr+1 � (n� r � 1)Hr+2),

where cr = (n� r)

7
n

r

ç
.

Associated to each Newton transformation Pr one has the second-order linear

differential operator Lr, defined by

Lrf = tr(Prr2f), (1.10)

where r2f : X(Σ) ! X(Σ) denotes the self-adjoint linear operator metrically equivalent

to the Hessian of f , which is given by

hr2f(X), Y i = hrXrf, Y i = Hessf(X, Y ),
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for all X, Y 2 X(Σ).

For a smooth function ' : R �! R and f 2 C1(Σ), it follows from the properties

of the Hessian of functions that

Lr(' � f) = '0(f)Lr(f) + '00(f)hPrrf,rfi. (1.11)

In particular, for r = 0, we get the well known Laplacian operator L0 = ∆, which

is always elliptic. The next lemma gives a geometric condition which guarantees the

ellipticity of L1 (cf. Lemma 3.2 of [5]).

Lemma 1.1.2 Let  : Σn ! L
n+1
1 (c) be a spacelike hypersurface. If H2 > 0 on Σ

n,

then L1 is elliptic or, equivalently, P1 is positive definite (for an appropriate choice of

orientation N).

When r � 2, the following lemma establishes sufficient conditions to guarantee

the ellipticity of Lr (cf. Lemma 3.3 of [5]).

Lemma 1.1.3 Let  : Σ
n ! L

n+1
1 (c) be a spacelike hypersurface. If there exists

an elliptic point of Σ
n, with respect to an appropriate choice of orientation N , and

Hr+1 > 0 on Σ
n, for 2 ÿ r ÿ n � 1, then for all 1 ÿ k ÿ r the operator Lk is elliptic

or, equivalently, Pk is positive definite (for an appropriate choice of orientation N , if

k is odd).

Here, by an elliptic point in a spacelike hypersurface  : Σn ! L
n+1
1 (c) we mean

a point p0 2 Σ
n where all principal curvatures �(p0) are negative.

The next lemma was done by Alías, Brasil Jr. and Colares [4] in a more general

setting, when they studied spacelike hypersurfaces in conformally stationary spacetime

(see Lemma 5.4 of [4]). Taking into account our purposes, we rewrote it as follows.

Lemma 1.1.4 Let V be a complete closed conformal timelike vector field globally de-

fined on the Lorentzian manifold L
n+1
1 (c), and let  : Σn ! L

n+1
1 (c) be a complete

spacelike hypersurface. Suppose that the divergence of V on Hn+1, DivV , does not

vanish at a point of Σn where the restriction |V |Σ =
p

�hV, V i|Σ of |V | to Σ
n attains

a local minimum. Then, there exists an elliptic point p0 2 Σ
n.

In [132] Yau, generalizing a previous result due to Gaffney [79], established the

following version of Stokes’ Theorem on an n-dimensional, complete noncompact Rie-

mannian manifold Σ
n: If ! 2 Ω

n�1(Σ) is an integrable (n� 1)-differential form on Σ
n,
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then there exists a sequence Bi of domains on Σ
n such that Bi ã Bi+1, Σ

n =
S

i�1 Bi

and limi!+1

Z

Bi

d! = 0.

Supposing that Σn is oriented by the volume element dΣ, denoting by L1(Σ) the

space of Lebesgue integrable functions on Σ
n and considering ! = çXdΣ the contraction

of dΣ in the direction of a smooth vector field X on Σ
n, Caminha obtained the following

consequence of Yau’s result (cf. Proposition 2.1 of [43]).

Lemma 1.1.5 Let X be a smooth vector field on the n-dimensional complete oriented

Riemannian manifold Σ
n, such that divX does not change sign on Σ

n. If |X| 2 L1(Σ),

then divX = 0.

For a smooth function ' : R ! R and f 2 C1(Σ), it follows from the properties

of the Hessian of functions that

Lr(' � f) = '0(f)Lr(f) + '00(f)hPrrf,rfi. (1.12)

Furthermore, according to [112], we observe that

div(Pr(rf)) =
nX

i=1

h(reiPr)(rf), eii+
nX

i=1

hPr(reirf), eii (1.13)

= hdivPr,rfi+ Lrf,

where {e1, . . . , en} is a local orthonormal frame on Σ
n and the divergence of Pr on Σ

n

is given by

divPr = tr(rPr) =
nX

i=1

(reiPr)(ei).

Consequently, since Corollary 3.2 of [4] guarantees that Pr has divergence free when

the ambient space has constant sectional curvature, what happens to L
n+1
1 (c), from

(1.13) we get that

Lrf = div(Prrf). (1.14)

We close this section recalling the description of the totally umbilical spacelike

hypersurfaces of the anti-de Sitter space H
n+1
1 (see, for instance, Section 4 of [21]

or Example 2 of [94]). For this, we fix an unit timelike vector a 2 R
n+2
2 (that is,

ha, ai = �1) and consider the smooth function ha : H
n+1
1 ! R defined by ha(p) = hp, ai.

A straightforward computation allows us to conclude that for every real number ' , such

that |' | < 1, the level set

M' = h�1
a (') = {p 2 H

n+1
1 : hp, ai = '}
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is a totally umbilical hypersurface in H
n+1
1 , with the Gauss mapping

N' (p) =
1p

|ha, ai+ ' 2|
(a+ 'p). (1.15)

Hence, the shape operator A' of M' is given by

A' (X) = � 'p
|ha, ai+ ' 2|

X, (1.16)

for all smooth vector field X tangent to M' . Consequently, we have the following pos-

sibilities:

(1) if a is a unit spacelike vector, then M' is isometric to the anti-de Sitter space

H
n
1 (�

p
1 + ' 2) of constant sectional curvature � 1

1 + ' 2
;

(2) if a is a nonzero null vector, then ' 6= 0 and M' is isometric to the Lorentz-

Minkowski space L
n;

(3) if a is a unit timelike vector, then either |' | > 1 and M' is isometric to a de Sitter

space S
n
1 (
p
' 2 � 1) of constant sectional curvature

1

' 2 � 1
, or |' | < 1 and M' is

isometric to a hyperbolic space H
n(�

p
1� ' 2) of constant sectional curvature

� 1

1� ' 2
.

1.2 Spacelike submanifolds imersed in locally syme-

tric semi-Riemannian spaces

Let us denote by Ln+p
p an (n+ p)-dimensional connected semi-Riemannian space

with index p, which means that in every tangent space of Ln+p
p there is a subspace

of dimension p in which a the metric tensor is negative. We say that Ln+p
p is locally

symmetric when its curvature tensor R̄ is parallel in the sense that rR̄ = 0, where

r denotes the Levi-Civita connection of Ln+p
p . For the moment, we can record that if

Ln+p
p has constant sectional curvature then Ln+p

p is locally symmetric.

Let Mn be a spacelike submanifold immersed in a locally symmetric semi-Riemannian

space Ln+p
p , which means that the induced metric of Ln+p

p is a Riemannian metric on

Mn. In this context, we choose a local field of semi-Riemannian orthonormal frames
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e1, . . . , en+p in Ln+p
p , with dual coframes !1, . . . ,!n+p, such that, at each point of Mn,

e1, . . . , en are tangent to Mn. We will use the following convention of indices

1 ÿ A,B,C, . . . ÿ n+ p, 1 ÿ i, j, k, . . . ÿ n and n+ 1 ÿ µ, �, �, . . . ÿ n+ p.

In this setting, the semi-Riemannian metric of Ln+p
p is given by

ds2 =
X

A

/A !
2
A,

where /i = 1 and /µ = �1. Denoting by {!AB} the connection forms of Ln+p
p , we have

that the structure equations of Ln+p
p are given by:

d!A =
X

B

/B !AB ^ !B, !AB + !BA = 0, (1.17)

d!AB =
X

C

/C !AC ^ !CB � 1

2

X

C,D

/C/DKABCD !C ^ !D, (1.18)

where, RABCD, RCD and R denote respectively the Riemannian curvature tensor, the

Ricci tensor and the scalar curvature of the Lorentz space Ln+p
p . In this setting, we

have

RCD =
X

B

"BRCBDB and R =
X

A

"ARAA. (1.19)

Moreover, the components RABCD;E of the covariant derivative of the Riemannian

curvature tensor Ln+p
p are defined by

X

E

"ERABCD;E!E = dRABCD �
X

E

"E(REBCD!EA +RAECD!EB +RABED!EC

+RABCE!ED).

Next, we restrict all the tensors to Mn. First of all,

!µ = 0, n+ 1 ÿ µ ÿ n+ p.

Consequently, the Riemannian metric of Mn is written as ds2 =
P

i !
2
i . Since

X

i

!µi ^ !i = d!µ = 0,

from Cartan’s Lemma we can write

!µi =
X

j

hµ
ij!j, hµ

ij = hµ
ji. (1.20)
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This gives the second fundamental form of Mn, B =
P

µ,i,j h
µ
ij!i'!jeµ, and its square

length from second fundamental form is S = |B|2 =
P

µ,i,j(h
µ
ij)

2. Furthermore, we

define the mean curvature vector field H and the mean curvature function H of Mn

respectively by

H =
1

n

X

µ

 
X

i

hµ
ii

!
eµ and H = |H| =

1

n

vuutX

µ

 
X

i

hµ
ii

!2

.

The structure equations of Mn are given by

d!i = �
X

j

!ij ^ !j, !ij + !ji = 0,

d!ij = �
X

k

!ik ^ !kj �
1

2

X

k,l

Rijkl!k ^ !l,

where Rijkl are the components of the curvature tensor of Mn. Using the previous

structure equations, we obtain Gauss equation

Rijkl = Rijkl �
X

�

(h�
ikh

�
jl � h�

ilh
�
jk). (1.21)

and

n(n� 1)R =
X

i,j

Rijij � n2H2 + S. (1.22)

We also state the structure equations of the normal bundle of Mn

d!µ = �
X

�

!µ� ^ !�, !µ� + !�µ = 0,

d!µ� = �
X

�

!µ� ^ !�� �
1

2

X

k,l

Rµ�kl!k ^ !l.

Supposing that Mn has normal bundle flat, that is, R? = 0 (equivalently Rµ�jk = 0),

we get the following Ricci equation

Rµ�ij =
X

k

(hµ
ikh

�
kj � hµ

kjh
�
ik). (1.23)

The components hµ
ijk of the covariant derivative rB satisfy

X

k

hµ
ijk!k = dhµ

ij +
X

k

hµ
ik!kj +

X

k

hµ
jk!ki �

X

�

h�
ij!�µ. (1.24)
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In this setting, from (1.20) and (1.24) we get Codazzi equation

Rµijk = hµ
ijk � hµ

ikj. (1.25)

The first and the second covariant derivatives of hµ
ij are denoted by hµ

ijk and hµ
ijkl,

respectively, which satisfy

X

l

hµ
ijkl!l = dhµ

ijk +
X

l

hµ
ljk!li +

X

l

hµ
ilk!lj +

X

l

hµ
ijl!lk �

X

�

h�
ijk!�µ.

Thus, taking the exterior derivative in (1.24), we obtain the following Ricci identity

hµ
ijkl � hµ

ijlk =
X

m

hµ
imRmjkl +

X

m

hµ
mjRmikl. (1.26)

Restricting the covariant derivative RABCD;E of RABCD on Mn, then Rµijk;l is given by

Rµijkl = Rµijk;l +
X

�

Rµ�jkh
�
il +

X

�

Rµi�kh
�
jl +

X

�

Rµij�h
�
kl +

X

m,k

Rmijkh
µ
lm, (1.27)

where Rµijkl denotes the covariant derivative of Rµijk as a tensor on Mn.

For our purposes, we will consider that the mean curvature function H is positive,

so that in the local orthonormal frame {e1, . . . , en+p} we take en+1 =
h
H

. Thus, we deal

with the traceless second fundamental form Φ, which is defined as been the symmetric

tensor

Φ =
X

µ,i,j

Φ
µ
ij!i ' !jeµ,

where Φ
µ
ij = hµ

ij �Hµ�ij. Here, Hµ denotes the mean curvature function of Mn in the

direction of eµ, that is,

Hn+1 =
1

n
tr(hn+1) = H and Hµ =

1

n
tr(hµ) = 0, µ � n+ 2, (1.28)

where hµ = (hµ
ij) denotes the second fundamental form of Mn in direction eµ for every

n + 1 ÿ µ ÿ n + p. From here it is not difficult to verify that Φ is a traceless tensor,

that is, tr(Φ) = 0 and that holds the following relation

|Φ|2 = S � nH2. (1.29)

Moreover, |Φ| vanishes identically on Mn if and only if Mn is a totally umbilical

spacelike submanifold. For this reason, Φ is also called the total umbilicity tensor of

Mn. We also note that, by (1.22), the following relation is trivially satisfied:

n(n� 1)R =
X

i,j

Rijij � n(n� 1)H2 + |Φ|2. (1.30)
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At this point, we will assume that Mn is a linear Weingarten spacelike submani-

fold, which means that the normalized scalar curvature and mean curvature functions

are linearly related in the following way: there exist real constants a, b 2 R such that

R = aH + b.

Related to the geometry of linear Weingarten spacelike submanifolds there exists

a Cheng-Yau type differential operator, which recently has been considered by many

authors. More precisely, let us introduce the second order linear differential operator

L : C1(M) ! C1(M) defined by

L = L+
n� 1

2
a∆, (1.31)

where ∆ is the Laplacian operator on Mn and L : C1(M) ! C1(M) denotes the

standard Cheng-Yau’s operator [56], which is given by

Lu = tr(P � r2u), (1.32)

for every u 2 C1(M). Here, r2u is the self-adjoint linear tensor metrically equivalent

to the Hessian of u and P : X(M) ! X(M) denotes the first Newton transformation

of Mn, that is, the tensor

P = nHI � hn+1. (1.33)

Thus, from (1.31) and (1.32) we get

Lu = tr(P � r2u), (1.34)

where

P =

7
nH +

n� 1

2
a

ç
I � hn+1. (1.35)

Proceeding, inspired by the configuration assumed in [39], here we will suppose

that there exist constants c1, c2 and c3 such that the sectional curvature K and the

curvature tensor R of the ambient space Ln+p
p satisfy the following constraints:

K(u, ;) =
c1
n
, (1.36)

for any spacelike vector u and any timelike vector ;; when p > 1, suppose that

hR(á, u);, ui = 0. (1.37)
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for any spacelike vector u and timelike vectors á, ;, with há, ;i = 0.

K(u, v) � c2, (1.38)

for any spacelike vectors u, v;

K(;, á) =
c3
p
, (1.39)

for timelike vectors ;, á.

The curvature conditions (1.36) and (1.38), are natural extensions for higher

codimension of conditions assumed by Nishikawa [102] in context of hypersurfaces.

When the ambient manifold Ln+p
p has constant sectional curvature c, then it satisfies

conditions (1.36), (1.37), (1.38) and (1.39). On the other hand, the next example

gives us a situation where the curvature conditions (1.36), (1.37), (1.38) and (1.39) are

satisfied but the ambient space has not constant sectional curvature.

Example 1.2.1 Let Ln+p
p = R

p
p å S

n be a semi-Riemannian space, where R
p
p stands

for the p-dimensional semi-Euclidean space of index p and S
n is the n-dimensional

unit Euclidean sphere. We consider the spacelike submanifold Mn = {0}å S
n of Ln+p

p .

Taking into account that the normal bundle of Mn is equipped with p linearly indepen-

dent timelike vector fields á1, á2, . . . , áp, it is not difficult to verify that the sectional

curvature K of Ln+p
p satisfies

K (ái, X) = hRR
p
p
(ái, X)ái, XiRp

p
+ hRSn(0, U)0, UiSn = 0, (1.40)

for each i 2 {1, . . . , p}, where RR
p
p

and RSn denote the curvature tensors of Rp
p and S

n,

respectively, ái = (ái, 0) 2 T?M and X = (0, X2) 2 TM with hái, áii = hX,Xi = 1.

On the other hand, by a direct computation we obtain

K(X, Y ) = hRR
p
p
(0, 0)0, 0iRp

p
+ hRSn(X2, Y2)X2, Y2iSn , (1.41)

for every X = (0, X2), Y = (0, Y2) 2 TM such that hX, Y i = 0, hX,Xi = hY, Y i = 1.

Consequently, since

hX2, Y2i = 0, hX2, X2i = hY2, Y2i = 1,

from (3.137) we get

K(X, Y ) = |X2|
2|Y2|

2 � hX2, Y2i2 = 1. (1.42)

Moreover, we have that

K(ái, áj) = 0, for all i, j 2 {1, . . . , p} (1.43)
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and

hR(ái, X)áj, Xi = 0, for all i, j 2 {1, . . . , p}. (1.44)

We observe from (1.40), (1.42), (1.43) and (1.44) that the curvature constraints

(1.36), (1.37), (1.38) and (1.39) are satisfied with c1 = c3 = 0, c2 = 1 and c =
c1
n

+ 2c2 = 2. Furthermore, we also note that the ambient space Ln+p
p = R

p
p å S

n is

conformally flat (see, for instance, Chapter 7 of [67]). This property will be assumed

in the last part of our main result (cf. Theorem 4.2.2 in Section 4.1).

Now, we denote by RCD the components of the Ricci tensor of Ln+p
p . So, its scalar

curvature R is given by

R =
X

A

"ARAA =
X

i,j

Rijij � 2
X

i,µ

Riµiµ +
X

µ,�

Rµ�µ�.

Furthermore, if Ln+p
p satisfies conditions (1.36) and (1.39), then

R =
X

i,j

Rijij � 2pc1 + (p� 1)c3. (1.45)

But, it is well known that the scalar curvature of a locally symmetric Lorentz space is

constant (see Proposition 8.10 of [103]). Consequently, 1
n(n�1)

P
i,j Rijij is a constant

naturally attached to a locally symmetric Lorentz space satisfying conditions (1.36)

and (1.39), which will be denoted by R.

Considering the previous digression, we obtain the following lemma whose proof

can be found in [17].

Lemma 1.2.2 Let Mn be a linear Weingarten spacelike submanifold immersed in lo-

cally symmetric space Ln+p
p satisfying conditions (1.36) and (1.39), such that R =

aH + b for some a, b 2 R. Suppose that

(n� 1)a2 + 4n
�
R� b

�
� 0. (1.46)

Then,

|rA|2 � n2|rH|2. (1.47)

Moreover, if the equality holds in (4.2) on Mn, then H is constant on Mn.
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Capítulo 2

Results for spacelike hypersurface in

the Hn+1 and H
n+1
1

In this chapter, we study the complete spacelike hypersurfaces immersed in an

open region of the de Sitter space S
n+1
1 which is known as the steady state space Hn+1

and also the geometry of complete spacelike hypersurfaces immersed in the Anti-de

Sitter space H
n+1
1 . In this setting, under suitable constraints on the behavior of the

higher order mean curvatures of these hypersurfaces, we prove that they must be totally

umbilical spacelike hypersurfaces of Hn+1 or H
n+1
1 . For more details, you can look at

the works [26], [27] and [29].

2.1 Rigidity of complete spacelike hypersurfaces in

the Hn+1

As introduced before, the steady state space Hn+1 is the hyperquadric

Hn+1 = {x 2 S
n+1
1 ; hx, ai > 0},

with a 2 L
n+2 be a past-pointing null vector, that is, ha, ai = 0 and ha, en+2i > 0,

where en+2 = (0, . . . , 0, 1).

According to Example 2 in Section 4 of [100], the timelike vector field

V = hx, aix+ a



is such that

rWV = hx, aiW, (2.1)

for all W 2 X(Hn+1), where r stands for the Levi-Civita connection of Hn+1. Thus, V

is a complete closed conformal timelike vector field globally defined on Hn+1. Propo-

sition 1 of [100] guarantees that the n-dimensional distribution D(V ) defined on Hn+1

by

x 2 Hn+1 7�! D(x) = {v 2 TxH
n+1 : hV (x), vi = 0}

determines a codimension one spacelike foliation F(V ) which is oriented by V . Further-

more, the leaves of D(V ) are given by

E' = {x 2 Hn+1 : hx, ai = '}, with ' > 0,

which are totally umbilical hypersurfaces of Hn+1 isometric to the n-dimensional Eu-

clidean space R
n, having constant r-th mean curvature Hr = 1 (with respect to the

unit normal fields N' = x� 1

'
a, x 2 L' , when r is odd).

Figure 1: Foliating Hn+1 via spacelike hyperplanes E' .

In this setting, we will consider two particular functions naturally attached to a

spacelike hypersurface Σ
n immersed on Hn+1, namely, the height and angle functions

with respect to a previously fixed nonzero null vector a 2 L
n+2, which are defined,

respectively, by la = h , ai and fa = hN, ai. It is not difficult to check that rla = a>

and rfa = �A(a>), where a> stands for the orthogonal projection of a onto the

tangent bundle TΣ. Moreover, using Gauss and Weingarten formulas, we obtain

rXrla = �faAX � laX, (2.2)

for all X 2 X(Σ). From Lemma 1.1.1 jointly with (2.2), we can deduce the formula for

the operator Lr acting on the height function, that is,

Lrla = cr(�laHr + faHr+1), (2.3)

where cr = (n� r)
�
n
r

�
.

In what follows, we say that a spacelike hypersurface Σ
n immersed in Hn+1 is

contained in the closure of the interior domain enclosed by a spacelike hyperplane E' ,

with ' > 0, when its height function satisfies la ÿ ' (see Figure 2).
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Figure 2: Σ
n is contained in the closure of the interior domain enclosed by E' .

Lemma 2.1.1 Let Σ
n be a complete Riemannian manifold with sectional curvature

bounded from below, and f 2 C1(Σ) be a function which is bounded from above on Σ
n.

If P is positive semi-definite and tr(P) is bounded from above on Σ
n, then there exists

a sequence (pk)k�1 in Σ
n such that

lim
k

f(pk) = sup
Σ

f, lim
k

|rf(pk)| = 0 and lim sup
k

Lf(pk) ÿ 0,

where the operator L is given by (4.4).

Now, we are in position to state and prove our first rigidity result for complete

spacelike hypersurfaces  : Σn ! Hn+1. Fixed a past-pointing nonzero null vector

a 2 L
n+2 as before and taking a future-pointing orientation N for such a  , along this

chapter we will assume that its angle function fa is positive.

Theorem 2.1.2 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2. Suppose that the mean curvature H of

Σ
n is positive, bounded and satisfies

H ÿ H2. (2.4)

If

|a>| ÿ C inf
Σ

(H2 �H), (2.5)

for some positive constant C, then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

Proof. Regarding that a> stands for the orthogonal projection of a onto the tangent

bundle TΣ, we have that a> = a+ faN � la . Consequently,

|a>|2 = f 2
a � l2a. (2.6)

In particular, we obtain that fa � la > 0. From (2.3) we can see that

L1( la ) = �c1Hla + c1H2fa � c1(H2 �H)la, (2.7)

where c1 = n(n� 1).

34



From Cauchy-Schwarz inequality we have that H2 ÿ H2 and, since we are as-

suming that H is bounded, we get that H2 is also bounded. Thus, taking into the

algebraic relation
nX

i=1

�2i = |A|2 = n2H2 � n(n� 1)H2, (2.8)

we have that all the principal curvatures �i of Σn are bounded. Consequently, from

Gauss equation

KΣ(ei, ej) = 1� �i�j, (2.9)

we conclude that the sectional curvature KΣ of Σn is bounded from below.

We note that our assumption that Σ
n is contained in the closure of the interior

domain enclosed by E' guarantees that la is bounded. On the other hand, using hy-

pothesis (2.4), it follows from Lemma 3.10 of [70] that L1 is elliptic and, in particular,

P1 is positive semi-definite and tr(P1) = c1H is bounded.

Hence, since (2.7) gives

L1( la ) � n(n� 1) (H2 �H) la � 0.

we can apply Lemma 2.1.1 to obtain a sequence (pk)k�1 in Σ
n such that

lim
k

la(pk) = sup
Σ

la, lim
k

|rla(pk)| = 0 and lim sup
k

L1( la )(pk) ÿ 0. (2.10)

Consequently, from (2.7) and (2.10) we have that

0 � lim sup
k

L1( la )(pk) � n(n� 1)(sup
Σ

la) lim sup
k

(H2 �H) (pk) � 0. (2.11)

Thus, since sup
Σ
la > 0, from (2.11) we get that

lim sup
k

(H2 �H) (pk) = 0

and, in particular,

inf
Σ

(H2 �H) = 0. (2.12)

Therefore, hypothesis (2.5) jointly with (2.12) guarantee that a> = rla vanishes identi-

cally on Σ
n, that is, la is constant on Σ

n, which implies that Σn is a spacelike hyperplane

E'̃ with '̃ ÿ ' .

Taking into account that H2 = 1�R, where R is the normalized scalar curvature

of the hypersurface, from Theorem (2.1.2) we obtain the following consequence:
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Corollary 2.1.3 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a hyperplane E' orthogonal

to a nonzero null vector a 2 L
n+2. Suppose that the mean curvature H of Σn is positive,

bounded and satisfies

H +R ÿ 1,

where R is the normalized scalar curvature of Σn. If

|a>| ÿ C{1� sup
Σ

(H +R)},

for some positive constant C, then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

In the next result, we consider the rigidity via suitable constraints on the higher

order mean curvatures.

Theorem 2.1.4 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, with sectional curvature KΣ ÿ 1 and

bounded from below. Suppose that, for some 1 ÿ r ÿ n � 1, Hr+1 is bounded and

satisfies

� ÿ Hr ÿ Hr+1, (2.13)

where � is a positive constant. If

|a>| ÿ C inf
Σ

(Hr+1 �Hr), (2.14)

for some positive constant C, then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

Proof. Since (2.6) guarantees that fa � la, from (2.3) we get that

Lr( la ) = �crHrla + crHr+1fa � cr(Hr+1 �Hr)la, (2.15)

where cr = (n� r)
�
n
r

�
.

We define on Σ
n the following self-adjoint operator Pr : X(Σ

n) �! X(Σn) by

Pr := HrPr. (2.16)

Taking a (local) orthonormal frame {e1, . . . , en} such that Aei = �iei, from (2.16) and

(1.9) we have that

hPrei, eii =
7
n

r

ç�1 X

i1<...<ir,ij 6=i,j1<...<jr

(�i1�j1) . . . (�ir�jr). (2.17)
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But, since we are assuming that KΣ ÿ 1, from Gauss equation we obtain

�i�j = 1�KΣ(ei, ej) � 0, (2.18)

for all i, j 2 {1, . . . , n}, with i 6= j. Thus, from (2.17) and (2.18) we get

hPrei, eii � 0.

Consequently, Pr is positive semi-definite. In addition, since we are also assuming that

Hr is bounded on Σ
n, we have that the same happens for tr(Pr) = crH

2
r .

Extending the idea of the proof of Theorem 2.1.4, we consider the operator Lr :

C1(Σ) ! C1(Σ) given by

Lrf = tr(Prr2f). (2.19)

Since Pr is positive semi-definite, from (2.13), (3.137) and (2.19) we get

Lr( la ) � cr (Hr+1 �Hr) laHr � 0. (2.20)

So, taking into account that our assumption that Σn is contained in the closure of the

interior domain enclosed by E' implies that la is bounded, we can apply Lemma 2.1.1

to obtain a sequence (pk)k�1 in Σ
n such that

lim
k

la(pk) = sup
Σ

la, lim
k

|rla(pk)| = 0 and lim sup
k

Lr( la )(pk) ÿ 0. (2.21)

Consequently, from (2.20) and (2.21) we have that

0 � lim sup
k

Lr( la )(pk) � cr�(sup
Σ

la) lim sup
k

(Hr+1 �Hr) (pk) � 0. (2.22)

Hence, since sup
Σ

la > 0, from (2.22) we get that

lim sup
k

(Hr+1 �Hr) (pk) = 0

and, in particular,

inf
Σ

(Hr+1 �Hr) = 0. (2.23)

Therefore, hypothesis (2.14) guarantees that rla = a> vanishes identically on Σ
n, that

is, la is constant on Σ
n, which implies that Σn is a spacelike hyperplane E'̃ with '̃ ÿ ' .

From the proof of Theorem (2.1.4), we obtain the following nonexistence result:
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Corollary 2.1.5 There do not exist complete spacelike hypersurfaces  : Σn ! Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, with sectional curvature KΣ ÿ 1 and

bounded from below such that, for some 1 ÿ r ÿ n � 1, Hr and Hr+1 are positive

constant satisfying Hr < Hr+1.

Proof. Suppose by contradiction that there is such a spacelike hypersurface Σ
n. But,

from the proof of Theorem (2.1.4) we obtain that

inf
Σ

(Hr+1 �Hr) = 0, (2.24)

which implies that Hr = Hr+1, contradicting our hypothesis that Hr+1 > Hr.

Before presenting our next result, we will need to establish the following definition.

We say that an immersed hypersurface Σ
n in Hn+1 is locally tangent from above to a

spacelike hyperplane Ee' of Hn+1, when there exist a point p 2 Σ
n and a neighborhood

U ã Σ
n of p such that la(p) = e' and la(q) � e' for all q 2 U (see Figure 3).

Figure 3: Σ
n is locally tangent from above to a spacelike hyperplane E'̃ .

In this setting, we obtain the following rigidity result:

Theorem 2.1.6 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, and locally tangent from above to a

spacelike hyperplane E'̃ , with '̃ ÿ ' . Suppose that H is bounded and, for some 1 ÿ r ÿ
n� 1, Hr+1 is positive and such that

Hr ÿ Hr+1. (2.25)

If

|a>| ÿ C inf
Σ

(Hr+1 �Hr), (2.26)

for some positive constant C, then Σ
n must be the spacelike hyperplane E'̃ .

Proof. Let consider the vector field on Hn+1 defined in the beginning of this sec-

tion, namely V (p) = �hp, aip + a. It is not difficult to verify that |V |Σ = la and

DivV (p) = (n+ 1)hp, ai. Thus, since we are supposing that Σn is locally tangent from

above to a spacelike hyperplane E' , we have that |V |Σ attains a minimum local on Σ
n.
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Consequently, we can apply Lemma 1.1.4 to guarantee the existence of an elliptic point

on Σ
n. Hence, since we are also supposing that Hr+1 > 0, it follows from Lemma 1.1.3

that Pj is positive definite and, since tr(Pj) = cjHj, Hj is positive for all 1 ÿ j ÿ r.

Moreover, taking into account once more (2.55) and that H2 > 0, we get that

X

i

�2i ÿ n2H2.

Consequently, the boundedness of H implies in the boundedness of all principal cur-

vatures of Σn. In particular, we have that Hr is bounded and, from Gauss equation

(2.56), KΣ is bounded from bellow. Thus, from (2.3) we have that

Lr( la ) � cr (Hr+1 �Hr) la � 0. (2.27)

Hence, we can apply Lemma 2.1.1 to obtain a sequence (pk)k�1 in Σ
n such that

lim
k

la(pk) = sup
Σ

la, lim
k

|rla(pk)| = 0 and lim sup
k

Lr( la )(pk) ÿ 0. (2.28)

Consequently, from (2.7) and (2.28) we have that

0 � lim sup
k

Lr( la )(pk) � cr(sup
Σ

la) lim sup
k

(Hr+1 �Hr) (pk) � 0. (2.29)

Hence, since sup
Σ

la > 0, from (2.29) we get that

lim sup
k

(Hr+1 �Hr) (pk) = 0

and, in particular,

inf
Σ

(Hr+1 �Hr) = 0. (2.30)

Therefore, hypothesis (2.26) jointly with (2.30) guarantee that rla = a> vanishes

identically on Σ
n, that is, la is constant on Σ

n, which implies that Σ
n is the spacelike

hyperplane E'̃ .

From the proof of Theorem 2.1.6 we obtain the following nonexistence result:

Corollary 2.1.7 There do not exist complete spacelike hypersurfaces  : Σn ! Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, locally tangent from above to a spacelike

hyperplane E'̃ , with '̃ ÿ ' , having bounded mean curvature and such that, for some

1 ÿ r ÿ n� 1, Hr and Hr+1 are positive constant satisfying Hr < Hr+1.
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Rigidity results in Hn+1

Motivated by the fact that the spacelike hyperplanes E' of Hn+1 satisfy the con-

dition la = fa (considering the unit normal fields N' = x � 1
'
a), in the last section

of this chapter we present further rigidity results supposing that the height and an-

gle functions of the spacelike hypersurfaces are linearly related. We start proving the

following:

Theorem 2.1.8 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2. Suppose that la = �fa for some positive

constant � 2 R, the mean curvature H of Σn is bounded and that

H2 � 1. (2.31)

Then Σ
n is a spacelike hyperplane E'̃ with '̃ ÿ ' .

Proof. Since la = �fa, we observe that

|rla|
2 = f 2

a � l2a = (��2 � 1)l2a. (2.32)

In particular, from (2.32) we have that ��2�1 � 0. Now, we define on Σ
n the following

operator L : C1(Σ) �! C1(Σ) by

Lf =
��1

n(n� 1)
L1f +

1

n
∆f, (2.33)

From equation (2.3) and the hypothesis (2.31), we obtain that

L(la) =
��1

n(n� 1)
{n(n� 1)(�laH1 + faH2)}+

1

n
{n(�la + faH1)}

= ��2H2la � la � (��2 � 1)la � 0.

(2.34)

Hence, since we are also supponsing that H2 > 0, it follows from Lemma 1.1.3 that P1

is positive definite, consequently, H is positive. Moreover, we know that

tr(P1) = c1H. (2.35)

Thus, taking into account once more that H2 � 1 and H2 < H2, from (2.8) we get that

X

i

�2i ÿ n2H2.
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Consequently, the boundedness of H implies in the boundedness of all principal cur-

vatures of Σ
n. From Gauss equation (2.9), KΣ is bounded from bellow. Since our

assumption that Σ
n is contained in the closure of the interior domain enclosed by E'

implies that la is bounded, we can apply Lemma 2.1.1 to get a sequence (pk)k�1 in Σ
n

such that

lim
k

la(pk) = sup
Σ

la, lim
k

|rla(pk)| = 0 and lim sup
k

L( la )(pk) ÿ 0. (2.36)

Hence, from (2.42) and (2.34), we obtain that

0 � lim sup
k

L( la )(pk) � (�2 � 1)(sup
Σ

la) � 0. (2.37)

So, as sup
Σ
la > 0, then

��2 � 1 = 0.

Therefore, returning to (2.34), we obtain that � = 1. From (2.39), we have that rla = 0

and the height function la is constant on Σ
n, consequently, Σn is a spacelike hyperplane

E'̃ for some '̃ ÿ ' .

From Theorem 2.1.8 and using once more the relation between H2 and the nor-

malized scalar curvature, we obtain the following consequence:

Corollary 2.1.9 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2. Suppose that la = �fa, for some positive

constant � 2 R, the mean curvature is bounded and the normalized scalar curvature is

nonpositive. Then, Σn is a spacelike hyperplane E'̃ with '̃ ÿ ' .

We close this paper extending Theorem 2.1.8 for the context of higher order mean

curvatures.

Theorem 2.1.10 Let  : Σn ! Hn+1 be a complete spacelike hypersurface of Hn+1

contained in the closure of the interior domain enclosed by a spacelike hyperplane E'

orthogonal to a nonzero null vector a 2 L
n+2, and locally tangent from above to a

spacelike hyperplane E'̃ , with '̃ ÿ ' . Suppose that la = �fa for some positive constant

� 2 R, and that, for some 1 ÿ r ÿ n� 2, the r-th mean curvature Hr of Σn is bounded

and such that

� ÿ Hr ÿ Hr+2, (2.38)

where � is a positive constant. Then, Σn must be the spacelike hyperplane E'̃ .
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Proof. Since la = �fa, we observe that

|rla|
2 = f 2

a � l2a = (��2 � 1)l2a. (2.39)

In particular, from (2.39) we have that ��2�1 � 0. Now, we define on Σ
n the following

operator L : C1(Σ) �! C1(Σ) by

Lf =
��1

cr+1

Lr+1f +
1

cr
Lrf, (2.40)

where ci = (i+ 1)

7
n

i+ 1

ç
. From equation (2.3) and the hypothesis (2.38) , we obtain

that

L(la) =
��1

cr+1

Lr+1la +
1

cr
Lrla

=
��1

cr+1

{cr+1(�lahr+1 + faHr+2)}+
1

cr
{cr(�laHr + faHr+1)}

= ��2Hr+2la � laHr � (��2 � 1)Hrla � 0

(2.41)

On the other hand, we can reason as in the beginning of the proof of Theorem 2.1.6

to guarantee the existence of an elliptic point on Σ
n. Hence, since we are also supposing

that Hr > 0, it follows from Lemma 1.1.3 that Pj is positive definite, consequently, Hj

is positive for all 1 ÿ j ÿ r� 1. Moreover, taking into account once more that H2 > 0

and H2 < H2, from (2.8) we get once more that

X

i

�2i ÿ n2H2.

Consequently, the boundedness of H implies in the boundedness of all principal curva-

tures of Σn and, hence, tr(Pj) = cjHj is also bounded. From Gauss equation (2.9) we

also have that KΣ is bounded from bellow. So, since our assumption that Σ
n is con-

tained in the closure of the interior domain enclosed by E' implies that la is bounded,

we can apply Lemma 2.1.1 to get a sequence (pk)k�1 in Σ
n such that

lim
k

la(pk) = sup
Σ

la, lim
k

|rla(pk)| = 0 and lim sup
k

L( la )(pk) ÿ 0. (2.42)

Hence, from (2.41) and (2.42) we obtain that

0 � lim sup
k

L( la )(pk) � (�2 � 1)�(sup
Σ

la) � 0. (2.43)

Thus, since sup
Σ
la > 0, we get ��2 � 1 = 0. Consequently, returning to (2.41) we

conclude that � = 1. Therefore, from (2.39), we have that rla = 0 and the height
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function is constant on Σ
n, which implies that Σ

n must be the spacelike hyperplane

E'̃ .

2.2 Rigidity of complete spacelike hypersurfaces in

H
n+1
1

For a fixed vector a 2 R
n+2
2 , let us consider the height and angle functions attached

to a spacelike hypersurface  : Σn ! H
n+1
1 , which are defined, respectively, by la =

h , ai and fa = hN, ai. A direct computation allows us to conclude that the gradient

of such functions are given, respectively, by

rla = a> (2.44)

and

rfa = �A(a>), (2.45)

where a> is the orthogonal projection of a onto the tangent bundle TΣ, that is,

a> = a+ faN + la . (2.46)

Using Gauss and Weingarten formulas (1.1) and (1.2), from (2.44) it is not difficult to

verify that

rXrla = �faAX + laX, (2.47)

for all X 2 X(Σ). Thus, it follows from Lemma (1.1.1), (1.10) and (2.47) that

Lrla = cr (Hr+1fa +Hrla) . (2.48)

When a 2 R
n+2
2 is a fixed unit timelike vector, we obtain the following suitable

formula.

2.2.1 Main results for H
n+1

1

Proposition 2.2.1 Let  : Σn ! H
n+1
1 be a spacelike hypersurface such that Hr is

positive on Σ
n, and let a 2 R

n+2
2 be a fixed unit timelike vector. Then,

Lr(l
2
a) = cr

7p
Hrfa +

Hr+1p
Hr

la

ç2

+ cr

7
Hr �

H2
r+1

Hr

ç
l2a

+ crHr|rla|
2 + crHr(1� 2f 2

a ) + 2hPr(rla),rlai.
(2.49)
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Proof. From (1.12) and (2.48), we have that

Lr(l
2
a) = 2laLr(la) + 2hPr(rla),rlai

= 2la{crHr+1fa + crHrla}+ 2hPr(rla),rlai

= 2crHr+1lafa + 2crHrl
2
a + 2hPr(rla),rlai.

(2.50)

Thus, by adding and subtracting the terms cr
H2

r+1

Hr

l2a and crHrf
2
a in (2.50), we obtain

Lr(l
2
a) = cr

7p
Hrfa +

Hr+1p
Hr

la

ç2

+ cr

7
Hr �

H2
r+1

Hr

ç
l2a

+ crHr(l
2
a � f 2

a ) + 2hPr(rla),rlai.
(2.51)

On the other hand, taking into account that a 2 R
n+2
2 is a unit timelike vector, from

(2.46) we get

l2a = |rla|
2 + 1� f 2

a . (2.52)

Therefore, inserting (2.52) in (2.51), we conclude the proof of (2.49).

Motivated by the description of the totally umbilical hypersurfaces of Hn+1
1 , in

our next results we infer the rigidity of spacelike hypersurfaces Σ
n immersed in H

n+1.

For this, we will assume that the orientation N of such a spacelike hypersurface is in

the same time-orientation of a certain fixed unit timelike vector a 2 R
n+2
2 , which means

that fa < 0.

Theorem 2.2.2 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface such that

f 2
a ÿ 1

2
for some fixed unit timelike vector a 2 R

n+2
2 . Suppose that the mean curvature

H is positive, bounded and that the second mean curvature satisfies

0 ÿ H2 ÿ 1. (2.53)

If

|a>| ÿ C inf
Σ

(H �H2) , (2.54)

for some positive constant C, then Σ
n is a totally umbilical spacelike hypersurface M' ,

with ' 2 = 1
2
.

Proof. First of all, we observe that straightforward computations show that the totally

umbilical spacelike hypersurfaces M�
p
2/2 and Mp

2/2 satisfy all the hypotheses of the

theorem. Now, we shall see that these are the only such hypersurfaces. To do so, let Σn
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be a complete spacelike hypersurface satisfying the hypotheses of the theorem. Taking

into account the algebraic relation

nX

i=1

�2i = |A|2 = n2H2 � n(n� 1)H2, (2.55)

since H is bounded and (2.53) guarantees that H2 is also bounded, we have that all the

principal curvatures �i of Σn are also bounded. Consequently, from Gauss equation

KΣ(ei, ej) = �1� �i�j, (2.56)

we conclude that the sectional curvature KΣ of Σn is bounded from below.

On the other hand, using again hypothesis (2.53), Lemma 3.10 in [70] gives that

P1 := HP1 is positive semi-definite, with tr(P) = c1H
2 been bounded. So, we consider

the operator L1 : C
1(Σ) ! C1(Σ) given by

L1f = tr(P1r2f). (2.57)

From (2.53), we also have

H2
2 ÿ H2 ÿ H2.

Thus, since we are assuming that the angle function satisfies f 2
a ÿ 1

2
, from Proposition

2.2.1 we get

Lr(la) � c1

7
H � H2

2

H

ç
l2a. (2.58)

Hence, from (2.57) and (2.58) we obtain

L1( l
2
a ) � n(n� 1)

�
H2 �H2

2

�
l2a � 0. (2.59)

In view of (2.52), our hypothesis (2.54) implies that the function la is bounded.

Thus, we can apply Lemma 2.1.1 to obtain a sequence of points {pk}k�1 in Σ
n such

that

lim
k

l2a(pk) = sup
Σ

l2a, lim
k

|rl2a(pk)| = 0 and lim sup
k

L1( l
2
a )(pk) ÿ 0. (2.60)

Consequently, from (2.59) and (2.60) we have that

0 � lim sup
k

L1( l
2
a )(pk) � n(n� 1)(sup

Σ

l2a) lim sup
k

�
H2 �H2

2

�
(pk) � 0. (2.61)
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Hence, since equation (2.52) jointly with our constraint on fa imply in particular that

sup
Σ
l2a > 0, from (2.61) we get that

lim sup
k

�
H2 �H2

2

�
(pk) = 0,

and, consequently,

inf
Σ

(H �H2) = 0. (2.62)

Therefore, from (2.54) and (2.62), we have that a> vanishes identically on Σ
n, which

means that la is constant on Σ
n and, hence, Σn is a totally umbilical spacelike hyper-

surface M' of Hn+1
1 . Since we must have H = H2, we also get

'p
1� ' 2

=

7
'p

1� ' 2

ç2

,

which allows us to conclude that ' 2 = 1
2
.

Proceeding, under a suitable control on the sectional curvature of the spacelike

hypersurface, we obtain an extension of Theorem 2.2.2 for the case of higher order

mean curvatures.

Theorem 2.2.3 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectional

curvature bounded from below satisfying KΣ ÿ �1, and such that f 2
a ÿ 1

2
for some fixed

unit timelike vector a 2 R
n+2
2 . Suppose that, for some 1 ÿ r ÿ n � 1, Hr is bounded

and such that

0 ÿ Hr+1 ÿ Hr. (2.63)

If

|a>| ÿ C inf
Σ

(Hr �Hr+1) , (2.64)

for some positive constant C, then Σ
n is a totally umbilical spacelike hypersurface M'

with ' 2 = 1
2
.

Proof. We define a self-adjoint operator Pr : X(Σ
n) ! X(Σn) by

Pr = HrPr. (2.65)

For each p 2 Σ
n, we take a local orthonormal frame {e1, . . . , en} such that Aei = �iei.

So, from (1.9) we have that

Prei = (�1)r
X

i1<...<ir,ij 6=i

�i1 . . .�irei.
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Thus, for any i 2 {1, . . . , n}, we get

hPrei, eii =
7
n

r

ç�1 X

i1<...<ir,ij 6=i
j1<...<jr

(�i1�j1) . . . (�ir�jr). (2.66)

Moreover, from Gauss equation (2.56) and taking into account our constraint on the

sectional curvature KΣ of Σn, we have that

�i�j = �1�KΣ(ei, ej) � 0,

for all i, j 2 {1, · · · , n}, with i 6= j. Hence, from (2.66) we get that

hPrei, eii � 0,

for any i 2 {1, . . . , n}, which implies that Pr is positive semi-definite. In addition,

since we are assuming that Hr is bounded on Σ
n, from Lemma 1.1.1 and (2.65) we

have that the same is true for tr(Pr) = crH
2
r .

Now, extending the idea of the proof of Theorem 2.2.2, we consider the operator

Lr : C
1(Σ) ! C1(Σ) given by

Lrf = tr(Prr2f). (2.67)

Since Pr is positive semi-definite and f 2
a ÿ 1

2
, from Proposition 2.2.1, (2.63) and (2.67)

we get

Lr( l
2
a ) � cr

�
H2

r �H2
r+1

�
l2a � 0. (2.68)

Furthermore, taking into account once more relation (2.52), hypothesis (2.64) implies

that la is bounded. Thus, we can apply Lemma 2.1.1 to obtain a sequence of points

{pk}k�1 in Σ
n such that

lim
k

l2a(pk) = sup
Σ

l2a, lim
k

|rl2a(pk)| = 0 and lim sup
k

Lr( l
2
a )(pk) ÿ 0. (2.69)

Consequently, from (2.68) and (2.69) we have that

0 � lim sup
k

Lr( l
2
a )(pk) � cr(sup

Σ

l2a) lim sup
k

�
H2

r �H2
r+1

�
(pk) � 0. (2.70)

Hence, since sup
Σ
l2a > 0, from (2.70) we get that

lim sup
k

�
H2

r �H2
r+1

�
(pk) = 0
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and, in particular,

inf
Σ

(Hr �Hr+1) = 0. (2.71)

Therefore, from (2.64) and (2.71) we get that a> vanishes identically on Σ
n,

which means that la is constant on Σ
n and, hence, Σn is a totally umbilical spacelike

hypersurface M' of Hn+1
1 . Furthermore, since in this case Hr = Hr+1, we must have

7
'p

1� ' 2

çr

=

7
'p

1� ' 2

çr+1

,

which implies that we must have ' 2 = 1
2
.

Remark 2.2.4 We point out that the assumption KΣ ÿ �1 in Theorem 2.2.3 is com-

patible with our previous conclusion. Indeed, from item (3) of the description of the

totally umbilical hypersurfaces of Hn+1
1 quoted in the beginning of this section, for ' 2 = 1

2

we have KΣ = KMτ
= � 1

1� ' 2
= �2.

We say that a spacelike hypersurface Σ
n is locally tangent from below to a totally

umbilical hypersurface M' of H
n+1
1 , when there exists a point p 2 Σ

n and a neigh-

borhood U ã Σ
n of p such that la(p) = ' and la(q) ÿ ' for all q 2 U (see Figure 1).

Figure 1: Σ
n is locally tangent from bellow to a hypersurface M' .

On the other hand, we say that Σ
n is locally tangent from above to M' , when

there exists a point p 2 Σ
n and a neighborhood U ã Σ

n of p such that la(p) = ' and

la(q) ÿ ' for all q 2 U (see Figure 2).

Figure 2: Σ
n is locally tangent from above to a hypersurface M' .
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In our next result, for a constant 0 < ã ÿ 1, we will also consider the open regions

Ω
+(a, ã) = {p 2 H

n+1
1 : 0 < hp, ai < ã}

of the chronological past, and

Ω
�(a, ã) = {p 2 H

n+1
1 : �ã < hp, ai < 0}

of the chronological future of Hn+1
1 , with respect to a fixed unit timelike vector a 2 R

n+2
2

(see Figure 3).

Figure 3: Open regions of Hn+1
1 determined by a fixed unit timelike vector a 2 R

n+2
2 .

Considering this previous setting, we obtain the following:

Theorem 2.2.5 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface such that

f 2
a ÿ 1

2
for some fixed unit timelike vector a 2 R

n+2
2 . Suppose that H is bounded, for

some 1 ÿ r ÿ n� 1, Hr+1 is positive and such that

Hr+1 ÿ Hr. (2.72)

Let us assume in addition that

|a>| ÿ C inf
Σ

(Hr �Hr+1), (2.73)

for some positive constant C.

(i) If Σ
n is contained in Ω

+(a, ã), for some 1p
2
< ã ÿ 1, and it is locally tangent

from bellow to a totally umbilical spacelike hypersurface M' , with 0 < ' < ã, then

Σ
n is isometric to M' and ' = 1p

2
;

(ii) If Σn is contained in Ω
�(a, ã), for some �1 ÿ ã < � 1p

2
, and it is locally tangent

from above to a totally umbilical spacelike hypersurface M' , with ã < ' < 0, then

Σ
n is isometric to M' and ' = � 1p

2
.
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Proof. Let us consider the vector field X defined on H
n+1
1 by

X(p) = hp, aip+ a.

From Example 3 of [99] we have that X is a complete closed conformal vector field,

with

divX(p) = (n+ 1)hp, ai, (2.74)

and

|X|Σ =
p
�hX,Xi =

p
1� l2a. (2.75)

Thus, supposing for instance that Σ
n is contained in Ω

+(a, ã) and that it is locally

tangent from below to M' , with 0 < ' < ã, from (2.75) we have that |X|Σ attains

a local minimum on Σ
n. Consequently, we can apply Lemma 1.1.4 to guarantee the

existence of an elliptic point on Σ
n. Hence, since we are also supposing that Hr+1 > 0,

it follows from Lemma 1.1.3 that Pj is positive definite and, consequently, Hj is positive

for all 1 ÿ j ÿ r.

Moreover, taking into account once more (2.55) and that H2 > 0, we get that

X

i

�2i ÿ n2H2.

Consequently, the boundedness of H implies in the boundedness of all principal cur-

vatures of Σn. So, from Gauss equation (2.56) we conclude that KΣ is bounded from

below. Moreover, we also have that Hr is bounded and, hence, tr(Pr) = crHr is boun-

ded.

From Proposition 2.2.1 we get that

Lr(l
2
a) � cr

7
H2

r �H2
r+1

Hr

ç
l2a � 0. (2.76)

Thus, we can apply Lemma 2.1.1 to obtain a sequence of points {pk}k�1 in Σ
n such

that

lim
k

l2a(pk) = sup
Σ

l2a, lim
k

|rl2a(pk)| = 0 and lim sup
k

Lr( l
2
a )(pk) ÿ 0. (2.77)

Consequently, from (2.76) and (2.77) we have that

0 � lim sup
k

Lr(l
2
a)(pk) � cr(sup

Σ

l2a) lim sup
k

7
H2

r �H2
r+1

Hr

ç
� 0. (2.78)
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Since sup
Σ
l2a > 0, from (2.78) we obtain

lim sup
k

7
H2

r �H2
r+1

Hr

ç
= 0. (2.79)

In particular,

inf
Σ

7
Hr �Hr+1

Hr

ç
= 0, (2.80)

and, since Hr > 0, we conclude that

inf
Σ

(Hr �Hr+1) = 0. (2.81)

At this point, we finish the proof of item (i) reasoning as in the last part of the proof

of Theorem 2.2.3. The proof of item (ii) is similar.

2.2.2 Nullity of r-maximal spacelike hypersurfaces in H
n+1

1

Let  : Σn ! H
n+1 be a spacelike hypersurface immersed in the anti-de Sitter

space H
n+1
1 , with second fundamental form A. According to [67], for p 2 Σ

n, we define

the space of relative nullity N (p) of Σn at p by

N (p) = {v 2 TpΣ; v 2 ker(Ap)},

where ker(Ap) denotes the kernel of Ap. The index of relative nullity +(p) of Σn at p is

the dimension of N (p), that is,

+(p) = dim (N (p)) ,

and the index of minimum relative nullity +0 of Σn is defined by

+0 = min
p2Σ

+(p).

We also recall that a spacelike hypersurface Σ
n immersed in H

n+1
1 is said to be

r-maximal if Hr+1 vanishes identically on Σ
n. In this setting, we obtain the following

result:

Theorem 2.2.6 Let  : Σn ! H
n+1
1 be a complete r-maximal (2 ÿ r ÿ n�1) spacelike

hypersurface with sectional curvature bounded from below satisfying KΣ ÿ �1, and such

that f 2
a ÿ 1

2
and |a>| is bounded for some fixed unit timelike vector a 2 R

n+2
2 . If Hr

is a nonnegative constant, then the index of minimum relative nullity +0 of Σ
n is at

least n� r + 1. Moreover, if Hr�1 does not vanish on Σ
n, then through every point of

Σ
n there passes an (n � r + 1)-dimensional hyperbolic space H

n�r+1 ,! H
n+1
1 totally

contained in Σ
n.
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Proof. Let us suppose, by contradiction, that Hr > 0. Reasoning as in the proof of

Theorem 2.2.3, we conclude that infΣ(Hr �Hr+1) = 0. Thus, since Σ
n is supposed to

be r-maximal, we get that Hr = 0. Hence, from Proposition 2.3(c) of [42], we see that

Hj = 0 for all j � r and, hence, +0 � n� r + 1.

Now, let as assume that Hr�1 does not vanish on Σ
n. From Theorem 5.3 of [67]

(see also [71]), the distribution p 7! N (p) of minimal relative nullity of Σn is smooth

and integrable with complete leaves, totally geodesic in Σ
n and in H

n+1
1 . Therefore,

the result follows from the characterization of complete totally geodesic submanifolds

of Hn+1
1 as hyperbolic spaces of suitable dimension.

We close this section with the following nonexistence result.

Theorem 2.2.7 There does not exist complete 1-maximal spacelike hypersurface  :

Σ
n ! H

n+1
1 with nonnegative constant mean curvature and such that f 2

a ÿ 1
2

and |a>|

is bounded for some fixed unit timelike vector a 2 R
n+2
2 .

Proof. Let us assume the existence of such a complete 1-maximal spacelike hypersur-

face Σ
n. Consequently, we have two cases to infer:

(i) if H = 0, from (1.6) we get that |A| = 0 and, consequently, we conclude that Σ
n

must be a totally geodesic spacelike hypersurface M0. But, from (1.16) and (2.52) we

get f 2
a = 1, contradicting the fact that f 2

a ÿ 1
2
.

(ii) If H > 0, we can reason as in the proof of Theorem 2.2.2 concluding that H = 0,

allowing us to a contradiction.

2.2.3 Curvature estimates and further nonexistence results

In order to prove our next results, we recall the classical Omori’s generalized

maximum principle [105].

Lemma 2.2.8 Let Σ
n be a complete Riemannian manifold with sectional curvature

bounded from below and let u : Σn ! R be a smooth function bounded from above.

Then, for each / > 0 there exists a point p/ 2 Σ
n such that

(i) |ru(p/)| < /;

(ii) Hessu(v, v) < / for all unit tangent vector v 2 TpΣ;

(iii) sup
Σ
u� / < u(p/) ÿ sup

Σ
u.
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Now we are in position to present the following result.

Theorem 2.2.9 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectional

curvature bounded from below. If Σn is contained either in Ω
�(a, ã) or in Ω

+(a, ã), for

some unit timelike vector a 2 R
n+2
2 and some 0 < ã < 1, then

sup
Σ

Hr �

0
@ sup

Σ
u±

q
1� (sup

Σ
u±)2

1
A

r

, for all r = 1, . . . , n,

where u± 2 C1(Σ) is defined by u± = ±la as we have Σ
n ã Ω

�(a, ã) or Σn ã Ω
+(a, ã).

Proof. We will first assume that Σn ã Ω
+(a, ã) for some unit timelike vector a 2 R

n+2
2

and some 0 < ã < 1. In such a case, we will choose the orientation N of Σn in the

same time-orientation of a, so that fa < 0. On Σ
n, we define the smooth function

u = la (where, for simplicity, we wrote u instead of u+). From (2.47) we obtain that

the Hessian of u is given by

Hessu(X,X) = �fahA(X), Xi+ uhX,Xi. (2.82)

Since u is a smooth function on Σ
n bounded from above, we know from Lemma 2.2.8

that for each j 2 N there exists a point pj 2 Σ
n such that

|ru(pj)| <
1

j
, (2.83)

Hessu(pj)(v, v) <
1

j
, (2.84)

for each tangent vector v 2 TpjΣ with |v| = 1, and

sup
Σ

u� 1

j
< u(pj) ÿ sup

Σ

u. (2.85)

Let {eji}
n
i=1 be an orthonormal basis of principal directions at pj satisfying Apj(e

j
i ) =

�i(pj)e
j
i . From (2.82) and (2.84), we achieve at

Hessu(pj)(e
j
i , e

j
i ) = �fa(pj)�i(pj) + u(pj) <

1

j
.

Thus, since N was chosen to be in the same time-orientation of a, it follows that

�i(pj) < �1/j � u(pj)

fa(pj)
. (2.86)
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On the other hand, it follows from (2.85) that 1/j � u(pj) ! � sup
Σ
u < 0 as j ! 1,

so that by (2.86) we infer that �i(pj) is negative for all j large enough. We will assume

from now on that j is large enough, so that

�i(pj) < �1/j � u(pj)

fa(pj)
< 0. (2.87)

Thus, from (2.87), we have that
7
n

r

ç
Hr(pj) >

7
n

r

ç7
u(pj)� 1/j

�fa(pj)

çr

. (2.88)

From (2.52) we can deduce that |ru|2 = �1+ f 2
a +u2 and, using (2.83) and (2.85), we

get that

lim
j!1

�fa(pj) =

s

1�
7
sup
Σ

u

ç2

. (2.89)

Letting j ! 1 and using (2.85) and (2.89), we obtain from (2.88)

sup
Σ

Hr �

0
@ sup

Σ
uq

1� (sup
Σ
u)2

1
A

r

.

If Σn is contained in the region Ω
�(a, ã) of the chronological future determined by

a unit timelike vector a 2 R
n+2
2 , for some 0 < ã < 1, we will choose N in the opposite

time-orientation of a. Then, by performing computations very similar to those in the

first part of the proof with u� instead of u, we will achieve at

sup
Σ

Hr �

0
@ sup

Σ
u�

q
1� (sup

Σ
u�)2

1
A

r

,

for all r = 1, . . . , n. The proof is now complete.

From Theorem 2.2.9 we obtain the following consequence

Corollary 2.2.10 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with secti-

onal curvature bounded from below.

(i) If one of the intrinsic r-th mean curvatures (that is, when r is even) Hr ÿ 0,

then Σ
n cannot be contained in any Ω

�(a, ã) or in any Ω
+(a, ã), for every unit

timelike vector a 2 R
n+2
2 and for every 0 < ã < 1.

(ii) If one of the extrinsic r-th mean curvatures (that is, when r is odd) Hr ÿ 0

(for an appropriate choice of orientation N), then Σ
n cannot be contained in any

Ω
+(a, ã), for every unit timelike vector a 2 R

n+2
2 and for every 0 < ã < 1.
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As it was mentioned in the introduction of this paper, Ishihara [85] proved that

a complete maximal spacelike hypersurface immersed in H
n+1
1 must have the squared

norm of the second fundamental form bounded from above by n, and that this bounded

is reached only by the maximal hyperbolic cylinders H
m(� n

m
) å H

n�m(� n
n�m

), with

1 ÿ m ÿ n� 1 (see Theorems 1.2 and 1.3 of [85]).

We observe that this Ishihara’s result jointly with Gauss equation guarantee that

a complete maximal spacelike hypersurface of Hn+1
1 must have, in particular, sectional

curvature bounded from below. Thus, taking into account (1.6), it is not difficult to

verify that item (i) of Corollary 2.2.10 allows us to obtain the following nonexistence

result concerning complete maximal spacelike hypersurfaces of Hn+1
1 :

Corollary 2.2.11 There do not exist complete maximal spacelike hypersurfaces  :

Σ
n ! H

n+1
1 contained in any Ω

�(a, ã) or in any Ω
+(a, ã), for every unit timelike

vector a 2 R
n+2
2 and for every 0 < ã < 1.

As a consequence of (1.6), we get that the normalized scalar curvature of Σ
n

satisfies R = �1�H2. Hence, under the assumptions of Theorem 2.2.9, we obtain the

following estimate

inf
Σ

R ÿ 1

(sup u±)2 � 1
. (2.90)

In view of the relation (2.90), from item (i) of Corollary 2.2.10 we also get the

following result:

Corollary 2.2.12 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectio-

nal curvature bounded from below. If the normalized scalar curvature satisfies R > �1,

then Σ
n cannot be contained in any Ω

�(a, ã) or in any Ω
+(a, ã), for every unit timelike

vector a 2 R
n+2
2 and for every 0 < ã < 1.

Proceeding, we obtain the following estimate for the Ricci curvature of a complete

spacelike hypersurface in H
n+1
1 :

Theorem 2.2.13 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sectio-

nal curvature bounded from below. If Σn is contained either in Ω
�(a, ã) or in Ω

+(a, ã),

for some unit timelike vector a 2 R
n+2
2 and some 0 < ã < 1, then its Ricci curvature

satisfies

inf
Σ

Ric = inf
p2Σ

v2TpΣ

|v|=1

Ricp(v, v) ÿ
n� 1

(sup
Σ
u±)2 � 1

,

where u± 2 C1(Σ) is defined by u± = ±la as we have Σ
n ã Ω

�(a, ã) or Σn ã Ω
+(a, ã).
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Proof. As in the proof of Theorem 2.2.9, we will first assume that Σ
n ã Ω

+(a, ã) for

some unit timelike vector a 2 R
n+2
2 and for some 0 < ã < 1. In such a case, we will

choose the orientation N of Σn in the same time-orientation of a. It follows from (1.5)

and (2.87) that

Ric(ekj , e
k
j ) = �(n� 1)�

nX

i=1

�i(pk)�j(pk) + �2j(pk)

= �(n� 1)�
X

i 6=j

�i(pk)�j(pk) (2.91)

ÿ �(n� 1)� (n� 1)

7
1/k � u(pk)

�fa(pk)

ç2

,

where u = la (here, for simplicity, we also wrote u instead of u+). Letting k ! 1 and

using (2.85) and (2.89), from (2.91) we get that

inf
p2Σ

v2TpΣ

|v|=1

Ricp(v, v) ÿ �(n� 1)

2
41 +

 
� sup

Σ
up

1� (sup
Σ
u)2

!2
3
5 =

n� 1

(sup
Σ
u)2 � 1

.

In the case where Σn ã Ω
�(a, ã), we consider the function u� 2 C1(Σ) defined by

u� = �la, which is smooth and bounded from above. A straightforward computation

shows that the Hessian of u� is given by

Hessu�(X,X) = fahA(X), Xi+ u�hX,Xi,

for all tangent vector field X 2 X(Σ). Let (qk) ã Σ
n be a maximizing sequence for

u� in the sense of Lemma 2.2.8. For each k 2 N, let {ekj}
n
j=1 be an orthonormal basis

of principal directions at pk satisfying Apk(e
k
j ) = �j(pk)e

k
j . All this allows us to obtain

that

�j(pk) <
1/k � u�(pk)

fa(pk)
< 0, (2.92)

where the last inequality holds for all k large enough, since 1/k�u�(pk) ! � sup
Σ
u� <

0 as k ! 1, and fa > 0 on Σ
n. Moreover, it can be easily seen that

lim
k!1

fa(pk) = 1�
7
sup
Σ

u�
ç2

. (2.93)

On the other hand, from (1.5) and (2.92) we get that

Ric(ekj , e
k
j ) ÿ �(n� 1)� (n� 1)

7
1/k � u�(pk)

fa(pk)

ç2

. (2.94)
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Therefore, letting k ! 1 and using (2.93), from (2.94) we obtain

inf
p2Σ

v2TpΣ

|v|=1

Ricp(v, v) ÿ �(n� 1)

2
41 +

 
� sup

Σ
u�

p
1� (sup

Σ
u�)2

!2
3
5 =

n� 1

(sup
Σ
u�)2 � 1

.

This finishes the proof of Theorem 2.2.13.

We close our paper with the following consequence of Theorem 2.2.13:

Corollary 2.2.14 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface with sec-

tional curvature bounded from below. If its Ricci curvature satisfies Ric > �(n � 1),

then Σ
n cannot be contained in any Ω

�(a, ã) or in any Ω
+(a, ã), for every unit timelike

vector a 2 R
n+2
2 and for every 0 < ã < 1.

2.2.4 More results of umbilicity for spacelike hypersurfaces in

the H
n+1

1

For a fixed vector a 2 R
n+2
2 , let us consider the height and angle functions attached

to a spacelike hypersurface  : Σn ! H
n+1
1 , which are defined, respectively, by la =

h , ai and fa = hN, ai. A direct computation allows us to conclude that the gradient

of such functions are given, respectively, by

rla = a> (2.95)

and

rfa = �A(a>), (2.96)

where a> is the orthogonal projection of a onto the tangent bundle TΣ, that is,

a> = a+ faN + la . (2.97)

Using Gauss and Weingarten formulas (1.1) and (1.2), from (2.95) it is not difficult to

verify that

rXrla = �faAX + laX, (2.98)

for all X 2 X(Σ). Thus, it follows from (1.1.1), (1.10) and (2.98) that

Lrla = cr (Hr+1fa +Hrla) . (2.99)
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Taking into account the description of the totally umbilical hypersurfaces of Hn+1
1

recalled in the end of the previous section, we will consider two suitable open regions

of Hn+1
1 determined by a fixed unit timelike vector a 2 R

n+2
2 ; more precisely,

Ω
+
a := {p 2 H

n+1
1 : 0 < ha, pi < 1}

and

Ω
�
a := {p 2 H

n+1
1 : �1 < ha, pi < 0},

which are illustrated in Figure 1.

Figure 1: Open regions of Hn+1
1 determined by a fixed unit timelike vector a 2 R

n+2
2 .

Now, we are in position to present our first uniqueness result.

Theorem 2.2.15 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface of H

n+1
1

with bounded second fundamental form, such that f 2
a ÿ 1/2 for some fixed unit timelike

vector a 2 R
n+2
2 . Suppose that, for some 1 ÿ r ÿ n� 1, the r-th mean curvature Hr of

Σ
n is positive and satisfies

0 ÿ Hr+1 ÿ Hr.

If |a>| 2 L1(Σ) and Σ
n is contained in the open region Ω

+
a (respect. Ω

�
a ), then Σ

n

is the totally umbilical spacelike hypersurface M' of H
n+1
1 with ' =

p
2/2 (respect.

' = �
p
2/2).

Proof. Initially, from (1.12) and (2.3) we have that

Lr(l
2
a) = 2laLr(la) + 2hPr(rla),rlai

= 2la{crHr+1fa + crHrla}+ 2hPr(rla),rlai

= 2crHr+1lafa + 2crHrl
2
a + 2hPr(rla),rlai.

(2.100)

Thus, by adding and subtracting the terms cr
H2

r+1

Hr

l2a and crHrf
2
a in (2.100), we obtain

Lr(l
2
a) = cr

7p
Hrfa +

Hr+1p
Hr

la

ç2

+ cr

7
Hr �

H2
r+1

Hr

ç
l2a

+ crHr(l
2
a � f 2

a ) + 2hPr(rla),rlai.
(2.101)

On the other hand, taking into account that a 2 R
n+2
2 is a unit timelike vector, from

(2.97) we get

l2a = |rla|
2 + 1� f 2

a . (2.102)
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Hence, inserting (2.102) in (2.101) we conclude that

Lr(l
2
a) = cr

7p
Hrfa +

Hr+1p
Hr

la

ç2

+ cr

7
Hr �

H2
r+1

Hr

ç
l2a

+ crHr|rla|
2 + crHr(1� 2f 2

a ) + 2hPr(rla),rlai,
(2.103)

where cr = (n� r)
�
n
r

�
. Thus from (1.12) and (2.103) we obtain

2laLr(la) = cr

7p
Hrfa +

Hr+1p
Hr

la

ç2

+ cr

7
Hr �

H2
r+1

Hr

ç
l2a (2.104)

+ crHr|rla|
2 + crHr(1� 2f 2

a ).

But, supposing that either Σn ã Ω
+
a or Σ

n ã Ω
�
a , we get that la has strict sign on Σ

n.

Consequently, we can rewrite (2.104) as follows

Lr(la) =
1

2la

n
cr

7p
Hrfa +

Hr+1p
Hr

la

ç2

+ cr

7
Hr �

H2
r+1

Hr

ç
l2a (2.105)

+ crHr|rla|
2 + crHr(1� 2f 2

a )
o
.

Since we are also assuming that 0 ÿ Hr+1 ÿ Hr, from (2.105) we conclude that Lr(la)

does not change sign on Σ
n. Consequently, since we are supposing that the second

fundamental form is bounded and that | a>| 2 L1(Σ), from (1.7) and (1.14) it is not

difficult to see that we can apply Lemma 1.1.5 to get that Lr(la) = 0 on Σ
n. Hence,

returning to equation (2.105), we get that Hr|rla|
2 = 0 and, since Hr > 0, it follows

that rla = 0. Therefore, la is constant on Σ
n, which means that Σn is a totally umbilical

spacelike hypersurface M' of Hn+1
1 . Moreover, returning once more to (2.105), we also

obtain that f 2
a = 1/2, and (2.102) gives that ' 2 = 1/2.

Let  : Σn ! H
n+1
1 be a spacelike hypersurface immersed in the anti-de Sitter

space H
n+1
1 , with second fundamental form A. According to [67], for p 2 Σ

n, we define

the space of relative nullity N (p) of Σn at p by

N (p) = {v 2 TpΣ; v 2 ker(Ap)},

where ker(Ap) denotes the kernel of Ap. The index of relative nullity +(p) of Σn at p is

the dimension of N (p), that is,

+(p) = dim (N (p)) ,

and the index of minimum relative nullity +0 of Σn is defined by

+0 = min
p2Σ

+(p).
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We also recall that a spacelike hypersurface Σ
n immersed in H

n+1
1 is said to be

r-maximal if Hr+1 vanishes identically on Σ
n. In this setting, we obtain the following

result:

Theorem 2.2.16 Let  : Σn ! H
n+1
1 be a complete r-maximal spacelike hypersurface,

2 ÿ r ÿ n � 1, with bounded second fundamental form, such that f 2
a ÿ 1/2 and

|a>| 2 L1(Σ) for some fixed unit timelike vector a 2 R
n+2
2 . If Hr is a nonnegative

constant and Σ
n is contained either in Ω

+
a or Ω

�
a , then the index of minimum relative

nullity +0 of Σn is at least n � r + 1. Moreover, if Hr�1 does not vanish on Σ
n, then

through every point of Σ
n there passes an (n � r + 1)-dimensional hyperbolic space

H
n�r+1 ,! H

n+1
1 which is totally contained in Σ

n.

Proof. Let us suppose, by contradiction, that Hr > 0. Reasoning as in the proof of

Theorem 2.2.15, we get that Lr(la) = 0 in Σ
n. Consequently, since Hr+1 is identically

zero, from (2.3) we conclude that Hrla = 0, which cannot occur since we are also

assuming that either Σ
n ã Ω

+
a or Σ

n ã Ω
�
a . Thus, we get that Hr must be zero.

Hence, from Proposition 2.3(c) of [42], we see that Hj = 0 for all j � r and, hence,

+0 � n� r + 1.

Furthermore, supposing in addition that Hr�1 does not vanish on Σ
n, from The-

orem 5.3 of [67] (see also [71]) we have that the distribution p 7! N (p) of minimal

relative nullity of Σn is smooth and integrable with complete leaves, totally geodesic

in Σ
n and in H

n+1
1 . Therefore, the result follows from the characterization of complete

totally geodesic submanifolds of Hn+1
1 as hyperbolic spaces of suitable dimension.

Our next result is related to the nonexistence of complete 1-maximal spacelike

hypersurfaces in H
n+1
1 .

Theorem 2.2.17 There does not exist complete 1-maximal spacelike hypersurface  :

Σ
n ! H

n+1
1 with nonnegative constant mean curvature, which is contained either in

Ω
+
a or Ω

�
a , for some fixed unit timelike vector a 2 R

n+2
2 , and such that f 2

a ÿ 1
2

and

|a>| 2 L1(Σ).

Proof. Let us assume the existence of such a complete 1-maximal spacelike hyper-

surface Σ
n. if H = 0, from (1.6) we get that |A| = 0 and, consequently, we conclude

that Σ
n must be a totally geodesic spacelike hypersurface M0. But, from (1.16) and

(2.102) we get f 2
a = 1, contradicting the fact that f 2

a ÿ 1
2
. Otherwise, if H > 0, we

can reason once more as in the proof of Theorem 2.2.15 to get that L1(la) = 0 in Σ
n.
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Hence, using again (2.3), we obtain that Hla = 0, allowing us to a contradiction with

the assumption that Σ
n is contained either in Ω

+
a or Ω

�
a .

Remark 2.2.18 Wu [124] and Yang [126] investigated complete r-maximal spacelike

hypersurfaces with two principal curvature in H
n+1
1 , n � 3, obtaining characterization

results concerning the hyperbolic cylinder H
n�1(c1) å H

1(c2), where 1
c1

+ 1
c2

= �1,

which extend a previous one due to Cao and Wei [50]. It is also worth to mention

that Perdomo [107] treated the 2-dimensional case and constructed new examples of

complete maximal surfaces in H
3
1. Moreover, Chaves, Sousa and Valério [51] studied

complete maximal spacelike hypersurfaces in H
n+1
1 with either constant scalar curvature

or constant non-zero Gauss-Kronecker curvature, characterizing the hyperbolic cylinder

H
n�1(c1) å H

1(c2) as the only such a maximal spacelike hypersurface with (n � 1)

principal curvatures with the same sign everywhere.

In order to state our next result, we need to establish the following definition: We

say that a spacelike hypersurface Σ
n is locally tangent from below to a totally umbilical

hypersurface M' of Hn+1
1 , when there exist a point p 2 Σ

n and a neighborhood U ã Σ
n

of p such that la(p) = ' and la(q) ÿ ' for all q 2 U (see Figure 2).

Figure 2: Σ
n is locally tangent from bellow to M' .

On the other hand, we say that Σ
n is locally tangent from above to M' , when

there exists a point p 2 Σ
n and a neighborhood U ã Σ

n of p such that la(p) = ' and

la(q) � ' for all q 2 U (see Figure 3).

Figure 3: Σ
n is locally tangent from above to M' .

Considering this previous setting, we obtain the following:

Theorem 2.2.19 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface of H

n+1
1

with bounded second fundamental form such that f 2
a ÿ 1/2 for some fixed unit timelike

vector a 2 R
n+2
2 . Suppose, for some 1 ÿ r ÿ n, that the r-th mean curvature Hr of Σn

satisfies

0 < Hr ÿ 1.

If |a>| 2 L1(Σ), la � �fa, Σ
n is contained in the open region Ω

+
a (respect. Ω

�
a ) and it is

locally tangent from below (respect. above) to a totally umbilical spacelike hypersurface

M' , then ' =
p
2/2 (respect. ' = �

p
2/2) and Σ

n is the totally umbilical spacelike

hypersurface M' .
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Proof. Let us prove the case that Σ
n is contained in the open region Ω

+
a and it is

locally tangent from below to a totally umbilical spacelike hypersurface M' (the proof

of the other case is similar).

For this, we consider V 2 X(Hn+1
1 ) given by

V (p) = hp, aip+ a.

According to Example 4.3 of [99], we have that V is a complete closed conformal vector

field, with

DivV (p) = (n+ 1)hp, ai,

and

|V |Σ =
p
�hV, V i =

p
1� l2a.

Thus, since we are supposing that Σ
n is locally tangent from below to a totally um-

bilical spacelike hypersurface M' , we have that |V |Σ attains a local minimum on Σ
n.

Consequently, since Σ
n ã Ω

+
a implies that DivV |Σ = (n + 1)la > 0, we can apply

Lemma 1.1.4 to guarantee the existence of an elliptic point on Σ
n. Hence, since we are

also supposing that Hr > 0, it follows from Lemma 1.1.3 that the Newton transforma-

tion Pj is positive definite and, consequently, Hj is positive for all 1 ÿ j ÿ r � 1.

Now, we define the following vector field tangent to Σ
n

X =
r�1X

i=0

1

ci
Pi(rla), (2.106)

where ci = (i+ 1)

7
n

i+ 1

ç
. From (2.3) we obtain

divX =
r�1X

i=0

1

ci
Li(la) = (Hrfa +Hr�1la) + · · ·+ (Hfa + la) (2.107)

= Hrfa +Hr�1(fa + la) + · · ·+H(fa + la) + la.

Consequently, since we are assuming that Hr ÿ 1 and la � �fa on Σ
n, from

(2.107) we conclude that

divX = Hrfa +Hr�1(fa + la) + · · ·+H(fa + la) + la

� Hrfa +Hr�1(fa + la) + · · ·+H(fa + la) +Hrla

= (Hr + · · ·+H)(fa + la) � 0.

(2.108)
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Thus, using that Hj is positive, for all 1 ÿ j ÿ r, joint with the equation (2.108) we

deduce that divX � 0. Moreover, since we are supposing that the second fundamental

form of Σn is bounded and that |rla| = |a>| 2 L1(Σ), from (1.7) and (2.106) we have

that |X| 2 L1(Σ). Hence, we can apply Lemma 1.1.5 to get that divX = 0 on Σ
n and,

returning to (2.108), la = �fa on Σ
n. Now, we observe from (2.102) and the fact that

f 2
a ÿ 1/2, we conclude

0 ÿ |rla|
2 = l2a + f 2

a � 1 = 2f 2
a � 1 ÿ 0, (2.109)

that is, |rla|
2 = 0. Hence, la is constant on Σ

n, from (2.109) we get that f 2
a = 1/2.

Therefore Σ
n is the totally umbilical spacelike hypersurface M' , with ' =

p
2/2.

When r = 2, we can reason as in the proof of Theorem 2.2.17 but using Lemma 1.1.2

instead of Lemma 1.1.3. For this reason, in this case there is no need to assume that Σn

is contained in the open region Ω
+
a (respect. Ω�

a ) and neither that it is locally tangent

from below (respect. above) to a totally umbilical spacelike hypersurface M' . So, we

obtain the following result.

Theorem 2.2.20 Let  : Σn ! H
n+1
1 be a complete spacelike hypersurface of H

n+1
1

with bounded second fundamental form such that f 2
a ÿ 1/2 for some fixed unit timelike

vector a 2 R
n+2
2 . Suppose that the second mean curvature satisfies

0 < H2 ÿ 1.

If |a>| 2 L1(Σ) and la � �fa, then Σ
n is a totally umbilical spacelike hypersurface M' ,

with ' 2 = 1/2.
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Capítulo 3

Results for spacelike submanifolds in

pseudo-Riemannian space forms

In this chapter, we deal with n-dimensional spacelike submanifolds immersed with

parallel mean curvature vector (which is supposed to be either spacelike or timelike) in

a pseudo-Riemannian space form L
n+p
q (c) of index 1 ÿ q ÿ p and constant sectional cur-

vature c 2 {�1, 0, 1}. Under suitable constraints on the traceless second fundamental

form, we apply a maximum principle for complete noncompact Riemannian manifolds

having polynomial volume growth, recently established by Alías, Caminha and Nasci-

mento [7], to prove that such a spacelike submanifold must be totally umbilical. For

more details you can look at the works [24], [25], [30] and [31].

3.1 Set up and key lemmas

Let Mn be an n-dimensional connected spacelike submanifold immersed in an

(n+p)-dimensional pseudo-Riemannian space form L
n+p
q (c) of index q, with 1 ÿ q ÿ p,

and constant curvature c 2 {�1, 0, 1}. We choose a local field of pseudo-Riemannian

orthonormal frame {e1, . . . , en+p} in L
n+p
q (c), with dual coframe {!1, . . . ,!n+p}, such

that, at each point of Mn, e1, . . . , en are tangent to Mn and en+1, . . . , en+p are normal

to Mn. We have that the pseudo-Riemannian metric ds2 of Ln+p
q (c) can be written as

ds2 =
X

A

/A!
2
A, (3.1)



where

/i = 1, 1 ÿ i ÿ n; /� = 1, n+1 ÿ � ÿ n+p� q; /� = �1, n+p� q+1 ÿ � ÿ n+p.

We will use the following convention for indices

1 ÿ A,B,C, . . . ÿ n+ p; 1 ÿ i, j, k, . . . ÿ n; n+ 1 ÿ µ ÿ n+ p.

n+ 1 ÿ �, �0 ÿ n+ p� q; n+ p� q + 1 ÿ �, �0 ÿ n+ p

Denoting by {!AB} the connection forms of Ln+p
q (c), we have that the structure equa-

tions of Ln+p
q (c) are given by

d!A =
X

B

/B !AB ^ !B, !AB + !BA = 0, (3.2)

d!AB =
X

C

/C !AC ^ !CB � 1

2

X

C,D

/C/DKABCD !C ^ !D, (3.3)

and

KABCD = c/A/B(�AC�BD � �AD�BC),

where /A = 1 for 1 ÿ A ÿ n + p � q, /A = �1 for n + p � q + 1 ÿ A ÿ n + p, and

KABCD denote the components of indefinite curvature tensor of Ln+p
q (c).

We restrict forms to Mn, so that we have

!µ = 0, µ = n+ 1, · · · , n+ p,

and the induced metric ds2 of Mn is written as ds2 =
P

i w
2
i . Since

P
i !µi ^ !i = d!µ

and by Cartan’s Lemma we can write

!iµ =
X

j

hµ
ij!j, hµ

ij = hµ
ji. (3.4)

The quadratic form

A =
X

i,j,µ

/µh
µ
ij!i!jeµ,

is the second fundamental form of Mn. Denote

Hµ =
1

n

X

i

hµ
ii µ = n+ 1, · · · , n+ p.
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Then the mean curvature vector h is expressed as h =
P

µ /µH
µeµ and denote by H

the length of h and by S the square of the length of the second fundamental form, i.e.

H = ||h||=

sX

µ

(Hµ)2 and S =
X

µ,i,j

(hµ
ij)

2.

We can write out the structure equations of M

d!i =
X

j

!ij ^ !j, !ji + !ij = 0,

d!ij =
X

k

!ik ^ !kj �
1

2

X

k,l

Rijkl!k ^ !l.

where Rijkl are the components of the curvature tensor of Mn. Using the previous

structure equations, we obtain the Gauss equation

Rijkl = c(�ik�jl � �il�jk) +
X

�

(h�
ikh

�
jl � h�

ilh
�
jk)�

X

�

(h�
ikh

�
jl � h�

ilh
�
jk). (3.5)

In particular, the components of the Ricci tensor Rik and the normalized scalar curva-

ture R are given, respectively, by

Rik = c(n� 1)�ik +
X

�

X

j

(h�
ikh

�
jl � h�

ilh
�
jk)�

X

�

X

j

(h�
ikh

�
jl � h�

ilh
�
jk),

and

R = cn(n� 1) + n
X

�

(H�)2 � n
X

�

(H�)2 � S1 + S2, (3.6)

where H� = 1
n

P
j h

�
jj, H

� = 1
n

P
j h

�
jj and

S1 =
X

�,i,j

(h�
ij)

2, S2 =
X

�,i,j

(h�
ij)

2;

we now put S = S1 + S2. Moreover, the normal curvature tensor {Rµ�kl} is expressed

as

Rµ�kl =
nX

m=1

(hµ
kmh

�
lm � hµ

lmh
�
km). (3.7)

Define the first and the second covariant derivarives of {hµ
ij}, say {hµ

ijk} and {hµ
ijkl} by

X

k

hµ
ijk!k = dhµ

ij +
X

k

(hµ
kj!ki + hµ

ik!�µ) +
X

�

h�
ij!�µ �

X

�

h�
ij!�µ, (3.8)
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X

l

hµ
ijkl!l = dhµ

ijk +
X

l

hµ
ljk!li +

X

l

hµ
ilk!lj +

X

l

hµ
ijl!lk +

X

�

h�
ijk!�µ �

X

�

h�
ijk!�µ.

(3.9)

Then, by exterior differentiation of (3.4), we obtain the Codazzi equation

hµ
ijk = hµ

ikj = hµ
jik. (3.10)

By exterior differentiation of (1.18), we have the following Ricci identity

hµ
ijkl � hµ

ijlk =
X

m

hµ
mjRmikl +

X

m

hµ
miRmjkl +

X

�

h�
ijR�µkl �

X

�

h�
ijR�µkl. (3.11)

In order to prove our results, we will also need the following algebraic lemmas,

whose proofs can be found in [116] and [87], respectively.

Lemma 3.1.1 Let B1 and B2 be symmetric nån matrices such that [B1, B2] = 0 and

trB1 = trB2 = 0. Then

|trB2
1B2|ÿ

n� 2p
n(n� 1)

(trB2
1)
q

trB2
2 ,

and the equality holds if and only if n � 1 of the eigenvalues xi of B1 and the corres-

ponding eigenvalues yi of B2 satisfy

|xi|=
(trB2

1)
1/2

p
n(n� 1)

, yi =
(trB2

2)
1/2

p
n(n� 1)

 
resp.,yi = � (trB2

2)
1/2

p
n(n� 1)

!
.

Lemma 3.1.2 Let B1, . . . , Bp, p � 2 be symmetric nå n matrices. Then

pX

µ,�=1

(tr[Bµ, B�]
2 � (trBµB�)

2) � �3

2

 
pX

µ=1

trB2
µ

!2

.

To close this section, we will quote the maximum principle that will be used to

prove our main results. For this, let M be a connected, oriented, complete noncompact

Riemannian manifold. We denote by B(p, t) the geodesic ball centered at p and with

radius t.

Given a polynomial function � : (0,+1) �! (0,+1), we say that M has poly-

nomial volume growth like �(t) if there exists p 2 M such that

vol(B(p, t)) = O(�(t)),

as t �! +1, where vol denotes the Riemannian volume.
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If p, q 2 M are at distance d from each other, it is straightforward to check that

vol(B(p, t))

�(t)
� vol(B(q, t� d))

�(t� d)
.
�(t� d)

�(t)
.

Hence, the choice of p in the notion of volume growth is immaterial, so that, henceforth,

we shall simply say that M has polynomial volume growth.

On the other hand, Alías, Caminha and Nascimento deduct a new form of maxi-

mum principle for smooth function on a complete noncompact Riemannian manifold

M (See Theorem 2.1 of [7]). According to this new result, we can obtain the following

Lemma:

Lemma 3.1.3 Let M be a connected, oriented, complete noncompact Riemannian ma-

nifold, and let f 2 C1(M) be nonnegative and such that ∆f � af on M , for some

a > 0. If M has polynomial volume growth and |rf | is bounded on M , then f ; 0 on

M .

Gap type results

We denote by r and ∆ the gradient and the Laplacian operator in the metric

of the spacelike submanifold Mn. Then the Laplacian of the second fundamental form

hµ
ij is defined by ∆hµ

ij =
Pn

k=1 h
µ
ijkk. From (3.10) and (3.11), we obtain

∆hµ
ij =

X

k

hµ
kkij +

X

m,k

hµ
mkRmijk +

X

m,k

hµ
imRmkjk +

X

k,�

h�
ikR�µjk �

X

k,�

h�
ikR�µjk.(3.12)

Since
1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j,µ

hµ
ij∆hµ

ij, (3.13)

from (3.13) and (3.12), we have

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j,µ,k

hµ
ijh

µ
kkij +

X

i,j,µ,m,k

hµ
ijh

µ
mkRmijk +

X

i,j,µ,m,k

hµ
ijh

µ
imRmkjk (3.14)

+
X

i,j,µ,k,�

hµ
ijh

�
ikR�µjk �

X

i,j,µ,k,�

hµ
ijh

�
ikR�µjk,

by using (1.20) and (3.7), it is straightforward to verify that

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

µ,i,j

nhµ
ijh

µ
kkij + cnS � cn2H2 (3.15)

+
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij)�

X

µ,�

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2)

�
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij) +

X

µ,�

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2),
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where N(hµ
ij) = tr((hµ

ij)
Thµ

ij). From (3.15) we that following result.

Proposition 3.1.4 Considering all the previous notation, it holds the following Si-

mons type formula:

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 + n
X

µ,i,j

hµ
ijh

µ
kkij + nc(S � nH2)

+
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij)�

X

�,�0

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2)

�
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij) +

X

�,�0

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2).

Now, we will recall the definition of the traceless second fundamental form. For

this,

�µ
ij = hµ

ij �Hµ�ij,

we consider the following symmetric tensor

Φ =
X

µ,i,j

�µ
ij!i ' !j ' eµ. (3.16)

It is easy to check that Φ is traceless and

|Φ|2=
X

µ

trΦ2
µ = S � nH2, (3.17)

where Φµ denote the matrix (�µ
ij). Moreover, we observe that |Φ|2= 0 if and only if

Mn is a totally umbilical submanifold of Ln+p
q (c).

The next key lemma is due to Barros et al. (see Lemma 1 of [23]).

Lemma 3.1.5 Let Mn be a Riemannian manifold isomatrically immersed into a Ri-

emannian manifold Nn+p. Consider Ψ =
X

µ,i,j

Ψ
µ
ij!i ' !j ' eµ a traceless symmetric

tensor satisfying Codazzi equation. Then the following inequality holds

|r|Ψ|2|2ÿ 4n

n+ 2
|Ψ|2|rΨ|2,

where |Ψ|2=
X

µ,i,j

(Ψµ
ij)

2 and |rΨ|2=
X

µ,i,j,k

(Ψµ
ijk)

2. In particular the conclusion holds for

the tensor Φ defined in (3.55).

Now, we are in position to establish our first gap result.
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Theorem 3.1.6 Let Mn be a complete spacelike submanifold immersed in L
n+p
q (c),

with c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean curvature

vector. When c = �1, suppose in addition that H > 1. If M has polynomial volume

growth, |rΦ| is bounded and assuming that there is a constant µ suth that supM |Φ|ÿ
µ < µå, where µå is the positive root of the function

PH(x) := �5x2 � 2n(n� 2)p
n(n� 1)

Hx+ 2n(c+H2). (3.18)

Then, supM |Φ|= 0 and Mn is a totally umbilical submanifold.

Proof. Taking into account that the mean curvature vector is spacelike, we choose

en+1 to have the same direction an h, so that h = Hen+1; Then we have

Hn+1 = H; Hµ = 0, µ = n+ 2, · · · , n+ p. (3.19)

Since h in nonzero and parallel, we see that H is a nonzero constant and en+1 is parallel.

It follows that hn+1
ij hµ

ij = hµ
ijh

n+1
ij and

X

k

hµ
kki = 0,

X

k

hµ
kkij = 0. (3.20)

From (3.19) and (3.17) we have

�n+1
ij = hn+1

ij �H�ij, tr(Φ2
n+1) = tr(hn+1

ij )2 � nH2, (3.21)

tr(hn+1
ij )3 = trΦ3

n+1 + 3HtrΦ2
n+1 + nH3, (3.22)

�µ
ij = hµ

ij, trΦ2
µ = tr(h2

µ), µ � n+ 2. (3.23)

Substituting (3.19) - (3.23) into Proposition 3.1.4 we obtain

1

2
∆|Φ|2=

X

µ

|rΦµ|
2+n(c+H2)|Φ|2+n

X

µ

Htr(Φ2
µΦn+1)

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) (3.24)

+
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2).

Now we shall estimate separately each term of the right-hand side of (3.24). First, we

define

|Φ1|
2=
X

�

X

i,j

(Φ�
ij)

2 = S1 � nH2, |Φ2|
2=
X

�

X

i,j

(Φ�
ij)

2 = S2, (3.25)
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then |Φ|2= |Φ1|
2+|Φ2|

2. Since

[Φn+1,Φµ] = [hn+1
ij , hµ

ij] = 0, trΦµ = 0, µ = n+ 1, · · · , n+ p,

we may apply Lemma (3.1.1) to the third term of (3.24), obtaining

X

µ

trΦn+1Φ
2
µ � � n� 2p

n(n� 1)

 
X

µ

trΦ2
µ

!q
trΦ2

n+1 = � n� 2p
n(n� 1)

|Φ|2|Φn+1|.

(3.26)

The fourth term of (3.24) can be rewritten as follows:

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)� |Φn+1|

4�2
X

� 6=n+1

(trΦn+1Φ�)
2,

it follows from Lemma (3.1.2) that, for p� q � 3,

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)��3

2

 
X

� 6=n+1

|Φ�|
2

!2

(3.27)

��3

2
(|Φ|2�|Φn+1|

2)2,

and the second equality holds if and only if S2 = 0; When p� q = 2, (3.27) becomes

�(trΦn+2Φn+2)
2 � �3

2
(trΦ2

n+2)
2,

which, of course, hold, and we really obtain (3.27) for p � q � 2. On the other hand,

by the Cauchy-Schwarz inequality, we have

X

� 6=n+1

(trΦn+1Φ�)
2 ÿ |Φn+1|

2
X

� 6=n+1

|Φ�|
2ÿ |Φn+1|

2(|Φ|2�|Φn+1|
2), (3.28)

and the second equality holds if and only if S2 = 0. It follows from (3.27) and (3.28)

that

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)� |Φn+1|

4�2
X

� 6=n+1

(trΦn+1Φ�)
2,

� �3

2
(|Φ|2�|Φn+1|

2)2 � |Φn+1|
4�2|Φn+1|

2(|Φ|2�|Φ2
n+1). (3.29)

For the last term of (3.24), we have

X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) � 0, (3.30)
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and the equality holds if and only if S2 = 0. Substituting (3.26), (3.29) and (3.30) into

(3.24), we obtain

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2+

1

2
|Φn+1|

2
�
|Φ|2�|Φn+1|

2
�

(3.31)

+ |Φ|2

 
�3

2

�
|Φ|2�|Φn+1|

2
�
� n(n� 2)p

n(n� 1)
H|Φn+1|�|Φn+1|

2+n(c+H2)

!
.

Since |Φn+1|ÿ |Φ| and H > 0, we can rewritten as follows

∆|Φ|2 � |Φ|2PH(|Φ|), (3.32)

where PH(x) is the function defined by (3.18). Knowing that supM |Φ|ÿ µ < µå, then

for the behavior of PH(x), we obtain

∆|Φ|2 � a|Φ|2,

where a = PH(µ) > 0.

On the order hand, as supM |Φ|ÿ µ < µå and |rΦ| is bounded, from Lemma

3.1.5 we can guarantee that |r|Φ|2| is bounded, Therefore we can apply Lemma 3.4.1

to conclude supM |Φ|= 0 and Mn is a totally umbilical submanifold.

When the mean curvature vector is timelike and the ambient space is de Sitter

space S
n+p
q , we also get the following result

Theorem 3.1.7 Let Mn be a complete spacelike submanifold immersed in de Sitter

space S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature vector.

Suppose that H < 1. If M has polynomial volume growth, |rΦ| is bounded and assu-

ming that there is a constant � suth that supM |Φ|ÿ � < �å, where �å is the positive

root of the function

QH(x) := �4(2q � 1)

q � 1
x2 � 2n(n� 2)p

n(n� 1)
Hx+ 2n(1�H2). (3.33)

Then, supM |Φ|= 0 and Mn is a totally umbilical submanifold.

Proof. Taking into account that the mean curvature vector is timelike, we choose en+p

to have the same direction an h, so that h = Hen+p; Then we have

Hn+p = H; Hµ = 0, µ = n+ 1, · · · , n+ p� 1. (3.34)
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Since h in nonzero and parallel, we see that H is a nonzero constant and en+p is parallel.

It follows that hn+p
ij hµ

ij = hµ
ijh

n+p
ij and

X

k

hµ
kki = 0,

X

k

hµ
kkij = 0. (3.35)

From (3.34) and (3.17) we have

�
n+p
ij = hn+p

ij �H�ij, tr(Φ2
n+p) = tr(hn+p

ij )2 � nH2, (3.36)

tr(hn+p
ij )3 = trΦ3

n+p + 3HtrΦ2
n+p + nH3, (3.37)

�µ
ij = hµ

ij, trΦ2
µ = tr(h2

µ), n+ 1 ÿ µ ÿ n+ p� 1. (3.38)

Substituting (3.34) - (3.38) into Proposition 3.1.4 we obtain

1

2
∆|Φ|2=

X

µ

|rΦµ|
2+n(1�H2)|Φ|2�n

X

µ

Htr(Φ2
µΦn+1)

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) (3.39)

+
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2).

Now we shall estimate separately each term of the right-hand side of (3.39). First, we

define

|Φ1|
2= S1 =

X

�

X

i,j

(Φ�
ij)

2, |Φ2|
2=
X

�

X

i,j

(Φ�
ij)

2 = S2 � nH2; (3.40)

then |Φ|2= |Φ1|
2+|Φ2|

2. Since

trΦµ = 0, [Φn+p,Φµ] = [hn+p
ij , hµ

ij] = 0, µ = n+ 1, · · · , n+ p,

we may apply Lemma (3.1.1) to the third term of (3.39), obtaining

X

µ

trΦn+pΦ
2
µ ÿ n� 2p

n(n� 1)

 
X

µ

trΦ2
µ

!q
trΦ2

n+p =
n� 2p
n(n� 1)

|Φ|2|Φn+p|. (3.41)

Using Lemma (3.1.2) in the fourth term of (3.39), we can write

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2)��3

2
(|Φ|2�|Φ2|

2)2 (3.42)

=�3

2
(|Φ|4�2|Φ2|

2|Φ|2+|Φ2|
4)

��3

2
(|Φ|4�2|Φn+p|

2|Φ|2 + |Φ|4)

=�3|Φ|2(|Φ|2 � |Φn+p|
2),
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and the equalities hold if and only if |Φ1|
2 = S1 = 0 and |Φ2|

2 = |Φn+p|
2.

For the last term of (3.39), we have

X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) � 0, (3.43)

and

X

�,�0

(trΦ�0Φ�)
2 � |Φn+p|

4 +
1

q � 1
(|Φ2|

2 � |Φn+p|
2)2 (3.44)

= |Φn+p|
4 +

1

q � 1
(|Φ2|

4 � 2|Φ2|
2|Φn+p|

2 + |Φn+p|
4)

� |Φn+p|
4 +

1

q � 1
(|Φn+p|

4 � 2|Φ|2|Φn+p|
2 + |Φn+p|

4)

= |Φn+p|
4 +

2

q � 1
|Φn+p|

2(|Φn+p|
2 � |Φ|2),

where the equalities hold if and only if |Φ1|
2 = S1 = 0 and |Φ2|

2 = |Φn+p|
2.

Substituting (3.41)-(3.44) into (3.39), we obtain

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2�q + 1

q � 1
|Φn+p|

2(|Φ|2 � |Φn+p|
2) (3.45)

+ |Φ|2

 
�3(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+ |Φn+p|
2 + n(1�H2)

!
.

Since |Φn+p|ÿ |Φ| e H > 0, we can rewritten as follows

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2�q + 1

q � 1
|Φ|2(|Φ|2 � |Φn+p|

2)

+ |Φ|2

 
�3(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+ (3.46)

+ |Φn+p|
2 + n(1�H2)

�

� |Φ|2

 
�2(2q � 1)

q � 1
(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+

+ |Φn+p|
2 + n(1�H2)

�

� 2(2q � 1)

q � 1
|Φ|2|Φn+p|

2 + |Φ|2
QH(|Φ|)

2
,

or yet, knowing that supM |Φ|ÿ � < �å, then for the behavior of QH(x), we obtain

∆|Φ|2 � |Φ|2QH(|Φ|) � b|Φ|2, (3.47)

where b = QH(�) > 0 and QH(x) is the function defined in (3.33).
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Therefore, we can reason as in the last part of the proof of Theorem 3.1.7 to

conclude that Mn must be totally umbilical.

3.2 Umbilicity of spacelike submanifolds with parallel

mean vector via a maximum principle at infinity

Our approach is based on a suitable maximum principle at infinity for complete

noncompact Riemannian manifolds due to Alías, Caminha and Nascimento [9]. To

quote it, we need to recall the following concept established in the beginning of [9,

Section 2]: Let Mn be a complete noncompact Riemannian manifold and let d( · , o) :

Mn ! [0,+1) denote the Riemannian distance of Mn, measured from a fixed point

o 2 Mn. We say that a smooth function f 2 C1(M) converges to zero at infinity,

when it satisfies the following condition

lim
d(x,o)!+1

f(x) = 0. (3.48)

Keeping in mind this concept, the following maximum principle at infinite corresponds

to item (a) of [9, Theorem 2.2].

Lemma 3.2.1 Let Mn be a complete noncompact Riemannian manifold and let X 2
X(M) be a vector field on Mn. Assume that there exists a nonnegative, non-identically

vanishing function f 2 C1(M) which converges to zero at infinity and such that

hrf,Xi � 0. If divX � 0 on Mn, then hrf,Xi ; 0 on Mn.

So, our purpose is to apply Lemma 3.2.1 jointly with a suitable Simons type

formula (see Proposition 3.1.4)in order to obtain our characterization results of totally

umbilical spacelike submanifolds of a pseudo-Riemannian space form. Denoting by |Φ|

the Hilbert-Schmidt norm of the traceless second fundamental form Φ and assuming

that the mean curvature vector is spacelike and parallel, we state our first characteri-

zation result.

Theorem 3.2.2 Let Mn be an n-dimensional complete noncompact spacelike subma-

nifold immersed with spacelike and parallel mean curvature vector in an (n + p)-

dimensional pseudo-Riemannian space form L
n+p
q (c), with constant sectional curvature

c 2 {0,�1, 1} and index 1 ÿ q < p � 1. When c = �1, suppose in addition that the
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mean curvature satisfies H > 1. If |Φ| converges to zero at infinity with supM |Φ| ÿ µå,

where µå is the positive root of the polynomial function

PH(x) := �5x2 � 2n(n� 2)p
n(n� 1)

Hx+ 2n(c+H2), (3.49)

then supM |Φ| = 0 and Mn is a totally umbilical submanifold of Ln+p
q (c).

In the case that the mean curvature vector is timelike and the ambient space is

de Sitter space S
n+p
q , we obtain our second characterization result of totally umbilical

spacelike submanifolds.

Theorem 3.2.3 Let Mn be an n-dimensional complete noncompact spacelike subma-

nifold immersed with timelike and parallel mean curvature vector in the (n + p)- di-

mensional de Sitter space S
n+p
q , with index 1 < q < p� 1. Suppose in addition that the

mean curvature satisfies H < 1. If |Φ| converges to zero at infinity with supM |Φ| ÿ �å,

where �å is the positive root of the polynomial function

QH(x) := �4(2q � 1)

q � 1
x2 � 2n(n� 2)p

n(n� 1)
Hx+ 2n(1�H2), (3.50)

then supM |Φ| = 0 and Mn is a totally umbilical submanifold of Sn+p
q .

In order to prove our results in the next section, we will also need the following

algebraic lemmas, whose proofs can be found in [116] and [87], respectively.

Lemma 3.2.4 Let B1 and B2 be symmetric nån matrices such that [B1, B2] = 0 and

trB1 = trB2 = 0. Then

|trB2
1B2| ÿ

n� 2p
n(n� 1)

(trB2
1)
q
trB2

2 ,

and the equality holds if and only if n � 1 of the eigenvalues xi of B1 and the corres-

ponding eigenvalues yi of B2 satisfy

|xi| =
(trB2

1)
1/2

p
n(n� 1)

, yi =
(trB2

2)
1/2

p
n(n� 1)

 
resp.,yi = � (trB2

2)
1/2

p
n(n� 1)

!
.

Lemma 3.2.5 Let B1, · · · , Bp, p � 2, be symmetric nå n matrices. Then

pX

µ,�=1

(tr[Bµ, B�]
2 � (trBµB�)

2) � �3

2

 
pX

µ=1

trB2
µ

!2

.
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A Simons type formula and the proofs of Theorems 3.2.2 and 3.2.3

Our aim in this section is to present the proofs of our characterization results for

n-dimensional totally umbilical spacelike submanifolds of a pseudo-Riemannian space

form L
n+p
q (c) of index 1 ÿ q ÿ p and constant sectional curvature c 2 {�1, 0, 1}. To

achieve our goal, we will adapt the technique developed by Yang and Li in [129].

In what follows, we denote by r and ∆ the gradient and the Laplacian operator

in the metric of such a spacelike submanifold Mn immersed in L
n+p
q (c). Then the

Laplacian of the second fundamental form hµ
ij is defined by

∆hµ
ij =

nX

k=1

hµ
ijkk.

So, from (1.2) and (3.11) we obtain

∆hµ
ij =

X

k

hµ
kkij +

X

m,k

hµ
mkRmijk +

X

m,k

hµ
imRmkjk +

X

k,�

h�
ikR�µjk

�
X

k,�

h�
ikR�µjk. (3.51)

Since
1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j,µ

hµ
ij∆hµ

ij, (3.52)

from (3.52) and (3.51) we have

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j,µ,k

hµ
ijh

µ
kkij +

X

i,j,µ,m,k

hµ
ijh

µ
mkRmijk +

X

i,j,µ,m,k

hµ
ijh

µ
imRmkjk

+
X

i,j,µ,k,�

hµ
ijh

�
ikR�µjk �

X

i,j,µ,k,�

hµ
ijh

�
ikR�µjk. (3.53)

Hence, by using (1.20), (3.7) and (3.53), we reach at

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

µ,i,j

nhµ
ijh

µ
kkij + cnS � cn2H2 (3.54)

+
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij)�

X

µ,�

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2)

�
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij) +

X

µ,�

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2),

where N(hµ
ij) = tr((hµ

ij)
Thµ

ij). Therefore, from (4.3) we obtain the following Simons

type formula:
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Proposition 3.2.6 Considering all the previous notations, it holds

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 + n
X

µ,i,j

hµ
ijh

µ
kkij + nc(S � nH2)

+
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij)�

X

�,�0

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2)

�
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij) +

X

�,�0

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2).

Now, we recall that the traceless second fundamental form Φ is defined as been

the following symmetric tensor

Φ =
X

µ,i,j

�µ
ij!i ' !j ' eµ, (3.55)

where �µ
ij = hµ

ij �Hµ�ij. It is not difficult to check that Φ is, indeed, traceless and that

its squared norm satisfies the following algebraic relation

|Φ|2 =
X

µ

trΦ2
µ = S � nH2, (3.56)

where Φµ denotes the matrix (�µ
ij). Moreover, we observe that |Φ| vanishes identically

on Mn if and only if Mn is a totally umbilical submanifold of Ln+p
q (c).

Proof of Theorem 3.2.2

Taking into account that the mean curvature vector is spacelike, we choose en+1

to have the same direction an h, so that h = Hen+1; Then we have

Hn+1 = H; Hµ = 0, µ = n+ 2, · · · , n+ p. (3.57)

Since h in nonzero and parallel, we see that H is a nonzero constant and en+1 is parallel.

It follows that hn+1
ij hµ

ij = hµ
ijh

n+1
ij and

X

k

hµ
kki = 0,

X

k

hµ
kkij = 0. (3.58)

From (3.57) and (3.56) we have

�n+1
ij = hn+1

ij �H�ij, tr(Φ2
n+1) = tr(hn+1

ij )2 � nH2, (3.59)

tr(hn+1
ij )3 = trΦ3

n+1 + 3HtrΦ2
n+1 + nH3, (3.60)

�µ
ij = hµ

ij, trΦ2
µ = tr(h2

µ), µ � n+ 2. (3.61)
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Substituting (3.57) - (3.61) into Proposition 3.1.4 we obtain

1

2
∆|Φ|2 =

X

µ

|rΦµ|
2 + n(c+H2)|Φ|2 + n

X

µ

Htr(Φ2
µΦn+1)

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) (3.62)

+
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2).

Now, we will estimate separately each term of the right-hand side of (3.62). First, we

define

|Φ1|
2 =

X

�

X

i,j

(Φ�
ij)

2 = S1 � nH2, |Φ2|
2 =

X

�

X

i,j

(Φ�
ij)

2 = S2, (3.63)

then |Φ|2 = |Φ1|
2 + |Φ2|

2. Since

[Φn+1,Φµ] = [hn+1
ij , hµ

ij] = 0, trΦµ = 0, µ = n+ 1, · · · , n+ p,

we may apply Lemma 3.2.4 to the third term of (3.24), obtaining

X

µ

trΦn+1Φ
2
µ � � n� 2p

n(n� 1)

 
X

µ

trΦ2
µ

!q
trΦ2

n+1 = � n� 2p
n(n� 1)

|Φ|2|Φn+1|.

(3.64)

The fourth term of (3.62) can be rewritten as follows:

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)� |Φn+1|

4 � 2
X

� 6=n+1

(trΦn+1Φ�)
2,

it follows from Lemma 3.2.5 that, for p� q � 3,

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)��3

2

 
X

� 6=n+1

|Φ�|
2

!2

(3.65)

��3

2
(|Φ|2 � |Φn+1|

2)2,

and the second equality holds if and only if S2 = 0; When p� q = 2, (3.65) becomes

�(trΦn+2Φn+2)
2 � �3

2
(trΦ2

n+2)
2,

which, of course, hold, and we really obtain (3.65) for p � q � 2. On the other hand,

by the Cauchy-Schwarz inequality, we have

X

� 6=n+1

(trΦn+1Φ�)
2 ÿ |Φn+1|

2
X

� 6=n+1

|Φ�|
2 ÿ |Φn+1|

2(|Φ|2 � |Φn+1|
2), (3.66)
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and the second equality holds if and only if S2 = 0. It follows from (3.65) and (3.66)

that

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)� |Φn+1|

4 � 2
X

� 6=n+1

(trΦn+1Φ�)
2

� �3

2
(|Φ|2 � |Φn+1|

2)2 � |Φn+1|
4 � 2|Φn+1|

2(|Φ|2 � |Φ2
n+1). (3.67)

For the last term of (3.24), we have

X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) � 0, (3.68)

and the equality holds if and only if S2 = 0. Substituting (3.64), (3.67) and (3.68) into

(3.24), we obtain

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2 +

1

2
|Φn+1|

2
�
|Φ|2 � |Φn+1|

2
�

(3.69)

+ |Φ|2

 
�3

2

�
|Φ|2 � |Φn+1|

2
�
� n(n� 2)p

n(n� 1)
H|Φn+1|� |Φn+1|

2 + n(c+H2)

!
.

Since |Φn+1| ÿ |Φ| and H > 0, (3.31) can be rewritten as follows

∆|Φ|2 � |Φ|2PH(|Φ|), (3.70)

where PH(x) is the function defined by (3.49).

Let us suppose by the contradiction that Mn is not totally umbilical or, equi-

valently, that f = |Φ|2 is a non-identically vanishing smooth function on Mn. So,

considering on Mn the tangent vector field X = r|Φ|2, we have that

hrf,Xi = |r|Φ|2|2 � 0.

Moreover, since supM |Φ| ÿ µå, from (3.70) we obtain

divX = ∆|Φ|2 � 0.

Hence, since we are assuming that |Φ| converges to zero at infinity, we can apply

Lemma 3.2.1 to conclude that |r|Φ|2|2 ; 0, that is, |Φ| is constant on Mn. But, taking

into account once more that |Φ| converges to zero at infinity, we have that |Φ| must be

identically zero on Mn and we reach at a contradiction.
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Proof of Theorem 3.2.3

Taking into account that the mean curvature vector is timelike, we choose en+p

to have the same direction an h, so that h = Hen+p; Then we have

Hn+p = H; Hµ = 0, µ = n+ 1, · · · , n+ p� 1. (3.71)

Since h in nonzero and parallel, we see that H is a nonzero constant and en+p is parallel.

It follows that hn+p
ij hµ

ij = hµ
ijh

n+p
ij and

X

k

hµ
kki = 0,

X

k

hµ
kkij = 0. (3.72)

From (3.108) and (3.90) we have

�
n+p
ij = hn+p

ij �H�ij, tr(Φ2
n+p) = tr(hn+p

ij )2 � nH2, (3.73)

tr(hn+p
ij )3 = trΦ3

n+p + 3HtrΦ2
n+p + nH3, (3.74)

�µ
ij = hµ

ij, trΦ2
µ = tr(h2

µ), n+ 1 ÿ µ ÿ n+ p� 1. (3.75)

Substituting (3.71) - (3.75) into Proposition 3.1.4 we obtain

1

2
∆|Φ|2 =

X

µ

|rΦµ|
2 + n(1�H2)|Φ|2 � n

X

µ

Htr(Φ2
µΦn+1)

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) (3.76)

+
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2).

Now, we will estimate separately each term of the right-hand side of (3.76). First, we

define

|Φ1|
2 = S1 =

X

�

X

i,j

(Φ�
ij)

2, |Φ2|
2 =

X

�

X

i,j

(Φ�
ij)

2 = S2 � nH2; (3.77)

then |Φ|2 = |Φ1|
2 + |Φ2|

2. Since

trΦµ = 0, [Φn+p,Φµ] = [hn+p
ij , hµ

ij] = 0, µ = n+ 1, · · · , n+ p,

we may apply Lemma 3.2.4 to the third term of (3.76), obtaining

X

µ

trΦn+pΦ
2
µ ÿ n� 2p

n(n� 1)

 
X

µ

trΦ2
µ

!q
trΦ2

n+p =
n� 2p
n(n� 1)

|Φ|2|Φn+p|. (3.78)
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Using Lemma 3.2.5 in the fourth term of (3.76), we can write

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2)��3

2
(|Φ|2 � |Φ2|

2)2 (3.79)

=�3

2
(|Φ|4 � 2|Φ2|

2|Φ|2 + |Φ2|
4)

��3

2
(|Φ|4 � 2|Φn+p|

2|Φ|2 + |Φ|4)

=�3|Φ|2(|Φ|2 � |Φn+p|
2),

and the equalities hold if and only if |Φ1|
2 = S1 = 0 and |Φ2|

2 = |Φn+p|
2.

For the last term of (3.76), we have
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) � 0, (3.80)

and
X

�,�0

(trΦ�0Φ�)
2 � |Φn+p|

4 +
1

q � 1
(|Φ2|

2 � |Φn+p|
2)2 (3.81)

= |Φn+p|
4 +

1

q � 1
(|Φ2|

4 � 2|Φ2|
2|Φn+p|

2 + |Φn+p|
4)

� |Φn+p|
4 +

1

q � 1
(|Φn+p|

4 � 2|Φ|2|Φn+p|
2 + |Φn+p|

4)

= |Φn+p|
4 +

2

q � 1
|Φn+p|

2(|Φn+p|
2 � |Φ|2),

where the equalities hold if and only if |Φ1|
2 = S1 = 0 and |Φ2|

2 = |Φn+p|
2.

Substituting (3.78)-(3.81) into (3.76), we obtain

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2 � q + 1

q � 1
|Φn+p|

2(|Φ|2 � |Φn+p|
2) (3.82)

+ |Φ|2

 
�3(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+ |Φn+p|
2 + n(1�H2)

!
.

Since |Φn+p| ÿ |Φ| and H > 0, we can rewritten as follows

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2 � q + 1

q � 1
|Φ|2(|Φ|2 � |Φn+p|

2)

+ |Φ|2

 
�3(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+ |Φn+p|
2 + n(1�H2)

!

� |Φ|2

 
�2(2q � 1)

q � 1
(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+

+ |Φn+p|
2 + n(1�H2)

�

� 2(2q � 1)

q � 1
|Φ|2|Φn+p|

2 +
1

2
|Φ|2QH(|Φ|), (3.83)
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where QH(x) is the function defined in (3.50).

Since supM |Φ| ÿ �å, from the behavior of QH(x) jointly with (3.83) we obtain

∆|Φ|2 � |Φ|2QH(|Φ|) � 0.

At this point, we can reason as in the last part of the proof of Theorem 3.2.2 to

conclude that Mn must be a totally umbilical submanifold of Sn+p
q .

3.3 A Simons type formula for spacelike submanifolds

In what follows, we denote by r and ∆ the gradient and the Laplacian operator

in the metric of the spacelike submanifold Mn. Then, the Laplacian of the second

fundamental form hµ
ij is defined by ∆hµ

ij =
Pn

k=1 h
µ
ijkk. From (3.10) and (3.11), we

obtain

∆hµ
ij =

X

k

hµ
kkij +

X

m,k

hµ
mkRmijk +

X

m,k

hµ
imRmkjk +

X

k,�

h�
ikR�µjk �

X

k,�

h�
ikR�µjk.(3.84)

On the other hand, we have

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j,µ

hµ
ij∆hµ

ij. (3.85)

Thus, inserting (3.84) into (3.85) we get

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j,µ,k

hµ
ijh

µ
kkij +

X

i,j,µ,m,k

hµ
ijh

µ
mkRmijk +

X

i,j,µ,m,k

hµ
ijh

µ
imRmkjk (3.86)

+
X

i,j,µ,k,�

hµ
ijh

�
ikR�µjk �

X

i,j,µ,k,�

hµ
ijh

�
ikR�µjk.

Hence, using (1.20) and (3.7), from (3.86) we reach at

1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 +
X

µ,i,j

nhµ
ijh

µ
kkij + cnS � cn2H2 (3.87)

+
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij)�

X

µ,�

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2)

�
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij) +

X

µ,�

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2),

where N(hµ
ij) = tr((hµ

ij)
Thµ

ij). Therefore, from (3.87) we obtain the following Simons

type formula
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1

2
∆S =

X

i,j,k,µ

(hµ
ijk)

2 + n
X

µ,i,j

hµ
ijh

µ
kkij + nc(S � nH2) (3.88)

+
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij)�

X

�,�0

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2)

�
X

µ,�

tr(h�
ij)tr((h

µ
ij)

2h�
ij) +

X

�,�0

(N(hµ
ijh

�
ij � h�

ijh
µ
ij) + (trhµ

ijh
�
ij)

2).

3.4 Stochastically complete spacelike submanifolds

A (non necessarily complete) Riemannian manifold Mn is said to be stochastically

complete if, for some (and, hence, for any) (x, t) 2 Mn å (0,+1), the heat kernel

p(x, y, t) of the Laplace-Beltrami operator ∆ satisfies the conservation property

Z

M

p(x, y, t)dµ(y) = 1. (3.89)

From the probabilistic viewpoint, stochastically completeness is the property of a sto-

chastic process to have infinite life time. For the Brownian motion on a manifold,

the conservation property (3.89) means that the total probability of the particle to be

found in the state space is constantly equal to one (see [69, 75, 76, 113]).

On the other hand, Pigola, Rigoli and Setti showed that stochastic completeness

turns out to be equivalent to the validity of a weak form of the Omori-Yau maximum

principle (See Theorem 1.1 of [108] and Theorem 3.1 of [109]), as is expressed below.

Lemma 3.4.1 A Riemannian manifold Mn is stochastically complete if, and only if,

for every u 2 C2(M) satisfying supM u < +1 there exists a sequence of points {pk} ã
Mn such that

lim
k!1

u(pk) = sup
M

u and lim sup
k!1

∆u(pk) ÿ 0.

We also note that stochastic completeness of Riemannian manifold Mn is equi-

valent (among other conditions) to the fact that for every � > 0, the only nonnegative

bounded smooth solution u of ∆u � �u on Mn is the constant u = 0. Moreover, it

is a direct consequence of Lemma 3.4.1 jointly with the Omori-Yau maximum prin-

ciple [105, 131] that complete Riemannian manifolds having Ricci curvature bounded

from below are stochastically complete.
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Our aim in this section is to present some gap results concerning stochastically

complete spacelike submanifolds Mn with parallel mean curvature vector in the inde-

finite space form L
n+p
q (c). For this, setting

�µ
ij = hµ

ij �Hµ�ij,

we consider the following symmetric tensor

Φ =
X

µ,i,j

�µ
ij!i ' !j ' eµ.

It is easy to check that Φ is traceless and

|Φ|2=
X

µ

trΦ2
µ = S � nH2, (3.90)

where Φµ denote the matrix (�µ
ij). Moreover, we observe that |Φ|2= 0 if and only if

Mn is a totally umbilical submanifold of Ln+p
q (c).

Considering stochastically complete spacelike submanifolds having spacelike and

parallel mean curvature vector, we establish our first main result.

Theorem 3.4.2 Let Mn be a stochastically complete spacelike submanifold immersed

in L
n+p
q (c), with c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean

curvature vector. When c = �1, suppose in addition that H > 1. Then, either

(i) supM |Φ|= 0 and Mn is a totally umbilical submanifold, or

(ii) supM |Φ|� µå(n, c,H), where µå(n, c,H) is the positive root of the function

PH(x) := �5

2
x2 � n(n� 2)p

n(n� 1)
Hx+ n(c+H2). (3.91)

Moreover, if the equality holds and this supremum is attained at some point of Mn, then

Mn is a pseudo-umbilical submanifold of Ln+p
q (c) such that its principal curvatures are

constant.

Proof. Taking into account that the mean curvature vector is spacelike, we choose

en+1 to have the same direction of h, so that h = Hen+1. Then we have

Hn+1 = H; Hµ = 0, µ = n+ 2, · · · , n+ p. (3.92)

Since h is nonzero and parallel, we see that H is a nonzero constant and en+1 is parallel.

It follows that hn+1
ij hµ

ij = hµ
ijh

n+1
ij and

X

k

hµ
kki = 0,

X

k

hµ
kkij = 0. (3.93)
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From (3.92) and (3.90) we have

�n+1
ij = hn+1

ij �H�ij, tr(Φ2
n+1) = tr(hn+1

ij )2 � nH2, (3.94)

tr(hn+1
ij )3 = trΦ3

n+1 + 3HtrΦ2
n+1 + nH3, (3.95)

�µ
ij = hµ

ij, trΦ2
µ = tr(h2

µ), µ � n+ 2. (3.96)

Substituting (3.92) - (3.96) into (3.2.6) we obtain

1

2
∆|Φ|2=

X

µ

|rΦµ|
2+n(c+H2)|Φ|2+n

X

µ

Htr(Φ2
µΦn+1)

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) (3.97)

+
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2).

Now we shall estimate separately each term of the right-hand side of (3.97). Defining

|Φ1|
2=
X

�

X

i,j

(Φ�
ij)

2 = S1 � nH2, |Φ2|
2=
X

�

X

i,j

(Φ�
ij)

2 = S2, (3.98)

we get |Φ|2= |Φ1|
2+|Φ2|

2. Since

[Φn+1,Φµ] = [hn+1
ij , hµ

ij] = 0, trΦµ = 0, µ = n+ 1, · · · , n+ p,

we can apply Lemma 3.1.1 to the third term of (3.97), obtaining

X

µ

trΦn+1Φ
2
µ � � n� 2p

n(n� 1)

 
X

µ

trΦ2
µ

!q
trΦ2

n+1 = � n� 2p
n(n� 1)

|Φ|2|Φn+1|.

(3.99)

The fourth term of (3.97) can be rewritten as follows:

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)� |Φn+1|

4�2
X

� 6=n+1

(trΦn+1Φ�)
2,

it follows from Lemma 3.1.2 that, for p� q � 3,

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)��3

2

 
X

� 6=n+1

|Φ�|
2

!2

(3.100)

��3

2
(|Φ|2�|Φn+1|

2)2,

and the second equality holds if and only if S2 = 0. When p� q = 2, (3.100) becomes

�(trΦn+2Φn+2)
2 � �3

2
(trΦ2

n+2)
2,
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which, of course, holds, and we really obtain (3.100) for p� q � 2. On the other hand,

by the Cauchy-Schwarz inequality, we have

X

� 6=n+1

(trΦn+1Φ�)
2 ÿ |Φn+1|

2
X

� 6=n+1

|Φ�|
2ÿ |Φn+1|

2(|Φ|2�|Φn+1|
2), (3.101)

and the second equality holds if and only if S2 = 0. It follows from (3.100) and (3.101)

that

X

�,�0 6=n+1

(�N(Φ�0Φ� � Φ�Φ�0)� (trΦ�0Φ�)
2)� |Φn+1|

4�2
X

� 6=n+1

(trΦn+1Φ�)
2,

� �3

2
(|Φ|2�|Φn+1|

2)2 � |Φn+1|
4�2|Φn+1|

2(|Φ|2�|Φ2
n+1). (3.102)

For the last term of (3.97), we have

X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) � 0, (3.103)

and the equality holds if and only if S2 = 0. Substituting (3.99), (3.102) and (3.103)

into (3.97), we obtain

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2+

1

2
|Φn+1|

2
�
|Φ|2�|Φn+1|

2
�

(3.104)

+ |Φ|2

 
�3

2

�
|Φ|2�|Φn+1|

2
�
� n(n� 2)p

n(n� 1)
H|Φn+1|�|Φn+1|

2+n(c+H2)

!
.

Since |Φn+1|ÿ |Φ| and H > 0, we can rewrite (3.104) as follows

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2+

3

2
|Φ|2|Φn+1|

2+|Φ|2PH(|Φ|) � |Φ|2PH(|Φ|), (3.105)

where PH(x) is the function defined by (3.91).

To conclude the proof, we can apply Lemma 3.1.3 to the Laplacian operator

acting on the function |Φ|2. Indeed, if supM |Φ| = +1, then (ii) is trivially satisfied.

So, let us suppose that supM |Φ| < +1. Thus, Lemma 3.4.1 guarantees that there

exists a sequence of points {pk} ã Mn such that

lim
k!1

|Φ|2(pk) = sup
M

|Φ|2 and lim sup
k!1

∆|Φ|2(pk) ÿ 0.

Consequently, taking into account the continuity of the function PH(x), from (3.105)

we get

0 � 1

2
lim sup
k!1

∆|Φ|2(pk) � lim sup
k!1

�
|Φ|2PH(|Φ|)

�
(pk) = lim

k!1

�
|Φ|2PH(|Φ|)

�
(pk)

= lim
k!1

|Φ|2(pk)PH( lim
k!1

|Φ|(pk)) = sup
M

|Φ|2PH(sup
M

|Φ|).
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Hence, we obtain

sup
M

|Φ|2PH(sup
M

|Φ|) ÿ 0. (3.106)

It follows from here that either supM |Φ|= 0, which means that |Φ|; 0 and the spacelike

submanifold is totally umbilical, or supM |Φ|> 0 and then (3.106) gives

PH(sup
M

|Φ|) ÿ 0,

which implies that supM |Φ|� µå(n, c,H), where µå(n, c,H) is the positive root of

(3.91). We note that it was used the fact that PH(0) = n(c+H2) > 0.

Finally, let us assume that supM |Φ|= µå(n, c,H) and the supM |Φ| is attained

at some point of Mn, then as Laplacian operator is elliptic we have from Hopf ma-

ximum principle that |Φ| is constant. Hence, returning to (3.105), we obtain that

|Φn+1|= 0, which means to say that Mn is a pseudo-umbilical submanifold of Ln+p
q (c).

Furthermore, since we also have that
Pn+p

µ=n+1|rΦµ|
2= 0, we conclude that the principal

curvatures of Mn are constant.

Remark 3.4.3 As it was observed by the referee of this manuscript, an interesting

open problem is to know if the conclusion of Theorem 3.4.2 is sharp in the sense that

it is no more true for a stochastically incomplete spacelike submanifold immersed in

L
n+p
q (c); in particular, for the case that such a submanifold is rotationally symmetric.

When the mean curvature vector is timelike and the ambient space is de Sitter

space S
n+p
q , we also get the following result.

Theorem 3.4.4 Let Mn be a stochastically complete spacelike submanifold immersed

in de Sitter space S
n+p
q , with 1 < q < p�1, having timelike and parallel mean curvature

vector. Suppose that H < 1. Then, either

(i) supM |Φ|= 0 and Mn is a totally umbilical submanifold, or

(ii) supM |Φ|� �å(n, q,H), where �å(n, q,H) is the positive root of the function

QH(x) := �2(2q � 1)

q � 1
x2 � n(n� 2)p

n(n� 1)
Hx+ n(1�H2). (3.107)

Moreover, if the equality holds and this supremum is attained at some point of Mn,

then Mn is a pseudo-umbilical submanifold of Sn+p
q such that its principal curvatures

are constant.
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Proof. Taking into account that the mean curvature vector is timelike, we choose en+p

to have the same direction of h, so that h = Hen+p. Then we have

Hn+p = H; Hµ = 0, µ = n+ 1, · · · , n+ p� 1. (3.108)

Since h is nonzero and parallel, we see that H is a nonzero constant and en+p is parallel.

It follows that hn+p
ij hµ

ij = hµ
ijh

n+p
ij and

X

k

hµ
kki = 0,

X

k

hµ
kkij = 0. (3.109)

From (3.108) and (3.90) we have

�
n+p
ij = hn+p

ij �H�ij, tr(Φ2
n+p) = tr(hn+p

ij )2 � nH2, (3.110)

tr(hn+p
ij )3 = trΦ3

n+p + 3HtrΦ2
n+p + nH3, (3.111)

�µ
ij = hµ

ij, trΦ2
µ = tr(h2

µ), n+ 1 ÿ µ ÿ n+ p� 1. (3.112)

Substituting (3.108) - (3.112) into (3.2.6) we obtain

1

2
∆|Φ|2=

X

µ

|rΦµ|
2+n(1�H2)|Φ|2�n

X

µ

Htr(Φ2
µΦn+1)

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2) (3.113)

+
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2).

Now we shall estimate separately each term of the right-hand side of (3.113). Defining

|Φ1|
2= S1 =

X

�

X

i,j

(Φ�
ij)

2, |Φ2|
2=
X

�

X

i,j

(Φ�
ij)

2 = S2 � nH2, (3.114)

we get |Φ|2= |Φ1|
2+|Φ2|

2. Since

trΦµ = 0, [Φn+p,Φµ] = [hn+p
ij , hµ

ij] = 0, µ = n+ 1, · · · , n+ p,

we can apply Lemma 3.1.1 to the third term of (3.113), obtaining

X

µ

trΦn+pΦ
2
µ ÿ n� 2p

n(n� 1)

 
X

µ

trΦ2
µ

!q
trΦ2

n+p =
n� 2p
n(n� 1)

|Φ|2|Φn+p|. (3.115)
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Using Lemma 3.1.2 in the fourth term of (3.113), we can write

�
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) + (trΦ�0Φ�)
2)��3

2
(|Φ|2�|Φ2|

2)2 (3.116)

=�3

2
(|Φ|4�2|Φ2|

2|Φ|2+|Φ2|
4)

��3

2
(|Φ|4�2|Φn+p|

2|Φ|2 + |Φ|4)

=�3|Φ|2(|Φ|2 � |Φn+p|
2),

and the equalities hold if and only if |Φ1|
2 = S1 = 0 and |Φ2|

2 = |Φn+p|
2.

For the last term of (3.113), we have
X

�,�0

(N(Φ�0Φ� � Φ�Φ�0) � 0, (3.117)

and
X

�,�0

(trΦ�0Φ�)
2 � |Φn+p|

4 +
1

q � 1
(|Φ2|

2 � |Φn+p|
2)2 (3.118)

= |Φn+p|
4 +

1

q � 1
(|Φ2|

4 � 2|Φ2|
2|Φn+p|

2 + |Φn+p|
4)

� |Φn+p|
4 +

1

q � 1
(|Φn+p|

4 � 2|Φ|2|Φn+p|
2 + |Φn+p|

4)

= |Φn+p|
4 +

2

q � 1
|Φn+p|

2(|Φn+p|
2 � |Φ|2),

where the equalities hold if and only if |Φ1|
2 = S1 = 0 and |Φ2|

2 = |Φn+p|
2.

Substituting (3.115)-(3.118) into (3.113), we obtain

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2�q + 1

q � 1
|Φn+p|

2(|Φ|2 � |Φn+p|
2) (3.119)

+ |Φ|2

 
�3(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+ |Φn+p|
2 + n(1�H2)

!
.

Since |Φn+p|ÿ |Φ| and H > 0, we can rewrite (3.119) as follows

1

2
∆|Φ|2 �

n+pX

µ=n+1

|rΦµ|
2�q + 1

q � 1
|Φ|2(|Φ|2 � |Φn+p|

2) (3.120)

+ |Φ|2

 
�3(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|+ |Φn+p|
2 + n(1�H2)

!

� |Φ|2

 
�2(2q � 1)

q � 1
(|Φ|2 � |Φn+p|

2)� n(n� 2)p
n(n� 1)

H|Φn+p|

+ |Φn+p|
2 + n(1�H2)

�

� 2(2q � 1)

q � 1
|Φ|2|Φn+p|

2 + |Φ|2QH(|Φ|) � |Φ|2QH(|Φ|),
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where QH(x) is the function defined in (3.107),

On the other hand, reasoning as in the deduction of inequality (3.106), we can

apply once more Lemma 3.4.1 to the Laplacian operator acting on the function |Φ|2

and, from (3.120), we obtain

(sup
M

|Φ|)2QH(sup
M

|Φ|) ÿ 0. (3.121)

It follows from here that either supM |Φ|= 0, which means that |Φ|; 0 and Mn is totally

umbilical, or supM |Φ|> 0 and then (3.121) gives

QH(sup
M

|Φ|) ÿ 0,

which implies that supM |Φ|� �å(n, q,H), where �å(n, q,H) is the positive root of

(3.107). We note that it was used the fact that QH(0) = n(1�H2) > 0.

Now, let us assume that supM |Φ|= �å(n, q,H) and the supM |Φ| is attained at

some point of Mn, then as Laplacian operator is elliptic we have from Hopf maximum

principle that |Φ| is constant. Hence, from (3.120), we obtain that

2(2q � 1)

q � 1
|Φ|2|Φn+p|

2 = 0 and
n+pX

µ=n+1

|rΦµ|
2 = 0. (3.122)

Therefore, from (3.122) we conclude that Mn is pseudo-umbilical submanifold of Sn+p
q

and its principal curvatures are constant.

3.5 Parabolic and L1-Liouville spacelike submanifolds

We recall that a (non necessarily complete) Riemannian manifold Mn is said

to be parabolic (with respect to the Laplacian operator) if the constant functions are

the only subharmonic functions on Mn which are bounded from above, that is, for a

function u 2 C2(M)

∆u � 0 and u ÿ uå < +1 implies u = constant.

We observe that every parabolic Riemannian manifold is stochastically complete.

As a consequence, the weak maximum principle holds on every parabolic Riemannian

manifold (see Corollary 6.4 of [76]). Obviously, every closed Riemannian manifold Mn

is parabolic, where by closed we mean compact and without boundary. Moreover, there
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are several interesting geometric conditions which imply the parabolicity of a Rieman-

nian manifold Mn. For instance, in dimension n = 2 parabolicity is strongly related

to the behaviour of the Gaussian curvature; for instance, from a classical result by

Ahlfors [16] and Blanc et al. [81] it is well known that every complete Riemannian sur-

face with nonnegative Gaussian curvature is parabolic. More generally, every complete

Riemannian surface with finite total curvature is parabolic (see Section 10 of [89]).

As it was observed in [77], when Mn (n � 2) is a complete Riemannian manifold,

we can state sufficient conditions for parabolicity and stochastic completeness in terms

of the volume function V (r) = V (B(x0, r)), where B(x0, r) is the geodesic ball of radius

r centered at a fixed point x0 2 Mn. Namely, the following implications are true:
Z 1

r0

rdr

V (r)
= 1 ) Mn is parabolic, (3.123)

Z 1

r0

rdr

log V (r)
= 1 ) Mn is stochastically complete. (3.124)

For example, V (r) ÿ Cr2 and V (r) ÿ exp(Cr2) will imply the volume conditions

in (3.123) and (3.124), respectively. Cheng and Yau in [54] proved that V (r) ÿ
Cr2 is a sufficient condition for parabolicity. The sharp sufficient condition (3.123)

for parabolicity was proved by several authors in [73], [74], [86] and [120]. Several

authors [66], [82], [117] showed that V (r) ÿ exp(Cr2) is a sufficient condition for sto-

chastic completeness (see also an earlier result [80]), and the sharp result (3.124) was

obtained in [74] (see [78] and [114] for its extensions). For a model manifold with pole

at x0, both the parabolicity and stochastic completeness can be characterized solely in

terms of the function V (r) and its derivative (see [76] and [33]).

Considering the context of spacelike submanifolds immersed in a pseudo-Riema-

nnian space form, we obtain the following gap result:

Theorem 3.5.1 Let Mn be a parabolic spacelike submanifold immersed in L
n+p
q (c),

with c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean curvature

vector. When c = �1, suppose in addition that H > 1. Then either supM |Φ|= 0 and

Mn is a totally umbilical submanifold or supM |Φ|� µå(n, c,H), where µå(n, c,H) is

the positive root of (3.91). Moreover, when supM |Φ|= µå(n, c,H), Mn is a pseudo-

umbilical submanifold of Ln+p
q (c) such that its principal curvatures are constant.

Proof. First all recall that the weak Omori-Yau maximum principle holds on every

parabolic Riemannian manifold. Then, if supM |Φ|2 < +1, there is nothing to prove.
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On the other hand, in the case that 0 < supM |Φ|2 ÿ +1, reasoning as in the first part

of the proof of Theorem 3.4.4, we guarantee, the supM |Φ|2 � µå(n, c,H). Moreover,

if supM |Φ|2 = µå(n, c,H), then PH(supM Φ) ÿ 0 and, consequently, the function |Φ|2

is subharmonic on Mn. Therefore, from the parabolicity of Mn we conclude that the

function |Φ|2 must be constant and equal to µå(n, c,H). To close the proof, we can

reason as in the proof of Theorem 3.4.4.

When the mean curvature vector is timelike, we get.

Theorem 3.5.2 Let Mn be a parabolic spacelike submanifold immersed in de Sitter

space S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature vector,

suppose in addition that H < 1. Then either supM |Φ|= 0 and Mn is a totally umbilical

submanifold or supM |Φ|� �å(n, q,H), where �å(n, q,H) is the positive root of (3.107).

Moreover, when supM |Φ|= �å(n, q,H), Mn is a pseudo-umbilical submanifold of Sn+p
q

such that its principal curvatures are constant.

Proof. We note that, if supM |Φ|2 = +1, there is nothing to prove. for this reason,

in the case that 0 < supM |Φ|2 ÿ +1, reasoning as in the first part of the proof of

Theorem 3.5.1, we guarantee, the supM |Φ|2 � �å(n, q,H). Moreover, if supM |Φ|2 =

�å(n, q,H), then QH(supM Φ) ÿ 0 and, consequently, the function |Φ|2 is subharmonic

on Mn. Therefore, from the parabolicity of Mn we conclude that the function |Φ|2

must be constant and equal to �å(n, q,H). To close the proof, we can reason as in the

proof of Theorem 3.5.1.

According to [34], a Riemannian manifold Mn is said be L1-Liouville when every

nonnegative superharmonic function u 2 L1(M) := {f : Mn ! R :
R
M
|f |dM <

+1} must be constant. Taking into account Corollary 3 of [34] which ensures that a

stochastically complete manifold is always L1-Liouville, we see that R
n (n > 2) and

H
n constitute examples of L1-Liouville Riemannian manifolds which are not parabolic.

On the other hand, we also observe that in Section 2 of [34] the authors constructed

nontrivial examples of stochastically incomplete (and, in particular, nonparabolic) L1-

Liouville manifolds.

Considering a L1-Liouville spacelike submanifold immersed in L
n+p
q (c), we obtain

the following results.

Theorem 3.5.3 Let Mn be a L1-Liouville spacelike submanifold immersed in L
n+p
q (c),

with c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean curvature
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vector. When c = �1, suppose in addition that H > 1. If supM |Φ| ÿ µå(n, c,H) and

' := (µå(n, c,H))2 � |Φ|2 2 L1(M), where µå(n, c,H) is the positive root of (3.91),

then either |Φ| ; 0 and Mn is a totally umbilical submanifold or |Φ| ; µå(n, c,H) and

Mn is a pseudo-umbilical submanifold of Ln+p
q (c) such that its principal curvatures are

constant.

Proof. Since we are assuming that supM |Φ| ÿ µå(n, c,H), from (3.105) we get

∆' ÿ 0. Thus, since ' is a nonnegative superharmonic function with ' 2 L1(M),

we have that ' must be constant on Mn, which implies that |Φ| is constant on Mn.

Consequently, we can reason as in the last part of the proof of Theorem 3.4.4 to con-

clude the proof.

Taking into account the proof of Theorem 3.4.4, we see that the proof of the next

result is quite similar to that of Theorem 3.5.3.

Theorem 3.5.4 Let Mn be a L1-Liouville spacelike submanifold immersed in de Sitter

space S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature vector,

suppose in addition that H < 1. If supM |Φ| ÿ �å(n, q,H) and ã := (�å(n, q,H))2 �
|Φ|2 2 L1(M), where �å(n, q,H) is the positive root of (3.107), then either |Φ| ; 0 and

Mn is a totally umbilical submanifold or |Φ| ; �å(n, q,H) and Mn is a pseudo-umbilical

submanifold of Sn+p
q such that its principal curvatures are constant.

Now, we quote the following lemma which corresponds to Theorem 7 of [133].

Lemma 3.5.5 Every complete noncompact Riemannian manifold, whose Ricci curva-

ture is nonnegative, has infinite volume.

To close this paper, it is not difficult to verify that from Lemma 3.5.5 jointly with

Theorems 3.5.2 and 3.5.3 we obtain the following nonexistence results

Corollary 3.5.6 There does not exist a complete noncompact L1-Liouville spacelike

submanifold Mn, whose Ricci curvature is nonnegative, immersed in L
n+p
q (c), with

c 2 {0,�1, 1} and 1 ÿ q < p � 1, having spacelike and parallel mean curvature vector

(when c = �1, assume in addition that H > 1), such that supM |Φ| < µå(n, c,H) and

' := (µå(n, c,H))2 � |Φ|2 2 L1(M), where µå(n, c,H) is the positive root of (3.91).

Corollary 3.5.7 There does not exist a complete noncompact L1-Liouville spacelike

submanifold Mn, whose Ricci curvature is nonnegative, immersed in de Sitter space

S
n+p
q , with 1 < q < p � 1, having timelike and parallel mean curvature vector, with

H < 1, such that supM |Φ| < �å(n, q,H) and ã := (�å(n, q,H))2 � |Φ|2 2 L1(M),

where �å(n, q,H) is the positive root of (3.107).
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3.6 Spacelike Submanifolds immersed in the De Sitter

space

Let us denote by R
n+p+1
p the (n + p + 1)-dimensional Lorentz-Minkowski space

of index p, that is, the Euclidean space R
n+p+1 endowed with the semi-Riemanannian

metric

h , ip = �dx2
1 � . . .� dx2

p + dx2
p+1 + . . .+ dx2

n+p+1. (3.125)

The (n+p)-dimensional de Sitter space S
n+p
p of index p is the semi-Riemannian manifold

of constant sectional curvature 1 given by the following hyperquadric of Rn+p+1
p :

S
n+p
p = {x 2 R

n+p+1
p ; hx, xip = 1}. (3.126)

Let Mn be an n-dimensional connected spacelike submanifold isometrically im-

mersed into the de Sitter space S
n+p
p , meaning that the induced metric on Mn via

immersion is a Riemannian metric. We choose a local field of semi-Riemannian ortho-

normal frame {e1, . . . , en+p} in S
n+p
p , with dual coframe {!1, . . . ,!n+p}, such that, at

each point of Mn, e1, . . . , en are tangent to Mn. We will use the following convention

for the indices:

1 ÿ A,B,C, . . . ÿ n+ p, 1 ÿ i, j, k, . . . ÿ n and n+ 1 ÿ µ, �, �, . . . ÿ n+ p.

It is well known that the second fundamental form A of Mn is defined by

A =
X

µ,i,j

hµ
ij!i ' !jeµ, (3.127)

where the functions hµ
ij are given by the Cartan’s Lemma and satisfy hµ

ij = hµ
ji. Then

the square of the norm of the second fundamental form is |A|2 =
P

µ,i,j(h
µ
ij)

2. We

also define the mean curvature vector h and the mean curvature function H of Mn,

respectively, by

h =
1

n

X

µ

 
X

i

hµ
ii

!
eµ and H = |h| =

vuutX

µ

 
X

i

hµ
ii

!2

. (3.128)

In the case when H > 0, we define the normalized mean curvature vector by h
H

. We

also recall that h
H

is said to be parallel if it is parallel as a section of the normal bundle

of Mn.
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From this and by the Gauss equation, it is not difficult to check that the norma-

lized scalar curvature R of Mn is given by

n(n� 1)R = n(n� 1)� n2H2 + |A|2. (3.129)

For our purposes, in what follows we will consider the case H > 0, so that in the local

orthonormal frame {e1, . . . , en+p} we take en+1 = h
H

. Thus, we consider the traceless

second fundamental form of the hypersurface Φ, which is defined as the symmetric

tensor

Φ =
X

µ,i,j

Φ
µ
ij!i ' !jeµ,

where Φ
µ
ij = hµ

ij �Hµ�ij. Here, Hµ denotes the mean curvature function of Mn in the

direction of eµ, that is,

Hn+1 =
1

n
tr(hn+1) = H and Hµ =

1

n
tr(hµ) = 0, µ � n+ 2, (3.130)

where hµ = (hµ
ij) denotes the second fundamental form of Mn in direction eµ for every

n + 1 ÿ µ ÿ n + p. From here it is not difficult to verify that Φ is a traceless tensor,

that is, tr(Φ) = 0 and that holds the following relation,

|Φ|2 = |A|2 � nH2. (3.131)

Moreover, |Φ| vanishes identically on Mn if and only if Mn is a totally umbilical

hypersurface. For this reason, Φ is also called the total umbilicity tensor of Mn. We

also note that, by equation (3.129), the following relation is trivially satisfied:

n(n� 1)R = n(n� 1)(1�H2) + |Φ|2. (3.132)

At this point, we will assume that Mn is a linear Weingarten submanifold, which

means that the normalized scalar curvature and mean curvature functions are linearly

related in the following way: there exist real constants a, b 2 R such that

R = aH + b. (3.133)

Related with the geometry of linear Weingarten spacelike hypersurfaces there

exists an interesting Cheng-Yau type differential operator, which recently has been
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considered by many authors. To be more precise, let us introduce the second order

linear differential operator L : C1(M) ! C1(M) defined by

L = L+
n� 1

2
a∆, (3.134)

where ∆ is the Laplacian operator on Mn and L : C1(M) ! C1(M) denotes the

standard Cheng-Yau’s operator, which is given by

Lu = tr(P � hess u).

for every u 2 C1(M). Here, P : X(M) ! X(M) denotes the first Newton transforma-

tion of Mn, that is, the tensor

P = nHI � hn+1. (3.135)

Thus,

Lu = tr(P � hess u), (3.136)

where hess u is the self-adjoint linear tensor metrically equivalent to the Hessian of u

and

P =

7
nH +

n� 1

2
a

ç
I � hn+1.

3.7 Main result of umbilicity of linear Weingarten

spacelike submanifold in the S
n+p
p

This section is dedicate to state and prove our main results concerning linear

Weingarten spacelike submanifolds immersed into de Sitter space S
n+p
p having parallel

normalized mean curvature vector. For this, we need of the next lemma which collects

two important properties of the operator L, namely: a sufficient conditions for the

ellipticity property of L and the validity of a generalized version of the Omori-Yau’s

maximum principle on Mn, meaning that for any function u 2 C2(M) with uå =

supM u < +1, there exists a sequence of points {pj} ã Mn satisfying

u(pj) > uå � 1

j
, |ru(pj)| <

1

j
and Lu(pj) <

1

j
,

for every j 2 N.
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Lemma 3.7.1 Let Mn be a complete linear Weingarten spacelike hypersurface immer-

sed into the de Sitter space S
n+p
p , such that R = aH + b with b < 1 (resp. b ÿ 1). The

following holds:

(i) The operator L is elliptic (resp. semi-elliptic) or, equivalently, P is positive

definite (resp. semi-definite);

(ii) If supM |Φ|2 < +1, then the Omori-Yau’s maximum principle holds on Mn for

the operator L.

Proof. The proof of (i) can be found in Lemma 3.1 of [91]. Then, let us proof item

(ii). By equation (1.30) we find

|Φ|2 = n(n� 1)(H2 + aH)� n(n� 1)(b� 1), (3.137)

which assures that supM H < +1 because of our assumption on |Φ|2. From here and

of equation (3.129), for every µ, i, j, it holds that

(hµ
ij)

2 ÿ |A|2 = n
�
nH2 + (n� 1)aH

�
+ n(n� 1)(b� 1),

so that supM hµ
ij < +1. Thus, it follows from the Gauss equation that

Rijij = 1�
X

µ

�
hµ
iih

µ
jj � (hµ

ij)
2
�
� 1�

X

µ

hµ
iih

µ
jj > �1, (3.138)

that is, the sectional curvatures of Mn are bounded from below.

Besides, one verifies that

tr(P) = n(n� 1)H +
n(n� 1)a

2
. (3.139)

In particular, supM tr(P) < +1. Therefore, taking into account (4.41) we can apply

Theorem 6.13 of [8] to conclude the desired result.

Now, we are in position to state and prove our first main result.

Theorem 3.7.2 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector in the de Sitter space S
n+p
p with

index p > 1, such that R = aH + b with a � 0 and 0 < b ÿ 1. Then

(i) either supM |Φ| = 0 and Mn is a totally umbilical submanifold,
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(ii) or

sup
M

|Φ| � µ(n, p, a, b) > 0, (3.140)

where µ(n, p, a, b) is a positive constant that depends only on n, p, a, b. Moreo-

ver, if Mn has nonnegative sectional curvature, b < 1, the equality supM |Φ| =

µ(n, p, a, b) holds and this supremum is attained at some point of Mn, then Mn

is isometric to a product M1 å M2 å . . . å Mk, where the factors Mi are to-

tally umbilical submanifolds of Sn+p
p which are mutually perpendicular along their

intersections.

Proof. Initially we must to obtain a suitable lower boundedness for the operator L

acting on the squared norm of the total umbilicity tensor Φ of Mn. To get it, let us

begin observing that, since Mn is a linear Weingarten, by equation (3.132) we get

n

2(n� 1)
L(|Φ|2) =

1

2
L(n2H2) +

an

2
L(nH)

= nHL(nH) + n2hPrH,rHi+ an

2
L(nH). (3.141)

By using Lemma 3.7.1 (ii), we have that P is positive definite. In particular, from

(3.141) we find
1

2(n� 1)
L(|Φ|2) �

ã
H +

a

2

;
L(nH). (3.142)

Then, Proposition 1 of [18] (which also holds for b = 1) gives

L(nH) � |Φ|2

 
|Φ|2

p
� n(n� 2)p

n(n� 1)
|Φ|H � n

�
H2 � 1

�
!
. (3.143)

Besides, from (3.132) we have

H +
a

2
=

1p
n(n� 1)

s
|Φ|2 + n(n� 1)

7
a2

4
+ 1� b

ç
. (3.144)

This jointly with equations (3.142) and (3.143) enables us to deduce that

1

2
L(|Φ|2) � (n� 1)|Φ|2Qn,p,a,b(|Φ|)

s
|Φ|2

n(n� 1)
+

a2

4
+ 1� b, (3.145)

where the function Qn,p,a,b(x) is given by

Qn,p,a,b(x) =
n� p� 1

p(n� 1)
x2 +

 
na� n(n� 2)p

n(n� 1)
x

!s
x2

n(n� 1)
+

a2

4
+ 1� b

+
n(n� 2)a

2
p
n(n� 1)

x� n

7
a2

2
� b

ç
. (3.146)
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At this point, we will make a brief analysis of the behavior of the function

Qn,p,a,b(x), considering p > 1, a � 0 and 0 < b ÿ 1. Let us observe that when

x > 0, isolating x2 we get

lim
x!1

x2

(
n� p� 1

p(n� 1)
+

 
na

x
� n(n� 2)p

n(n� 1)

!s
1

n(n� 1)
+

a2

4x2
+

1� b

x2
+

+
n(n� 2)a

2x
p
n(n� 1)

� n

x2

7
a2

4
� b

ç)
.

Thus, when x ! +1, we have

lim
x!1

x2

ã
n� p� 1

p(n� 1)
� n� 2

n� 1

�
. (3.147)

Hence, considering p > 1 in (3.147), we obtain

lim
x!+1

Qn,p,a,b(x) = �1.

Since we are also assuming that 0 < b ÿ 1 and a � 0, we also obtain that

Qn,p,a,b(0) = na

r
a2

4
+ 1� b� n

7
a2

2
� b

ç
� nb > 0.

According to these facts, we will define µ(n, p, a, b) as being the first positive root of

the function Qn,p,a,b(x).

We are now going to finish the proof by applying the Omori-Yau maximum prin-

ciple to the operator L acting on the function |Φ|2. Indeed, if supM |Φ| = +1, then

the claim (ii) of Theorem 3.7.2 trivially holds and there is nothing to prove.

So, let us assume without loss of generality that supM |Φ| < +1. In this case,

from Lemma 3.7.1 we obtain a sequence {pj} in Mn satisfying

lim |Φ|(pj) = sup
M

|Φ| and L(|Φ|2)(pj) <
1

j
,

which jointly with estimate (3.145) gives

1

j
> L(|Φ|2)(pj) � (n� 1)|Φ|2(pj)Qn,p,a,b(|Φ|(pj))

s
|Φ|2(pj)

n(n� 1)
+

a2

4
+ 1� b.

Taking the limit as j ! +1, we infer

7
sup
M

|Φ|

ç2

Qn,p,a,b(sup
M

|Φ|)

s
(supM |Φ|)2

n(n� 1)
+

a2

4
+ 1� b ÿ 0.
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Since we are assuming b ÿ 1 it follows from here that either supM |Φ| = 0, which means

that |Φ| ; 0 and the hypersurface is totally umbilical, or supM |Φ| > 0 and then

Qn,p,a,b(sup
M

|Φ|) ÿ 0.

Therefore, from the behavior of the function Qn,p,a,b(x) and according to our choice of

the positive constant µ(n, p, a, b), we deduce the lower estimate (3.140).

Now, let us assume that supM |Φ| = µ(n, p, a, b). In this case, from (3.145) and

taking into account once more the behavior of Qn,p,a,b(x), we get that L(|Φ|2) � 0. But,

since we are assuming that b < 1, item (i) of Lemma 3.7.1 guarantees that L is elliptic.

Consequently, since we are also supposing that supM |Φ| is attained at some point of

Mn, we conclude that |Φ| is constant on Mn and, from (3.137), the same holds for H

and R. Thus, Mn has, in fact, parallel mean curvature vector and constant normalized

scalar curvature. Therefore, since Mn has nonnegative sectional curvature, the result

follows applying Theorem 1.11 of [53].

We recall that a Riemannian manifold Mn is said to be parabolic (with respect to

the Laplacian operator) if the constant functions are the only subharmonic functions

on Mn which are bounded from above; that is, for a function u 2 C2(M)

∆u � 0 and u ÿ uå < +1 implies u = constant.

Extending this previous concept for the operator L defined in (3.136), Mn is said to be

L-parabolic (or parabolic with respect to the operator L) if the constant functions are

the only functions u 2 C2(M) which are bounded from above and satisfying Lu � 0.

That is, for a function u 2 C2(M)

Lu � 0 and u ÿ uå < +1 implies u = constant.

In this setting, we obtain the following gap result:

Theorem 3.7.3 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector in the de Sitter space S
n+p
p with

index p > 1, such that R = aH + b with a � 0 and 0 < b ÿ 1. If Mn is a L-parabolic

submanifold with nonnegative sectional curvature and such that supM |Φ| ÿ µ(n, p, a, b),

where µ(n, p, a, b) is the positive constant depending only on n, p, a, b which was obtai-

ned in Theorem 3.7.2, then either |Φ| ; 0 and Mn is totally umbilical, or supM |Φ| =

µ(n, p, a, b) and Mn is isometric to a product M1 åM2 å . . . åMk, where the factors
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Mi are totally umbilical submanifolds of Sn+p
p which are mutually perpendicular along

their intersections.

Proof. Suppose that 0 < supM |Φ|2 ÿ µ(n, p, a, b). In this case, from item (ii) of

Theorem 3.7.2 we get that supM |Φ|2 = µ(n, p, a, b). Moreover, L(|Φ|2) � 0 on Mn.

Hence, from the L-parabolicity of Mn we conclude that |Φ| must be constant and equal

to µ(n, p, a, b). Therefore, we can reason as in the last part of the proof of Theorem 3.7.2

to conclude the result.

By a standard tensor computation, it is not difficult to see that

L(u) = div(P(ru))� hdivP ,rui (3.148)

for every function u 2 C2(M), where P is defined in (3.135) and

divP = tr(rP) =
nX

i=1

rP(ei, ei)

with

rP(X, Y ) = (rYP)X = rY (PX)� P(rYX)

for every X, Y 2 TM . Thus, being Mn a linear Weingarten spacelike submanifold

immersed with parallel normalized mean curvature vector in S
n+p
p , we can apply Lemma

5 of [6] to guarantee that divP = 0 and, consequently,

L(u) = tr(P � r2u) = div(P(ru)) (3.149)

is a divergence type operator. Taking into account this digression, we close our paper

showing the following L-parabolicity criterium, which extends Proposition 3 of [6]:

Proposition 3.7.4 Let Mn be a complete linear Weingarten spacelike submanifold

immersed in S
n+p
p with parallel normalized mean curvature vector, such that R = aH+b

with a � 0 and 0 < b ÿ 1. If supM |Φ|2 < +1 and, for some reference point o 2 Mn,

Z +1

0

dr

vol(@Br)
= +1, (3.150)

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn centered

at the origin o.
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Proof. We consider on Mn the symmetric (0, 2) tensor field á given by á(X, Y ) =

hPX, Y i, or, equivalently, á(ru, ·)] = P(ru), where P is defined in (3.135) and ] :

T åM ! TM denotes the musical isomorphism. Thus, from (3.149) we get

L(u) = div
�
á(ru, ·)]

�
.

On the other hand, since we are assuming that supM |Φ|2 < +1 and a � 0,

from (3.135) we get that supM H < +1. So, we can define a positive continuous

function á+ on [0,+1), by

á+(r) = 2n sup
@Br

H. (3.151)

Thus, from (3.151) we have

á+(r) = 2n sup
@Br

H ÿ 2n sup
M

H < +1. (3.152)

Hence, from (4.55) and (3.152) we get

Z +1

0

dr

á+(r)vol(@Br)
= +1.

Therefore, we can apply Theorem 2.6 of [110] to conclude the proof.
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Capítulo 4

Results for spacelike submanifolds in

locally symmetric semi-Riemannian

spaces

In this chapter, let Mn be an n-dimensional complete linear Weingarten spacelike

submanifold immersed with parallel normalized mean curvature vector field and flat

normal bundle in a locally symmetric semi-Riemannian space Ln+p
p of index p, which

obeys standard curvature constraints (such an ambient space can be regarded as an

extension of a semi-Riemannian space form). In this setting, our purpose is to esta-

blish sufficient conditions guaranteeing that such a spacelike submanifold Mn be either

totally umbilical or isometric to an isoparametric hypersurface of a totally geodesic

submanifold Ln+1
1 ,! Ln+p

p , with two distinct principal curvatures, one of which is sim-

ple. Our approach is based on a suitable Simons type formula jointly with a version of

the Omori-Yau’s generalized maximum principle for a Cheng-Yau’s modified operator.

For more details, you can look at the works [19] and [28].

Lemma 4.0.1 Let Mn be an n-dimensional linear Weingarten spacelike submanifold

immersed in a locally symmetric semi-Riemannian space Ln+p
p satisfying curvature con-

ditions (1.36) and (1.39), and such that R = aH + b for some a, b 2 R. Suppose that

(n� 1)a2 + 4n
�
R� b

�
� 0. (4.1)

Then,

|rB|2 =
X

i,j,k,µ

(hµ
ijk)

2 � n2|rH|2. (4.2)



Moreover, if the equality holds in (4.2), then H is constant on Mn.

At this point, we will deal with spacelike submanifolds Mn of Ln+p
p having parallel

normalized mean curvature vector field, which means that the mean curvature function

H is positive and that the corresponding normalized mean curvature vector field H

H
is

parallel as a section of the normal bundle. In this setting, we can choose a local

orthonormal frame {e1, . . . , en+p} such that en+1 =
H

H
, we have that

Hn+1 =
1

n
tr(hn+1) = H and Hµ =

1

n
tr(hµ) = 0, for µ � n+ 2.

The following Simons type formula for locally symmetric spaces was obtained in

Lemma 2 of [17].

Lemma 4.0.2 Let Mn be an n-dimensional spacelike submanifold immersed with flat

normal bundle and parallel normalized mean curvature vector field in a locally symme-

tric semi-Riemannian space Ln+p
p . Then, we have

1

2
∆S=

X

i,j,k,µ

(hµ
ijk)

2 + 2

 
X

i,j,k,m,µ

hµ
ijh

µ
kmRmijk +

X

i,j,k,m,µ

hµ
ijh

µ
jmRmkik

!
+
X

i,j,k,µ,�

hµ
ijh

�
jkRµi�k

�
X

i,j,k,µ,�

hµ
ijh

�
jkRµk�i +

X

i,j,k,µ,�

hµ
ijh

�
ijRµk�k �

X

i,j,k,µ,�

hµ
ijh

�
kkRµi�j + n

X

i,j

hn+1
ij Hij

�nH
X

i,j,m,µ

hµ
ijh

µ
mih

n+1
mj +

X

µ,�

[tr(hµh�)]2 +
3

2

X

µ,�

N(hµh� � h�hµ), (4.3)

where N(A) = tr(AAt), for all matrix A = (aij), and hµ = (hµ
ij).

In order to study linear Weingarten submanifolds, we will consider, for each a 2 R,

an appropriated Cheng-Yau’s modified operator, given by

L = å+
n� 1

2
a∆, (4.4)

where, according to [56], the square operator is defined by

åf =
X

i,j

(nH�ij � hn+1
ij )fij, (4.5)

for each f 2 C1(M), and the normal vector field en+1 is taken in the direction of the

mean curvature vector field, that is, en+1 =
H

H
.

The next lemma gives sufficient conditions to guarantee the elipticity of the ope-

rator L, and it is an extension of Lemma 3.2 of [64].
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Lemma 4.0.3 Let Mn be an n-dimensional linear Weingarten spacelike submanifold

immersed with parallel normalized mean curvature vector field in a locally symmetric

semi-Riemannian space Ln+p
p satisfying curvature condition (1.39), and such that R =

aH + b for some a, b 2 R, with b < R. Then, L is elliptic.

Proof. Let us consider the case that a = 0. Since R = b < R, from Equation (1.22)

if we choose a (local) orthonormal frame {ei} on Mn such that hn+1
ij = �i�ij, we have

that
P

i<j �i�j > 0. Consequently,

n2H2 =
X

i

�2i + 2
X

i<j

�i�j > �2i (4.6)

for every i = 1, . . . , n and, hence, we have that nH � |�i| > 0 for every i. Therefore,

in this case, we conclude that L is elliptic.

Now, suppose that a 6= 0. From Equation (1.22) we get that

a =
1

n(n� 1)H

�
S � n2H2 + n(n� 1)R� n(n� 1)b

�
. (4.7)

For any i, from (4.37) we have

nH � �n+1
i +

n� 1

2
a=nH � �n+1

i +
1

2nH

�
S � n2H2 + n(n� 1)(R� b)

�
(4.8)

=

7
1

2
(nH)2 � nH�n+1

i +
1

2
S +

1

2
n(n� 1)(R� b)

ç
(nH)�1.

Since
P

j �
n+1
j = nH and S �

P
j(�

n+1
j )2, from (4.38) we have

nH � �n+1
i +

n� 1

2
a �

8
<
:
1

2

 
X

j

�n+1
j

!2

� �n+1
i

X

j

�n+1
j +

1

2

X

j

(�n+1
j )2

9
=
; (nH)�1

+
1

2
n(n� 1)(R� b)(nH)�1

=

(
X

j

(�n+1
j )2 +

1

2

X

l 6=j

�n+1
l �n+1

j � �n+1
i

X

j

�n+1
j

)
(nH)�1 (4.9)

+
1

2
n(n� 1)(R� b)(nH)�1

=

(
X

i 6=j

(�n+1
j )2 +

1

2

X

l 6=j,l,j 6=i

�n+1
l �n+1

j +
1

2
n(n� 1)(R� b)

)
(nH)�1

=
1

2

8
<
:
X

i 6=j

(�n+1
j )2 +

 
X

j 6=i

�n+1
j

!2

+ n(n� 1)(R� b)

9
=
; (nH)�1.

Therefore, taking into account our assumption b < R, we conclude that nH � �n+1
i +

n�1
2
a > 0, which implies that L is an elliptic operator.
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The next lemma guarantees us the existence of an Omori-type sequence related

to the operator L, and it corresponds to Lemma 3 of [17].

Lemma 4.0.4 Let Mn be an n-dimensional complete linear Weingarten spacelike sub-

manifold immersed with parallel normalized mean curvature vector field in a locally sym-

metric semi-Riemannian space Ln+p
p satisfying conditions (1.36), (1.38) and (1.39),

such that R = aH + b, with a � 0 and (n � 1)a2 + 4n
�
R� b

�
� 0. If H is positive

and bounded on Mn, then there is a sequence of points {qk}k2N ã Mn such that

lim
k

nH(qk) = sup
M

nH, lim
k

|rnH(qk)| = 0 and lim sup
k

L(nH(qk)) ÿ 0.

We will also need of the following two algebraic lemmas, whose proofs can be

founded in [106] and [134], respectively.

Lemma 4.0.5 Let µi (1 ÿ i ÿ n) be real numbers such that
P

i µi = 0 and
P

i µ
2
i = �,

where � is a nonnegative constant. Then,

� n� 2p
n(n� 1)

�3 ÿ
X

i

µ3
i ÿ

n� 2p
n(n� 1)

�3.

Moreover, the equality holds if and only if at least (n� 1) of the µi are equal.

Lemma 4.0.6 Let a1, · · · , an, b1, · · · , bn be real numbers satisfying
P

i bi = 0. Then,

X

i,j

aiaj(bi � bj)
2 ÿ np

n� 1

X

i

a2i
X

j

b2j .

4.1 Umbilicity of submanifold in a locally symmetric

semi-Riemannian space Ln+p
p

Proceeding with the same set up of the previous section and defining

µij = hn+1
ij �H�ij, '

�
ij = h�

ij, � > n+ 1, (4.10)

we have

k µ k2= tr(hn+1)2 � nH2, k ' k2=
X

i,j,µ>n+1

(hµ
ij)

2, (4.11)

and

S =k µ k2 + k ' k2 +nH2. (4.12)

It is not difficult to see that k µ k2 and k ' k2 are functions globally defined on

Mn. Moreover, they are independent of the choice of the frame field. Thus, we obtain

the following auxiliary result:

107



Proposition 4.1.1 Let Mn be an n-dimensional spacelike submanifold immersed with

flat normal bundle and parallel normalized mean curvature vector field in a locally

symmetric semi-Riemannian space Ln+p
p satisfying curvature conditions (1.36), (1.37)

and (1.38). Then, we have

1

2
∆tr(hn+1)2 �

X

i,j,k

(hn+1
ijk )2 +

X

i,j

hn+1
ij (nH)ij + cntr(hn+1)2 � cn2H2 (4.13)

�nHtr(hn+1)3 + (tr(hn+1)2)2 +
X

�>n+1

(tr(hn+1h�))2,

and

1

2
∆ k ' k2 �

X

i,j,k,µ>n+1

(hµ
ijk)

2 + cn k ' k2 �nH
X

µ>n+1

tr((hµ)2hn+1) (4.14)

+
X

µ>n+1

(tr(hn+1hµ))2 +
X

µ,�>n+1

(tr(hµh�))2,

where c =
c1
n

+ 2c2.

Proof. Let us consider {e1, . . . , en} a local orthonormal frame on Mn such that hµ
ij =

�µi �ij, for all µ 2 {n+ 1, . . . , n+ p}. From (4.3), we obtain

2

 
X

i,j,k,m,µ

hµ
ijh

µ
kmRmijk +

X

i,j,k,m,µ

hµ
ijh

µ
jmRmkik

!
=2

X

i,k,µ

�
(�µi )

2Rikik + �µi �
µ
kRkiik

�

=
X

i,k,µ

Rikik(�
µ
i � �µk )

2.

Since Ln+p
p satisfies condition (1.38) we have

2

 
X

i,j,k,m,µ

hµ
ijh

µ
kmRmijk +

X

i,j,k,m,µ

hµ
ijh

µ
jmRmkik

!
� c2

X

i,k,µ

(�µi � �µk )
2

=2nc2(S � nH2). (4.15)

Moreover, since Ln+p
p also satisfies conditions (1.36) and (1.37), it is not difficult

to verify that we also get

X

i,j,k,µ,�

hµ
ijh

�
jkRµi�k �

X

i,j,k,µ,�

hµ
ijh

�
jkRµk�i +

X

i,j,k,µ,�

hµ
ijh

�
ijRµk�k �

X

i,j,k,µ,�

hµ
ijh

�
kkRµi�j

= c1(S � nH2). (4.16)

On the other hand, we have that

X

µ,�

N(hµh� � h�hµ) � 0. (4.17)
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Hence, from (4.3) and using (4.15), (4.16) and (4.17) we conclude that

1

2
∆S�

X

i,j,k,µ

(hµ
ijk)

2 + cn(S � nH2) + n
X

i,j

hn+1
ij Hij (4.18)

�nH
X

i,j,m,µ

hµ
ijh

µ
mih

n+1
mj +

X

µ,�

(
X

i,j

hµ
ijh

�
ij)

2.

Therefore, considering the cases µ = n + 1 and µ > n + 1 in (4.18) we obtain (4.13)

and (4.14), respectively.

Finally, we are in position to state and prove our main result.

Theorem 4.1.2 Let Mn be an n-dimensional complete linear Weingarten spacelike

submanifold immersed with flat normal bundle in a locally symmetric semi-Riemannian

space Ln+p
p satisfying curvature conditions (1.36), (1.37), (1.38) and (1.39), with paral-

lel normalized mean curvature vector field and such that R = aH+ b for some a, b 2 R,

with (n� 1)a2 + 4n(R� b) � 0. If c =
c1
n

+ 2c2 > 0 and S ÿ 2
p
n� 1 c, then either

(i) Mn is totally umbilical, or

(ii) supM S = 2
p
n� 1 c. Moreover, if Ln+p

p is conformally flat, supM S is attained

at some point in Mn and R > b, then Mn is isometric to an isoparametric

hypersurface of a totally geodesic submanifold Ln+1
1 ,! Ln+p

p , with two distinct

principal curvatures, one of which is simple.

Proof. We choose a local frame of orthonormal vector field {ei} such that hµ
ij = �µi �ij,

for each µ � n+1. In particular, we consider hn+1
ij = �i�ij. We also consider µi = �i�H

and k µ k2=
P

µ2
i =

P
i(�i �H)2 =

P
i �

2
i � nH2 = tr(hn+1)2 � nH2.

By applying Lemma 4.0.5, we have

�nHtr(hn+1)3 =�3nH2 k µ k2 �n2H4 � nH
X

i

µ3
i (4.19)

��3nH2 k µ k2 �n2H4 � n(n� 2)p
n(n� 1)

H k µ k3 .

Substituting (4.19) into (4.13), we have

1

2
∆tr(hn+1)2 �

X

i,j,k

(hn+1
ijk )2 +

X

i,j

hn+1
ij (nH)ij (4.20)

+ k µ k2
 
k µ k2 +cn� nH2 � n(n� 2)p

n(n� 1)
H k µ k

!
.

Let us define the quadratic form

Q(x, y) = x2 � n� 2p
n� 1

xy � y2. (4.21)
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It is not difficult to see that, by the orthogonal transformation

u=
1p
2n

{(1 +
p
n� 1)x+ (1�

p
n� 1)y} (4.22)

v=
1p
2n

{(
p
n� 1� 1)x+ (1 +

p
n� 1)y},

equation (4.21) becomes

Q(x, y) =
n

2
p
n� 1

(u2 � v2). (4.23)

Defining x =k µ k and y =
p
nH2, we have that u2 + v2 = x2 + y2 =k µ k2 +nH2 =

tr(hn+1)2. Hence, we obtain

cn+Q(x, y) = cn� n

2
p
n� 1

(u2 + v2) +
np
n� 1

u2 � cn� n

2
p
n� 1

S. (4.24)

It follows from (4.20) and (4.23) that

1

2
∆tr(hn+1)2 �

X

i,j,k

(hn+1
ijk )2 +

X

i,j

hn+1
ij (nH)ij+ k µ k2

7
cn� n

2
p
n� 1

S

ç
. (4.25)

On the other hand, since
P

i h
µ
ii = 0 for µ > n+ 1, by applying Lemma 4.0.6 we have

�nHtr((hµ)2hn+1) + (tr(hn+1hµ))2 =�1

2

X

i,j

hn+1
ii hn+1

jj (hµ
ii � hµ

jj)
2 (4.26)

�� n

2
p
n� 1

X

j

(hµ
jj)

2
X

i

(hn+1
ii )2.

Consequently, from (4.26) we obtain that

� nH
X

µ>n+1

tr((hµ)2hn+1) +
X

µ>n+1

(tr(hn+1hµ))2 � � n

2
p
n� 1

k ' k2 S. (4.27)

Substituting (4.27) into (4.14) we get

1

2
∆ k ' k2�

X

i,j,k,µ>n+1

(hµ
ijk)

2+ k ' k2
7
cn� n

2
p
n� 1

S

ç
. (4.28)

It follows from (4.25) and (4.28) that

1

2
∆S �

X

i,j,k,µ

(hµ
ijk)

2 +
X

i,j

hn+1
ij (nH)ij + (S � nH2)

7
cn� n

2
p
n� 1

S

ç
. (4.29)
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Using (1.22) and (4.29) we have

å(nH) =
X

i,j

(nH�ij � hn+1
ij )(nH)ij (4.30)

=
X

i

(nH)(nH)ii �
X

i,j

hn+1
ij (nH)ij

=
1

2
∆(nH)2 �

X

i

(nHi)
2 �

X

i,j

hn+1
ij (nH)ij

=
1

2
∆S � 1

2
n(n� 1)∆R� n2|rH|2 �

X

i,j

hn+1
ij (nH)ij

�
X

i,j,k,µ

(hµ
ijk)

2 � n2|rH|2 � 1

2
n(n� 1)∆R

+(S � nH2)

7
cn� n

2
p
n� 1

S

ç
.

Consequently, since R = aH + b, from (4.30) we get

L(nH) =å(nH) +
n� 1

2
a∆(nH) (4.31)

=å(nH) +
1

2
n(n� 1)∆R

�
X

i,j,k,µ

(hµ
ijk)

2 � n2|rH|2 + (S � nH2)

7
cn� n

2
p
n� 1

S

ç
.

Thus, using Lemma 4.0.1, from (4.31) we obtain

L(nH) � (S � nH2)

7
cn� n

2
p
n� 1

S

ç
. (4.32)

Since S ÿ 2
p
n� 1 c, we have that the mean curvature H and �n+1

i are bounded.

Hence, the Ricci curvature of Mn is bounded from below, nH � �i +
n�1
2
a is bounded

and a > 0, and we can apply Lemma 4.0.4 to guarantee that there exists a sequence

of points {qk}k2N ã Mn such that

lim
k
(nH)(qk) = sup

M
(nH), lim

k
k r(nH)(qk) k= 0 and lim sup

k
L(nH)(qk) ÿ 0.

(4.33)

It follows from of equation S = n2H2+n(n�1)(aH+b�R) that limk S(qk) = supM S.

Evaluating (4.32) at points qk, we have

0 � (sup
M

S � n sup
M

H2)

7
cn� n

2
p
n� 1

sup
M

S

ç
. (4.34)

Since S ÿ 2
p
n� 1 c, we have

sup
M

(S � nH2)

7
cn� n

2
p
n� 1

sup
M

S

ç
= 0. (4.35)
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Hence, we have either supM(S � nH2) = 0 and Mn is totally umbilical, or supM S =

2
p
n� 1 c.

Now, suppose that supM S = 2
p
n� 1 c and supM S is attained on Mn. Then,

supM H is also attained on Mn and, since L(nH) � 0 and R < b, we can use Lemma

4.0.3 to obtain that H is constant. Consequently, all the inequalities previously obtai-

ned become equalities. Since the equality in (4.27) holds, we have k ' k2= 0. On the

other hand, our assumptions that en+1 is parallel and H is constant force that the mean

curvature vector field is parallel in the normal bundle T?(Mn). Hence, since it is also

assumed that Ln+p
p is conformally flat, we are in position to apply Theorem 1 of [130] to

conclude that Mn is, in fact, isometrically immersed in a (n+1)-dimensional totally ge-

odesic submanifold Ln+1
1 of Ln+p

p . Therefore, since the equality holds in Lemma 4.0.5,

we conclude that Mn must be isoparametric with two distinct principal curvatures, one

of which is simple.

4.2 Via Omori-Yau’s maximum principle

In order to prove our first result, we will make use of a generalized version of

the Omori-Yau’s maximum principle for trace type differential operators proved in [8].

Let Mn be a Riemannian manifold and let L = tr(P � r2) be a semi-elliptic operator,

where P : X(M) ! X(M) is a positive semi-definite symmetric tensor. Following the

terminology introduced by Pigola, Rigoli and Setti [109], we say that the Omori-Yau’s

maximum principle holds on Mn for the operator L if, for any function u 2 C2(M)

with uå = supM u < +1, there exists a sequence of points {pj} ã Mn satisfying

u(pj) > uå � 1

j
, |ru(pj)| <

1

j
and Lu(pj) <

1

j
, 8j 2 N.

Equivalently, for any function u 2 C2(M) with uå = infM u > �1 there exists a

sequence of points {pj} ã Mn satisfying

u(pj) < uå +
1

j
, |ru(pj)| <

1

j
and Lu(pj) > �1

j
, 8j 2 N.

The following proposition establishes a suitable version of the Omori-Yau’s ma-

ximum principle for the Cheng-Yau type differential operator L defined in (1.31).
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Proposition 4.2.1 Let Mn be an n-dimensional linear Weingarten spacelike submani-

fold immersed with parallel normalized mean curvature vector field in a locally symme-

tric semi-Riemannian space Ln+p
p satisfying curvature conditions (1.36), (1.38), (1.39),

and such that R = aH + b for some a, b 2 R, with b < R (resp. b ÿ R). The following

holds:

(i) The operator L defined in (1.31) is elliptic (resp. semi-elliptic) or, equivalently,

P defined in (1.35) is positive definite (resp. semi-definite);

(ii) If supM |Φ|2 < +1, then the Omori-Yau’s maximum principle holds on Mn for

the operator L defined in (1.31).

Proof. We recall that conditions (1.36), (1.39) guarantee that R is constant. For

proof of (i), let us consider the case that a = 0. Since R = b < R, from (1.22) if we

choose a (local) orthonormal frame {ei} on Mn such that hn+1
ij = �i�ij, we have that

P
i<j �i�j > 0. Consequently,

n2H2 =
X

i

�2i + 2
X

i<j

�i�j > �2i (4.36)

for every i = 1, . . . , n and, hence, we have that nH � |�i| > 0 for every i. Therefore,

in this case, we conclude that L is elliptic.

Now, suppose that a 6= 0. From (1.22) we get that

a =
1

n(n� 1)H

�
S � n2H2 + n(n� 1)R� n(n� 1)b

�
. (4.37)

For any i, from (4.37) we have

nH � �n+1
i +

n� 1

2
a=nH � �n+1

i +
1

2nH

�
S � n2H2 + n(n� 1)(R� b)

�
(4.38)

=

7
1

2
(nH)2 � nH�n+1

i +
1

2
S +

1

2
n(n� 1)(R� b)

ç
(nH)�1.
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Since
P

j �
n+1
j = nH and S �Pj(�

n+1
j )2, from (4.38) we have

nH � �n+1
i +

n� 1

2
a �

8
<
:
1

2

 
X

j

�n+1
j

!2

� �n+1
i

X

j

�n+1
j +

1

2

X

j

(�n+1
j )2

9
=
; (nH)�1

+
1

2
n(n� 1)(R� b)(nH)�1

=

(
X

j

(�n+1
j )2 +

1

2

X

l 6=j

�n+1
l �n+1

j � �n+1
i

X

j

�n+1
j

)
(nH)�1 (4.39)

+
1

2
n(n� 1)(R� b)(nH)�1

=

(
X

i 6=j

(�n+1
j )2 +

1

2

X

l 6=j,l,j 6=i

�n+1
l �n+1

j +
1

2
n(n� 1)(R� b)

)
(nH)�1

=
1

2

8
<
:
X

i 6=j

(�n+1
j )2 +

 
X

j 6=i

�n+1
j

!2

+ n(n� 1)(R� b)

9
=
; (nH)�1.

Therefore, considering b < R (b ÿ R), we conclude that L is an elliptic (semi-ellíptic)

operator.

Now, let us proof item (ii). By (1.30) we find

|Φ|2 = n(n� 1)(H2 + aH) + n(n� 1)(b�R), (4.40)

which assures that supM H < +1 because of our assumption on |Φ|2. From here and

of (1.22), for every µ, i, j, it holds that

(hµ
ij)

2 ÿ |A|2 = n
�
nH2 + (n� 1)aH

�
+ n(n� 1)(b�R),

so that supM hµ
ij < +1. Thus, it follows from the Gauss equation, (1.38) and (1.45)

that

Rijij = Rijij �
X

µ

�
hµ
iih

µ
jj � (hµ

ij)
2
�
� c2 �

X

µ

hµ
iih

µ
jj > �1, (4.41)

that is, the sectional curvatures of Mn are bounded from below.

Besides, from (1.35) one verifies that

tr(P) = n(n� 1)H +
n(n� 1)a

2
. (4.42)

In particular, from (4.42) we get supM tr(P) < +1. Therefore, taking into account

(3.136) and (4.41), we can apply Theorem 6.13 of [8] to conclude the desired result.

So, we apply Proposition 4.2.1 to establish the following characterization result:
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Theorem 4.2.2 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector field and flat normal bundle

in a locally symmetric semi-Riemannian space Ln+p
p with p > 1 and satisfying con-

ditions (1.36), (1.37), (1.38) and (1.39), such that R = aH + b, with a � 0 and

b ÿ R < b + c, where c =
c1
n

+ 2c2. Suppose that there exists an orthogonal basis for

TM that diagonalizes simultaneously all Aá, á 2 TM?. Then,

(i) either |Φ| ; 0 and Mn is a totally umbilical submanifold,

(ii) or

sup
M

|Φ| � µ(n, p, a, b, c,R) > 0,

where µ(n, p, a, b, c,R) is a positive constant that depends only on n, p, a, b, c,R.

Moreover, if b < R, the equality supM |Φ| = µ(n, p, a, b, c,R) holds and this supre-

mum is attained at some point of Mn, then Mn is an isoparametric submanifold,

in the sense that their principal curvatures are constant.

Proof. Initially we must to obtain a suitable lower boundedness for the operator L

acting on the squared norm of the total umbilicity tensor Φ of Mn. To get it, let us

begin observing that, since Mn is a linear Weingarten, by (1.30) we get

n

2(n� 1)
L(|Φ|2) =

1

2
L(n2H2) +

an

2
L(nH)

= nHL(nH) + n2hPrH,rHi+ an

2
L(nH). (4.43)

By using item (i) of Proposition 4.2.1, we have that P is positive semi-definite. In

particular, from (4.43) we find

1

2(n� 1)
L(|Φ|2) �

ã
H +

a

2

;
L(nH). (4.44)

On the other hand, since we are supposing that Mn has parallel normalized mean

curvature vector field, flat normal bundle and that there exists an orthogonal basis for

TM that diagonalizes simultaneously all Aá, á 2 TM?, from the proof of Proposition

1 in [17] (see the bottom of page 75) we have the following

L(nH) =
1

2
∆S � n2|rH|2 � n

X

i,j

hn+1
ij Hij

� |rA|2 � n2|rH|2 + cn|Φ|2 � nH
X

i,j,m,µ

hµ
ijh

µ
mih

n+1
mj +

X

µ,�

[tr(hµh�)]2.
(4.45)

Moreover, we see that

�nH
X

µ

tr[hn+1(hµ)2]+
X

µ,�

[tr(hµh�)]2 � �n(n� 2)p
n(n� 1)

H|Φ|3�nH2|Φ|2+
|Φ|4

p
. (4.46)
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From (4.45) and (4.46), we have

L(nH) � |rA|2 � n2|rH|2 + |Φ|2

 
|Φ|2

p
� n(n� 2)p

n(n� 1)
H|Φ|� n(H2 � c)

!
.(4.47)

Besides, from (1.30) we have

H +
a

2
=

1p
n(n� 1)

s
|Φ|2 + n(n� 1)

7
a2

4
+R� b

ç
. (4.48)

This jointly with (4.44), (4.47) and Lemma 1.2.2 enables us to deduce that

1

2
L(|Φ|2) � (n� 1)|Φ|2Qn,p,a,b,c,R(|Φ|)

s
|Φ|2

n(n� 1)
+

a2

4
+R� b, (4.49)

where the function Qn,p,a,b,c,R(x) is given by

Qn,p,a,b,c,R(x) =
n� p� 1

p(n� 1)
x2 +

 
na� n(n� 2)p

n(n� 1)
x

!s
x2

n(n� 1)
+

a2

4
+R� b

+
n(n� 2)a

2
p

n(n� 1)
x+ n

7
�a2

2
+ b+ c�R

ç
. (4.50)

At this point, we will make a brief analysis of the behavior of the function

Qn,p,a,b,c,R(x), considering p > 1, a � 0 and b ÿ R < b + c. Let us observe that

when x > 0, from (4.50) we get

lim
x!+1

Qn,p,a,b,c,R(x) = lim
x!+1

x2
nn� p� 1

p(n� 1)
(4.51)

+

 
na

x
� n(n� 2)p

n(n� 1)

!s
1

n(n� 1)
+

a2

4x2
+

R� b

x2

+
n(n� 2)a

2x
p

n(n� 1)
+

n

x2

�
� a2

2
+ b+ c�R

�o
.

Thus, taking into account that p > 1, from (4.51) we obtain

lim
x!+1

Qn,p,a,b,c,R(x) = lim
x!1

x2

ã
n� p� 1

p(n� 1)
� n� 2

n� 1

�
= �1. (4.52)

Since we are also assuming that b ÿ R < b+ c and a � 0, we also have that

Qn,p,a,b,c,R(0) = n

 
a

r
a2

4
+R� b� a2

2

!
+n

�
b+ c�R

�
� n(b+ c�R) > 0. (4.53)

From (4.52) and (4.53), we can define µ(n, p, a, b, c,R) as being the first positive

root of the function Qn,p,a,b,c,R(x).
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Now, we are going to finish the proof by applying our version of the Omori-Yau’s

maximum principle to the operator L acting on the function |Φ|2. Before, we note that

if supM |Φ| = +1, then the claim (ii) of Theorem 4.2.2 trivially holds and there is

nothing to prove

So, let us assume without loss of generality that supM |Φ| < +1. In this case,

from item (ii) of Proposition 4.2.1 we obtain a sequence {pj} in Mn satisfying

lim
j

|Φ|(pj) = sup
M

|Φ| and L(|Φ|2)(pj) <
1

j
, 8j 2 N,

which jointly with (4.49) gives

1

j
> L(|Φ|2)(pj) � (n�1)|Φ|2(pj)Qn,p,a,b,c,R(|Φ|(pj))

s
|Φ|2(pj)

n(n� 1)
+

a2

4
+R� b, 8j 2 N.

Taking the limit as j ! +1, we infer

7
sup
M

|Φ|

ç2

Qn,p,a,b,c,R(sup
M

|Φ|)

s
(supM |Φ|)2

n(n� 1)
+

a2

4
+R� b ÿ 0.

It follows from here that either supM |Φ| = 0, which means that |Φ| ; 0 and the

submanifold is totally umbilical, or supM |Φ| > 0 and then

Qn,p,a,b,c,R(sup
M

|Φ|) ÿ 0.

Thus, from the behavior of the function Qn,p,a,b,c,R(x) and according to our choice of

the positive constant µ(n, p, a, b, c,R), we deduce that supM |Φ| � µ(n, p, a, b, c,R).

Finally, let us assume that supM |Φ| = µ(n, p, a, b, c,R). In this case, from (4.49)

and taking into account once more the behavior of Qn,p,a,b,c,R(x), we get that L(|Φ|2) �
0. But, since we are assuming that b < R, item (i) of Proposition 4.2.1 guarantees

that L is elliptic. Consequently, since we are also supposing that supM |Φ| is attained

at some point of Mn, we conclude that |Φ| is constant on Mn and, from (4.40), the

same holds for H. Hence, returning to (4.47) we obtain

X

i,j,k

(hµ
ijk)

2 = |rA|2 = n2|rH|2 = 0,

that is, hµ
ijk = 0, for all i, j. Therefore, we conclude that Mn is an isoparametric

submanifold of Ln+p
p .
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Remark 4.2.3 We note that the example mentioned in Remark 1, besides checking

the assumptions (1.36), (1.37), (1.38) and (1.39), also verifies the hypothesis b ÿ R <

b + c and it is such that there exists an orthogonal basis for TM that diagonalizes

simultaneously all Aá, á 2 TM?. Indeed, we have that

R =
1

n(n� 1)

X

i,j

Rijij =
1

n(n� 1)

X

i,j

K(ei, ej) = 1.

Consequently, since R = 1, b = 1 and c = 2, we conclude that b ÿ R < b+c. Moreover,

since Mn = {0}å S
n is totally geodesic, we get that Aá ; 0 for all á 2 TM?.

4.3 Via L-parabolicity

We recall that a Riemannian manifold Mn is said to be parabolic (with respect to

the Laplacian operator) if the constant functions are the only subharmonic functions

on Mn which are bounded from above; that is, for a function u 2 C2(M)

∆u � 0 and u ÿ uå < +1 implies u = constant.

From a physical viewpoint, parabolicity is closed related to the recurrence of the Brow-

nian motion. Roughly speaking, the parabolicity is equivalent to the property of that

all particles will pass through any open set at an arbitrary large time (for more details,

see [76]).

Extending this previous concept for the operator L defined in (3.136), Mn is said

to be L-parabolic if the constant functions are the only functions u 2 C2(M) which are

bounded from above and satisfying Lu � 0, that is, for a function u 2 C2(M),

Lu � 0 and u ÿ uå < +1 implies u = constant.

In this setting, we obtain the following gap result:

Theorem 4.3.1 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector field and flat normal bundle in

a locally symmetric semi-Riemannian space Ln+p
p with p > 1 and satisfying conditions

(1.36), (1.38) and (1.39), such that R = aH+ b, with a � 0 and b ÿ R < b+ c, where

c =
c1
n

+ 2c2. Suppose that there exists an orthogonal basis for TM that diagonalizes

simultaneously all Aá, á 2 TM?. Assume in addition that 0 ÿ |Φ| ÿ µ(n, p, a, b, c,R),

where µ(n, p, a, b, c,R) is the positive constant which was obtained in Theorem 4.2.2.

If Mn is a L-parabolic submanifold, then either |Φ| ; 0 and Mn is totally umbilical,

or |Φ| ; µ(n, p, a, b, c,R) and Mn is an isoparametric submanifold.
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Proof. Suppose that Mn is not totally umbilical. Since we are assuming that 0 ÿ
|Φ| ÿ µ(n, p, a, b, c,R), we obtain 0 < supM |Φ|2 ÿ µ(n, p, a, b, c,R). In this case, from

item (ii) of Theorem 4.2.2 we get that supM |Φ|2 = µ(n, p, a, b, c,R). Moreover, since

estimate (4.49) jointly with our restriction on |Φ| imply L(|Φ|2) � 0 on Mn, from the

L-parabolicity of Mn we conclude that |Φ| must be constant and identically equal to

µ(n, p, a, b, c,R). Therefore, at this point we can proceed as in the last part of the

proof of Theorem 4.2.2 to conclude the result.

When the ambient space Ln+p
p is supposed to be Einstein, reasoning as in the

first part of the proof of Theorem 1.1 in [90], from (1.31) and (1.32) it is not difficult

to verify that

L(f) = div(P(rf)), (4.54)

where P is just the operator defined in (1.35). Taking account this fact, we obtain the

following criterion for L-parabolicity of complete linear Weingarten spacelike subma-

nifolds:

Proposition 4.3.2 Let Mn be a complete linear Weingarten spacelike submanifold

immersed with parallel normalized mean curvature vector field in a locally symmetric

Einstein semi-Riemannian space Ln+p
p satisfying conditions (1.36), (1.38) and (1.39),

such that R = aH + b, with a � 0 and b ÿ R < b + c, where c =
c1
n

+ 2c2. If

supM |Φ|2 < +1 and, for some reference point o 2 Mn,

Z +1

0

dr

vol(@Br)
= +1, (4.55)

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn centered

at the origin o.

Proof. We consider on Mn the symmetric (0, 2) tensor field á given by

á(X, Y ) = hPX, Y i or, equivalently, á(ru, ·)] = P(ru),

where P is defined in (3.135) and ] : T åM ! TM denotes the musical isomorphism.

Thus, from (4.54) we get

L(u) = div
�
á(ru, ·)]

�
.

On the other hand, since we are assuming that supM |Φ|2 < +1 and a � 0,

from (4.40) we get that supM H < +1. So, we can define a positive continuous
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function á+ on [0,+1), by

á+(r) = 2n sup
@Br

H. (4.56)

Thus, from (4.56) we have

á+(r) = 2n sup
@Br

H ÿ 2n sup
M

H < +1. (4.57)

Hence, from (4.55) and (4.57) we get

Z +1

0

dr

á+(r)vol(@Br)
= +1.

Therefore, we can apply Theorem 2.6 of [110] to conclude the proof.

Remark 4.3.3 Taking into account Proposition 4.3.2, it is natural to ask oneself about

the existence of Einstein manifolds which are locally symmetric. In this direction,

Tod [118] showed that four-dimensional Einstein manifolds which are also D’Atri spa-

ces are necessarily locally symmetric. Later on, Brendle [40] proved that a compact

Einstein manifold of dimension n � 4 having nonnegative isotropic curvature must be

locally symmetric, extending a previous result of Micallef and Wang for n = 4 (see

Theorem 4.4 of [97]). See also [125] for another sufficient conditions for an Einstein

manifold to be locally symmetric.

4.4 Via integrability property

In [132], Yau established the following version of Stokes’ Theorem on an n-

dimensional complete noncompact Riemannian manifold Mn: If ! 2 Ω
n�1(M) is an

(n � 1)-differential form on Mn, then there exists a sequence Bi of domains on Mn

such that Bi ã Bi+1, Mn =
S

i�1 Bi and limi! +1

Z

Bi

d! = 0. Supposing that Mn

is oriented by the volume element dM and considering the contraction of dM in the

direction of a smooth vector field X on Mn, that is, ! = çXdM , Caminha obtained

a suitable consequence of Yau’s result, which is described below (see Proposition 2.1

of [43]). In what follows, L1(M) stands for the space of Lebesgue integrable functions

on Mn.

Lemma 4.4.1 Let X be a smooth vector field on the n-dimensional complete oriented

Riemannian manifold Mn, such that divX does not change sign on Mn. If |X| 2
L1(M), then divX = 0.
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We close our paper applying Lemma 4.4.1 in order to obtain the following cha-

racterization result.

Theorem 4.4.2 Let Mn be a complete linear Weingarten spacelike submanifold im-

mersed with parallel normalized mean curvature vector field and flat normal bundle

in locally symmetric Einstein semi-Riemannian space Ln+p
p with p > 1 and satisfying

conditions (1.36), (1.37), (1.38) and (1.39), such that R = aH + b, with a � 0 and

b ÿ R < b + c, where c =
c1
n

+ 2c2. Suppose that there exists an orthogonal basis

for TM that diagonalizes simultaneously all Aá, á 2 TM?. Assume in addition that

0 ÿ |Φ| ÿ µ(n, p, a, b, c,R), where µ(n, p, a, b, c,R) is the positive constant which was

obtained in Theorem 4.2.2. If |rH| 2 L1(M), then either |Φ| ; 0 and Mn is totally

umbilical, or |Φ| ; µ(n, p, a, b, c,R) and Mn is an isoparametric submanifold.

Proof. Since R = aH + b and taking into account that (4.40) gives that H is bounded

on Mn, from (1.22) we have that A is bounded on Mn. Consequently, from (1.35)

we conclude that the operator P is bounded, that is, there exists a positive constant

C1 such that |P| ÿ C1. Since we are also assuming that |rH| 2 L1(M) and (4.40), we

obtain that

|P (rH)| ÿ |P ||rH| ÿ C1|rH| 2 L1(M). (4.58)

Thus, taking into account (4.54) and (4.58), we can apply Lemma 4.4.1 to obtain

L(nH) = div(P(nH)) = 0. (4.59)

Hence, using the fact that 0 ÿ |Φ| ÿ µ(n, p, a, b, c,R), from (4.47) and (4.59) we

conclude that

0 = L(nH) � |rA|2 � n2|rH|2 + |Φ|2Qn,p,a,b,c,R(|Φ|) � 0. (4.60)

Thus, from (4.60) we get that |rA|2 = n2|rH|2 and, consequently, Lemma (1.2.2)

guarantees that H is constant. Hence,

X

i,j,k,µ

(hµ
ijk)

2 = |rA|2 = n2|rH|2 = 0,

that is, hµ
ijk = 0 for all i, j, and we obtain that Mn is isoparametric. Therefore, the

result follows once more as in the last part of the proof of Theorem 4.2.2.
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