UNIVERSIDADE FEDERAL DE CAMPINA GRANDE
CENTRO DE ENGENHARIA ELETRICA E INFORMATICA
UNIDADE ACADEMICA DE SISTEMAS E COMPUTACAO

PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

JOSE GLAUBER BRAZ DE OLIVEIRA

AN EMPIRICAL STUDY OF THE RELATIONSHIP BETWEEN
REFACTORINGS AND MERGE CONFLICTS IN JAVASCRIPT
REPOSITORIES

CAMPINA GRANDE - PB
2024

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informatica

Coordenacao de P6s-Graduacdo em Ciéncia da Computacao

An Empirical Study of the Relationship Between
Refactorings and Merge Conflicts 1n Javascript

Repositories

José Glauber Braz de Oliveira

Dissertacdo submetida a Coordenag¢do do Curso de Pds-Graduacdo em
Ciéncia da Computacdo da Universidade Federal de Campina Grande -
Campus I como parte dos requisitos necessarios para obten¢do do grau

de Mestre em Ciéncia da Computagao.

Area de Concentracio: Ciéncia da Computagio

Linha de Pesquisa: Software Engineering

Melina Mongiovi

Sabrina Souto

Campina Grande, Paraiba, Brasil

©José Glauber Braz de Oliveira, 14/12/2023

048e

Oliveira, José Glauber Braz de.

An empirical study of the relationship between refactorings and merge
conflicts in javascript repositories / José Glauber Braz de Oliveira —
Campina Grande, 2024.

86 f. : il. color.

Dissertagdo (Mestrado em Ciéncia da Computagdo) - Universidade
Federal de Campina Grande, Centro de Engenharia Elétrica e Informatica,
2023.

"Orientac¢do: Profa. Dra. Melina Mongiovi Cunha Lima Sabino, Profa.
Dra. Sabrina de Figueiredo Souto."

Referéncias.

1. Computer Software Program. 2. Software Engineering. 3.
Refactorings. 4. Merge Conflicts. 5. Javascript. 1. Sabino, Melina
Mongiovi Cunha Lima. II. Souto, Sabrina de Figueiredo. III. Titulo.

CDU 004.4(043)

FICHA CATALOGRAFICA ELABORADA PELA BIBLIOTECARIA ITAPUANA SOARES DIAS GONCALVES CRB-15/093

SEI/UFCG - 4090330 - PRPG-Folha de Assinatura para... https://sei.ufcg.edu.br/sei/documento consulta extern...

MINISTERIO DA EDUCACAO

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE

POS-GRADUACAO EM CIENCIA DA COMPUTACAO
Rua Aprigio Veloso, 882, Edificio Telmo Silva de Aratjo, Bloco CG1, - Bairro

Universitario, Campina Grande/PB, CEP 58429-900

Telefone: 2101-1122 - (83) 2101-1123 - (83) 2101-1124

Site: http://computacao.ufcg.edu.br - E-mail: secretaria-

copin@computacao.ufcg.edu.br / copin@copin.ufcg.edu.br

FOLHA DE ASSINATURA PARA TESES E DISSERTACOES

JOSE GLAUBER BRAZ DE OLIVEIRA

AN EMPIRICAL STUDY OF THE RELATIONSHIP BETWEEN
REFACTORINGS AND MERGE CONFLICTS IN JAVASCRIPT
REPOSITORIES

Dissertacao apresentada ao Programa
de Pés-Graduagcao em Ciéncia da
Computacao como pré-requisito para
obtencao do titulo de Mestre em
Ciéncia da Computacao.

Aprovada em: 14/12/2023

Profa. Dra. MELINA MONGIOVI BRITO LIRA, UFCG, Orientadora
Profa. Dra. SABRINA DE FIGUEIREDO SOUTO, UEPB, Orientadora

Prof. Drr EVERTON LEANDRO GALDINO AIVES, UFCG, Examinador
Interno

Prof. Dr LEOPOLDO MOTTA TEIXEIRA, UFPE, Examinador Externo

' ..) Documento assinado eletronicamente por MELINA MONGIOVI CUNHA
JEI! lj LIMA SABINO, PROFESSOR(A) DO MAGISTERIO SUPERIOR, em
pssinawrs = 119/12/2023, as 12:19, conforme horério oficial de Brasilia, com fundamento

e J o0 art. 8¢, caput, da Portaria SEI n® 002, de 25 de outubro de 2018.

' .~) Documento assinado eletronicamente por EVERTON LEANDRO GALDINO
JEH lj ALVES, PROFESSOR 3 GRAU, em 19/12/2023, as 14:25, conforme hordario
assinatura “ | oficial de Brasilia, com fundamento no art. 82, caput, da Portaria SEI n® 002,

—————J de 25 de outubro de 2018.

Assinaiura

ALSIRIILRY

1of2 21/03/2024, 19:55

SEI/UFCG - 4090330 - PRPG-Folha de Assinatura para... https://sei.ufcg.edu.br/sei/documento consulta extern...

..) Documento assinado eletronicamente por Leopoldo Motta Teixeira,

JE'! tj] Usuario Externo, em 20/12/2023, as 11:36, conforme horario oficial de
assinstura ! Brasilia, com fundamento no art. 82, caput, da Portaria SEI n? 002, de 25 de
outubro de 2018.

(.-) Documento assinado eletronicamente por Sabrina de Figueiredo Souto,
JE'! EJ] Usuario Externo, em 20/12/2023, as 16:44, conforme horario oficial de
assinatura Brasilia, com fundamento no art. 82, caput, da Portaria SEI n? 002, de 25 de

outubro de 2018.

Referéncia: Processo n? 23096.092249/2023-11 SEI n° 4090330

2 0f2 21/03/2024, 19:55

Abstract

Maintenance activities are crucial to prolong the lifecycle of a software. An important ac-
tivity during software maintenance is refactoring, which is a transformation that improves
the quality of the internal structure of the code without changing its behavior. During soft-
ware development, Version Control Systems (VCS) are used to integrate changes made by
developers. These integration procedures, known as merge processes, may result in conflicts
if changes are made in the same place in the code. This work aims to analyze the possible
relationship between refactorings and merge conflicts in JavaScript code. We analyzed 76
JavaScript repositories, including 81,856 merge scenarios, which 6,356 of them have con-
flicts. We discovered a moderate positive correlation between the number of conflicts files/-
conflicting regions and relationship/number of refactoring. For the second research question
we found that the refactoring types Internal move, Move and Rename are more related to
the conflicting areas, as well as a moderate correlation between the number of conflicts and
the number of types of refactoring performed. 8 types of refactorings were identified at the
conflicting file level and also at the conflict region level. Through statistical analysis, the
relationship between the number of refactoring types and the number of conflicts was the
strongest found result in our study. In addition to our automatic analysis, a manual study was
conducted that analyzed 535 evolutionary commits, verifying that 447 (84%) of these were
classified as floss refactoring because they had other types of modifications involved in the
process. 88 evolutionary commits analyzed were classified as pure refactoring, representing

16% of evolutionary commits that only have refactoring actions.

Resumo

Atividades de manuten¢do sdo cruciais para prolongar o ciclo de vida de um software. Uma
atividade importante durante a manuten¢do de software € a refatoracio, que é uma transfor-
macdo que melhora a qualidade de um programa sem alterar seu comportamento. Durante o
desenvolvimento de software, Sistemas de Controle de Versao (SCV) sdo utilizados para inte-
grar as mudancgas feitas pelos desenvolvedores. Esses procedimentos de integracio, conheci-
dos como processos de mesclagem, podem resultar em conflitos se forem feitas alteracdes
no mesmo lugar do cédigo. Este trabalho tem por objetivo analisar a possivel relacao entre
refatoragcdes e conflitos de mesclagem em cddigo JavaScript. Analisamos 76 repositdrios
JavaScript, incluindo 81.856 cendrios de mesclagem, dos quais 6.356 apresentam confli-
tos. NOs descobrimos uma correlacdo positiva moderada entre o nimero de arquivos de
conflitos/regides em conflito e relacao/ntimero de refatoracdes. Para a segunda questdo de
pesquisa descobrimos que os tipos de refatoracao Internal move, Move e Rename estdo mais
relacionados as dreas conflitantes, bem como correlagdo moderada entre o nimero de confli-
tos e o numero de tipos de refatoracdo realizadas. Através de andlises estatisticas, a relacao
entre o nimero de tipos de refatoracdes e o nimero de conflitos foi o mais forte encontrado
em nosso estudo. 8 tipos de refatoracdes foram identificados ao nivel dos arquivos confli-
tantes e a nivel de regido de conflito. Além da nossa andlise automatica para as QP1 e QP2,
foi realizado um estudo manual para a QP3 que analisou 535 commits, verificando que 447
(84%) destes foram classificados como floss refactoring, possuindo outros tipos de modifi-
cacgdes envolvidas no processo. 88 commits evolutivos analisados foram classificados como

pure refactoring, representando 16% dos commits evolutivos.

i

Agradecimentos

Toda essa jornada foi desafiadora. Foram muitos dias de altos e baixos, descobertas e inse-
gurancas, memorias de aprendizado e carinho. Inicio agradecendo a Deus € a mim mesmo
por ndo ter desistido desse caminho, o caminho da educagdo que liberta e faz crescer. Cresce
dentro de mim o orgulho e a vontade de alcancar sempre mais. Foi uma experiéncia incriv-
elmente gratificante!

Nao posso deixar de expressar minha profunda gratiddo a minha famdilia, a base de tudo.
Desde cedo, ela me ensinou os valores da vida e a correr atrds do que € meu, sendo sem
divida a minha maior rede de apoio. Obrigado, painho Gildo, mainha Cosma, minhas irmas
Kallyse e Camila, e meus sobrinhos Duda, Aninha e B€, por todo o amor recebido durante
esse processo. Esta vitdria € nossa!

Quero estender meus agradecimentos as minhas orientadoras, Professora Melina Mon-
giovi e Professora Sabrina Souto, por toda a ajuda, ensinamento, paciéncia e suporte nessa
jornada. Esta vitéria € nossa, e foi um prazer trabalhar junto com vocés. Vocés sdo excep-
cionais no ensino e orientacdo, e espero que o futuro nos reserve muitas trocas de conheci-
mento! Obrigado por essa rede de apoio.

Agradeco também a todos que me acompanharam nessa jornada, tanto profissional
quanto pessoal, em especial Helder e Samara, obrigado por todo o amor recebido! Vocés
tornam esse caminho muito mais leve. Sem o apoio e as palavras de encorajamento, essa
jornada seria muito mais dificil. Quem tem um amigo tem tudo, e saibam que guardo cada
um de vocés em meu coragdo.

Por fim, agradeco ao universo e a todos que enviaram boas energias e forca para a con-
clusdo deste ciclo. Que venham mais experiéncias no ensino e pesquisa, levando e gerando

conhecimento por onde passar.

iii

Contents

1 Introduction
I.1 Problem
1.2 ODbJectives v v i e e e e e
1.3 Contributions L

1.4 Structure e

2 Background
2.1 Merge e e
2.1.1 How does the GitHub merge? A three-way merge
212 MergeConflicts L
2.2 Refactorings
2.2.1 Refactoring actions in JavaScript

2.3 Refactorings versus Merge Conflicts

3 Exploring the relationship between Refactorings and Merge Conflicts

3.1 Methodology
3.1.1 Methodological study for RQ1: Analyzing the Relationship between
Refactorings and Merge Conflict

3.1.2 Methodological study for RQ2: Analyzing the Relationship between
Refactorings Types and Merge Conflicts

32 Study Setup
3.2.1 Selection of JavaScript repositories

3.2.2 Creation of scripts to collect text data information

3.2.3 Initialization and configuration of the RefDiff 2.0 refactoring tool

v

AN N BN -

o oo oo R

10
12
33

35
36

36

40
41
41
42
42

CONTENTS v

3.2.4 Execution environmentot ot 42
3.3 Results. . . . e e e 43
3.3.1 Descriptive analysis Lo 43

3.3.2 Answering RQI: Is there a relationship between refactoring and
merge conflicts in JavaScript programs? 52

3.3.3 Answering RQ2: What refactoring patterns relate most to merge

conflicts in JavaScript programs? 56

34 Discussion e 60

3.5 Threatsto Validity 62

3.5.1 Imternal Validity 62

3.5.2 External Validity 63

3.5.3 Constructor Validity 63

3,54 Conclusion Validity 64

4 An examination of commit evolutionary: floss or pure refactoring? 65

4.1 Methodology 66
4.1.1 Methodological study for RQ3: Analyzing the content of evolution-

ary commit (floss and pure refactoring) 66

42 Results. 68

4.2.1 Answering RQ3: The evolutionary commits that made conflicting

code contain only refactorings (pure refactoring) or other modifica-

tions (floss refactoring)?o 70

43 DISsCUSSION e e e 71
44 Threatsto Validity 72
4.4.1 Internal Validity, 73

442 External Validity 73

4.4.3 Constructor Validity 73

444 Conclusion Validity, 73

5 Related Work 75

CONTENTS vi
6 Conclusions 78

6.1 Future work 81
A Appendix of study 86

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

3.1

Common ancestor.o e e e 9
Branch. 9
Long method and Extract refactoring example 11
Speculative Generality and Inline refactoring example 11
Code smells and respectively refactoring examples 12
Rename function refactoring example 15
Another rename function refactoring example 15
Inline function refactoring example 17
Another inline function refactoring example 18
Extract function refactoring example 19
Move function refactoring example, 21
Move rename function refactoring example 23
Extract Move function refactoring example 24
Internal Move function refactoring example 26
Another Internal Move function refactoring example 27
Internal Move Rename function refactoring example 28
Move file refactoring example L. 29
Rename file refactoring example 30
Move Rename file refactoringexample 31
Move class refactoring example L. 32
Rename class refactoring example 33

Methodology for analyzing the relationship between refactorings and merge

conflicts L 37

vii

LIST OF FIGURES viii
3.2 Methodology for analyzing the relationship between refactoring types and
merge conflicts 40
3.3 Initial metrics of selection repositories Javascript 45
3.4 Dispersion metrics about merge commits and merge commits with conflicts 46
3.5 Correlation Matrix with metrics selection 47
3.6 Dispersion metrics about conflicting files and conflicting regions 48
3.7 Dispersion metrics about relationship research variables for RQ1 49
3.8 Dispersion metrics about the number of refactorings in research variables for
RQI . . e 50
3.9 Metric: number of conflicts L Lo 51
3.10 Example of collected conflict 51
3.11 Example of collected region conflict 52
3.12 Example of collected refactoring in conflict file and region conflict 52
3.13 Dispersion graph of variables (relationship/conflicts) of QP1 53
3.14 Dispersion graph of variables (n° of refactorings/conflicts) of QP1 54
3.15 Dispersion graph of scenarios involved in merge conflict 55
3.16 Violinplot to types of refactoring involved in conflicting file 57
3.17 Violinplot to types of refactoring involved in conflicting regions 58
3.18 Dispersion graph of the relationship between the type of refactorings and
conflicting variables L oL L oL 59
3.19 Correlation between quantity type of refactorings and conflicting file/region 60
4.1 Methodology for manual analysis of content by evolutionary commit 67
4.2 Example of pure evolutionary commit involved in conflict 69
4.3 Example of floss evolutionary commit involved in conflict 70
4.4 Dispersion of evolutionary commits floss/pure of QP3 71

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1

Descriptive analysis of metrics repository selection 37
Descriptive analysis of metrics repository selection 40
Descriptive analysis of metrics repository selection 44
Descriptive analysis of variables refactorings and conflicts 44
Descriptive analysis of variablesof study 55
Number of Relationship x Conflict 56
Number of refactorings x Conflict 56

Descriptive refactorings relationship founded in conflicting file and conflict-

INZTEZIONS o v e e e e e 59
Number of Type of refactorings x Conflict 60
Descriptive analysis of metrics repository selection 67

iX

Chapter 1

Introduction

Maintenance activities are essential throughout the software life cycle to prolong its usability.
Meir Lehman [16] emphasizes the constant need for software adaptation. Failure to adapt
leads to software being unable to meet its intended demands, resulting in a loss of quality
over time. Lehman also asserts that preventive maintenance in the source code is necessary to
enhance systems for future maintenance. This can involve replacing poorly structured code
and implementing design patterns to improve scalability and minimize errors in the system
[16].

According to William Opdyke [21], one example of maintenance activity is refactoring,
which is the process of code reorganization to improve quality without altering its behavior,
so if the program had some functionalities before the refactoring these may have the same
result that had before the refactoring. These modifications to the source code are imple-
mented throughout the software evolution process. To integrate changes into the product and
facilitate its growth and evolution over time, it is crucial to track and document every action
taken during the process. This ensures that the entire code change history is preserved at
each stage of development.

Version Control Systems (VCS) play a crucial role in software evolution. In the study
conducted by Santos and Murta [6], VCS are highlighted as dedicated tools for managing
software development, offering various benefits such as storing development history and
facilitating version recovery. They also enable developers to integrate local changes into a
global environment, simplifying the code integration process.

GitHub, as mentioned by Cosentino et al. [5], is a widely adopted VCS that has experi-

1.1 Problem 2

enced significant growth, from 150,000 hosted projects in 2009 to 35 million hosted projects
in 2015. They also highlighted that GitHub brings many resources that facilitate contribution
and social integrations in the project. Achilleas Pipinellis [22] explains that GitHub’s func-
tionality revolves around branches. These branches serve as copies of the main repository
and provide a space to implement sets of changes without affecting the main version of the
product located in the main branch.

During the code integration process, merge operations are performed to combine changes
made in different branches by individual developers into the final product [28]. However,
these merge operations are not always successful, and conflicts can arise if developers at-
tempt to integrate changes that modify the same portion of the code. Such conflicts can have
a direct impact on the productivity of the development team because it is necessary extra
effort to fix these problems, which sometimes may be simple, but in bigger systems might
be complex [26]. To address this issue, GitHub employs mechanisms to detect and notify
developers of conflicts that arise during code integration, thereby facilitating the resolution
of conflicting changes.

In the given context, the study conducted by Mahmoudi et al. [17] focused on examining
whether altering the code structure through refactoring actions could potentially result in
merge conflicts. This is because the non-structural merge process typically considers the
textual positions of the changes made. The study specifically analyzed Java programs and
discovered that approximately 22% of the investigated refactorings were associated with
merge conflicts.

There is a substantial amount of research dedicated to refactorings and merge processes
specifically in the context of Java. The language’s versatility and robustness have generated
significant academic interest, leading to a substantial number of studies and research in this

area [19], [11], [23], [12], [1], [14].

1.1 Problem

As new programming languages emerge with distinct characteristics, such as type check-
ing, execution environments, and other factors, it becomes crucial to analyze these variables

about the specific context of the emerging languages. This analysis allows for a deeper

1.1 Problem 3

understanding of their unique characteristics and facilitates the application of appropriate
approaches in each specific language context.

At the same time, JavaScript has been gaining popularity as a well-accepted language
among development teams, becoming a favored language in many development projects
and being heavily utilized for web programming. It is currently among the top 10 most
popular programming languages and was even declared the "Language of the Year" in 2014
. According to Johannes et al. [15], the fact that JavaScript is used both server-side and
client-side has increased its popularity and highlighted the need for studies on code smells
and refactorings specific to this language.

Despite JavaScript gaining significant popularity and being a widely adopted language
among development teams, the research landscape in the field of JavaScript is not in the
same rhythm observed in adoption development language numbers, gaining greater signifi-
cance in recent years. The increasing popularity of JavaScript has led to the observation that
developers often adopt poor programming practices within the language. Barros and Adachi
[4] conducted a study that examined 26 different types of code smells across eight studies
published between 2013 and 2020. Their findings showed that studies are needed to analyze
the impact of bad design choices on systems developed in this language. The study by Silva
et al. [24] addressed a specific refactoring type found in JavaScript files, known as "Internal
Move."

These works further emphasize the importance of conducting comprehensive studies on
software quality for other programming languages, especially from different programming
paradigms. JavaScript, for example, has different challenges compared to other languages,
scope-related issues like closures, a fragmented execution and development ecosystem due
to the multitude of frameworks and libraries supporting the language, asynchronous man-
agement, and more. The high popularity results in the availability of numerous frameworks
that contribute to the development environment in the language. Moreover, JavaScript is an
interpreted, dynamic language widely used in web browsers [9], factors that contribute to
a variety of programming practices in this environment. All these factors that differentiate
JavaScript from other languages make both the merge processes and the continuous improve-

ment of the system’s design challenging. It highlights the need to comprehend the unique

Thttps://www.tiobe.com/tiobe-index/javascript/

1.2 Objectives 4

characteristics of each language and adapt refactoring and merge approaches accordingly to
effectively address their specific challenges.

Considering the growing adoption of JavaScript among development teams, it is essen-
tial to investigate the correlation between refactoring and merging conflicts in this language.
Such exploration can provide valuable insights to academia and developers regarding po-
tential refactorings that may lead to conflicts during integration. Researchers can analyze
whether methodologies previously applied in other studies for other programming languages
can be replicated for new languages. Simultaneously, they can identify new research prob-
lems stemming from this work, addressing both merge conflicts and refactoring actions, and
exploring the correlation between these variables. For developers, this study can serve as a
guide for discussions on refactoring and code merging practices, considering limits on the
number of refactorings to be performed in a single commit and identifying patterns of refac-
toring that may pose increased risks when executed together in a code integration context.
By analyzing these conflict regions and to recognizing performed refactorings within them,
our study contributes to verifying whether the refactoring indeed caused the merge problem,
offering a starting point for further investigation into the relationship between refactorings

and merge conflicts in future work.

1.2 Objectives

Given the complexity of our research problem, our objective is to conduct an empirical study
to investigate the presence of refactorings in conflicting codes and to examine the types of
refactorings involved in this process. For our study, we selected 76 JavaScript repositories
from a list of repositories mentioned in the studies conducted by Silva et al. [24] and Tavares
et al [26], and other random repositories found by quickly searching for JavaScript reposi-
tories. We collected information on merge conflicts and identified refactoring actions within
the conflicting files and their corresponding exact local conflict, which we will call by con-
flict regions. The collected variables of this relationship are intended to address the research

questions outlined below.

1.2 Objectives 5

o [s there a relationship between refactoring and merge conflicts in JavaScript pro-

grams?

By identifying refactoring actions within conflicting files and their respective conflict-
ing regions, it may be possible to gather evidence and initiate discussions that can
substantiate the relationship between these variables. This analysis allows for a deeper
understanding of how refactoring activities may contribute to or interact with merge

conflicts in JavaScript programs.

o What refactoring patterns relate most to merge conflicts in JavaScript programs?

Given the presence of refactorings within conflicting JavaScript files and their respec-
tive conflicting regions, it is important to discuss which types of refactorings occur and
how often they occur within the analyzed region. This study can suggest potentially

more risky refactorings to be performed in a code integration context.

e The evolutionary commits that made conflicting code contain only refactorings

(pure refactoring) or other modifications (floss refactoring)?

When analyzing the commits evolution, through evolutionary commits, it is possible
to trace the modifications in each commit that have contributed to one or more conflict
regions. The main objective is to discuss evolutionary commits that only have refactor-
ings (pure refactoring), as opposed to those that have other changes, with refactoring
actions (floss refactoring). The aim is to understand how the content of evolution-
ary commits effectively influenced conflicts, determining whether refactoring actions

present in these commits have a significant role in merge conflicts.

This study provides valuable insights into the impact of refactorings on JavaScript code
integration processes. By analyzing the potential relationship between refactorings and
merge conflicts, the study contributes to a robust discussion on the factors that can influence
conflict occurrences. Additionally, by identifying the types of refactorings more commonly
associated with conflict regions, the study highlights the importance of careful consideration
when performing refactorings. These findings prompt developers to pay closer attention to

the types of refactorings they apply, leading to improved code integration practices.

1.3 Contributions 6

1.3 Contributions

In summary, the main contributions of this work are:

Empirical analysis of the relationship between refactorings and merge conflicts in

JavaScript code [20];

Identification of refactorings patterns in JavaScript that is more related with merge

conflicts [20];

Analysis of floss and pure refactorings in evolutionary commits that make region con-

flicts;

Discussion and examples about JavaScript refactorings in Background Section 2.2;

In this work, we executed an empirical analysis between refactoring actions and merge
conflicts. We analyzed 76 JavaScript repositories with at least one conflict in the .js file and
found 81,856 merge commits with a subset of 6,356 merge commits with conflicts. We found
4,206 conflicts and 7,821 conflict regions.

Subsequently, our study found the most common types of refactorings within conflict re-
gions, which are Internal move, Move and Rename. This study contributed to the discussion
about the number of types of refactoring performed in only commit, showing results that
suggest a correlation between this and the occurrence of conflicts.

A sample of evolutionary commits shows us that floss refactoring is applied in 84%
of evolutionary commits analyzed and pure refactoring is applied in 16%, showing that a

majority of repositories made other modifications together with refactoring actions.

1.4 Structure

Our study is structured as follows: Chapter 2 provides an overview of the background of
this work, exploring concepts such as merge, refactorings, and their relationship. Chapter
3 introduces our first study, which explores the relationship between merge conflicts and
refactoring. Chapter 4 discusses our second study, focusing on the manual analysis of evo-

lutionary commits. Within these two chapters, we will discuss the adopted methodology,

1.4 Structure 7

execution setup, obtained results, and identified threats to validity. Chapter 5 examines re-
lated academic works that are closely aligned with our study. Finally, Chapter 6 concludes

our work by showing its contributions and discussing plans for future research.

Chapter 2

Background

To enhance comprehension of the research field, this section will be expanded through a
narrative review. The following sections discuss merge processes, refactorings, as well as
studies that have already investigated the relationship between refactoring and merge con-
flicts. The research of the readings was made based on the knowledge already acquired about

relevant articles in the area.

2.1 Merge

Version Control Systems (VCS) manage and merge different code versions through some
algorithms and approaches, with the so-called merge processes [6]. Each new change in the
code is developed in a new branch, and it is sent to this branch through the commit, which
represents the action of sending the local modifications to the VCS. How the developed code
is merged with the main branch is done by Git [5] through the Three-way merge algorithm,
which according to Mens [18] is a code merge process that has more than two artifacts to be

merged, a common ancestor, bringing more precision in the merge result.

2.1.1 How does the GitHub merge? A three-way merge

This process is based on three main artifacts, as shown in Figure 2.1, base, left and right,
where left and right are the parent commits of the merge commit. The base represents the

main branch code at the time the secondary branches were performed, and the right and left

2.1 Merge 9

represent everything that was developed in the branches.
r2 : common ancestor
/' N\
22 T3
N/
T4

Figure 2.1: Common ancestor.

For each modified code entity there is a merge scenario which is the set (base, right
and left). As we can see in Figure 2.2, branch 12 is called the base as well as the common

ancestor. The left is identified as r2.2 and the right as r3, resulting in the merge being r4.

4 T T3 > T4 (r, merged with,)

_—
21 T2

Figure 2.2: Branch.

2.1.2 Merge Conlflicts

During the code integration process, there is a possibility that this activity may not be suc-
cessful, bringing merge conflicts results and requiring extra effort to resolve these issues. As
previously discussed, the most widely used Version Control System, GitHub, employs an
unstructured merge approach, which identifies conflicts when changes in the same file and
region lines are made by different developers. According to Mahmoudi et al. [17], current
VCS may not be capable of detecting and resolving conflicts automatically, leading to the

well-known merge conflicts that can be classified into six types:

e Add/Add: When both parents (left and right) of merge commit add a new file with the

same name but different context;

2.2 Refactorings 10

e Content: When both parents (left and right) of merge commit applied changes in the

same file at the same position;
e Modify/Delete: When P1 modify one file and P2 delete this file;
e Rename/Add: When P1 rename one file and P2 creates new file with the same name;
e Rename/Delete: When P1 rename one file and P2 delete this file;

e Rename/Rename: When both parents of merge commit rename the same file with

different names.

2.2 Refactorings

To discuss software evolution it is necessary to show that refactorings are essential to a better
growth of software. Opdyke is the first researcher to define the term "refactoring", character-
izing this as an evolutionary change that will prepare the software for future changes, making
it more effective and secure to do what it needs to do. He also discusses that having software
with reusable design is a result of many improved actions of design, in other words, it is a
continuous process that always must exist in software development [21].

The term "refactoring" quickly became popular in the computational field. Flower made
a significant contribution to popularizing the term with their study [10], which defined the
refactoring process, defined best practices and specified the appropriate time and place to
improve code. By analyzing a lot of code of various projects, Flower began to identify
structures that "called out" to be restructured, and thus identified that the correct place to
start refactoring is where the code has code smells.

In their work, Walter et al. [29] define code smells as symptoms of design problems in the
code structure that can hinder software maintenance. The study provides a solid analysis of
the relationship between introducing bad design choices in the system and the consequences
that arise as the code grows and needs to be integrated with changes made by developers.
Previous studies have already shown that conflicts during the integration process can intro-
duce bugs into the system, but it has not yet been discussed how bad design choices can lead

to possible merge conflicts. The results demonstrate that entities with certain types of code

2.2 Refactorings 11

smells are more likely to have errors. This study emphasizes the importance of considering
design choices during development to reduce the likelihood of merge conflicts and improve
software maintainability.

As discussed earlier, code smells are symptoms of design problems, and the article cited
above provides a foundation for introducing the discussion on refactoring. In this regard, the
figures below illustrate examples of code smells taken from the website "Refactoring Guru"!,

found in code, and the respective refactorings performed to remove these problems.

printOwing(): woid { printOwing(): void {
printBanner(); printBanner();
printDetails(getOutstanding()});
J// Print details. }
console.log("name: " + name);
console.log("amount: " + getOutstanding printDetails(outstanding: number): void {
} console.log("name: " + name);

console.log("amount: + outstanding);

Figure 2.3: Long method and Extract refactoring example

class PizzaDelivery { class PizzaDelivery {
getRating(): number { getRating(): number {
return moreThanFiveLateDeliveries() ? 2 : 1; return numberOfLateDeliveries > 5 7 2 : 1;
} 3
moreThanFivelateDeliveries(): boolean { }

return numberOflateDeliveries > 5;
}
I

Figure 2.4: Speculative Generality and Inline refactoring example

In Figure 2.3 we can see an example of Long Method code smell, that defined as a method
with many functionalities. By side, there is an example of refactoring the Extract Method
that can be done to resolve the Long Method code smell. Another example of code smell

and refactoring applied can be analyzed in Figure 2.4 which shows a Speculative Generality

Thttps://refactoring.guru/pt-br/

2.2 Refactorings 12

code smell and an Inline refactoring, that simplifies your code by keeping only the essential
methods, making it easier to understand.

The study by Sousa et al. [25] mined 50 projects, discussing and presenting results on
types of structural refactorings, and analyzing when and for what purpose they are applied.
The study presents Figure 2.5, which identifies types of code smells and refactorings that can

be used to address them.

Code Smell Common Refactorings
Complex Class Extract Method, Move Method, Extract Class [2]
Dispersed Coupling Extract Method
Divergent Change Extract Class [9]

Feature Envy Move Method, Move Field, Extract Field [9]
God Class Extract Class, Move Method, Move Field [2]
Invensive Coupling Move Method, Extract Method

Lazy Class Inline Class, Collapse Hierarchy [9]

Long Method Extract Method [9]

Shotgun Surgery Move Method, Move Field, Inline Class [9]

. g) Collapse Hierarchy, Inline Class,
e Remolz'e Parametei Rename Method [9]

Figure 2.5: Code smells and respectively refactoring examples

To analyze the impact of refactoring on developing systems, there are studies focused on
discussing refactoring collection tools. One such example is the study by Silva et al. [24],
which presents a multi-language refactoring detection tool called RefDiff 2.0. The paper
presents excellent results regarding the correctness of the tool, as well as several types of

refactorings for various languages, without being limited to the syntax of the language.

2.2.1 Refactoring actions in JavaScript

In this section, we explore some examples and discussions about the types of refactorings
collected in JavaScript language.

REFACTORINGS RELATED TO FUNCTIONS

Languages that allow object-oriented programming are based on abstracting real-world con-

cepts into the computational world. JavaScript is an example of language that enables this

2.2 Refactorings 13

implementation, and each object is represented by a combination of properties and meth-
ods. In JavaScript, methods are known as functions, which are created to encapsulate a set
of instructions and perform a specific task within the code. The construction of a function
involves specifying a name and a set of parameters that the function may or may not take.

In this section, we will discuss a set of refactorings that were identified by the RefD-
iff 2.0 tool [24] and performed in JavaScript code repositories, which are the same as in this
study. The following refactorings are related to RENAME, EXTRACT, INLINE, and MOVE
FUNCTION. In addition to detecting these four types of refactorings mentioned above, the
tool also identified the composite refactoring MOVE RENAME FUNCTION, which involves
combining the MOVE and RENAME refactorings. Furthermore, within refactorings involv-
ing functions, the tool detected a type of refactoring called INTERNAL MOVE.

The refactorings mentioned above, found in JavaScript code, will be discussed and an-
alyzed in each subsection below, in comparison with Fowler’s literature, where he demon-
strates the motivation, instructions, and illustrative examples of refactorings he identified in

his work [10].

RENAME FUNCTION

1. Motivation

Choosing a name for a function is a significant task, as it is very beneficial for devel-
opers to look at a function’s name and identify its role within the analyzed class/file.
Just like naming, identifying attributes that will be used within the scope of a function
is an essential activity. Fowler [10] characterizes function attributes as the gateway to
the rest of the code of this function, and through them, it becomes possible to identify

the function’s scope.

Renaming functions is a necessary activity for software maintenance, as functions
represent actions performed within contexts, and these contexts may change during
the software’s lifecycle due to evolving requirements. Consequently, functions need to

be modified as part of this evolution.

2. Step-by-step process of applying refactoring

As Fowler explains in his work [2], a RENAME in JavaScript follows the same appli-

2.2 Refactorings 14

cation pattern. Fowler argues that this refactoring is generally simple, but depending
on the nomenclature of the method for modification, it can be best carried out in two

main ways: the simple procedure and the migration procedure.

In the simple step-by-step procedure, the following points are:

(a) If the refactoring is just changing the name of the function, change the method

declaration to the new desired name;
(b) Find all references to the old statement and replace them with the new call;

(c) Test.

If changing a function declaration involves removing an attribute:

(a) Check whether the attribute to be removed is referenced in the function body, if

so, evaluate the impact of removing the attribute and the code snippet;
(b) Repeat procedures (b) and (c) of the simple procedure;

(c) Test.

If changing the declaration of a function involves adding an attribute:

(a) Check the impact of adding a new attribute to the function body;
(b) Repeat procedures (b) and (c) of the simple procedure;

(c) Test.

If the refactoring to be carried out is done in a function that is heavily referenced in
the code, which makes it difficult to carry out quickly, Fowler argues that the process

to be carried out is through migration, which is highlighted in the following points:

(a) Creating a new role with a provisional name;

(b) Perform the EXTRACT FUNCTION refactoring to remove the content for the

new function from the function body;

(c) If the new function requires the addition or removal of new parameters, use steps

(b) and (c) of the simple procedures;

2.2 Refactorings 15

(d) Apply INLINE FUNCTION refactoring to the old function;

(e) Replace calls to the new function gradually, observing each context in which it

applies;

(f) Test;

3. Example of JavaScript

In the example in Figure 2.6 below, we can find a refactoring in the name of the
function into config.js file. This refactoring involved changing the function’s name

from "getChannelDisplayName" to "getAppName."

- 11 mmmm script/config.js (0]

-

59 - function getChannelDisplayName (channel) {
68 - if (channel === 'stable' || channel === 'dev') return null
61 - return process.env.ATOM_CHANNEL_DISPLAY _NAME || channel.charAt(@).touppercase() + channel.slice(1)
50 + function getAppName(channel) {
68 + return channel === 'stable’'
61 + ? 'Atom'
62 =+ : Atom ${process.env.ATOM_CHANNEL_DISPLAY_NAME || channel.charAt(®).touppercase() + channel.slice(1)}

Figure 2.6: Rename function refactoring example

As previous example, Figure 2.7° illustrates another application of the RENAME
FUNCTION refactoring in JavaScript code, changing name of function from "get-
MaximumSize" to "getMaximumWidth."

+ 16 mmmm chart.js (O

*

696 - = helpers.[CEEESUNEEREE = function(domNode){
699 + getMaximumwWidth = helpers.getMaximumwWidth = function(domNode){

var container = domNode.parentNode;

return container.clientwWidth;

Figure 2.7: Another rename function refactoring example

Zhttps://github.com/atom/atom/commit/bf9fac27cf626a2d0ad6de526af6662199edc984
3https://github.com/chartjs/Chart.js/commit/997a216b5008e¢33c9a9e¢01b5b5ac89c6536b9883

2.2 Refactorings 16

INLINE FUNCTION

1. Motivation

Identifying the context of a function and deciding what will be implemented within
that context is a process that requires a programmer’s careful attention. This needs
to avoid implementing too many functionalities within the function’s scope, which
can lead to excessive indirection within the developed function. Indirection is the
act of referencing something indirectly, and in the programming context, we can use
delegation as an example of indirection [10]. Functions with excessive delegation
to other functions can confuse the flow of data, as well as the comprehension and

readability of the code.

The INLINE refactoring is performed when a function delegates a lot of its work to
other functions, which have contexts that could be integrated into the delegating func-
tion without compromising its readability and functionality [10]. The function invokes
the delegated function that can be merged with it without compromising code quality
and functionality. Similar to Fowler’s study, which demonstrates the applications of
INLINE refactorings in Java code, the following sections illustrate INLINE refactor-
ings in JavaScript code, highlighting that the motivation for refactoring and the steps

involved are consistent across both languages.

2. Step-by-step process of applying refactoring

According to Fowler, it is important to follow a step-by-step guide to perform this
refactoring. We can follow the same logic for JavaScript, highlighted in the following

points:

(a) Check the responsibility that the function to be removed has within the code
structure. If the method is polymorphic, this type of refactoring is not appro-
priate, since polymorphic methods tend to have different responsibilities, which

makes it difficult to carry out this type of refactoring.

(b) Identify how the context of the function removed can be introduced into the target

context.

2.2 Refactorings 17

(c) Carry out the introduction of the new context carefully. If the source function is

large, it is recommended that the code is tested when making each change;

(d) After introducing the contexts into the new function, test and replace the calls to
the removed function with calls to the target function, to correctly verify that the

data flow has not been changed.

3. Example of JavaScript

Figure 2.8* illustrates the application of an INLINE refactoring in JavaScript code. We
can observe that the constructor of the EventEmitter class made a call on line 63 to the
loadDataOverProcessBoundary function, which existed from lines 154 to 162. The
refactoring process involved integrating the content of the delegated function, load-
DataOverProcessBoundary, into the constructor’s body and eliminating the function,

transferring its responsibility to the new location in the code, which is the constructor.

~ -} 20 EEEE| src/main-process/atom-window.js [OJ

i @@ -56,11 +56,13 0@ class AtomWindow extends EventEmitter {
if (this.s 3ar()) options.frame = false
this.browserWindow = new BrowserWindow(options)
59 - if (this,atomApplication.projectSettings != null) {
1] - this.projectSettings = this.atomApplication,projectSettings
61 . ¥
B8 « Object.defineProperty(this.browserWindow, 'loadSettingsJSON', (
68 + get: () == JSON.stringify(0bject.assign({
s S userSettings: this.atomApplication.configFile.get(),
62 4 projectSettings: this. projectSettings
63 + }, this.leoadSettings))
64 +)
63 adlatalverProcessBoundary ()
! ts()
this.loadSettings = Object.assign({}, settings)
: i -151,16 +153,6 6@ class AtomWindow extends EventEmitter {
153 return paths.every(p => this.containsPath(p))
3
154 = 0
4155 = Object.defineProperty(this.browserWindow, 'loadSettingsJSON', {
156 - get: () => JSON.stringify(Object.assign({
157 - userSettings: this.atomApplication.conTigFile.get(),
158 - projectSettings: this.projectSettings
159 - }: this.loadSettings)),
169 - configurable: true
161 - 9]
162 = 3

163

Figure 2.8: Inline function refactoring example

“https://github.com/refdiff-study/atom/commit/7ce5b000e448552bb4ba9556c8f38ccfef127162

2.2 Refactorings 18

Another example of inline refactoring can see in Figure 2.9° in which the function
"getOnlyList" was removed, and its content was incorporated into the place where it

was previously called, now passed as a parameter to the "babelRegisterOnly" function.

v 3 41 mmmm setupBabel.js (OJ

45 - function tonlyList{) {
46 - return RegExps(__dirname, BABEL_ENABLED_PATHS);
47 -

ncti 0%
55) babelRegisteronly(getonlyList());
20 + babelRegisteronly(babelRegisteronly.buildRegExps(__dirname, BABEL ENABLED_PATHS));

Figure 2.9: Another inline function refactoring example

EXTRACT FUNCTION

1. Motivation

Extracting a part of code from an inappropriate context is a common task for almost
every programmer. This happens because requirements change and evolve throughout
the software’s lifecycle, resulting in improvements to existing code. Functions encap-
sulate parts of the code, as discussed earlier. Just as it’s possible to delegate too much
within a function, it’s also possible for a function to have too many responsibilities
within a class or context, resulting in rigid and much harder-to-maintain code. Ac-
cording to Fowler [10], if you spend too much time figuring out what a function does,

it’s time to break that function into smaller parts.

The EXTRACT refactoring is performed to avoid a method having too many respon-
sibilities and to enhance its readability. The refactorings identified by the RefDiff
2.0 tool [24] for JavaScript code follow a similar pattern to the contexts outlined in

Fowler’s study [10].

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by
Fowler[10]:

(a) Create a new function with a name that clearly defines its context;

Shttps://github.com/refdiff-study/atom/commit/7ce5b000e448552bb4ba9556c8f38ccfef127162

2.2 Refactorings 19

518
316
520
521
522
523
524

549
550
551
552
553
554
555
556
557

(b) Copy the code from the source function to the destination function;

(c) Check the code snippets in the function that need information that is in the scope

of the source function and pass them as parameters;

(d) Replace the code extracted with the call to the new function in the source func-
tion;

(e) Test.

(f) Look for other code snippets with similar behavior to the extracted code and

check if it is possible to apply INLINE FUNCTION refactoring;

. Example of JavaScript

Figure 2.10° show an example of refactoring Extract. In this example we can see a part
of the code in red is removed from the source local and pasted in the target local, the
function checkRight. We can see a call by this new function that already has a code

extracted in the green local to the source local.

= wvar tooltiplLayerStyleLeft = targetOffset.width / 2 - tooltipOoffset.width / 2;

= /f off the right side of the window

= if (targetoffset.left = tooltipLayerStyleleft + tooltipoffset.width > windowSize.width)

= tooltipLayer.style.left = (windowSize.width - tooltipOffset.width - targecOffser.left) = 'px';
= else

= tooltipLayer.style.left = tooltiplayerStylelLeft + 'px';

= tooltipLayer.style. top = (targetOffset.height + 28) + "px';
8521 4+
522 1 wvar tooltipLayerStyleLeftRight = targetoffset.width / 2 - tooltipoffset.width / 2;
523 & iT (_checkLeft{rargetoffset, tooltipLayerStyleleftRight, tooltipoffset, tooltipLayer)) {
524 & tocltipLayer.style.right = null;
525 + _checkRight(targetoffset, tooltiplLayerStyleleftRight, tooltipoffset, wWindowsize, tooltiplLayer);
526 + 1
527 + toeltipLayer.style.top = {targetOffset.height + 28) + 'px';

+ function _checkRight({targetOffset, tooltipLayerStyleleft, tooltipOffset, windowSize, tooltiplayer) {
+ if (targetoffset.left + tooltipLayerStyleleft + tooltipoffset.width > windowSize.width) {

+ S off the right side of the window

+ tooltiplayer,style,left = (windowSize,.width - tooltipOffset.width - targetoffset.left) + "px';
+ return false;

+ 1

+ tooltipLayer.style.left = tooltipLayerStyleleft + 'px';

- retyrn true;

Figure 2.10: Extract function refactoring example

Shttps://github.com/usablica/intro.js/commit/cd2ec800d52c69604f5e5545¢125d377e1e€73267

2.2 Refactorings 20

MOVE FUNCTION

1. Motivation

A good code design practice consists of promoting the modularization of software
parts, that results in more reusable code (modules) that relate to each other, facilitat-
ing the division of functions within the code and better error detection. The developer
needs to understand the context in which each code entity was created, its composition,
e.g. attributes and methods. With software evolution, these contexts can be changed
and MOVE type refactorings may be necessary to promote better code, adapting func-

tions and even files to new contexts.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by
Fowler [10]:

(a) Identification of regions that use this function;

(b) This step consists of deciding whether only this function will be subject to this

type of refactoring or whether the elements that use it will also need to be moved;

(c) Check whether the function to be moved is polymorphic, if so, it is necessary to

be careful with super and sub classes when performing refactoring;
(d) Move the function to the new context;

(e) Carry out all necessary adaptations to the new job location. If the function has
parameters, these are passed when calling the function and the name can be mod-
ified if necessary to adapt to a new context, but it would be a compound refactor-

ing: MOVE RENAME;

(f) Identify source contexts that reference the location of the function and that will

reference the location of the newly moved function;

(g) Test.

3. Example of JavaScript

2.2 Refactorings

21

The MOVE refactoring performed in the react repository in the Figure 2.11 7 demon-

strates the addComands function being moved from the hash_handler.js file to the com-

mand_manager.js file.

47

a0

51
52
53
54
55
56
57

59

61

B1
82
83
B4
B5
86
87
88
89
el]
o1
82
23
o4
g5

MOVE RENAME FUNCTION

1. Motivation

1 152 mmmmm ' lib/ace/keyboard/hash_handler.js (OJ

this.addCommands = function(commands) {
Object.keys(commands).forEach(function(name) {

var command = commands[name];
if (typeof command == "string")
return this.bindkey({command, name);

if (typeof command == "function")

command = { exec: command };

if (!command.name)

command.name = name;

this.addCommand{command) ;
this);

“w 120 EEEW lib/ace/commands/command_manager.js L[.'—J

this.addCommEnds = function(commands) {
commands &8 Object.keys(commands).forEach(function(name) {
var command = commands[name];
if (typeoT command == "string")
return this.bindkey(command, name);

if {typeof command === "function™)
command = { exec: command };

{ ' command . name)
command. name = name;

this.addCommand(command);

Figure 2.11: Move function refactoring example

As previously discussed, it is common for part of the code not to have more scope into

"https://github.com/ajaxorg/ace/commit/63813e048506d5f0e2b8b1da81551d6ff1bd9as

2.2 Refactorings 22

the context initially inserted due to the constant evolution of the software. This refac-
toring is a combination of two previously discussed refactorings MOVE FUNCTION
and RENAME FUNCTION and is applied when it is wanted to change a function

location and rename the composition of its name.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of combining the MOVE FUNCTION
refactoring and the RENAME FUNCTION:

(a) Identify the region from which the source function will be extracted. It is im-
portant to check the entire context to know whether elements that the function

interacts with will also need to be moved;

(b) Check whether the function chosen to be moved and renamed is polymorphic, if

so, it is important to check all the places where the old function was called;
(c) Perform MOVE refactoring;
(d) Perform RENAME refactoring;

(e) Test.

3. Example of JavaScript

In Figure 2.12% it is possible to see an example of refactoring Move Rename.
We can see a function saveAsUnipackage that was moved from tools/package.js to

tools/unipackageclass.js and renamed to saveToPath.

8https://github.com/meteor/meteor/commit/1 bf4ffba803f95f9383f5d2ed5929726b659670c

2.2 Refactorings 23

» 2,652 EEMEM tools/packages.js ([J

2487 - saveasinipackage: function (outputPath, options) {

2408 ﬂ. var self = this;

2489 = options = options || {}:

2418 =

2411 = if (| self.pluginsBuilt || | =elf.slicesBuilr)

2412 = throw new Error{"unbuilt packages cannot-be saved"};
2413 =

2414 - if ! self.version) {

2415 - ff %x¥% is this going to Work? may need to relax it for apps?
2416 - / that reasonabl
2417 = i s That you can't
2418 = f/ & name and & version
2419 = throw new Error("Packages without wersions cannot be saved");
2428 = 1
2421 =
2422 = var builder = pew Builder({ outputPath: outputPath }};
2423 =
857 mmmm tools/unipackage-class.js (_Q
668 + saveToPath: function (outputPath, options) {
2§ 68 var self = this;
289 = var handlers = self. allHandlers(packageLoader);
2048 = var parcs = filepame.splic('.");
293 = for (var i = 8; -1 < parts.length; i++) {
292 - var extension = parts.siice{i).join('.");
293 - if (..has(handlers, extension))
204 - return handlers[extension];
878 & options = oprions || {};
671 +
672 = if (! self.version) {
673 = 1 f apps?
G674 = cthen
875 &+ it doesn't have
676 4+
G77T o+ throw new Error("Packages without versions cannot be saved");
678 < }
679 =
o8E + var builder = new Builder({ outputPath: outputPath });
Figure 2.12: Move rename function refactoring example
EXTRACT MOVE FUNCTION

1. Motivation

The motivation for this refactoring is extracting a portion of code that no longer be-
longs to the context of a previously defined function and moving it to a new con-
text. This process also involves changing the function’s name to better align with the

evolved code in new contexts.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of combining the EXTRACT FUNCTION

2.2 Refactorings 24

refactoring and the MOVE FUNCTION:

(a) Identify the region from which the source function will be extracted. It is im-
portant to check the entire context to know whether elements that the function

interacts with will also need to be moved;

(b) Check whether the function chosen to be extracted and moved is polymorphic, if

so, it is important to check all the places where the old function was called;
(c) Perform EXTRACT refactoring;
(d) Perform MOVE refactoring;

(e) Test.

3. Example of JavaScript

In Figure 2.13 it is possible to see an example of refactoring Extract Move Rename.
We can see part of the code function location going to function toKeyValue that its

new name in different files.

v 42 HEEN src/services.js L_:
21 = var params = [];
22 = foreach(location.param, function(value, key){
23 - params.push(encodeURIComponent (key) + '=' + encodeURIComponent(value));
24 - 1
25 = eturn (location.path ? location.path : '') + (params.length ? '?' + params.join('&"') : "');
23 & var hashkeyvalue = tokKeyvalue(location.hashSearch);
24 & eturn location.href +
25 & (location.hashPath ? location.hashPath : '') +
26 + (hashkeyvalue ? '?' + hashkeyvalue : '');

- & mmmmm src/Angular.js (OJ

r obj;

}
401 + function tokeyvalue(obj) {
402 4+ ar parts = [];
483 + foreach(obj, function(value, key){
404 + parts.push(encodeURIComponent(key) + '=' + encodeURIComponent(value));
495 + hH:
406 + return parts.length ? parts.join{'&"') : '';
497 + };
408 +

Figure 2.13: Extract Move function refactoring example

“https://github.com/angular/angular.js/commit/d717020911a350a5ea3c0a985¢57d56c8fcad607

2.2 Refactorings 25

During data extraction, a refactoring caught in JavaScript codes was observed, which is
captured by the tool but there is no discussion in the study by Silva et al. [24]. This refac-
toring is called by tool RefDiff 2.0 as INTERNAL MOVE and its results will be discussed

in the next subsection.

INTERNAL MOVE FUNCTION

1. Motivation

This refactoring consists of removing a specific piece of code that is in a code scope
and inserting it into a more internal/external scope. According to the analysis of the
study by Silva et al. [24] and the analysis of those researched in the study, we verified
that this refactoring is due to the need to adapt only a part of the code to a new scope,
within the same file. This type of refactoring happens a lot in nested functions, being

more common in languages that allow this type of code scope.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of the following steps:

(a) Identify the region from which the innermost code snippet will be extracted. It is
important to check the entire context to know whether elements that the function

interacts with will also need to be moved;
(b) Move the code snippet to the new scope in the same file;

(c) Test.
3. Example of JavaScript

In the example in Figure 2.14!° we can see an example of Internal Move refactoring. In
the specific context, the function onreadystatechange was in the scope inside the if context,
after refactoring the function was moved to another scope the else if.

We can see another example below in Figure 2.15'! where the function defaultNega-

tiveCompare was in the scope Expectation.prototype.wrapCompare but after refactoring this

1Ohttps://github.com/requirejs/requirejs/commit/5463c8f5940c05427289afal 06f5748b35542ace
https://github.com/jasmine/jasmine/commit/533bda5d2400755a1ef49bfd59712af1f620496e

2.2 Refactorings 26
213 if (rext.createxhr{)) {
214 text.get = function (url, callback) {
215 var xhr = text.creactexhr(};
218 xhr.open("6ET', url, true};
217 xhr.onreadystatechange = Tunction (evt) {
218 Do not explicitl , those should be
219 isible wia cor output im the browser
228 if (xhr.readyState — 4) {
221 callback(xhr.responseText);
222 ¥
223 1
224 xhr.send({null);
235 H
226 } else if (typeof process !=— "undefined" &=
213 if (typeof process 1== "undefined" &&
227 21 process.versions &&
28 245 ! lprocess.versions.node) {
229 23 Using special require.nodeRequire; something added by r.js.
-237,6 +224 .10 @§
22 1
25 callback(file);
#20 EH

Y} else if (text.createxhr{)) . {
text.get = function (url, callback) {
var xhr = text.createxhr();
xhr.open('GET', url, true};
xhr.onreadystatechange = function (ewt) {

y handle errors, those should be

fvisible wia console output in the browser

if (xhr.readystate == 4) {
callback(xhr.responseText);

xhr.osend{mull);

1 if (eypeof Packages !'== 'undefined') {
J why is this s0 awkWard?
text.get. = function (url, callback) {

Figure 2.14: Internal Move function refactoring example

function was in the Expectation.prototype.instantiateMatcher, these modification was per-

formed in the same file.

INTERNAL MOVE RENAME FUNCTION

1. Motivation

This refactoring consists of a match of Internal Move refactoring and Rename refac-

toring. It begins with the desire to change a function within a specific scope and also

change its name.

2. Step-by-step process of applying refactoring

The application of this refactoring consists of the following steps:

2.2 Refactorings

27

2508

26681
2602

2606
2607

2609
2618
2611
2612
2613

2615
2616
2617

2598

2681

2685
2686
2687
2688
2689

2611
2612

2614
2615
2616
2617
2618

Expectation.prototype.wrapCompare = function{name, matcherFactory) {
function wrapCompare(name, matcherractory) {
return Tupction() {
var args = Array.prototype.slice.call{arguments, B8),
expected = args.slice(®),
message = '";
expected = args.slice(e);

args.unshifr(this.actual);

var matcher = matcherFactory{this.util, this.customEqualityTesters)
matchercompare = matcher.compare;

var matcherCompare = this.instantiateMatcher(matcherFactory);

var result = matcherCompare.apply(null, args);

this.processResult(result, name, expected, args)

Ffunction defaultNegativecompare() {
var result = matcher.compare.apply(null, args);
result.pass = Iresult,pass;
return result;
i
Expectation,prototype.instantiateMatcher = function(matcherFactory) {
var matcher = matcherFactory(this.util, this.customEqualityTesters);

if (this.isNot) {
matcherCompare = matcher.negativeCompare || defaultNegativeCompare;
¥
function defaultNegativeCompare() {
var result = matcher.compare.apply(null, arguments);
result.pass = !result.pass
return result;

1

Figure 2.15: Another Internal Move function refactoring example

(a) Implementation of refactoring Internal Move;

(b) Implementation of refactoring Rename;

(c) Test.

3. Example of JavaScript

As depicted in Figure 2.16'2, we observe the change of scope for the Call function,

and its name is now MixinCall.

REFACTORINGS RELATED TO FILES

A js file is a text file that contains a set of lines that will JavaScript code. The entire file

will fit into a context within the code and can be part of different layers of the software,

such as models, controllers, etc. Given their location in the code, these files can contain sets

of functions, attributes, classes, interfaces, among others. Moving a file represents moving

the entire set that made this file. Just like moving a file, renaming is to adapt this file to

2https://github.com/less/less.js/commit/16746e9bleca8e5cbfOb2fb9of8ed 12a5ad26e95a

2.2 Refactorings 28

» 235 EEER Iib/less/tree/mixin-call.js [_|:|

153 +1,154 @

ik - module.exports = function (tree) {
1 + var Node = require(”./node.js"),
- Selector = reguire("./selector.js"),
Ei R MixinDefinition = reguire("”./mixin-definition.js"),
4 + defaultFunc = require("../functions/default.js");
3 - var call = function (elements, args, index, currentFileInfo, important) {
4 - this.selector = new(tree.Selector)(elements);
6. + wvar MixinCall = function (elements, args, index, currentFileInfo, important) {
G0N = this.selector = new(Selector)(elements);
this.arguments = (args && args.length) ? args : noll;

this.index = index;
this.currentFileInfo = currentFileInfo;
13 this.important = important;

Figure 2.16: Internal Move Rename function refactoring example

a new context or even to the context itself in which the name initially given is no longer
representative. The next subsections will discuss MOVE and RENAME refactorings to files
and MOVE RENAME composite refactoring. These types of refactorings will be discussed

in our study based on the classifications discussed in the Fowler study [10].

MOVE FILE

1. Motivation

When deciding to move a file, the programmer intends to add information to a new
context, so the programmer needs to identify if this entire file set will be necessary and
is coherent to be in the new context.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by
Fowler [10]:

(a) Identification of the regions that use this file;
(b) Move the file to the new context;

(c) Performs all necessary adaptations to the new location of the files. This step
consists of checking all imports that were directed to the old file location and

adapting them to the new file location;

2.2 Refactorings 29

(d) Test.

3. Example of JavaScript

In the example in Figure 2.17'%, we can see an example of the MOVE refactoring
file that the tool detected by moving the entire file from the src/moveToAngularCom/-

Model.js directory to the destination directory src/delete/Model.js.

v B src/moveToAngularCom/Model.js —~ src/delete/Model.js [_Cf

File renamed without changes

Figure 2.17: Move file refactoring example

RENAME FILE

1. Motivation
When renaming a file, the programmer wants to adapt this file that belonged to a
context that changed its intention, so it needs to identify if the new file name will be
representative of the context.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by
Fowler [10]:

(a) Identification of the regions that use this file;
(b) Renaming the file name;

(c) This step consists of checking all imports that were directed to the old file loca-

tion and adapting them to the new file location;

(d) Test;

Bhttps://github.com/angular/angular.js/commit/1 1a6431f8926¢557f3c58408dacc98466e76cde 1

2.2 Refactorings 30

3. Example of JavaScript

In the example in Figure 2.18 !* below we can see an example of file renaming, chang-
ing the name createError.spec.js to AxiosError.spec.js in Javascript code from the Ax-

10s repository.

v 30 EEEEE test/specs/corefcreateError,spec.is (OJ

var createErrer = require(’..s, ./, Jlib/corefcreateErmor')i

5
- request, response and isAxiosError', function(}) {
5
B
1 B { /! ««/lib/core/Ax10sError®);
.
4 code, reguest, response and isAxiosError', functioa() {
5 { 5 atar { Too: ‘bar' }-3};
T+ vilr error = new AxiosError{'Soom!', "ESOMETHING', { foo: 'bar' }, reguest, respanse);
Figure 2.18: Rename file refactoring example
MOVE RENAME FILE

1. Motivation

This refactoring consists of executing two refactorings together, MOVE FILE and RE-
NAME FILE. When changing a context file, there may be a need to also change its
name, resulting in this composite refactoring.

2. Step-by-step process of applying refactoring

We can follow the same logic for JavaScript, highlighted in the following points by
Fowler [10]:

(a) Application of the MOVE FILE refactoring steps;
(b) Application of the RENAME FILE refactoring steps;

(c) Test;

“https://github.com/axios/axios/commit/7f1236652adb8 13ff884be008fe73ddf0590c664

2.2 Refactorings 31

3. Example of JavaScript

In the example in Figure 2.19'° we can see the application of a compound refactoring
called MOVE RENAME on a file. You can see that the file initially called ReactDOM-

FrameScheduling.js now has a new name ReactScheduler.js and a new directory.

1 15 mmmEW packages/shared/ [Nk IR - 15 \ .ges/react -scheduler/src/Reactscheduler,js (0

Figure 2.19: Move Rename file refactoring example

REFACTORINGS RELATED TO CLASSES

The next refactorings that were identified by the tool are related to the JavaScript versions
that the software was developed. Classes before the ES6 (JavaScript 5) version could be
abstracted and represented by creating functions, and these represented the same functional-
ity. Starting with ES6, it was possible to create a class instance to better represent an object
in JavaScript. The motivation for refactoring MOVE and RENAME CLASS is the adapta-
tion of classes to a context that has evolved until the name initially chosen is no longer so

representative.

MOVE CLASS

1. Motivation
Adaptation of an already developed class to a new context, to promote better code

modularity.
2. Step-by-step process of applying refactoring
(a) Identification of regions that use this class;

(b) Transporting the class to the new context;

(c) Carry out all necessary adaptations to the new classroom location.

Shttps://github.com/refdiff-study/react/commit/999b656ed 1c94b00fcfd043f54e18ade7553dee0

2.2 Refactorings 32

(d) Identify source contexts that reference the location of the old class and that will

reference the new location of the moved class;

(e) Test.

3. Example of JavaScript

The figure 2.20'6 represents an example of refactoring move class, that moves Natu-

ralModuleldsPlugin from lib to lib/ids source.

v~ 43 mmmmm lib/[EENESCEEENESEELNEED . js (O
26 - class NaturalModuleXdsPlugin {

28 fparan {Compiler
28 = @returns {veid

31 - wpply (compiler) {
a2 - campiler.hooks.compil

tap("NaturalModuleldsPlugin®, compilation => {

33 = compilation.h optimi 1 rder.tap(

34 - "NaturalModuleIdsPlugin®,

35 = modules => [

38 modules t{byInd Identifi | H
37 = 3

v 31 mmn Lib/sds/ EEEECEERUEY. 15 (0

14 + class MaturalModuleIdsPlugin {

1+ * @iparam {Compiler

35l -+ * @returns {void

18+ pply(compiler) {
20 + compiler.hooks . com

tap(“NaturalModuleIdsPlugin®, compilation => {

21 4+ compllatio Ids. tap("NaturalModuleIdsPlugin®, modules == {
dules).sorc(

A + comg Modul ri tifier(compilation.moduleGraph)
24 .+ 15

aturalorder = Array.from

25 =+ assignAscendingIds{modulesInNaturalorder, compilation);

Figure 2.20: Move class refactoring example

RENAME CLASS

1. Motivation

Adaptation of the name of the developed code class to an evolving context, to promote

a better understanding of the code.

16https://github.com/refdiff-study/react/commit/999b656ed 1 c94b00fcfd043f54e 18ade7553deel

2.3 Refactorings versus Merge Conflicts 33

2. Step-by-step process of applying refactoring

The application of this refactoring follows these next steps:

(a) Identification of regions that use this class;
(b) Renaming the class name;

(c) This step consists of checking all imports that were directed to the old class and

adapting them to the new name class;

(d) Test.

3. Example of JavaScript

The figure 2.21'7 represents the application of refactoring RENAME classes in
JavaScript code, renaming the class that was previously called TreeSitterHighlight-

Iterator to LanguageLayer.

M

. : 477 MEEEM @ src/tree-sitter-language-mode.js -
559 - el TreesitterHighlightIterator {
560 B (languageMode, treeCursor) {
ass + cl LanguageLayer {

387 - T (languageMode, grammar) {
this.languageMode = languageMode

380 + this.grammar = grammar

390

391

302

33 +)}
394

hsinceCurrentParseStarted = null

Figure 2.21: Rename class refactoring example

2.3 Refactorings versus Merge Conflicts

The study [17] was the first to analyze the relationship between refactorings and merge con-
flicts. This work aimed to investigate the extent to which these two variables are related,
discussing whether conflicts involving refactorings are more difficult to solve and which
types of refactorings are more prone to errors. The methodology of the study selected Java
code repositories and, for each repository, identified the conflict regions and the previous

modifications that led to the conflict, known as evolutionary commits. After identifying the

17https://github.com/atom/atom/commit/e60f0f9b6084e220b2b54cf4218£df31f9733bd9

2.3 Refactorings versus Merge Conflicts 34

evolutionary commits, the study focused on searching for refactorings in those commits and
relating them to the conflict regions to determine whether there is a relationship between
the research variables, refactorings, and merge conflicts. The study found that about 22% of
refactoring actions were involved in merge conflicts and also obtained results on which types
of refactorings are more related to conflicts.

Similar to Mahmoudi et al. study [17], Oliveira et al. [20] was the first to analyze the
presence of refactoring actions in conflicting code for JavaScript. The study shows that ap-
proximately 7% of the analyzed scenarios involved refactoring actions in conflicting files,
with 4% of them exhibiting refactoring at the conflict region level. Moreover, a moderate
and positive correlation was found between the quantity of refactoring types and the number
of conflicts, suggesting a potential insight into the limit of refactorings to be performed in
a single commit. Move and Internal Move refactorings were the most commonly associ-
ated with conflicting files and conflict regions, explaining a discussion about Internal Move,
a refactoring type related to scope and more connected to languages with specific structural
features, such as the ability to develop nested functions. This study serves as an initial explo-
ration of the relationship between refactorings and merge conflicts, prompting discussions on
the need for advancements in methodologies applied to other languages and the development
of better tools for JavaScript. This study stands out from previous research by addressing this
relationship in a popular language that had not been extensively explored, showing types of
refactorings most associated with merge conflicts. Additionally, it contributes to a data set

containing floss and pure refactoring in JavaScript code commits.

Chapter 3

Exploring the relationship between

Refactorings and Merge Conflicts

To analyze the relationship between refactoring actions and merge conflicts in JavaScript
code, we performed a study to analyze the presence of refactorings in merge scenarios that
involved conflicts. This verification was performed at the file and conflict region levels. This
chapter aims to discuss the entire methodological process adopted, results, and implications
for the first and second research questions.

Initially, we discuss the methodology of our study to address the first two research ques-
tions. Two studies were performed, which are presented, with the input and output variables,
in Section 3.1. Subsequently, in Section 3.2, we discuss the preparation of our environment
and what was developed to collect the variables for our research. With the collection of this
data, Section 3.3 covers everything from the descriptive analysis of the data to examples of
the variables, culminating in the section dedicated to addressing the research questions.

Presenting the data, Section 3.4 explores the implications of the values found through
statistical analyses, pointing out the points of contribution from our study. To conclude, we
discuss the threats to the validity of our methodological process in Section 3.5.

The studies conducted in this chapter aim to answer the following Research Questions:

e RQ1: Is there a relationship between refactoring and merge conflicts in JavaScript

programs?
e RQ2: What refactoring patterns relate most to merge conflicts in JavaScript programs?

35

3.1 Methodology 36

The methodology for the first research question involves obtaining the evolutionary com-
mits that contributed to the conflict regions and extracting any refactorings present in these
commits, if they exist. This allows us to examine the history of changes leading up to the con-
flicts and analyze the role of refactorings in their occurrence. The methodology for the sec-
ond research question aims to identify patterns in the relationships between refactorings and
merge conflicts. This involves analyzing the data gathered from the first research question
to uncover any recurring patterns or trends. This analysis helps us gain a deeper understand-
ing of the potential relationship between specific types of refactorings and the likelihood of
conflicts during code integration.

Next, each stage of the methodology for collecting and analyzing evolutionary commits

is detailed.

3.1 Methodology

In this section, we present the methodology for our first two research questions. In addition
to the overall figure illustrating each step, we provide tables detailing the inputs and outputs

of each stage.

3.1.1 Methodological study for RQ1: Analyzing the Relationship be-

tween Refactorings and Merge Conflict

We used the methodology based on the study of Mahmoudi et al. [17] to collect the presence
of refactorings in conflicting files and their respective conflict regions. It is based on the
analysis of evolutionary commits. These commits represent the evolution of code present
in the merge commits parents. Extracting evolutionary commits was executed through the
terminal interface itself, using Git commands, while the part of collecting refactorings was
extracted using the RefDiff 2.0 tool from the study by Silva et al. [24]. The choice of this
tool was made because, up to the data collection moment, it was the only one that collected
refactoring actions performed in JavaScript code. To better illustrate the metrics that were
being used as inputs and outputs in each activity of the QP1 methodology, Figure 3.1 and

Table 3.1 have been developed, with a description of each step provided subsequently.

3.1 Methodology

37

Table 3.1: Descriptive analysis of metrics repository selection

Activity | Description Input Output
Mining JavaScript code reposito- o . . .
1 . Mining metrics Repository of Javascript code
ries
Mining merge commit informa- .) .)
2) Repository of Javascript code Conflict commit hash
tion
) o . o) Conflicting regions of each merge
3 Detecting conflicting regions Parents of conflicting commits .
scenario
4 Extracting evolutionary commits | Conflicting regions of each merge | Change regions of evolutionary
that built conflicts scenario commits
Collecting refactoring actions in | Hash of commits extracted by . o .
5 . .) . Refactorings done in this commit
evolutionary commits evolutionary commits
Detecting the relationship be- . Validation if there is overlapping
. . Local of conflict code and local of) .
6 tween refactoring actions and . between refactoring and region
)) refactoring change
conflict regions change

1) Mining JavaScript code
repositories

+ number of
collaborators

+mnumber of
commits

2) Mining merge commit information

<Repository>
<hash> <conflict>
585484s55626a25a6s yes
665qgaéxctylLLfd545 no

3) Detecting conflicting regions
[Lefeipy) i Right (P2)
‘ @O@ 65,5 +65, 60D I ‘ B 73,2 +732 006 U
2\

<<Merge Commit>>

0O@ +655 173,2+155,2 0@0

4) Extracting evolutionary commits
that may built conflicts

™
Left (P1) 1 (Right (P2)

eeo+655 55,5000 |
B\

=1 1

<< Evolutionary Commits>>

eeP+732 132 000 I

N

<< Evolutionary Commits>

de5de545a12526a BdeBawaalSesLL

—
\

5) Collecting refactoring actions in
evolutionary commits

<< Evolutionary Commits >3

4e54e545a12a26a

I

RefDiff 2.0

Lo

o]

6) Detecting the relationship between
refactoring actions and
conflicting regions

Refactorings
Troe Local change

Rename | line 102 fie Channel s

Extract e 69~ il Index 5.

A

local conflict change parent

T sesasaimieee

Figure 3.1: Methodology for analyzing the relationship between refactorings and merge

conflicts

3.1 Methodology 38

1) Mining JavaScript code repositories

The initial stage of this work consisted of selecting the repositories that would be used as
the subject of the study (first step of Figure 3.1). To do this, we selected related works that
had already analyzed JavaScript projects and their characteristics, such as the studies by [24]
and [26]. Next, we used two main metrics to select the most representative repositories for
our study: the number of developers involved and the total number of commits. Based on
these metrics, we selected a sample of 50 repositories and subsequently extracted the merge

commits related to the project under analysis.

2) Mining merge commit information

After the process of extracting merge commits from the repository, this stage aimed to refine
the sample by selecting only merge scenarios that have at least one conflicting file (second
step of Figure 3.1). We developed a script to take the total merge scenarios as input and
return only the conflicting scenarios. The main idea of this stage is to perform the merge
between P1 and P2, which represents the left and right commits, i.e., the parent commits of
the merge commit. Using the commands "git checkout P1", "git merge P2", and "git diff
-U0", the interface returns the entire result of the merge process, highlighting which files
have at least one conflict region. The "git diff -UO" command returns the difference between

the merged commits without adding blank lines.

3) Detecting conflicting regions

Identifying conflicting regions within conflicting files after the merge process is the goal
of this stage. The third step in Figure 3.1 demonstrates the process of identifying these
regions of conflict. The command "git diff -UQ" is used to return these regions. The merge
commit (MC) is identified with the symbol "@ @ @...@ @ @". This symbol consists of three
pairs, where the first two represent the location of the conflicting code in the respective
parent commits, P1 and P2. By identifying the conflict regions in the parent commits of
the merge commit, it is possible to determine the evolutionary commits that contributed to
the construction of each of these regions. This will be detailed in the next stage of the

methodology.

3.1 Methodology 39

4) Extracting evolutionary commits that built conflicts

During this stage of the methodology (fourth step of Figure 3.1), the focus was on collecting
information about the commits that contributed to the construction of the code in conflict
regions, i.e., the commits that introduced changes in the parent commits of each merge com-
mit. Using the identified change regions within each parent commit of the merge commit, we
executed the commands "git log -L start(P1), end(P1): file P2..P1" and "git log -L start(P2),
end(P2): file P1..P2". These commands take as input parameters the start and end of the
change region in the respective parent, as well as the conflicting file path. The output of this
command includes all the commits that contributed to the construction of the conflict region.
The result of executing this command would be all the commits that are between P1 and its
common ancestor and that were part of the evolution of the parent commit. With these com-
mits that contributed to the parent commits, it is possible to run the refactoring tool for each
commit and identify if any refactoring was performed within it. Additionally, during this
stage of the methodology, we collected the data using scripts that we developed. This data is
essential for the study as it represents the number of conflicts and conflict regions of .js files
being analyzed. Data such as the total number of conflicts, conflict regions, and analyzed .js

files are collected in this stage to be used for the correlation of the research variables.

5) Collecting refactoring actions in evolutionary commits

When evaluating the history of source code, identifying evolutionary commits, as seen in the
previous step, is an essential task. In the fifth step of Figure 3.1, we use RefDiff 2.0 tool [24]
to identify refactorings within these commits, as well as indicate in which region of the file
the change was made and what refactoring type was applied. By providing accurate informa-
tion about refactorings performed on the source code, RefDiff 2.0 facilitates the discussion
of design problems in the code, as the application of refactoring begins with a bad smell in
the code. Therefore, it is possible to better understand how the code has evolved through the

action of refactorings.

3.1 Methodology 40

6) Detecting the relationship between refactoring actions and conflict regions

Finally, when collecting refactorings within evolutionary commits, it is necessary to verify
the presence of refactorings within the conflicting file and the conflict regions collected in
step 3, to identify whether they are related by overlapping lines (sixth step of Figure 3.1). At
the end of this step, all relationships between refactorings and merge conflicts at the level of

the conflicting file and the level of the conflicting region are collected.

3.1.2 Methodological study for RQ2: Analyzing the Relationship be-

tween Refactorings Types and Merge Conflicts

In this section, we describe the methodology used to analyze the relationship between refac-
toring types and merge conflicts demonstrated in Figure 3.2. Table 3.2 illustrates the metrics

that were used as inputs and outputs.

Table 3.2: Descriptive analysis of metrics repository selection

Activity | Description Input Output
Summary of refactorings types in Merge | Data with refactorings types founded in | Summary of refactorings types
1
commits with conflicts conflicts founded
Statistical analysis of types of refactor-
Variables: Refactoring types and conflict-
2 ings in the conflicting files and conflict Statistical correlation tests
ing regions
regions

1) Ssummary of refactoring types in
Merge Commits with conflicts

Refactorings
Type

Rename

Extract

Hash commit

assda5AFV5451

rt7j489526f265ITEX

refactorings in the

2) statistical analysis of types of

conflicting files and conflicting regions.

Hypotheses?

Types of
refactoring x Conflict

AN

Figure 3.2: Methodology for analyzing the relationship between refactoring types and merge

conflicts

3.2 Study Setup 41

1) Summary of refactorings types in Merge Commits with conflicts

The objective of this stage is to collect information about the most common types of refactor-
ing that are involved in conflicting files and conflict regions. Identifying the most common
types of refactoring that are most often involved in merge conflicts can be very useful in en-
suring the integrity of the code in a repository. By collecting this information, it is possible to
better understand which refactorings can lead to conflicts, allowing tag preventive measures

to be taken to avoid them.

2) Statistical analysis of types of refactorings in the conflicting files and conflict regions.

To obtain quantitative analyses, statistical tests of correlation will also be performed in this
stage between the study variables, which are: the occurrence of refactoring types and merge

conflicts, to identify possible relationships between them at a statistical level.

3.2 Study Setup

This section describes the preparation of our environment for conducting the study for RQ1
and RQ?2, including the selection of initial metrics and the information on the local where

the experiment was conducted.

3.2.1 Selection of JavaScript repositories

We selected the most repositories from a list of repositories analyzed in previous studies,
such as [24] and [26]. These studies focused on the analysis of refactorings and conflict
analysis, respectively, and had evaluation datasets with lists of repositories analyzed. To
select also new repositories, we conducted a search on GitHub for JavaScript repositories,
choosing them based on the initial metrics we identified. To select the repositories for our
study, we used metrics that emphasize the importance of selecting good inputs for empirical
studies. Specifically, we used the number of contributors and the number of commits as our
selection criteria. We believe repositories with high values for these metrics are more likely

to have merge conflicts.

3.2 Study Setup 42

3.2.2 Creation of scripts to collect text data information

To gather the necessary data for the study, we developed five Python scripts that collected
information on merge scenarios and important evolutionary commits, such as the location
of conflict regions. These scripts were developed using version 3.0 and included five main

functions:

Collection of conflict scenarios ;

Collection of information on conflicting commits;

Collection of the relationship between refactorings and conflicting files and conflict

regions;

Collection of conflict information by merge scenario;

Collection of information on types of refactorings.

A manual inspection was performed through manual tests to validate the obtained data.
All the material developed and extracted from the scripts is available in the repository !,

complete with step-by-step instructions for their execution.

3.2.3 Initialization and configuration of the RefDiff 2.0 refactoring tool

To collect information related to refactorings, we used the Ref Diff 2.0 tool from the study
[24]. This tool is multilingual, meaning it can detect these actions for many programming
languages. In our study, we used the plugin developed by the study team for JavaScript

codes. The tool was executed in Eclipse and configured through Maven artifacts.

3.2.4 Execution environment

To perform data analysis, we used a computer with an 15 processor with 4 cores at 2.30GHz

and 12 gigabytes of memory. The average internet connection was 130 Mbps.

Thttps://github.com/joseglauberbo/data_mestrado_dissertacao

3.3 Results 43

3.3 Results

In this chapter, we explore the methodological aspects addressed in our study for RQ1 and
RQ2. In Section 3.3.1, we present a descriptive analysis of the data, emphasizing measures
of central tendency. The purpose is to provide a more detailed description of the variables in
our study. Our goal is to present, from the outset, the selection of initial metrics to the key
variables, such as refactorings, merge conflicts, and their relationship. We further explore the
discussion of the chosen variables, interpreting the values found in the previous section and
providing concrete examples of our data found. In Sections 3.3.2 and 3.3.3 we answered our
research questions based on the findings obtained during the study. In Section 3.4, we discuss
our findings, assess the hypotheses, and draw conclusions. Concluding the discussion, in
Section 3.5, we present threats to the validation of our study, based on the methodology
applied in the research questions.

Initially, we selected 100 JavaScript code repositories, from which 76 have at least one
merge conflict in the Javascript file (files with .js). These 76 repositories were made by
31,329 contributors and all of these have 547,421 commits. A total of 81,856 merge scenarios
were examined. Among them, 6,356 were found to have at least one merge conflict. Only
conflicts occurring in .js files were considered, while conflicts in configuration files (such
as build files and readme files) and test files were disregarded. As a result, a total of 4,206
valid merge conflicts were included in the analysis. Within these valid merge conflicts, a
total of 7,821 conflict regions were identified. From the evolutionary commits, the RefDiff
tool collected 2,961 refactorings applied within files involved in conflicts. Also, out of these
refactorings, 1,236 were specifically applied within the conflict regions themselves. This tool
captured various types of refactorings, including Rename, Move, Extract, Inline, Internal

Move, Move Rename and Extract Move.

3.3.1 Descriptive analysis

Table 3.3 and Table 3.4 show some measures of central tendency and dispersion of the data,
such as standard deviation, the minimum and maximum value of the set, and quartiles by the
variables of our study.

The variables analyzed in the study encompass repository selection metrics as well as

3.3 Results 44

Table 3.3: Descriptive analysis of metrics repository selection

Variable Mean SD Min | Max Q1(25%) | Q2(50%) | Q3(75%)
N° of contributors 412.22 702.78 12 4704 104.25 214.5 372

N° of commits 7202.9 10313.9 | 392 | 41503 | 1883.75 3024.5 7459.25
N° of merge scenarios 1077.05 | 1817.13 | 35 9181 201.75 413 738.5

N° of merge scenarios with conflict 83.63 140.73 3 710 14.75 25.5 71

Table 3.4: Descriptive analysis of variables refactorings and conflicts

Variable Mean SD Min | Max | Q1(25%) | Q2(50%) | Q3(75%)
N° conflicts .js 55.34 98.1 1 649 9 18.5 62.2
N° conflicting regions 102.9 | 189.2 2 1263 12.7 34.5 105.7
N° refactorings (conflicting files) 38.9 62.7 0 306 2 9 49.7
N refactorings (conflicting regions) 16.2 32.1 0 194 0 2 13.2
N relationship (refactorings and conflicting files) | 227.1 838.5 0 6846 4 13.5 117.5
N° relationship (refactorings and conflicting re-

24.8 61.5 0 387 0 3 18.25
gions)

variables representing merge scenarios, conflicts, and conflict regions. The selection of
repositories with a wide range of data allows for the examination of whether the study’s
findings apply to both large and small repositories, with a large or small number of merge
scenarios. The inclusion of outliers in the analysis further highlights the dispersion of the
data and provides additional insights into the variations observed in the variables. By consid-
ering repositories with diverse characteristics, the study aims to enhance the generalizability
and robustness of its results. Table 3.4 provides a comprehensive visualization of the two
main research variables in the study, which are conflicts and refactorings. These variables
were obtained through the examination of their evolutionary commits. Figure 3.3 shows
dispersion metrics for selection repositories and the next section analyzes these variables.
To select repositories with a high number of merge and conflict scenarios, we chose to
use the metrics "number of contributors" and "number of commits" as initial criteria. When

analyzing the data presented in Table 3.3, we observed that our repositories had, on aver-

3.3 Results

45

Quantity of collaborators

Quantity of commits

4000

3000

2000

1000

40000

30000

20000

10000

800

700

2]
(=]
o

wu
(=]
(=]

Quantity of collaborators
8
(=)

G B 300
L]
L]
200
L]
0@
& :..., 100
‘.
PRT 0
2 16000 —
L .
. 14000
L]
L1}
12000
£
£ 10000
E
. S
G 8000
. =
- 2
= T 6000
=3
o4
.
P 4000
31' * 2000
. J
% 0

Figure 3.3: Initial metrics of selection repositories Javascript

3.3 Results 46

1400
8000

1200

6000 1000

800

4000
600

400

Quantity of merge commits
L
L]

Quantity of merge commits

2000 =

) ke

200

700 .
140

600
120

500
100

400 80

300 60

Quantity of merge commits with conflicts
Quantity of merge commits with conflicts

200 ., dd
.
o L]
100 e 20
“ g, p
. Yatak

Figure 3.4: Dispersion metrics about merge commits and merge commits with conflicts

age, 412 contributors, ranging from a minimum of 12 to a maximum of 4,704. The notable
dispersion of this data is positive, as it provides a comprehensive and meaningful represen-
tation for our analysis. To the number of commits metric, we found that the repositories
analyzed had an average of 7,202 commits, with a wide dispersion of data, ranging from 392
to 41,503. This diversity suggests that our selection encompasses repositories of different
sizes and stages of development, covering large, small, and medium projects.

Choosing these two initial metrics, each repository had the number of merge commits
and merge commits with conflicts collected, starting the fundamental point for our study.
The repositories presented around 1,077 merge scenarios, showing a notable dispersion of
data. Of these scenarios, it was found that the mean is 83 scenarios with conflicts, with
repositories having only 3 conflict scenarios while others with 710 scenarios. It is important

to highlight that all variables selected so far have exhibited significant dispersion in the data

3.3 Results 47

collected.
A correlation analysis was carried out between these variables, as illustrated in Figure
3.5. This analysis allows us to evaluate whether the two initial metrics chosen were effective

in selecting repositories that contain representative merge scenarios.

- 0.78
Quantity of merge commits

- 0.76
- 0.74

Quantity of conflict merge commits L 0.72

- 0.70

- 0.68

- 0.66

- 0.64

Quantity of commits

w
[
o
2
[
e
o
K=
)
[=]
(%)
-
o
Pl
&
=
=
1]
3
o

Figure 3.5: Correlation Matrix with metrics selection

A clearer correlation emerges between these variables, suggesting that as the number of
contributors and commits in the repository increases, the likelihood of encountering more
merge scenarios and conflicts also rises.

Figures 3.6, 3.7, 3.8 show us how our research questions variables are disperse. Given
that our study focuses on the relationship between refactoring action and conflicts that occur
in merge scenarios, both at the file level and at the conflict region level, this subsection has the
objective to provide insight into what was discovered for the variables "number of conflicts
.js", "number of conflict regions", "number of refactorings in conflicting files", "number of
refactorings in conflicting regions”, "number of the relationship between refactorings and
conflicting files" and "number of the relationship between refactorings and conflict regions".

As shown in Table 3.4 and Figure 3.6, we observed significant variability in the reposito-

ries, ranging from those with only one conflicting file to those with as many as 649 conflicting

files. Additionally, we found repositories that contain from 2 to 1,279 conflict regions.

3.3 Results 48

120 A -1
L]
600
100
. 500 o
8 £ 0
b=
o
2 400 : £
: [¥)
k= = 60
g ; s
S 300 <
5 z
oy . g 404
£ 200 5
g 4 &
a .
L] 20 |
100 Je
L] P .:.
v
0 ' 04
250
L
1200
ﬂ‘ 0 2001
5 2
2 1000 8
N —
= =
w0 %}
= ® 5 150 1
S 800 &
o F]
g e
o £
g £
£ 600 g
£ E 100 A
= ® =]
[o v}
B8 b1
w400 Zz
> ‘e b=
= LR 3 50
c L[] ™ o
S 200 e _
o 8, ae
6 =«
e e
0 FMivaelb 0+

Figure 3.6: Dispersion metrics about conflicting files and conflicting regions

As evidenced in the Figures 3.7, there is a higher presence of relationships at the level
of conflicting files compared to the level of conflict regions. In the context of conflicting
files, scenarios of merge are identified, reaching up to 7,000 relationships with detected
refactorings. Upon analyzing the boxplot, it is observed, through the median, that 50% of the
data falls below approximately 13 relationships, while the average number of relationships
is around 227. When we check at the conflict region level, we have a smaller quantity of
relationships identified. Through our data, a disparity has been noted, which can be attributed

to the randomness and diversity inherent in our repositories.

3.3 Results 49

2504 I

1000 .
g =
& 6000 = .
= e
g]
£ 5000 £
8 o
; % 150 A
@ 4000 £
£ 5
2 @
@ T
< 3000 = 100 4
E [

=}
5 . 5
i} 1)
& 2000 2
2] o
“ 2 501
@ €
2 1000 T — 8
= . @ o
g Cou o ® '.
& o EPARY Sv. 0 0+

.

. o —r
§ 400 = g
= < 40
@ 350 s
S . S
o]
2 300 s
g £ 30
] =
s L=
= 250 £
c (¥}
o =
* 200 g
£ §°°]
g £
2 150 5
L c
8 5 §
£ 100 . - ® 104
S 2 e
a ™ .. = L] ;
2 s5p o 2
5 -y
= 3 =
=R Sotaing® & o0
m T
e |

Figure 3.7: Dispersion metrics about relationship research variables for RQ1

Similar to the charts illustrating the number of relationships between refactorings and
merge conflicts, graphs were generated to represent the dispersion of the number of refac-
torings in conflicting files and conflict regions. Concerning the number of relationships, the
number of refactorings exhibited lower values, but with a significant dispersion and little

presence of outliers, indicating a more balanced distribution at the conflicting file level.

50

3.3 Results

120 A

300

T
(=] (=] (=] (=] [=] (=]
m B 6 .4 _)._

sl* sajuy Bugoijuod ul sbuuiojdejal jo Ajuend

o (=} [=] (=] =] =]
Tl = 5} =] 3]
~ ~ — —

sl saj1) bunoipuod vy sbupioloeal Jo AJueny

m 5 [=} ['s] [=] [ts] 0
™ ™ —~ —

sl sajy i suoibau Bunaiyuod i sbuuejoeyal jo AJuend

® L] .
o.
. *. ° oo
] L)
. L]
LA
(=] i =] g (=] Tel o [Fs) =
(=1 ~ [T o~ = ™~ [ra} ~
~ — — — —

sl 531} u suoibas buaiuod ul sbulioloelal jo Aliquend

Figure 3.8: Dispersion metrics about the number of refactorings in research variables for

RQI

3.3 Results 51

In the following figures, it is possible to check conflict situations and conflict regions
captured by the methodology adopted. In this Figure 3.9, it is possible to observe the moment
in which we identify the conflicting files in each merge scenario. In the case of the mentioned
example, two files have merge conflicts: the test/test-async.js file and the lib/async.js file. To
illustrate the example, we will choose the lib/async.js file, since it is an executable file in .js
format. Later, in Figure 3.10, we present an example of a conflict region collected in this
specific scenario.

joseglauber@joseglauber-Aspire-E5-574:~/Documentos [testefasyncS git checkout c64997e79593783468F1db2517d46e385098414a
HEAD is now at c64997e Merge pull request #692 from wltsmrz/master
joseglauber@joseglauber-Aspire-E5-574:~/Documentos/teste/async$ git merge 2a13de857682663e556b1a344d8c33d3a6c289bf
Mesclagem automatica de test/test-async.js

CONFLITO (conteido): conflito de mesclagem em test/test-async.js

Mesclagem automatica de lib/async.js

CONFLITO (conteudo): conflito de mesclagem em lib/async.js

Automatic merge failed; fix conflicts and then commit the result.

Figure 3.9: Metric: number of conflicts

@@@ -166,2 -177,38 +200,43 @EE
4+4<<<<<<< HEAD

+ async.eachLimit = function (arr, limit, iterator, callback) {
+ var fn = _eachtimit(limit);

f - e

+ async.forEachofSeries = function (obj, iterator, callback) {
+ callback = callback || function () {}

¥ var keys = keys(obj);

* var size = keys.length;

+ if (!size) {

+ return callback();

+ 3

+ var completed = 8;

+ var iterate = function () {

+ var sync = true;

+ var key = keys[completed];

+ iterator(obj[key], key, function (err) {
+ if (err) {

+ callback(err);

+ callback = function () {}:

+ }

+ else {

+ completed += 1;

+ if (completed >= size) {

+ callback(null);

i }

+ else {

+ if (sync) {

+ async.nextTick(iterate);
t+ }

+ else {

¥ iterate();

+ 1

+ }

+ }

+ I3 H

+ sync = false;

:

+ iterate();

+ }:

F

+ async.forEachLimit = function (arr, limit, iterator, callback) {
var fn = _forEachLimit(limit);

++>>>>>>> 2a13d0857682663e556b1a344d8c33d3a6c289bF

Figure 3.10: Example of collected conflict

3.3 Results 52

After collecting this conflict region, we identified the commit that was responsible for

introducing this content into the source code, as we can see in Figure 3.11.

Author: Caolan McMahon <caolan@caolanmcmahon.com=>
Date: Sun Feb 10 22:40:20 2013 +0000

rename forEach functions to each and add aliases for old names

diff --git a/lib/async.js b/lib/async.]js
--- aflib/async.js
+++ bflibfasync.js
@@ -147,2 +149,2 @@
async.forEachLimit = function (arr, limit, iterator, callback) {

var fn = _forEachLimit{limit);
+ async.eachLimit = function (arr, limit, iterator, callback) {
var fn = _eachLimit(limit);

Figure 3.11: Example of collected region conflict

The tool captures a RENAME refactoring that occurred in the forEachLimit function on

line 147, being renamed to eachLimit on line 149, as illustrated in Figure 3.12.

147 - async.forEachLimit = function (arr, limit, iterator, callback) {
148 - var fn = _forEachLimit(limit);
149 + async.eachLimit = function (arr, limit, iterator, callback) {
158 + var fn = _eachLimit(limit);

Figure 3.12: Example of collected refactoring in conflict file and region conflict

Given the examples above, our script identifies that for this merge scenario, there is a
relationship between the RENAME refactoring action and the conflicting file and the conflict
region, since the refactoring was introduced in an evolutionary commit that made exactly the

location of the region of conflict.

3.3.2 Answering RQ1: Is there a relationship between refactoring and

merge conflicts in JavaScript programs?

After collecting variables related to the number of conflicts, conflict regions, and refactoring
actions, we also collected the variable that represents the relationship between these vari-
ables, i.e., if there was at least one overlapping line between the location of the refactoring
application and the location of the conflict, there is a relationship between both variables.
Given this, out of the 76 repositories and 6,356 conflict scenarios analyzed, 17,271 rela-

tionships between refactoring actions and conflicting files were found. By restricting the

3.3 Results 53

application of refactoring at the level of conflict regions, 1,888 relationships were found at
the file level, these relationships are in Figure 3.13.

We also collected how many instances of refactorings were found in these conflicting
scenarios, both at the file level and at the conflict region level. 2,961 were found instances of
refactorings in conflicting files, 1,236 of which are also related to the region of conflict. The

results can be seen in Figure 3.14.

]
600
@, 500
8
=
a0 ®
~
=
™
Z 300 - -
o
z &
=} -
E 200 @ BT e
E] amm="
o . L] .-"-‘--
L ® --"'...
4 [] -
100 . P
& o
L]
0 [¢
T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
Quantity of relations refactoring and conflicting file
®
1200 A
o
"
E 1000 A
[=3]
u
= ®
£ 800+
p=
=)
e
5
v 6001
2
= ®
=
el
S 4004
z . ®
£ ® ® Pounannsr
Z 200{ @ ® o
o
v
® ®
0 Y e @ ®
T T T T T T T T T
0 50 100 150 200 250 300 350 400

Quantity of relations refactoring and conflicting regions

Figure 3.13: Dispersion graph of variables (relationship/conflicts) of QP1

3.3 Results 54

600

£, 500

400 A

300 + .

200

Quantity of valid conflicts

100 A

T T T T T
0 50 100 150 200 250 300
Quantity of refactorings in conflicting file

L
1200 A

1000
800 +
600

400 4

Quantity of valid conflicting regions .js

200 A

T T T T T T T
0 25 50 75 100 125 150 175 200
Quantity of refactorings in conflicting region

Figure 3.14: Dispersion graph of variables (n° of refactorings/conflicts) of QP1

The study identified 465 merge scenarios that have at least one relationship between the
refactoring and the conflicting file, and of these, 253 have at least one relationship at the
level of conflict region, representing 7% and 4% of the sample, respectively. Figure 3.15
represents how these data are distributed.

It can be observed that there are a low number of scenarios that have at least one rela-
tionship between the refactoring action and the conflicting file and its conflict region. To
better analyze the relationship between these main variables of the research, the correlation
between the number of conflicting files/regions and the quantity of this relationship was an-
alyzed. Similarly, the correlation between the number of conflicting files/regions and the

number of refactorings found in these scenarios was also examined. Table 3.5 shows some

3.3 Results 55

=
S 30
] o .
9]
2] . =
= o]
o 50 =
c £ 25
= o
o o .
o =]
[0 =
=
g 40 8 20 .
c 5}
[} 1]
@ @
B . 5
@ 30 5 95
(7} -
o o .
B =
=] =
L
0
& 20 a
-] d 2..70
C] i
| . % -
o . . c L]
= K=l LI
3 . © - e .
< 10 e o 5 v »
g L] = e e
@ L3 u ® s sem
o .:'c .é 2 e o @
2 smes] 1] - e am
0 : 8= E 0 B -TI- =
[¥)
wv

Figure 3.15: Dispersion graph of scenarios involved in merge conflict

correlation relationships between them.

Table 3.5: Descriptive analysis of variables of study

Correlation N° of conflicts .js | N° of region conflicts .js
N° of relationship between refactorings and con-
0.55 0.61
flicting files
N° of relationship between refactorings and con-
0.5 0.6
flicting regions
N° of refactorings in conflicting file 0.56 0.60
N° of refactorings in conflicting region 0.54 0.58

As observed, both relationships show a moderate positive correlation. In addition to the
correlation analysis, a linear regression model was developed between both analyses. Our
study developed linear regression models, where the dependent variable (Y) was defined as
the "number of conflicting files/conflicting regions", and the independent variable (X) was
defined as the "number of relationships between refactorings and conflicting file/number of
relationships between refactorings and conflicting regions". These results can be analyzed in
Table 3.6. When we now consider the linear regression model with the independent variable

being the "number of refactorings", we observe different results in Table 3.7.

3.3 Results

56

Table 3.6: Number of Relationship x Conflict

Relationship x Conflict Conflicting file Conflicting region
regression-model y =49.1 +0.027X y =89.6 + 0.53X
p-value 0.042 0.13
r-squared 0.055 0.03

Table 3.7: Number of refactorings x Conflict

Number of refactorings x Conflict

Conflicting file | Conflicting region

regression-model y =36+ 0.49X 79.6 + 1.43X
p-value 0.005 0.03
r-squared 0.10 0.05

Both discussions about these linear regressions are in Section 3.4.

3.3.3 Answering RQ2: What refactoring patterns relate most to merge

conflicts in JavaScript programs?

For this research question, information was collected on the types of refactorings present in
scenarios that involve conflicts. A total of 2,961 instances of refactorings were found through
the RefDiff 2.0 tool that was performed on files involved in conflicts, of which 1,236 were
found within conflict regions. All eight types of refactorings that were analyzed in this study
were found at the file level of conflicting files and region conflicts.

For each relationship found between a conflicting file/conflict region, there is an asso-
ciated refactoring. Table 3.8 shows the frequency with which each type of refactoring was
related to each of the conflicts and Figure 3.16 and 3.17 are graphics dispersion about how
these data are distributed.

We can observe a notable disparity in the dispersion of data associated with the type of
refactoring in the repositories. Although Internal Move was the most associated refactoring
in conflicting areas, the scatterplots above indicate that Move refactoring is the most widely

distributed among repositories, also presenting a smaller presence of outliers. Internal move

57

Violinplot to types of refactoring involved in conflicting file

3.3 Results

T T T T T T T T
T T T T T & = o & o a o o & T T T T T
o o o
g 2 8 g © R 8 B % R 8 =8 S R o 2 S b} ~ = B 8 B & R R’ =8 2
0 L=} % ~ | ~ el ~ | |
Bulioloe)al anop Buuolpejal 1peax] buinioloe)al sno 10eI1Xg Buuolorya) SWeUSY aA0K [BUISIU|
o — o r
T T T T T T T ; : ; ; T T T T T T T T
[=] o [=] (= (=] =] = o =] o o o =] o =
5§ &8 8 8 § R] g R ° g€ 8§ B B & g 8 A _ z
2 — — = ~ =] ? = M o~ = o g ~
Buuoloejal A0 LS| Bunojoejal aweusy anop

Bulioidejal aweusy Buriolaeas sujul

Figure 3.16

58

3.3 Results

Buuojoejal aweusy

Burioldeyal 3ulUl

Buuiojoejau SWeUSY A0 |BUI33U|

T T T T T T T) T 5)) ¥
=] o =} =} =} 3 =] o T T T 1 c] o L3S 3 5 in T T T T T T T
wn '] o fal M~ w ™~ o r~ n ™~
R ~ & 4 = | 2 =] 2 N \w oo 5 n o =l o © T ~ o
Bupioioejal anow Buuoioejal o113 Buiio1aea1 anop 19.41X3 Buiio1oe)al SWeuay A0 [RLWIRJU|

T T T T T T T T T o T T T T T T T T oz T T A T
=] =1 =] =] o o o =1 w o = ~ e n m £ il
=} b % 2 o~ — L — — |

Bulioldela) SWeU3Y A0

Figure 3.17: Violinplot to types of refactoring involved in conflicting regions

3.3 Results

59

Table 3.8: Descriptive refactorings relationship founded in conflicting file and conflicting

regions

Refactoring Type Relationship Number in conflicting files Relationship Number in region conflicts
Rename 2098 243
Move 3760 913
Inline 626 50
Extract 1713 203
Internal Move 8366 454
Extract Move 734 57
Move Rename 225 29
Internal Move Re-

139 23

name

and move conflicts were the most commonly found when analyzing the conflicting file and

conflict region levels. Below, statistical information about the data, as well as correlations,

will be presented.

Similarly to what was done for RQI, it is desired to verify the correlation between vari-

ables related to conflicts and the variable "number of refactoring types involved in the con-

flict". This verification was conducted at the level of conflicting files and also at the level of

conflicting regions and is presented in Figure 3.19.

600 -

is

2 500 o

400 4

300 4

Quantity of valid conflicts

.
Quantity of conflicting regions

1200

1000

Quantity of types of refactoring in conflicting file

2 3 4 5 6 7
Quantity of types of refactoring in confiicting region

Figure 3.18: Dispersion graph of the relationship between the type of refactorings and con-

flicting variables

A moderately positive correlation is observed between the variables analyzed. In the

3.4 Discussion

60

same way, as we addressed in the first research question, we conducted a linear regression

between the analyzed variables. the results can be verified in Table 3.9. First, in Figure 3.18

are dispersion graphics that show the correlation between variables.

-10
Quantity of type of refactoring conflicting file 0.58 0.63
- 09

Quantity of type of refactoring conflicting region -

15

Quantity of valid conflicting file

Quantity of conflicting regions
o
o

Figure 3.19: Correlation between quantity type of refactorings and conflicting file/region

Table 3.9: Number of Type of refactorings x Conflict

N° Type Refactorings x Conflict

Conflicting file

Conflicting region

regression-model

y=12.12+ 134X

y =26.534 +37.691X

p-value

0.003

0

r-squared

0.11

0.18

For this regression model, we define the dependent variable (Y) as the "number of con-

flicts/conflict regions" and the independent variable as the "number of refactoring types in

conflicting files/conflicting regions". The results of this regression linear will be analyzed in

Section 3.4.

3.4 Discussion

In summary, our study found that from 6,356 conflicting scenarios, 465 merge scenarios

have at least one relationship between a conflicting file and a refactoring action, around 7%

of our total scenarios. Analyzing at the conflict region level, there are 253 conflict scenarios,

representing around 4% of our sample.

3.4 Discussion 61

When analyzing the results in Table 3.6, we observed that, when considering the impact
of refactoring relationships in conflicting files, the p-value allows us to reject the null hypoth-
esis, indicating the existence of a significant effect of the variable X over Y. The coefficient
of determination (r-squared) reveals that variable X explains 5.5% of the variation in the data
for variable Y. However, when examining the relationship at the conflict region level, we did
not find sufficient statistical evidence to reject the null hypothesis, suggesting the lack of a
significant relationship between the variables.

When we now consider the linear regression model with the independent variable being
the "number of refactorings", we observe different results. At the conflicting file level, the
p-value is notably low (0.005), indicating a significant relationship between the variables,
with the independent variable explaining 10% of the variation in the dependent variable.
However, at the conflict region level, we observed a more modest impact, with variable Y

influencing up to 5% on variable X.

Summary 3.4.1. Results for RQ1

Through correlation and linear regression studies, our study demonstrates a bigger
correlation between refactoring and conflicts at the level of conflicting files. This
finding highlights the relevance of in-depth analysis of specific relationships between
variables for a more complete understanding of the results, in addition to suggesting
analyses regarding the impact of refactoring on the structure of the entire conflicting
file.

Our study also focused on analyzing the number of refactoring instances that were re-
lated to conflict. 2,961 instances of refactorings collected by RefDiff 2.0 were found,
of which 1,236 were also in conflict regions. Our statistical analyses showed a moder-
ate correlation between the variables, showing a possible influence between the num-
ber of refactorings performed in the merge scenario and the number of conflicts that
may occur, suggesting a deeper study of the relationship between the variables for

better results.

To analyze not only the relationship between refactorings and conflicts, our study also
uncovered results related to the types of refactorings performed within these areas. Through

the relationships found in RQ2, our study found that Internal move, Move, and Rename are

3.5 Threats to Validity 62

the types of refactorings most related to merge conflicts, both at the conflicting file level and
the conflict region. When conducting the study we found that many conflicts had more than
one type of refactoring carried out. All 8 types of refactorings that the tool can collect in
conflicting files and conflict regions were found.

When analyzing the results at the level of conflicting file and conflicting region in Table
3.9, we observed the two low values for the p-value, indicating that, in both cases, we can
reject the initial null hypothesis that stated the non-existence of a significant relationship
between the variables. We can therefore consider that there is a significant variance between
them. When examining the R? value, we find that, at the conflicting file level, approximately
11% of the variance in variable Y is explained by variable X, while at the conflict region

level, this value is around 18%.

Summary 3.4.2. Results for RQ2

Through statistical analysis, we found promising results that demonstrate that the
number of types of refactorings involved in the process can be directly related to the
occurrence of the conflict in a merge scenario, this represented the most substantial
relationship found in our study. In addition found that Internal Move, Rename, and
Move types are most associated with merge conflicts, both at the file level and the

conflict region level.

3.5 Threats to Validity

This section will present the threats to validity that were identified during the methodology

of our study.

3.5.1 Internal Validity

Throughout our investigation, we noted certain inconsistencies in the functionality of the
RefDiff 2.0 tool. The main issue challenge is the tool’s incapacity to scrutinize refactoring
actions within merge commits, coupled with some false positives and false negatives. The
RefDiff study reported precision and recall of 91% and 88%, respectively, in identifying

refactoring actions in JavaScript code [24]. In the context of evolutionary commits, our find-

3.5 Threats to Validity 63

ings indicate that the RefDiff tool faced challenges during the refactoring collection phase
in certain instances. This was attributed to the distinctive characteristics of these commits,
such as certain text formatting within the commit, resulting in parser errors.

In our study, our specific emphasis was placed on the analysis of files directly implicated
in conflicts. Since the beginning, we opted for an approach exclusively dedicated to exam-
ining refactorings within the conflicted files. This strategic choice was largely shaped by
the constrained tooling support accessible for JavaScript. To evaluate the influence of refac-
torings in non-conflicting files would have demanded substantial resources, both in terms
of memory and time. The insufficient tooling support available for these files would have

placed a substantial burden on the assessment process.

3.5.2 External Validity

Our study is limited to the size of a selected sample, and therefore, the results presented here
cannot be generalized to all JavaScript repositories. The conduct of our study on a limited
number of repositories is due to the lack of suitable tools to streamline and automate the
process.

Even with the selection of initial metrics, there is no guarantee that we chose the best
repositories for evaluation. Extensive repositories may have a reduced number of conflicts,
as other characteristics, such as those related to the team, can influence these variables. The
process of collecting refactorings is also a relatively time-consuming procedure and requires

specific configurations, making its application to larger datasets more challenging.

3.5.3 Constructor Validity

When analyzing some merge scenarios, we observed the presence of untraceable commits,
known as dangling commits, which lack references to any branch. These commits pose a
threat to our study, as it is not always possible to extract the entire content of the conflict
region when it contains dangling commits. In the context of refactorings, it is important to
note that there is more than one way to perform the same type of refactoring. This variability
can pose a threat to our study, compromising the effectiveness of refactoring detection by the

RefDiff 2.0 tool. Due to the methodology of our study, the quantity of untraceable commits

3.5 Threats to Validity 64

was not collected, providing a potential avenue for future research.

A crucial aspect of our study aims to identify conflicts within the software source code.
During code merging in Git, all files involved in conflicts are included, and not all of these
files are executable JavaScript files with the .js extension. We observed the presence of
various files, such as configurations, READMESs, and test files, among others. This diversity
poses a threat to the validity of our study, as our focus is on identifying conflicts in executable
JavaScript code files, typically developed by programmers.

It is important to show that we also encountered minified files, which is a compression
process to enhance speed and save space. Although these files are automatically generated,
they have the .js extension. To address these challenges, we applied a filter to our data,
considering only files with the .js extension. Additionally, for minified files with the .js
extension, we implemented a filter that checks whether the name follows a typical naming
pattern for minified files, if there, we discard this file. This strategy ensured that we captured
the most representative set of executable .js files in our analysis.

Similar to Mahmoudi et al.’s study [17], our research aims to identify refactoring actions
in conflicting code. However, it is essential to note that the influence of refactoring on
conflicts cannot be conclusively asserted without a more in-depth analysis of the conflict

content.

3.5.4 Conclusion Validity

The present study encounters challenges regarding the validity of its conclusions, with a spe-
cific emphasis on researcher bias. When selecting variables to address the research questions,
there is a possibility of choosing variables that may not provide the best answers for our con-
clusion. To mitigate this issue, meetings and discussions were conducted to determine which

variables to analyze, drawing on variables from other existing studies.

Chapter 4

An examination of commit evolutionary:

floss or pure refactoring?

The third research question analyzes the content of the commits that created the conflict,
so it is possible to verify whether this content is composed only of refactorings or other
modifications, thus making it possible to better analyze the contribution of refactoring to the
merge conflict.

To begin, in Section 4.1, we discuss the methodology employed in this study, which
involves a systematic manual analysis. Figure 4.1 provides an overview of the methodology
used to address the third research question, highlighting the steps involved in each process.
Following that, in Section 4.2, we present the results used to answer our research question.
In Section 4.3, we will present discussions of our previously presented results, and in Section
4.4, we conclude with a study’s validity threats.

We answer the following research question:

e RQ3: The evolutionary commits that made conflicting code contain only refactorings

(pure refactoring) or other modifications (floss refactoring)?

Next, each stage of the methodology for collecting and analyzing evolutionary commits

is detailed.

65

4.1 Methodology 66

4.1 Methodology

In this section, we will present the methodology for our third research question. In addition
to the overall figure illustrating each step, we will provide tables detailing the inputs and

outputs of each stage.

4.1.1 Methodological study for RQ3: Analyzing the content of evolu-

tionary commit (floss and pure refactoring)

Through methodology 1, we identified the evolutionary commits that built the region con-
flicts. At the moment, our study verifies the occurrence of refactoring actions in regions of
conflict by comparing edited lines in the evolutionary commit and the output of RefDiff 2.0
that indicates the location of the refactoring action. To get value for our study we decided
to adopt a strategy that analyzes the content of of the evolutionary commit code involved
in conflict through a manual analysis, to check whether evolutionary commits have only
refactorings in their code sent or which are also composed of other types of modifications.

It is essential to discuss that when implementing the methodology for the third research
question, we conducted a systematic analysis, without including automatic semantic anal-
ysis. The decision to perform this analysis manually was driven by a lack of knowledge
regarding tools capable of automating this task, due to limitations in studies within the
JavaScript domain. The step-by-step methodology is detailed in Figure 4.1 and the next
subsections.

To better illustrate the metrics that be used as inputs and outputs in each activity of the
RQ3 methodology, the following Table 4.1 has been developed, with a detailed description

of each step provided subsequently.

4.1 Methodology

67

Table 4.1: Descriptive analysis of metrics repository selection

Activity | Description Input Output
Sample of evolutionary commits and
Select a sample of evolutionary com- variables - quantity of files involved
1 Extracted data evolutionary commits
mit evolutionary commits and quantity of
files collected by RefDiff 2.0
Compare refactorings by RefDiff 2.0
Sample of evolutionary commits and
2 and GitHub interface and looking for Metrics about evolutionary commits
collected variables
others changes
Categorizing floss and pure evolu- Summary of floss and pure refactor-
3 Evolutionary commits analyzed
tionary commit ing evolutionary commits

1) Select a sample of evolutionary

2) Compare refactoring by RefDiff 2.0 and

commits interface and looking for others changes
evolutonary | merge focal region
commit scenario change change <<hash evolutionary commit>>
506a68.. x vegajs [16.24] quantity of files involved X
Interface scenario |
506468, ¥ Viewijs B3 (Github) quantity of files involved by ¥
,'\/ <% refDiff
J‘ 7 \ \\"
506468, vegais [58.60] A\ <] quantity of refactoring z
refactorings share collected by refDiff 2.0
collected changes !
506468, y View|s 21,21 quantity of others changes by = T>00or0

interface

3) Categorizing floss and pure evolutionary
commit

<<hash evolutionary commit>>

quantity of others T
changes by interface

e |IfT>0,we have afloss
refactoring evolutionary commit

e [|f T=0, we have pure refactoring
in this evolutionary commit by
scenario

Figure 4.1: Methodology for manual analysis of content by evolutionary commit

Select a sample of evolutionary commit

In this initial stage of the methodology, a stratification was executed on our data regarding

evolutionary commits. As we already know the modifications of each commit evolutionary

by merge scenario, we choose a representative sample by sample calculator ! that considers

"https://comentto.com/calculadora-amostral/

4.2 Results 68

64 repositories from 76 that we have, this value guarantees a significant sample with a sig-
nificance of 95%. From these 64 repositories we selected a sample of evolutionary commits

that have at least one refactoring.

Compare refactorings by RefDiff 2.0 and GitHub interface and looking for other

changes

At this stage of our methodology, we extract from these commits in the GitHub interface how
many files were involved in the merge and how many files were collected by the RefDiff 2.0
tool with refactoring actions. We look for the refactorings collected by RefDiff 2.0 and any
relationships that exist with them. Soon after, we look for other modifications that are not
related to refactoring. With this, we collect the variables: the number of files involved in the
merge scenario, the number of files involved by RefDiff, the number of refactorings collected

by the tool, and the number of other changes identified by the GitHub interface.

Categorizing floss and pure evolutionary commit

For our study, we established the classification of "floss refactoring” for any modification
that was not identified as refactoring by RefDiff 2.0 or, even if not found, fit the definitions
in Section 2. We considered a modification as "pure refactoring" only when the evaluated
commit exclusively contained refactoring operations. We defined that the scope of analysis
would be the evolutionary commit since, from the outset, it is used as our primary object
for collecting information on the variables. Any addition of functionalities, test files, build
files, and minified files will be classified as "floss refactoring” if included in the evolutionary

commit.

4.2 Results

The variables collected at this stage of our study helped us identify which changes were in-
volved in the commit that created the conflict. For each repository and each evolutionary
commit we collected the metrics: "the number of files identified with refactoring by RefDiff

2.0", "number of modified files identified in the source code in the GitHub interface", "num-

ber of refactorings identified by RefDift", "number of other modifications identified in the

4.2 Results 69

source code in the GitHub interface". With these variables collected through our methodol-
ogy described previously, we were able to identify which commits in our sample were floss
or pure refactoring.

It is worth mentioning that as it was a manual analysis, we were careful to analyze the
refactorings and modifications involved in the process, so whenever we identified false spu-
rious errors (refactorings collected by RefDiff) they were disregarded from our study, to
obtain good accuracy of our results. In Figure 4.2 below we can identify an example of a
pure refactoring commit. We can verify that in this commit only one file was modified with
only the Rename refactoring modification.

fix parseAssignableListitem function name misspelling

§7 main
T vB.0.0-alphad -~ B.0.0-alpha2
@) sebmek committed on Jan 25, 2015

Showing 1 changed file with 3 additions and 3 deletions.

v 1 § MEEE " acorn.js [[J

while (teac{close)) {

first ? first = false : expect{_comma);

if (tokType == _ellipsis) {
elts.push{parseAssingableListItem(parseResc()));

+ elts.push(parseAssignableListItem(parseRest()));

expect(close);

oreak;
¥
vAr elem;
if (allowempty && tokType === _comma) {
elem = null;
T else {
elem = parseaAssingableliscItem(parseMaybedefaulo());
+ elem = parseAssignablelistItem(parseMaybebefaulc());

}
elts.push({elem);
1
FELUrN elts;

}

function parseAssingablelistItem(param) {
ion parseAssignablelistItem(param) {

if (eat{_guestion)) {

2434 2434 param.optional = true;
2435 2435 }
Figure 4.2: Example of pure evolutionary commit involved in conflict

For the evolutionary commit floss refactoring, according to our definition, we considered

everything that was not a .js file and was not related to refactoring as an extra modification.

4.2 Results 70

Commits with modifications to HTML files, build, tests, minimized files, CSS, etc. were
considered as extra changes, in addition to changes that were not refactorings identified by
RefDiff and were not within the scope of refactorings that we defined in the Background

section. In Figure 4.3 we can see an example of an evolutionary floss refactoring commit.

[ui] lib cleanup, preparing for adhoc routing

B master
E\) vi2g - vD0.1

hijinx committed on Sep 20, 2011

[l Showing 7 changed files with 62 additions and 849 deletions.

Q Filter .?i';\.'_;'g-':g-__'-lj fileg 2 : 65 EEEE js/1ib/55.js |_,‘.—|
v B 5
» 2 Em js#1ib/ss.min.js (&
« jm lib
S5s
D ; o > 45 HEEEE js/test/ss-test-apl.js LD
% SSminjs 3]
~ [test 5 22 EEEEE js/test/ss-test-new. html L]
[sstestapijs =
[ss-test-new.htmi = » 533 EMEEEE js/test/ss-test-new.js O
[sstestnewjs
] 1 =1 -
[ss-testhtml = » 21 EEEEE js/test/ss-test.html O
[sstestjs =]

» 193 EMEEEE js/test/ss-test.js (Ll

Figure 4.3: Example of floss evolutionary commit involved in conflict

4.2.1 Answering RQ3: The evolutionary commits that made conflicting
code contain only refactorings (pure refactoring) or other modifi-

cations (floss refactoring)?

Given all of our correlation analysis between the refactoring and merge conflicts variables,

our third research question has focused on examining the content of these regions through the

4.3 Discussion 71

evolutionary commits. The study analyzed a sample of evolutionary commits to determine
whether they were generated through "floss refactoring” or "pure refactoring", allowing for
better identification of refactoring’s responsibility for the conflict. A manual analysis was
performed on 64 of the 76 repositories in our sample, covering 535 evolutionary commits.
Of these, 448 commits are "floss refactoring" (84%), and 87 are "pure refactoring" (16%).
The distribution of data by repository is shown in Figure 4.4. Of the 64 repositories to this
question, 33 have all the evolutionary commits involved in the conflict process classified as

floss, which represents more than 50% of our sample of repositories.

)
e}
@

[
(=]
L]

(=1}
.

—
v
(]
'Y

I
']
L]
L]

—
=]
[]
[

(5]

e @ oos

w
8
H
L]

e er e @

Quantity of evolutionary commits floss refactoring
.
L]
L]

Quantity of evolutionary commits pure refactoring

o
L]
L]

(=]

Figure 4.4: Dispersion of evolutionary commits floss/pure of QP3

4.3 Discussion

During the manual analysis of our study, we were able to check the instances of refactorings
and their applications in the commit on the GitHub interface. It was found that the tool
considered some modifications to the build file as refactorings. For our study, we did not take
these instances, to have a more accurate classification of floss and pure refactoring. Our study
did not evaluate if the program’s behavior was preserved after executing the refactoring, this
was because we did not have tools for this analysis, in summary, we checked if there was a
relationship between the tool’s output and the modifications involved in the interface, or if
there are any instance followed the refactoring pattern defined in the Background section.

A point highlighting is that many evolutionary commits have other modifications made

4.4 Threats to Validity 72

along with refactorings, like build and test files being the most predominant. Another very
recurring modification seen was configuration files (files that are not .js) indicating future
work that analyzes the configuration setup of the JavaScript code and the occurrence of
conflicts.

This manual analysis allowed us to identify that many of the scenarios previously inves-
tigated in QP1 and QP2 include other modifications in their evolutionary commits, as per
the sample used in QP3. It was found that only about 16% of these analyzed commits ex-
clusively contain refactoring operations. This finding provides an intriguing starting point
for future research, as it enables the analysis of scenarios with pure refactorings, allowing
the identification of whether refactoring was indeed the cause of the conflict. Additionally,
our study contributed to the creation of a dataset containing floss and pure refactoring in
JavaScript, establishing a valuable foundation for future investigations.

Based on the results found in our study, we can observe the need to explore the true
cause-and-effect relationship between these variables. Our manual study identified many
floss refactoring commits, so it is crucial to investigate what other modifications these are
and whether they could have been the cause of the conflict. As future work, we can suggest
the development of discussions on programming best practices and the necessary tools for

exploring floss and pure refactoring in JavaScript.

Summary 4.3.1. Results for RQ3

To analyze the content of analyzed conflicts, our manual analysis found that of the
535 evolutionary commits analyzed, 448 of them were classified as floss refactoring
and 87 as pure refactoring, 84%, and 16% respectively. Most of the repositories ana-
lyzed (52%) had all evolutionary commits as floss, demonstrating a large load of other

modifications that are performed together with refactoring actions.

4.4 Threats to Validity

This section will present the threats to validity that were identified during the method- ology

of our study.

4.4 Threats to Validity 73

4.4.1 Internal Validity

During the manual analysis, we examine the refactorings identified by the tool and the pres-
ence of other modifications, which may or may not follow the refactoring pattern defined in
the Background section. This approach introduces a threat to internal validity as the analyses
are based on the subjective knowledge of the researcher, potentially introducing bias. Man-
ual analysis inherently carries risks, as an automated approach based on accurate metrics

may bring more consistent results.

4.4.2 External Validity

As the analysis is conducted manually, our study is confined to a specific sample, and the
results cannot be generalized due to the limited size of the sample. To mitigate this issue,
we applied a calculation to obtain a sample with 95% confidence, providing a more robust

foundation for our conclusions.

4.4.3 Constructor Validity

Our study chose to perform an analysis of "floss" and "pure refactoring" through evolutionary
commits. If we wanted to examine more rigorously the influence of refactoring on conflicts,
we could have adopted an analysis at the level of the conflict, considering that the scope of
the evolutionary commit is more comprehensive. This choice impacts construct validity, as

the granularity of the analysis can influence the interpretation of results.

4.4.4 Conclusion Validity

The present study faces challenges related to the validity of its conclusions, particularly high-
lighting the bias associated with the number of analyzed repositories and researcher bias.
The drawn conclusions relied on the researcher’s expertise and were derived through a man-
ual analysis. To mitigate the inherent bias in manual analysis, the study was systematically
conducted, focusing on the identification of refactorings without considering whether they
preserved the code’s semantics. It is important to acknowledge that the study has limitations

due to the absence of JavaScript tools capable of automating these processes, underscoring

4.4 Threats to Validity

74

the need for future developments in this area.

Chapter 5

Related Work

This section presents several studies that provide a solid base for our study. This research has
two main variables, refactorings and merge conflicts, so this chapter will focus in to show the
contributions of these variables in this area. About refactorings, it is essential to show studies
that discuss the beginning of the problem, where the necessity of the refactorings comes up,
like bad smells. Furthermore, it presents studies that have techniques to analyze refactoring
actions in software programs. On the other side, about merge conflicts, we have studies that
discuss techniques to merge code without conflicts, and consequences if a conflict exists.
There are a few studies that investigate the relationship between these two variables, and our
study comes to an evolution about the investigation and refactoring and merging conflict in
Javascript code.

There are a lot of studies to language Java that discuss bad smells like your begin and
consequences [29], [25]. Barros and Adachi in their study [4] have a mapping investigation
about code smells in Javascript code, verifying if the bad smells were defined and this defi-
nition. This study analyzes 8 different works published between 2013 and 2020, identifying
26 different types of bad smells that have been defined for the Javascript language and how
these bad smells as evolved. Similarly, the study of Johannes et al. [15] has a large-scale
empirical study about code smells. This study focuses on extracting code smells in reposi-
tories, resulting in 12 types of code smells in 1807 releases. The main contribution of this
study was a better investigation of how the code smell persists in the system. The researchers
found that files without code smells have hazard rates of at least 33% than files with code

smells, in addition to discussing types of refactorings that are most involved with problems.

75

76

Both studies are important to our research because they bring the beginning of the discussion
of refactorings, since Fowler [10] discusses that the exact moment to apply refactoring is at
the start of code smell.

Martin Fowler in his study [10] brings a significant contribution to the definition of refac-
torings, showing ways to make a design code better. This study is very important because is
the first to classify and discuss patterns and step by step to make a better refactoring. There
is a large of refactorings that he presents in his study, refactorings like extract, inline, move
and rename. These types of refactorings are present in our study, but analyzed in Javascript
code. Base of definitions brought to Fowler, Opdyke et al. [21] show more about refac-
toring actions applied in object-oriented frameworks, showing how to automatically apply
these, detailing three of the most complex refactoring and designing constraints needed in a
refactoring. Studies like [7], [8], [27] present discussions about the process to apply refac-
torings automatically, some proposes are tools that implement JavaScript refactorings based
on pointer analysis, others have an approach based in a static analysis.

Silva et al. in their study [24] proposed a multi-language refactoring detection tool -
RefDiff 2.0. Different from the other tools in academics, RefDiff 2.0 is specific to detect
actions refactorings applied by developers in a software evolution. This tool is the first to
collect these information about refactoring to Javascript code, and it will be used in our study.
They have significant precision and recall to Java, Javascript and C languages, detecting
refactorings like move, rename, extract and inline. To Javascript the tool has a precision and
recall of 91% and 88% respectively.

To merge processes, there a substantial studies that provide a better explanation of tech-
niques merging. Mens in his study [18] provides a state-of-the-art about software merging,
he discusses the technique of two-way and three-way merging, also textual, syntactic, seman-
tic and structural merging. In this work, he shows that 90% that all merge scenarios need
unstructured merge (textual) because of they simplicity and only 10% need more complex
merge, like semi-structured or structured merge, also discusses that all VSCs uses textual
merge because have more efficiency, scalability and accuracy. Tavares et al. [26] analyzing
the benefits of using semi-structured merge instead of unstructured in Javascript code, ana-
lyzing by the perspective of true positives and false positives. In repositories that he analyzed

merge techniques, he found that the semistructured merge tool JSFSTMerge reports fewer

77

spurious conflicts than unstructured merge, but this gain this smaller than semistructured
merge tool to Java code, showing that this area of merge tools in Javascript code needs more
studies to better results. Ghiotto et al. in their study [13] introduce a search-based approach
algorithm to minimize conflicts merge. Additionally, Apel et al. in [3] presented developed
tools for Java, C# and Python to reduce the number of conflicts.

Ahmed et al. in [2] presents an empirical examination of the relationship between code
smells and merge conflicts. Their objective was to analyze if entities that contain certain
types of code smells are more prone to be involved with merge conflicts. Additionally,
they investigated if these "smelly" entities are also associated with other types of changes.
To achieve this, they mined 143 repositories from GitHub. The results of their study re-
vealed that poor design choices have a significant impact on maintainability, merge opera-
tions, and the overall quality of the resulting code. Specifically, they found that two code
smells, namely Blob Operation and Internal Duplication, were the most frequently associ-
ated with merge conflicts. This research shows the importance of identifying code smells
and showing design decisions to mitigate the occurrence of merge conflicts.

Mahmoudi et al. in their study [17] was the first study to verify the relation between
refactorings and merge conflicts. In their paper, they perform an empirical study in almost
3000 well-engineered open-source Java software repositories and collect 15 popular refactor-
ing types. The findings revealed that a significant portion, specifically 22%, of the observed
merge conflicts involved refactoring operations. Furthermore, the study identified the Ex-
tract Method as a particularly problematic refactoring type involving merge conflicts. This
shows that caution must be exercised when applying this specific refactoring technique to
avoid potential conflicts during the merging process. Both studies cited were developed by
Java because of the specified characteristics of language and its popularity, a portion of our
study follows the methodology of Mahmoudi et al. study [17], involving the collection of
evolutionary commits by identifying conflict regions. However, our focus is focused on the

JavaScript language.

Chapter 6

Conclusions

Throughout the software evolution process, a series of activities are constantly performed to
enhance its quality. One example of these activities is refactoring, which seeks to improve
the quality of the internal code structure. It is crucial to perform these preventive actions
throughout the software’s entire lifecycle. Due to the need for code integration during this
lifecycle, code merges come into play. These merges are facilitated by Version Control Sys-
tems, enabling the incorporation of local code into a global context, thus promoting software
evolution. However, these merges are not always successful, leading to well-known merge
conflicts. In-depth studies have been conducted to analyze aspects related to code design, the
identification of code smells, as well as the execution of refactoring actions in source code,
and how these elements can impact the occurrence of merge conflicts.

In this work, we present an empirical study that provides initial insights into the occur-
rence of refactorings in JavaScript code conflicts. The first part of this study aims to analyze
the presence of refactoring actions in conflicting files and conflict regions, identifying which
types are more closely related to the conflicting area through the analysis of evolutionary
commits, and examining the commits that contributed to the conflict region. In the second
stage of our investigation, we focus our analysis on the content of evolutionary commits,
adopting a perspective that distinguishes between "floss refactoring” and "pure refactoring."
This multifaceted approach offers a deeper understanding of the dynamics of refactoring
amid code conflicts in JavaScript projects.

To examine the occurrence of refactorings in conflicts, we developed a quantitative ap-

proach that traced the origin and destination of refactorings, checking the edited lines during

78

79

conflicts. We identified the presence of refactorings in conflicts when there was a match
between these lines. In addition to assessing this alignment between lines, our study also
quantified the number of instances of refactorings in these conflicting areas. The collection
of this data was facilitated through scripts developed for extraction in the selected JavaScript
repositories. These scripts were responsible for extracting metrics that addressed the research
questions outlined in Chapter 3.2.2.

For the first part of the study, we identified that approximately 7% of merge scenarios
involve at least one refactoring action in conflicting files. Of these, 4% exhibit this refac-
toring at the level of the conflict region. Our statistical analyses revealed a moderate and
positive correlation between refactoring and conflicts, at the file and conflict region levels,
approximately 0.6 in a Spearmann correlation. When applying simple linear regressions, we
established the null hypothesis of no relationship between the analyzed variables, meaning
that the presence of refactoring would not influence merge conflicts. However, upon exam-
ining the number of relationships between refactoring and conflicts at the level of conflicting
files, we could reject the null hypothesis, indicating that about 5% of the data in the depen-
dent variable Y (number of conflicts) is explained by the independent variable X (number of
relationships). When analyzing the conflict region level, we found no evidence of a signifi-
cant correlation.

In the context of the quantities of instances of refactorings within the conflicting file and
conflict region, we could reject the null hypothesis in both cases, suggesting a significant re-
lationship between the variables. The R-squared value obtained indicates that approximately
10% of the data in the dependent variable X (number of conflicts) is explained by the influ-
ence of the independent variable (number of instances of refactorings), while at the conflict
region level, we find a scenario where 5% of the data is explained by the independent vari-
able. These results suggest an initial relationship between conflicts and refactorings when
analyzed from the perspective of line overlap. Despite the variability of the data regarding
the influence of the independent variable on the dependent variable not being substantial,
these results indicate an influence that serves as a starting point for future studies on this
relationship in JavaScript code.

Still, within our first study, we conducted a quantitative analysis to quantify the types of

refactorings found in the relationships established in Research Question 1 (RQ1). The types

80

of refactorings "Internal Move," "Move," and "Rename" stood out as the most associated
with the identified conflicts. The distinctive aspect of our study lies in the realization that
"Internal Move" is the type of refactoring most related to conflicts. This type of refactoring
was frequently observed in JavaScript code due to the specific characteristics of the language,
which allow for the nesting of functions. In addition to discovering the types most associated
with conflicts, similar to the static analyses of RQ1, we found a significant correlation be-
tween the number of types of refactorings and the occurrence of conflicts, both at the level of
conflicting files and at the level of conflict regions. For the dependent variable Y (number of
conflicts), it was found that approximately 11% of the data is explained by the independent
variable X (number of types of refactorings). Analyzing the independent variable Y as the
number of conflict regions, we found that about 18% of the data is explained by the indepen-
dent variable X. These results indicate a stronger association between the study variables,
representing a possible relationship between the number of different types of refactorings
and the occurrence of conflict. These findings serve as a starting point for discussions on the
threshold of types of refactorings in a commit.

Given the statistical evidence revealed in the first part of our study, the second phase
focuses on a qualitative analysis, where we manually examine a portion of our sample of
evolutionary commits. The objective is to identify which of these commits consist exclu-
sively of refactorings and which also include other modifications. By analyzing the content
of these evolutionary commits, we gain a more in-depth perspective to determine whether
the conflict may have been caused by refactoring or other external factors. The analysis cov-
ered 535 evolutionary commits, and approximately 84% of them were identified as "floss
refactoring," meaning they include elements beyond refactorings, such as bug fixes, con-
figuration commits, addition of tests, among others. Our study regarding the collection of
"floss" and "pure refactoring”" was an initial experiment, given the significant lack of tools
that delve more deeply into the influence of refactoring in JavaScript code. Therefore, our
study does not evaluate whether refactoring preserves or alters the code’s behavior; instead,
it was conducted in a way that involves manual analysis of the presence of refactorings or
other modifications. Despite being an experimental study, conducted manually and suscep-
tible to human errors, we identified that a significant portion of our commits (84%) involved

in conflicts is replete with other modifications. It is crucial to assess the commits identified

6.1 Future work 81

as "pure refactoring" and, from that, determine whether they were indeed the causes of the
conflicts. We emphasize that a relevant discovery of our study was the presence of many
build files and configurations involved in conflicts in JavaScript projects, and many of them
are present in commits classified as "floss refactoring." This highlights the importance of
studies investigating the relationship between other modifications performed in conjunction

with refactorings and the identified conflicts.

6.1 Future work

This work represents a significant starting point in the discussion of the relationship between
merge conflicts and refactoring actions in JavaScript code, showing a positive correlation
between these variables. It is the first study to analyze this interaction with Javascript code,
contributing to the initial understanding of this dynamic. It is crucial to acknowledge that
the results found in this research cannot be generalized due to the nature of the statistical
analysis conducted on a specific sample. Therefore, we emphasize the need for future studies
to refine this initial discussion. Subsequent research can use the methodology of this study
as a foundation and expand to more comprehensive samples.

During the data collection phase regarding refactorings in conflicts, we identified a chal-
lenge related to the lack of specific tools and methodological discussions for the JavaScript
language. This underscores the importance of studies that refine techniques already em-
ployed in other languages and propose new approaches for tools supporting these analyses.
A valuable direction for future research would be the development of more advanced refac-
toring collection tools capable of detecting a broader range of refactoring types, leading to
more robust results.

Furthermore, a pertinent aspect for future investigations would be to extend the discus-
sion on merge conflicts beyond the traditional three-way merge, analyzing the perspective of
merge strategies and the number of conflicts generated.

For future work, it is crucial to have dedicated automated tools for the analysis of "floss"
and "pure refactoring” in JavaScript code. This advancement in tools would provide a more
comprehensive insight into the true influence of refactoring on merge conflicts, contributing

to the knowledge base in this research area.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[71

Paola Accioly, Paulo Borba, and Guilherme Cavalcanti. Understanding semi-structured
merge conflict characteristics in open-source java projects. Empirical Software Engi-

neering, 23:2051-2085, 2018.

Iftekhar Ahmed, Caius Brindescu, Umme Ayda Mannan, Carlos Jensen, and Anita
Sarma. An empirical examination of the relationship between code smells and merge
conflicts. In 2017 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pages 58—67. IEEE, 2017.

Sven Apel, Jorg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Késtner.
Semistructured merge: rethinking merge in revision control systems. In Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, pages 190-200, 2011.

Aryclenio Xavier Barros and Eiji Adachi. Bad smells in javascript-a mapping study.
In Anais do IX Workshop de Visualizacdo, Evolugcdo e Manutengdo de Software, pages
1-5. SBC, 2021.

Valerio Cosentino, Javier L Cénovas Izquierdo, and Jordi Cabot. A systematic mapping

study of software development with github. leee access, 5:7173-7192, 2017.

Rafael de Souza Santos and Leonardo Gresta Paulino Murta. Evaluating the branch
merging effort in version control systems. In 2012 26th Brazilian Symposium on

Software Engineering, pages 151-160. IEEE, 2012.

Asger Feldthaus, Todd Millstein, Anders Mgller, Max Schifer, and Frank Tip. Tool-

supported refactoring for javascript. In Proceedings of the 2011 ACM international con-

82

BIBLIOGRAPHY 83

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ference on Object oriented programming systems languages and applications, pages

119-138, 2011.

Asger Feldthaus and Anders Mgller. Semi-automatic rename refactoring for javascript.

ACM SIGPLAN Notices, 48(10):323-338, 2013.
David Flanagan and Gregor M Novak. Java-script: The definitive guide, 1998.

Martin Fowler and Kent Beck. Refactoring: Improving the design of existing code. In

11th European Conference. Jyvdskyld, Finland, 1997.

Robert Fuhrer, Frank Tip, Adam Kiezun, Julian Dolby, and Markus Keller. Efficiently
refactoring java applications to use generic libraries. In ECOOP 2005-Object-Oriented
Programming: 19th European Conference, Glasgow, UK, July 25-29, 2005. Proceed-
ings 19, pages 71-96. Springer, 2005.

Alejandra Garrido and José Meseguer. Formal specification and verification of java
refactorings. In 2006 Sixth IEEE International Workshop on Source Code Analysis and
Manipulation, pages 165-174. 1IEEE, 2006.

Gleiph Ghiotto, Leonardo Murta, and Marcio Barros. A caminho de uma abordagem
baseada em buscas para minimizacdo de conflitos de merge. In IV Workshop em En-

genharia de Software baseada em Buscas.

Gleiph Ghiotto, Leonardo Murta, Mércio Barros, and Andre Van Der Hoek. On the
nature of merge conflicts: a study of 2,731 open source java projects hosted by github.

IEEE Transactions on Software Engineering, 46(8):892-915, 2018.

David Johannes, Foutse Khomh, and Giuliano Antoniol. A large-scale empirical study

of code smells in javascript projects. Software Quality Journal, 27:1271-1314, 2019.

Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M
Turski. Metrics and laws of software evolution-the nineties view. In Proceedings Fourth

International Software Metrics Symposium, pages 20-32. IEEE, 1997.

Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsantalis. Are refactorings to blame?

an empirical study of refactorings in merge conflicts. In 2019 IEEE 26th International

BIBLIOGRAPHY 84

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 151—
162. IEEE, 2019.

Tom Mens. A state-of-the-art survey on software merging. IEEE transactions on

software engineering, 28(5):449-462, 2002.

Michael Mohan and Des Greer. A survey of search-based refactoring for software

maintenance. Journal of Software Engineering Research and Development, 6(1):1-52,

2018.

José Glauber Oliveira, Melina Mongiovi, and Sabrina Souto. An empirical study of
the relationship between refactorings and merge conflicts in javascript code. In Pro-
ceedings of the XXXVII Brazilian Symposium on Software Engineering, pages 89-98,
2023.

William F Opdyke. Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign, 1992.

Achilleas Pipinellis. GitHub essentials, volume 2. Packt Publishing, 2015.

Max Schifer and Oege De Moor. Specifying and implementing refactorings. In Pro-
ceedings of the ACM international conference on Object oriented programming systems

languages and applications, pages 286-301, 2010.

Danilo Silva, Joao Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio
Valente. Refdiff 2.0: A multi-language refactoring detection tool. IEEE Transactions
on Software Engineering, 47(12):2786-2802, 2020.

Leonardo Sousa, Willian Oizumi, Alessandro Garcia, Anderson Oliveira, Diego
Cedrim, and Carlos Lucena. When are smells indicators of architectural refactoring
opportunities: A study of 50 software projects. In Proceedings of the 28th Interna-

tional Conference on Program Comprehension, pages 354-365, 2020.

Alberto Trindade Tavares, Paulo Borba, Guilherme Cavalcanti, and Sérgio Soares.
Semistructured merge in javascript systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1014-1025. IEEE, 2019.

BIBLIOGRAPHY 85

[27] Kristin Fj6la Témasdottir, Mauricio Aniche, and Arie Van Deursen. The adoption of

javascript linters in practice: A case study on eslint. IEEE Transactions on Software

Engineering, 46(8):863-891, 2018.

[28] Gustavo Vale, Angelika Schmid, Alcemir Rodrigues Santos, Eduardo Santana
De Almeida, and Sven Apel. On the relation between github communication activ-

ity and merge conflicts. Empirical Software Engineering, 25:402—-433, 2020.

[29] Bartosz Walter, Francesca Arcelli Fontana, and Vincenzo Ferme. Code smells and their

collocations: A large-scale experiment on open-source systems. Journal of Systems and

Software, 144:1-21, 2018.

Appendix A

Appendix of study

All the data, scripts, setup, and execution details pertaining to the three research questions

addressed in this study are accessible in the following repository:

e Study Setup in GitHub: <https://github.com/joseglauberbo/data_mestrado_dissertacao>

86

